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ABSTRACT In the current era, data is growing exponentially due to advancements in smart devices. Data
scientists apply a variety of learning-based techniques to identify underlying patterns in the medical data
to address various health-related issues. In this context, automated disease detection has now become a
central concern in medical science. Such approaches can reduce the mortality rate through accurate and
timely diagnosis. COVID-19 is a modern virus that has spread all over the world and is affecting millions of
people. Many countries are facing a shortage of testing kits, vaccines, and other resources due to significant
and rapid growth in cases. In order to accelerate the testing process, scientists around the world have sought
to create novel methods for the detection of the virus. In this paper, we propose a hybrid deep learning
model based on a convolutional neural network (CNN) and gated recurrent unit (GRU) to diagnose the virus
from chest X-rays (CXRs). In the proposed model, a CNN is used to extract features, and a GRU is used as
a classifier. The model has been trained on 424 CXR images with 3 classes (COVID-19, Pneumonia, and
Normal). The proposed model achieves encouraging results of 0.96, 0.96, and 0.95 in terms of precision,
recall, and f1-score, respectively. These findings indicate how deep learning can significantly contribute to
the early detection of COVID-19 in patients through the analysis of X-ray scans. Such indications can pave
the way to mitigate the impact of the disease. We believe that this model can be an effective tool for medical

practitioners for early diagnosis.

INDEX TERMS Medical data, Deep learning, CNN, GRU, COVID-19, Chest X-rays

I. INTRODUCTION

Artificial Intelligence (AI) applications for data analysis have
revolutionized the medical field by achieving human-level
accuracy in medical image classification [1]. Coronavirus
disease or COVID-19 is a new type of contagious disease
caused by a novel strain of flu virus. According to the world
health organization (WHO), the first case of COVID-19 was
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first reported in the Chinese province Wuhan in December
2019 [2]. Coronavirus is recognised as the biggest global
challenge in the 21st-century so far [3] [4]. On March 11,
2020 World Health Organization (WHO) declared the novel
COVID-19 as a pandemic [5, 6].

Like other infectious diseases in the family of coronavirus,
such as Middle East respiratory syndrome (MERS) and Se-
vere Acute Respiratory Syndrome (SARS), COVID-19 in-
fects the main respiratory organs of the human body [7, 8]. A
patient infected with COVID-19 experiences symptoms such
as coughing, fever, sore throat, tiredness, loss of taste and
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smell [9]. In many cases, infected patients have difficulty in
breathing, kidney failure and chest pain, which may result in
death [10]. Millions of people have lost their lives worldwide
[11]. A number of pharmaceutical companies have achieved
success in developing COVID-19 vaccines and numerous
trials on humans have been completed or are in progress
globally.

The detection of the infected people is a high priority in
the battle to conquer this pandemic. According to the Chi-
nese government, the detection of COVID-19 through gene
sequencing can be performed using Reverse Transcription
Polymerase Chain Reaction (RT-PCR) [12] [13]. Typically,
this procedure requires four to six hours to achieve a com-
plete result. Since this disease has spread over a large popula-
tion, it becomes difficult for a testing laboratory to entertain
a large number of tests and provide timely diagnosis [14].
Many patients remain undiagnosed and become a source of
spreading the virus. Given the severity of the problem, there
is a need for developing fully automated and time-efficient
systems.

The early detection of COVID-19 can reduce the spread,
and hospital load [15]. As discussed earlier, the RT-PCR
testing producer has limitations. As such, the research com-
munity is investigating alternative solutions. X-ray and Com-
puted Tomography (CTs) are two medical imaging tech-
niques that have proved effective in detecting lung-related
diseases. These techniques have also achieved promising
results in the visualization of COVID-19 lung infection [16].
However, when a radiologist or other medical practitioner
views the X-ray image, it is possible they may miss early
signs of COVID-19. Further, there is a possibility that differ-
ent experts may come up with a different conclusions.

Recently there has been an increase in medical diagnoses
through automated processes. Machine learning algorithms
have shown higher accuracy in the detection of several dis-
eases than domain experts. In recent years, Chexnet [17]
beat human vision in terms of thoracic disease classification
through chest X-rays. Further, PirShah [18] applied CNN on
Magnetic Resonance Image (MRI) data to detect Parkinson’s
disease and achieved state of the art accuracy. In the same
way, different researchers have attempted to use CNN for
COVID-19 detection from chest X-rays [19]. Ozturk et al.
[20] elaborated the importance of the early recovery of the
COVID-19 positive patients. They have discussed methods
for the detection of the virus. They find that detection of
COVID-19 in patients through Computed Tomography and
X-rays has been discussed in detail, and that these are useful
for timely detection. The authors claim that detection is first
performed in binary decision, that is COVID or Non-COVID.
In the second approach, the detection is a multi-class classifi-
cation which is COVID vs Non-COVID vs pneumonia. They
have used a data set of 125 X-ray images for their experi-
ments and have obtained an accuracy of 98% for binary while
87% for the detection of COVID-19 disease in a multi-class
setting. Inspired by their research, there is a need for a more
robust model to diagnose COVID-19 from chest X-rays.
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Nguyen et al. developed a hybrid model combining GRU
and CNN for handwritten digit recognition which achieved
encouraging results in terms of accuracy [21]. We adopted the
same strategy of combining CNN and GRU for the detection
of COVID-19. CNN is used for feature extraction, while
GRU is used as a fully connected layer. Since COVID-19
is a novel disease there is limited data publicly available
for experiments. The data set used for this study is obtained
from two different sources. COVID -19 infection Xrays are
obtained from [22] while pneumonia and normal images
are acquired from the Kaggle repository [23]. Previously
many deep learning models have been applied to COVID-
19 datasets. However, the limited size of datasets presents a
challenge. In particular, CNN suffers from a weight vanishing
problem with limited data. To address this issue , GRU and
LSTM have been previously deployed. We adopt propose
a similar framework. To the best of our knowledge, it is
the very first attempt to use GRU for Covid-19. The main
contributions in this paper are as follows:

1) Proposition of a hybrid deep learning model based on
convolutional neural network (CNN) and gated recur-
rent unit (GRU) for diagnosing COVID-19 from chest
X-rays (CXRs).

2) We utilised a CNN with ten convolutional layers and
five max-pooling layers for feature extraction from
chest X-ray images.

3) To overcome the weight vanishing problem with lim-
ited data, we used a GRU for classification.

4) We visualize the decision of the proposed model on X-
rays using CAM.

This paper is organized as follows: In section II, related
studies are reviewed. Section III presents the building blocks
of a convolutional neural network, while section IV discusses
the proposed technique in detail. Performance evaluation
of the proposed technique is presented in section V before
section VI concludes the paper.

Il. RELATED WORK

In recent years many researchers have proposed Al algo-
rithms to address medical related issues. Algorithms based
on deep learning are now being used in several domains
[36, 37, 38]. By utilizing Convolution Neural Network
(CNNGs) researchers are able to achieve promising results in
the field of medicine, including brain tumor segmentation,
breast cancer detection, thoracic disease classification in X-
ray images and so on. Several strategies for disease detection
from biomedical imaging data have already been proposed
by various scholars. M Sharma [39] highlighted the key and
future challenges of medical image processing. Lee [40],
describes a number of studies for the detection of various dis-
eases through the use of deep learning algorithms. Cho et al.
[30] proposed a deep learning algorithm for dermatologist-
level classification of malignant lip diseases using deep
convolution neural network. The author trained the ResNet
model on a dataset of 1629 clinical images. The performance
of the proposed method was evaluated using different sets of
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TABLE 1: Summary of related work

Results
Ref and year | Author Data set type Method ACC [ SN TSP TAUC
[24] 2017 Yao et al. X-rays DenseNet - - - 79
[25] 2019 Rajaraman et al X-rays Modified CNN 96 97 96 | 99
[26] 2019 Peng et al. CTs Markov Random Fields 93 - - -
[27]1 2019 Baltruschat et al X-rays ResNet, - - - 80
[28]1 2019 Nasrullah et al CTs CMixNet 94 94 91 -
[29] 2019 Stephen et al X-rays Customized CNN 93 - - -
[30] 2020 Soo Ick et al clinical photos | ResNet - 75 80 82
[31712020 Lei et al MRI 3D-DSC 76 - - -
[32] 2020 Hashmi et al X-rays Weighted Classifier 98 99
[33]1 2020 Jaemin et al Image dataset Customized Deep Learning | — - - 96
[34] 2020 Khatri et al X-rays EMD 83 - - -
[10] 2020 Goyal et al X-rays VGG16,VGG19, Restnet50 | 98 99 99
[35] 2020 Apostolopoulos et al | X-rays CNN(Transfer learning) 96 98 | 96 | -

images having 281 and 344 instances. The proposed model is
compared with 44 participants for classification purposes. Qu
et al. [31] suggested a novel 3D dense separated convolution
(3D-DSC) module for volumetric medical image analysis.
In this study the traditional 3D convolutional kernels are re-
placed with 3D-DSC. The 3D-DSC architecture is assembled
using a series of densely attached 1D filters.

Hashmo et al. [32] used deep transfer learning techniques
for efficient pneumonia detection in chest X-ray images.
A novel ensemble approach based on a weighted classifier
is introduced. The proposed model merges the prediction
results of a weighted classifier from the state of art deep
learning algorithms. Son et al. [33] presented a deep learning
algorithm for validation and development for detecting multi-
ple anomalies findings in retinal fundus images. Baltruschat
[27] developed a deep learning approaches comparison for
multi-label chest X-rays classification. In this study transfer
learning with and without fine tuning is utilized.

In Xue et al. [26], X-ray images of chest are passed through
a process of evaluation, called optimization of scan lines,
to remove all parts of the body to minimize error during
diagnosis. They address an issue that traditional methods
for image restoration suffer when finding locally optimal
solutions rather than global, thereby achieving low accuracy
results. They also address the issue of high computational
load requirements in 4D CT picture registration.

Nasullah et al. [28] developed a modified technique based
on a pair of deep, customised three dimensional mixed link
networks (CMixNet) for classification and detection of lung
cancer. Nodules of lungs were classified using a gradient
boosting machine (GBM) by utilizing extracted features from
the CMixNet module. The results of deep learning nod-
ule based classification were compared with several factors
including patient family history, history of smoking, age,
clinical biomarkers, location and size of detected nodule. Yao
et al. [24] modeled two different algorithms, long short term
memory network and DenseNet, to extract anomalies and
dependency. In this study author suggested a two stage end-
to-end neural network algorithms that merge a densely attach
picture encoder to a recurrent neural network decoder.

Recently several researchers have worked on classification
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of pneumonia. Khatri et al [34] suggested to utilize earth
movers distance (EMD) algorithm to classify non-infected
and infected lungs. Preprocessing is performed on the source
image to remove all non-lung areas. The preprocessed image
is then resized, normalized by intensity so that a set of
uniform shape/size of each lung is obtained. Stephen et al.
[29] develop an efficient deep learning approach for clas-
sification pneumonia. This study utilizes a CNN model to
train for the detection and classification of pneumonia from
chest X-rays dataset. To overcome the issue of overfitting and
enhance generalization of the model, several data augmen-
tation techniques are used to enhance the quality and size
of the dataset. Goyal et al [10] utilize a convolution neural
network algorithm to extract important features and perform
classification of pneumonia and COVID-19. The dataset used
in this study consisted of 748 images having three different
class types. The classes are bacterial pneumonia, normal
and COVID-19. Three different deep learning algorithms
Restnet50, VGG16 and VGGI19 were applied to perform
classification. Rajaraman et al [17] make an effort to explain
the performance of modified CNN to classify pneumonia and
also detect difference between viral and bacterial disease in
pediatric CXRs. Classification of pneumonia from CXRs is a
difficult job due to the presence of huge number of variables
that are extraneous to pneumonia diagnosis.

The early detection of COVID-19 is essential for the timely
isolation of patients to prevent spreading of the virus. In
practice many methods have been slow and costly, therefore
automatic detection is required. Detection of COVID-19
from X-ray images has been performed by Apostolopoulos
et al in [41]. They utilized two datasets with 1427 images
and 1442 images. These datasets are collected from publicly
available repositories. Accuracy, sensitivity and specificity
of the system using deep learning with transfer learning is
96%, 98% and 96% respectively. According to the authors,
detection of COVID-19 via X-rays is a useful addition to the
traditional testing methods.

Abdulkareem et al. [42] suggested a model based on
the Internet of Things (IoT) and Machine Learning (ML)
to diagnose COVID-19 patients in a smart hospital. The
author suggested the use of ML to analyze laboratory find-
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ings can improve the accuracy rate of diagnosis (classifica-
tion). Three different machine learning techniques, namely
Random Forest (RF), Support Vector Machine (SVM) and
Naive Bayes (NB), were utilized on a public dataset. The
authors claim that they achieved up to 95% accuracy using
the Support Vector Machine. Dac Nhuong Le et al. [43]
proposed a novel IoT-enabled deep support vector machine
(DSVM) and Depthwise separable convolution neural net-
work (DWS-CNN) to classify COVID-19 disease. The DWS-
CNN model detects both multiple and binary classes of
COVID-19. Gaussian Filtering (GF) was used to preprocess
and extract features. The DWS-CNN model is employed for
replacing default convolution networks for automatic feature
extraction. The diagnostic outcome of the DWS-CNN model
is tested using a chest X-ray (CXR) image dataset, and the
results are investigated in terms of different performance
measures. They have claimed a level of 99.06% and 98.54%
accuracy. Waheed et al. [44] proposed a novel technique
CovidGAN to generate synthetic chest X-ray (CXR) images
by using Auxiliary Classifier Generative Adversarial Net-
work (ACGAN). The author claimed that synthetic images
generated from CovidGAN could improve the performance
of CNNs to detect COVID-19 disease. Their results show an
85% accuracy achieved by using a traditional neural network.
After adding synthetic images generated from CovidGAN,
the overall accuracy rose to 95%. Pinter et al. [45] proposed
a hybrid-based model to predict COVID-19. The algorithm
integrated a multi-layered perceptron-imperialist competitive
algorithm (MLP-ICA) and adaptive network-based fuzzy in-
ference system (ANFIS). This was used to predict the time
series of mortality rate and infected individuals. Validation
of the proposed method is performed using patient data over
9 days with promising results. Mahanty et al. [46] suggested
a traditional convolution neural network algorithm for binary
classification of pneumonia-based conversion of VGG-19. A
decision tree and InceptionV?2 are applied over a dataset of
CT scan image and X-ray dataset, containing 360 images.
The authors claim that the fine-tuned version of the proposed
model can achieve training and validation accuracy of 91%.
Dansana et al. [47] propose research using an exponential
model (SIR) and two non-linear growth models (Gompertz,
Verhulst) to analyze the coronavirus pandemic across the
world. Data used in this research is collected from the John
Hopkins University repository over a time span of Jan 30,
2020, to June 4, 2020. The proposed model performs better
than the three previous models with an R-score of 0.9981.
The summary of related work is presented in table 1.

Ill. CONVOLUTIONAL NEURAL NETWORK

CNN has shown record performance in several domains such
as image classification [48, 49], speech recognition [50],
face recognition [51], language translation [52], semantic
segmentation [53], image captioning [54], medical image
analysis [55, 56], machine translation and other vision tasks.
Typically, a CNN consists of convolution, pooling, and dense
layers. In the following subsection we explain the building
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blocks of typical CNN models.

A. CONVOLUTION LAYER

The first layer of a CNN is the convolutional layer. It extracts
features from an input image with the help of a kernel
and produces a feature map (convoluted image) as output.
A convolutional operation is composed of several elements
including the kernel or filter (kernel matrix), input image
(input matrix), and feature map.

B. KERNEL

The kernel is a matrix that is small n relation to the input
matrix (input image) and consists of real values. The kernel
takes a patch from the input image in specific dimensions
(equal to the kernel dimension) and applies a dot operation on
the patch and kernel values resulting in a single entry in the
feature map. The patch selection is then moved to the right or
down-word depending on stride movement. This operation is
continued until the whole image is complete; the values of the
kernel change after each iteration during training. The final
goal is to help the model to achieve the highest accuracy and
lowest optimization loss. Therefore, this operation ends-up
with learning different features such as edges or color-related
features.

C. ACTIVATION FUNCTION

Typically, the convolution operation generates linear output.
In order to avoid linearity, we use an activation function,
which makes the network universal function approximator.
Several activation functions are proposed such as sigmoidal,
tangent, Rectified Linear Unit (ReLU). Relu is the most
widely used as it converts negative values to zero. The
mathematical model can be seen in equation 1.

f(z) = max(0, z) ey

D. POOLING

Pooling layers are responsible for reducing the dimensional-
ity of feature maps in a CNN. Several pooling layers are pro-
posed, which include: Max-pooling, Average-pooling, and
Sum-pooling. However, Max-pooling showed high perfor-
mance and widely used for dimensionality reduction. Max-
pooling picks the maximum value from the matrix and avoids
the rest of the values. The mathematical formulation of Max-
pooling is stated in equation 2.

pooli,j = max f'(2)i+p,j+p ©))

where ¢ and j represent spatial position.

E. FULLY CONNECTED LAYERS

Softmax activation is a widely-used activation function for
the performance of deep learning approaches. Equation 3
shows the mathematical equation for the softmax function.

exp(z;)

225 exp(x;)

Softmax(xz;) = 3)
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(a) Normal

(d) Pneumonia

(2) Covid-19

(b) Normal

(h) Covid-19

(c) Normal

(i) Covid-19

FIGURE 1: From Top to Bottom row wise: Presents normal, pneumonia and Covid-19 X-ray images

1) Regularization

Deep neural networks with high learning parameters and
lower or noisy training data can suffer from overfitting prob-
lems. Overfitting refers to phenomena when the model per-
forms better on training data, but it fails to classify new test
instances belonging to the same domain problem. To avoid
this issue, we used dropout strategy. During training, the
dropout randomly drops neurons with probability p in fully-
connected layers. The workflow of the dropout is formulated
in equation 4.

yi= Y, Pr(my}’ 4)

M e M*

In the above equation y; is the expected unit j, M* is the set
of all thinned network while 3" is the output of the unit M.
Pr() is the probability function in the above equation.

2) Loss Function

The loss or cost function compares the target output and
predicted output. It normally minimizes during the training
phase. The model is said to be a good learner and near
to global minima when its loss value falls to a minimum.
We used categorical cross-entropy as the loss function. Its
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formulated version can be seen in equation 5.

fcost(x) - - Z Z

j e vozxels k e classes

¢k log(éir)  (5)

Where c represents the true target class and ¢ shows the
predicted class.

IV. PROPOSED METHODOLOGY

We used a CNN and a GRU on open-access datasets in this re-
search. We obtained three classes of CXR scans from the two
sources: COVID-19, Normal, and Pneumonia. We then split
the entire dataset into 3 sets: training, validation, and testing.
To determine the models’ final classification accuracy, we
kept the test split separate (i.e., did not include CXR in the
training set). We used a deep convolutional neural network
(CNN) for feature extraction while GRU for classification.
Figure 3 shows the framework of the proposed method. The
methods are stepwise explained in the below sections.

A. DATASET

The datasets used in this research has been acquired from
two different sources. Since COVID-19 is a novel disease,
therefore, such datasets are of limited availability for research
experiments. In this regard, we approached two different
repositories, Joseph Paul Cohen and the Kaggle repository.
The acquired dataset from these two repositories consists of
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FIGURE 2: The building blocks of the proposed CNN-GRU model.

TABLE 2: Data Distribution

Data Division sets ~ Covid-19 Normal Pneumonia  Total
Training 99 98 99 296
Validation 14 15 14 43
Testing 29 28 28 85

424 X-ray images and three classes. To ensure the balance
between classes, we extract an equal number of instances
(141) for every class. The dataset is further divided into three
sets training, validation, and testing set with the ratio of 70%,
10%, and 20%, respectively. Figure 1 shows the sample of
the considered dataset, while table 2 represents the dataset
distribution.

1) Pre-processing

The X-ray images were first passed into the pipeline for
preprocessing. In the preprocessing pipeline, data resizing,
shuffling, and normalization are performed. The output im-
ages were then forwarded to the system for feature extraction.

2) Feature extraction

Any deep learning model can be easily integrated into our
model for feature extraction, but our customized model with
defined layers learned best-fit features related to COVID-
19 and pneumonia. We also tried added and subtracted the
convolutional layers. However, by doing this, our results

6

were then compromised. The figure represents the feature ex-
traction process. Where each image (CXR) is passed through
the convolutional layers. The convolutional layer transforms
the image into several dimensions (n is the number of
defined channels) to feature maps. The first convolutional
block receives the input images (X-rays) of 224x224 in three
channels (224x224x3). The 224x244 represents the height
and width, while 3 represents the image dimensions like Red,
Green, Blue (RGB). This block generates 64 feature maps
in 122x122 dimensions, further reduced by the max-pooling
layer to 112x112x64. Similarly, the second convolutional
block receives 122x122 input of dimension 64 and produces
the features maps of the dimensions 11x112x128, which is
further reduced by a second max-pooling layer 56x56x128.
In the same way, these feature maps are passed through 379,
4thand 5t convolutional blocks. The final feature maps
were obtained in the dimensions of 7x7x512, which are
further fed to GRU for classification.

3) Gated recurrent unit

Typically Deep Neural Networks (DNNs) have the problem
of short-term memory. In back-propagation, the gradients
may shrink with time, and thus the problem of vanishing
gradient occurs. Gradients are values used to update the
weights during back-propagation. When the gradient value
becomes small, then it may not contribute in learning. There-
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CNN
GRU
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Grad-CAM

FIGURE 3: Work flow of the proposed method.

fore, when a layer in RNN receives a small value gradient,
then it may stop learning. To tackle this problem, GRU is
the best option. This mechanism can handle the problem of
short-term memory. GRU is a simple and new generation of
RNN. It consists of two gate reset and update gates. The
reset gate is working as a barrier. The decision of keeping
or discarding the data is a concern to update the gate, while
the reset decides how much previous information should be
kept.

4) The Detail Summary of the Model

To better understand the proposed architecture, we have
divided our network into several blocks; Conv-block, GRU-
block, and FC-block. In total, we have 5 Conv-blocks, 1
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GRU-Block, 1 FC-block. Every Conv-block consists of two
convolutional layers, while in each block, the last convolu-
tional layer is followed by a max-pooling layer. However, the
number of parameters and filters remains disparate in every
block.

The output of the last conv-block is then forwarded to
GRU-Block to extract time information. To predict the dis-
ease, the information is then fed to the last FC-block, which
consists of convolutional layers with softmax function. Fig-
ure 2 illustrates the architecture of the proposed system.

V. PERFORMANCE EVALUATION
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A. EXPERIMENTAL SETUP

The dataset is split into training validation and testing set with
the ratio of 70%, 10%, and 20%, respectively. All the exper-
iments were carried in a Kaggle notebook. The GRU-CNN
model is trained and tested using Keras with TensorFlow
backend. The experiments were made on maximum epochs
200, with a batch size of 40, and before the softmax classi-
fication layer, the dropout layer with 0.5 dropout probability
was added. The learning rate is set to 3e-4, while learning
rate decay is set to 0.95. The sample code of deep GRU-CNN
model is available online at '.

B. TRAINING AND VALIDATION PHASE
Figure 4 illustrates the proposed model’s performance in
the training and validation phase in terms of accuracy and

Thttps://colab.research.google.com/drive/
loyHSleBdz85cH4lyUmfFBGhs_pGgKYI17?usp=sharing
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FIGURE 6: Receiver Operating Characteristic

loss. The orange line represents validation accuracy in the
model accuracy plot, while the blue line represents training
accuracy. Similarly, in the Model loss plot, the training loss
is signified by the blue line, whereas validation is presented
in the orange line. The obtained training and validation
accuracy on the 200" epoch is 96% and 93%, respectively.
In the same way, training and validation loss on the 200"
epoch is 0.8 and 0.9, respectively.

The performance of the proposed model of the test phase is
shown in figure 5 in terms of confusion matrix. The first row
and column represent instances in normal class, while the
second and third show COVID-19 and pneumonia classes.
The proposed model classified all the normal and COVID-19
instances correctly. However, in the pneumonia class, among
28 images, only 3 images were miss-classified as normal,
whereas the rest of 25 images are correctly classified as
pneumonia.
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Normal

FIGURE 7: Normal True Negatives: correctly classified normal X-ray scans with corresponding attention maps (CAM). The
figure is best viewed in color.

FIGURE 8: Covid-19 True Positives: correctly classified Covid-19 X-ray scans with corresponding attention maps (CAM).
The figure is best viewed in color.

Table 3 shows the precision, recall, and fl-score for each
case in the test set. GRU-CNN achieved 0.9 precision 1.00
recall and 0.95 fl-score for normal class. For COVID-19
precision, recall and fl-score are recorded 1.00, 1.00, 1.00,
respectively. In the case of pneumonia, the precision, recall,
and fi-score are 1.0, 0.89, 0.94, respectively. Among all the
scores, the highest score is recorded in the COVID-19 class,
while the lowest results values were found in the pneumonia
class. The mean score for all the classes are recorded as 0.96,
0.96, and 0.95 in terms of precision, recall and f1-score.

In the same way, Figure 6 represents the ROC curve
(receiver operating characteristic curve) for all the classes.
It can be seen that class COVID-19 achieved the highest
ROC score of 1.00, followed by The Normal class, which is

VOLUME 9, 2021

TABLE 3: Results of the proposed CNN-GRU for individual
Normal, Covid-19 and Pneumonia in terms of Precision,
Recall and F1-score

Labels Precision Recall Fl-score Support
Normal 0.90 1.00 0.95 28
Covid-19 1.00 1.00 1.00 29
Pneumonia  1.00 0.89 0.94 28

0.9969. While the class Pneumonia archived the least score
of 0.9969. Such results indicate that our model has learned
the discriminate features for all the classes.
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Pneumonia

FIGURE 9: Pneumonia True Positives: correctly classified pneumonia X-ray scans with corresponding attention maps (CAM).
The figure is best viewed in color.

C. GRAD-CAM

Developing a more robust understanding of deep learning
models is an important field of study. Deep Convolution
Neural Networks are also referred to as black-box models due
to limited knowledge of their internal behavior. An attempt to
create more dynamic and explainable deep learning models.
Recently, a number of researchers have suggested methods
to include class activation maps (CAMs) that represent deep
learning predictions with the goal of helping human experts
develop intelligible deep learning models. In this regard, the
author’s proposed methods to produce gradient-based CAM
(i.e., grad-cam) in [57], which highlights the more descriptive
input picture relating to the final model prediction for each
class. In developing trustworthiness in deep learning-based
algorithms, the availability of such information, along with
the model’s predictions, plays a vital role. In addition, the
existence of the grad-cam enables a human expert (doctor) to
verify the efficiency of deep learning.

To provide a comparative understanding of the model’s
predictions, we also visualize the normal class’s attention
maps. The input image, model estimation, and corresponding
Grad-Cams of the proposed model, for normal class, are
shown in figure 7. In figure 7, the first row represents cor-
rectly classified normal X-ray images from the normal class
while the second row represents the Grad-Cams against each
image. Similarly, in figure 8, 9 shows model Grad-Cams and
model prediction for COVID-19 and pneumonia respectively.

The proposed system comes up with limitations like this
model is only limited to the X-rays posterior-anterior (PA)
view. Therefore, other views of X-rays such as anterior-
posterior (AP), lateral and other factors cannot be evaluated.
Due to the availability of limited data, our model is trained
and tested on minimal data. Lastly, the model performance
comparison is only performed with previous algorithms;
comparison with human domain experts like radiologists is
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avoided.

VI. CONCLUSION AND FUTURE WORK

As cases of COVID-19 are rising rapidly, many countries are
turned into lockdown and facing a shortage of resources. Dur-
ing this health emergency, it is crucial to detect every single
positive case. To overcome the limited testing capacity, we
applied a deep GRU-CNN network on the chest X-rays data
to detect COVID-19. We used CNN as a feature extractor
and GRU as a classifier. By integrating extracted features
with GRU, the proposed system’s performance is improved
in terms of classification between COVID, pneumonia, and
normal instances. In the future, we intend to use Generative
adversarial models for data augmentation.
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