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Identification and assessment of cardiolipin  
interactions with E. coli inner membrane proteins
Robin A. Corey1, Wanling Song1, Anna L. Duncan1, T. Bertie Ansell1,  
Mark S. P. Sansom1, Phillip J. Stansfeld1,2*

Integral membrane proteins are localized and/or regulated by lipids present in the surrounding bilayer. While 
bacteria have relatively simple membranes, there is ample evidence that many bacterial proteins bind to specific 
lipids, especially the anionic lipid cardiolipin. Here, we apply molecular dynamics simulations to assess lipid binding 
to 42 different Escherichia coli inner membrane proteins. Our data reveal an asymmetry between the membrane 
leaflets, with increased anionic lipid binding to the inner leaflet regions of the proteins, particularly for cardiolipin. 
From our simulations, we identify >700 independent cardiolipin binding sites, allowing us to identify the molecular 
basis of a prototypical cardiolipin binding site, which we validate against structures of bacterial proteins bound to 
cardiolipin. This allows us to construct a set of metrics for defining a high-affinity cardiolipin binding site on 
bacterial membrane proteins, paving the way for a heuristic approach to defining other protein-lipid interactions.

INTRODUCTION
Cells are partitioned and encapsulated by biological membranes 
that are formed from a complex mixture of different lipids. Here, 
the lipids provide the necessary hydrophobic environment required 
to localize and tether the proteins to and/or within the membrane, 
acting as a solvent for the membrane-spanning region of the 
protein. In addition, specific interactions between particular mem-
brane lipids and discrete regions on the surface of the protein can be 
of considerable importance, controlling how the protein folds, 
localizes, and functions (1). Therefore, lipid composition and 
distribution can have a major impact on the regulation of cell 
membrane activity.

The identification of specific protein-lipid interactions has been 
tackled for a number of different proteins. In the well-studied model 
Gram-negative bacteria Escherichia coli, for instance, which has a 
relatively simple plasma membrane, the anionic phospholipid 
cardiolipin (“CDL;” also known as “CL”) has been shown to interact 
specifically with several membrane proteins, including AmtB (2), 
SecYEG (3), formate dehydrogenase-N (4), and LeuT (5–7). How-
ever, there has been little in the way of systematically modeling 
CDL interactions with a range of different bacterial proteins in 
a single study.

Protein-lipid interactions are frequently studied using computa-
tional methods, such as with molecular dynamics (MD) simulations 
(1, 8). These allow analysis of a given protein-lipid interaction with 
a high spatial and temporal resolution, as well as allowing a relatively 
unambiguous assignment of molecular species. In particular, the 
use of a coarse-grained (CG) biomolecular force field, such as 
Martini (9, 10), has been widely used for studying protein-lipid 
interactions (11). By reducing the degrees of freedom of a given 
system, sampling is improved, albeit with an associated loss in 
chemical resolution. This permits the dynamic modelling of protein-
lipid interactions, which typically occur on the microsecond 
time scale.

Here, we use CG simulations to analyze lipid interactions with 
42 E. coli inner membrane proteins, with each protein simulated in 
simple bacterial membranes. Global analysis of the data shows a 
strong bilayer asymmetry, with substantially more anionic lipid 
binding in the inner leaflet of the membrane, particularly for 
CDL. This is primarily driven by an increased number of lipid-
facing basic residues on the cytoplasmic face of the membrane, 
extending the well-established positive inside rule (12) to residues 
that interact with the membrane. We then resolve over 700 discrete 
CDL-binding sites from the dataset and analyze using structural 
bioinformatics and free-energy calculations. The data allow us to 
describe rules for a high-affinity CDL-binding site on bacterial 
membrane proteins. Last, we illustrate that our rules have strong 
agreement with previously determined CDL sites on bacterial mem-
brane protein structures.

RESULTS
We constructed and simulated 42 different protein/membrane 
systems of E. coli inner membrane proteins using the CG Martini 
force field [Fig. 1, A and B (9, 10)]. Symmetric membranes were built 
using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine 
(POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 
and CDL at a 7:2:1 ratio and simulated for 5 × 5 s. In total, we 
generated over 1 ms of simulation data. We used these data to first 
analyze the global properties of protein-lipid interactions in the 
model E. coli membrane and then to identify and characterize 
specific protein-CDL interactions.

Distribution of residues in contact with the membrane
First, we carried out a global analysis of the nature of protein-lipid 
interactions in our dataset. Across the 42 systems, we see that CDL, 
and to a lesser extent PG, binds with a high propensity to the 
proteins, as measured by quantifying residue-lipid contacts within 
0.6 nm (Fig. 2A and fig. S1A). Moreover, there is a strong asymmetry 
with regard to the inner (cytoplasmic) and outer leaflets, with CDL 
in particular far more likely to bind the protein when in the inner 
leaflet of the membrane. Looking at the distribution of residues in 
contact with the membrane (Fig. 2B), this is explained by both 
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Fig. 1. Overview of the methodology. (A) Views of an example protein (AcrB; PDB, 1IWG), colored according to chain, shown in the input atomic resolution (top) and in 
Martini CG description (center) and embedded in a Martini CG lipid membrane (bottom). (B) Views of all 42 proteins analyzed in this study, with their common protein 
names shown above. Protein coordinates are shown in gray, and phosphate beads are shown in orange. PDB and UniProtKB IDs for each system can be found in table S1.
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Fig. 2. Cross-membrane asymmetry in protein-lipid interactions. (A) Quantification of the number of each type of lipid in contact with the different proteins, 
expressed as a propensity (see Methods). Data are divided between the inner and outer leaflets, with one data point per lipid, per leaflet, per protein. Box plots show the 
median, upper and lower quartiles, and range (excluding flier points). Statistics are from two-tailed t tests, with P < 0.001 in all cases. The raw data are plotted in fig. S1A. 
(B) Total number of Arg and Lys residues in contact with lipid molecules, plotted as a function of z-axis position, centered on the center of mass of the membrane. Gray 
lines mark the position of the lipid phosphate groups. Substantially more contacts are made in the inner leaflet than in the outer leaflet. The same analyses for other 
residues are in fig. S1C.
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membrane-facing Arg and Lys being substantially more prevalent 
in the inner leaflet (−2 nm) than in the outer leaflet (+2 nm). This is 
even more pronounced for CDL-facing residues (fig. S1B). Nonbasic 
residues are evenly distributed between the two leaflets (fig. S1C). This 
substantiates that the previously asserted “positive-inside” rule for 
membrane protein topology (12) applies to distribution of not only resi-
dues but also amino acids that directly interact with the membrane.

Analysis of CDL-residue interactions
The high binding likelihood of CDL, and the seeming importance 
of Arg/Lys interactions in this, led us to build interaction profiles for 
CDL and each residue type. As expected, the CG beads representing 

the CDL phosphate groups are most likely to be in contact with Arg 
and Lys residues (Fig. 3), with Arg slightly more prevalent, presum-
ably reflecting the higher propensity for Arg in membrane-facing 
positions (Fig. 2A). This role of basic residues in CDL binding 
supports previous structure-based predictions (13).

The central glycerol also makes substantial contacts to Arg and 
Lys (Fig. 3), with Ser, Gly, and Thr residues next most likely. The 
similarity between the phosphate and glycerol beads is probably due 
to their close proximity and the shape of the CDL headgroup. The 
tail-connecting glycerol beads appear to bind to aromatic residues 
(Phe or Trp), as well as contacting small hydrophobic residues (Leu and 
Val), or basic residues (Fig. 3).

PO1 PO2

GL0

GL1–4

Tail

Fig. 3. CDL-residue interaction profiles. Number of contacts between each bead type of the Martini CDL molecule and each residue for the proteins analyzed here. The 
five highest interacting residues are shown. Bar charts show mean and SEM over all 42 systems. Full residue data, and data for PE and PG, are available in fig. S2.
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Identification of specific CDL-binding sites 
and the importance of basic residues
We next set out to identify specific CDL-binding sites from our 
simulation data. We followed an approach described recently (14, 15), 
where contacts between each residue in the system and each lipid 
are modeled for every frame of the trajectory, and interaction 
matrices are constructed. A network analysis clustering protocol is 
then applied to identify clusters of residues that bind CDL at the 
same time. For this, only interactions involving the three headgroup 
beads (GL0, PO1, and PO2) are considered. This analysis was run 
using a program designed specifically for this purpose (https://
github.com/wlsong/PyLipID). From this, we identified 701 specific 
CDL sites with residence times above 10 ns (see Methods for filtering 
process). The identified sites had a median of 36% CDL occupancy 
(Fig. 4A). Representative protein structures with CDL bound are 
deposited at https://osf.io/gftqa/.

On the basis of the data in Fig. 3, it seems reasonable to predict 
that the presence of Arg or Lys residues would affect the affinity of 
the site. Of the 701 sites, ca. 60% contain at least one Arg or Lys residue, 
and these have a median CDL occupancy of ca. 53% (Fig. 4A), as 
opposed to just 14% for sites without a basic residue present (Fig. 4A). 
We also saw a higher number of sites and median occupancy for 
sites with at least one basic residue in the cytoplasmic leaflet, when 
compared with the periplasmic leaflet (fig. S3A), although high-
affinity periplasmic sites do still exist [see, e.g., (4, 16)].

For the 60% of sites that do contain an Arg or Lys residue, the 
mean number of basic residues for each site was 1.9 ± 1.3, with an 
overall site size of six residues (fig. S3B). Hence, we looked at the 
impact at having two or more basic residues in the site and saw that 
this gives an even higher site occupancy of 64% (Fig. 4A), as opposed 
to 37% for only one basic residue (Fig. 4A).

Visualizing some example sites produced by PyLipID reveals 
that most sites have two to three basic residues in very close proximity 
to one another (fig. S4). Therefore, we filtered the sites on the basis 
of the presence of two or more adjacent basic residues (i.e., within 
0.8 nm; fig. S3C). Thirty-two percent of sites with basic residues 
contain adjacent Arg/Lys residues, and typically, these basic resi-
dues are very close on the z axis (median, 0.21 nm; fig. S3D). Notably, 
the median occupancy of these sites (72% for two or more basic 
residues; 70% for three or more) is far higher than that of sites with 
two or more Arg/Lys residues that are not adjacent (59%; Fig. 4A).

Together, these observations suggest that higher occupancy 
CDL sites in E. coli membrane proteins contain two or more basic 
residues that are adjacent, i.e., within 0.8 nm, and within 0.2 to 
0.3 nm on the z axis, i.e., parallel to the membrane.

Other features of a two–basic residue site
Of the 138 identified sites with adjacent Arg/Lys residues, we 
analyzed other features that were associated with higher CDL binding. 
First, analysis of the type of secondary structure the Arg/Lys residues 
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Fig. 4. Characterization of identified CDL sites. (A) Violin plot showing the computed occupancies for identified CDL-binding sites with binding durations above 10 ns. 
All sites (“All”), sites with any Arg/Lys residue (“KR”), no Arg/Lys (“No KR”), only one Arg/Lys (“1 KR”), at least two Arg/Lys (“≥2 KR”), and then at least either two or three 
structurally adjacent Arg/Lys residues (“≥2 KR adj” and “≥3 KR adj”) are shown. Reported median and interquartile range values can be found in table S2. (B) CDL occupancies 
for sites with two or more structurally adjacent Arg/Lys residues and either with or without Gly, His, Pro, Ser, and Thr. Statistical analysis from a two-tailed t test, with 
P values of 0.008, 0.007, 0.021, 0.001, and 0.0183, respectively.
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are on reveals that there is no preference for these residues to be 
either on helix or loop regions of the protein (fig. S5A). This finding 
contrasts with a previous study looking at mitochondrial structures 
(13), a disparity perhaps explained by the inclusion of loop dynamics 
in our study.

Then, we looked at other residues present in the binding sites. 
Several residue types appear to contribute to CDL-binding likelihood, 
including Gly (ca. 36% of sites), His (ca. 22% of sites), Ser (ca. 30% 
of sites), and Thr (ca. 27% of sites), which all increase the median 
occupancy of the CDL site (Fig. 4B). This fits well with the observation 
that Ser, Gly, and Thr all have high levels of CDL headgroup inter-
actions (Fig. 3). Conversely, Pro (ca. 33% of sites) decreases the 
median occupancy of the CDL site.

Contribution of different residues to CDL-binding energy
To assess the contributions of different residues to CDL binding, 
we performed alanine-scanning free-energy perturbation (FEP) 
calculations. Here, a positive G value indicates a higher affinity 
for CDL than PE (see Methods for details). We applied this approach 
to selected residues in 10 different binding sites, for a total of 
102 mutations (see Fig. 5A for three example sites). The data show a 
reasonable range in the values for each residue type, with the primary 
observation being that Arg/Lys residues have a median interaction 
energy of 1.6 (0.8 to 2.4) kJ mol−1 for CDL over PE (Fig. 5B), i.e., 
they interact with CDL more strongly than with PE. Of note, in some 
cases, the substitution of Arg/Lys for Ala decreases the strength of 
the CDL interaction. This occurs in cases where there are four or 
more basic residues in total in the site, suggesting that once two to 
three basic residues are present, the addition of further basic resi-
dues diminishes the strength of the CDL coordination.

In addition, certain aromatic residues show a preference for 
CDL over PE (Fig. 5B), supporting the prediction in Fig. 3. However, 
the median interaction energy is close to 0, so these residues need to 
be assessed with respect to the overall composition of the site.

CDL-binding site rules and experimental validation
Taking the data together, it is clear that a high-affinity CDL site has 
a few key features: two to three adjacent basic residues in the same plane 
of the membrane, one or more polar residues, and a neighboring 
aromatic residue deeper within the membrane. To evaluate these 

rules using experimental data, we analyzed structures previously 
deposited in the Protein Data Bank (PDB). First, a direct comparison 
of our data with the bound CDL in E. coli formate dehydrogenase-N 
[PDB, 1KQF (4)] reveals that our CG data correctly predict the 
structural site (Fig. 6A), with a very high (74 ± 24%) CDL occu-
pancy across the subunits, and that the site follows the rules out-
lined above.

We then carried out a broader analysis, identifying a further 18 
CDL sites across five additional proteins [from (17–21); see Methods 
for details]. We compared these to our CDL site rules, observing 
excellent agreement (Fig. 6B and table S4).

DISCUSSION
Membrane proteins bind to, and are often regulated by, many 
different lipids from the surrounding bilayer. A number of studies 
have attempted to detect and probe these interactions, usually fo-
cusing on one system at a time, with notable exceptions (11). Here, 
we investigate interactions between membrane proteins and lipids in 
the bacterial inner membrane, focusing on systems for which high-
resolution structural data of the E. coli membrane protein exist.

Our analyses reveal a notable pattern of asymmetry between the 
inner and outer leaflets of the membrane, with anionic CDL and PG 
binding much more readily to the inner leaflet region of the protein. 
This appears to be driven by an increased number of lipid-facing 
basic residues on the cytoplasmic face of the proteins (Fig. 2B), as 
previously predicted (22). This might affect the ratios of lipids in 
each leaflet of the membrane—if CDL and PG are sequestered at 
high-affinity binding sites on proteins, they are plausibly more likely 
to avoid recycling, as seen for mitochondrial CDL (23), contributing 
to a net asymmetry between the leaflets of the membrane. It is 
unclear what the biological necessity for this is: The proposed stabi-
lization of membrane proteins (24) and/or role as a proton sink (25) 
in mitochondrial inner membranes could easily act in both leaflets 
of the membrane. CDL asymmetry does contribute to high membrane 
curvature in mitochondria (26), but this effect is largely absent in 
E. coli. Alternatively, the asymmetry could be in place to help 
balance the charges arising from the positive inside rule (12) or even 
help to directly establish the positive inside rule by influencing protein 
topology (27). Experimental analyses looking at CDL distribution 
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in the membrane, like those similarly performed for PE distribution 
(28), would be useful to confirm these findings.

In addition, our data reveal a set of rules for a high-affinity CDL-
binding site on an E. coli—and therefore likely bacterial—membrane 
protein. These are the following:

1) Two to three basic residues in close proximity, i.e., within 
0.8 nm of each other, within 0.2 to 0.3 nm of each other on the 
z axis, and roughly 1.8 nm from the center of the membrane. These 
likely coordinate the two phosphates of the CDL molecule (Fig. 3). 
FEP analyses suggest that each basic residue will contribute, on 
average, 1.6 kJ mol−1 to CDL binding above that of PE—and some-
times up to 4 to 5 kJ mol−1—and suggest that more than three basic 
residues is not necessary or desirable for a CDL site.

2) The presence of at least one polar residue, e.g., Ser, Thr, or His. These 
are often in a similar plane to the basic residues and are likely important 
for stabilizing the CDL headgroup, particularly the central glycerol.

3) One or more aromatic residues, slightly deeper within the 
membrane. These probably coordinate the glycerol groups connecting 
the phosphate headgroup to the acyl tails.

We also note the common occurrence of Gly residues at the CDL 
headgroup, which is associated with a higher binding affinity of 
CDL (Fig. 4B). The lack of a side chain might help Gly pack tightly 
against the central glycerol of CDL, although additional analysis 
with atomistic simulation would be necessary to confirm this.

CDL is also highly abundant and functionally important in the 
mitochondrial membrane, where it has been shown to bind specifically 
to a wide range of proteins, including Tim23/Tim50 (29), F-ATPase 
(30), and Complex I (31). Previous structure-based analyses of 
mitochondrial proteins suggest overlap with the rules we identify 
here (13, 32). It would therefore be interesting to extend these analyses 
to mitochondrial proteins to see how universal our proposed CDL-
binding rules are.

Certain caution should be drawn from the use here of a CG 
model of CDL. This reduces the accuracy with which interactions 
are defined, particularly in terms of electrostatics, which will affect basic 
residues, and polarizability, which will particularly affect aromatic 
side chains. However, considerable success has been achieved using 
CG to model protein-lipid interactions (1, 8), and here, we use the 
newest version of Martini (v3), which should have an improvement 
in accuracy (33). Moreover, direct comparison of the CG and atomistic 
binding poses for a chosen system suggests that good agreement is 
retained at the atomistic resolution (fig. S7).

Future work incorporating additional atomistic data will permit 
additional insight into the data presented here and allow a higher 
degree of accuracy when distinguishing between similar sites with 
different lipid binding properties. Nevertheless, the increased chemical 
resolution will also likely make data interpretation more difficult, 
necessitating the use of more advanced statistical analyses.

While here we have largely focused on CDL over PG binding, 
there may be interesting comparisons to be made between these two 
anionic lipids in terms of how they interact with the different binding 
sites. While the headgroups are similar, i.e., two PG molecules is 
roughly one CDL, there are differences that arise from the central 
glycerol of CDL holding the two charged phosphate groups in close 
proximity. To bring two PG headgroups this close within a binding 
site would have both an enthalpic (Coulombic) and an entropic cost, 
which is not the case for CDL. Furthermore, the CDL has a very 
specific headgroup structure that it seems unlikely that two PG 
molecules would readily adopt.

Our study focuses principally on lipid headgroups, with little analysis 
of the contribution of lipid tails to binding. As a necessary simplification, 
we chose to use simple palmitoyl-oleyl tails, where oleyl was chosen 
to represent the bacterial vaccenyl tail group. Therefore, future analyses 
might also be important to investigate lipid tail diversity (34).
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METHODS
Building systems
We referred to the MemProtMD database [http://memprotmd.
bioch.ox.ac.uk (35, 36)] to identify 42 unique E. coli inner membrane 
proteins with structural information available in the PDB. For each 
protein, a single representative set of coordinates was chosen, with 
the full list of PDB IDs used found in table S1. For each PDB ID, 
the atomic coordinates of the protein were downloaded from the 
MemProtMD database. The protein coordinates were extracted and 
converted to the Martini 3 open beta package v3.0.b.3.2 (9, 10, 33). 
All side chains were set to their default charge state, with His set to 
neutral. The proteins were then built into symmetric E. coli inner 
membranes using the insane protocol (37) with 67% POPE, 23% 
POPG, and 10% CDL (using a −2 charge model with 23 CG beads; 
see Supplementary Methods for the topology used) in each leaflet. 
Note that because of the CG nature of the Martini force field, 
here, oleyl has been chosen to represent to common bacterial vac-
cenyl tail group.

Systems were solubilized with Martini 3 waters and ions to a 
neutral charge. Systems were minimized using the steepest descent 
method and then equilibrated in two rounds using 5-fs time steps 
for 1 ns and 20-fs time steps for 100 ns. Both equilibration steps 
used a semi-isotropic Berendsen barostat (38) at 1 bar and a velocity-
rescaling thermostat (39) at 323 K. Production simulations were 
then run using the Parrinello-Rahman barostat (40) at 1 bar using 
20-fs time steps over 5 s, running five repeats. All simulations were 
run using Gromacs 2019 (41, 42).

The systems were analyzed using gmx tools and MDAnalysis 
(43). Images were made with VMD (44), and plots were made with 
Matplotlib (45) and Prism 8.

Modeling asymmetry in lipid contacts
For each of the 42 protein systems, the total number of each lipid 
type in contact with the protein was determined for both inner and 
outer leaflets of the membrane, as determined using the topology 
information present in the Orientations of Proteins in Membranes 
(OPM) database (46). For each of the five repeats, average contacts 
(based on the distance between any protein residue and any bead 
from the lipid molecule being less than 0.6 nm) were taken for 0.5 to 
5 s of each simulation, using the Gromacs tool gmx select. Data for 
CDL, PG, and PE binding to each protein were combined and plotted 
as lipid binding propensity, where propensity is defined as

	​​  
Target lipid as % of bound lipid

   ──────────────────   Target lipid as % of total lipid  ​​	

So, if 20% of the lipid bound to the protein surface was CDL, and 
10% of the total lipid was CDL, then the propensity would be the 
ratio of these, i.e., 20/10 = 2. The raw data are plotted in fig. S1A.

Position of lipid-contacting residues across the membrane
As the vast majority of the systems had planar bilayers, to establish 
a profile for protein-lipid interactions across the span of the 
membrane, simulations were aligned according to the lipid phosphate 
beads such that the center of the membrane was set to 0 nm on the 
z axis. The probability that each residue in the system contacts any 
lipid over the 5 × 5 s of data was then calculated on the basis of a 
0.6 nm cutoff. For every residue with a lipid contact probability 
greater than 10% of the simulation time, we extracted the z-axis position 

from the final frame of the PO4 bead normalized simulation. We 
then plotted a histogram of these residues along the z axis.

CDL-residue interactions
Predictions of CDL-binding sites were made on the basis of the 
frequency of contact of each CDL particle with different protein resi-
dues across all 42 systems. Contact was determined as the number 
of frames of the simulation, where the specified particles from the 
lipid and residue were within 0.6 nm, calculated using MDAnalysis. 
For each bead type, the five highest contacting residue types were 
plotted, with all residues plotted in fig. S2 for all three lipid types.

Identification of lipid binding sites
Identification of CDL-binding sites was performed following a 
kinetic analysis of residue-lipid interactions, based on (14, 15). The 
program we wrote for this purpose is available at https://github.
com/wlsong/PyLipID, with full details to be published separately. 
In brief, our approach determines whether each possible lipid/residue 
pair is in contact at each frame of the simulation and then uses 
graph theory to cluster residues with high likelihood of simultaneously 
binding the same CDL headgroup. For this, a double cutoff model 
is used: Once the lipid-residue distance is smaller than the first 
cutoff of 0.55 nm, it is considered bound until the distance goes 
over a distance of 1 nm. A dual cutoff is used to account for variability 
in the lipid position within the binding site due to random fluctua-
tions. Only CDL was analyzed, and only interactions involving the 
three headgroup beads (GL0, PO1, and PO2) were analyzed.

For each site, a global occupancy of the site was calculated on the 
basis of the number of frames that CDL spends in contact with at 
least one residue in the site (framesbound)

	​ Occupancy  = ​  ​frames​ bound​​ ─ ​frames​ total​​
  ​​	

From the 42 systems, we identified 986 CDL-binding sites, with binding 
site residence times (the time the lipid is continuously in contact 
with any residue from the site) ranging from extremely short 
(ca. 1-ns time scale) to 2 to 3 s in length. To simplify our data, we chose 
only the 701 sites with calculated binding site residence times above 
10 ns, as any time below this threshold is likely just accounted for by 
random diffusion of the CDL molecule. The inclusion of these sites 
does not affect the main outcomes of the study (e.g., fig. S3E). In 
addition, any individual residues with binding occupancies below 
10% of the total site occupancy were removed before analysis.

Identification of adjacent basic residues in sites
To determine which sites contain adjacent basic residues, we ex-
tracted the Cartesian coordinates of the backbone (“BB”) bead of all 
Arg or Lys residues from the identified site from the input model. If an 
individual site has two or more basic residues within 0.8 nm in three-
dimensional space, we classified these as an adjacent pair. The value 
0.8 nm was chosen as a reasonable cutoff based off the distribution 
of the distance between basic residues in sites with two or more 
basic residues present (fig. S3C).

Alanine scanning FEP
For selected identified sites with CDL occupancies above 50%, as 
determined using PyLipID, alanine scanning FEP calculations were 
performed on any residue in contact with the CDL for at least 50% 
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of the overall site occupancy, apart from Gly and Ala (being too similar 
to Ala). For this, the selected residues were alchemically perturbed 
to the one-bead Martini 3 open beta Ala through conversion of their 
side-chain (SC) beads to dummy particles with no Lennard Jones (LJ) 
or Coulombic interactions. We ran these FEP calculations in the 
presence or absence of CDL to measure the effect of mutation on 
lipid binding [as per (47)].

Poses for each site comprising the protein and bound CDL were 
produced using the PyLipID program. These were then embedded 
into a solvated Martini POPE membrane, using the insane protocol. 
The systems were minimized using steepest descents and equilibrated 
for 10 ns using 20-fs time steps, as described above. The lipid was 
kept in the binding site using a 1000 kJ mol−1 nm−2 flat bottom 
restraint between the center-of-mass (COM) of the CDL headgroup 
and the COM of the site residues, applied using plumed 2.2.3 
(48, 49). For calculations of the system without CDL, the CDL 
molecule was deleted, and a 100-ns equilibration simulation was 
run to allow the membrane to equilibrate around the protein.

For the FEP calculations, Coulombic and LJ parameters were 
switched separately over the  coordinate, over 17 windows with 
certain windows overlapping, following this scheme:

; init_lambda 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
vdw_lambdas = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
coul_lambdas = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.0 1.0 1.0 

1.0 1.0 1.0
Each  window was run for 10 repeats for 12 ns, with the first 

2 ns discarded as equilibration. The separate windows were con-
structed into energy landscapes along  using Multistate Bennett 
Acceptance Ratio (MBAR) (50) as implemented in alchemical analysis 
(51). Convergence is shown for one case (5JWY) in fig. S6A.
G values were computed using the cycle in fig. S6B. Here, we deter-

mined the energy cost of substituting a residue to an alanine when bound 
(Garg>ala.CDL) and not bound (i.e., in a pure PE membrane; Garg>ala.PE) 
to a CDL molecule. A positive G (Garg>ala.CDL − Garg>ala.PE) 
means that the residue is interacting more strongly with the CDL 
than with a generic lipid.

Analysis of PDB entries
The PDB was queried for the chemical ID “CDL,” giving 222 struc-
tures (as of February 2021), 64 of which were bacterial. In addition, 
one system in which the ligand was labeled as “CDN” was added. 
Filtering out duplicate entries for the same system left seven unique 
structures, with 19 CDL sites. Comparison with the proposed CDL 
rules was made on the basis of visual inspection (see table S4). Note 
that PDBs containing modified fluorescent CDL derivatives were 
not included in this analysis.

Atomistic simulations
For a CG snapshot of CDL bound to formate dehydrogenase N from 
our FEP analyses, we converted the system to an atomistic description 
using the CG2AT (v2) protocol (52). Protein and lipids (1 CDL and 
848 POPE) were described with the CHARMM36 force field (53) 
and solvated with TIP3P water and Na+ and Cl− to 150 mM.

The systems were energy-minimized using the steepest descents 
method and then equilibrated with positional restraints on heavy 
atoms for 100 ps in the NPT ensemble at 310 K with the V-rescale 
thermostat and semi-isotropic Parrinello-Rahman pressure coupling. 
A production simulation was run without positional restraints, with 
2-fs time steps over 200 ns.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/34/eabh2217/DC1

View/request a protocol for this paper from Bio-protocol.
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