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Abstract
Introduction  Time-to-event data from clinical trials are routinely extrapolated using parametric models to estimate the 
cost effectiveness of novel therapies, but how this approach performs in the presence of heterogeneous populations remains 
unknown.
Methods  We performed a simulation study of seven scenarios with varying exponential distributions modelling treatment 
and prognostic effects across subgroup and complement populations, with follow-up typical of clinical trials used to appraise 
the cost effectiveness of therapies by agencies such as the UK National Institute for Health and Care Excellence (NICE). We 
compared established and emerging methods of estimating population life-years (LYs) using parametric models. We also 
proved analytically that an exponential model fitted to censored heterogeneous survival times sampled from two distinct 
exponential distributions will produce a biased estimate of the hazard rate and LYs.
Results  LYs are underestimated by the methods in the presence of heterogeneity, resulting in either under- or overestimation 
of the incremental benefit. In scenarios where the overestimation of benefit is likely, which is of interest to the healthcare 
provider, the method of taking the average LYs from all plausible models has the least bias. LY estimates from complete 
Kaplan–Meier curves have high variation, suggesting mature data may not be a reliable solution. We explore the effect of 
increasing trial sample size and accounting for detected treatment–subgroup interactions.
Conclusions  The bias associated with heterogeneous populations suggests that NICE may need to be more cautious when 
appraising therapies and to consider model averaging or the separate modelling of subgroups when heterogeneity is suspected 
or detected.
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1	 Warwick Medical School, University of Warwick, Coventry, 
UK

Key Points for Decision Makers 

Heterogeneity in time-to-event data may not be identified 
in current health technology appraisals and may result 
in biased estimates of treatment benefit that would affect 
prices and patient access to therapy.

Heterogeneity should be considered. Methods such as 
averaging across plausible models, encouraging larger 
trial populations, and accounting for detectable heteroge-
neity may reduce the bias associated with heterogeneity 
compared with current methods used in health technol-
ogy appraisals undertaken by the UK National Institute 
for Care and Excellence.

1  Introduction

Health technology assessment (HTA) agencies, such as the 
National Institute for Health and Care Excellence (NICE) 
in England and Wales, assess the clinical and cost effec-
tiveness of health technologies based on the appraisal of 
supporting clinical evidence, usually from at least one 
clinical trial, which is then incorporated alongside a series 
of assumptions into an economic model.

Clinical trials often demonstrate heterogeneity in treat-
ment efficacy among patients, with some patients receiving 
less or even no clinical benefit [1, 2]. This heterogene-
ity may increase when converting clinical benefits into 
quality-adjusted life-years (QALYs), which are used in an 
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attempt to present a level playing field on which the effec-
tiveness of all treatments for all diseases can be judged. 
QALYs are usually obtained by estimating the expected 
number of life-years (LYs) and multiplying by a health 
utility value that captures the expected quality of health a 
patient is expected to experience whilst they remain alive, 
which may vary as patients pass through different stages 
of disease, though other methods are possible.

For severe, terminal diseases such as advanced cancers, 
the goals of treatments are to delay disease progression 
and/or extend survival as the prospect of being cured is 
unlikely. Treatments for such diseases usually report clini-
cal outcomes based on their relative efficacy using a haz-
ard ratio, whereas the relative benefit will be measured 
using the gain in QALYs for cost-effectiveness assess-
ments. A hazard ratio uses only observed data, whereas 
LYs often involve extrapolations.

This use of differing scales between clinical and cost 
effectiveness assessments means that heterogeneous treat-
ment effects are even harder to identify. A treatment could 
appear more clinically effective for a subgroup of patients 
compared with the complement in terms of a hazard ratio 
yet offer less benefit in the subgroup when examining the 
LY/QALY benefit because of the influence of prognostic 
factors. For example, a subgroup and complement may 
have hazard of 0.5 and 0.25, with average LYs of 2 and 4, 
respectively. A treatment with a hazard ratio of 0.7 in the 
subgroup and 0.8 in the complement might suggest the 
treatment has a stronger effect in the subgroup; however, 
the LYs are 2.86 and 5 when the subgroup and comple-
ment are treated, meaning the complement population 
gains 1 LY and the subgroup gains 0.86. However, the 
reverse could also be true, with different clinical responses 
in the subgroup and its complement resulting in equivalent 

LY benefits. Factors that may clinically be prognostic, 
such as age, could become treatment-effect modifiers when 
appraising a therapy from a health economic perspective.

Given the increasing pressure on healthcare budgets, it 
is vital that the implications of current methods are fully 
understood to assist decision makers and ensure fair access 
to health technologies.

Our aims are to demonstrate the relationship between 
hazard ratios and LY efficacy estimates and to explore the 
ability of current methodology to accurately estimate LYs 
when the population includes a subgroup with heterogene-
ity in overall survival and treatment effect compared with 
its complement.

2 � Method Overview

We undertook a series of simulations capturing seven dis-
tinct scenarios, each replicating follow-up for a time-to-
event outcome from a phase III clinical trial at the point 
of appraisal by an HTA agency. Each scenario contained 
a different combination of prognosis and treatment effect 
for a subgroup and complement population, with half the 
trial population featuring in the subgroup. Five methods of 
estimating LYs were implemented, all based on a set of can-
didate parametric models.

2.1 � Simulation Method

An overview of the simulation is provided in Table 1. The 
survival times for each subgroup/complement and treatment/
control group were sampled from different exponential dis-
tributions reflecting plausible hazard ratios of treatment and 
prognostic effect.

Table 1   Simulation summary presented according to ADEMP guidelines

ADEMP aims, data-generating mechanisms, estimands, methods, and performance measures

ADEMP category Response

Aims To investigate the performance of commonly used methods of estimating treatment efficacy in life-years in hetero-
geneous populations across a range of scenarios varying combinations of treatment efficacy and patient prognosis 
using follow-up typical of a clinical trial

Data-generating mechanism Data were repeatedly sampled from exponential distributions representing the survival of patients belonging to 
either a subgroup or a complement population and being part of either a treatment or a control group. Censoring 
times were sampled from a Gompertz distribution

Methods Patients were censored if their censoring time occurred before their event time. Eight parametric curves were fitted 
to each set of simulated data, and their life-year estimates and goodness-of-fit statistics were captured across 
seven scenarios. Different methods of obtaining a preferred estimate of life-years were compared. 10,000 simula-
tions of each scenario were run, calculated assuming a variance of 0.25 and desired Monte Carlo standard error 
of 0.005 for bias, with each scenario taking approximately 10 h. A seed was used for reproducibility

Estimand Predicted life-years (or restricted mean survival time), hazard ratio
Performance measures Bias, empirical standard error, mean-squared error, Monte Carlo standard error
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The seven scenarios considered (Table 2) were as follows:

•	 Scenario 0 serves as a reference point and features no 
difference in prognosis or treatment effect between the 
subgroup and complement.

•	 Scenario 1 models no difference in prognosis between the 
subgroup and complement, with a treatment effect only 
in the subgroup.

•	 Scenario 2 features a treatment effect only in the sub-
group, but the subgroup has a worse prognosis than the 
complement.

•	 Scenario 3 models a subgroup with a worse prognosis, 
but the treatment has an equal hazard ratio of effect 
across the subgroup and complement.

•	 Scenario 4 features a subgroup with a worse prognosis, 
but the treatment only has an effect in the complement.

•	 Scenario 5 models a subgroup with a worse progno-
sis, and the hazard ratio of treatment effect is slightly 
stronger in the subgroup than in the complement.

•	 Scenario 6 features a subgroup with a worse prognosis, 
whereas the treatment has a positive effect in the sub-
group and a slight negative effect in the complement.

Our sample size for each scenario was based on assump-
tions of an overall hazard ratio of 0.75, 90% power, and a 
5% alpha and did not consider treatment effect interactions. 
The probability of an event in the follow-up period was 0.60, 
and probability for withdrawing was 0.05, giving a sample 

size of 896 rounded up to the nearest multiple of 8 to allow 
for consistently sized subgroups in every simulation for each 
scenario, using Stata’s ‘power cox’ command.

We replicated trial follow-up by generating censoring 
times using a Gompertz distribution (shape = 3.5, rate = 
0.00005). This gave an average censoring time of 3 years, 
with very few patients censored before 2 years or beyond 
4 years of follow-up (see Fig. A1 in the electronic supple-
mentary material [ESM] for an example). Our scenarios had 
varying power, with the hazard rates used suggesting mortal-
ity rates of 41–78% at 3 years. All survival data were gener-
ated and survival models fitted using the ‘flexsurv’ package 
in R [3], with post-simulation analysis conducted in Stata 16.

We fixed the proportion of the subgroup at 0.5 of the whole 
population but anticipated that our results would generalise 
to subgroups of all proportions. Figure 1 demonstrates the 
pooling of subgroup and complement survival curves, whilst 
Fig. 2 shows parametric curves fitted to a heterogeneous popu-
lation. The true expected LY for each heterogenous popula-
tion was calculated using the LY of the respective component 
population restricted to the first 30 years, weighted by their 
prevalence. For example, LYs for one arm =

where �1 and �2 are the hazard rates in the subgroup and 
complement, respectively, and p and (1 − p) are the respec-
tive prevalences.

∫
30

0

p exp
(

−�1t
)

dt + ∫
30

0

(1 − p) exp
(

−�2t
)

dt,

Table 2   Description of scenarios and summary of parameters

HR hazard ratio, LYs life-years

Scenario number and description HR in subgroup HR in 
comple-
ment

LYs in interven-
tion subgroup 
(HR)

LYs in intervention 
complement (HR)

LYs in control 
subgroup (HR)

LYs in control 
complement 
(HR)

Scenario 0: treatment is effective in 
whole population, no differences 
between subgroup and complement

0.70 0.70 5.68 (λ = 0.175) 5.68 (λ = 0.175) 4.00 (λ = 0.250) 4.00 (λ = 0.250)

Scenario 1: subgroup and comple-
ment have same prognosis, effective 
only in subgroup

0.70 1.00 5.68 (λ = 0.175) 4.00 (λ = 0.250) 4.00 (λ = 0.250) 4.00 (λ = 0.250)

Scenario 2: subgroup has worse prog-
nosis, effective only in subgroup

0.70 1.00 2.86 (λ = 0.350) 4.00 (λ = 0.250) 2.00 (λ = 0.500) 4.00 (λ = 0.250)

Scenario 3: subgroup has worse prog-
nosis, same HR of effect in both 
subgroup and complement

0.70 0.70 2.86 (λ = 0.350) 5.68 (λ = 0.175) 2.00 (λ = 0.500) 4.00 (λ = 0.250)

Scenario 4: subgroup has worse prog-
nosis, effective only in complement

1.00 0.70 2.00 (λ = 0.500) 5.68 (λ = 0.175) 2.00 (λ = 0.500) 4.00 (λ = 0.250)

Scenario 5: subgroup has worse prog-
nosis, stronger effect in subgroup 
than in complement

0.70 0.80 2.86 (λ = 0.350) 5.00 (λ = 0.200) 2.00 (λ = 0.500) 4.00 (λ = 0.250)

Scenario 6: subgroup has worse prog-
nosis, effective in subgroup, slight 
negative effect in complement

0.70 1.10 2.86 (λ = 0.350) 3.63 (λ = 0.275) 2.00 (λ = 0.500) 4.00 (λ = 0.250)
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2.2 � Analytical Method

We fitted eight parametric models (exponential, Weibull, 
log-normal, log-logistic, gamma, generalised gamma, 
Gompertz, and generalised F) independently to each arm 
for each set of simulated trial follow-up data, ignoring sub-
group effects, and estimated LYs from the extrapolation of 
these models. We removed implausible models by assess-
ing each model’s prediction of survival at 5 and 10 years. 
Estimates were considered implausible if they fell outside 
a ± 7.5 percentage unit window around the true 5-year sur-
vival percentage or a ± 5% window around the 10-year value 
when survival rates are expected to be much lower. These 
windows were consistent with the variation in predictions 
made by clinical experts in NICE technology appraisals 
from the authors’ experiencev.

We considered three distinct approaches to obtaining a 
LY estimate. First, we chose the single best-fitting models 
for each arm independently according to Akaike information 
criterion (AIC) and Bayesian information criterion (BIC), 
despite there being limitations with this approach [4]. This 
means different parametric models could be chosen for 
each arm, which is only encouraged by the NICE techni-
cal support document (TSD)-14 when justified by “clinical 
expert judgement, biological plausibility, and robust sta-
tistical analysis” [5]. Second, in keeping with NICE TSD 
14, we selected the model with the combined lowest AIC/
BIC for both arms by adding AIC/BIC across both arms, 
the approach we believe to be most consistent with current 
practice [6, 7]. Finally, we calculated the mean average of 
the LY estimates from all plausible models, as presented by 
Gallacher et al. [8], which generally outperformed infor-
mation criteria-based weights. For reference, we measured 
the area under the Kaplan–Meier curve for each simulation, 
estimating the LYs as they would have been had follow-up 
been complete without any censoring.

We fitted two Cox models in each simulation [9], the first 
only estimating a treatment effect, and the second estimating 
treatment and subgroup effects and a treatment-by-subgroup 
interaction effect.

Finally, we explored the impact of doubling the trial sam-
ple size and of fitting separate parametric models to the sub-
group and complement populations of the treatment and con-
trol arms whenever a significant interaction term was detected 
by a Cox model at the 0.05 significance level threshold.

The code for this paper can be accessed online (https://​
github.​com/​daniel-​g-​92/​heter​ogene​ity).

3 � Results

3.1 � Main Scenarios

Scenario 0 served as a reference point, demonstrating 
the performance of the different approaches when there 
is no heterogeneity within either arm. There is little to 
distinguish between the methods of single model selec-
tion, with each showing almost no bias (Table 3). Even 
in the absence of heterogeneity, few estimates of LYs 
from the fitted models were within 10% of the true LYs, 
with the highest being 27%. LY estimates from complete 
Kaplan–Meier follow-up were within this range for 39% 
of simulations.

Scenario 1 applied the hazard ratio only in the subgroup, 
with no prognostic differences. The methods tended to 
underestimate incremental LYs (Table 3) because of the ben-
efit of the intervention was underestimated (Fig. 3). In just 
over one-half of simulations, neither a significant treatment 
effect nor a significant treatment subgroup interaction were 
detected (46 and 43%, respectively; Table 3).

Scenario 2 applied the hazard ratio only to the subgroup, 
which also had a worse prognosis than the complement. The 
methods underestimated LYs in both arms but overestimated 
incremental LYs. BIC-based selection was associated with 

Fig. 1   Example Kaplan–Meier plot of subgroup, complement and 
combined data for where the treatment is only effective in the sub-
group and subgroup has a worse prognosis (scenario 2)

Fig. 2   Example of parametric curves failing to predict true survival 
for a heterogeneous population. Here λ1 = 0.5 and λ2 = 0.25

https://github.com/daniel-g-92/heterogeneity
https://github.com/daniel-g-92/heterogeneity
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the highest bias. Significant hazard ratios and interaction 
terms were detected in just over one-half of simulations 
(56.5 and 54.7%).

Scenario 3 applied the hazard ratio to the whole popu-
lation, but the subgroup had a worse prognosis. The LYs 
for the intervention were generally underestimated, leading 
to underestimation of the incremental benefit. A signifi-
cant treatment effect was detected in almost all simulations 
(97.8%), but a significant interaction term was rare (5.2%).

Scenario 4 featured a hazard ratio in the complement, 
whereas the subgroup population had a worse prognosis. 
This scenario was analogous to scenario 2, and the results 
were consistent with the switch in treatment efficacy. Incre-
mental efficacy was underestimated, with the BIC-based 
methods being the most severe. A significant treatment effect 
was not detected in the majority of simulations (43.7%), but 
a significant interaction was (52.9%).

Scenario 5 applied a hazard ratio to both the subgroup 
and the complement, but this was stronger in the subgroup, 
which had a worse prognosis. LYs were underestimated for 
both arms by all methods, but these largely cancelled out 
to provide unbiased estimates of incremental benefit. A 
significant treatment effect was detected in most simula-
tions (91.4%), but a significant interaction effect was not 
(11.8%).

Scenario 6 applied a hazard ratio of positive treatment 
effect in the subgroup, which also had a worse prognosis, 
along with a negative treatment effect in the complement. 
Methods tended to underestimate LYs for both arms, but 
this was more considerable in the control arm, leading to 
overestimation of the incremental benefit. The majority of 
simulations for this scenario did not detect a significant treat-
ment effect in the whole population (35.6%) but did detect a 
significant treatment subgroup interaction (75.8%).

The optimal method varied by scenario, and there was 
little to distinguish between model averaging and the AIC-
based methods in terms of bias and accuracy. Examination 
of the distributions of the results (Fig. 3) suggested that esti-
mates coming from model averaging were less skewed and 
so may be more reliable.

LY estimates for all methods were most accurate when 
there was little or no heterogeneity within either arm (sce-
narios 0, 3, and 5), with a noticeably higher percentage 
of estimates falling within 10% of the true incremental 
LYs; however, they were all outperformed by complete 
Kaplan–Meier follow-up. The LY estimates from com-
plete follow-up still had high variability, with the percent-
age of LY estimates that fell within ± 10% of the true LYs 
varying across scenarios from 9 to 38%.

Estimates of all approaches were most accurate (least 
biased and highest percentage within 10% of true value) 
in scenarios when little or no heterogeneity was present 
(scenarios 0, 3, and 5).D
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The ESM contains results of LY estimates from each 
of the parametric models (Tables A2–A3, Fig. A3). Fit-
ting to the censored follow-up of combined populations of 
two heterogeneous exponential groups, the exponential, 
Weibull, and gamma models on average underestimated 
survival, whereas the generalised F, log-normal, and log-
logistic overestimated, though scenario 0 suggests this 
may be due to poor fit rather than heterogeneity. The gen-
eralised gamma and Gompertz had a lot of variation but 
were generally unbiased.

3.2 � Additional Analyses

Table 4 and Fig. 4 contain the results of exploratory analy-
ses examining (1) the effects of increasing the sample size 
to 896 per arm, (2) fitting separate parametric models to 
the subgroup and complement population when a signifi-
cant treatment subgroup interaction was detected, and (3) 
both (1) and (2) simultaneously. Scenario 2 was chosen 
as it modelled a simple interaction that was already often 
detected in the original scenario. However, the results will 
generalise to all scenarios of heterogeneous effects.

Increasing the sample size increased the detection of 
both significant treatment effects and treatment subgroup 
interactions. It also slightly reduced the bias for the meth-
ods of model selection.

Fitting separate models when significant interactions 
were detected reduced the bias from all methods. When 
combined with the larger sample size, all methods pro-
duced unbiased LY estimates. This approach relies on cor-
rect identification of subgroup interactions, may increase 
variance where interactions are falsely identified, and can-
not be applied when subgroups are not identified.

4 � Discussion

Through simulation, we demonstrated the performance of 
current methodology used in HTA in estimating treatment 
benefits. We assessed the bias of this methodology when het-
erogeneity was present in censored follow-up. Across every 
scenario, we showed that the methods had problems accu-
rately predicting LYs, underestimating where heterogeneity 
was present. When estimates of LYs in two treatment groups 
are used to estimate incremental LYs, this can result in either 
under- or overestimation of the true benefit, varying by sce-
nario. This issue of biased estimation is therefore a concern to 
both healthcare providers/decision makers and pharmaceutical 
manufacturers.

These simulations are supported by an analytical result that 
when fitting a single exponential model to immature follow-up 
of a heterogenous population made up of two components, the 

Fig. 3   Violin plot of difference in life-year estimation for each 
method, by arm where estimates for the intervention are on the left 
of each violin, and controls are on the right. Dashed line indicates the 

mean, occasionally distinguishable from the solid median line. AIC 
Akaike information criterion, BIC Bayesian information criterion, LY 
life-year, sig. significant
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survival times of which come from two distinct exponential 
distributions, the fitted model will always overestimate the 
true hazard rate, thus underestimating the mean survival time. 
Defining the true average hazard rate as

where y is the hazard rate in the subgroup, of size np , and z is 
the hazard rate in the complement, of size (1 − p)n . Assum-
ing all patients begin follow-up at the same time, and so 
those that remain event free are all censored at the same 
point, we denote the estimated hazard rate at time t as

It can be shown that �𝜆(t) > 𝜆 for all t , so that an estimate 
of the LY based on this will be an underestimate. This result 
can be generalised to show that the hazard is overestimated 
for any distribution of censoring times, relaxing the assump-
tion on recruitment and censoring times. A detailed proof is 
presented in the ESM.

It is common when almost all patients have died to esti-
mate LYs from the Kaplan–Meier curves instead of para-
metric models [6, 7]. This approach avoids debate on the 
choice of preferred extrapolation. We showed that, across 
all six scenarios, complete follow-up without any censoring 

� =
n events

total risk time
=

n

pn

y
+

(1−p)n

z

=
yz

pz + y(1 − p)
,

𝜆̂(t) =
yz((1 − p exp (−yt)) − ((1 − p) exp(−zt)))

zp(1 − exp (−yt)) + y(1 − p)(1 − exp (−zt))
.

yielded an estimate of mean survival that deviated at least 
10% from the true value in the majority of simulations (up to 
91%). This raises the question of whether mature follow-up 
from clinical trials is sufficiently reliable for decision mak-
ers, especially when sample sizes are small. We recommend 
that the uncertainty in the Kaplan–Meier estimates is consid-
ered, perhaps through the 95% confidence interval curves.

As access to therapies is ascertained not just on clinical 
efficacy but also on cost effectiveness, greater consideration 
of the economic assessment should be accounted for in the 
trial design and data collection. Cost-effectiveness analysis 
protocols should be established during the trial development 
stage to promote transparency. This may be a challenge to 
pharmaceutical manufacturers, as methods of assessing 
cost effectiveness vary by country. Consideration should be 
given not only to powering trials to detect clinically mean-
ingful differences at key follow-up milestones but also to 
accurately capturing patient survival for a single arm [10], 
leading to increased confidence in the output from extended 
follow-up. Our simulations demonstrated the challenge of 
estimating cost effectiveness from a study powered for a 
clinical outcome. In cases where it may be appropriate to 
make treatment available for only a subgroup of patients, it 
is critical that the correct group are identified. When such 
discrimination is not appropriate, it remains imperative that 
these groups are identified to accurately estimate the treat-
ment benefit in a heterogeneous population.

Fig. 4   Violin plot of difference in life-year estimation for each 
method for variations of scenario 2. Estimates for the intervention 
are on the left of each violin, and controls are on the right. Dashed 

line indicates the mean, occasionally distinguishable from the solid 
median line. AIC Akaike information criterion, BIC Bayesian infor-
mation criterion, LY life-year, sig. significant
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Heterogeneity could also be more prevalent in routine 
care than in clinical trials, for example where populations 
tend to be underrepresented in research [11], leading to dif-
ferences between actual and predicted benefits.

Scenarios 3 and 5 featured varying treatment benefits on 
the LY scale between the subgroup and complement that 
was not reflected on the hazard ratio scale. Scenario 5 was 
more complex in that the hazard ratio suggested a stronger 
benefit in the subgroup, but the better prognosis of the com-
plement meant that the complement gained more LYs. This 
scenario could cause confusion if attempting to prioritise 
patient access.

The often worse performance of the BIC-based methods 
was perhaps due to their preference for models with the few-
est parameters, which may have been the worst at capturing 
the heterogeneity.

In four scenarios, the analytical methods underestimated 
the incremental LYs. This means the healthcare provider 
obtains better value for money than was anticipated at the 
point of appraisal and that the pharmaceutical manufacturer 
does not maximise their potential reimbursement. It is likely 
that pharmaceutical manufacturers already watch for these 
potential conditions and take steps to minimise their occur-
rence. It is not necessarily the priority of the healthcare pro-
vider to reduce the bias in these scenarios. However, in sce-
narios 2 and 6, the incremental LY was overestimated, quite 
considerably by some methods, which should be of concern 
to the healthcare provider. Consequently, the avoidance of 
these scenarios is less of a priority to the pharmaceutical 
manufacturer and so are potentially more likely to occur. 
These scenarios both featured a treatment effect only in a 
prognostically worse subgroup. In both, the bias was reduced 
when LY estimates were taken by either using arm-inde-
pendent AIC selection or taking the average of all plausible 
models, compared with obtaining LYs through one of the 
other methods. Given the skewed nature of the independent 
AIC selection in these scenarios, taking the average of all 
plausible models appears to be more reliable, also featur-
ing a higher percentage of LY estimates within 10% of the 
true range. Hence, we recommend that decision makers such 
as NICE encourage the presentation of analyses using the 
average of all plausible models where the treatment effect 
may interact with a prognostic factor, or model subgroup 
populations separately if a significant interaction is detected.

Such an approach is not without risk since phase III trials 
are not usually designed with the power to detect efficacy 
among known prognostic or potential treatment-modifying 
subgroups. Any observed difference in treatment effects 
could occur by chance and may lead to unnecessary restric-
tions being applied, resulting in unfair pricing and unfair 
access to interventions.

To make strides towards personalised medicine, NICE 
could consider offering greater incentivisation for treatments 

where the developer has identified novel patient subgroups, 
which will likely incur additional costs compared with devel-
oping a non-stratified therapy. This would ensure patients 
receive the best therapy for them and avoid treatment prices 
being based on potentially biased estimates [12].

If heterogeneity is suspected, but not detected or attrib-
utable to any known covariate, fitting separate models for 
different subgroups is not an option. It is possible that flex-
ible parametric approaches [13] or mixture cure models [14] 
might better capture the heterogeneity than would traditional 
parametric approaches; however, these were beyond the 
scope of this study, and further investigation is needed. Data 
appearing to follow a complex hazard rate may be a conse-
quence of a heterogeneous population containing subgroups 
that each have a much simpler underlying hazard rate.

A major strength of our study was that it captured a range 
of interesting scenarios of varying subgroup and comple-
ment treatment efficacies representative of clinical trial fol-
low-up used for appraising the cost effectiveness of therapies 
by agencies such as NICE. These scenarios could potentially 
feature in any and every technology appraisal. However, our 
study did have limitations. It assumed that the clinical pre-
dictions of efficacy were unbiased, whereas this may not be 
the case in practice. The size of the bias is certainly affected 
by sample size, subgroup prevalence, and length of follow-
up, which were not explored in detail in this study.

Our source distributions were all exponential, which often 
led to the exclusion of the log-normal and log-logistic curves 
when plausibility was assessed. We anticipate our results 
to be generalisable to scenarios beyond those based on the 
exponential distribution, wherever heterogeneous popula-
tions exist, regardless of the underlying distribution. Our 
results are relevant to not only technology appraisals but 
also published cost-effectiveness studies, where methods of 
extrapolating survival are similar [15, 16]. Spline models 
were not included in this simulation because of their addi-
tional manual specification when selecting knot frequency 
and location but have been shown to fit well to trial and 
registry data where sample sizes are larger than in typical 
clinical trials [17, 18]. Similarly, cure models incorporating 
external data have been shown to perform well but could not 
be applied in this simulation [19].

Our study demonstrated that the relationship between 
clinical benefit and LY benefit is not always linear, which 
can raise challenges when valuing treatments. Our results 
were consistent with and may explain the observations of 
Ouwens et al. [20], who reported that parametric models 
fitted to trial follow-up underestimated mean survival com-
pared with more mature follow-up. More work exploring 
further ways of discovering and accounting for this hetero-
geneity is necessary to increase the likelihood of conducting 
a balanced assessment of cost effectiveness.
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5 � Conclusion

Our study presented simulated trial follow-up for seven 
scenarios of varying combinations of treatment effects and 
prognoses where these differ in different parts of the popula-
tion, where the information is typical of that used to assess 
the cost effectiveness of therapies.

We demonstrated how existing methods cope poorly with 
censored data containing heterogeneous treatment effects, 
which can either under- or overestimate the incremental LYs. 
Taking the average LY estimate from all plausible models 
performs well in scenarios where the incremental LYs are 
likely to be overestimated, and we encourage decision mak-
ers to consider this approach in future appraisals.

The high variability of estimates present in observed fol-
low-up suggests that mature follow-up may not be reliable for 
estimating mean survival, particularly when sample sizes are 
small. We demonstrated the improved LY estimation obtained 
by increasing the sample size and modelling subgroup data 
separately when significant interactions were detected.
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