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Mid-infrared spectral classification of endometrial
cancer compared to benign controls in serum or
plasma samples†
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This study demonstrates a discrimination of endometrial cancer versus (non-cancerous) benign controls

based on mid-infrared (MIR) spectroscopy of dried plasma or serum liquid samples. A detailed evaluation

was performed using four discriminant methods (LDA, QDA, kNN or SVM) to execute the classification

task. The discriminant methods used in the study comprised methods that are widely used in the statistics

(LDA and QDA) and machine learning literature (kNN and SVM). Of particular interest, is the impact of dis-

crimination when presented with spectral data from a section of the bio-fingerprint region (1430 cm−1 to

900 cm−1) in contrast to the more extended bio-fingerprint region used here (1800 cm−1 to 900 cm−1).

Quality metrics used were the misclassification rate, sensitivity, specificity, and Matthew’s correlation

coefficient (MCC). For plasma (with spectral data ranging from 1430 cm−1 to 900 cm−1), the best per-

forming classifier was kNN, which achieved a sensitivity, specificity and MCC of 0.865 ± 0.043, 0.865 ±

0.023 and 0.762 ± 0.034, respectively. For serum (in the same wavenumber range), the best performing

classifier was LDA, achieving a sensitivity, specificity and MCC of 0.899 ± 0.023, 0.763 ± 0.048 and 0.664

± 0.067, respectively. For plasma (with spectral data ranging from 1800 cm−1 to 900 cm−1), the best per-

forming classifier was SVM, with a sensitivity, specificity and MCC of 0.993 ± 0.010, 0.815 ± 0.000 and

0.815 ± 0.010, respectively. For serum (in the same wavenumber range), QDA performed best achieving a

sensitivity, specificity and MCC of 0.852 ± 0.023, 0.700 ± 0.162 and 0.557 ± 0.012, respectively. Our

findings demonstrate that even when a section of the bio-fingerprint region has been removed, good

classification of endometrial cancer versus non-cancerous controls is still maintained. These findings

suggest the potential of a MIR screening tool for endometrial cancer screening.

1. Introduction

Endometrial cancer (EC) is the 4th most frequently diagnosed
gynaecological malignancy in the first world, and also the 4th

most common cancer to affect women in the UK.1,2 In 2018,
>382 000 women were diagnosed with EC, and approximately
90 000 fatalities were recorded worldwide.3 In 2020, the

number of new EC cases increased to >417 300, with recorded
deaths also increasing to >97 000.4 Despite this, widespread
screening of EC is not currently advocated. This is primarily
due to the notably low specificity (ranging from 36% to 68%
(ref. 5)) and low positive predictive values (ranging from 4%
(ref. 6) to 9.6% (ref. 7)), caused by screening subjectivity
arising from the high dependence on the operator’s experi-
ence, when using the most common screening method (i.e.,
transvaginal ultrasonography (TVS)).8

Developing new, more effective evidence-based screening
methods for the early detection of gynaecological cancers has
been the focus of oncology researchers.9,10 One such method
is through the use of sensitive and specific biomarkers found
in dried biofluids such as plasma, serum, urine, or saliva.11

DNA/RNA is an example of a potential biomarker found in the
plasma or serum of cancer patients at higher levels when com-
pared to non-cancerous patients.12,13 This DNA/RNA is present
in blood due to mechanisms such as tumour necrosis,14 apop-
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tosis15 and active release.16 Additionally, tumour cells found
circulating in the peripheral blood of cancer patients (with
levels ranging from 1 : 103 to 1 : 107 nucleated cells in blood17),
once identified, could be used as cancer biomarkers.18

The limitations of the current methods for screening and
diagnostic methods mentioned above, has led to a growing
research interest to apply mid-infrared (MIR) spectroscopy for
assisting in the diagnosis of EC, due to its ability to detect
minute changes in the chemistry of bio-samples.11

MIR spectroscopy works by identifying the presence and
distribution of biomolecules within a bio-sample. When a bio-
sample (biofluid or tissue) absorbs MIR radiation
(4000–200 cm−1 (ref. 19)), covalently bound molecular species
vibrate at their characteristic frequency with greater amplitude;
absorption intensity is related to their quantity, i.e., concen-
tration, and wavelength is related to the nature of their
bonding.20 Within the bio-fingerprint region (1800–900 cm−1

(ref. 21 and 22)) of the MIR range, there exist the fundamental
frequencies of various biomolecules of interest. Proteins are
known to primarily contribute to absorption bands found at
1650 cm−1 to 1665 cm−1, 1550 cm−1 and 1310 cm−1 to
1200 cm−1, which are assigned to Amide I (CvO stretching),
Amide II (N–H bending, C–H stretching, C–O bending and C–
C and N–C stretching) and Amide III (C–H/N–H deformation),
respectively. Lipids contribute to bands at 1467 cm−1 to
1400 cm−1 (C–H scissoring or CH2 and CH3 and CvO stretch-
ing of –COO−), and at ∼1070 cm−1 (C–O–C, CO–O–C symmetric
(sym) stretching).23 Bands attributed to carbohydrates are
found at 1173 cm−1, 1154 cm−1 (symmetric stretching of C–O,
coupled to C–O–H bending), 1041 cm−1 and 1055 cm−1 (sym
C–O–C stretching) and 1023 cm−1 (sym C–O stretching).
Finally, bands attributed to nucleic acids, phospholipids and
nucleotides are found at ∼1250 cm−1 to 1220 cm−1 (asym-
metric (asym) PvO stretching in PO2

−), ∼1085 cm−1 (sym PvO
stretching in PO2 and sym CO–O–C stretching), and ∼900 cm−1

to 800 cm−1 (CvC, CvN and C–H vibrations in ring
structure).23

Although MIR spectroscopy is able to detect subtle changes
in the chemistry of bio-samples, the accurate classification of
these data heavily depends on the development and appli-
cation of data processing and classifier tools. There are three
main stages involved in data processing: (1) pre-processing; (2)
feature extraction (FE); and (3) classification. When applied to
spectral data, the pre-processing stage aims to reduce/remove
the contribution of information that is not related to the bio-
sample, thereby increasing the interpretability of the data, and
enhancing the accuracy and robustness of ensuing multi-
variate analyses. This stage corrects for physical interferences
such as light scattering due to varying particle sizes, and
sample thicknesses. Random instrument noise is also cor-
rected for during this step.24 The pre-processing stage involves
two main procedures: spectral data smoothing and correction.

Smoothing/de-noising is accomplished via the use of spec-
tral filters that eliminate random noise, while retaining impor-
tant spectral information. The most common technique cur-
rently used is the Savitzky–Golay (SG) algorithm.25 Other com-

monly used techniques include wavelet de-noising26 and
minimum noise fraction.27 Spectral correction involves mul-
tiple techniques (light-scattering correction, baseline correc-
tion, spectral differentiation, and normalisation) that may be
applied in sequence depending on the nature of the dataset
and the aims of the investigator. If data collection is accom-
plished via near-IR (NIR) spectroscopy, then light-scattering
correction needs to be undertaken as light scattering (Mie scat-
tering) is a very common artefact in NIR spectroscopy;28 it also
may occur in MIR spectroscopy, especially in cytology, and can
cause further complications due to resonant effects.29 Some
techniques, such as standard normal variate (SNV) and multi-
plicative scatter correction (MSC) can be used to correct for
this artefact.30 Baseline correction (BC), another spectral cor-
rection technique, is used to eliminate interferences that
result from background absorption. The main techniques used
for BC are rubber-band-like BC, Whittaker filter, automatic
weighted squares, asymmetric least squares, and polynomial
BC.24,31 Spectral differentiation can also be applied to spectral
data to simultaneously correct for baseline distortion and light
scattering; whilst this is not the case for Resonant scattering,
it is inferred that such oscillatory spectral effects will be very
small here due to the nature of the samples taken.29 Spectral
normalisation is commonly applied to IR spectral data to
correct for varying sample concentration or thickness. The
most common techniques for normalising IR data is Amide I
and vector normalisation. The review paper24 provides an
excellent summary of various pre-processing procedures that
can be applied to spectral data.

Feature extraction (FE) forms an essential data decompo-
sition step that helps identify clustering patterns in the data,
allowing for initial conclusions to be drawn about the sample
nature, potential outliers, and experimental errors. The most
common FE method is principal component analysis (PCA).
During PCA, spectral data are decomposed into a few principal
components (PCs) that account for the greatest variance in the
original dataset.31

There are two types of classifiers, unsupervised and super-
vised. Unsupervised classification (clustering) works by classi-
fying data into classes based on a distance measure without
user-supplied class grouping information. Examples include
k-means clustering and hierarchical cluster analysis.32

Supervised classification/machine learning techniques,
however, involve classifying input pre-processed spectral data
into classes based on training data. Popular techniques are
discriminant analysis (linear (LDA) or quadratic (QDA)),
k-nearest neighbour (kNN), support vector machines (SVM),
artificial neural networks (ANN) and Bayesian-based inference
methods.24,31 Studies have been conducted on the distinction
of cancerous samples from control samples through the use of
MIR spectroscopy on biofluids in breast cancer,33 bladder
cancer,34 brain cancer,35 oesophageal cancer,36 ovarian cancer
and endometrial cancer.17

Among the first to use and analyse human serum with
transmission MIR spectroscopy to diagnose breast cancer was
Backhaus et al.33 In this study, serum samples from 98 breast
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cancer patients with carcinomas ranging from 2 mm to 2 cm
in diameter, and 98 healthy controls were used. They used
1 µL of serum for each patient, diluted with 3 µL of distilled
water and dried onto a Si-plate. After pre-processing the gener-
ated data (via vector normalisation, spectral 2nd order deri-
vation, and SG filtering), the data were classified using two
independent classifiers, cluster analysis or ANN. Backhaus
et al. found that both classifiers were able to produce sensi-
tivity and specificity results >90% (cluster analysis: sensitivity =
96%, specificity = 93%; ANN: sensitivity = 95%, specificity =
95%). In a study by Maitra et al.,36 the diagnostic power of
PCA-QDA, successive projection algorithm: SPA-QDA and
genetic algorithm: GA-QDA for different classes of oesophageal
cancer (inflammation, Barrett’s oesophagus, low- or high-
grade dysplasia and oesophageal adenocarcinoma) were tested
on spectral data collected from dried plasma, serum, saliva,
and urine samples using attenuated total reflection Fourier-
transform IR (ATR-FTIR) spectroscopy. The data were initially
pre-processed by cutting between 1800 cm−1 and 900 cm−1,
baseline corrected using the rubber band method, and nor-
malised to the Amide I peak (1650 cm−1). They found that the
diagnostic power of GA-QDA was strongest on plasma (sensi-
tivity and specificity = 100%, in all disease states) and serum
(sensitivity ranging from 95.6% to 100%, and specificity
ranging from 50% to 100%, with a median value of 92.85%)
datasets. Similarly, Gajjar et al.17 used ATR-FTIR spectroscopy
to analyse dried plasma and serum samples of patients diag-
nosed with ovarian cancer. They found that a classification
rate of 96.67% ± 7.03% was produced when the feature selec-
tion method, LASSO (least absolute shrinkage and selection
operator) was paired with the eClass algorithm (evolving
Classifier)37 to classify ovarian plasma data, while a classifi-
cation rate of 95% ± 8.05% was produced when forward
feature selection (FFS) was paired with kNN to classify ovarian
serum data. This shows that MIR spectral analysis of biofluids
paired with machine learning (ML) techniques offers a promis-
ing non- to minimally invasive route to the accurate diagnosis
of various cancers.

The main aim of the present study was to explore the
efficacy of different combinations of pre-processing procedures
and discrimination methods to differentiate the MIR spectro-
scopic spectra between cancerous (plasma and serum from
patients with endometrial cancer diagnosis) and non-cancer-
ous control samples. The spectral data used in this are identi-
cal to those used by Gajjar et al.17 There are, however, differ-
ences in the processing method, from the earlier work. Firstly,
the training and test data were strictly separated (see section
2.2). Secondly, in acknowledgement of future in vivo appli-
cation of diagnosis by means of MIR vibrational spectral deter-
mination, the water-free part of the spectrum (1430 cm−1 to
900 cm−1) was analysed in addition to the previously used
span of 1800 cm−1 to 900 cm−1 (the former excludes the Amide
I and II bands at 1650 cm−1 and 1550 cm−1, respectively).
Finally, pre-processing is that spectral data are not baseline
corrected using the rubber band-like method, but instead are
filtered using the Savitzky–Golay method, to the 5th polynomial

and differentiated to the 1st order; data then underwent PCA
before classification methods were applied the dataset was
split into 70% training and 30% testing sets ensuring an objec-
tive validation of the classifiers’ performance against unseen
datasets. The datasets were then passed into multiple classifi-
cation algorithms: LDA, QDA, kNN or SVM. The performance
of each classifier was assessed by the misclassification rate,
sensitivity, specificity, and the Matthew’s correlation coeffi-
cient (MCC).

2. Materials and methods
2.1. Sample preparation

Human blood samples were collected [Research and Ethics
Committee (REC) approval no.: 10/H0308/75] from 126
patients [31 endometrial plasma cancer (EPCan) patients, 32
endometrial plasma control (EPCon), 30 endometrial serum
cancer (ESCan) patients, and 33 endometrial serum control
(ESCon) patients] prior to surgery. In this study, none of the
patients in the cancer or control class had ovarian cancer.
When selecting participants, a second tumour was an exclu-
sion criterion. In the original paper,17 ovarian cancer and
endometrial cancer were both investigated. The current work
utilised data only from the endometrial cancer patients. All
blood samples were collected from patients prior to any and
all therapies, treatments, and surgeries. See ref. 17 for more
details.

The blood samples underwent centrifugation for 15 min at
300 rpm to separate the erythrocytes from serum (−EDTA) or
plasma (+EDTA). The samples were then stored at −85 °C in
cryogenic tubes until analysis. Prior to ATR-FTIR spectrochemi-
cal analysis, the frozen samples were thawed at ambient temp-
erature and 100 µL of plasma or serum was decanted and
transferred onto different IR-reflective glass slides (Kevley
Technologies) and air-dried for 1 h.

2.2. ATR-FTIR spectroscopy protocol

MIR spectral data were obtained using the Bruker Tensor 27
FTIR with the Helios attachment. To collect spectral data,
slides with the dried plasma or serum samples were placed
atop a vertically movable stage, which was underneath the
diamond crystal. The slides were raised until good contact
between the sample and diamond crystal was achieved, then a
spectrum was collected. Spectral data were collected from 20
different spatial locations per sample and the diamond ATR
crystal cleaned between each sample. A total number of 2520
spectra (from all 126 patients’ samples) were collected (620
EPCan dataset, 640 EPCon dataset, 600 ESCan dataset and 660
ESCon dataset). These datasets were then combined to form
the “Endometrial Plasma” dataset (containing both EPCan
and EPCon datasets of 1260 spectra) and the “Endometrial
Serum” dataset (also containing both ESCan and ESCon data-
sets of 1260 spectra).

Hold-out cross validation was implemented in this work,
such that the spectral datasets (i.e., “Endometrial Plasma” and
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“Endometrial Serum”) were split for training and testing sets
in a 7 : 3 ratio as in Table 1. This separation was completed
manually so that all spectral data from each patient were
either in the training or testing group. This is because a
random separation resulted in the presence of spectral data
from a single patient, in both the training and testing groups.

2.3. Data processing

The data import, pre-treatment techniques, the assembly of
chemometric classification classifiers and statistical analyses
were all implemented in MATLAB R2020b software
(MathWorks, USA) (Fig. 1).

2.3.1. Pre-processing. In this study, two different pre-pro-
cessing techniques were used, based on the region of the spec-
trum being analysed. Each MIR spectrum was initially cut to
include, either the 1800 cm−1 to 900 cm−1 or the “water-free”
1430 cm−1 to 900 cm−1 wavelength range. The term “water-
free” used here indicates a region in the IR spectrum which
does not contain a measurable vibrational absorption band
due to molecular water. The spectra then underwent smooth-
ing using SG filtering, with a polynomial order of 5, spectral
1st order derivation and vector normalisation (Fig. S1 and S2†).

Following this, PCA was performed and the number of com-
ponents accounting for 95% variance in each dataset was
selected as the dimensionality-reduced datasets, upon which
classifications procedures were performed (Fig. 2).

2.3.2. Classification procedures. The pre-processed train-
ing data were then passed into one of four internally cross-vali-
dated (10-fold) classification algorithms: LDA,38,39 QDA,39

kNN40 and SVM38,41 for training and tested with 30% test data.
For detail on the considered classifiers, we refer readers
to.38–41 To assess the performance of each model, the follow-
ing figures of merit were used: sensitivity (SENS) (proportion
of positive samples correctly classified), specificity (SPEC) (the
proportion of negative samples correctly classified), misclassi-
fication rate (MR) (incorrectly classified samples (MR)) and
Matthew’s correlation coefficient (MCC) (a balanced measure
of classifier performance that is unaffected by imbalance
classes, see ref. 42 for detailed information). These metrics are
calculated as follows:

Sensitivity ¼ TP
TPþ FN

ð1Þ

Specificity ¼ TN
TNþ FP

ð2Þ

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð3Þ

MR ¼ 1� Accuracy ð4Þ

MCC ¼ TP� TNð Þ � FP� FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þp

ð5Þ
where, TP, TN, FP, and FN are true positive, true negative, false
positive and false negative, respectively.

The value of MCC can range from −1 to 1. An MCC of 1
indicates a perfect classifier (FP + FN = 0). An MCC of −1 indi-

Table 1 Endometrial plasma and serum training and testing spectra
collected from cancer and control samples. n = number of individual
spectra in each group. Note: 20 spectra were collected from each
patient from each condition and the 7 : 3 split was achieved by splitting
the patients and not the individual spectra

Endometrial Plasma
(n)

Endometrial Serum
(n)

Training
spectra

Cancer 440 420
Control 440 460

Testing
spectra

Cancer 180 180
Control 200 200

Fig. 1 Block diagram of describing the classification procedures of the MIR spectroscopic datasets.

Fig. 2 Overview of the steps involved in pre-processing and feature selection.
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cates a classifier that incorrectly discriminates all classes (TP +
TN = 0). An MCC of 0 indicates a classifier that classifies at an
accuracy equivalent to the flip of a coin, i.e., accuracy of 50%.
See Fig. 3 for a schematic description of the methods per-
formed in this study.

2.3.3. Parameter determination of kernel-based classifiers.
The kNN and SVM are kernel-based classifiers which require
user supplied kernel parameters to operate; this being the
number of neighbours for kNN and the polynomial order (PO)
for polynomial-based SVM. These parameters should be judi-
ciously selected to ensure effective use of the classifiers in the
appropriate kernel complexity avoiding under- and over-fitted
operation conditions. Here, it is done by minimising the mis-
classification rate (MR) of the classifier for both the training
and testing datasets. This is based on the rationale that while
the MR of the training dataset is expected to continuously fall
as the kernel complexity increases, the MR of the testing
dataset is expected to reach a minima before it rises as the
kernel complexity increases, indicating that it has failed to
predict the class of new unseen observations. A high MR for
the testing dataset with a low kernel complexity indicates
under-fitting, whereas a high MR of the testing dataset with a
high kernel complexity indicates over-fitting. It implies that
the suitable kernel complexity occurs at the kernel parameters
that result in the minimum MR for the testing dataset.43

Specific herein, the range of complexities tested for kNN was 1
to 400 neighbours, while for SVM, orders tested for the poly-
nomial kernel were from 1 to 3 (i.e., linear, quadratic, or cubic
SVM).

2.3.4. Important spectral bio-fingerprint. The important
spectral bio-fingerprint (wavenumbers) was determined by
observing the normalised PCA weightings and then mapping
these back to the peak position manifested on the raw spec-
trum for matching to reference libraries. This was validated by
a two-sample t-test with a 95% confidence interval.

3. Results

As described in section 2.3., herein, we evaluate the diagnostic
capability of classifiers when inputted with MIR spectral data
from two sections of the bio-fingerprint region: (1430 cm−1 to
900 cm−1) or (1800 cm−1 to 900 cm−1). For both cases, to the
datasets are applied the identical pre-processing procedures
except for the ‘cut-spectra’, as shown in Fig. 2. The classifiers
(LDA, QDA, kNN and SVM) were then trained with 70% of the
data and tested with 30%. Its performance was assessed using
sensitivity, specificity, the misclassification rate, and MCC
metrics.

3.1. Kernel parameter selection of kNN and SVM

As described in section 2.3.3., the effective application of the
kNN and SVM classifier requires a judicious kernel parameter
selection which were determined by minimising the misclassi-
fication rate (MR) of the classifier for both the training and
testing datasets.

For the bio-fingerprint region: 1430 cm−1 to 900 cm−1, the
number of neighbours, k, which leads to the proper operation

Fig. 3 Block diagram of the methodology employed in this study. (A) The pre-processed data are partitioned into a testing and training sets. (B) The
training data is then passed into a 10-fold internally cross validated classification algorithm (either LDA, QDA, kNN or SVM). (B’’) Step B is repeated 10
times, accounting for the number of folds specified. (C) This produces a trained classifier. (D) The classifier is tested with the testing data, that have
undergone the same pre-processing steps as the training set and (E). Analysed with various quality metrics (sensitivity, specificity, misclassification
rate, and Matthew’s correlation coefficient). (F) If the classifier performance is satisfactory, (G). A committed model is produced. (G’) If the model is
not satisfactory, 〈1〉. Check whether the classifier parameters have been optimised for this dataset. If not, (H’). Optimise each classifier until perform-
ance improves. (H). If classifier parameters have been optimised, 〈2〉. Check whether the partitioning method has been optimised. (I’) If not 〈3〉 alter
either the cross-validation method within each model (Opt.1) or the partitioning percentages (Opt. 2). If (I), the partitioning method has been opti-
mised, (J). Modify the pre-processing method.
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condition of the kNN classifier is k = 90 and k = 310 for the
plasma and serum sample, respectively, while a PO of 2 and 1
for the SVM for plasma and serum sample, respectively. Fig. 4
shows the MR of the training and testing datasets for different
kernel parameters, i.e., k-parameter for kNN and PO for the
SVM. For kNN, Fig. 4A and B shows the minima of the MR for
the testing datasets, which occur at k = 90 (MR = 0.119 ± 0.017)
and k = 310 (MR of 0.226 ± 0.014), for the plasma and serum,
respectively. For SVM, Fig. 4C and D shows the minima of the

MR for the testing datasets, which occur at PO = 2 (MR = 0.297
± 0.065) and PO = 1 (MR = 0.186 ± 0.007) for the plasma and
serum, respectively (Table 2).

For the bio-fingerprint region: 1800 cm−1 to 900 cm−1, the
number of neighbours, k, which leads to the proper operation
condition of the kNN classifier is k = 180 and k = 60 for the
plasma and serum sample, respectively, while a PO of 1 of
SVM for both plasma and serum sample. For kNN, Fig. 5A and
B shows that the minima for the MR for kNN classification of

Fig. 4 Kernel parameter selection of k for kNN (on the (A) plasma and (B) serum datasets) and the polynomial order for SVM (for the (C) plasma and
(D) serum datasets) in the 1430 cm−1 to 900 cm−1 range.

Table 2 The performance of each classification model with plasma and serum datasets in the 1430 cm−1 to 900 cm−1 and 1800 cm−1 to 900 cm−1

wavenumber range

Endometrial plasma Endometrial serum

SENS SPEC MR SENS SPEC MR

Wavenumber range: 1430 cm−1–900 cm−1

LDA 0.642 ± 0.015 0.730 ± 0.002 0.312 ± 0.007 0.899 ± 0.023 0.763 ± 0.048 0.173 ± 0.035
QDA 0.530 ± 0.024 0.729 ± 0.016 0.365 ± 0.014 0.991 ± 0.010 0.581 ± 0.016 0.225 ± 0.012
kNN 0.865 ± 0.043 0.895 ± 0.023 0.119 ± 0.017 0.703 ± 0.011 0.838 ± 0.021 0.226 ± 0.014
SVM 0.737 ± 0.025 0.653 ± 0.033 0.297 ± 0.065 0.919 ± 0.026 0.716 ± 0.015 0.186 ± 0.007
Wavenumber range: 1800 cm−1–900 cm−1

LDA 0.881 ± 0.026 0.853 ± 0.030 0.134 ± 0.023 0.777 ± 0.006 0.704 ± 0.003 0.262 ± 0.002
QDA 0.917 ± 0.014 0.799 ± 0.007 0.145 ± 0.007 0.852 ± 0.023 0.700 ± 0.162 0.228 ± 0.074
kNN 0.879 ± 0.033 0.896 ± 0.024 0.112 ± 0.023 0.759 ± 0.004 0.732 ± 0.012 0.255 ± 0.049
SVM 0.993 ± 0.010 0.815 ± 0.000 0.110 ± 0.013 0.782 ± 0.006 0.703 ± 0.004 0.260 ± 0.001
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testing datasets occurs at k = 180 (MR = 0.112 ± 0.023) for the
plasma sample and at k = 60, (MR of 0.255 ± 0.049) for the
serum sample. For SVM, Fig. 5C and D shows that SVM with
PO = 1 leads to the minima for the MR for both the plasma
(MR = 0.110 ± 0.013) and serum (MR = 0.260 ± 0.001) sample
(Table 2).

3.2. Classifier performance

Fig. 6 depicts the MCC metric for the discrimination of MIR
spectral data from the wavenumber regions of 1430 cm−1 to
900 cm−1 and 1800 cm−1 to 900 cm−1 performed by the LDA,
QDA, kNN and SVM classifiers.

For the bio-fingerprint region: 1430 cm−1 to 900 cm−1,
Fig. 6 shows that in general the discrimination task based on
the serum samples produces higher value for the MCC metric
compared to when discrimination is performed on the plasma
samples, except when the kNN classifier is used. In detail, the
MCC for the discrimination of the serum testing datasets
using LDA, QDA and SVM (PO = 1) are 0.664 ± 0.067, 0.618 ±
0.022 and 0.644 ± 0.030, respectively. However, for the plasma
datasets, the MCC for LDA, QDA and SVM (PO = 2) are 0.373 ±
0.015, 0.265 ± 0.029 and 0.390 ± 0.045, respectively. For the
kNN classifier, an MCC of 0.762 ± 0.034 and 0.548 ± 0.028 are
produced for discrimination based on plasma and serum
testing datasets, respectively. Noting that the k-parameter of
the kNN classifier is k = 90 when discriminating the plasma

dataset and k = 310 when discriminating the serum dataset.
The corresponding sensitivity and specificity of the kNN with
the highest MCC (k = 90) are 0.865 ± 0.043 and 0.895 ± 0.023,
respectively.

For the bio-fingerprint region 1800 cm−1 to 900 cm−1, Fig. 6
shows that a higher MCC metric is observed when the dis-
crimination is performed on the plasma datasets than when
the discrimination is performed on the serum datasets regard-
less of the classifier used. In detail, the MCC for the discrimi-
nation based on the plasma datasets are 0.733 ± 0.046, 0.717 ±
0.015, 0.776 ± 0.045 and 0.815 ± 0.010 for LDA, QDA, kNN and
SVM, respectively. For the serum datasets, the MCC are 0.481 ±
0.005, 0.557 ± 0.012, 0.490 ± 0.011 and 0.485 ± 0.003 for LDA,
QDA, kNN and SVM, respectively. The corresponding sensi-
tivity and specificity of the SVM with the highest MCC are
0.993 ± 0.010 and 0.815 ± 0.000, respectively. The performance
of each classifier for all the plasma and serum datasets is pre-
sented in Table 2.

3.3. Important features

Here, the important features (i.e., spectral wavenumbers)
based on the MIR spectroscopy of plasma and serum samples
are analysed based on the framework described in section
2.3.4 [see Fig. S3 and S4 of ESI†].

For the bio-fingerprint region: 1430 cm−1 to 900 cm−1,
important features shared by both plasma and serum datasets

Fig. 5 Kernel parameter selection of k for kNN (on the (A) plasma and (B) serum datasets) and the polynomial order for SVM (for the (C) plasma and
(D) serum datasets) in the 1800 cm−1 to 900 cm−1 range.
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are at 1358 cm−1 (CvO stretching of –COO–), 1346 cm−1 to
1288 cm−1 (C–N/N–H deformation of Amide III), 1215 cm−1 to
1254 cm−1 (asym PvO stretching in PO2

− in DNA), 1192 cm−1

to 1165 cm−1 (sym C–O–C and C–O–P stretching and ring
vibrations, sym C–O stretching coupled with C–O–H bending),
1092 cm−1 to 1088 cm−1 (sym stretching in PO2

− and CO–O–C
sym stretching in DNA) and 999 cm−1 (sym C–O stretching).
Unique important features found in the plasma dataset are at
1360 cm−1 and 1038 cm−1, accounting for C–N stretching in
tyrosine and guanine, and sym stretching of C–O–C, respect-
ively. Unique features found in serum and not in plasma
dataset are 1423 cm−1, 1393 cm−1 and 937 cm−1, accounting
for the stretching of CvO of –COO–, the sym C–H deformation
of CH3 and the stretching of C–O/C–C, respectively23 (see
Table S1†).

For the bio-fingerprint region 1800 cm−1 to 900 cm−1,
important features, unique to this wavelength region, found in
both datasets (plasma and serum) are at 1778 cm−1 to
1720 cm−1 (CvO stretching of esters), 1690 cm−1 to 1670 cm−1

(from secondary protein conformations: anti-parallel β sheets,
loops and turns), 1643 cm−1 to 1601 cm−1 (CvO stretching of
Amide I, assigned to glycoproteins such as fibrinogen) and
1570 cm−1 to 1508 cm−1 (N–H bending, C–H stretching, C–O
bending, C–C and N–C stretching of Amide II also assigned to
glycoproteins such as fibrinogen). Important features unique
to serum are at 1467 cm−1 to 1450 cm−1 (sym and asym C–H

scissoring of –CH3), 1161 cm−1, and 1099 cm−1.23,44 No impor-
tant features unique to plasma dataset found (see Table S2†).

4. Discussion

Herein, we have demonstrated that plasma and serum-based
MIR spectroscopy paired with an optimised classifier, have the
capability to discriminate between endometrial cancers and
controls. There is a strong research interest for the collection
of MIR spectral data from patients with cancer, in vivo.45–48 A
major limiting factor when using MIR spectroscopy in vivo, is
the presence of water in tissue. When collecting MIR spectra
from hydrated tissue, a strong H–O–H bending vibration at
1610 cm−1 dominates the bio-fingerprint region, and conse-
quently information from the Amide I (1601 cm−1), Amide II
(1645 cm−1) and adjacent bands are lost.23 One way to mitigate
against this, when classifying in vivo MIR spectral data is to
focus on a different part of the MIR spectrum, i.e., a region of
the spectrum not influenced by the H–O–H vibration.

In this work, we investigated two different pre-processing
techniques that differed on the spectral region: the first, a
section from the bio-fingerprint region (1430 cm−1 to
900 cm−1) and the second, a more extended bio-fingerprint
region (1800 cm−1 to 900 cm−1). Investigating only a section of
the bio-fingerprint region allowed us to assess the perform-

Fig. 6 Classification performance of each model in the 1430 cm−1 to 900 cm−1 and 1800 cm−1 to 900 cm−1 range for plasma and serum. This
metric ranges from −1 to +1, where an MCC of 1 indicates a perfect classifier, an MCC of −1 indicates a classifier that misclassifies all classes and an
MCC of 0 indicates a classifier that classifies at an accuracy equivalent to the flip of a coin.
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ance of various classification classifiers in discriminating
between cancerous and controls, with less spectral infor-
mation. We have demonstrated for the first time that even with
this limitation (i.e., smaller spectral range of 1430 cm−1 to
900 cm−1) classifiers are able to discriminate between cancer-
ous and control of endometrial plasma and serum samples
with high fidelity (achieving a SENS of 0.865 ± 0.043 and SPEC
of 0.895 ± 0.023 for kNN with plasma and a SENS of 0.899 ±
0.023 and SPEC of 0.763 ± 0.048 for LDA with serum).

A distinct observation made when considering the perform-
ance of each classifier for the two pre-processing techniques is
that the classifiers seem to perform considerably better with
plasma in the 1800 cm−1 to 900 cm−1 range than in the
1430 cm−1 to 900 cm−1 range, while the opposite is true for
serum (a better performance is observed in the latter range
than the former) (Fig. 6 and Table 2). The rationale for this is
due to the differences in the content of protein and free DNA
in plasma and serum. Plasma and serum essentially have the
same composition, 50% to 60% albumins and 40% globulins.
The exception is the presence of fibrinogens and clotting
factors in plasma, which are absent in serum.49 Further
studies into the differences between plasma and serum have
shown that, serum has a higher concentration of metabolites50

and circulating free DNA (cfDNA),51,52 which serve as potential
biomarkers for disease detection. In the case of plasma,
various studies have investigated the use of fibrinogen as a bio-
marker for endometrial cancer.53–55

Our analysis suggests that the reason for the better classi-
fier performance for plasma in the 1800 cm−1 to 900 cm−1

range, is due to the presence of IR signals (Amide I and Amide
II) attributed to fibrinogen. This is supported by work by
Seebacher et al.,53 and Zhou et al.,55 which reported significant
increased levels of fibrinogen, associated with patients with
endometrial cancer, at advanced stages. Interestingly, as seen
in Fig. 6, for plasma, the performance of kNN is not affected
by the spectral region being investigated. This is believed to be
due to the different working principle of kNN compared to the
other classifiers considered in the present work. That is, that
LDA, QDA and SVM classify by drawing a (hyper)plane between
two or more classes that best describes the differences
between the classes.24,31 kNN, however, classifies unknown
observation based on a majority vote of their neighbours, with
each observation being assigned to the class most common
among its k nearest neighbours.24 Therefore, if there are well-
defined clusters in the dataset, an optimised kNN classifier is
likely to perform well. This was the case in our work, where,
after PCA, defined clusters were formed when each PC was
compared (see Fig. S5†). In regard to serum, we believe that
the main difference between cancer and control, is the pres-
ence of increased levels of cfDNA, as discussed in.56,57 Our
results suggest that the inclusion of the Amide I and Amide II
regions, dilutes the importance of the cfDNA IR signals. The
consequence of this is a reduced performance from each clas-
sifier in the 1800 cm−1 to 900 cm−1 region.

There are two factors that determine how well a classifier
will perform: its ability to achieve a small training and testing

error and its ability to minimise the gap between the training
and testing errors. These factors correspond to the proper
selection of kernel parameters for ML-based classifiers, to
avoid over-fitting and under-fitting.43 Over-fitting occurs when
a classifier learns the intricate details of the training data thus
negatively impacting its performance on unseen data, whereas
under-fitting refers to a classifier that is unable to classify the
training data (resulting in a high training error) nor generalise
to new data (resulting in a high testing error) due to the lack of
kernel’s dimensionality.43 Of the two, it is more difficult to
detect over-fitting and reduce the risk of this happening
(depending on the analyst skills).24 Data decomposition using
feature extraction methods, such as PCA, partial least squares
(PLS), FFS and iterative feature selection, is one way to reduce
the risk of over-fitting.31 The implementation of such methods
is particularly important when considering vibrational spec-
troscopy-based data, due to their high dimensional nature. For
example, applying PCA to the plasma dataset (1430 cm−1 to
900 cm−1) in this work, reduced the number of dimensions in
the dataset from 137 wavenumbers to 9 PCs, accounting for
95% variance in the dataset (see Fig. S5–S8†). This, however, is
not always sufficient, especially when implementing non-para-
metric algorithms (such as kNN and SVM) with multiple com-
plexity parameters that each require optimising.24 For
instance, with SVM there are multiple kernel functions that
could be selected (linear, polynomial or radial-basis-function
(RBF)), within which exists even more kernel parameters that
should be assessed during optimisation (e.g., the polynomial
order for the polynomial kernel).41 Similarly, with kNN, which
although is not as complex as SVM, still requires optimisation
at multiple levels (i.e., the distance weighting function (equal,
inverse, or squared inverse), followed by k, the number of
neighbours).24 In this work, we found that the most ideal dis-
tance weighting function for kNN was the equal weight, as
opposed to the inverse or squared inverse function, which
both resulted in consistently overfit classifiers with our data-
sets (results not shown). Regarding SVM, the polynomial order
kernel was selected as it is known to be less susceptible to
over-fitting when compared to the RBF kernel, but more
capable of modelling complex data patterns as opposed to the
linear kernel. In our work, the framework used to obtain the
optimum classifier complexity and so further minimise the
risk of over-fitting, as described in section 2.3.3. Is discussed
in detail by Goodfellow et al.43

5. Conclusions

We have demonstrated that, even when a portion of the bio-
fingerprint region has been removed (leaving only 1430 cm−1

to 900 cm−1), the MIR spectroscopy of dried blood plasma bio-
fluids can be used to discriminate endometrial cancer from
controls, with high fidelity (MCC: 0.762 ± 0.034, SENS: 0.865 ±
0.043, SPEC: 0.865 ± 0.023) when paired with the kNN classi-
fier. This shows that there is potential behind the use of the
1430 cm−1 to 900 cm−1 region of the bio-fingerprint for the
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classification of endometrial cancer. These findings further
suggest the potential inclusion of MIR spectroscopy as screen-
ing tool for endometrial cancer in vivo and ex vivo in clinical
practice.
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