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Dual-stream flows are common feature of turbofan engines in civil aviation. For jet flows
with a significant (i.e. proportional of total mass flow) bypass stream, transport of momentum
through mixing between streams may cause an apparent departure of axi-symmetric turbu-
lence conditions. One of the pertinent features of such departure is the difference in amplitude
of transverse diagonal components of velocity and Reynolds stress based correlation function–
that is correlation tensors of rank 2 and 4 respectively. Since these functions play a direct
role in, among other things, the sound generation process, their accurate representation into
an irreducible tensor form is vital in Engineering analysis. This paper builds on our previ-
ous work (AIAA 2020-2573, [1]) in which we assessed the kinematic structure of generalized
auto-covariance tensor using turbulence data obtained by highly resolved Large-Eddy Simu-
lations of complex dual stream jets. Now, however, we extend this work further by showing
how a generalized form of the axisymmetric representation theory of the appropriate tensor
correlation functions can be determined by exploiting the experimental observation that such
correlation metrics are localized in small azimuthal separations for axisymmetric jets. The
paper summarizes the new theory and shows initial comparisons of an appropriate tensor form
using LES data reported in our previous work.

I. Introduction

The dual-stream jet flow represents the normal operating condition for most civil aircraft in which two co-axial
streams emerge from the exit flow. The core flow is usually heated and of higher speed than the bypass flow, which

is unheated and slower than the main stream. The breakdown of the shear layers emerging from the nozzle exit plane is
complicated by large-scale mixing that takes places between both flows. The aim of this paper is to continue the work
initiated in AIAA 2020-2573 [1] where we used a general set of theoretical criteria to assess the axi-symmetric structure
of the exiting turbulent flow field. In the main, the auto-correlation of the high-order turbulence statistics possesses
remains approximately axi-symmetric in the sense that the invariants formed by this tensor are, more-or-less, the same
when they approximated by supposing the appropriate definition of axi-symmetric turbulence. In this paper, we extend
this work to consider two pertinent effects. (1). We show that while the amplitudes of the said correlation functions
(i.e. the auto-correlations) remain approximately axi-symmetric following the group-theoretic definition of this, the
space-time structure of the tensor can show wide variation from this definition. In other words, at a fixed time-delay
and/or fixed vector spatial separation (usually the streamwise is selected owing to the fact that the correlation lengths
in this direction are larger than that in the transverse directions) the normalized correlation can depart from its value
predicted when supposing that its scalar form remains invariant possesses an appropriate rotation group symmetry and
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Operating Point (OP) Description "� )' "0

OP 1.3 Dual stream heated ideally expanded 0.86 2.7 1.4
OP 1.7 Single stream unheated subsonic 0.64 1.0 0.64

Table 1 Gryazev et al (2019) [2] test cases

therefore its components are related in some manner. (This could be in the form of the generalized Millionshchikov
identity for example). (2). We show that effect of introducing a non-axi symmetric approximation to the Reynolds stress
auto-covariance.

As in AIAA 2020-2573 [1], we use data obtained from a Large-Eddy Simulations of a high Reynolds number
($ (106)) heated and non-heated co-axial round jet flow that operates at conditions shown in table 1. The large-eddy
simulation data was reported in previously in Gryazev et al. (2019) and involves two static single-stream co-axial jets
as depicted in Fig. 1. The LES calculation is based on the Monotonically Integrated LES (MILES) approach. The
calculation domain includes the axi-symmetric nozzle geometry as well as the jet flow with grid volume of almost 20
million cells of the implicit-multi-block hexagonal type. For the calculations, the high-resolution CABARET method
was used (see Semiletov et al. [3]).

II. Definitions, symmetries and approximations
Consider a region of non-homogeneous turbulence bounded within a high speed jet of order-1 acoustic Mach

number, "0 = *�/2∞ and order-1 temperature ratio, )'. Pressure fluctuations within the jet propagate to the far field
where they are perceived as sound. We use Goldstein’s generalized acoustic analogy [4] to represent this process in a
manner whereby the wave propagation is calculated via a propagator tensor that depends on ALEE solution and the
Reynolds stress auto-covariance tensor. The latter is modeled appropriately (see appendix). Let the pressure ?, density
d, enthalpy ℎ, and speed of sound 2 satisfy the ideal gas law equation of state ? = d22/W and ℎ = 22/(W − 1), where W
denotes the ratio of specific heats.

The acoustic spectrum at the observation point, x = (G1 , x)
) = (G1 , G2 , G3 ), given by the Fourier transform

� (x, l) ≡ 1
2c

∞∫
−∞

48lg0 ?′(x, C)?′(x, C + g0) 3g0, (1)

of the far-field pressure auto-covariance, ?′(x, C)?′(x, C + g0), can be expressed as a volume integral over a unit volume
of turbulence at y = (H1 , y) ) = (H1 , H2 , H3 ) in the jet via

� (x;l) =
∫

+∞ (y)

� (x, y;l) 3y, (2)

where, +∞ (y) is the entire source region and the triple integral over the elemental volume 3y is defined in Cartesian

co-ordinates by 3y =
3∏
==1

3H=.

The pressure fluctuation in (1) is defined as ?′(y, g) ≡ ?(y, g) − ?̄(y) where over-bars are denote time average,

•̄(x) ≡ lim
)→∞

1
2)

)∫
−)

•(x, C) 3C, (3)

such that • in (3) is a place holder for any fluid mechanical variable, ) is the time period of averaging and, by definition,
•′ = 0.

Goldstein & Leib (2008; hereafter referred to as G & L) showed that � (x, y;l) on right side of (2) depends on the
turbulence through the scripted tensor,H_ 9`; (y, (;l), which is related to the Fourier transform

�_ 9`; (y, (;l) = 1
2c

∞∫
−∞

4−8lg0'_ 9`; (y, (; g0) 3g0 (4)
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of the generalized auto-covariance tensor,

'_ 9`; (y, (; g0) ≡ lim
)→∞

1
2)

)∫
−)

4_ 9 (y, g)4`; (y + (, g + g0) 3g, (5)

of the stationary random function, 4_ 9 (y, g) = −[dE′_E′9 − dE′_E′9 ] (y, g), by the linear transformationH_ 9`; (y, (;l) :=
n_ 9f<�f<W= (y, (;l)n`;W=. Comparing (5.12) to (5.13) in G & L (2008) and using appropriate outer products of unit
tensors in suffixes (_, 9 , f, <) allows definition of the tensor as, n_ 9f< ≡ X_fX 9< − X_ 9Xf< (W − 1)/2 in the linear
relation forH_ 9`; above. The four-dimensional perturbation velocity, E′

_
(y, g) ≡ E_ (y, g) − Ẽ_ (y) in which E′

_
= E′

8
is

the ordinary fluid velocity perturbation when suffix, _ = 8 = (1, 2, 3), otherwise E′
_
= E′4 is proportional to enthalpy

fluctuation. The latter denotes E′4 := (W − 1) (ℎ′ + E′2/2) ≡ (22) ′ + (W − 1)E′2/2 where ℎ′ is the fluctuating static enthalpy
and (22) ′ is the fluctuations in the sound speed squared such that E′4/(W − 1) denotes the moving frame stagnation
enthalpy fluctuation (discussed further in [5]).

The tensor '_ 9`; (y, [1 , [⊥ ; g0) possesses 144 components (3 × 4 × 3 × 4), however, owing to its two pair symmetry
property – inasmuch as '8 9:; = ' 98:; and '8 9:; = '8 9;: when (_, `) = (1, 2, 3) – not all of these are independent. Afsar
et al. (2011) (see table 1 on p.2525 of their paper) show that 144 reduces to 63 independent components when these
symmetries are taken into account. Further reducing this number of components then involves achieving an “irreducible
representation” of the tensor using its symmetry approximations, such as isotropy for example.

In this paper, we use an axisymmetric turbulence model that is a much more realistic kinematic representation for
jets and which reduces the 63 components to a manageable number. The approximation assumes that the transverse
correlation lengths are small compared to that in the streamwise flow direction. This is a well founded assertion in
jets (see, for example, Pokora & McGuirk’s measurements[] in Figs. (19–21) and also Fig. (10) of their conference
paper, AIAA 2008 − 3028). Afsar et al. [6] used Pokora & McGuirk’s data to propose that '_ 9`; (y, [1 , [⊥ ; g) is
an axisymmetric tensor where [⊥ = |(⊥ | and (⊥ = ([2 , [3 ). The spectral equivalent of this (Lemma’s 3.1 and 3.2
in Afsar[7]) requires that Φ_ 9`; (y, :1 , :

2
⊥ ;l) is axisymmetric with the streamwise direction, :1 , being the principle

direction of invariance. This tensor is defined below; see (19). The physical space approximation is consistent with
experiments by Morris & Zaman [? ] who show in their Fig. (15) that the transverse and azimuthal correlation
lengths are virtually constant across range, (C = (0.01 − 1.0) for an isothermal axisymmetric jet. The real space (i.e.
non-spectral tensor) equivalent of Eq. (3.20) in reference [8] is:

'8 9:; (y, [1, [⊥; g0) =
[
X8 9X:; − X81X 91X:; − X:1X;1X8 9 + X81X 91X:1X;1

]
'2222(y, [1, [⊥; g0)

+
[
X8:X 9; + X8;X 9: − 2X8 9X:; + 2X81X 91X:; + 2X:1X;1X8 9

− X81X;1X 9: − X 91X;1X8: − X 91X:1X8; − X81X:1X 9;
]
'2323(y, [1, [⊥; g0)

+
[
X81X;1X 9: + X 91X;1X8: + X 91X:1X8;

+ X81X:1X 9; − 4X81X 91X:1X;1
]
'1212 (y, [1, [⊥; g0)

+
[
X81X 91X:; − X81X 91X:1X;1

]
'1122(y, [1, [⊥; g0)

+
[
X:1X;1X8 9 − X81X 91X:1X;1

]
'2211 (y, [1, [⊥; g0)

+ X81X 91X:1X;1'1111(y, [1, [⊥; g0) (6)

We can analyze the amplitude structure of '8 9:; (y, 0; 0) in an obvious way that includes the complete set of 36
independent terms by computing the scalar (technically, quartilinear form), '8 9:; (y, 0; 0)'8 9:; (y, 0; 0)/'2

1111 (y, 0; 0).
Comparison of the exact spatial distribution of this scalar to its reduction given by using (6) will then indicate, among
other things, the relative importance of the 30 remaining independent components of '8 9:; that are different from six
primary (viz. axisymmetric) components: ('1111, '2222, '1122, '2211, '1212, '2323), in the representation in Eq. (6).

Expanding the suffixes (8, 9 , :, ;) = (1, 2, 3) shows that the scalar form, '8 9:; (y, 0; 0)'8 9:; (y, 0; 0), expands into 5
different groups involving square components inasmuch as

'8 9:; (y, 0; 0)'8 9:; (y, 0; 0) =

7∑
<=1

%<�< ('2
1111, '

2
1111, '

2
1112, '

2
1113..., '

2
8 9:;). (7)
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The numerical pre-factors in the set, %< = (1, 1, 1, 2, 4, 4, 8), can be expressed as 2A where the base 2 is related to
the fact there being an even multiplicity in the components of '8 9:; owing to the pair symmetry at each point in the
geometric configuration formed by the tensor in (5) at y and y + ( via '8 9:; = ' 98:; and '8 9:; = '8 9;: . The two-pair
symmetry property exists at non-zero space-time separation in (5) and reduces the number of independent components
from 81 (3× 3× 3× 3 = 81) to 36 (6× 6 = 36). When ((, g) = 0 (and the auto-covariance tensor, '8 9:; (y, (, g), reduces

to its auto-correlation), 36 independent components reduces to 21 where
7∑
<=1

%< = 21. The latter reduction in number

of components is because of the additional ’pair-interchange’ symmetry where '8 9:; = ':;8 9 ensures all components
above the leading diagonal of a 6 × 6 matrix of independent components is equal to the components below the diagonal
(that runs from 1111 to 2323). The exponent, A, can then be formed by comparing the suffixes at y compared to y + (.
That is, for the group of components for which 8 ≠ 9 or : ≠ ;, A = = where = is the minimum number of independent
suffixes at y compared to y + (. E.g., for '2212, = = 2; '2321, = = 3; '1212, = = 2. The remaining components for
which 8 = 9 or : = ;, A = = − 1. E.g., for '1111, = = 1 and A = 0; '2233, = = 2 and A = 1. Expanding the tensor suffixes
(8, 9 , :, ;) = (1, 2, 3) in (7) allows the coefficients �< (�1, �2, ...�5) in (7) to be expressed by the the appropriate sum
of squares of '8 9:; inasmuch as:

'8 9:; (y, 0; 0)'8 9:; (y, 0; 0) =

7∑
<=1

%<�< ('2
1111, '

2
1111, '

2
1112, '

2
1113..., '

2
8 9:;)

→ 1 ·
[
'2

1111
]
(y, 0; 0)

+ 1 ·
[
'2

2222
]
(y, 0; 0)

+ 1 ·
[
'2

3333
]
(y, 0; 0)

+ 2 ·
[
'2

1122 + '
2
1133 + '

2
2233

]
(y, 0; 0)

+ 4 ·
[
'2

1212 + '
2
1313 + '

2
2323

]
(y, 0; 0)

+ 4 ·
[
'2

1112 + '
2
1113 + '

2
1123 + '

2
2212

+ '2
2213 + '

2
2223 + '

2
3312 + '

2
3313 + '

2
3323

]
(y, 0; 0)

+ 8 ·
[
'2

1213 + '
2
2313 + '

2
2321

]
(y, 0; 0) (8)

Normalizing (8) by '2
1111 gives a formula for scalar, '8 9:; (y, 0; 0)'8 9:; (y, 0; 0), that we compare against its axi-symmetric

reduction. That is, we compare:[
'8 9:;'8 9:;

'2
1111

]
(y, 0; 0) = 1 +

[
'2

2222 + '
2
3333

'2
1111

]
(y, 0; 0)

+ 2 ·
[
'2

1122 + '
2
1133 + '

2
2233

'2
1111

]
(y, 0; 0)

+ 4 ·
[
'2

1212 + '
2
1313 + '

2
2323

'2
1111

]
(y, 0; 0)

+ 4 ·
[
'2

1112 + '
2
1113 + '

2
1123 + '

2
2212 + '

2
2213 + '

2
2223 + '

2
3312 + '

2
3313 + '

2
3323

'2
1111

]
(y, 0; 0)

+ 8 ·
[
'2

1213 + '
2
2313 + '

2
2321

'2
1111

]
(y, 0; 0) (9)

to its axi-symmetric reduction where '8 9:; (y, (, g) is approximated by (6) and fourth and fifth square brackets in (9)
are identically zero. In addition, '2222 = '3333 & '1212 = '1313 (axi-symmetry) and '1122 = '2211 (pair interchange
symmetry when ((, g) = 0). Hence, (9) reduces to:[

'8 9:;'8 9:;

'2
1111

]
(y, 0; 0) = 1 +


2 · '2

2222 + 4 ·
(
'2

1122 +
1
2'

2
2233

)
+ 8 ·

(
'2

1212 +
1
2'

2
2323

)
'2

1111

 (y, 0; 0) (10)
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Fig. 1 Axial variation of square norm '2
8 9:;
/'2

1111 given by Eqs. (9) (LES data - no approximation) and (11)
(LES data - axi-symmetry given by 6) for OP1.3 at the core shear layer radial location, A/�� = 0.18.

We can further simplify this expression by taking the square of the Millionshchikov identity, inasmuch as '2
2222 =

('2233 + 2'2323)2, and inserting this latter result into (10), to give[
'8 9:;'8 9:;

'2
1111

]
(y, 0; 0) = 1 +

'2
2323

('1111/2)2

[(
1 + '2233

'2323

)2
+ 2 ·

(
1 +

'2
1212 + '

2
1122

'2
2323

)]
(y, 0; 0) (11)

Since Figs. (10a) & (10b) in [9] show that amplitude ratio '2233/'2323 ≈ 0 along the shear layer at the streamwise
location of the end of jet potential core (the acoustic Mach number in this case is 0.75 and the flow is isothermal). The
amplitudes (of the auto-correlations) at H1/�� = 4 & 6 in Fig.10 of [9] appear as a ratio of '1111: '2233/'1111 being
almost zero at these locations and '2323/'1111 between (0.15 − 0.18). Hence, (11) can be approximated by the deviatoric
components '1212 and '2323 related to the in-plane and out-of-plane shear (i.e. in the 1 − 2 co-ordinate plane and the
perpendicular, 2 − 3 plane). That is:[

'8 9:;'8 9:;

'2
1111

]
(y, 0; 0) = 1 +

'2
2323

('1111/2)2

[
1 + 2 ·

(
1 +

'2
1212

'2
2323

)]
(y, 0; 0), (12)

(where we have made use of the results in Fig. 10 in [9] and Fig. 6.6 in Afsar (2008) showing auto-correlation
amplitude '1122/'1111 = '2211/'1111 remains less than 0.1 at the end of the jet potential core). LES data of '8 9:;
components usually appears normalized with respect to largest component, '1111. We can re-write (12) slightly in this as
follows: '̃2

8 9:;
→ 1 + 4'̃2

2323 · (3 + '̃
2
1212/'̃

2
2323) where '̃8 9:; (y, 0; 0) = '8 9:; (y, 0; 0)/'1111 (y, 0; 0) is the normalized

auto-correlation amplitude component. The auto-correlation amplitude data in Figs. (10) in [9] and (6.6) in Afsar (2008)
indicate that ratio '̃1212/'̃2323 ≈ 2 along the shear layer at H1/�� equals 4 and 6 (where '̃1212/'̃2323 ≡ '1212/'2323).

Figures 1-3 show the axial variation of the square norm '8 9:;/'2
1111 comparing (9) (LES data without approximation)

to (11) where the axisymmetric representation (6) is used. We show this at 4 azimuthal locationsk = (0◦, 90◦, 180◦, 270◦)
for OP1.3 (core/bypass) and OP1.7 (bypass). In general there is about a 10% or more difference between axi-symmetric
theory Eq. (11) and LES data. Further approximation given by 12 performs similarly across azimuthal circumference
and for both OPs; see Figs. 4-6.

5

Effect of tensor representations for high-order turbulence correlations in complex axi-symmetric flow fields



Fig. 2 Axial variation of square norm '2
8 9:;
/'2

1111 given by Eqs. (9) (LES data - no approximation) and (11)
(LES data - axi-symmetry given by 6) for OP1.3 at the bypass shear layer radial location, A/�� = 0.38.

III. Extended axisymmetry: reduction of Eq. (A.6) in [8]
In reference [10] we show that the general expression for a rank-4 axi-symmetric tensor derived in [8] (Eq. A.6 in

that paper) can be used to obtain an approximation for '8 9:; (y, (, g0) in which the number of independent components
(=2) in the irreducible representation lies in the range 6 ≤ =2 ≤ 22. In this way the new approximation includes further
components beyond the 6 terms required by streamwise invariant representation in (A.9) of [8], given by (6) for the
physical space auto-covariance tensor and, moreover, will allow examination of the importance of ’non-axisymmetric’
components to the representation of (5).

Although the expansion below can be used on the full generalized auto-covariance tensor (i.e. on '_ 9`; (y, (; g0)
and its spectrum Φ_ 9`; (y, k;l), we give the result only for the momentum flux or Reynolds stress auto-covariance
associated manifold of the full tensor '_ 9`; (or,Φ_ 9`;) where the 4th component of the Greek suffixes, (_, `), is zero and
(_, `) = (8, :) = (1, 2, 3). The momentum flux term enters term �

[1]
1 in the exact decomposition of the acoustic spectrum

given by (15) in [6]. The complete expansion of Φ_ 9`; (y, k;l) involves determining the irreducible representation
formed when the following quartilinear, trilinear and bilinear scalar forms (Φ8 9:; :̂8 :̂ 9 :̂: :̂;) , (Φ4 9:; :̂ 9 :̂: :̂;) and
(Φ4 94; :̂ 9 :̂;) remain invariant to the full rotation group at fixed (y;l) = $ (1) point/values. That is, determining the
minimum number of permutations possible using the unit tensor (the alternating tensor is excluded for proper rotations
of the vector configuration) and the independent vector arguments: k and the unit vector, ,. The latter vector represents
a type of principal direction about which the vector configuration defined by the scalar forms is rotated and/or reflected
for improper rotations. By the invariant theory, each permutation is multiplied by a scalar field that is an even function
of vector arguments and can be related to components of the original spectral tensor. This appears in App. C of
[6]. As explained in that paper, the invariant representation of the tensor Φ_ 9`; (y, k;l) has to considered when the
Greek suffixes take point values (_, `) = (4, 8) and (4, 4) respectively because the pair symmetries property exists
only when Greek suffixes are equal to Latin ones, (_, `) = (8, :) in Φ_ 9`; (i.e. the total number of objects in Φ_ 9`; is
3 × 4 × 3 × 4 = 144 reduces to (6 × 6 + 3 × 6 + 3 × 3) = 63; see Afsar et al. [6] for more details). While axi-symmetry
considers the streamwise direction, , = e1 to be the so-called principal direction about which the above scalar forms
remain invariant (i.e. unaltered after rigid rotation), the authors of reference [6] showed that Φ_ 9`; depends on the
transverse wavenumber vector, k⊥, through the square of its magnitude, :2

⊥ = |k⊥ |2 (Lemma 3.2 in [8]) when the
physical space auto-covariance tensor, '_ 9`; (y, (; g0) is approximated by its azimuthal average and, therefore, depends
on the transverse correlation (⊥ only through the magnitude [⊥ = |(⊥ | (Eq. 16 in [6]).

6

Effect of tensor representations for high-order turbulence correlations in complex axi-symmetric flow fields



Fig. 3 Axial variation of square norm '2
8 9:;
/'2

1111 given by Eqs. (9) (LES data - no approximation) and (11)
(LES data - axi-symmetry given by 6) for OP1.7 at the bypass shear layer radial location, A/�� = 0.38.

But the above approximation on '_ 9`; (y, (; g0) follows automatically and self-consistently using simple asymptotic
arguments. It has long been known that the transverse correlation length is an order of magnitude smaller than the
streamwise for turbulence correlations in jet flows. This result was found by Pokora and McGuirk in water jets and
subsequently confirmed by LES data in a high-speed isothermal air jet simulation; see Fig. 19b and cf. Fig. 20b
in [11] for the '1111 component at a streamwise location of 4�� downstream of the nozzle exit (this coincides with
Harper-Bourne’s measurements in [12]; p. 238 in [11]) along the shear layer at A = 0.5�� .

The P&M dataset shows that when [1 is fixed, only very small increases of the [2 result in a non-zero value
for the '1111 correlation component. P&M indicate (p.241) that the streamwise separation, [1 was non-zero in the
initial auto-correlation measurement of '1111 when [2 = 0 (i.e. at the largest value of '1111 which de-correlates in [2
thereafter) to allow comparison with the hot-wire data in [12] and Davies et al. in [13] who took a similar initial [1 value
when [2 was varied in '1111 ([2). As well as a reduction in magnitude, each correlation curve for '1111 ([2) in their Fig.
20 occurs at a much smaller value of the normalized separation ([2)/�� compared to '1111 ([1) in P&G’s results. This
extends to a maximum of ([2)/�� ∼ 0.078 before '1111 ([1 = fixed, [2) → 0 as g0 →∞ compared to ([1)/�� ∼ 0.6
or so in Fig. 19b at which point '1111 = '1111([1, [2 = 0) → 0 as g0 →∞. If [1/�� = 0.1 in their measurements for
the transverse auto-correlation, i.e. '1111([1, [2, g0) at [2 = 0, then the intercept of normalized correlation, '1111, on
the ordinate axis is about 0.2 when ([2)/�� ∼ 0.039. On the other hand, an intercept of the same magnitude (i.e. 0.2)
in the streamwise correlation '1111 ([1, [2 = 0) will occur at a streamwise separation [1/�� ≈ 0.3. Hence the ratio of
distances (streamwise to transverse) from where the correlation function reduces to the same normalized value is equal
to 0.3/0.039 ∼ 8. In other words a reduction in correlation length from the transverse to the streamwise direction of
order of 0.1. The second order correlation function shows similar trends in P&M’s data (Figs. 19a cf. 20a) but with a
slight increase in the ratio above.

A. Natural dependence of '_ 9`; on a strained separation vector
The above experimental findings can be naturally recovered when we suppose that '_ 9`; (y, (; g0) depends on the

separation ( via the strained vector with components:

( := {[̂1, n [̂2, n
2[̂3};2 ≡ (X81[̂1 + X82n[̂2 + X83n2[̂3);2 , (13)

7
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Fig. 4 Axial variation of square norm '2
8 9:;
/'2

1111 given by Eqs. (11) (LES data - axi-symmetry given by 6)
and (12) (LES data - further approximation) for OP1.3 at the core shear layer radial location, A/�� = 0.18.

where X8 9 is the usual Kronecker delta function (unit tensor), ([̂1, [̂2, [̂3) = O(1) and n � O(1) (see reference [10])

and (13) possesses square-distance, [̂2
8
=

3∑
==1

n2(=−1) [̂2
=. We suppose that the latter parameter (i.e. n) is asymptotically

small in that it strains the separation vector in the arguments of the auto-covariance tensor, '_ 9`; (y, (; g0) such
that for an arbitrary increase in the normalized transverse separation [̂2 = O(1), '̂_ 9`; (y, (; g0) is non-zero when
[2/;2 = O(n) but is bounded at large time-delays inasmuch as '̂_ 9`; → 0 at any fixed y positioned in the turbulence
energy-containing region of the jet when [̂ (1,3) = O(1). At values of [2, (i.e., [2 > O(n)), '̂_ 9`; (y, (; g0) → 0 for
all ĝ0 = O(1). P&M’s data shows that further increases in [2 where [2 ∼ �� (and of the same order as [̂1 = O(1))
results in zero correlation; i.e., '̂_ 9`; (y, (; g0) = 0 in this region of the correlation volume. (This corresponds to the
n → 0 ‘elongated eddy’ limit discussed below Eq. 15). The normalized time delay here is defined as ĝ0 = g0*�/��
and '̂_ 9`; (y, (; g0) = '_ 9`; (y, (; g0)/'_ 9`; (y, 0; 0) (no sum across suffixes (_, 9 , `, ;) in the latter ratio). Similar rapid
de-correlation of '̂_ 9`; occurs with [̂3 = O(1) separations. That is, we assume via the scaling above in (13) that finite
non-zero values of the normalized correlation function '̂_ 9`; is measured over short [3/;2 = $ (n2) separations. The
data in Figs. (20b) & (21b) in P&M confirms this and we discuss its implication further below.

An alternative way to think about the dependence on the strained vector (13) in the rapid variation of '̂_ 9`; (y, (; g0)
also implies that the normal/spanwise correlation lengths (; (2)2 , ;

(3)
2 ) are much less than (i.e. asymptotically disparate

with respect to) the streamwise correlation length; hence, ; (2)2 � ;
(1)
2 and ; (3)2 � ;

(1)
2 . Using the definition of the radial

length, ; (A )2 =

√
;
(2)2
2 + ; (3)22 = n;2 + O(n2), physically n can now be defined more concretely as the ratio of the radial

correlation length to streamwise correlation length; i.e. n := ; (A )2 /;2 = ; (A )2 /; (1)2 since {; (1)2 , ;
(2)
2 , ;

(3)
2 } = ;2{1, n , n2} by

(13) and ; (8)2 = {{; (1)2 , ;
(2)
2 , ;

(3)
2 } = ; (8)2 (y, g0) is a function of ( and therefore the rapid variation of '̂_ 9`; (y, (; g0) over

the (2, 3)/(A, q)-directions in the finite (bounded) correlation volume + ((); Latin suffixes as before, 8 = (1, 2, 3).
The length scale, ;2 , has the upper bound: max{;2}(y, () ∼ ; (1111(

[ (y, () where ; (1111(
[ (y, () = | l (1111)

( | (y, () is
the magnitude of the vector of correlation lengths, l (1111)

( (y, () := (; (1111)
[1 , ;

(1111)
[2 , ;

(1111)
[3 ) (y, (), along the Cartesian

directions ( = ([1, [2, [3) for the correlation function '1111(y, (; g0) (the largest component of '̂_ 9`; , as mentioned
above, defines the upper bound). The former (non-dimensional) length scale is defined by (_, 9 , `, ;)) = (1, 1, 1, 1)
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Fig. 5 Axial variation of square norm '2
8 9:;
/'2

1111 given by Eqs. (11) (LES data - axi-symmetry given by 6)
and (12) (LES data - further approximation) for OP1.3 at the bypass shear layer radial location, A/�� = 0.38.

component of the integral over ĝ0:

l (_ 9`;)( (y, () :=
{
;
(_ 9`;)
[1 , ;

(_ 9`;)
[2 , ;

(_ 9`;)
[3

}
(y, () =

∞∫
0

'̂_ 9`; (y, (; ĝ0) 3ĝ0 (14)

The (_, 9 , `, ;)) = (1, 1, 1, 1) component of the non-dimensional length scale, ;1111
[ = | l (1111)

( |, associated with the
auto-covariance tensor '̂_ 9`; (y, (; ĝ0) lies between an upper bound defined by the jet diameter, �� , and a lower bound
(i.e., ;1111

[ is much less than) the maximum acoustic wavelength, max(_02) ∼ O(:−1
∞ ) for the sound radiated at the

lowest frequencies (where the non-dimensional frequency l � 1) representing the largest acoustic wavelengths. Hence,
;2 ∼ ;1111

[ is bounded by the inequality: :−1
∞ � ;2 ≤ �� and can be taken as, ;2 = O(1), when the length scale defined

by (14) is normalized by the fixed transverse spatial extent, �� .

B. Azimuthal dependence of '̂_ 9`; in the limit as n → 0
Three-component PIV measurements (3C-PIV)) of jet turbulence were conducted by P&M (see [11], [14], [9], [3],

[6] & among others) to determine the appropriate correlation function components at various azimuthal separation angles
at fixed streamwise/radial separations. In reference [8] the invariant representation of '̂_ 9`; (y, (; g0) was formulated for
an arbitrary vector configuration of (y, (; ,) that reduced to Eq. (6) when , = e1 for turbulence evolving in a so-called
‘cylindrical shell’. That is, at a fixed streamwise point, the azimuthal (Δk) dependence of the auto-covariance tensor is
neglected in a cylindrical interrogation volume that separates field points y and z = (y + () (with y fixed in the definition
given by Eq. 5) and the azimuthally averaged tensor assumed to be axi-symmetric; this is assumption 3.2 in [8].

In cylindrical co-ordinates,the field points are given by y = (H1, A, k) and z = (I1, Ã , k̃) where radial locations are
specified by A2 := |r |2 = (H2

2 + H
2
3) and Ã

2 := | r̃ |2 = (I2
2 + I

2
3) and azimuthal angles at these points are by tank = H2/H3

and tan k̃ = I2/I3. Moreover, at any streamwise location a vector in the r = (H2, H3) plane lies parallel to a vector in

r̃ = (I2, I3) plane in a manner such that the Jacobian for this isometry is unity: J (z, () =
3∏
8=1
|mI8/m[8 | = 1 (i.e., a

dilation). The separation vector that defines the cylindrical interrogation volume, (z − y) = ( is then specified uniquely
by the triad, ( = ([1, [2, [3) in Cartesian co-ordinates and by ( = ([1, [⊥,Δk) in this cylindrical co-ordinate system
where [1 = (I1 − H1), [⊥ = (Ã − A) and Δk = (k̃ − k). But the latter assumption 3.2 introduced in [8] follows naturally
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Fig. 6 Axial variation of square norm '2
8 9:;
/'2

1111 given Eqs. (11) (LES data - axi-symmetry given by 6) and
(12) (LES data - further approximation) for OP1.7 at the bypass shear layer radial location, A/�� = 0.38.

after inserting (13) into Δk = tan−1 ([2/[3)∗ and using the Taylor expansion formula (1.644 2) in Gradshetyn & Ryzhik
[15] gives the following expansion for the azimuthal angle, Δk:

Δk([2, [3) ≡ Δk([̂2, [̂3; n) =
c

2
− n cotΔk̂ + n

3

3
cot3 Δk̂ + ... = c

2
−
∞∑
<=1
(−1) (<−1)/2 n

<

<
cot< Δk̂ (15)

→ c

2
− n cotΔk̂ + O(n3)

where, after using (13) and the line below it, arbitrary variations in the re-scaled azimuthal angle Δk̂ are defined via
Δk̂ = tan−1 [̂2/[̂3 = O(1) and the integer < in the summation formula in (15) takes on odd positive integral values:
< = 2= − 1 (= ∈ Z+). In this sense, Δk([̂2, [̂3; n) expands as a Poincaré series with algebraic gauge functions in odd
powers of the small parameter, n , multiplied by a pre-factors of the form: cot< Δk̂/< for the <’th odd term in the
series. That is, Δk([̂2, [̂3; n) = O(1) − n cotΔk̂ + n3 (cot3 Δk̂/3) + ... For angular separations where Δk̂ � O(1), the
remainder term in (15) expands like ∼ n/Δk̂: the latter of which makes an asymptotically small >(n/Δk̂) contribution
to (15) in the limit as n → 0.

More generally, the remainder term in (15) is easily bounded for variations in ([̂2/[̂3) using formulas (1.644 2)
and the Taylor expansion for cot k̂ in (1.411 7) in G&R [15]. The n-prefactor is then bounded by the magnitude,
| cot tan−1 ([̂2/[̂3) |. But since, cot I = 1/I − I/3 + O(I3), the next order term in (15) will remain O(n) when tan−1 I
(that enters above) is expanded for I = ([̂2/[̂3) = O(1) transverse separations. But still, in the limit as n → 0, this
contribution goes to zero like >(n) in (15) when n → 0 faster than the increase in cotΔk̂ for O(1) changes in Δk̂.
Physically, this limit corresponds to turbulent structures (measured by the auto-covariance tensor in Eq. 5) that remain
elongated (i.e. infinitely long) in the streamwise correlation length at lowest order in n when Δk ≥ 0 inasmuch as
;2 � $ (1) → ∞ with $ (n) depth in the radial direction in which [̂⊥ expands as [̂⊥ =

√
[2
⊥/;22 = n[̂2 + O(n3).

For long elongated streamwise turbulence structures that we are considering here, and for which n � O(1) (or
;2 � $ (1) → ∞), these simple asymptotic considerations can be interpreted by saying '̂_ 9`; (y, (; g0) remains
azimuthally correlated over a relatively short range of angular separation, Δk; i.e., the value of the normalized
correlation function will remain non-zero for only relatively small azimuthal angles (compared to 2c – the latter is

∗Simple co-ordinate geometry shows that Δk = tan−1 ([2/[3) = tan−1 (I2 − H2)/(I3 − H3) is equivalent to Δk = tan−1 (I2/I3) − tan−1 (H2/H3) .
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the upper limit of the azimuthal average introduced in [8]). This is clear from Fig. 21b in P&M‘s paper for the
largest component '1111 (y, [1, [⊥,Δk; g0). That is, they find that at an azimuthal angle of Δk = 10◦, the normalized
'1111 (y, [1, [⊥,Δk; g0) reduces by almost ∼ 80% (from 1.0 for the auto-correlation of '1111 (y, (; g0) to ∼ 0.2 at
Δk = 10◦); the amplitude at this Δk is also very small, running from 0.2 to 0.1 across the range of normalized time delay
(i.e., from g0*2/� 9 = 0 to approximately 5 respectively). At Δk = 20◦, there is negligible variation of '1111 (y, (; g0)
across the range of time delay and the amplitude is basically at zero.

This data is consistent with Harper-Bourne’s [12] turbulence measurements (the red dots in Fig. 21 in P&M). Indeed,
on p. 241, P&M write that: “These azimuthal correlations (i.e., '11 and '1111) are significantly flatter than the axial or
radial correlations for quite small increases in the separation vector". Note that, Fig. 15 in M&Z’s data shows the
Fourier transform of the '1111(y, (; g0) possess an integral length scale that remains basically constant over a frequency
range of covering the peak jet noise (that is (C ∼ (0.02 − 0.7)) must be for values of Δk < Δk0 where Δk0 ≠ 0◦ is the
minimum (non-zero) azimuthal angle above which '̂_ 9`; (y, [1, [⊥,Δk; g0) de-correlates to zero for all time delays,
g0; i.e., '̂_ 9`; (y, [1, [⊥,Δk > Δk0; g0) → 0 ∀g0 ∈ [0,∞). (The “0” subscript indicates that the magnitude of the
auto-covariance is finite at this maximum azimuthal separation which obviously lies between Δk = 0◦ to Δk ≈ 20◦; at
the former (autocorrelation location) '̂_ 9`; = 1 and at the latter azimuthal angle '̂_ 9`; has de-correlated to 0). P&M’s
data indicates that Δk0 ≈ 10◦ or so.

Fig.7 indicates that for OP1.3 at the core shear layer location, the amplitude of '1111 does not vary that significantly
over the 4 azimuthal planes: k = (0◦, 90◦, 1800◦, 2700◦). See Fig.8 also which shows the point values of the amplitude
at the start and end of the potential core region for OP1.3. We might expect, therefore, that '1111 will have a similar
small variation in azimuthal separation Δk in the core region. It is interesting that at the bypass radius for OP 1.3
and 1.7 in Fig. 7, the variation in amplitude for '1111 is about 10% at the axial location, G/� 9 = 6; this is shown
more clearly in the barcharts in Figs.8 & 9 where the azimuthal variation appears to increase for OP1.3 at the bypass
radius location further along the streamwise axis at the location 12� 9 (note that “G/� 9” in the figures and captions
corresponds to H1/� 9 in the analysis).

Fig. 7 Axial variation of '1111 at 4 azimuthal planes: k = (0◦, 90◦, 180◦, 270◦) for OP1.3 at the core/bypass
shear layer radial locations A/� 9 = (0.18, 0.38) respectively. OP1.7 is at the bypass radial location, A/�� = 0.38.

C. An asymptotically exact ‘cylindrical shell’
The azimuthal average of '̂_ 9`; (y, [1, [⊥,Δk; g0) over Δk ∈ [0, 2c] reduces to the much shorter interval [0,Δk0]

where Δk0 ≠ 0 is a small non-zero wedge as P&M and HB‘s data in [11, 12] both indicate. In ref. [10] we show that
the azimuthal average:

'̄_ 9`; (y, [1, [⊥; g0) =
1

2c

2c∫
0

'̂_ 9`; (y, [1, [⊥,Δk; g0) 3Δk →
1
Δk0

Δk0∫
0

'̂_ 9`; (y, [1, [⊥,Δk; g0) 3Δk. (16)
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Fig. 8 Variation of '1111 at 4 azimuthal planes: k = (0◦, 90◦, 180◦, 270◦) for OP1.3 at the core/bypass shear
layer radial locations A/� 9 = (0.18, 0.38) respectively.

Fig. 9 Variation of '1111 at 4 azimuthal planes: k = (0◦, 90◦, 180◦, 270◦) for OP1.7 at the bypass shear layer
radial locations A/� 9 = 0.38.

In refs. [8] and [6], '̂_ 9`; (y, [1, [⊥,Δk; g0) was approximated to be independent of Δk without rational justification.
However, assumption (3.2) in ref.[8] now follows automatically when the streamwise and transverse turbulence length
scales are asymptotically disparate and n → 0. We show in ref.[10] that the lowest term in the Taylor expansion of
'̂_ 9`; (y, [1, [⊥,Δk; g0) in (17) is then formally azimuthally independent inasmuch as,

'̂_ 9`; (y, [1, [⊥,Δk; g0) = '̂_ 9`; (y, [1, [⊥, 0; g0) + >(1), (17)

to within an algebraically small remainder term in the limit as n → 0. The azimuthal average of '̂_ 9`; (y, [1, [⊥,Δk; g0)
in (16) is therefore given by

'̄_ 9`; (y, [1, [⊥; g0) →
1
Δk0

Δk0∫
0

'̂_ 9`; (y, [1, [⊥,Δk; g0) 3Δk = '̂_ 9`; (y, [1, [⊥, 0; g0), (18)

where '̄_ 9`; (y, [1, [⊥; g0) ≡ '̄_ 9`; (y, [̂1, [̂⊥; g0, n).
We validate the issue of azimuthal variation of '̂_ 9`; (y, [1, [⊥,Δk; g0) in ref. [10] using LES data, for now we

consider the effect of including the O(n) correction to the representation in (6) where '̄_ 9`; (y, [1, [⊥; g0) depends on
[̂⊥ via [̂⊥ =

√
[2
⊥/;22 = n[̂2 + O(n3). As shown in ref. [8], this is done more transparently using the spectral tensor

because the shell theory models of turbulence (ch.3 in [16]) are derived from this starting point.

D. Homogenization of the averaged spectral tensor in transverse wavenumber co-ordinates
Following (3.1) in ref. [8], we assume that '̂_ 9`; (y, [1, [⊥,Δk; g0) is an axi-symmetric tensor. This means that

the scalar form defined by '̂_ 9`; is invariant to the full rotation group with respect to the streamwise unit vector,
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, = e1. That is a 3D rotation/reflection of the vector configuration (connecting y and z = y + () about the streamwise
direction. This is equivalent to the scalar forms (see paragraph at the bottom of p.7): ('̂8 9:; [̂8 [̂ 9 [̂: [̂; , '̂4 9:; [̂ 9 [̂: [̂; &
'̂4 94; [̂ 9 [̂;) remaining invariant to the O(2) symmetry group about , = e1 where [̂8 = [8/|( |. Since App. (A.2) in
[8] and App. A in [17] both show that the symmetry group can also be projected down to SO(2) sub-group without
changing its representation of '̂_ 9`; . (Note the error in Lie group designation on pp.132 & 137 of ref. [8]). Since
'̂_ 9`; (y, [1, [⊥,Δk; g0) = '̄_ 9`; (y, [̂1, [̂⊥; g0; n) for n < 1 (see line below 18), the latter tensor is also axi-symmetric.
The temporal Fourier transformed tensor, �̄_ 9`; (y, [̂1, [̂⊥;l, n) in (4) is also, therefore, an axi-symmetric tensor as is
its linear multiple, H̄_ 9`; (y, [̂1, [̂⊥;l, n), defined below (5).

We now define the spectral tensor, Φ_ 9`; (y, k, l),

Φ_ 9`; (y, k, l) :=
∫
+ (()
H̄_ 9`; (y, [̂1, [̂⊥;l, n)4−8k ·( 3( (19)

is equal to (2c)3 times the usual 3-dimensional spectrum defined by Eq. (2.4.3) on p.23 in Batchelor [18] and its complex
conjugate enters the acoustic spectrum formula; see, for example, see formulae given by Eqs. (34) & (36) in Afsar et al.
[17]. The localized volume, + (() defined about the field point, y with triple integral over an elemental volume, 3(,

defined in Cartesian co-ordinates by 3( =
3∏
==1

3[=. Inserting (13) shows that the O(1) normalized correlation volume

given by 3( = 3(/;32 = n33(̂ where 3(̂ = O(1) in which the correlation length, ;2 , possesses an upper bound, ;2 ∼ �� ;

see paragraph below (14). In cylindrical co-ordinates the normalized volume, 3(̂ =
3∏
==1

3[̂= = 3[̂1[̂⊥3[̂⊥3Δk extends

along a line in the streamwise direction of O(1) length; a radius, [⊥, of O(n) extent and over a wedge, Δk, in the
azimuthal direction of asymptotically small thickness that goes to zero like >(n1/2) (see ref.[10]).

From the definition of the Fourier transform, as a limit of a Fourier series (see Eqs. 7.3 & 7.4 on p.302 in Carrier
et al. [19]), the integral over separation vector, (, in (19) is defined over the continuum of wavenumbers, which in
Cartesian co-ordinates is k = (:1, k⊥) = (:1, :2, :3). The theory of Fourier integrals expounded by Carrier et al. shows
that the argument of the kernel of (19) is such that k .( = O(1). †. Hence, if we insert (13) in k .( = O(1) we obtain:

k · ( = O(1) = (X81[̂1 + X82n[̂2 + X83n2[̂3) :̂8 (20)
= :̂1[̂1 + (nW2) :̂2[̂2 + (n2W3) :̂3[̂3,

where the normalized wavenumber vector is k̂ = ;2k. But since the ([1, [2, [3) integrals in (19) are independent,
(k · () = O(1) requires that (n · W2) = O(1) and (n2 · W3) = O(1). The natural result is, therefore, that the (−Fourier
transform of the auto-covariance (5), Φ_ 9`; (y, k, l), depends on transverse wavenumbers via gauge functions (W2, W3)
in (20) that scale like, W2 ∼ 1/n and W3 ∼ 1/n2. This implies that if '̂_ 9`; (y, [1, [2, [3; g0) depends on ( through the
strained separation vector in (13), its spectrum, Φ_ 9`; (y, k, l), must depend on k via the following richest possible
asymptotic scaling:

k := {:̂1, n
−1 :̂2, n

−2 :̂3};−1
2 ≡ (X81 :̂1 + X82n−1 :̂2 + X83n−2 :̂3);−1

2 , (21)
that is slowly-varying along co-ordinate directions in the transverse (2 − 3) plane at arbitrary points in space/frequency
(y;l) = O(1) and where ( :̂1, :̂2, :̂3) = O(1). The dependence of Φ_ 9`; (y, k, l) ≡ Φ̂_ 9`; (y, k̂;l, n) on (:2, :3) in
(19) remains (at most) as large as O(1/n2); anything less than this (i.e., the O(1/n) scaling in the normal :̂2 direction)
is asymptotically smaller than this as n → 0. The latter corresponds to the emergence of a distinct scale separation
occurs for the physically-measured auto-covariance tensor (5) through the definition of the n below (14). The magnitude
of the slow-spectral decay of Φ̂_ 9`; in the (:2, :3) co-ordinates at any fixed spatial field point and frequency (y;l)
must, in a sense, correspond to a ‘stretching mechanism’ (being the linguistic antithesis of straining) — but this only
results because of the aforementioned straining (i.e., spatial reduction) of the physical turbulence in the ([2, [3) (or,
([⊥,Δk)) spatial separations in (13).

It is easy now to recover the Leib & Goldstein result (Eqs. 39 & 40 in [21]) and (B.10) in [17] (see details in
[10]). That is, Φ̂∗

_ 9`;
(y, k̂;l, n) is proportional to the streamwise Fourier transform of the following Hankel transform

(Eq.8.5.7 on p.962 in Morse & Feshbach [22]):

Γ̂_ 9`; (y, [̂1, :̂
<
⊥ ;l, n) = 2c

∞∫
0

H̄_ 9`; (y, [̂1, [̂⊥;l, n)�0 ( :̂⊥[̂⊥)[̂⊥ 3[⊥, (22)

†The limiting form of this defining property of Fourier transforms is exploited in the Abelian theorem as summarized on p. 36 of Noble [20]
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where the exponent,<, on the left side of (22) scaling the :̂⊥−dependency of the Hankel transform Γ̂_ 9`; (y, [̂1, :̂
<
⊥ ;l, n)

of the turbulence defined through the scripted tensor, H̄_ 9`; . This exponent is given by < = 2 because the zeroth-order
Bessel function, �0 ( :̂⊥[̂⊥), is an even function and therefore expands as even powers of its argument (Eq. 4.1 in
Bowman [23]). Hence, the complex conjugate of (19) reduces to the single integral:

Φ̂∗_ 9`; (y, :̂1, :̂
2
⊥;l, n) =

∞∫
0

Γ̂_ 9`; (y, [̂1, :̂
2
⊥;l, n)48:1[1 3[1 (23)

that is formally independent of the azimuthal separation, ΔΨ, in the transverse wavenumber (:2, :3) space defined
above. Whence, it follows from Lemma 3.2 in Afsar [8] that the left side of (23) can be replaced by its azimuthal average.
Namely, Φ̂∗

_ 9`;
(y, :̂1, :̂

2
⊥;l, n) ≡ Φ∗

_ 9`;
(y, :̂1, :̂

2
⊥;l, n) + >(1) up to an error that, commensurate with (17), remains

>(1) to the order of magnitude of the analysis (in other words, as n → 0). The azimuthal average of the spectral tensor
(19) over a ΔΨ(:2, :3) wedge is given by (3.18) in Ref. [8]. Moreover, the functional dependence of Φ∗

_ 9`;
on :̂2

⊥ can
obviously reduce to a dependence on :̂⊥ = |k⊥ | since the latter maintains that Hankel transform Γ̂_ 9`; (y, [̂1, :̂

<
⊥ ;l, n)

in (22), is an even function of k⊥ when inserted into the remaining axial transform, (23).

E. Asymptotic structure and expansion of tensors Φ∗
_ 9`;

and '̄_ 9`; with next-order corrections

Since the square magnitude of the wavenumber vector :8 = ;−1
2 :̂8 is given by :̂2

8
=

3∑
==1

n−2(=−1) :̂2
= after using (21), we

easily find that the square of its transverse components then scale like :2
⊥ = (W2

2 :̂
2
2 + W

2
3 :̂

2
3);
−2
2 or :̂2

⊥ = (n−2 :̂2
2 + n

−4 :̂2
3)

via (20) & (21). Inserting this into Eq. (A.6) of Afsar [8] (when the principal direction is , = e1) then shows that the
spectral tensor Φ∗

_ 9`;
(y, :̂1, :̂

2
⊥;l, n) expands increasing powers of gauge functions (W2, W3) := (n−1, n−2) in (20); i.e.,

Φ∗_ 9`; (y, :̂1, :̂
2
⊥;l, n) = Φ

∗(1)
_ 9`;
(y, :̂1, 0;l, n)

+ Φ
∗(2)
_ 9`;
(y, :̂1, :̂

2
⊥ ( :̂2; W2);l, n)

+ Φ
∗(3)
_ 9`;
(y, :̂1, :̂

2
⊥ ( :̂2, :̂3; W2, W3);l, n).

(24)

This result can be written much more succinctly as the following sum of sub-spectral tensors: Φ∗
_ 9`;
(y, :̂1, :̂

2
⊥;l, n) =

3∑
==1
Φ
∗(=)
_ 9`;
(y, :̂1, ( :̂2

⊥) (=) ;l, n). The third argument denotes ( :̂2
⊥) (1) = 0‡; ( :̂2

⊥) (2) = :̂2
⊥ ( :̂2; W2) = W2

2 :̂
2
2 + O(W

2
3) and

( :̂2
⊥) (3) = :̂2

⊥ ( :̂2, :̂3; W2, W3). The latter two arguments of the sub-spectral tensors are found using the expansion for
:2
⊥ above (24), where ( :̂2

⊥) (3) includes both O(W2
2) and O(W

2
3) contributions. But since the asymptotic expansion for

the Fourier-type integrals (p.256 of Carrier et al. [19]) shows that large (infinite) transverse wave-number, :̂2
⊥ → ∞

corresponds to small [̂⊥ = |(̂⊥ | → 0; i.e., infinitesimally small transverse correlation length. Therefore, retaining
only terms O(W2) ≡ O(1/n) in the sub-spectral tensor Φ∗(2)

_ 9`;
(y, :̂1, :̂

2
⊥ ( :̂2; W2);l, n) since the P&M/HB turbulence

data indicates that the transverse [2 correlation length, although small, is non-zero, commensurate with the small
but non-zero value of the n−parameter . The O(W2) retention corresponds to only keeping terms linear in :2 in the
complete axi-symmetric expansion formula, (A.6) in Afsar [8]). Inasmuch as Φ∗(2)

_ 9`;
(y, :̂1, :̂

2
⊥ ( :̂2; W2);l, n) depends

on :̂2
⊥ ( :̂2; W2) via :̂⊥ = | k̂⊥ | = W2 | :̂2 | + O(W2

3) |. Eq. (A.6) in [8] still shows that even this retention to lowest order in
W2 in the scaling for :̂2

⊥ ( :̂2; W2) produces a permutative expansion as a power series in increasing algebraic powers
of :̂2 of the form

∑
A
ÛA :̂

A
2 where the index A runs between the integral range, A ∈ [1, 4] and ÛA is scalar function of

(y, :1, :
2
⊥, l). Higher powers of W2 in (A.6) of ref. [8] will tend to infinity faster like O(1/nA ) (where A > 1) by (20) &

(21). Slow spectral variation of Φ∗(2)
_ 9`;

(and therefore Φ∗
_ 9`;

) in transverse wavenumber space of this type will result in
the physical space tensor '_ 9`; to immediately de-correlate with [̂⊥ ([19] & [20]) or have an amplitude that is much
less than unity since such O(WA>1

2 ) terms equate to components of the physical space auto-covariance tensor (Eq. A.10
and p.137 in [8]) that are of very small magnitude; see, for example, [24].

‡This corresponds to the fully ‘k⊥−independent’ Afsar result, Eq. (A.11) in ref. [8].
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These arguments imply that Φ∗(2)
_ 9`;
(y, :̂1, :̂

2
⊥ ( :̂2; W2);l, n) = O(W2) + O(W2

2) + ... + O(W
4
2). In [10] we show that

the O(W2)−truncated form of the sub-spectral tensor Φ∗(2)
_ 9`;

= Φ
∗(2)
8 9:;
(y, :̂1, W2 | :̂2 |;l, n) in (24) can be expressed in the

following form for the (_, `) = (8, :) momentum-flux associated tensor:

Φ
∗(2)
8 9:;
(y, :̂1, W2 | :̂2 |;l, n) =

[
X8 9 (X;1X:2 + X:1X;2) + X:; (X82X 91 + X 92X81)

]
�̄5 (y, :̂1, W2 | :̂2 |;l, n)

+
[
X8: (X;1X 92 + X 91X;2) + X 9; (X82X:1 + X:2X81)

+ X8; (X 92X:1 + X:2X 91) + X 9: (X;1X82 + X81X;2)
]
�̄8 (y, :̂1, W2 | :̂2 |;l, n)

+
[
X81X 91 (X;1X:2 + X:1X;2) + X:1X;1 (X81X 92 + X82X 91)

]
�̄10 (y, :̂1, W2 | :̂2 |;l, n) + O(W2

2).
(25)

Eqs.(19), (23), (22), (4) and the linear relation below it now show that each term in (24) is defined by a physical-space
auto-covariance that has the same tensorial structure. This immediately suggests that, commensurate with (24),

'_ 9`; (y, [̂1, [̂⊥;l, n) :=
3∑
==1

'
(=)
_ 9`;
(y, [̂1, [̂⊥ (X=2[̂2, X=3[̂3);l, n) where (X=2, X=3) are unit tensors. In full form this

takes the form:

'_ 9`; (y, [̂1, [̂⊥;l, n) := ' (1)
_ 9`;
(y, [̂1, 0;l, n) + ' (2)

_ 9`;
(y, [̂1, [̂⊥ ([̂2);l, n) + ' (3)_ 9`; (y, [̂1, [̂⊥ ([̂2, [̂3);l, n) (26)

where ' (1)
8 9:;
(y, [̂1, 0;l, n) is given by (6) for the momentum flux (_, `) = (8, :) components and using (25), ' (2)

8 9:;
, at

lowest order in n , expands as:

'
(2)
8 9:;
(y, [̂1, [̂⊥ ([̂2);l, n) =

[
X8 9 (X;1X:2 + X:1X;2) + X:; (X82X 91 + X 92X81)

]
'̄3312 (y, [̂1, [̂⊥ ([̂2);l, n)

+
[
X8: (X;1X 92 + X 91X;2) + X 9; (X82X:1 + X:2X81)

+ X8; (X 92X:1 + X:2X 91) + X 9: (X;1X82 + X81X;2)
]
'̄3231 (y, [̂1, [̂⊥ ([̂2);l, n)

+
[
X81X 91 (X;1X:2 + X:1X;2) +

+ X:1X;1 (X81X 92 + X82X 91)
]
('̄1112 − '̄3312 − 2'̄3231) (y, [̂1, [̂⊥ ([̂2);l, n) + O(n2),

(27)

to within an O(n2) remainder and, therefore, generalizes Eq. (A.11) in [8] to include the O(n) correction for a
turbulence field within the jet that depends on the transverse separation with magnitude that expands as [̂⊥ = |(̂⊥ | =
n[̂2 + O(n2). In other words, the first two terms of the functional decomposition in (26) can be re-arranged to read,
'_ 9`; (y, [̂1, [̂⊥;l, n) − ' (1)

_ 9`;
(y, [̂1, 0;l, n) = Eq.(27) + >(n) where ' (1)

_ 9`;
is given by (6). This then provides a

two-term asymptotic expansion formula for '_ 9`; which we validate next using LES data for the momentum flux
components (_, `) = (8, :).

IV. Using LES data to validate the 2-term asymptotic expansion formulae (26) & (27)
The quartilinear tensor form (or, square norm) of '8 9:; can now be re-computed using (26) & (27). That is,[

'8 9:;'8 9:;

'2
1111

]
(y, 0; 0) = 1 +

2'2
2222

'2
1111
(y, 0; 0) + 4 ·

[
'2

1122 +
1
2'

2
2233

'2
1111

]
(y, 0; 0) + 8 ·

[
'2

1212 +
1
2'

2
2323

'2
1111

]
(y, 0; 0)

+ +12
'2

3312

'2
1111
+ 32

'2
3231

'2
1111
+ 4 ·

[
('1112 − '3312 − 2'3231)2

'2
1111

]
(y, 0; 0) + 16

'3312'3231

'2
1111

(y, 0; 0)

+ 8 ·
[
'3312('1112 − '3312 − 2'3231)

'2
1111

]
(y, 0; 0) + 16 ·

[
'3231('1112 − '3312 − 2'3231)

'2
1111

]
(y, 0; 0)

(28)

Figs. (10)-(12) show much closer agreement between the direct LES formula for the square-norm '2
8 9:;
/'2

1111 in (9)
and (28) compared to the previous calculation of (11) that represents the leading term in the general asymptotic formula,
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Fig. 10 Axial variation of square norm '2
8 9:;
/'2

1111 given by Eqs. (9) (LES data - no approximation) and (28)
(LES data - axi-symmetry given by Eqs. 6, 26, 27) for OP1.3 at the core shear layer radial location, A/�� = 0.18.

(26). The results in Figs. (9)-(12) indicate a difference of less than 1% between Eqs. (9) and (28) at the locations at
almost all locations from the nozzle exit to the end of potential core. This agreement is closer in the core radius for
OP1.3 compared to the bypass radius for both OPs. However, here too, the difference is considerably better than in Figs.
(1)–(3). But the LES data (in Figs. 13–21) also shows that the components '̄3312 and '̄3231 are largely negligible (i.e.
'̄3312, '̄3231 � 1 at the core radius and bypass radius locations (A/� 9 = 0.18 and A/� 9 = 0.38 respectively) where the
turbulence kinetic energy is largest. The component '1112 appears to retain a significant amount of turbulence energy
relative to '1111 this is evidently owing to the fact that 3 of tensor suffixes are contracted in the axial direction for this
component. The bar charts in Figs. (16–21) show that the amplitude ratio '1112/'1111 remains bounded between 0.15
and almost 0.3 for both operating points at streamwise locations at the start and end of the potential core with an almost
uniformity across the azimuthal planes – particularly at the streamwise locations closer to the start of the potential core
(i.e., at ∼ 6� 9 ). This is consistent with the numerical results of Karabasov et al.[25].

Hence, using this information, the sub-tensor ' (2)
8 9:;
(y, [̂1, [̂⊥ ([̂1, [̂2);l, n) in (27) can be justifiably approximated

to the following:

'
(2)
8 9:;
(y, [̂1, [̂⊥ ([̂1, [̂2);l, n) →

[
X81X 91 (X;1X:2 + X:1X;2)

+ X:1X;1 (X81X 92 + X82X 91)
]
('̄1112 − '̄3312 − 2'̄3231) (y, [̂1, [̂⊥ ([̂1, [̂2);l, n) + O(n2),

(29)

since the difference in smallO(n) ∼ ('̄1112, '̄3312, '̄3231) quantities for the red coloured terms in (29): ('̄1112 − '̄3312 − 2'̄3231)
could potentially be larger than the small quantities ('̄3312, '̄3231) themselves due to the fact that ‘almost-streamwise’
term '̄1112 is significantly larger than the latter auto-covariance components. Our LES data (discussed below) confirms
this. The natural follow-on to this approximation is that the momentum flux (_, `) = (8, :) components of the asymptotic
expansion in (26) can be commensurately approximated to the following form:

'8 9:; (y, [̂1, [̂⊥;l, n) = '
(1)
8 9:;
(y, [̂1, 0;l, n)

+
[
X81X 91 (X;1X:2 + X:1X;2)

+ X:1X;1 (X81X 92 + X82X 91)
]
('̄1112 − '̄3312 − 2'̄3231) (y, [̂1, [̂⊥ ([̂1, [̂2);l, n) + >(n)

(30)
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Fig. 11 Axial variation of square norm '2
8 9:;
/'2

1111 given by Eqs. (9) (LES data - no approximation) and
(28) (LES data - axi-symmetry given by Eqs. 6, 26, 27) for OP1.3 at the bypass shear layer radial location,
A/�� = 0.38.

where ' (1)
8 9:;
(y, [̂1, 0;l, n) is again given by (6) for the momentum flux components, (30). Finally, the square

norm (28) may be approximated to retain only the term linear in the difference |'8 9:; | ≡ '1111

√
'2
8 9:;
/'2

1111 ∼
('̄1112 − '̄3312 − 2'̄3231):[

'8 9:;'8 9:;

'2
1111

]
(y, 0; 0) → 1 +

2'2
2222

'2
1111
(y, 0; 0) + 4 ·

[
'2

1122 +
1
2'

2
2233

'2
1111

]
(y, 0; 0) + 8 ·

[
'2

1212 +
1
2'

2
2323

'2
1111

]
(y, 0; 0)

+ 4 ·
[
('1112 − '3312 − 2'3231)2

'2
1111

]
(y, 0; 0)

(31)

to within an O(n2) remainder term. We can make one further approximation now, which is to retain only the '̄1112 term
in the pre-factor for the term in red. That is,[

'8 9:;'8 9:;

'2
1111

]
(y, 0; 0) → 1 +

2'2
2222

'2
1111
(y, 0; 0) + 4 ·

[
'2

1122 +
1
2'

2
2233

'2
1111

]
(y, 0; 0) + 8 ·

[
'2

1212 +
1
2'

2
2323

'2
1111

]
(y, 0; 0)

+ 4 ·
[
'2

1112

'2
1111

]
(y, 0; 0)

(32)

In other words, the square-norm of the auto-covariance tensor, '8 9:; in (32) is equal to the sum of (11) (given
by the leading term in the expansion formula, Eq. 26 for (`, _ = 8, :) only) and the extra contribution from the
‘almost-streamwise’ term, '̄1112 in form of (2'̄1222/'̄1111)2.

In Figs. (22–24), we show that the amplitude pre-factor ('̄1112 − '̄3312 − 2'̄3231) in 30 (and its analytic consequence
31) remains of the order of (0.1 − 0.2) when normalized by '1111 (Figs. 22–24) or (0.4 − 0.6) when normalized by
'1212 (the auto-covariance component that is dominant for the peak noise radiation; see [7] & [9]). This is shown in Fig.
25.
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Fig. 12 Axial variation of square norm '2
8 9:;
/'2

1111 given by Eqs. (9) (LES data - no approximation) and
(28) (LES data - axi-symmetry given by Eqs. 6, 26, 27) for OP1.7 at the bypass shear layer radial location,
A/�� = 0.38.

V. Discussion and Conclusions
On p. 241 of their paper, Pokora & McGuirk [11] wrote that: “These azimuthal correlations (i.e., '11 and '1111)

are significantly flatter than the axial or radial correlations for quite small increases in the separation vector". The
smallness of this variation has analytical consequences for the Reynolds stress auto-covariance tensor ('8 9:;) in round
jet flows. We have shown that it naturally implies that the latter tensor depends on a strained separation vector with
richest asymptotic balance between transverse components 2 and 3 given by Eq. (13). Extending this definition to
wave-number spectral space for the spatial Fourier transform of '8 9:; in (21) allows an extended 2-term asymptotic
formula for the auto-covariance tensor to be developed. This is given by our Eqs. (26) & (27). The latter formulae when
expressed by the square-norm (i.e. the quartilinear tensor form) in Eq.(28) compares very favorably with LES data
for complex jet flow fields of our interest in this paper. Indeed the extended the theory of axisymmetric turbulence
developed herein recovers the numerical results uncovered by Karabasov et al. [25], namely that the auto-covariance
tensor component '1112 remains sizeable at the end of the potential core region where the turbulence kinetic energy is
large. Future work will aim to explore the impact of this term in acoustic analogy models of jet noise.
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Fig. 15 Axial variation of extra components ('3312, '1323, '1112, '1213 at 4 azimuthal planes: k =

(0◦, 90◦, 180◦, 270◦) for OP1.7 at the bypass shear layer radial locations A/� 9 = 0.38 respectively.

Fig. 16 Variation of extra components ('3312, '1323, '1112, '1213) at 4 azimuthal planes: k =

(0◦, 90◦, 180◦, 270◦) for OP1.3 at the core shear layer radial locations A/� 9 = 0.18.
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Fig. 17 Variation of extra components ('3312, '1323, '1112, '1213) at 4 azimuthal planes: k =

(0◦, 90◦, 180◦, 270◦) for OP1.3 at the core shear layer radial locations A/� 9 = 0.18.

Fig. 18 Variation of extra components ('3312, '1323, '1112, '1213) at 4 azimuthal planes: k =

(0◦, 90◦, 180◦, 270◦) for OP1.3 at the bypass shear layer radial locations A/� 9 = 0.38.
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Fig. 19 Variation of extra components ('3312, '1323, '1112, '1213) at 4 azimuthal planes: k =

(0◦, 90◦, 180◦, 270◦) for OP1.3 at the bypass shear layer radial locations A/� 9 = 0.38.

Fig. 20 Variation of extra components ('3312, '1323, '1112, '1213) at 4 azimuthal planes: k =

(0◦, 90◦, 180◦, 270◦) for OP1.7 at the bypass shear layer radial locations A/� 9 = 0.38.
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Fig. 21 Variation of extra components ('3312, '1323, '1112, '1213) at 4 azimuthal planes: k =

(0◦, 90◦, 180◦, 270◦) for OP1.7 at the bypass shear layer radial locations A/� 9 = 0.38.

Fig. 22 Variation of term in ('1112 − '3312 − 2'1323) in two-term expansion formula (29 & 30) at 4 azimuthal
planes: k = (0◦, 90◦, 180◦, 270◦) for OP1.3 at the core shear layer radial locations A/� 9 = 0.18.
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Fig. 23 Variation of term in ('1112 − '3312 − 2'1323) in two-term expansion formula (29 & 30) at 4 azimuthal
planes: k = (0◦, 90◦, 180◦, 270◦) for OP1.3 at the bypass shear layer radial locations A/� 9 = 0.38.

Fig. 24 Variation of term in ('1112 − '3312 − 2'1323) in two-term expansion formula (29 & 30) at 4 azimuthal
planes: k = (0◦, 90◦, 180◦, 270◦) for OP1.7 at the bypass shear layer radial locations A/� 9 = 0.38.

Fig. 25 Variation of term in ('1112 − '3312 − 2'1323) normalized by '1212 for the two-term expansion formula
(29 & 30) at 4 azimuthal planes: k = (0◦, 90◦, 180◦, 270◦) for OP1.3 & OP1.7 at the core/bypass shear layer
radial locations (A/� 9 = 0.18, 0.38) respectively.
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