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1 |  INTRODUCTION

Machine- to- Machine (M2M) communication, also called 

machine- type communication (MTC), is predicted to be one 

of the major applications of current and future cellular com-

munications [1,2]. M2M communication, as defined in [3], 

enables communication between various devices without or 

with limited human intervention. Different devices such as 

sensors, actuators, meters, and radio frequency tags are used 

as M2M devices to read the status of machines and share in-

formation, either on a wireless network, wired network, or 

a hybrid of both to a target destination [4,5]. M2M devices 

are an important part of the emerging “Internet of Things” 

and “Smart City” paradigms [6,7], which are expected to pro-

vide solutions to current and future socioeconomic demands. 

In addition, M2M devices engender new applications in 

areas such as building and industrial automation, remote 

and mobile healthcare, and many more, as described in [8]. 

According to [9], the number of M2M devices is expected to 

significantly outnumber the world population [10]. This cre-

ates a significant gap and makes it practically impossible for 

humans to control them. Therefore, there is a need for these 

devices to autonomously interact among themselves.

The envisaged growth of M2M applications has led to 

many research studies on protocols and products oriented 

to support M2M services. The 6LowPAN protocol suite is 

a popular technology for low- power devices [11], the IEEE 

802.15.4 standard is used for low- bit rate short- range trans-

mission [12], and Zigbee (which utilizes the 802.15.14 

standard) is for M2M device interconnection in short- range 
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Abstract

This paper applies learning automata to improve the performance of a Q- learning 

based random access channel (QL- RACH) scheme in a cellular machine- to- machine 

(M2M) communication system. A prioritized learning automata QL- RACH (PLA- 

QL- RACH) access scheme is proposed. The scheme employs a prioritized learning 

automata technique to improve the throughput performance by minimizing the level 

of interaction and collision of M2M devices with human- to- human devices sharing 

the RACH of a cellular system. In addition, this scheme eliminates the excessive 

punishment suffered by the M2M devices by controlling the administration of a pen-

alty. Simulation results show that the proposed PLA- QL- RACH scheme improves 

the RACH throughput by approximately 82% and reduces access delay by 79% with 

faster learning convergence when compared with QL- RACH.
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wireless sensor networks [13]. Additional studies that could 

add value to M2M applications with communication proto-

cols include the European Installation Bus/Konnex, Local 

Operating Network, and Building Automation and Control 

Network for home automation [14]. Most of the existing com-

munication access protocols or techniques are incapable of 

fulfilling the demand for ubiquitous access. Although short- 

range network solutions, such as Zigbee/6LoWPAN or the 

IEEE 802.11ah extension for M2M communications support 

the interconnection of M2M devices in the same local area, 

there is a need for a long- range network to provide end- to- end 

communications [15]. A ubiquitous radio technology that can 

provide wide coverage with energy efficiency, minimal cost 

per bit, and low latency is what M2M communication needs. 

Cellular networks with their existing infrastructure, capacity, 

and ubiquity have all the necessary requirements to enable 

M2M long- range communications [16]. Current cellular net-

work technologies will not be able to accommodate the pro-

jected growth of M2M traffic, as they have been primarily 

designed to support human- to- human (H2H) traffic.

A cellular system has been designed primarily for H2H 

devices that have significant data transfer requirements, 

whereas M2M communication typically corresponds to a 

large number of devices that require sporadic transmission 

of short packets. Heavy M2M traffic occurs when many such 

devices are activated simultaneously, generating many instan-

taneous attempts to access the cellular network through the 

initial signaling random access channel (RACH), which leads 

to its overload and congestion [17]. As a result of the heavy 

traffic generated by M2M devices, the current RACH access 

approach is not sufficient [16,17]. This is recognized as a 

major challenge for wireless cellular systems, and it needs to 

be addressed to support significant M2M traffic without im-

pacting H2H communication services. There is a need to de-

sign an effective RACH access technique to overcome these 

challenges to accommodate additional M2M traffic in cellu-

lar M2M communication. Numerous RACH access protocols 

have been proposed to address these challenges. Prominent 

among them are the reinforcement learning- based techniques 

such as priority- based learning automata (PLA) [18] and Q- 

learning RACH (QL- RACH) [19], with associated modifica-

tion schemes presented in [20– 22].

A PLA scheme is proposed in this paper to improve the 

performance of the QL- RACH scheme [19]. The scheme is 

called PLA- QL- RACH and uses a learning automata (LA) 

technique to improve RACH throughput performance [19] by 

minimizing interaction and collision among M2M devices or 

with H2H devices sharing the RACH resources. This scheme 

also eliminates the excessive punishment suffered by M2M 

devices by controlling the administration of a penalty factor 

applied in [19]. Simulations were undertaken to assess the 

performance of PLA- QL- RACH compared with the existing 

schemes. The results show that the PLA- QL- RACH scheme 

significantly improves the overall RACH throughput and re-

duces the access delay through faster learning convergence.

The remainder of this paper is structured as follows. 

Section 2 summarizes the related research. The system model 

is introduced in Section 3, and the proposed PLA- QL- RACH 

scheme is described in Section 4. Section 5 provides a de-

tailed performance evaluation, and the paper is concluded in 

Section 6.

2 |  RELATED WORK

A number of techniques have been proposed to deal with 

the RACH overload challenges when M2M devices coex-

ist with H2H devices in cellular networks. These are either 

reinforcement learning (RL) based or non- RL based, which 

includes separating M2M and H2H users in the RACH con-

test by allocating separate RACH resources, access class 

barring (ACB), MTC- specific back- off, and pull- based tech-

niques. This section provides a summary of RACH access 

scheme research to support the co- existence of M2M and 

H2H traffic over cellular networks using RL and non- RL- 

based approaches.

A self- optimizing overload control (SOOC) scheme is 

outlined in [23] to handle the physical RACH (PRACH) 

overload using resource separation. The scheme uses a 

mechanism that collects and monitors information on RACH 

overload at each random access (RA) cycle. Accordingly, 

long- term evolution (LTE) is structured in such a way that an 

evolved node B (eNB) adapts the number of RA slots within 

the RA cycles. The M2M device enters an overload control 

mode when it does not manage to secure an RA slot during 

the first attempt. To regulate RA retries following collision, 

a classic p- persistent mechanism is applied in this mode. The 

scheme also adds high-  and low- priority access classes for 

time- tolerant and time- sensitive M2M devices. It sets dif-

ferent p values depending on the device access class. The 

SOOC protocol monitors the congestion level, making the 

eNB react dynamically by adjusting the number of PRACH 

RA slots within successive cycles, thereby maintaining a 

target maximum collision probability for the system. The 

SOOC scheme handles high- traffic load situations for two- 

time dependent priority classes but suffers RACH conges-

tion/overload when a large number of M2M devices with 

diverse priority classes are considered. To handle the over-

head generated from a large number of M2M devices, Taleb 

and Kunz [24] proposed a bulk M2M signaling scheme as a 

resolution mechanism for congestion/overload. The proposal 

worked on the assumption that M2M signaling messages 

are moderately delay tolerant. This makes it feasible to min-

imize overheads at the eNB by exploiting bulk processing 

and aggregating signaling data from M2M devices before 

forwarding them to the core network. The scheme efficiently 
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handles the traffic generated by a large number of channel 

access requests. However, it is restricted to only M2M traf-

fic without considering that of H2H in sharing the RACH. 

In an attempt to improve [24], a slotted access scheme was 

proposed in [25] to provide RA cycle requests for M2M. The 

scheme employs RA slots for dedicated access, reserved for 

each M2M device and accessed in a collision- free manner. 

The reserved slots for every M2M device are generated from 

the International Mobile Subscriber Identity, which uniquely 

identifies each device, while the cycle parameter is broad-

casted by the eNB within each cycle. The scheme protects 

H2H devices from the impact of M2M access, but may result 

in delays due to the dedicated RA slots used for each M2M 

device. This further creates access collisions, and the scheme 

is not efficient for heavily delay- constrained M2M applica-

tions. To minimize the probability of collision and average 

access delay for a large number of fixed M2M devices, an 

RA scheme for fixed- location M2M communication was 

proposed in [26]. This RA scheme exploits the resource al-

location procedure in terms of fixed uplink timing alignment 

(TA) between the devices and the eNB according to five RA 

steps. The process is similar to the traditional LTE RA proce-

dure except in step 3, where TA information is used to lower 

the probability of collision during transmission of Message 

3. The TA value of a static M2M device is assumed to re-

main constant over time. In addition, once the TA received 

from the eNB in Message 2 varies from that of the M2M 

device, there is a high probability that Message 2 is meant 

for a distinct M2M device that is transmitted on the same 

PRACH. The M2M device evades transmission of Message 

3 in step 3, which minimizes the probability of collision at 

step 4 and, in turn, the access delay. The scheme minimizes 

the likelihood of collision and access delay; however, it is 

partial in resource allocation owing to the failure to transmit 

Message 3, which can bring about a rise in access delay and 

poor quality of service (QoS) performance.

A reinforcement learning- based eNB selection algorithm 

(Q- learning) to reduce access delay was proposed in [27]. The 

RL- based algorithm allows M2M devices to select an eNB in 

a self- organized fashion. The algorithm yields a lower access 

delay when compared to random eNB selection. However, 

the algorithm does not take throughput into account when 

determining the QoS performance. In [28], a game theoretic 

scheme was proposed to enhance system throughput in an 

RACH overload scenario. RA resources are organized into 

three groups: for H2H, M2M, and hybrid usage. Different 

RACH preamble pools are earmarked as RH, RM, and RB 

where RH is the preamble reserved for H2H usage, RM is for 

M2M usage, and RB is for both H2H and M2M usage. The 

M2M devices pull the preamble either in the M2M- dedicated 

pool, in the shared one, or remain silent with a probability 

distribution that is determined based on the outcome of a 

game. The scheme attains an improved system throughput for 

both M2M and H2H devices, but at the expense of a high- 

access delay. To minimize congestion and high- access delay, 

the Fast Adaptive Slotted ALOHA (FASA) scheme was de-

veloped in [29] as an appropriate option for RA control of 

event- driven M2M communications. Slots are considered to 

have various states: idle, successful, or collided. The scheme 

employs these states to accelerate the process of tracking 

the network status by adjusting the transmission probabil-

ity of a p- persistent Slotted ALOHA (s- ALOHA) system 

with the aim of estimating the number of active devices in 

a slot. The FASA scheme is shown to be an effective and 

stable s- ALOHA scheme suitable for event- driven M2M 

communications and other systems characterized by bursty 

traffic. However, the scheme also suffers from high- access 

delay and congestion when different classes of M2M devices 

communicate with different probabilities, thereby lowering 

system throughput because it is limited to event- driven M2M 

communications.

In [19], a Q- learning- based RACH (QL- RACH) access 

scheme was introduced to lower collisions among M2M de-

vices. The QL- RACH scheme uses an intelligent slot assign-

ment mechanism to avoid collisions between M2M devices. It 

allows M2M and H2H devices to share RACH resources. The 

devices are categorized into two groups: learning M2M and 

non- learning H2H. The learning M2M devices used the QL- 

RACH access scheme while the non- learning H2H devices 

maintained the conventional s- ALOHA RACH (SA- RACH) 

scheme. The QL- RACH scheme significantly reduces col-

lisions between the M2M devices, but the RACH through-

put ultimately collapses owing to collisions resulting from 

the disturbance coming from the uncontrolled H2H traffic at 

high- load levels. In addition, slots may be wasted when the 

mean RACH request rate is higher than M2M frame time. 

Furthermore, since every M2M device maintains a Q- value 

for each slot in the M2M frame to record transmission history 

in consecutive frames, the mechanism is energy inefficient 

for battery- limited M2M devices.

A frame- based back- off QL- RACH (FB- QL- RACH) 

scheme was proposed as a modification of QL- RACH in 

[20]. The scheme lowers the probability of collision between 

H2H and M2M devices when sharing the same frame for 

both the initial access and the back- off. The scheme also 

minimizes the slot wastage introduced by the M2M back- off 

in the QL- RACH scheme. The scheme enhances the RACH 

throughput performance of QL- RACH because the effect 

of M2M back- off is eliminated. The challenges presented 

by RL- based and non- RL- based schemes were resolved by 

[18], where a priority- based adaptive access barring scheme 

for M2M communications in LTE networks was developed 

using LA to support different M2M priority classes during 

the resource allocation procedure. The scheme dynamically 

assigns RA resources to different M2M device classes based 

on specific priorities and demands. In addition, the scheme 
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fine- tunes the barring factor for each class to control the 

possible overload. This scheme minimizes access delay 

and resource wastage, but causes poor QoS when consid-

ering both H2H and M2M devices. To resolve the chal-

lenges brought about by the effect of the penalty factor in 

QL- RACH, LA was used to classify M2M according to 

QoS classes, thereby producing an LA- based QL- RACH 

(LA- QL- RACH) access scheme for cellular M2M commu-

nications, as discussed in [22]. The scheme includes a mech-

anism to remove the excessive punishment experienced by 

M2M devices by regulating the use of a penalty factor in the 

QL- RACH scheme. It classifies M2M devices according to 

three QoS classes and assigns RACH resources on demand. 

The classification minimizes the level of interaction and col-

lision between the M2M and H2H devices without forcing 

the M2M into another Q- learning process, thereby resolving 

the problem of the disturbance from the non- learning H2H 

devices. Although the scheme enhanced RACH throughput 

and reduced the end- to- end access delay, it was restricted to 

the control of Q- learning penalty administration without pri-

oritizing the cellular M2M traffic.

None of the papers mentioned have employed a combi-

nation of PLA and Q- learning to improve the QoS perfor-

mance of cellular- based M2M. Therefore, in this study, PLA 

and Q- learning are used together to develop a PLA approach 

to enhance the Q- learning random access scheme (PLA- 

QL- RACH) for cellular M2M communications. This is pos-

sible by employing a PLA technique to improve the RACH 

throughput performance of QL- RACH and eliminate the ex-

cessive punishment suffered by M2M devices.

3 |  SYSTEM MODEL

3.1 | RA procedure in LTE

In LTE, the first step of the RA procedure is for the user equip-

ment (UE) to connect to the network through the RACH in an 

uplink transmission mode. The RA procedure is performed 

either in a contention- free or contention- based manner. In a 

contention- free scenario, the eNB assigns a unique preamble 

to a particular user, guaranteeing its access to the network, 

as in the case of handover. In contrast, in a contention- based 

approach, the individual UE initiates the access request. The 

contention- based mode of the RA procedure is the most ap-

propriate for cellular M2M communication. The preambles 

are randomly selected by the users through the RA slots ac-

cording to the four RA steps, as presented in [16,17].

The structure of a cell in LTE consists of up to 64 assigned 

preambles, some of which are reserved for contention- free 

access while the remaining are made available for contention- 

based RA [17]. The LTE frame structures and modes of op-

eration are described in detail in [16]. RACH collision occurs 

if one preamble is selected simultaneously by more than one 

M2M device in the same RA slot [16].

3.2 | Q- learning and LA

Q- learning is an off- policy or model- free RL algorithm that 

seeks to acquire a policy that maximizes the whole reward 

[21]. The algorithm searches for the optimal action to take 

at any given instant. It is considered to be off policy because 

the Q- learning function learns from actions that are outside 

the present policy. It is viewed as model free because it does 

not require a model of the environment, and it can handle 

problems with stochastic transitions and rewards, without re-

quiring adaptation [21]. LA is equally a RL model that is em-

ployed in many applications that involve adaptive cognitive 

processes. It is seen as a self- operating learning model with 

the power to work in an environment with unknown charac-

teristics. LA is analogous to an automaton that enhances its 

functionality by obtaining knowledge of the behavior of the 

random environment [30]. It employs the knowledge gained 

previously for future cognitive processes. The response of 

the environment to the chosen LA action comes as feed-

back, which is either a reward or penalty. With the help of 

the feedback, the choice of probability of subsequent actions 

is updated. P- Model LA is employed in this work which in-

cludes a set of environmental responses that take only the 

binary values of 1 and 0, respectively, for penalty and reward 

[18,22].

3.3 | LA- QL system model

We assume that one RA slot occurs in a cycle and 50 pream-

bles are earmarked in each RA slot for use by the three prior-

ity classes. Additionally, the M2M devices are presumed to 

be spread within an eNB coverage area in a unit cell of an 

LTE network, each having applications with different priori-

ties and QoS requirements, as shown in Figure 1. Each M2M 

device is initiated within the interval [0, τs] with probability 

that of beta distribution, as presented in [31].

As presented in [30], LA is proven to be effective in guar-

anteeing adaptation to systems operating in environments 

with changing or unknown characteristics. The adaptation 

feature is used in our simulation, as indicated in Figure  1, 

where a number of M2M devices are made to contend in an 

RA cycle.

The quantity of contending M2M devices in each cycle is 

unknown and depends on the stochastic arrival process of RA 

requests of the UE. However, in this work, the UEs that repre-

sent M2M in this work attempt to access the network based on 

priorities and demands for uplink resources [32,33]. PLA is 

the proposed scheme developed in this work, which classifies 
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M2M devices in line with three priority classes: High (H), 

Medium (M), and Low (L), where x ∈ {H, M, L}. The scheme 

fine- tunes the RACH resource allocation probability (ηx(t)), 

LA feedback (cx(t)), and ACB parameter (αx(t)) for each pri-

ority class x and within the tth LA cycle. The parameters are 

adjusted to control any possible overload or collision for a 

particular priority class when the number of M2M devices 

contending for access from that class is higher or lower than 

the resources allocated. The number of contending M2M de-

vices in each priority class is tracked, and RACH resources 

are allocated according to prioritization rules.

The rules are as follows:

• Each priority class uses a certain quantity of available re-

sources, which is determined based on its priority class and 

average requirement.

• The unused resources that have already been allocated to 

a particular priority class are proportionally allocated to 

other priority classes demanding resources.

According to the rules, the steady- state performance of 

the technique is achieved as follows:

1. When the quantity of M2M devices demanding access 

from a priority class is below the maximum RACH 

resources available for that class, then the number of 

allocated preambles to class x, (M
x
(t)), is obtained as 

follows:

where kx(t) is the number of M2M devices for priority class x.

2. When the quantity of M2M devices contending for ac-

cess from a priority class is above the maximum RACH 

resources available for that class, then all the resources 

are used by the devices belonging to this class and the 

ACB parameter is adjusted as follows:

(1)M
x
(t) = k

x
(t),

F I G U R E  1  Machine- to- machine devices with different priorities in LTE networks (adopted from [18])

Cycle

τs

LA

L

LA

H

LA

M
LA

L

LA

M

LA

H
LA

M

LA

L

Learning automata

Environment

H

M

L

High priority

Medium priority

Low priority

Allocated preambles 

for high priority

Allocated preambles 

for medium priority

Allocated preambles 

for low priority
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Each M2M device from priority class x participates in the 

RA procedure according to (2) and randomly selects a preamble 

with probability computed as

The probability that a definite preamble is picked by an 

M2M device from priority class x is given by

The operation of the proposed PLA- QL- RACH scheme, 

which is based on the model presented above, is provided in 

detail in Section 4.

4 |  PLA- QL - RACH ACCESS 
SCHEME

In this section, a modification of the QL- RACH scheme, 

called PLA- QL- RACH, is described. To provide an appropri-

ate context, the shortcomings of the QL- RACH scheme are 

initially presented. QL- RACH uses Q- learning to regulate 

M2M devices while coexisting with H2H devices in sharing 

the RACH channel of a cellular network. These devices are 

classified into two groups: learning M2M and non- learning 

H2H. Coexisting together in a combined RACH access 

scheme, the learning M2M devices go through the QL- RACH 

access scheme while the non- learning H2H devices retain the 

conventional s- ALOHA RACH (SA- RACH) access scheme. 

The learning was realized by designing a virtual M2M frame 

with a size equal to the number of M2M devices. The ran-

dom effect of H2H traffic as it approaches the s- ALOHA 

capacity hinders the performance of the QL- RACH scheme. 

As the H2H traffic load approaches the s- ALOHA capacity, 

the probability of collisions between the H2H and M2M de-

vices increases, leading to RACH throughput collapse. The 

collisions are caused by the failure to prioritize M2M traffic 

when coexisting with H2H traffic, and excessive reward and 

punishment.

To address the aforementioned problem, a PLA- QL- 

RACH access scheme is proposed. First, the technique con-

siders the probability that a preamble remains idle, as given 

by:

and the probability that the preamble is successfully used by a 

device is

while the probability that the preamble suffers collision is given 

by

Information on the number of idle, successful, and col-

lided preambles at the end of each LA cycle is provided to the 

eNB by the PLA technique. Although the eNB is not aware of 

the number of M2M devices demanding access from priority 

classes in each cycle, it is conscious of the access attempt from 

an M2M device based on the probability that an attempted 

preamble converges per state. The convergence of a preamble 

in the idle, successful, and collision states is compared with 

the maximum throughput achieved through s- ALOHA of e−1,  

2e
−1, and 1 − 2e

−1, respectively. This is achieved through the 

adjustment of ηx(t) and αx(t) [18,29], where feedback is also 

produced. The feedback, which is collision dependent, avoids 

the conventional RA attempt retrials, which leads to RACH 

overload and throughput collapse. Instead, it triggers a re-

source allocation procedure that guarantees a collision- free 

RA procedure and better throughput with lower delay. This 

behavior is further explained when the feedback is received 

by the LAs of all the activated M2M devices for each class 

and takes a binary value as reward or punishment. It can be 

presented in the form of an array as

where cH(t), cM(t), and cL(t) represent feedback for the high- , 

medium- , and low- priority classes, respectively. Within a [0 τs] 

interval, each active M2M device transmits a small data packet 

to the eNB during the RA procedure. The activation interval τs 

is distributed into Zs cycles having two identical parts: the first 

part is used for transmitting the preambles, and the second part 

for transmitting Message 3 of the RA procedure. At the end of 

each cycle, the eNB monitors Pcoll
x

 for class x and is generated 

c
x
(t) by comparing it with the expected value of g = 1 − 2e

−1 

[18,22], computed as

The eNB communicates the generated feedback c
x
(t) at 

the end of each cycle through the downlink broadcast chan-

nel. Whenever Pcoll
x

(t) ≥ g, a unit feedback is produced to 

raise ηx(t) and lower αx(t) as new input to the PLA- QL- RACH 

(2)�
x
(t) =

M
x
(t)

k
x
(t)

.

(3)P =

1

M
x
(t)

.

(4)P
m

x
(t) =

�
x(t)

M
x
(t)

.

(5)P
idle
x

(t) =
(

1 − P
m

x
(t)
)k

x
(t)

,

(6)P
succ

x
(t) =

(

k
x
(t)

1

)

P
m

x
(t)

(

1 − P
m

x
(t)
)k

x
(t)−1

,

(7)P
coll
x

(t) = 1 − k
x
(t)Pm

x
(t)

(

1 − P
m

x
(t)
)k

x
(t)−1

−

(

1 − P
m

x
(t)
)k

x
(t)

.

(8)c(t) =
(

c
H

(t), cM(t), cL(t)
)

,

(9)c
x
(t) =

{

0 if Pcoll

x
(t)<g

1 if Pcoll

x
(t)≥g

.
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scheme. Furthermore, when Pcoll
x

(t) < g, a null feedback is 

generated, which results in a decrease in ηx(t) and an increase 

in αx(t). In steady- state conditions, when Pcoll
x

(t) = g, two sce-

narios that are both determined by the feedback occur:

1. The PLA- QL- RACH scheme stabilizes when ηx(t) is 

updated as follows:

where � is the Q- learning rate; 0 < 𝜀1 < Ω
x
− 𝜂

x
(t); 

0 < 𝜀
2
< 𝜂

x
(t) − 𝜃1; and �

1
 is a very small value that guarantees 

a positive non- zero percentage of resources allocated per class 

even when that class has no access request. Moreover, Ω
x
 is the 

maximum value of �
x
(t), which is statically assigned by the eNB. 

The eNB communicates this value to the M2M devices at the be-

ginning of the activation interval through the system information 

blocks (SIBs). Furthermore, αx(t) is updated as follows:

where �2 is a small value and �
1
 and �2 are the LA learning vari-

ables that are chosen in such a way that ηx(t) and αx(t) converge 

to the optimal value asymptotically. The values of ��
1
 and ��2 

respectively determine the estimation accuracy and the conver-

gence speed of the automaton, and hence the stability of the 

PLA- QL- RACH scheme.

2. The outcome of the LA feedback determines the penalty 

factor (R(t)) in the QL- RACH scheme to regulate the 

Q- learning punishment technique at time t, as follows:

The second scenario is necessary to eliminate the chances 

of pushing the M2M devices into another Q- learning process 

using the updated Q- value from QL- RACH, as follows:

with

where c′
x
(t) is the steady- state LA feedback.

The prioritization of the M2M traffic by the PLA 

technique eliminates the RACH collisions and controls 

the QL- RACH reward and punishment technique using 

Algorithm 1.

Algorithm 1 PLA- QL- RACH algorithm implementation 

on collided M2M devices while coexisting with H2H devices 

during a RACH contest. M2M, machine- to- machine; H2H, 

human- to- human; RACH, random access channel; ACB, ac-

cess class barring; QL, Q- learning

A flow chart of the algorithm is presented in Figure 2.

5 |  PERFORMANCE EVALUATION

5.1 | Simulation scenario

Simulation was used to assess the performance of the PLA- 

QL- RACH scheme using MATLAB. The scheme, which is a 

modification of the QL- RACH scheme, was evaluated using 

the same simulation parameters as in [19].

(10)�
x
(t + 1) =

⎧
⎪
⎨
⎪
⎩

�
x
(t)+��1 if c

x
(t)=1

�
x
(t)−��2 if c

x
(t)=0 and �

x
(t)=1 ,

(11)�
x
(t + 1) =

⎧
⎪
⎨
⎪
⎩

�
x
(t)+��1 if c

x
(t)=0

�
x
(t)−��2 if c

x
(t)=1 and �

x
(t)=Ω

x
,

(12)R(t) =

{

+1 if c
x
(t)=0

−1 if c
x
(t)=1

.

(13)Q′ = (1 − �)Q + �c′
x
(t).

(14)c
′

x
(t) = R(t),

1: for every device RACH contest do

2: Route H2H via SA-RACH

3: Route M2M via QL-RACH

4: end for

5: if M2M collision occurs in QL-RACH then

6:     Classify the M2M devices else

7:     Route the collided devices via PLA-QL-RACH according 

to their classes

8: end if

9: for every M2M device using PLA-QL-RACH to contest RACH 

resources do

10:Calculate probability of collision ( ) and compare it with Ƥ ( )

the expected value g

11: Calculate steady state LA feedback ( ) value of 0 / 1ϲ ′(t)

12:end for

13:If probability of collision is less than the expected value and LA 

feedback is 0, then

14:Calculate ACB parameter ( )

15:Decrease RACH resource allocation probability ( ) using ( )

(11) when ACB parameter is 1.

16: Update ACB parameter using (11) 

17: Reward QL penalty factor (R(t)) by 1 using (13)

18:else if LA feedback is 1, then

19: Calculate ACB parameter ( )

20:Update RACH resource allocation probability ( ) using (10)( )

21:Decease ACB parameter using (11) when RACH resource 

allocation probability reaches maximum value ( )

22: Penalize QL penalty factor (R(t)) by −1 using (13)

23:end else if

24:end if



8 |   SHINKAFI ET AL.

A fixed allocation of resources was implemented at this 

stage such that the values of Ω
H
, ΩM, and Ω

L
 were set to 0.5, 

0.3, and 0.2, as 50%, 30%, and 20% ratios, respectively. In the 

fixed allocation approach, a fixed number of preambles are pre- 

allocated to each class statically by the eNB according to the 

priority, and the average number of M2M devices attempting to 

access RACH resources in that class is within a τs interval. The 

choice of preamble allocation ratios for the three traffic classes 

is restricted by the fact that they should sum to 1 and provide 

effective prioritization of resources among the three classes.

5.2 | Simulation parameters

Table 1 present details of the parameters used in this simula-

tion, based on the LTE standard.

In Table 1, the PRACH configuration index of 12 was se-

lected to determine the PRACH preamble type and PRACH 

preamble timing. The index also shows which frame and sub- 

frame M2M devices are permitted to transmit a PRACH pre-

amble. In each frame of 10 ms, there are 10 sub- fames of 1 ms 

each, and each sub- frame has two slots of 0.5 ms. In addition, 

a learning rate of 0.01, which determines the speed of the con-

vergence of the QL- RACH was set to ensure that it is within 

the same low value as the penalty factor. Additionally, an ACB 

time (ac- Barring time) of 28 ms was used as the back- off pe-

riod, which indicates when retransmission will occur after 

collision has occurred. The values of the RACH allocation 

probability (ηx) were selected as the ratio of the pre- allocated 

preambles per class x for use by all M2M devices.

5.3 | Simulation results and discussion

In this section, the performance of the proposed PLA- QL- 

RACH scheme is evaluated along with five other RACH 

access schemes: SA- RACH [29], QL- RACH [19], FB- QL- 

RACH [20], Framed- ALOHA for QL- RACH (FA- QL- 

RACH) [21], and LA- QL- RACH [22]. The schemes are 

evaluated in terms of throughput and average access delay by 

means of simulation. The reporting procedure used by [19] 

F I G U R E  2  Proposed PLA- QL- RACH 

scheme flow chart

T A B L E  1  Simulation parameters

Parameter Value

PRACH configuration index 12

RA slot period 1 ms, 1 cycle

1 RA slot 50 preambles

Preamble format duration 1 ms

Back- off period/AC- Barring Time 28 ms

Number of allowed retransmissions 7

RACH allocation probability (Ω
H
, Ω

M
, Ω

L
) 0.5, 0.3, 0.2

Learning rate 0.01



   | 9SHINKAFI ET AL.

was adopted in presenting our result. The procedure con-

siders the s- ALOHA throughput capacity (e−1) in Erlangs 

(E) at both the upper and lower limits as a threshold for 

traffic prediction. The Erlang is a unit of traffic density in a 

telecommunication system. One Erlang is the equivalent of 

one call (including call attempts and holding time) in a spe-

cific channel for 3600 s (in an hour). An upper limit of 0.3 

E is selected because it is closer to the load limit, whereas 

a lower limit of 0.1 E is chosen as it is away from the load 

limit. These limits are assumed to be the average peak- hour 

load generated by H2H devices during their interaction with 

M2M devices and are used as a measure of RACH stabil-

ity. The effect of the proposed PLA- QL- RACH scheme is 

shown by carefully assessing its delay performance and 

comparing its RACH throughput with the existing schemes. 

Figure 3 shows the RACH throughput performance of the 

proposed PLA- QL- RACH scheme at the M2M upper limit 

with H2H traffic fixed closer to the load limit (0.3 E). When 

the generated traffic is above the s- ALOHA capacity (0.368 

E), it indicates that the overall total traffic comprises the 

fixed H2H traffic and a variable but additional M2M traffic 

load.

Figure 3 demonstrates that the schemes exhibit identical 

performance from 0.3 E to 0.4 E because the generated traf-

fic is below the s- ALOHA capacity. As the generated traffic 

rises from 0.4 E to 1.0 E, the s- ALOHA RACH scheme per-

formance starts to decline, whereas the QL- RACH scheme 

maintains its channel stability as it approaches the load limit. 

However, above the load limit, the proposed PLA- QL- RACH 

is on par with the LA- QL- RACH scheme but performs bet-

ter than the other compared schemes in terms of the RACH 

throughput. Furthermore, Figure 3 demonstrates that the pro-

posed scheme is stable at 1.0 E with 47% RACH throughput 

at steady state. Consequently, above the s- ALOHA capacity, 

the RACH throughput remains at 0.47 E for the proposed 

PLA- QL- RACH scheme, which is 17% higher than that of 

the FB- QL- RACH scheme and 7% better than the FA- QL- 

RACH scheme.

F I G U R E  3  Proposed PLA- QL- RACH throughput comparison— M2M lower limit (H2H = 0.1E)
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F I G U R E  4  Proposed PLA- QL- RACH throughput comparison— M2M upper limit (H2H = 0.3E)
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Figure  4 illustrates the throughput comparison of the 

schemes at the M2M lower limit. At the lower limit, the H2H 

traffic is set away from the load limit (0.1 E), which is well 

below the s- ALOHA capacity. Figure  4 shows that all six 

schemes exhibit similar behavior from 0.1 E to approximately 

0.3 E because the generated traffic within this range is below 

the s- ALOHA capacity. As the generated traffic approaches 

0.368 E (s- ALOHA capacity), the s- ALOHA RACH scheme 

starts to decline as it is unable to support additional traffic, 

unlike the other schemes that maintain identical behavior up 

to 0.5 E. The figure also shows that all the other schemes 

exhibit similar behavior from 0.5 E to 0.7 E, except the QL- 

RACH scheme, which falls at 0.6 E due to the random effect 

of the H2H traffic. Additionally, the figure demonstrates that 

the behavior of the FB- QL- RACH, the LA- QL- RACH, and 

the proposed PLA- QL- RACH schemes are similar from 0.7 E 

to 0.8 E. However, from 0.8 E to 0.9 E, the proposed scheme 

remains on par with the LA- QL- RACH but outperforms the 

FB- QL- RACH scheme owing to the prioritization of M2M 

traffic. Hence, below the s- ALOHA capacity limit, the 

RACH throughput sits at 1.0 E, for PLA- QL- RACH and is 

10% higher than that of FB- QL- RACH and 19% better than 

the FA- QL- RACH scheme. The recorded enhancement in the 

throughput performance of the PLA- QL- RACH scheme re-

sults from the influence of the prioritization (PLA) technique 

on QL- RACH.

Figure 5 shows the RACH throughput comparison per pri-

ority class against the M2M upper limit with the H2H traffic 

set closer to the load limit. The analysis of the RACH through-

put per priority class illustrates the performance of each class, 

how it responds to the fixed allocation of resources, and how 

fast the scheme converges to steady state. In Figure 5, it can 

be seen that the RACH throughput performance at 1.0 E for 

the proposed scheme is 19.7% higher for the H priority class, 

11.9% higher for the M priority class, and 8.1% higher for 

the L priority class when compared with the LA- QL- RACH 

F I G U R E  5  Proposed PLA- QL- RACH throughput comparison per priority class— M2M upper limit
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F I G U R E  6  Proposed PLA- QL- RACH throughput comparison per priority class— M2M lower limit
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F I G U R E  7  Proposed PLA- QL- RACH average end- to- end delay comparison— M2M upper limit
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F I G U R E  8  Proposed PLA- QL- RACH average end- to- end delay comparison— M2M lower limit (H2H = 0.1E)
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F I G U R E  9  Proposed PLA- QL- RACH average end- to- end delay comparison per device RACH access request
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scheme. This improvement was recorded because of the im-

pact of the PLA technique employed by the proposed scheme, 

which enhances the speed of learning convergence over LA- 

QL- RACH, which was limited to categorizing M2M devices 

without prioritizing them. A similar trend is observed in 

Figure 6, which illustrates the RACH throughput comparison 

per priority class for the M2M lower limit when the H2H traf-

fic is fixed away from the load limit.

Figure 6 indicates that when the generated traffic is below 

the s- ALOHA capacity, the RACH throughput performance 

of each priority class is proportional to the fixed allocated 

resources. It is shown that at 1.0 E, the throughput perfor-

mance of the PLA- QL- RACH scheme is 35.6% higher for the 

H priority class, 21.3% higher for the M priority class, and 

14.8% higher for the L priority class when compared with the 

LA- QL- RACH scheme. This specifies that the proportionate 

distribution and allocation of resources to the classes agrees 

with their respective priorities and QoS demand, which is 

possible because of the effect of collision elimination and 

penalty factor regulation on QL- RACH.

Figure 7 presents the average end- to- end delay compar-

ison of the schemes at the M2M upper limit when the H2H 

traffic is set closer to the load limit (0.3 E). It is observed that 

the average end- to- end delay experienced by the proposed 

PLA- QL- RACH scheme is on par with the LA- QL- RACH 

scheme but 79% lower than that of FB- QL- RACH and 21% 

lower than the FA- QL- RACH scheme. Up to 0.6 E of gen-

erated traffic, the effect of the continuous regulation of the 

QL- RACH penalty factor is insignificant. However, as the 

generated traffic rises from 0.6 E to 1.0 E, the enhancement 

in the end- to- end delay of the proposed PLA- QL- RACH 

scheme compared to the previous schemes is witnessed. The 

enhancement is achieved by the continuous regulation of the 

QL- RACH penalty factor, which reduces the repetitive colli-

sions experienced in the dedicated M2M slots.

Additionally, Figure 8 shows the average end- to- end delay 

comparison of the schemes at the M2M lower limit when the 

H2H traffic is fixed away from the load limit (0.1 E). It is 

observed that the proposed PLA- QL- RACH has a minimal 

impact on the LA- QL- RACH scheme but offers 20% lower 

delay than FB- QL- RACH and 22% lower delay than the FA- 

QL- RACH scheme. The average end- to- end delay perfor-

mance of the schemes remains identical from 0.1 E to 0.5 

E of the generated traffic when the H2H traffic is set below 

the s- ALOHA capacity. This is possible because the proba-

bility of collision is normally very low below the s- ALOHA 

capacity. As the generated traffic increases from 0.5 E to 1.0 

E, the average end- to- end delay of the proposed PLA- QL- 

RACH scheme appears lower than all the previous schemes. 

This behavior is attained because of the absence of collisions 

resulting from the low level of contention at the lower levels 

of generated traffic, in which 8 out of 10 M2M transmission 

attempts are successful. Furthermore, the average end- to- end 

delay comparison per device RACH access request for the 

proposed PLA- QL- RACH and LA- QL- RACH schemes is il-

lustrated in Figure 9.

In Figure 9, it is observed that at 15 000 RACH access re-

quests, the average delay experienced by the PLA- QL- RACH 

scheme is 29% lower than that of LA- QL- RACH for the H 

priority class. Similarly, for the M priority class, the pro-

posed scheme attains an average delay of 6.7 cycles, which 

is 17% lower than that of the LA- QL- RACH scheme. In con-

trast, for the L priority class, the proposed scheme reached a 

steady- state average delay of 8.6 cycles, which is 12% lower 

than the 9.75 cycles recorded by the LA- QL- RACH at 15 000 

RACH requests. The lower delay cycles recorded by the 

PLA- QL- RACH scheme with respect to the LA- QL- RACH 

scheme represent how quickly the scheme reached its stabil-

ity based on training completion and learning convergence. 

Furthermore, it is shown that at steady state, the higher the 

priority, the lower the access delay, which is due to the effect 

of prioritization, proportionate distribution, and allocation of 

resources. Consequently, the result illustrates that the average 

access delay for each priority class depends on the percent-

age of resources available to that class, as each class takes 

resources from the maximum RACH resources assigned to it. 

Additionally, when the access requests from a priority class 

are treated, the remaining free RACH resources for this class 

are assigned proportionally to the other classes in a collision- 

free manner. Therefore, the delay performance of the pro-

posed PLA- QL- RACH scheme is improved because at steady 

state, there are no collisions at the lower levels of generated 

traffic owing to the minimal contention. Figure  9 further 

shows that variations around the preamble allocation ratios 

do not have any impact on the relative performance charac-

teristics of the different schemes. However, they only subtly 

change the absolute values, and these values effectively pri-

oritize the traffic and provide distinct performance levels for 

the high- , medium- , and low- priority classes.

6 |  CONCLUSION

In this paper, the PLA- QL- RACH scheme was proposed to 

improve the performance of the QL- RACH access scheme. 

The novel technique classifies M2M devices according 

to three QoS priority classes and assigns RACH resources 

based on their respective demands. The classification mini-

mizes the level of interaction and collision between the M2M 

and H2H devices without pushing the M2M into another Q- 

learning process. In this scheme, the s- ALOHA capacity (e−1

) has been used as an indicator of the preamble utilization sta-

tus, which is either idle, successful, or collision. The collision 

state determines the response of the LA through feedback, 

which regulates the resource allocation process and the use of 

a penalty factor in QL- RACH. The simulation results show 
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that at 1.0 E, the proposed PLA- QL- RACH converges faster 

than the LA- QL- RACH scheme and achieves an RACH 

throughput performance that is 10% higher than that of FA- 

QL- RACH and 19% higher than that of the FB- QL- RACH 

scheme. Overall, the proposed scheme improves the RACH 

throughput to 82% and access delay to 79% with a speed of 

convergence that is faster than that of existing schemes.
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