
brought to you by COREView metadata, citation and similar papers at core.ac.uk

ch Online
royalsocietypublishing.org/journal/rstb
Introduction
Cite this article: Brooks-Pollock E, Danon L,
Jombart T, Pellis L. 2021 Modelling that

shaped the early COVID-19 pandemic response

in the UK. Phil. Trans. R. Soc. B 376: 20210001.
https://doi.org/10.1098/rstb.2021.0001

Accepted: 12 April 2021

One contribution of 21 to a theme issue

‘Modelling that shaped the early COVID-19

pandemic response in the UK’.

Subject Areas:
health and disease and epidemiology,

theoretical biology

Keywords:
infectious disease modelling, modelling for

policy, COVID-19

Author for correspondence:
Ellen Brooks-Pollock

e-mail: ellen.brooks-pollock@bristol.ac.uk
†Joint UNIversities Pandemic and

Epidemiological Research. See https://maths.

org/juniper/.
© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Modelling that shaped the early COVID-19
pandemic response in the UK

Ellen Brooks-Pollock1,2,†, Leon Danon3,†, Thibaut Jombart4,5

and Lorenzo Pellis6,7,†

1Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
2NIHR Health Protection Research Unit (HPRU) in Behavioural Science and Evaluation, Population Health
Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
3Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TW, UK
4Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology,
London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
5MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of
Public Health, Imperial College London, UK
6Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
7The Alan Turing Institute, London, UK

EB-P, 0000-0002-5984-4932; LD, 0000-0002-7076-1871; TJ, 0000-0003-2226-8692;
LP, 0000-0002-3436-6487

Infectious disease modelling has played an integral part of the scientific
evidence used to guide the response to the COVID-19 pandemic. In the UK,
modelling evidence used for policy is reported to the Scientific Advisory
Group for Emergencies (SAGE) modelling subgroup, SPI-M-O (Scientific
Pandemic InfluenzaGroup onModelling-Operational). This Special Issue con-
tains 20 articles detailing evidence that underpinned advice to the UK
government during the SARS-CoV-2 pandemic in the UK between January
2020 and July 2020. Here, we introduce the UK scientific advisory system
and how it operates in practice, and discuss how infectious disease modelling
can be useful in policymaking.We examine the drawbacks of current publish-
ing practices and academic credit and highlight the importance of
transparency and reproducibility during an epidemic emergency.

This article is part of the theme issue ‘Modelling that shaped the early
COVID-19 pandemic response in the UK’.

1. Introduction
The year 2020 will be remembered as the year of the COVID-19 pandemic. On
31 December 2019, a cluster of cases of pneumonia was reported in Wuhan,
China. A few weeks later human-to-human transmission was confirmed. By
the end of January 2020, the World Health Organization reported 7818 con-
firmed cases in 18 countries, with the majority in China [1]. The infection
spread rapidly around the world, with a large early outbreak in Italy. By the
end of the year, there had been 85 million confirmed cases, 1.8 million deaths
and unprecedented movement bans and social distancing.

On the last day of January 2020, twoCOVID-19 caseswere confirmed in theUK
[2]. The number of cases grew slowly but steadily. On 16 March 2020, the Prime
Minister Boris Johnson announced that ‘according to SAGE, it looks as though
we’re now approaching the fast growth part of the upward curve. And without
drastic action, cases could double every 5 or 6 days’ [3, lines 10–13]. From 23
March 2020, all non-essential contact with others and unnecessary travel were pro-
hibited, and this order stayed in place until schools were partially re-opened on 1
June 2020.

This theme issue contains some of the modelling behind policy decisions in
the UK. The authors are contributors to the Scientific Pandemic Influenza
Group on Modelling-Operational (SPI-M-O), the Scientific Advisory Group for
Emergencies (SAGE) subgroup that provides modelling expertise. Here, we
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Figure 1. Collaboration network for SPI-M-O contributors. Graph created from
PubMed results on 23 March 2021 with the list of SPI-M contributors stated
on the UK Government website [7]. Nodes represent SPI-M contributors and
edges represent one or more co-authored publications between contributors
listed in PubMed. Colours represent communities of densely connected
researchers identified using the spinglass algorithm [9,10]. London School
of Hygiene and Tropical Medicine: yellow; Imperial: green; Warwick/Manche-
ster/Lancaster/Bristol/Exeter: orange; Oxford: light blue; PHE/Cambridge: dark
blue. Contributors listed online with no connections are not shown (16
individuals).
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discuss the UK scientific advisory system and how it operates
in practice, how and why infectious disease modelling is
useful in policymaking, drawbacks of current publishing prac-
tices and the papers contained in this special issue.

2. The UK science advisory system
Science is an integral part of the evidence that is considered
when developing government policy. The UK government
and civil service has a structure for receiving both routine
and emergency scientific advice. The two scientists at the
centre of the UK government are the Government Chief
Scientific Advisor (GCSA), currently Patrick Vallance, and
the Chief Medical Officer (CMO), currently Chris Whitty.
Most government departments also have a Chief Scientific
Advisor with specific knowledge of the area. Scientific Advisors
are typically well-established university academics.

As well as Scientific Advisors, the GCSA and CMO chair
SAGE. SAGE draws on expertise from multiple fields relevant
to the given emergency. SAGE has been activated nine times
since 2009, for example in 2019 in response to the potential
breach of the Toddbrook reservoir [4]. On 22 January 2020,
SAGE met for the first time to discuss the emerging novel cor-
onavirus [5]. SPI-M-O, composed principally of infectious
disease modellers [6], was convened in 2009 for H1N1 influ-
enza and in 2014 in relation to Ebola. It first met on 27
January 2020 to discuss COVID-19. SPI-M-O met at least
weekly for the duration of 2020 and has continued in 2021.
Its membership has expanded to around 50 modellers from
multiple universities and Public Health England [7].

Much of the early SPI-M-O work involved estimating key
epidemiological parameters and drivers, such as the growth
rate, the incubation period and themortality rate. SPI-M-Opro-
duces weekly consensus estimates of the growth rate and the
reproduction number [8] as well as short- and medium-term
projections. Lastly, SPI-M-O responds to policy-specific ques-
tions, for example, exploring the likely impact of support
bubbles or contact tracing and producing scenarios prior to
policy changes, like reopening schools or entering and exiting
from lockdown [5].

The functionality and productivity of SPI-M-O has
depended to some extent on pre-existing relationships within
the field of infectious disease modelling. Many of SPI-M-O con-
tributors have collaborated overmanyyears, and although there
are broad groupings of modellers, there are many between-
group collaborations (figure 1). The common theoretical under-
pinning and shared language allows for immediate assessment
of work with discussions that assume a firm understanding of
disease modelling and focus on technical details.
3. What is infectious disease modelling and why
is it useful?

‘Disease predictions have reached epidemic proportions’
Predicting the unpredictable, Medley [11, p. 1663].

Infectious disease modelling is the mathematical descrip-
tion of how an infectious disease will spread in a population
[12,13]. Unlike statistical modelling, disease modelling
involves building a mechanistic description of the epidemic
processes, incorporating knowledge of pathogen biology, dis-
ease natural history in a host, routes of transmission between
hosts and host behaviour (figure 2). The power of disease
modelling lies in combining these known factors to assess epi-
demic drivers and produce predictions. Its limitations can
result from relying on essential quantities that have yet to be
measured or are difficult to measure.
(a) Data for models
Infectious disease models typically rely on multiple data
sources that are used to constrain model components, these
include, but are not limited to: surveillance data (e.g. hospital-
izations, confirmed cases [14]) used tomonitor epidemic trends
and, when informing likely infection events, to infer the timing
of transmission between cases (e.g. known infector-infectee
pairs, geographical spread with travel history to outbreak
locations [15]); demographic data, used to define the popu-
lation at risk; census and household data, used to
characterize household transmission (see [16,17]); and social
contact data, essential for predicting the impact of social
distancing measures [18].

Early epidemiological data relating to COVID was mainly
related to the initial outbreak in Wuhan, collected from
China. These early case reports and contact tracing data
were used to estimate natural history parameters (such as
the time between successive cases estimated in this issue by
Challen et al. [19]). Very early estimates of the reproduction
number, essential to assess the pandemic potential of the
new virus, were uncertain, but were greater than 1 and wor-
ryingly high—Read et al. [15] in this issue produced one of
the early estimates. As soon as cases started accumulating
in the UK, ‘line lists’ (where each case is captured in a
single row of a spreadsheet) could be used for estimating
disease transmission parameters such as the reproduction
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number [19,20] and disease severity, and rapid data sharing
agreements had to be established between Public Health Eng-
land (PHE) and universities. Host behaviour is often difficult
to quantify, and it depends on a variety of factors, yet is criti-
cal to accurately model an evolving epidemic. SPI-M-O
contributors were involved in making sense of the various
data streams as well as establishing additional data streams
to fill knowledge gaps [21–23].
(b) Exponential growth is counterintuitive
At its core, disease transmission involves two individuals—
an infectious person and a susceptible person who can
become infected and infectious themselves. This propagation
of infection from one individual to another leads to an
exponential growth in cases in the early stages of an epi-
demic. Although exponentials are common in mathematics
and their properties well understood, their implications for
control can sometimes be counterintuitive because additions
and multiplications are more natural operations when
dealing with real data.

Exponential growth means that the number of cases can
quickly get out-of-hand, resulting in increased pressure on
hospitals, and require stringent epidemic controls. For
example, there was a discussion about relaxing social distan-
cing restrictions over Christmas 2020. At that time, only a
relatively small proportion of peoplewere immune to infection,
so epidemic growthwas still approximately exponential. For t1
days with no social distancing, the prevalence of infection
would increase from I1 cases at the start of the relaxation
period, to I2 ¼ I1exp(g(R1 � 1)t1) cases at the end of the relax-
ation period. Plausible values for SARS-CoV-2 are R1 ¼ 2. In
this scenario, how many days of lockdown would be required
to bring prevalence back to I1 cases? Under lockdown, the
reproduction number was consistently around 0.8. During
lockdown, the number of cases will decline (exponentially) as
I2exp(g(R2 � 1)t2) with R2 ¼ 0:8. The ratio of these two expo-
nents gives the number of lockdown days required for each
day of relaxation, t2 ¼ �t1 (R1 � 1)=(R2 � 1), which for these
plausible values leads to the counterintuitive conclusion
that 5 days of lockdown are required for every single day of
relaxation (figure 3).

While exponential growth can be disastrous at high
prevalence, it is not necessarily worrying in the short term
when prevalence is low. For example, at the start of the
second UK wave (August–September 2020), reproduction
number estimates in the range 1.2–1.5 (or even higher [8])
were sustained for multiple weeks and cases were only
slowly creeping up. The reproduction number was generally
smaller than that (1.1–1.4 [8]) throughout December 2020,
when hospitalizations were rapidly becoming unmanageable.

During exponential growth, the doubling time (time it
takes for the number of cases to double) is constant. In this
issue, Pellis et al. [14] demonstrate that exponential growth
with a doubling time of 3 days was observed in the UK and
various European Union countries in March 2020. With such
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a short doubling time, even if countries could double hospital
beds overnight, this would only buy them 3 days extra.
4. Modelling and policy
‘An 80% right paper before a policy decision is made is worth
ten 95% right papers afterwards, provided the methodologi-
cal limitations imposed by doing it fast are made clear’, What
makes an academic paper useful for health policy? Whitty
[24, p. 3].

The predictive nature of infectious disease modelling lends
itself for use in policy, preparedness and capacity planning and
for evaluating policies which might mitigate epidemic spread.
The impact of some interventions can be predicted with rela-
tively simple reasoning, but often multiple interacting factors
combine to create complex scenarios. In these cases, infectious
disease models can be an aid to formalize thinking and quan-
tify qualitatively obvious results. Modelling can be thought of
as a mechanism for collating facts and educated guesses into a
single framework that can guide policy decisions [25].

Much of the current theory of infectious disease dynamics,
taken for granted today, was developed during the early years
of the AIDS epidemic—indeed the SPI-M-O chairs Graham
Medley and Angela McLean modelled HIV/AIDS trans-
mission in the 1980s, including influential work predicting
the number of undiagnosed HIV cases in the UK [26,27].
Since then, modelling has provided evidence used for control-
ling infectious disease risks in the UK of both humans and
animals, including vCJD in the 1990s [28], foot-and-mouth dis-
ease outbreaks of cloven hoof animals in 2001 and 2007 [29]
and the H1N1 influenza pandemic in 2009 [30], to name a few.

The interaction between modelling and policy is a two-way
flow of information. Policy questions shape modelling work,
and in return modelling evidence shapes policy. Elizabeth
Richards, Tom Irving, Paul Allen, Jen Huynh, Alastair Ikin and
other members of the civil service that form the SPI-M-O sec-
retariat are critical to this process. The SPI-M-O secretariat are
scientists who work with the SPI-M-O chairs to turn a policy
‘ask’ into a modellable question, and then translate the model
results back into relevant evidence and advice. Without this
link to decision-makers, SPI-M-O would be an academic forum.

Modellers are encouraged to develop their own indepen-
dent approaches to avoid groupthink and at least two (but
often more) independent analyses are provided for each
policy question to aid discussion, explore sensitivity to struc-
tural model assumptions and identify inaccuracies, thereby
increasing the robustness of SPI-M-O consensus statements.
The secretariat and chairs made an active decision not to
combine model outputs quantitatively, apart from the
medium-term projections and the reproduction number, but
rather to use the modelling combined with understanding
to generate the policy-relevant consensus. Outcomes are
compared to modelling post hoc, as an extra validation step.

The speed of the COVID-19 pandemic and the resulting
rapidly changing policy landscape calls for modelling evidence
to be generated under extreme time pressure. In normal times, it
is common for complex models to be developed over six
months or even several years. However, during the COVID-19
emergency, models were set up and started generating results
in days. The majority of models were not developed from
scratch, but relied on existing frameworks—for instance,
Danon et al. [17], who re-purposed a spatial model of influenza
transmission. Complex modelling can reveal truths that are
obvious once they have been demonstrated—like the fact that
even with vaccination, the number of people who are still sus-
ceptible to infection could result in substantial ongoing
transmission. Alongside detailed models, basic insights and
simplemodelling approaches can influence policy byproviding
a qualitative understanding into transmission dynamics,
for example, final size calculations presented by Gog &
Hollingsworth to SAGE in February 2020 [31].
5. Publishing during a pandemic
The constantly evolving situation and rapid turnaround of
modelling evidence are incompatible with the majority of cur-
rent publishing mechanisms. Policy advice is often needed
within days. By contrast, in normal times, scientific manu-
scripts are peer reviewed over a period of months (although
there are beginning to be alternative models involving open
peer review, in journals such as F1000 and Wellcome Open
Research). Peer reviewing is time consuming and almost com-
pletely without credit. During an epidemic emergency,
scientific results must be shared immediately and widely, and
during 2020, pre-print manuscripts, not yet peer reviewed,
became the modus operandi for communicating the latest find-
ings. Although pre-prints allowed results to be published
rapidly, they lack the quality assurance that peer review,
albeit imperfectly, offers. In this regard, the Royal Society’s
RapidAssistance inModelling the Pandemic (RAMP) initiative
took on the massive, essential task of rapidly reviewing pre-
print manuscripts.

A further conflict between policy and academic impact
arises because research conducted in response to policy ques-
tions may not be substantial enough to be published as a
standalone manuscript. Early in the first wave, SAGE papers
and SPI-M-O consensus statements started being published
online on the government website [5].

In addition to public health needs, the pace of traditional
publishing meant that modelling papers were most likely
out-of-date by the time they had gone through peer review.
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New evidence had come to light, new data had been gener-
ated, new papers had come out and it is not practical for
scientists to continually update their results in an evolving
situation. Therefore, unlike publication in normal times, the
time lost during a single rejection from a journal could
render the paper out-of-date and unlikely to be published
elsewhere. This constantly shifting landscape leads to a ten-
sion between generating academic output and providing
evidence for public health and government [32], especially
with increasing demands for transparency in the scientific
evidence behind policy decisions.

Traditional academic output is also at oddswith the impor-
tance of reproducible and independently reproduced findings.
A single model that predicts a large number of cases is of lim-
ited use for policy making. Multiple independent predictions
are required for robust conclusions to be made. Yet, scientific
credit is usually given to the first group to publish a result,
not necessarily the scientists who verify findings. Parallel
results are hugely important for decision-making, yet policy
relevance does not guarantee publication.
6. Ensuring transparency and reproducibility
While infectious disease epidemiology has a long-standing tra-
dition of using mathematical modelling and statistical analysis
as tools for understanding and predicting disease dynamics,
the production of free, open-source tools implementing these
approaches is but a recent trend, which has lacked support
and recognition until now [32,33]. As a result, the culture
of code-sharing in infectious disease modelling is still in
its infancy.

In an attempt to enforce scientific reproducibility, peer-
reviewed journals are now increasingly requiring code
implementing new models to be shared publicly. However,
the issue of code-sharing goes beyond publication when said
code is used for informing public health policies, as pointed
out in the recent debate sparked by the code release of a simu-
lation model used by SPI-M [34]. To inform decision-making
as best as possible, scientific evidence needs not only to be
based on reliable data and sound models: it requires
these two elements to be assembled correctly in bug-free
software implementations.

The Office for National Statistics provides an excellent
framework for data analysis supporting decision-making,
outlining requirements for data analyses to be reproducible,
auditable and assured [35]. The work presented at SPI-M
was typically validated through two processes. First, rapid
peer review of the methodology and data presented in some-
times detailed reports was made by other SPI-M members.
Second, most SPI-M results were obtained by effectively com-
bining results from different research groups, using a variety
of approaches and often overlapping data sources. Less
emphasis was put on ensuring scientific reproducibility,
although some groups certainly implemented routine code
checks and reviews internally, and usually shared their
code on public repositories such as GitHub.

For this issue, we promoted transparency by encouraging
all authors to share publicly documented code and data
whenever possible. We appreciate all of our contributors’
efforts towards improving the reproducibility of the model-
ling work informing the response to COVID-19, and
acknowledge this is but a step towards perfect auditability.
7. Putting this special issue together
The motivation for producing this Special Issue included
transparency, posterity and providing a mechanism to pub-
lish work that shaped policy. Our criteria for inclusion in
the Special Issue was that work had been presented at SPI-
M-O or SAGE and/or had been used as evidence during
policy making. All SPI-M-O contributors were invited to
submit their work, and the issue contains representations
from major modelling groups involved in SPI-M-O, including
the Universities of Lancaster, Warwick, Manchester, Bristol,
Cambridge, Oxford, Exeter, Edinburgh, the London School
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of Hygiene and Tropical Medicine (LSHTM) and Public
Health England.

The topics covered in this Special Issue provide insight
into the detailed evidence that is behind many policy
decisions for the UK and its constituent nations. Figure 4
illustrates the approximate timeline of the contributions in
the issue, which were mainly during the first wave of
COVID-19 epidemic in the UK (January–July 2020).

The issue covers early models that were developed for the
UK (figure 4), often with limited data and initially relying on
SARS-1-like parameters [15] and theoretical insights [31]. It
includes models that are used in the ongoing overview of
the epidemic with weekly consensus estimates of the Repro-
duction number [19,20], short term and medium-term
projections [36] and real-time data stream monitoring [37]
all playing a part. There are time-sensitive, changing policy
questions, such as the impact of mass gatherings [38], reopen-
ing schools in May 2020 [39–41], the introduction of support
bubbles [42] or the impact of contact tracing and lockdown
[43]. We have evidence that drove the understanding of noso-
comial and care home transmission [44,45], the importance of
segmenting and shielding [46] as well as the possible impact
of waning immunity [47]. The breadth of these topics reflects
the experience of the modelling community involved in the
response in the UK.

We made the decision not to ask authors to update their
analyses to include the latest data and latest understanding of
the underlying biology and transmission processes, as would
normally be requested in traditional journals. This was done
in order to provide a record of the work as it was presented
and used in real-time, rather than being updated with the
benefit of hindsight. Instead, we gave authors the option to
either update their manuscripts, with more analyses or an
addendum detailing new developments since publication,
or to include an additional ‘in-context’ page that describes
how the analysis was used to inform policy as well as any
important developments that occurred since the piece of
work was conducted.
8. Summary and legacy
(a) ‘Tell me why I am wrong’, SPI-M-O unofficial

motto, 2020–2021
The COVID-19 pandemic that started in 2020 was extraordi-
nary for many reasons. It was the first time in living
memory that social distancing measures were applied on a
global scale, and it has probably changed the way we will
respond to infectious diseases in the future. The year 2020
was also an extraordinary year for science and infectious dis-
ease modelling. COVID-19 propelled infectious disease
modelling to the centre of political and general conversation,
and communication to non-specialists became an overnight
skill required of disease modellers.
Infectious disease models are useful for elucidating epi-
demic drivers—such as the importance of care homes and
hospitals—and predicting the impact of changes in policy,
for example, the impact of applying and lifting social distan-
cing measures. Modelling for policy decisions is not the same
as regular research in infectious disease modelling. Simple
approaches, possibly too simple to be published, are often
highly valuable to decision makers. We argue that policy
impact should be valued alongside academic impact.

In this introductoryarticle,we attempted to give an overview
of the scientific advisory system in the UK, and how modelling
contributed to decision-making. It is difficult in absolute terms
to quantify the impact of modelling to the national response,
and whether there are procedures that could be improved for
the next pandemic. The way SPI-M-O operates evolved during
2020—startingwith a small number ofmodellers and expanding
to around 50modellers regularly attending theweeklymeetings.
This plurality of opinion was key to generating robust and
reliable advice. When a consensus view emerged, we could
have confidence in it; failure to reach consensus was a reflection
of the uncertainty of the situation, and held equivalent value.
This plurality needs to be actively supported with funding and
training to retain the capacity developed during 2020 and
allow for a wide range of views and approaches.

Our ultimate aim in collating this theme issue was to
provide a single place where multiple contributions from SPI-
M-O could be presented as a collection. We wanted to provide
documentation, transparency and acknowledgement of the
huge amount of work that was carried out, mainly by scientists
who volunteered their time and expertise on top of their regular
academic duties. Contributing to SPI-M-O was a privilege and,
albeit exhausting, a rewarding and unique experience.
Data accessibility. This article has no additional data.

Authors’ contributions. E.B.-P. wrote the first draft. All authors planned,
provided input and revised the article.

Competing interests. We declare we have no competing interests

Funding. E.B.-P. was partly supported by the NIHR Health Protection
Research Unit (HPRU) in Behavioural Science and Evaluation. The
views expressed are those of the author(s) and not necessarily
those of the NHS, the NIHR or the Department of Health. The
NIHR had no role in writing the manuscript or the decision to pub-
lish it. E.B.-P., L.D. and L.P. are funded via the JUNIPER Consortium
(MRC grant no. MR/V038613/1). E.B.-P. and L.D. are funded by
MRC grant no. MC/PC/19067. L.D. is funded by EPSRC grant nos
EP/V051555/1 and EP/N510129/1. L.P. is funded by the Wellcome
Trust and the Royal Society (grant 202562/Z/16/Z) and supported
by the Alan Turing Institute for Data Science and Artificial Intelli-
gence. T.J. receives funding from the Global Challenges Research
Fund (GCRF) project ‘RECAP’ managed through RCUK and ESRC
(ES/P010873/1) as well as from the Medical Research Council
(MRC grant number MC_PC_19065).

Acknowledgements. Thanks to Ed Hill, Graham Medley, Jon Read, Libby
Richards and Tom Irving for suggestions and comments on this
manuscript. We would also like to thank Helen Eaton at PTRB
for continued patience and support, and the many peer reviewers,
without whom this issue would not have been possible.
References
1. World Health Organization. WHO Timeline - COVID-
19. 2021 See https://www.who.int/news/item/27-04-
2020-who-timeline—covid-19 (accessed on 9 April
2021).
2. Public Health England. 2020 Official UK
Coronavirus Dashboard. See https://
coronavirus.data.gov.uk/
(accessed on 9 April 2021).
3. Prime Minister’s Office. 2020 Prime Minister’s
statement on coronavirus (COVID-19): 16 March
2020. GOV.UK. See https://www.gov.uk/
government/speeches/pm-statement-on-

https://www.who.int/news/item/27-04-2020-who-timeline---covid-19
https://www.who.int/news/item/27-04-2020-who-timeline---covid-19
https://www.who.int/news/item/27-04-2020-who-timeline---covid-19
https://coronavirus.data.gov.uk/
https://coronavirus.data.gov.uk/
https://coronavirus.data.gov.uk/
https://www.gov.uk/government/speeches/pm-statement-on-coronavirus-16-march-2020
https://www.gov.uk/government/speeches/pm-statement-on-coronavirus-16-march-2020
https://www.gov.uk/government/speeches/pm-statement-on-coronavirus-16-march-2020


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20210001

7
coronavirus-16-march-2020 (accessed on 9 April
2021).

4. Government Office for Science. 2020 About the
Scientific Advisory Group for Emergencies
(SAGE). See https://www.gov.uk/government/
organisations/scientific-advisory-group-
for-emergencies/about (accessed on 8 April 2021).

5. Government Office for Science. 2020 Scientific
evidence supporting the government response to
coronavirus (COVID-19). See https://www.gov.uk/
government/collections/scientific-evidence-
supporting-the-government-response-to-
coronavirus-covid-19 (accessed on 8 April 2021).

6. Government Office for Science. 2020 Scientific
Pandemic Influenza Group on Modelling (SPI-M).
See https://www.gov.uk/government/groups/
scientific-pandemic-influenza-subgroup-on-
modelling (accessed on 8 April 2021).

7. Government Office for Science. 2020 List of
participants of SAGE and related sub-groups. See
https://www.gov.uk/government/publications/
scientific-advisory-group-for-emergencies-sage-
coronavirus-covid-19-response-membership/list-of-
participants-of-sage-and-related-sub-groups
(accessed on 8 April 2021).

8. Government Office for Science. 2020 The R value
and growth rate in the UK. 2021 See https://www.
gov.uk/guidance/the-r-number-in-the-uk (accessed
on 8 April 2021).

9. Reichardt J, Bornholdt S. 2006 Statistical
mechanics of community detection. Phys.
Rev. E 74, 016110. (doi:10.1103/PhysRevE.74.016110)

10. Csardi G et al. 2006 The igraph software package for
complex network research. InterJournal Complex
Syst. 1695, 1–9.

11. Medley GF. 2001 Epidemiology. Predicting the
unpredictable. Science 294, 1663–1664. (doi:10.
1126/science.1067669)

12. Anderson RM, May RM. 1992 Infectious diseases of
humans: dynamics and control. Oxford, UK: Oxford
University Press.

13. Keeling MJ, Rohani P. 2011 Modeling infectious
diseases in humans and animals. Princeton, NJ:
Princeton University Press.

14. Pellis L et al. 2021 Challenges in control of
COVID-19: short doubling time and long delay to
effect of interventions. Phil. Trans. R. Soc. B 376,
20200264. (doi:10.1098/rstb.2020.0264)

15. Read JM, Bridgen JRE, Cummings DAT, Ho A, Jewell
CP. 2021 Novel coronavirus 2019-nCoV (COVID-19):
early estimation of epidemiological parameters and
epidemic size estimates. Phil. Trans. R. Soc. B 376,
20200265. (doi:10.1098/rstb.2020.0265)

16. Fyles M, Fearon E, Overton C, University of
Manchester COVID-19 Modelling Group, Wingfield T,
Medley GF, Hall I, Pellis L, House T. 2021 Using a
household-structured branching process to analyse
contact tracing in the SARS-CoV-2 pandemic. Phil.
Trans. R. Soc. B 376, 20200267. (doi:10.1098/rstb.
2020.0267)

17. Danon L, Lacasa L, Brooks-Pollock E. 2021
Household bubbles and COVID-19
transmission: insights from percolation theory. Phil.
Trans. R. Soc. B 376, 20200284. (doi:10.1098/rstb.
2020.0284)

18. Brooks-Pollock E, Danon L, Jombart T, Pellis L. 2021
Modelling that shaped the early COVID-19
pandemic response in the UK. Phil. Trans. R. Soc. B
376, 20210001. (doi:10.1098/rstb.2021.0001)

19. Challen R, Tsaneva-Atanasova K, Pitt M, Edwards T,
Gompels L, Lacasa L, Brooks-Pollock E, Danon L.
2021 Estimates of regional infectivity of
COVID-19 in the United Kingdom following
imposition of social distancing measures.
Phil. Trans. R. Soc. B 376, 20200280. (doi:10.1098/
rstb.2020.0280)

20. Sherratt K, Abbott S, Meakin SR, Hellewell J,
Munday JD, Bosse N, CMMID COVID-19 Working
Group, Jit M, Funk S. 2021 Exploring surveillance
data biases when estimating the reproduction
number: with insights into subpopulation
transmission of COVID-19 in England. Phil.
Trans. R. Soc. B 376, 20200283. (doi:10.1098/rstb.
2020.0283)

21. Jarvis CI et al. 2020 Quantifying the impact of
physical distance measures on the transmission of
COVID-19 in the UK. BMC Med. 18, 124. (doi:10.
1186/s12916-020-01597-8)

22. Riley S et al. 2021 REACT-1 round 9 final report:
continued but slowing decline of prevalence of
SARS-CoV-2 during national lockdown in England in
February 2021. MedRxiv.

23. Pouwels KB et al. 2021 Community prevalence of
SARS-CoV-2 in England from April to November
2020: results from the ONS Coronavirus Infection
Survey. Lancet Pub. Health 6, E30–E38. (doi:10.
1016/s2468-2667(20)30282-6)

24. Whitty CJM. 2015 What makes an academic paper
useful for health policy? BMC Med. 13, 301. (doi:10.
1186/s12916-015-0544-8)

25. Kaplan EH. 1989 Can bad models suggest good
policies? Sexual mixing and the AIDS epidemic.
J. Sex Res. 26, 301–314. (doi:10.1080/
00224498909551517)

26. Anderson RM, Medley GF, May RM, Johnson AM.
1986 A preliminary study of the transmission
dynamics of the human immunodeficiency virus
(HIV), the causative agent of AIDS. IMA J. Math.
Appl. Med. Biol. 3, 229–263. (doi:10.1093/
imammb/3.4.229)

27. Anderson RM, Medley GF, Blythe SP, Johnson AM.
1987 Is it possible to predict the minimum size of
the acquired immunodeficiency syndrome (AIDS)
epidemic in the United Kingdom? Lancet 1,
1073–1075. (doi:10.1016/S0140-6736(87)90493-4)

28. Ghani AC, Ferguson NM, Donnelly CA, Anderson RM.
2000 Predicted vCJD mortality in Great Britain.
Nature 406, 583–584. (doi:10.1038/35020688)

29. Keeling MJ et al. 2001 Dynamics of the 2001 UK
foot and mouth epidemic: stochastic dispersal in a
heterogeneous landscape. Science 294, 813–817.
(doi:10.1126/science.1065973)

30. Baguelin M, Flasche S, Camacho A, Demiris N, Miller
E, Edmunds WJ. 2013 Assessing optimal target
populations for influenza vaccination programmes:
an evidence synthesis and modelling study. PLoS
Med. 10, e1001527. (doi:10.1371/journal.pmed.
1001527)

31. Gog JR, Hollingsworth TD. 2021 Epidemic
interventions: insights from classic results. Phil.
Trans. R. Soc. B 376, 20200263. (doi:10.1098/rstb.
2020.0263)

32. Kucharski AJ, Funk S, Eggo RM. 2020 The COVID-19
response illustrates that traditional academic reward
structures and metrics do not reflect crucial
contributions to modern science. PLoS Biol. 18,
e3000913. (doi:10.1371/journal.pbio.3000913)

33. Jombart T. 2021 Why development of outbreak
analytics tools should be valued, supported, and
funded. Lancet Infect. Dis. 21, 458–459. (doi:10.
1016/S1473-3099(20)30996-8)

34. Singh CD. 2020 Critiqued coronavirus simulation
gets thumbs up from code-checking efforts.
Nature 582, 323–324. (doi:10.1038/d41586-020-
01685-y)

35. UK Government Analytical Community. 2020
Quality assurance of code for analysis and
research (version 2021.4). Office for National
Statistics, Best Practice and Impact division. See
https://best-practice-and-impact.github.io/qa-of-
code-guidance/principles.html (accessed on 8 April
2021).

36. Birrell P, Blake J, van Leeuwen E, Gent N, De
Angelis D. 2021 Real-time nowcasting and
forecasting of COVID-19 dynamics in England: the
first wave. Phil. Trans. R. Soc. B 376, 20200279.
(doi:10.1098/rstb.2020.0279)

37. Jombart T et al. 2021 Real-time monitoring of
COVID-19 dynamics using automated trend fitting
and anomaly detection. Phil. Trans. R. Soc. B 376,
20200266. (doi:10.1098/rstb.2020.0266)

38. Brooks-Pollock E, Read JM, McLean AR, Keeling MJ,
Danon L. 2021 Mapping social distancing measures
to the reproduction number for COVID-19. Phil.
Trans. R. Soc. B 376, 20200276. (doi:10.1098/rstb.
2020.0276)

39. Keeling MJ et al. 2021 The impact of school
reopening on the spread of COVID-19 in England.
Phil. Trans. R. Soc. B 376, 20200261. (doi:10.1098/
rstb.2020.0261)

40. Brooks-Pollock E, Read JM, House T, Medley GF,
Keeling MJ, Danon L. 2021 The population
attributable fraction of cases due to gatherings and
groups with relevance to COVID-19 mitigation
strategies. Phil. Trans. R. Soc. B 376, 20200273.
(doi:10.1098/rstb.2020.0273)

41. Stage HB, Shingleton J, Ghosh S, Scarabel F, Pellis L,
Finnie T. 2021 Shut and re-open: the role of schools
in the spread of COVID-19 in Europe. Phil.
Trans. R. Soc. B 376, 20200277. (doi:10.1098/rstb.
2020.0277)

42. Danon L, Brooks-Pollock E, Bailey M, Keeling M.
2021 A spatial model of COVID-19 transmission
in England and Wales: early spread, peak
timing and the impact of seasonality. Phil.
Trans. R. Soc. B 376, 20200272. (doi:10.1098/rstb.
2020.0272)

43. Lucas TCD et al. 2021 Engagement and adherence
trade-offs for SARS-CoV-2 contact tracing. Phil.

https://www.gov.uk/government/speeches/pm-statement-on-coronavirus-16-march-2020
https://www.gov.uk/government/organisations/scientific-advisory-group-for-emergencies/about
https://www.gov.uk/government/organisations/scientific-advisory-group-for-emergencies/about
https://www.gov.uk/government/organisations/scientific-advisory-group-for-emergencies/about
https://www.gov.uk/government/organisations/scientific-advisory-group-for-emergencies/about
https://www.gov.uk/government/collections/scientific-evidence-supporting-the-government-response-to-coronavirus-covid-19
https://www.gov.uk/government/collections/scientific-evidence-supporting-the-government-response-to-coronavirus-covid-19
https://www.gov.uk/government/collections/scientific-evidence-supporting-the-government-response-to-coronavirus-covid-19
https://www.gov.uk/government/collections/scientific-evidence-supporting-the-government-response-to-coronavirus-covid-19
https://www.gov.uk/government/collections/scientific-evidence-supporting-the-government-response-to-coronavirus-covid-19
https://www.gov.uk/government/groups/scientific-pandemic-influenza-subgroup-on-modelling
https://www.gov.uk/government/groups/scientific-pandemic-influenza-subgroup-on-modelling
https://www.gov.uk/government/groups/scientific-pandemic-influenza-subgroup-on-modelling
https://www.gov.uk/government/groups/scientific-pandemic-influenza-subgroup-on-modelling
https://www.gov.uk/government/publications/scientific-advisory-group-for-emergencies-sage-coronavirus-covid-19-response-membership/list-of-participants-of-sage-and-related-sub-groups
https://www.gov.uk/government/publications/scientific-advisory-group-for-emergencies-sage-coronavirus-covid-19-response-membership/list-of-participants-of-sage-and-related-sub-groups
https://www.gov.uk/government/publications/scientific-advisory-group-for-emergencies-sage-coronavirus-covid-19-response-membership/list-of-participants-of-sage-and-related-sub-groups
https://www.gov.uk/government/publications/scientific-advisory-group-for-emergencies-sage-coronavirus-covid-19-response-membership/list-of-participants-of-sage-and-related-sub-groups
https://www.gov.uk/government/publications/scientific-advisory-group-for-emergencies-sage-coronavirus-covid-19-response-membership/list-of-participants-of-sage-and-related-sub-groups
https://www.gov.uk/guidance/the-r-number-in-the-uk
https://www.gov.uk/guidance/the-r-number-in-the-uk
https://www.gov.uk/guidance/the-r-number-in-the-uk
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1126/science.1067669
http://dx.doi.org/10.1126/science.1067669
http://dx.doi.org/10.1098/rstb.2020.0264
http://dx.doi.org/10.1098/rstb.2020.0265
http://dx.doi.org/10.1098/rstb.2020.0267
http://dx.doi.org/10.1098/rstb.2020.0267
http://dx.doi.org/10.1098/rstb.2020.0284
http://dx.doi.org/10.1098/rstb.2020.0284
http://dx.doi.org/10.1098/rstb.2021.0001
http://dx.doi.org/10.1098/rstb.2020.0280
http://dx.doi.org/10.1098/rstb.2020.0280
http://dx.doi.org/10.1098/rstb.2020.0283
http://dx.doi.org/10.1098/rstb.2020.0283
http://dx.doi.org/10.1186/s12916-020-01597-8
http://dx.doi.org/10.1186/s12916-020-01597-8
http://dx.doi.org/10.1016/s2468-2667(20)30282-6
http://dx.doi.org/10.1016/s2468-2667(20)30282-6
http://dx.doi.org/10.1186/s12916-015-0544-8
http://dx.doi.org/10.1186/s12916-015-0544-8
http://dx.doi.org/10.1080/00224498909551517
http://dx.doi.org/10.1080/00224498909551517
http://dx.doi.org/10.1093/imammb/3.4.229
http://dx.doi.org/10.1093/imammb/3.4.229
http://dx.doi.org/10.1016/S0140-6736(87)90493-4
http://dx.doi.org/10.1038/35020688
http://dx.doi.org/10.1126/science.1065973
http://dx.doi.org/10.1371/journal.pmed.1001527
http://dx.doi.org/10.1371/journal.pmed.1001527
http://dx.doi.org/10.1098/rstb.2020.0263
http://dx.doi.org/10.1098/rstb.2020.0263
http://dx.doi.org/10.1371/journal.pbio.3000913
http://dx.doi.org/10.1016/S1473-3099(20)30996-8
http://dx.doi.org/10.1016/S1473-3099(20)30996-8
http://dx.doi.org/10.1038/d41586-020-01685-y
http://dx.doi.org/10.1038/d41586-020-01685-y
https://best-practice-and-impact.github.io/qa-of-code-guidance/principles.html
https://best-practice-and-impact.github.io/qa-of-code-guidance/principles.html
https://best-practice-and-impact.github.io/qa-of-code-guidance/principles.html
http://dx.doi.org/10.1098/rstb.2020.0279
http://dx.doi.org/10.1098/rstb.2020.0266
http://dx.doi.org/10.1098/rstb.2020.0276
http://dx.doi.org/10.1098/rstb.2020.0276
http://dx.doi.org/10.1098/rstb.2020.0261
http://dx.doi.org/10.1098/rstb.2020.0261
http://dx.doi.org/10.1098/rstb.2020.0273
http://dx.doi.org/10.1098/rstb.2020.0277
http://dx.doi.org/10.1098/rstb.2020.0277
http://dx.doi.org/10.1098/rstb.2020.0272
http://dx.doi.org/10.1098/rstb.2020.0272


royalsocietypublishing.org

8
Trans. R. Soc. B 376, 20200270. (doi:10.1098/rstb.
2020.0270)

44. Evans S, Agnew E, Vynnycky E, Stimson J,
Bhattacharya A, Rooney C, Warne B, Robotham J.
2021 The impact of testing and infection prevention
and control strategies on within-hospital
transmission dynamics of COVID-19 in English
hospitals. Phil. Trans. R. Soc. B 376, 20200268.
(doi:10.1098/rstb.2020.0268)
45. Hall I, Lewkowicz H, Webb L, House T, Pellis L,
Sedgwick J, Gent N on behalf of the
University of Manchester COVID-19 Modelling
Group and the Public Health England
Modelling Team. 2021 Outbreaks in care
homes may lead to substantial disease
burden if not mitigated. Phil.
Trans. R. Soc. B 376, 20200269. (doi:10.1098/rstb.
2020.0269)
46. van Bunnik BAD et al. 2021 Segmentation and
shielding of the most vulnerable members of the
population as elements of an exit strategy from
COVID-19 lockdown. Phil. Trans. R. Soc. B 376,
20200275. (doi:10.1098/rstb.2020.0275)

47. Crellen T et al. 2021 Dynamics of SARS-CoV-2 with
waning immunity in the UK population. Phil.
Trans. R. Soc. B 376, 20200274. (doi:10.1098/rstb.
2020.0274)
/
jour
nal/rstb
Phil.Trans.R.Soc.B

376:20210001

http://dx.doi.org/10.1098/rstb.2020.0270
http://dx.doi.org/10.1098/rstb.2020.0270
http://dx.doi.org/10.1098/rstb.2020.0268
http://dx.doi.org/10.1098/rstb.2020.0269
http://dx.doi.org/10.1098/rstb.2020.0269
http://dx.doi.org/10.1098/rstb.2020.0275
http://dx.doi.org/10.1098/rstb.2020.0274
http://dx.doi.org/10.1098/rstb.2020.0274

	Modelling that shaped the early COVID-19 pandemic response in the UK
	Introduction
	The UK science advisory system
	What is infectious disease modelling and why is it useful?
	Data for models
	Exponential growth is counterintuitive

	Modelling and policy
	Publishing during a pandemic
	Ensuring transparency and reproducibility
	Putting this special issue together
	Summary and legacy
	‘Tell me why I am wrong’, SPI-M-O unofficial motto, 2020–2021
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	Acknowledgements
	References


