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a b s t r a c t

In a smart grid, efficient load management can help balance and reduce the burden on the national
power grid and also minimize local operational electricity cost. Robust optimization is a technique
that is increasingly used in home energy management systems, where it is applied in the scheduling
of household loads through demand side control. In this work, interruptible loads and thermostatically
controlled loads are analyzed to obtain optimal schedules in the presence of uncertainty. Firstly,
the uncertain parameters are represented as different intervals, and then in order to control the
degree of conservatism, these parameters are divided into various robustness levels. The conventional
scheduling problem is transformed into a deterministic scheduling problem by translating the intervals
and robustness levels into constraints. We then apply Harris’ hawk optimization together with integer
linear programming to further optimize the load scheduling. Cost and trade-off schemes are considered
to analyze the financial consequences of several robustness levels. Results show that the proposed
method is adaptable to user requirements and robust to the uncertainties.

© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Smart grid (SG) is an advanced technology which comprises
variety of components and operations with digital communi-
ations technology enabling the energy system to pro-act, detect
nd react to changes in usage and numerous other events. It is
ntegrated with advanced metering infrastructure (AMI), a smart
eter (SM), intelligent control system and advanced communi-
ation technologies. Load management (Shehadeh et al., 2020;
alaat et al., 2020), power system stability and control (Huang
t al., 2017), monitoring of transmission lines (Mahin et al., 2020;
udge et al., 2020), and secure data transmission (Guan et al.,
017; Manzoor et al., 2018; El Mrabet et al., 2018; Manzoor et al.,
019; Beg et al., 2021) are major issues concerning SG deploy-
ent and uptake. Load management has promising impact on
eak load reduction, cost minimization, load balancing and peak
o average ratio. The management of power is classified as either
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352-4847/© 2021 Published by Elsevier Ltd. This is an open access article under the
supply side management (SSM) and demand side management
(DSM). The former ensures efficient generation, transmission and
distribution of electricity; this is also responsible for providing
reliable energy at minimum economic cost However, our work
is focused on the latter and aims to address issues in planning
and monitoring activities. A key component of DSM is Demand
response (DR), which encourages consumers to modify their en-
ergy consumption patterns and shift their load from peak hours
to off-peak hours. Cost-sensitive consumers participate in DR by
adjusting their power demand in response to time-varying prices.

Domestic electrical energy usage represents a significant pro-
portion of total electricity consumption in many nations. Across
the UK, this is approximately 2/5 of the total consumption (see
BEIS, 2020), with the proportion increasing in urban areas such as
London. Hence, efficient residential energy consumption can re-
duce several grid setbacks, such as reliability matters, congestion
issues, power stability problems, and power quality concerns. The
idea of smart homes involves various types of energy production
& storage devices, information & communication infrastructures,
and control mechanism to adjust the energy consumption pattern
automatically. An essential device in a smart electricity grid en-
vironment known as Home energy management system (HEMS),
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

Variables

SWH,n ON/OFF status of water heater
SAC,n ON/OFF status of air conditioner
SDW ,n ON/OFF status of dish washer
SWM,n ON/OFF status of washing machine
SDM,n ON/OFF status of dryer machine
ϑWH,n Hot water temperature interval over

time [tn, tn + 1]
ϑAC,n Indoor temperature interval over time

[tn, tn + 1]
ϑWH,cur Current temperature of hot water
ϑen,n Ambient temperature Interval over

time [tn, tn + 1]
CWH Total capacity of water Heater
CAC Total capacity of air conditioner
TCWH , Thermal capacitance of water heater
RWH , Total resistance of water heater
TCAC Thermal capacitance of air conditioner
RAC , Total resistance of air conditioner
Ehj The energy demand for energy stage j in

appliance h
lDW Total time steps of dish washer over

scheduling horizon
lWM Total time steps of washing machine

over scheduling horizon
lDM Total time steps of dryer machine over

scheduling horizon

Parameters

tDW ,st , tDW ,f The start and finish time of dish washer
tWM,st , tWM,f The start and finish time of washing

machine
tDM,st , tDM,f The start and finish time of dryer

machine
Pn,h Appliance h that consume power in

each time slot n
Ph Appliance h that consume power
pn Electricity price over time [tn, tn+1]

Dn Demand of hot water for daily use
drawn over time [tn, tn+1]

M Total mass of water in tank
tn Time at n step
Thj The number of time intervals for energy

stage j in appliance h
ΓD, Γϑ The robust levels indicating daily hot

water need and ambient temperature
aD , aϑ Auxiliary parameters
gn,hj The total number of time slots n used

in middle of the energy stages j in an
appliance h

PEAKn Peak signal at time slot n
TPn,h Time preference slot
n Time slot index
en Environment
h Appliance index
j Energy stages
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which allows the users to participate in the load shifting plan
where they can shift their load in an off-peak hour (Sattarpour
et al., 2018). Having new developments and highly demand of
pricing schemes and smart-loads, residential users find it hard to
schedule these loads manually. Hence, HEMS is becoming more
significant in residential sector for cost-saving, and comfortable
living (Ha et al., 2012).

Smart home appliances can be scheduled through the use of
HEMS, optimizing the time slots of operation according to a vari-
ety of pricing schemes. Nowadays, incentives based on monetary
profits are the key motives for household users to take part in
home load management. Utility companies provide flexible pric-
ing schemes like the day ahead (DA) and real-time pricing (RTP)
to stimulate end-users, so that they can participate in demand-
side management (Corsi et al., 2020). In DA pricing scheme, the
selling and buying price of electricity is known just one day before
and participants can shift the loads according to the energy prices.
However, the RTP pricing scheme is regarded as a reliable for
power system operation because the production and consump-
tion of electricity can be adjusted in real-time (Shahidehpour
et al., 2002). Responding to the different pricing schemes, HEMS
effectively decreases home electricity bills and improves house-
hold load’s energy consumption profiles under considering the
comfort requirements (Hosseini et al., 2018; Javadi et al., 2020). In
addition, water heater (WH) and air conditioner (AC) are regarded
as well befitted for load management, because of their large nom-
inal power ratings (Kepplinger et al., 2015). Hence, the scheduling
strategies of WH and AC are important in HEMS to assist the end-
users, so that they can automatically receive optimal scheduling
pattern. With such knowledge, numerous worthy works have
been done on WH and AC load scheduling.

In Goh and Apt (2004), authors studied three customer strate-
gies for WH scheduling under a dynamic pricing scheme, includ-
ing timely interruption of power, double period setback timer,
and price-sensitive thermostat. Further, they analyzed a group
of situations with various set points of water temperature to
investigate the relevance of electricity price with the setpoints.
One of the most crucial parts of HEMS is the scheduling of
household loads (Gonçalves et al., 2019; Lu et al., 2020). Most
of the research community focuses on deterministic optimization
techniques for household load management. In Pipattanasomporn
et al. (2012), the authors proposed an algorithm for HEMS to
optimal schedule the home appliances by considering customer’s
preference. Meanwhile, they addressed the consequences of var-
ious energy demand limit levels on demand response potential.
Home scheduling frameworks based on energy consumption pat-
tern proposed in Mohsenian-Rad and Leon-Garcia (2010). Further,
they presented a trade-off between energy price and waiting
time. In that work, an Inclined block rate combined with real-
time price is employed as a pricing scheme. To forecast the
electricity price in real-time, the authors developed a prediction
filter by allowing various coefficients to electricity costs on past
days. Consumers firstly set five different values to desired energy
services in Pedrasa et al. (2010) so that their performance can
differentiate. Later, a particle swarm optimization was proposed
to obtain an effective operation schedule for distributed energy
resources (DERs).

Many types of uncertainties like model uncertainties, commu-
nication uncertainties, measurement and forecast uncertainties,
should be considered in a real condition; therefore, research
on domestic load scheduling has become crucial. Pedrasa et al.
proposed a modern framework for resource management for
smart house including non-controllable and controllable loads
and domestically available renewable energy resources (Rad and
Barforoushi, 2020). That paper also considered the uncertainties

of renewable energy resources, market rate, and non-controllable
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oads. A Markov chain and multi-layer perceptron are applied to
orecast renewable energy generation. Results illustrate that the
roposed method reduces both user costs and peak to average
atio. The authors in Wang et al. (2020b) and Han et al. (2019)
roposed a stochastic linear programming model for scheduling
lectric vehicle charging rules for several electric grid demands
n real-time utilizing a rolling window approach. The proposed
odel examines the uncertainties in the availability of electric
ehicle and electricity requirements upon arrival. Monte Carlo
imulation reveals that varying input parameters may change the
esults.

A late-night charging of electric vehicles in distribution net-
orks is proposed in Sun et al. (2020) for robust, cost-efficient,
nd day-ahead scheduling in a stochastic environment. The
tochastic environment takes many uncertainties such as stochas-
ic everyday trip distances, arrival and exit times. The simulation
esults tell the impact of uncertainty and the effectiveness of
iscussing features of risk through optimization. In this Wang
t al. (2020a), authors discuss the optimal decision problem of
DERs aggregator who handles wind turbine resources, solar
hotovoltaics (PV) units, and energy storage systems while im-
lementing a real-time pricing scheme. A robust optimization
cheduling model is proposed for DERs by combinedly consider
oth uncertainties of renewable energy generations and user’s
esponsiveness. Case studies illustrate that the proposed model
an decrease the bidding and scheduling expenses to achieve a
igher profit. A hybrid robust-stochastic optimization is proposed
o handle the uncertain optimization of smart HEMS (Akbari-
ibavar et al., 2020). Authors investigated the uncertainties as-
ociated with energy costs and PV generation by controlling
arameters of robust-stochastic optimization. In Wang et al.
2019), parallel stochastic programming is introduced to con-
rol the uncertain nature of renewable energy sources and the
uffering impact of energy storage systems. Another traditional
ethod called fuzzy programming is proposed in Hong et al.

2012), Wu et al. (2015) to manage the uncertain optimization
f smart HEMS. Where uncertain parameters such as electricity
xpenses and outdoor temperature, were represented by fuzzy
arameters.
In the literature, extra information is needed to include in

omestic load scheduling to convert uncertain load optimization
nto certain load optimization like the probability distribution and
uzzy membership function in stochastic programming and fuzzy
rogramming. However, the extra information will make the
ptimization more difficult to some degree. Besides, both fuzzy
embership and the probability distribution function depends on
istorical information. In such condition, it is difficult to collect
ew house data.
A robust optimization performs well in a problem where some

evel of uncertainties exists. Its assessment and analysis are com-
act enough and does not require any further auxiliary variables.
andom parameters in a robust optimization are represented as
set of uncertainty, unlike stochastic programming employing

he probability distribution. Generally, in robust optimization, the
ptimization problem is formulated in such a way that gives
he optimum solution for a worst-case scenario so that any ran-
om parameters can take from an established set of uncertainty.
urthermore, robust optimization assumes a ‘‘hard’’ constraint.
or instance, any violation of constraint is not permitted for any
ata realization in the set of uncertainties. It works remarkably
ue to its computational tractability for various forms of sets of
ncertainty and types of problems.
In contrast with conventional approaches for uncertain prob-

ems, interval analysis needs bounds of the uncertainties’ magni-
ude and do not require the particular probabilistic distribution

ensities. While limited uncertain data is required, an interval

8495
Fig. 1. System model. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

number is appropriate for explaining the uncertain parameters
of WH and AC loads scheduling with insufficient uncertainty
information.

In this work, we have considered two type of loads namely,
time-shiftable and thermostatically controlled loads. Time-
shiftable loads can delay their operation to some other time slot
in response to the varying pricing signal. These loads include dish
washer (DW), washing machine (WM) and dryer machine (DM).
Operational priorities of these loads are also taken into consider-
ation as shown in Tables 1–3. Thermostatically controlled loads
are those that perform temperature control operation to adjust
heat energy and get the desired output temperature. Parameters
of thermostatically controlled loads are provided in Table 4.
Thermostatically controlled loads include WH and AC which are
modeled under uncertain conditions. The uncertain parameters
of WH and AC are represented as an interval numbers. Further,
these parameters associate uncertainties into various robust lev-
els. The WH and AC load scheduling problems are re-modeled
under several robust-levels, and their constraints are transformed
into an equivalent form for solving. The experimental results
validate the robustness of proposed optimization technique for
getting a feasible scheme that could meet the user’s comfort zone
despite uncertainties. Having diverse consumers’ needs, and the
balance between comfort and costs of the schemes with several
robust levels are explained to give more options to users. Main
contributions of this paper are:

• Robust optimization is proposed to handle uncertainties
associated with thermal loads such as heating and air con-
ditioning.

• The uncertain parameters are converted into different inter-
vals, and these parameters are divided into various robust
levels to control the degree of conservatism.

• Harris’ Hawk optimization together with integer linear pro-
gramming is used to solve the uncertainty problem.

• Cost and trade-off schemes are analyzed for the user satis-
faction and financial benefits of several robust levels.

• Additionally, three time-shiftable appliances with opera-
tional constraints are considered for optimal scheduling.

Rest of the paper is organized as follows. Section 2 discusses
the proposed system method followed by problem formulation
in Section 3. Section 4 contains results and discussions of the
proposed work. Finally Section 5 concludes the work.
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Table 1
Dish washer specifications (Rugo, 2011).
Energy stage Energy (Wh) Min power (W) Max power (W) Nominal op time (min)

Pre-wash 16 6.47 140 14.9
Wash 751.2 140.26 2117.8 32.1
1st rinse 17.3 10.28 132.4 10.1
Drain 1.6 2.26 136.2 4.3
2nd rinse 572.3 187.3 2143 18.3
drain & dry 1.7 0.2 2.3 52.4
Table 2
Washing machine specifications (Rugo, 2011).
Energy stage Energy (Wh) Min power (W) Max power (W) Nominal op time (min)

Movement 118 27.231 2100 26
Pre-heating 5.5 5 300 6.6
Heating 2054.9 206.523 2200 59.7
Maintenance 36.6 11.035 200 19.9
Cooling 18 10.8 500 10
1st rinse 18 10.385 700 10.4
2nd rinse 17 9.903 700 10.3
3rd rinse 78 23.636 1170 19.8
Table 3
Dryer machine specifications (Rugo, 2011).
Energy stage Energy (Wh) Min power (W) Max power (W) Nominal op time (min)

Drying 2426.3 120.51 1454 120.8
Table 4
Water heater and air conditioner specifications.
Task Power Capacity Resistance Thermal capacitance Gallon Upper temp. limit Lower temp. limit

Water heater 3.6 120 0.7623 431.7012 40 56 68
Air conditioner 1.8 1.8 18 0.525 – 23 26
E

ϑ

a
i

ϑ

2. System model

A generic smart home’s structure considers in this work as in
ig. 1, where HEMS control the loads in a smart home. Under the
remises of a smart home, appliances/loads are categorized as
ontrollable loads, and uncontrollable loads (Wang et al., 2015a).
he WH and AC are thermostatically controlled loads (TCL). Time
hiftable appliances include WM, DW, and DM are another type
f controllable load. While lighting and TV consider as uncontrol-
able loads which remain in must run states throughout the day.
ll appliances are categorized in different colors in Fig. 1. Smart
eter gets outside signals and forwards it to HEMS. Home area
etwork gets the information of appliance’s scheduling pattern
nd then communicated with HEMS. Then HEMS schedules the
ppliances at optimal time slots by taking the directions from
nside installed algorithm (Wang et al., 2015b). In this paper,
ncertainties associated with hot water demand for daily use
nd ambient temperature are taken into account. Because of high
ower consumption of TCL, these loads are well suited for home
nergy management.
It is estimated that both these appliances share a large propor-

ion of domestic load, which could reach 40% to 50% (Iwafune and
agita, 2016). The scheduling of TCL is intended to maintain ther-
al satisfaction inside the home; therefore, it is highly important

o consider TCL for optimal scheduling.
A common appliance in all domestic users’ houses is WH.

enerally, electrical energy and natural gas are the two main
ngredients for domestic water. For example, in Canada, 51.4%
ses natural gas for resident water heating; 44.1% employ elec-
rical energy as heating, and the remaining 4.5% utilize other
ources (Council et al., 2010). This section primarily focuses on
he WH and its working. When the water temperature falls to
he lower limit its switches turn on to heat the cold water, on
he other side when the temperature rises to the upper threshold
8496
limit it turns off. In the case of WH total heat loss causes from two
perspectives: when cold water inflows in the tank while using hot
water, secondly when the heat exchanges with the surroundings.

3. Problem formulation

3.1. Thermostatically controlled loads

The operation of WH can be expressed by the thermal dynamic
model (Du and Lu, 2011). When hot water use is not considered,
the thermal dynamics of an WH is calculated by

ϑWH.n+1 = ϑen,n + SWH,nCWHRWH − (ϑen,n + SWH,n

CWHRWH − ϑWH.n)exp[−
(tn+1 − tn)
RWH × TCWH

] (1)

Where ϑWH.n is the hot water temperature at time tn while
ϑWH.n+1 denotes the ambient temperature at time tn. SWH,n rep-
resents the switch ON/OFF state of WH at time [tn, tn+1].

Further, If hot water demand for daily use considers then
q. (1) is changed as follow,

WH.n+1 = [ϑWH,cur (M − Dn) + ϑen,nDn]/M (2)

In above equation, ϑWH,cur is same as ϑWH,n+1 in Eq. (1), Dn
is the demand of water at tn, M is the water mass. Both the
bove equations can jointly express the thermal model as below
n Eq. (3).

WH.n+1 = f (ϑWH.n, tn, CWH , TCWH , RWH ,Dn,

SWH,n, ϑen,n) (3)

The above equation straightforwardly determines the tem-
perature of water in each time slot, and sets WH’s scheduling
foundation.
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In addition, another load is also installed widely at homes
longside WH is AC (Pérez-Lombard et al., 2008). Its primary
orking principles are similar to WH despite a few specific dif-

erences like AC losses heat in the form of heat exchange outside
he surroundings. Just like WH, AC thermal dynamic model can
e represented as below.

AC .n+1 = ϑen,n + SAC,nCACRAC − (ϑen,n + SAC,nCACRAC

− ϑAC .n)exp[−
(tn+1 − tn)
RAC × TCAC

] (4)

Other than TCL, some interruptible appliances like DW, WM,
and DM are also considered. Their operation can interrupt at any
time and again can resume in the upcoming optimal scheduling
slots.

Mathematically, DW’s model is expressed as,
tDW ,f∑

n=tDW ,st

SDW ,n = lDW (5)

Eq. (6) describes the model of WM as,
tWM,f∑

n=tWM,st

SWM,n = lWM (6)

Mathematically, DM is represented as,
tDM,f∑

n=tDM,st

SDM,n = lDM (7)

The overall objective function is to reduce the total electricity
cost, and mathematically it is expressed as in Eq. (8). Constraints
in Eqs. (9) and (11) are the comfort constraints for the WH, while
AC’s comfort constraints represent in Eqs. (10) and (12).

min
N∑

n=1

H∑
h

pnSh,nPn,h (8)

Subject to

ϑWH.n = uf (ϑWH.n−1, tn−1, CWH , TCWH , RWH ,

Dn−1, SWH,n−1, ϑen,n−1) (9)

ϑAC .n = f (ϑAC .n−1, tn−1, CAC , TCAC , RAC ,

SAC,n−1, ϑen,n−1) (10)

ϑ low
WH ≤ ϑWH,n ≤ ϑ

up
WH (11)

ϑ low
AC ≤ ϑAC,n ≤ ϑ

up
AC (12)

3.2. Energy and timing constraints for time-shiftable loads

The following constraint is inflicted to assured that the energy
stages satisfy their energy requirements.
N∑

n=1

Pn,hj = Ehj (13)

Ehj represents energy demand for energy stage j in appliance
.
The following constraint is inflicted to show whether an en-

rgy stage is being utilized during time slot n and the upper and
ower boundaries of power assignment to the stage,
lowS ≤ P ≤ Pup S (14)
n,hj n,hj n,hj n,hj n,hj

8497
Fig. 2. Day-ahead real time pricing signal.

Fig. 3. Power consumption pattern of uncontrollable load.

Where Pup
n,hj and P low

n,hj are appliance particular data describing
the upper and lower boundaries of power assignment to the
energy stages respectively.

Eq. (15) is the safety constraint. Maximum power consump-
tion of all appliances in each time slots should not be exceeded
the maximum value and can be formulated as below.
H∑
h

mh∑
j

Pn,hj ≤ Peakn (15)

PEAKn is the peak signal at n time slot, and its value is deter-
ined by the grid operator through demand response signal (see
ig. 3).
The following constraint is imposed to limit the processing

ime of the energy stage

low
hj ≤

N∑
n=1

Sn,hj ≤ T up
hj ∀h, j (16)

here T up
hj and T low

hj are the upper and lower boundaries for the
umber of time intervals for appliance h in energy stage j.
Sequential processing of an appliance anticipates that a new

nergy stage is unable to start until its previous stages have
ompleted. This situation can easily be defined by using the
ariables An,h(j) as in Eq. (17).

S ≤ A , ∀h, n.∀j = 2, 3, . . . ,m (17)
n,hj n,h(j−1) h
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Likewise, consecutive operation between the appliances can
e modeled, a constraint in the above equation can be formulated
s:

n,h1 ≤ An,hmh
, ∀n (18)

Where h is the appliance index that must be ended before h
starts. In above equation, An,hmh

means appliance h, energy stage
h and time slot n.
Decision variable gn,hj represented to compute the number

f time slots that is used in the middle of the energy stages
n an appliance. During any time slot n, gn,hj will be one only
hen a particular appliance h has completed processing energy
tage j − 1, and it is anticipating to process the next stage j. The
orresponding constraint is

n,hj = An,h(j−1) − (Sn,hj + An,h(j)), ∀h, n, ∀j = 2, 3, . . . ,mh (19)

Note that Sn,hj + An,h(j) ≤ 1 because both the processing and
ask completion cannot together be possible in an energy stage.
herefore, logically equality in the above Eq. (19) is correct. With
n,hj determined, the constraint imposing the upper and lower
oundaries of the number of transition time slots can be written
s,

low
hj ≤

N∑
n=1

gn,hj ≤ Oup
hj , ∀h, ∀j = 2, 3, . . . ,mh (20)

In above, Olow
hj and Oup

hj are the appliance technical terms ad-
ressing the middle of the energy stage delay in several time
lots.
The household customer can make the time choice constraints

y defining an optimal time slot for a particular appliance that
ust finish its task within the allowed time. It means that appli-
nces cannot operate outside the allowed time zone, and mathe-
atically express as,

n,hj ≤ TPn,h, ∀h, j, n (21)

here TPn,h indicates the time preference slots. That is, TPn,h = 0
only when the energy stages of appliance h run during time slot
n.

3.3. Load scheduling problem of WH and AC under various robust
levels

Both WH and AC aim to maximize the financial benefits while
maintaining the hot water temperature and room temperature
inside the comfort zones. Due to the unpredictable nature of
the environment, the uncertain parameters associated with the
WH and AC cannot determine accurately. Hence, these uncertain
parameters may start to violate comfort zones and should explain
in more aspects.

According to Wang et al. (2016), it is understandable to ex-
press the uncertainties with uncertain but bounded parameters
whose boundary values always depend on the prediction. By
adding two auxiliary parameters, the uncertain but bounded pa-
rameters can demonstrate as intervals. Further, a pair of robust
levels are predetermined to divide the uncertainties into various
categories so that the degree of the conservativeness of the un-
certain parameters can be maintained. With this knowledge, the
intervals having several levels of the uncertainties in hot water
demand represented as:

DU
n (aD, ΓD) = Dmin

n + aDΓD∆Dn (22)

Dn =
Dmax
n − Dmin

n

ND
(23)

a ∈ [0, 1], Γ ∈ [0,N ], ∀Γ ,N ∈ N+ (24)
D D D D D

8498
Correspondingly, the intervals under several levels of the un-
certain ambient temperature are represented as:

ϑU
en,n(aϑ , Γϑ ) = ϑmax

en,n + aϑΓϑ∆ϑen,n (25)

∆ϑen,n =
ϑmax
en,n − ϑmin

en,n

Nϑ

(26)

ϑ ∈ [0, 1], Γϑ ∈ [0,Nϑ ], ∀Γϑ ,Nϑ ∈ N+ (27)

In the above equations, the auxiliary parameter for hot water
demand is aD, while aϑ represents the auxiliary parameter for
ambient temperature. Additionally, robust levels of these uncer-
tain parameters are represented as ΓD and Γϑ . If robust levels
get 0, it indicates that users are satisfied with the prediction, and
the intervals are converted into real numbers. On the other side,
users are dissatisfied with the predicted values if the robust levels
get equal to ND and Nϑ . In that instance, the range of intervals
approaches to peak values. When the robust levels settle between
zero and peak values, intervals having diverse uncertainties are
formed.

If the uncertainties as given in Eqs. (22) and (25) are taken into
account, then equations of thermal dynamic models are modified
as below:

ϑU
WH,n+1(SWH,n, aD, aϑ , ΓD, Γϑ ) =(
Πn

i=1γ
[
f max
i − aaDΓD

∆Di

M

])
ϑ1

+

n∑
v=1

γ n−v

(
Πn

i=v

[
f max
i − aDΓD

∆Di

M

])
(1 − γ )Uheat,v

+

n∑
v=1

γ n−v

(
Πn

i=v+1

[
f max
i − aDΓD

∆Di

M

])
(1 − γ

[
f max
i − aDΓD

∆Di

M

]
)
(
ϑmax
e,v + aϑΓϑ∆ϑen,v

)
(28)

Eq. (28) and (29) represent the modified dynamic thermal
models having the bounded uncertainties, explaining that the wa-
ter temperature and room temperature will variate in a specific
limits under uncertain-but-bounded hot water demand for daily
use and ambient temperature respectively. Hence, ΓD and Γϑ uses
to determine uncertain level.

ϑU
AC,n+1(SAC,n, aϑ , Γϑ ) = γϑ1 + (1 − γ )Uheat+

(1 − γ )
(
ϑmax
en,n + aϑΓϑ∆ϑen,n

) (29)

To enhance the versatility of electricity production and con-
sumption, different time-varying pricing schemes have been in-
troduced throughout the research body. In this article, the RTP
price is taken into account as the time-varying pricing scheme.
When analyzing the uncertainties, the WH and AC load schedul-
ing problem is, same as before, to reduce the electricity charges
while satisfying comfort constraints with various robust levels
and can be written as,

min
N∑

n=1

H∑
h

pnSh,nPn,h (30)

ϑ low
WH ≤ ϑU

WH,n+1(SWH,n, aD, aϑ , ΓD, Γϑ ) ≤ ϑ
up
WH (31)

ϑ low
WH ≤ ϑU

AC,n+1(SAC,n, aϑ , Γϑ ) ≤ ϑ
up
WH (32)

aϑ ∈ [0, 1], aD ∈ [0, 1], SWH,n ∈ [0, 1] (33)

aϑ ∈ [0, 1], SAC,n ∈ [0, 1] (34)

Above optimization problem formulated from Eqs. (30) to (34)
cannot be determined immediately. In order to get the bounds



M.A. Judge, A. Manzoor, C. Maple et al. Energy Reports 7 (2021) 8493–8504

o
i
t

v
a
c

t

c

i
a
o
t
m
v
i
H
l
s
j
e
a
m
e
b
i
t
g
e
h
n
a
r

4

f
t

a
e
h
H
F
t
a
a

(
m
a
g
t
a
e
s
(
i
i
h
b
o
a
v
u

f uncertain hot water temperature and room temperature, it
s important to discuss this uncertain optimization problem. So,
here is

ϑU
WH,n+1(SWH,n, aD, aϑ , ΓD, Γϑ ) =

[ϑmin
WH,n+1(SWH,n, aD, aϑ , ΓD, Γϑ ),

ϑmax
WH,n+1(SWH,n, aD, aϑ , ΓD, Γϑ )]

(35)

ϑU
AC,n+1(SAC,n, aϑ , Γϑ ) = [ϑmin

AC,n+1(SAC,n, aϑ , Γϑ ),
ϑmax
AC,n+1(SAC,n, aϑ , Γϑ )]

(36)

Hot water temperature for daily use and ambient temperature
aries in its interval; hence, the auxiliary parameters like aD
nd aϑ change. Limits of the interval is computed so that the
onstraints associated with the uncertainties can be solved,
After a long calculations, we get the below equations from (37)

o (40) for WH and AC.

ϑmin
WH,n+1(SWH,n, aD, aϑ , ΓD, Γϑ ) =

ϑU
WH,n+1(SWH,n, 1, 1, ΓD, Γϑ )

(37)

ϑmax
WH,n+1(SWH,n, aD, aϑ , ΓD, Γϑ ) =

ϑU
WH,n+1(SWH,n, 0, 0, ΓD, Γϑ )

(38)

ϑmin
AC,n+1(SAC,n, aϑ , Γϑ ) = ϑU

AC,n+1(SAC,n, 1, Γϑ ) (39)

ϑmax
AC,n+1(SAC,n, aϑ , Γϑ ) = ϑU

AC,n+1(SAC,n, 0, Γϑ ) (40)

With such knowledge, the constraint (31) and (32) could be
onverted into

ϑ low
WH ≤ [ϑU

WH,n+1(SWH,n, 1, 1, ΓD, Γϑ ),

ϑU
WH,n+1(SWH,n, 0, 0, ΓD, Γϑ )] ≤ ϑ

up
WH

(41)

ϑ low
AC ≤ [ϑU

AC,n+1(SAC,n, 1, Γϑ ), ϑU
AC,n+1(SAC,n, 0, Γϑ )] ≤ ϑ

up
AC (42)

The above mentioned optimization problem formulated as an
nteger linear programming, and several optimization algorithms,
nd commercial software are widely accessible to achieve the
ptimal results. Several heuristics and mathematical optimization
echniques have been presented in literature to solve the opti-
ization problems. Mathematical optimization techniques pro-
ide exact solution at the cost of high computational complex-
ty and their complexity increases with number of parameters.
euristic optimization on other hand provide near optimal so-
ution with low computational complexity. For instance, particle
warm optimization (Devaraj et al., 2020), genetic algorithm (Ra-
esh et al., 2020), teacher learning based optimization (Sharma
t al., 2020), Jaya optimization (Manzoor et al., 2020), multi-layer
nt colony optimization (Imtiaz et al., 2021), Harris-hawk opti-
ization (HHO) (Heidari et al., 2019), genetic programming (Tahir
t al., 2019) and wind driven optimization (RM et al., 2020) have
een applied to solve various engineering problems. However,
n this work, we used the HHO for the scheduling of TCL while
ime shiftable appliances are scheduled by the integer linear pro-
ramming. The proposed technique works well in exploration and
xploitation mode. It is mainly works in three stages such as non-
unting stage, searching stage, and lastly global attack stage. The
on-hunting stage gives exploration, while the searching stage
nd the global attack stage carry out the exploitation of promising
egions.

. Result and discussion

The simulation section is divided into various subparts: At
irst, a sensitivity analysis is carried out to handle the uncer-

ainties associated with hot water demand for daily use and

8499
Fig. 4. Hot water demand.

Fig. 5. Ambient temperature interval.

mbient temperature. Additionally, the effects of their changes
xamine on simulation results. Secondly, a scheduling problem
aving uncertain data information is optimized by using Harris
awks Optimization combined with integer linear programming.
urther, the energy cost and appliance power consumption pat-
ern under different schemes with different robust levels are also
nalyzed so that a comparison can make between user comfort
nd electricity cost.
The scheduling time interval begins from 8 a.m to 8 a.m

next day). The length is 30 min of each time step, and de-
and power, Pdemand, is 5 kW. Appliances included in this work
re WH, AC, DW, WM, and Dryer, and their parameters are
iven in Tables 1–4. Particularly, parameters of WH and AC are
aken from the american society of heating, refrigerating, and
ir-conditioning engineers (ASHRAE, 2012). Day-ahead real-time
lectricity price is assumed to be understood and refers to, as
hown in Fig. 2 (Sou et al., 2011). Except the controllable loads
appliances), few uncontrollable appliances such as TV and light-
ng operate throughout the day in a must-run condition. The
nterval number uses to explain the uncertainties associated with
ot water demand for daily use and ambient temperature, and
y setting robust levels Γϑ and ΓD users can quantify the degree
f uncertainties. Intervals for hot water throughout the day and
mbient temperature are given in Figs. 4 and 5. The maximum
alues of robust levels, Nϑ and ND, are set to six which means
ncertainties divides into 6 various levels, meanwhile, both or
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Fig. 6. Actual temperatures. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Cost scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Trade-off scheme.
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ne of the robust levels are also taken into account, and set to
ero. However, the total number of robust pairs is 7 times 7
nto 49.

.1. Sensitivity analysis

When users consider that the forecasted values are highly
eliable, so the robust level values will be (0,0). In this case,
here will be no uncertainties exist in both the hot water demand
nd also in the ambient temperature. Hence, an optimal schedule
olves the problem of having no uncertainties, and it is known as
deterministic schedule. But, in practice, the uncertain behavior
f hot water need for daily use and the ambient temperature
rovides large fluctuations of the water temperature. These fluc-
uations may cause water temperature away from the threshold
alue.
Hence, it is essential to perform a sensitivity analysis in or-

er to understand the impact of those uncertainties. The robust
arameters show the different uncertainty levels; consequently,
hey apply here to create multiple scenarios that are employed to
heck the deterministic schedule. Unfortunately, due to certain
rrors prediction, actual values of water demand and ambient
emperature fluctuate as given in Figs. 4 and 5. As variations
ccur in forecasted and actual values, frequently violations seem
n comfort as given in Figs. 6(a) and 6(b).

In Figs. 6(a) and 6(b), the upper surface of the actual water
emperature and room temperature curves represent the zero
evel of uncertainties. While, blue shaded areas express different
ower values in which robust pairs adjust in middle of (0,0)
o (6,6). The lower surface of water temperature curve repre-
ents the maximum uncertainties in which robust level pairs
re (6,6). As given in Fig. 6(a), most blue lines are below the
hreshold line in the time interval 12 p.m. to 9 p.m, which
ndicates that the users’ thermal comfort constraints are vio-
ated; hence, the deterministic schedule cannot meet the users’
hermal comfort demand. From the threshold value, the water
emperature falls down to 52.5 ◦C, and the variations from the
hreshold approaches 3.5 ◦C. Such a large temperature variation is
unacceptable for the consumer. Hence, it is vital to determine the
uncertainty in load scheduling with robust levels to get a robust
solution for uncertainties.

Due to certain errors in forecasting values, actual values of
water demand and ambient temperature fluctuate as shown in
Figs. 4 and 5. As variations occur between forecasted and actual
values, frequent violations observe in the consumer’s comfort
demand shown in Fig. 6a and Fig. 6b, which is unacceptable. So,
robust optimization is adopted to handle the uncertainty in load
scheduling with robust levels. Cost and trade-off schemes are
proposed with corresponding robust levels to prove the feasibility
of the proposed methodology.

4.2. Analysis of cost scheme

When the end-users have strict comfort demands, any vi-
olations are not acceptable. This means robust levels of both
uncertainties for constraint violation are adjusted as Γϑ = ΓD = 0.
The schedule that shows a conservative attitude for violation of
comfort constraint is called a cost scheme. Fig. 7(a) represents the
hot water temperature’s interval curve, while the interval curve
of room temperature depicts in Fig. 7(b). Practically, large uncer-
tainties exist in the requirement of hot water for daily use and for
ambient temperature, as shown in Fig. 4 and Fig. 5 respectively.
This results in a larger interval of water temperature and room
temperature and shaded in blue color in Fig. 7(a) and Fig. 7(b)
respectively. Despite this reason, both the room temperature and

water temperature are still inside the comfort zone. It shows the
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robustness of the proposed optimization technique of getting an
optimal scheduling scheme, and sill can perform well under a
certain level of uncertainties. The experimental results illustrate
that the proposed approach efficiently solves the uncertainties
related problem while satisfying the consumer’s requirements.

4.3. Analysis of trade-off scheme

Due to the high electricity cost under the cost scheme, most of
the users do not want to participate in the cost scheme program,
while some of them prefer the trade-off scheme. In this scheme,
not each value of uncertainties require to be adjusted to 0; how-
ever, different values are allotted according to the actual state.
Under the trade-off scheme, Γϑ = ΓD = 3 is considered as a rep-
resentative, and graphs of requirement of hot water for daily use
and ambient temperature are presented in Fig. 8(a) and Fig. 8(b),
respectively. As shown in Figs. 8(a) and 8(b), comfort settings
for water temperature and room temperature are infringed to
specific amount; however, the amount of constraint violation is
in control. The interval of the actual hot water temperature lies
in between [55,68.50], while the actual room temperature inter-
val is [22.80,25.40]. Additionally, in this scheme, the scheduler
can modify the degree of uncertainties for constraint violating
according to customer-specific demands.

As the robust level varies, the interval curves become wider
and may violate the consumer’s comfort need. However, it is
observed that all the proposed schemes rigorously satisfying the
consumer’s comfort demands under corresponding uncertain lev-
els. It describes the great robustness of the proposed schemes
while handling various uncertainties levels.

4.4. Time shiftable appliance with operational constraints

The (planned) execution time is from 8 am to 8 am (next
day). We consider three time shiftable appliances involving WM,
DW, and DM. Domestic customer enforces time preference as
discussed in Section 3 under energy and timing constraints. The
DW is operated between the start of 8 pm and the end of the
day. The WM and DR can be operated anytime between the start
of 11 am and 11 pm. But, the WM time stages must be completed
before the start of the dryer. The above defines the constraints in
Eqs. (18) and (21). Lastly, the peak signal in Eq. (15) is expected
to be fixed, and it will be equal to 5500 Wh. Fig. 9 exhibits the
power profiles of three controllable smart appliances obtaining
the minimum cost. All the optimal scheduling pattern of time
shiftable appliances is shown in Fig. 10.

5. Conclusion

This paper introduced a robust optimization method to handle
uncertainties associated with the operation of WH and AC, such
as daily hot water demand and the ambient temperature. Trans-
lating both the intervals and robustness levels into constraints,
the reshaped optimization problem was able to analyze the pa-
rameter uncertainties and resulted in an efficient scheduling. The
proposed approach is analyzed under cost and trade-off schemes
and performed well in both the schemes while considering user
comfort and electricity cost. The proposed robust optimization
proved its robustness in simulation results to handle the un-
certainties related to hot water requirement for daily use and
ambient temperature.

The robust optimization, with uncertain-but-bounded param-
eters, can manage the house load scheduling that was overlooked
by early optimization techniques. The proposed method did not
consider RESs integration, such as wind energy and solar energy.
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Fig. 9. Total assigned energy and the electricity price.

Fig. 10. Schedule of time shiftable appliances.

t present, it is only appropriate for DA load scheduling prob-
ems. However, model predictive control uses it to undertake the
eal-time scheduling problem.

In the future, we plan to investigate the integration of renew-
ble energy sources with load forecasting and weather uncertain-
ies.
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