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PREDICTING FOOD HEALTHINESS JUDGMENT 

 

Abstract 

People make subjective judgments about the healthiness of different foods every day, which in turn 

influence their food choices and health outcomes. Despite their importance, there are few quantitative 

theories about the psychological underpinnings of such judgments. This study introduces a novel 

computational approach that can approximate people’s knowledge representations for thousands of 

common foods. We use these representations to predict how both lay decision-makers (general 

population) and experts judge the healthiness of individual foods. We also apply our method to predict 

the impact of behavioral interventions such as the provision of front-of-pack nutrient and calorie 

information. Across multiple studies with data from 846 adults, our models achieve very high accuracy 

rates (r2 from 0.65 to 0.77), and significantly outperform competing models based on factual nutritional 

content. These results illustrate how new computational methods applied to established psychological 

theory can be used to better predict, understand, and influence health behavior. 

Statement of Relevance 

 

Is granola healthy? What about steak? What type of knowledge do we use when judging the 

healthiness of different foods? To answer this question, we study how different food names tend to 

co-occur with other words in large-scale language data. We use this information to predict people’s 

judgments of food healthiness and to uncover words and concepts that are more associated with 

healthy and unhealthy foods. Our results show that people’s judgments of food healthiness are largely 

explained by the strength of association with naturalness and rawness. In a series of experiments, we 

demonstrate that these associations play a significant role in explaining judgments of healthiness 

even if people are shown front-of-pack nutrient and calorie information. 

 

Keywords: Judgment; food healthiness perceptions, knowledge representations; word embedding; 

food labeling; computational models  
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Computational Methods for Predicting and Understanding Food Judgment 

Poor diet is one of the primary preventable causes of premature death in high-income 

countries (Bauer et al., 2014). Understandably, people want to consume healthy foods as they 

recognize the relationship between diet and health. However, people can only make healthy food 

choices to the extent that they can correctly judge a food’s healthiness. One obstacle to healthy 

eating is that there is no normative answer to the question: “what makes food healthy or unhealthy?” 

(Lobstein & Davies, 2008). Still, it is commonly believed that food healthiness judgments are strongly 

linked to beliefs about the nutritional content of food products (Scarborough et al., 2007). 

Indeed, health organizations worldwide routinely emphasize which nutrients people should 

avoid (high saturates, fats, sugars, salt) and which they should consume more of (high protein, fiber) 

(Lobstein & Davies, 2008). This is apparent in the design of numerous front-of-pack food labeling 

formats, which attempt to simplify complex nutrient information for consumers. Such interventions 

highlight overall energy content and the presence of nutrients that are most associated with the rising 

rates of obesity and chronic diseases (Kanter et al., 2018). Yet, evidence about the effectiveness of 

such interventions is mixed (Sanjari et al., 2017). 

The success of front-of-pack labeling rests on the assumption that people rely on energy and 

nutrient information to judge a food’s healthiness (Orquin, 2014). However, evidence suggests that 

healthiness judgments reflect pre-existing knowledge that people associate with foods’ perceived 

naturalness (Siipi, 2012) and taste (Turnwald et al., 2017). These are further influenced by cultural 

traditions (Pieniak et al., 2009), previous eating experiences (Papies, 2013), media/advertisements 

(Whalen et al., 2018), background nutrition knowledge (Soederberg Miller & Cassady, 2015), choice 

context (Downs et al., 2015), product category (Plasek et al., 2020), packaging (Reutner et al., 2015), 

and health halo effects of labels such as “organic” (Perkovic & Orquin, 2018; Schuldt & Schwarz, 

2010). 

These factors contribute to the diverse and multidimensional knowledge representations that 

decision-makers draw upon when making food-related judgments and choices. Indeed, specific 

knowledge representations that are retrieved from memory (Scheibehenne et al., 2007) or explicitly 

provided to the decision-maker (Schulte-Mecklenbeck et al., 2013) can be used to make choices 

between food items using simple heuristics. Whereas knowledge representations may explain why 

people think some foods are healthier than others, they may be biased, causing systematic and 
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predictable errors in healthiness perception. This could explain why people’s judgments of healthiness 

deviate from an estimate of healthiness based on nutrient and energy values of the food (Orquin, 

2014). 

Researchers studying food judgment and choice typically rely on knowledge representations 

that are restricted to a predefined and limited set of factors and attributes (Steptoe et al., 1995). This 

also means that current approaches are not well suited for making generalizable predictions about 

judgments in the presence of interventions, such as different food labeling strategies (Kanter et al., 

2018). How can we identify and quantify knowledge representations that underpin people’s judgment 

of food healthiness? We propose a novel approach to overcome these challenges, which relies on 

recent advances in computational linguistics. Unlike previous approaches, in which food 

representations were either manually specified by the researchers or based on self-reports, we 

establish food representations using natural language data. More specifically, we use word 

distribution statistics in large text corpora to uncover quantitative representations for words and 

phrases that describe food items. The use of this type of data means that uncovered representations 

reflect information conveyed in language, which individuals may use to form beliefs, and may even 

guide everyday health judgment. We find support for this prediction by studying how knowledge 

representations retrieved from natural language can account for judgments of food healthiness across 

six experiments. Our further analysis reveals that our models perform well because they capture 

associations related to naturalness or rawness of foods. 

The knowledge representations used in our analysis are high-dimensional vectors for words 

(also known as word embeddings) (Landauer & Dumais, 1997; Lenci, 2018; Mikolov et al., 2013). A 

useful property of word vectors is that the proximities between vectors measure the associations 

between individual words. These associations have been shown to correlate with human semantic, 

factual, probability, and social judgments (Bhatia, 2017; Caliskan et al., 2017; Pereira et al., 2016). 

Recently, researchers have shown that these word vectors can be used to quantify people’s 

knowledge about various natural entities by using these as inputs into regressions that predict more 

complex (potentially non-associative) judgments in other domains (Bhatia, 2019; Richie et al., 2019; 

Zou & Bhatia, 2021). 

Our approach is as follows: First, we obtain high-dimensional vector representations for food 

items from popular word embedding models trained on large-scale textual datasets. We hypothesize 
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that these word vectors may serve as a good approximation of knowledge representations that 

underpin judgments of food healthiness. To test this proposition, with some training data involving 

people’s ratings of diverse food items, we learn a mapping from our high-dimensional vector space to 

the (one-dimensional) scale that measures perceptions of healthiness (i.e. people’s judgments). We 

then apply this mapping to food items outside of the training data to predict people’s judgments for 

these “out-of-sample” food items. Note that such a mapping identifies regions of the vector space 

implicitly associated with food healthiness, and thus can be used to understand the conceptual and 

associative underpinnings of health judgment. We can also build this kind of mapping separately for 

different groups of people, to predict judgments of both lay and expert judges, as well as differences 

in judgments between individuals exposed to different front-of-pack labeling strategies. Across six 

studies, we demonstrate the generalizability, accuracy, and power of our approach. 

 

Studies 1A, 1B and 1C 

Our primary objective was to establish the feasibility of our computational approach in predicting 

people’s judgments of food healthiness. Therefore, we elicited judgments of healthiness for a wide 

range of food items (presented as food names) from the general population (Study 1A) and from a 

sample of registered dietitians (Study 1B). In Study 1C, we tested the performance of our models on 

healthiness judgments of foods’ names and images. 

 

Methods 

Participants 

Our approach does not rely on standard null hypothesis testing but rather on maximizing out-

of-sample predictions. Using previous work for guidance (Bhatia, 2019), we chose to obtain 

judgments for a diverse set of 172 foods and aimed to recruit at least 100 participants (with each 

participant judging each of the 172 food items). The only exception was in Study 1B where we 

prioritized how many responses we could obtain from nutritional experts in a three-month window. 

Note that in all studies, the primary unit of analysis was the average healthiness rating, across all 

participants, for a given food item.  

In all studies, only participants over 18 years of age were eligible to take part. Our only 

exclusion criterion was based on the correlation between each person’s food ratings and the grand 
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mean of aggregate ratings for those foods within the sample. Prior to data analysis (in all studies 

reported in this paper), we removed participants with a correlation lower than 0.4 with the grand mean 

of all ratings in a given study (based on the inspection of data from Study 1A). Although this exclusion 

criterion aimed to remove participants with very noisy ratings that would generate outlier responses, 

an analysis of the full sample shows that none of our results are affected by this exclusion criteria 

(see Section 1 of the Supplementary Materials). 

For Study 1A, 149 participants were recruited from Prolific Academic in return for a fixed 

payment of £1.30. Using the aforementioned criterion, data from 15 respondents were removed 

leaving 134 participants as our final sample (aged 18-74 years, Mage = 29.57 years, SD = 8.86, 43% 

females, and 84% had no dietary restrictions). For Study 1B, we contacted registered dietitians after a 

formal introduction by email with a request to take part in our study and forward the invitation to their 

colleagues. We also advertised the study on personal social media accounts. As an incentive, 

participants were able to request a report of the main findings. Nineteen registered dietitians took part 

in the study (none excluded, aged 23-56, Mage = 35.84 years, SD = 10.36, 89% females and 68% had 

no dietary restrictions). One hundred participants recruited on Prolific Academic took part in Study 1C 

in return for a fixed payment of £1.90. We excluded one participant based on the same criteria as in 

Study 1A. This left 99 participants in our final sample (aged 18-69 years, Mage = 27.25 years, SD = 

10.20, 44% females, and 82% had no dietary restrictions). A detailed breakdown of participants’ 

characteristics for this and other studies reported here is provided in the Supplementary Materials 

(Section 2). This research was approved by the University of Warwick’s Biomedical and Scientific 

Research Ethics Sub-Committee (approval # REGO-2018-2268). 

Design and Procedure 

In all studies, participants were asked to simply judge the healthiness of 172 foods on a scale 

ranging from -100 (extremely unhealthy) to +100 (extremely healthy). In Study 1A and 1B, each food 

was described using its name only. In Study 1C, a generic image of the food item was presented 

directly below the food name. Responses were made using a slider, with its starting position always at 

zero by default (neither healthy nor unhealthy). This scale was chosen because it is fine-grained (200 

intervals) and balanced (symmetric around 0), offering nearly continuous data for predictive modeling 

(Bhatia, 2019). Participants had the option of selecting “Don’t know” if they were unfamiliar with a food 

item, with those ratings removed from the analysis. The order of the items was randomized for every 



7 
PREDICTING FOOD HEALTHINESS JUDGMENT 

participant and only one item was visible at a time. The same generic task instruction: “Using the 

slider, please use your first impression to rate the following food item according to the scale below:” 

was displayed above all stimuli in every study condition. After rating all foods, participants were asked 

about their age, gender, and dietary restrictions (with the options of “Pescetarian (no meat, but eat 

fish and/or shellfish)”, “Vegetarian”, “Vegan”, “Other (please specify if you wish)” and “None of the 

above”). Our nutritional experts in Study 1B were also asked two additional demographic questions at 

the end of the survey (namely, “No. of Years as a Registered Dietitian” and “Area of Specialism”).   

Materials 

We obtained a list of foods from the USDA Food Composition Database, the most recent 

official publication of nutrient information pertaining to over 3102 unique food items (U.S. Department 

of Agriculture, 2019). Only foods present in the vocabulary of the pre-trained word2vec model were 

considered, leaving 571 food items (see the Computational Approach section for detail). Two hundred 

food items, across all food categories (e.g. vegetables, meats, dishes), were manually chosen by co-

author WZ to ensure diversity in the stimuli set. Next, co-authors NG and LW removed uncommon 

and ambiguous food items such as “squash” (because of its additional meaning related to sports), 

resulting in the final list of 172 food items (see the OSF repository associated with this project for the 

full list: https://osf.io/jys6u/). Note that the same list of 172 food items was used in all studies reported 

in the main text of the manuscript.  

In Study 1C, 69 of the food images were directly sourced from an image database for 

experimental research (Blechert et al., 2019), with the remaining 103 images sourced online and 

standardized to match (white background, 600 x 450 dimensions, and jpeg format).   

Computational approach 

We used three statistical models to predict subjective food healthiness judgments. Our 

analysis relied on participants’ judgments at the aggregate level. We evaluated the accuracy of each 

of our three statistical models in predicting subjective food healthiness judgments using leave-one-out 

cross-validation, which means that we trained our models on all but one aggregate judgment (“training 

data”) and used the trained model to predict the rating of the left-out food item (“test data”). We 

repeated this procedure 172 times so that each food item was in the test data once. Cross-validation 

ensures that our modeling avoided overfitting and that performance of each model was evaluated 

based on model generalizability.  
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In the first model, the Nutrient Model, we used nutrient content information to predict 

healthiness judgments. This model was an ordinary-least-squared regression with main effects for 

food calorie content, amounts of nutrients (fat, saturates, sugar, salt, and protein) per 100g, and the 

relative coding scheme based on the UK traffic light labeling for fat, saturates, sugar and salt (green, 

amber and red). Under the traffic light labeling system, green signifies a healthier food choice to 

consumers implying “go ahead”; amber indicates the item contains moderate amounts of the negative 

nutrient(s); and red signals caution for overconsumption (Trudel et al., 2015). The model was fit on 

the training data, and the best fitting parameters of the model were applied to the nutrient information 

of the (out-of-sample) food, in order to predict participant ratings. The nutrients and calorie information 

included in the Nutrient Model reflects the current European Union’s regulations concerning 

mandatory information for food package labeling (Article 30, Regulation No. 1169/2011 European 

Commission, 2011). In the Supplementary Materials (Section 3), we summarize tests of the 

robustness of our results using three extended versions of the Nutrient Model. First, we expanded the 

Nutrient Model to incorporate the potential role of 23 nutrients (e.g., fiber, calcium, and Vitamin C). 

Second, we also tested a version of the model that used nutrient amounts per portion size, defined as 

the amount per 100 calories. We also combined these two extensions into our final, third model.  

In our Vector Representation Model, we used vector representations from the word2vec 

model (Mikolov et al., 2013). This model was pre-trained on a dataset of Google News articles, and 

has 300-dimensional vector representations for three million common words and phrases in the 

English language (see Mikolov et al., 2013 for details). In designing our studies, we only considered 

foods whose name features in the pre-trained word2vec model. We also analyzed the predictions of 

other established pre-trained word vector models, which we discuss in the Supplementary Materials 

(Section 4). In our main analysis, we used normalized word vectors, in which the magnitude of the 

vectors was scaled to be equal to 1. We regressed participants’ healthiness ratings on these vectors, 

which allowed the model to learn a linear mapping from the semantic vector space to health 

judgments. This learnt mapping was then applied to the vectors of other (out-of-sample) foods, in 

order to predict participant ratings of those foods, and measure the models’ predictive accuracy.  

Because of the high number of predictor variables in this model (300), we applied a 

regularized regression technique known as ridge regression. Ridge regression allows high numbers of 

predictors to be considered and takes into account whether predictors are highly correlated. In 
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previous and similar work, ridge regression was the best-fitting regression technique for mapping pre-

trained 300-dimensional vector representations to judgments and was consequently chosen for our 

analysis (Bhatia, 2019; Richie et al., 2019). We also tested other regression techniques including 

lasso, support vector, and k-nearest neighbors regression and found ridge regression was indeed the 

best-fitting regression. We discuss this robustness test in the Supplementary Materials (Section 5).  

Finally, our third Combined Model concatenated the 11-dimensional Nutrient Model with the 

300-dimensional Vector Representation Model. Using ridge regression, we explore the extent that 

both models can collectively explain people’s subjective food healthiness judgments.  

Results 

We began by examining the distribution of aggregate healthiness ratings in Figure 1. Here we 

observed that healthiness judgments varied greatly amongst food stimuli, both across and within food 

categories. Unsurprisingly, the foods with the healthiest ratings were all fruit and vegetables, with the 

top five mean ratings ranging between 77 and 82 for tomatoes, cucumber, apple, carrots, and 

broccoli, respectively. The five foods that received the unhealthiest ratings, ranging between -65 and -

50, were cola, donut, skittles, cheeseburger, and kit kat. 
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Figure 1 

Distribution of aggregated food healthiness ratings from Study 1A  

 

Note. For clarity, foods are separated by food category. Text labels indicate exemplar food items in 

each of the categories. 
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Figure 2 summarizes the accuracy rates of our three models in Studies 1A, 1B, and 1C. The 

dots within each scatterplot represent the out-of-sample predicted vs actual (aggregated) healthiness 

ratings for the individual foods. As we are using predictive modeling, the coefficient of determination 

(r2) reflects the performance of the model when making out-of-sample predictions.  

 

Figure 2 

A Comparison of Predictive Accuracy between Models in Studies 1A, 1B, and 1C. 

 

Note. A comparison of predictive accuracy between models that used only nutrient content, only word 

vector representations, or a combination of nutrient content and word vector representations in a 

general population sample (1A), expert sample (1B) and with food images included as stimuli (1C).  
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As shown in Figure 2, the out-of-sample predictive accuracy of the Vector Representation 

Model was very high across all studies, with an r2 ranging from 0.69 (95% CI [0.63, 0.75] to 0.76 (95% 

CI [0.71, 0.81]). By comparison, the predictive accuracy of the model based on the foods’ nutritional 

information was always lower (r2 ranging from 0.35, 95% CI [0.24, 0.46] to 0.39, 95% CI [0.28, 0.50]).  

The Combined Model performs best however, achieving marginally higher predictive accuracy than 

the Vector Representation Model in every study (r2 ranging from 0.75 (95% CI [0.70, 0.80] to 0.77, 

95% CI [0.72, 0.82]). Overall, these findings highlight that the performance of the Vector 

Representation Model is stable, even when using ratings from participants with high nutritional 

expertise and with food images as stimuli.  

We performed several robustness checks to assure the reliability of our findings. First, we ran 

separate paired sample t-tests to compare the squared errors from different models for each study 

(see Section 6 of the Supplementary Materials). Across all studies, the mean squared errors from the 

Vector Representation Model and the Combined Model were significantly lower than those from the 

Nutrient Model (all p < 0.01). We also repeated our analysis at the individual level, without 

aggregating healthiness ratings for each food. Results are presented in our Supplementary Materials 

(Section 7) and show that our findings remain largely unchanged. Section 4 of the Supplement 

summarizes r2  for the Vector Representation Model based on alternative word vectors obtained from 

fastText (Mikolov et al., 2018) and GloVe (Pennington et al., 2014). Finally, in Section 5, we show the 

results of different regression techniques, including lasso, support vector, and k-nearest neighbors. 

Once again, using alternative word vectors or regression techniques did not alter our results.  

Returning to the results from the Vector Representation Model based on the ridge regression 

and word2vec vectors, our approach was also able to capture qualitative trends in our data by 

correctly predicting the categories of foods judged as being high or low in healthiness. For example, 

both observed and predicted ratings were highest for categories such as Fruits and Fruit Juices, 

Vegetables and Vegetable Products, and Nut and Seed Products. Likewise, both observed and 

predicted ratings were lowest for categories such as Baked Products, Sweets, and Fats and Oils. In 

fact, when pooling the data by food category, we found the Vector Representation Model predicted 

average healthiness ratings for categories of foods with an out-of-sample r2 of 0.83 (95% CI [0.79, 

0.86]). The Nutrient Model, in contrast, achieved an r2 of only 0.31 (95% CI [0.20, 0.41]). It seems 

healthiness judgments are sensitive to the category of the food item, a property easily captured by the 
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Vector Representation Model, but less so for the Nutrient Model (Orquin, 2014). Further details of this 

analysis are provided in Section 8 of the Supplementary Materials. 

The reason why the Vector Representation Model performs well is that it may capture the 

latent associations underpinning judgments of healthiness. To explore these associations, we applied 

a Principal Component Analysis to the vector representations of the 172 food items. Projections for 

the first two components are shown in Figure 3. By inspecting Component 1, it is clear that negative 

values correspond to mostly heavily processed and junk foods (e.g., pepperoni pizza, bacon, onion 

rings), whereas positive values correspond mainly to organic and unprocessed vegetables and fruits 

(e.g. apple, mango, lettuce, beets). Component 2 on the other hand, appears to reflect the 

sweetness/sugariness of the food. The most positive scoring foods on this component are sugary 

drinks (e.g. cola, lemonade) and sugary snacks (e.g. kit kat, dark chocolate). Among the negative 

scores for Component 2, we can see meats (e.g., roasted turkey) but also less sugary vegetables 

(e.g., brussels sprouts, asparagus). 
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Figure 3 

A 2d projection (based on the Principal Component Analysis) of vector representations for the 172 

food names. 

 

Note. For clarity, only a random subset of 50 names are labeled on the plot. 

 

Another benefit of the vector representation approach is that it can identify regions of the 

semantic space related to food healthiness. This can be done by passing the vector representations 

of common words (that are not necessarily food items) through a model trained on participants’ food 

healthiness judgments. Words given high predictions would be those most associated with 

healthiness and would capture the conceptual underpinnings of health judgment. Figure 4 shows a 

word cloud of the fifty English language words with the highest healthiness predictions, derived with 

this approach. Visibly, agriculture and nature-related words, such as crop, organic, and leaf, make up 

the majority of this word cloud. Interestingly, the word healthy is also present in the word cloud even 

though our model was never explicitly trained on this concept. It seems that implicit in people’s 

judgments are associations with concepts like healthiness, as well as other concepts (e.g., 
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naturalness/degree of processing, organic, appearance) identified by previous researchers as being 

psychological cues for food healthiness (Siipi, 2012). Our novel computational approach provides 

quantitative methods for uncovering these associations.  

 

Figure 4 

Healthiest “Other” Words based on the Vector Representation Model 

 

Note. Words with the highest predicted healthiness ratings based on the Vector Representation Model 

estimated for the lay people in Study 1A. 

 

Studies 2A, 2B and 2C 

Studies 1A-1C are based on judgments of food names and images. Yet, when people 

evaluate foods, they are typically provided with additional nutritional information. Moreover, many food 

labeling policies rest on the assumption that consumers make more informed decisions if nutritional 

information is prominently displayed on food packaging. The relatively poor performance of the 

Nutrient Model documented in Studies 1A-1C may reflect people’s lack of awareness (or memory) of 

the nutritional values of the individual food items. Accordingly, if the nutritional information was made 

more salient with the use of real food labeling strategies, we might expect that the contribution of 

nutrients in the Nutrient Model would increase relative to the Vector Representation Model. Finally, 

the results of Studies 1A-1C uncovered underlying associations between foods and naturalness, or 
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rawness, which underpin food healthiness judgments. However, it is important to determine whether 

these associations continue to play a role even if foods’ nutritional values are made more salient. 

We addressed these issues in Studies 2A-2C by eliciting food healthiness judgments from 

participants who saw either food names alone (as in Study 1A) or food names along with the label 

highlighting various aspects of its nutrition. Again, we recruited adult participants for this series of 

studies. In Study 2A, we provided our treatment group with information about the calories per 100g. 

The provision of calorie information to aid healthy eating is supported by qualitative research showing 

that consumers use energy content information (calories) as a proxy for the overall nutritional value of 

a product (van Kleef et al., 2008). In Studies 2B and 2C, we examined the effects of information about 

key nutrients (fat, saturates, sugars, and salt). Under EU rules, front-of-pack labeling of this kind is 

acceptable with either no color-coding or traffic-light colored cues (i.e., red highlights high, orange 

medium, and green low amounts of fat, saturates, sugar, and salt) (European Commission, 2011). 

While both strategies highlight individual nutrients, it is the color-coded format that also aids 

consumers to judge whether a particular amount is high, medium, or low. In Study 2B we gave the 

treatment group nutrient labels without color-coding and in Study 2C we gave this group with nutrient 

labels with color-coding.  

Methods 

Participants 

There were 202 participants in Study 2A, and after the removal of five using our exclusion 

criteria, 197 participants were included in the final analysis (aged 18-71 years, Mage = 30.30 years, SD 

= 10.74, 52% female, and 80% had no dietary restrictions). From the initial 199 participants who took 

part in Study 2B, four were excluded leaving 195 participants (aged 18-65 years, Mage = 29.16 years, 

SD = 10.28, 48% female, and 82% had no dietary restrictions). Finally, 202 participants took part in 

Study 2C (aged 18-78 years, Mage = 34.69 years, SD = 11.51, 70% female, and 81% had no dietary 

restrictions). No participants were excluded from this study as all participant responses fell above the 

threshold for removal. Only residents of the UK were allowed to participate in Study 2C to assure 

knowledge and familiarity with the traffic light food labeling system. 

Design and Procedure 

We tested the role of food labeling on judgment, in which we gradually (across studies) 

introduced more informative (and realistic) formats of food labeling. All three studies used a between-
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subjects design. In half of the sample (control group) participants rated food healthiness of 172 foods 

in the same manner as in Study 1A and 1B. In the treatment groups, participants rated each of the 

food names presented alongside a nutrition label. In Study 2A, this was the energy (kcal) amounts per 

100 grams of the food. In Study 2B, we additionally included the absolute amount of fats, saturates, 

sugars and salts. Finally, in Study 2C, we used the same objective information as above, but also 

added the “traffic light” system used in the UK, which indicates the relative amount of different 

nutrients, categorizing them into green, amber, and red groups. The examples of the labeling used in 

each study are presented in Figure 5. 

 

Figure 5 

Food stimuli presented to participants in Studies 2A, 2B and 2C

 

 Note. All participants were from a general population sample.  

 

Results 

As shown in Figure 6, the Vector Representation Model performed very well across all studies 

and conditions. In fact, the out-of-sample predictive accuracy of the Vector Representation Model was 

very high, with r2 ranging from 0.65 (95% CI [0.59, 0.72]) to 0.77 (95% CI [0.72, 0.81]), in each study 

and condition. By comparison, the predictive accuracy of the models based on the foods’ nutritional 

information was lower but also much more variable (r2 ranging from 0.33, 95% CI [0.22, 0.44] to 0.77, 
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95% CI [0.72, 0.83]). Figure 6 reveals a systematic pattern – the predictive accuracy of the Nutrient 

Model increased with the amount of the nutritional information presented alongside foods’ names. 

This is unsurprising as it shows that people integrated label information into their judgments 

(Gonzalez-Vallejo et al., 2016; Scarborough et al., 2007). Despite this, the Vector Representation 

Model still performed better than the Nutrient Model when participants saw only calorie information 

(Study 2A) and calorie information with front-of-pack nutrient labeling (Study 2B). Only in the most 

informative condition, traffic light labeling (Study 2C), did the Nutrient Model outperform the Vector 

Representation Model. Figure 6 also shows that the accuracy of the vector representation model is 

identical across the two conditions in Studies 2A and 2B, although it does drop slightly in Study 2C. 

This is not significant, as can be seen from the slight overlap in 95% CIs of the control (r2 = 0.76, 95% 

CI = [0.71, 0.81]) and traffic light labelling conditions (r2 = 0.65, 95% CI = [0.59, 0.72]) in Figure S3 of 

the Supplementary Materials. In any case, these results show that associations with food names play 

an important role in people’s judgments of healthiness, often more than its nutritional composition. 

Figure 6 also summarizes the predictive accuracy of the Combined Model – which uses both 

the word vectors and nutritional information to predict people’s judgments. In 5 out of 6 cases, the 

Combined Model performed better than the individual models. The highest accuracy was achieved in 

the traffic light labeling condition, with r2 of 0.91 (95% CI [0.89, 0.93]), which was markedly higher 

than 0.77 (95% CI [0.72, 0.83]) of the Nutrient Model and 0.65 (95% CI [0.59, 0.72]) of the Vector 

Representation Model. These results support the interpretation that word vectors explain people’s 

judgments over and above the nutritional information of individual foods.  
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Figure 6 

A Comparison of Predictive Accuracy between Models in Studies 2A, 2B and 2C 

 

Note. A comparison of predictive accuracy between models that used only nutrient content, only word 

vector representations, or a combination of nutrient content and word vector representations. Actual 

ratings were all from a general population sample who were randomly assigned to either the control or 

the treatment condition in each study. 

 

Do representations of foods change when nutrient information of foods is highlighted? In other 

words, do we observe a systematic shift in knowledge representations due to the various types of 

food labeling? To answer this question, we computed differences between aggregate ratings for each 

food made in the condition with and without a food label. We then refitted our Vector Representation 

and Combined Model with these difference scores as a dependent variable. Figure 7 shows that the 

Vector Representation Model explains a non-trivial amount of variance in the difference between the 

conditions in all three studies. At the same time, the predictive accuracy of the Combined Model 

increases markedly from Study 2A through to 2C, which confirms that people who saw additional 
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nutritional information did in fact rely on it when making their judgments. This supports the 

interpretation that even if food labeling changes how people make judgments, the reliance on 

knowledge representations captured by the Vector Representation Model remains stable and 

influential. It also shows that word vector representations can predict the idiosyncratic effects of 

nutrient labels on health judgments for different food items. 

 

Figure 7 

Leave-one-out cross-validation results for the ability of vector representations to predict condition 

differences

 

Note. Leave-one-out cross-validation results for the ability of vector representations (Vector 

Representation Model) and the Combined Model to predict the difference between conditions in Study 

2A (calorie information – control), Study 2B (calorie information with front-of-pack nutrient labeling – 

control) and, Study 2C (traffic light labeling – control).  

 

General Discussion 

Everyday dietary decisions are influenced by people’s subjective perceptions of food 

healthiness. Psychological explanations of this process are incomplete without an accurate model of 

the rich knowledge and diverse associations underpinning people’s judgments of what food is healthy 

and what is not. In this paper, we offer a novel method for uncovering these knowledge 

representations by combining insights from machine learning and computational linguistics. Using 

vector representations of food items derived from natural language, we show that it is possible to 

predict healthiness judgments highly accurately. We show that people’s judgments can be partly 

explained by the strength of association between individual food items and concepts pertaining to 
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naturalness (e.g., harvest, leaf) and rawness (e.g., crop, organic). These associations play a role 

even when judgments are made in the presence of food images or are made by trained dietitians. In 

addition, high accuracy rates obtained by our Combined Model indicate that such knowledge 

representations in language do not merely reflect beliefs about nutritional composition; rather they 

capture something unique about people’s associations with different foods. Thus, our models can help 

evaluate how different front-of-pack labeling strategies influence food healthiness judgments. 

Unlike previous approaches, our method does not require us to identify specific factors or 

attributes that we, as researchers, believe to be related to healthiness judgments. Instead, by using 

our best-fit model to predict the “healthiness” of common words in the English language, we show that 

nature-related words such as “crop”, “harvest”, and “agricultural” are implicit in people’s judgments. 

This is consistent with other findings that perceived naturalness and healthiness are often intertwined 

(Sanchez-Siles et al., 2019; Siipi, 2012 but see Fernbach et al., 2019). These results also align with 

the finding that rawness or the degree to which a food has been processed is a strong cue of 

healthiness in food choice (Scheibehenne et al., 2007; Schulte-Mecklenbeck et al., 2013). Notably, 

our results indicate that models based on these associations are accurate even if participants are 

explicitly told about the nutritional composition of foods. 

Our approach offers a unique insight into the psychological basis of subjective food 

healthiness judgments by exploring foods in their most abstract forms (name or image). That said, a 

model trained on written text is unlikely to accurately capture sensorimotor information about foods 

(e.g. smell, texture), which would also be relevant in real-world situations (De Deyne et al., 2016; 

Lynott et al., 2020; Papies et al., 2020). Hence, while our results are promising, they are only a first 

step in providing a rich set of attributes and associations that people use in judging foods’ healthiness. 

Neither explicit food labeling nor expert judgments reduced the contributions of the knowledge 

associations established by the Vector Representation model. With respect to expert judgments, 

these findings are in line with research showing that nutritional expertise does not always translate 

into a higher reliance on nutritional information when making healthiness judgments (Orquin, 2014). 

Our results also speak to the value of nutritional labeling more generally. Given that associations 

played a role in all studies, existing front-of-pack labeling can neither substitute nor correct for the 

associations that people rely on when judging foods’ healthiness. 
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There are many potentially useful applications of our computational approach. Future studies 

could test the predictive ability of this Vector Representation Model with and against other formats of 

nutrient labeling such as France’s Nutri-score label (color-coded without numerical information). Thus, 

the use of this approach could be vital in determining a single internationally agreed nutrient labeling 

system (Goiana-da-Silva et al., 2019), especially since it provides directly comparable results 

between labeling formats. However, further work is necessary to establish whether the accuracy of 

our models changes when participants are presented with other information present on pre-packaged 

foods, such as branding, health claims, and back-of-pack nutrition labeling. 

An important outstanding question is whether our Vector Representation Model is 

generalizable to judgments of other foods than the 172 items tested in all six studies. In Section 10 of 

our Supplementary Material, we report the results of a new study in which we elicited judgments of 60 

new foods from a sample of 97 participants. Instead of training a new model, we used the Vector 

Representation Model from Study 1A to derive predictions for our new foods. Our models performed 

very well –with our approach we can predict healthiness judgments of new foods from a new group of 

participants highly accurately. To assist future research, we have obtained predictions of our models 

for hundreds of novel food items and made these available via OSF (https://osf.io/jys6u/). These can 

be used to evaluate future interventions and to test alternative psychological mechanisms that 

underpin human judgments and choices of foods. Overall, our studies provide new insights into 

people’s food healthiness judgments, while our methods offer an exciting new avenue to researchers 

and practitioners interested in designing interventions for healthy eating. 

  

https://osf.io/jys6u/
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1. Full Sample Results 

In our main manuscript, we excluded participants whose ratings correlated poorly (r < 0.4) with average 

participant ratings. To make sure that the exclusion criterion did not significantly alter the predictive accuracy 

of our models, we also fit the three main models to the original data without the exclusion. Table S1 reports 

the out-of-sample r2 with either 95% CI for the Nutrient Model, Vector Representation Model, and Combined 

Model trained on average healthiness ratings. Compared to the results reported in Table S6, model 

performance stayed the same when including all participants. 

 

Table S1 

Aggregate level out-of-sample r2 for the Vector Representation Model, Nutrient Model and Combined Model 

fit to the original data including all participants, numbers in the brackets represent 95% CIs  

Study Nutrient Model Vector Representation Model  Combined Model 

1A 0.35 [0.24, 0.46] 0.76 [0.71, 0.80] 0.76 [0.71, 0.82] 

1B 0.39 [0.28, 0.50] 0.69 [0.63, 0.75] 0.75 [0.70, 0.80] 

1C 0.37 [0.26, 0.48] 0.76 [0.71, 0.80] 0.77 [0.72, 0.82] 

2A_control 0.33 [0.23, 0.44] 0.77 [0.72, 0.81] 0.77 [0.72, 0.82] 

2A_treatment 0.45 [0.35, 0.56] 0.76 [0.71, 0.81] 0.81 [0.77, 0.85] 

2B_control 0.34 [0.23, 0.45] 0.76 [0.71, 0.81] 0.77 [0.72, 0.82] 

2B_treatment 0.53 [0.44, 0.63] 0.74 [0.69, 0.79] 0.82 [0.79, 0.86] 

2C_control 0.36 [0.25, 0.47] 0.76 [0.71, 0.81] 0.77 [0.72, 0.82] 

2C_treatment 0.77 [0.72, 0.83] 0.65 [0.59, 0.72] 0.91 [0.89, 0.93] 



2. Demographic Characteristics 

Table S2 

Demographic Characteristics of all Participants 

Characteristic 

Study 1A Study 1B Study 1C Study 2A Study 2B Study 2C Supplement 

Control Control 
Food 

Images 
Control 

Calorie 
Labeling 

Control 
Front of 

Pack 
Labeling 

Control 
Traffic 
Light 

Labeling 

New food 
stimuli 

(Lay) (Expert) (Lay) (Lay) (Lay) (Lay) (Lay) (Lay) (Lay) (Lay) 

Age           

    N 134 19 99 96 101 104 91 102 100 97 

    Mean ± SD 
29.57 ± 

8.86 
35.84 ± 
10.36 

27.25 ± 
10.20 

31.64 ± 
11.66 

28.96 ± 
9.81 

29.97 ± 
11.27 

 28.35 ± 
9.28 

35.18  ± 
10.60  

34.19 ± 
12.41 

25.71 ± 
8.97  

    Min - Max 18 - 74 23 - 56 18 - 69 18 - 71 18 - 60 18 - 65 18 – 57 18 - 64 18 - 78 18 - 60 

 n % n % n % n % n % n % n % n % n % n % 

Gender                     

    Female 58 43 17 89 44 44 50 52 53 52 42 40 51 56 77 75 64 64 38 39 

    Male 73 54 2 11 54 55 45 47 47 47 62 60 38 42 25 25 36 36 58 60 

    Other 2 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 

 Prefer not to say 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 

Diet Restrictions 
                    

 None  113 84 13 68 81 82 71 74 86 85 85 82 75 82 82 80 82 82 85 88 

 Pescetarian 1 1 2 11 3 3 7 7 4 4 2 2 4 4 4 4 3 3 2 2 

 Vegetarian 9 7 1 5 6 6 3 3 3 3 4 4 4 4 5 5 4 4 5 5 

 Vegan 2 1 0 0 2 2 3 3 1 1 4 4 2 2 4 4 5 5 2 2 

 Other 9 7 3 16 7 7 12 13 7 7 9 9 6 7 7 7 6 6 3 3 



Table S3 

Demographic Characteristics specific to Nutritional Experts 

Characteristic 

Study 1B 

Control 
(Expert) 

 n % 

No. of Years as a Registered Dietitian   

    Less than 1 year 1 5 

    1-4 years 8 42 

    5-9 years 3 16 

    10-19 years 3 16 

    20 years or more 4 21 

Area of Specialism   

    Diabetes 3 16 

    Gastroenterology 4 21 

    Older People 1 5 

    Oncology 1 5 

    Pediatric 2 11 

    Parenteral and Enteral Nutrition 1 5 

    Renal Nutrition 6 32 

    Other  1 5 

 

3. Extended Nutrient and Combined Models 

In testing the accuracy of the Nutrient Model our assumption was that participants’ healthiness 

ratings may be best reflected in people’s knowledge of the nutritional/energy composition of individual 

foods. In our main manuscript, our Nutrient Model included information about calories and nutrients 

(fat, saturates, sugar, salt, and protein) per 100g, as well as the traffic light color-coding. Whereas this 

approach reflects current EU regulation about food labeling, it may not truly reflect the nutritional 

information that people actually rely on when making their judgments. In the following section, we 

provide further robustness checks to the results we report in the main manuscript by using three 

different extended versions of the Nutrient Model. First, most of the existing regulation is focused on 

highlighting nutrients that are typically associated with weight gain and poorer health. We, therefore, 

extended our original Nutrient Model by adding (up to) 23 positive nutrient variables (including fiber, 

calcium, and vitamin C). Second, we consider the possibility that perceptions of healthiness may 

better align with nutritional information expressed in relation to the portion size amounts of each food. 



As there is no agreement of what portion size should be, we made a judgment call to use nutrient 

amounts per 100 calories (thus g/100kcal). This way, our Nutrient Model does not punish foods that 

would never be eaten in large volumes (e.g., chewing gum).  

Since many of the foods do not have all the micronutrients, we used ridge regression instead 

of linear (ordinary least square) regression for the two alternative Nutrient Models and Combined 

Models with micronutrients added. Further analysis also confirmed that ridge regression is more 

appropriate for the extended Nutrient Model as it achieved higher predictive accuracy than linear 

regression. 

 As can be seen in Tables S4 and S5, the use of portion size amounts does not improve the 

accuracy of either the Nutrient Model or the Combined Model in any condition or study. The addition 

of positive nutrients does not improve the accuracy of the Combined Model but impairs the accuracy 

of the Nutrient Model. The extended Nutrient Model with the added micronutrients (either per 100g or 

per 100kcal) performed considerably worse than the original Nutrient Model. The predictive power of 

the extended Nutrient Model was highly variable (r² ranging between 0.07 (95% CI [0.01, 0.14]) to 

0.72 (95% CI [0.66, 0.78]), increasing across the conditions where nutritional information was 

accessible to participants and performed best in the traffic light labeling condition of Study 2C. 

Similarly, the alternative Combined Models performed consistently with the original Combined Model. 

In all control conditions and Studies 1A and 1C, the r² of the extended Combined Model with 

micronutrients (either per 100g or per 100kcal) varied between 0.65 (95% CI [0.57, 0.73]) and 0.89 

(95% CI [0.86, 0.92]). It performed slightly worse in the sample of registered dietitians and reached 

the highest out-of-sample accuracy in the treatment condition of Study 2C. Moreover, using separate 

paired-sample t-tests for each study, we found that the mean squared errors from the extended 

versions of the Nutrient Model were not significantly different from those of the original Nutrient Model. 

This result holds for the Combined Model, suggesting that adding more nuanced nutrient information 

did not improve the predictive accuracy of the Nutrient Model or the Combined Model. The detailed 

statistics are available upon request. Taken together, these robustness checks show that the relatively 

lower accuracy of the Nutrient Model was not due to the incorrect assumption about the role of 

micronutrients or portion size considerations in people’s judgments. 

  



Table S4 

Out-of-sample r2  comparisons between the original and alternative Nutrient Models. 

Study 
Nutrient Model 

(per 100g) 
Nutrient Model 
(per 100 kcal) 

Nutrient Model 
with micronutrients 

(per 100g) 

Nutrient Model 
with micronutrients 

(per 100kcal) 

1A 0.35 [0.24, 0.46] 0.34 [0.23, 0.45] 0.12 [0.05, 0.20] 0.12 [0.05, 0.19] 

1B 0.39 [0.28, 0.50] 0.38 [0.27, 0.49] 0.15 [0.07, 0.23] 0.14 [0.06, 0.22] 

1C 0.37 [0.26, 0.48] 0.33 [0.23, 0.44] 0.18 [0.09, 0.26] 0.11 [0.04, 0.18] 

2A_control 0.33 [0.22, 0.44] 0.32 [0.21, 0.43] 0.08 [0.02, 0.14] 0.07 [0.01, 0.14] 

2A_treatment 0.45 [0.35, 0.56] 0.42 [0.31, 0.52] 0.26 [0.17, 0.35] 0.24 [0.15, 0.33] 

2B_control  0.34 [0.23, 0.45] 0.32 [0.21, 0.43] 0.08 [0.02, 0.14] 0.11 [0.04, 0.19] 

2B_treatment  0.53 [0.44, 0.63] 0.49 [0.39, 0.59] 0.37 [0.28, 0.46] 0.35 [0.26, 0.16] 

2C_control  0.36 [0.25, 0.47] 0.35 [0.24, 0.46] 0.11 [0.04, 0.18] 0.09 [0.03, 0.16] 

2C_treatment  0.77 [0.72, 0.83] 0.76 [0.70, 0.82] 0.74 [0.68, 0.79] 0.72 [0.66, 0.78] 

 

Table S5 

Out-of-sample r2  comparisons between the original and alternative Combined Models. 

Study 
Combined Model 

(per 100g) 
Combined Model 

(per 100 kcal) 

Combined Model 
with 

micronutrients 
(per 100g) 

Combined Model 
with 

micronutrients 
(per 100kcal) 

1A 0.77 [0.72, 0.82] 0.76 [0.71, 0.81] 0.66 [0.58, 0.74] 0.74 [0.67, 0.80] 

1B 0.75 [0.70, 0.80] 0.72 [0.66, 0.77] 0.59 [0.50, 0.68] 0.67 [0.60, 0.75] 

1C 0.76 [0.71, 0.82] 0.75 [0.70, 0.80] 0.68 [0.60, 0.75] 0.73 [0.66, 0.79] 

2A_control  0.77 [0.72, 0.82] 0.77 [0.72, 0.82] 0.66 [0.58, 0.74] 0.73 [0.67, 0.80] 

2A_treatment  0.81 [0.77, 0.85] 0.79 [0.74, 0.83] 0.73 [0.66, 0.80] 0.77 [0.71, 0.82] 

2B_control  0.77 [0.72, 0.82] 0.76 [0.71, 0.81] 0.66 [0.58, 0.74] 0.73 [0.67, 0.80] 

2B_treatment  0.83 [0.79, 0.86] 0.81 [0.76, 0.85] 0.75 [0.69, 0.81] 0.79 [0.73, 0.84] 

2C_control  0.77 [0.72, 0.82] 0.77 [0.72, 0.82] 0.65 [0.57, 0.73] 0.74 [0.68, 0.80] 

2C_treatment  0.91 [0.89, 0.93] 0.90 [0.80, 0.92] 0.88 [0.85, 0.91] 0.89 [0.86, 0.92] 

 

  



4. Alternative Word Embeddings 

 In the main text, we fit the Vector Representation Model using pre-trained word2vec 

embeddings (Mikolov, et al., 2013) because these contained embeddings for multi-word food items. 

To show the robustness of using word embeddings in the Vector Representation Model, we also used 

other pre-trained word embeddings including fastText (Mikolov et al., 2018) and GloVe (Pennington et 

al., 2014), which both offer 300-dimensional vector representations of the food items. However, only 

112 out of 172 food items have vector representation in fastText and 111 in GloVe. Unlike word2vec, 

which was trained on a large dataset of Google News articles, the GloVe model was trained on the 

Common Crawl 840B corpus and fastText on the Common Crawl 600B corpus. These embeddings 

also differ in terms of training algorithms. The pre-trained word2vec that we used was trained by a 

combination of the continuous bag-of-words (CBOW) method (which predicts words from their 

neighbors) and the skip-gram method (which predicts neighboring words of a given word). GloVe was 

trained in such a way that the dot product between two word vectors approximates the logarithm of 

the two words’ probability of co-occurrence. FastText combines the CBOW method and position-

dependent weighting to learn n-gram embeddings, which are summed to create word-level 

embeddings. Figure S1 shows out-of-sample r2 of the Vector Representation Model (using ridge 

regression with λ=1) with different semantic vector representations from different word embeddings for 

every study. As can be seen, the performance of the Vector Representation Model with fastText or 

GloVe is comparable and even higher than word2vec. We suspect the higher performance with 

fastText and GloVe is due to the fact that the training corpus (Common Crawl) underpinning these two 

pre-trained models contains a more diverse set of language data than that of word2vec (Google 

News).  

 



Figure S1 

Out of Sample Accuracy from Alternative Word Embedding Sources 

 

Note. Out-of-sample r2 of the Vector Representation Models (VRM) with different semantic vector 
representations from alternative word embeddings. The same set of 172 food items were used in 
VRM with word2vec. However, only 112 were used in the Vector Representation Model with fastText 
and 111 in GloVe due to the limited vocabulary of these embeddings.  

 

5. Secondary Vector Representation Models 

 In order to address the issue of having a high number of potentially highly correlated 

predictors in the Vector Representation Model (and Combined Model), we used a ridge regression. To 

check whether our results are influenced by the choice of method, we tested other regression 

techniques including lasso, support vector, and k-nearest neighbors regression. Here we provide brief 

details about these techniques: 

 Both ridge and lasso learn a linear mapping from semantic vector representations (𝑥𝑖𝑗) to 

healthiness ratings (𝑦𝑖) while penalizing the magnitudes of coefficients (𝛽
𝑗
) to avoid potential 

collinearities between dimensions (j). However, they differ in the loss function used for estimating 



coefficients. Ridge penalizes the L2-norm of the coefficients (Eq. 1), whereas lasso penalizes the L1-

norm of thee coefficients (Eq. 2). Penalization parameter, 𝜆, controls the strength of the penalty. 

                         ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗𝑗 )
2
+ 𝜆∑ 𝛽𝑗

2
𝑗𝑖                                            (1) 

   ∑ (𝑦𝑖 − 𝛽0 −∑ 𝑥𝑖𝑗𝛽𝑗𝑗 )
2
+ 𝜆∑ |𝛽𝑗|𝑗𝑖                                                         (2) 

Support vector regression uses a “kernel trick” to learn a nonlinear mapping from semantic vector 

representations to healthiness ratings with the penalization parameter, c, which works similarly to 𝜆 in 

the lasso and ridge techniques. We considered three common kernel functions – radial basis function 

kernel (SVR-RBF), polynomial kernel (SVR-Polynomial), and sigmoidal kernel (SVR-Sigmoid). K-

nearest neighbor regression predicts the healthiness rating of a food item by computing the average 

rating of the k nearest food items in the semantic vector space. The optimal penalization parameters 

𝜆 (in lasso and ridge) and c (in SVRs) and the optimal number of neighbors k are chosen through 

leave-one-out cross-validation. All analyses were implemented in the Python scikit-Learn machine 

learning library (Pedregosa et al., 2011). For simplicity, keeping other tuning parameters in this library 

as default, we tested penalization parameters, 𝜆 (in lasso and ridge) and c (in SVRs), in the following 

set: {10-2, 10-1, 100, 101, 102, 103, 104, 105, 106, 107}, and number of neighbors, k, in the following set: 

{1,2,3,...10}. Figure S2 shows out-of-sample r2 of different regression techniques with different tuning 

parameters for every study.  

  



Figure S2 

Out of Sample Accuracy of Secondary Vector Representation Models 

 

 

 

           

Note. Out-of-sample r2 of secondary Vector Representation Models with different penalization 
parameters.  

 

 

 



6. Test for Model Comparison 

Figure S3 shows the out-of-sample r2 with the 95% CI for the Nutrient Model, the Vector 

Representation Model, and the Combined Model trained on average healthiness ratings. Table S6 

reports the Pearson correlation between the observed average healthiness ratings and the leave-one-

out predictions, the out-of-sample r2, and the mean squared errors of the Nutrient Model, Vector 

Representation Model, and the Combined Model. We can see clearly that both the Vector 

Representation Model and the Combined Model significantly outperformed the Nutrient Model except 

in the treatment condition of Study 2C where participants were given the most amount of nutrient 

information. We also ran separate paired sample t-tests to compare the squared errors from different 

models for each study. Across all studies, the mean squared errors from the Vector Representation 

Model and the Combined Model were significantly lower than those from the Nutrient Model (all p < 

0.01). These results hold for the extended versions of the Nutrient Model and the Combined Model 

(detailed statistics are available upon request), suggesting that both the Vector Representation Model 

and the Combined Model outperformed the Nutrient Model. 

  Overall, the mean squared errors from the Vector Representation Model were not significantly 

different from those from the Combined Model (and its extended version, detailed statistics are 

available upon request), suggesting that adding nutrient information (on either macro- or micro-level) 

to the word vectors did not significantly improve the predictive accuracy of the Vector Representation 

Model.  

  



Figure S3 

Group Level Modeling: Model Comparisons

 

Note. Out-of-sample r2 of the Nutrient Model (NM), Vector Representation Model (VRM), and 
Combined Model (CM). Error bars represent the 95% CIs.  
 

Table S6 

Pearson correlation r, out-of-sample r2 and mean squared errors (MSE) for the Nutrient Model, Vector 

Representation Model, and Combined Model  

Study Nutrient Model Vector Representation Model Combined Model 

 r r2 MSE r r2 MSE r r2 MSE 

1A 0.60 0.35 1295.48 0.88 0.76 482.76 0.88 0.77 467.30 

1B 0.63 0.39 1471.25 0.84 0.69 753.24 0.87 0.75 600.55 

1C 0.61 0.37 1207.45 0.88 0.75 480.31 0.88 0.76 451.33 

2A_control  0.58 0.33 1353.49 0.89 0.77 471.76 0.88 0.77 460.46 

2A_treatment  0.67 0.45 1002.48 0.88 0.76 443.73 0.90 0.81 349.52 

2B_control  0.59 0.34 1183.60 0.88 0.76 427.76 0.88 0.77 410.59 

2B_treatment  0.73 0.53 828.56 0.87 0.74 461.70 0.91 0.83 309.75 

2C_control  0.60 0.36 1663.91 0.88 0.76 622.98 0.88 0.77 586.05 

2C_treatment  0.88 0.77 520.13 0.82 0.65 800.98 0.95 0.91 204.39 



7. Individual-level Modeling 

In the main text, we evaluated a Nutrient Model, Vector Representation Model, and Combined Model 

on group-level data, meaning that we averaged food healthiness ratings across all participants within 

each condition. However, since averaging ratings removes noise and variability, it is necessary to 

check if our results still hold on the individual level. To model individuals with the three types of 

models, we performed leave-one-out cross-validation on each individual’s set of judgments. This 

yielded an out-of-sample prediction for each rating a participant gave. We then calculated the 

coefficient of determination (r2) between these predictions and an individual’s actual ratings and 

averaged these calculations across participants within studies. Figure S4 visualizes the out-of-sample 

r2 for the three types of models for each study. The results on the group level are largely replicated on 

the individual level. First, the Vector Representation Model performs better than the Nutrient Model 

across all studies and conditions, except in the treatment condition of Study 2C. Second, the 

performance of the Nutrient Model increases as more nutritional information is provided in the 

treatment conditions of Studies 2A-2C. Third, the performances of the Vector Representation Model 

and Combined Model are indistinguishable in the general public sample of Study 1A and the control 

condition of Studies 2A-2C. Lastly, the Combined Model performs better than the Vector 

Representation Model in the expert sample of Study 1B and the treatment conditions of Studies 2A-

2C. 

Figure S4 

Individual Level Modeling: Model Comparisons 

 
Note. Average individual level out-of-sample r2 of the Nutrient Model (NM), Vector Representation 
Model (VRM), and Combined Model (CM). Error bars represent standard errors. 



8. Food Category Modeling 

As a follow-up analysis, we applied our modeling to distinct categories of foods (e.g. baked 

products, beef products, dairy, and egg products). Overall, our results closely resemble our key 

findings reported in the main text, as can be seen in Table S7. The Vector Representation Model 

performs consistently high, with r2 ranging from 0.76 (95% CI [0.72, 0.81]) to 0.83 (95% CI [0.79, 

0.86]). By comparison, the predictive accuracy of the Nutrient Model was much lower but improved 

with the inclusion of more front-of-pack information across the studies (r2 ranging from 0.27, 95% CI 

[0.16, 0.37] to 0.79, 95% CI [0.74, 0.84]). The Nutrient Model performed better than the Vector 

Representation Model when participants were shown traffic light labeling (Study 2C). However, the 

Combined Model achieves an even higher predictive ability than any individual model, with r2 reaching 

0.95 (95% CI [0.94, 0.96]) for the most informative (traffic light) labeling system.  

We can also note the categories of foods that each of the models performs the best and worst 

in. There were no substantial differences between the predicted ratings and actual ratings for the 

Vector Representation Model in all the conditions except when judgments were made in the presence 

of traffic light labeling. In this condition, the biggest discrepancy between the model’s judgment 

predictions and actual participant judgments was for the “Fats and Oils” category. Irrespective, both 

model predictions and observed ratings were always less than zero, meaning that the model 

accurately predicted that participants would perceive foods in this category as unhealthy. The Nutrient 

Model had the biggest discrepancy for the food categories of “Beverages”, “Fats and Oils”, and “Nuts 

and Seed Products”, which was apparent in multiple conditions. As an example, for “Beverages”, the 

Nutrient Model predicted healthier ratings than the actual ratings provided by participants in every 

case. This gap was still present when participants made judgments using traffic light labeling, despite 

the high overall predictive ability of the Nutrient Model in this condition. A possible explanation is that 

beverages like “cola” and “beer” do have a low negative nutrient content (e.g. fat, saturates, salt), 

hence why the model predicted a relatively high healthiness (above a rating of zero). However, in 

every condition except traffic light labeling, participants rated the “Beverages” category as unhealthy 

implying a distinct disparity between nutrient content and judgment formation. On the other hand, our 

Vector Representation Model always had a very high predictive ability for the category of “Beverages” 

demonstrating, particularly in this instance, that associations capture important attributes underlying 

healthiness judgments.  



Table S7 

Out-of-sample r2  comparisons between the Vector Representation Model, Nutrient Model and 

Combined Model for food category modeling, numbers in the brackets represent 95 % CIs  

Study 
Vector Representation 

Model 
Nutrient Model Combined Model 

1A 0.83 [0.79, 0.86] 0.31 [0.20, 0.41] 0.84 [0.81, 0.88] 

1B 0.78 [0.74, 0.82] 0.34 [0.25, 0.43] 0.82 [0.79, 0.86] 

1C 0.80 [0.76, 0.84] 0.28 [0.18, 0.39] 0.81 [0.77, 0.85] 

2A_control  0.80 [0.76, 0.84] 0.28 [0.17, 0.38] 0.82 [0.78, 0.86] 

2A_treatment  0.79 [0.75, 0.84] 0.44 [0.35, 0.53] 0.86 [0.83, 0.89] 

2B_control  0.82 [0.79, 0.86] 0.27 [0.16, 0.37] 0.83 [0.79, 0.86] 

2B_treatment  0.76 [0.72, 0.81] 0.55 [0.46, 0.64] 0.88 [0.86, 0.91] 

2C_control  0.82 [0.78, 0.86] 0.32 [0.21, 0.43] 0.84 [0.80, 0.87] 

2C_treatment  0.68 [0.62, 0.74] 0.79 [0.74, 0.84] 0.95 [0.94, 0.96] 

 

9. Word Cloud for Unhealthy Associations 

It is possible to identify regions in vector space associated with unhealthiness in the same 

manner that we uncovered words associated with healthiness in the main manuscript (our Figure 4). 

As seen in Figure S5, the words with the lowest healthiness ratings (using a model trained on Study 

1A participant ratings), have connotations that are more ambiguous. Despite this, there are 

recognizable terms related to less healthy categories of foods (e.g. “sandwich”, “melt”, “candy”, 

“alcohol”), and also words that seem to correspond to aspects of the context in which foods can be 

consumed (e.g. “midnight”, “couch”, “birthday”, “social”). While less intuitive, these associations that 

allude to the emotional and social benefits of unhealthy foods may explain why consumers choose 

them over options that are more nutritious.  

 

  



Figure S5 

Unhealthiest “Other” Words based on the Vector Representation Model 

 
 

 
10. Test of Model Generalizability 

In order to establish whether our Vector Representation Model can provide true out-of-sample 

predictions about healthiness ratings, we collected participant ratings for an additional (not original 

172) 60 foods (e.g. blackberries, custard, and spinach). To obtain this set of new stimuli, we 

generated model predictions (trained on Study 1A aggregate ratings) for all foods from the Food and 

Nutrient Database for Dietary Studies (U.S. Department of Agriculture, 2019). We then removed foods 

included in the original stimuli and uncommon or ambiguous foods. Following this, we selected 20 

foods from the lowest quartile, 20 from around the median and, 20 from the highest quartile of 

predicted healthiness ratings, resulting in our final list of 60 foods. One hundred and one participants 

were recruited from Prolific Academic, with four participants removed using the same exclusion as the 

previous studies. There were 99 participants in our final participant sample (aged 19-61 years, Mage = 

26.71 years, SD = 8.98, 39.2% females, and 87.6% had no dietary restrictions). The design of this 

study was identical to Study 1A. The only difference was that participants rated the healthiness of 

food names that had not previously been used as stimuli. A paired-sample t-test was run to compare 

model predictions (trained on Study 1A data) with human ratings on both the aggregate and individual 

levels. On the aggregate level, the model predictions were not significantly different from the average 

participant ratings (t(59) = -0.34, p = 0.735). On the individual level, ratings from 53 out of 99 

(53.54%) participants were not significantly different from the model’s predictions. Based on these 



results, we conclude that the model can be used to predict subjective healthiness judgments for new 

foods, even in the absence of any nutritional information in the model specification. 
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