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Abstract 

In this work, novel, patterned monolithic reactors were devised to explore more efficient routes for reactant conversion in order to investigate 

their potential to replace the packed bed and batch reactors conventionally employed in chemical industries. Well-defined bimetallic 

formulations were developed to substitute platinum group metals and critical raw materials such as palladium and cobalt, at least in part, by 

less active, but more sustainable and cost-effective metals such as earth-abundant iron. FePd and FeCo based monoliths were 3D printed and 

stacked in a continuous flow tubular reactor for testing the selective oxidation of benzyl alcohol (BA) into benzaldehyde (BZ) under mild 

conditions (80-100 °C and atmospheric pressure). The novel monolithic reactors were evaluated against current state-of-the-art reactor 

technologies, conventional packed bed and batch reactors. The FeCo- and FePd-Al2O3-supported monolithic catalyst beds showed higher 

conversion and TOF than their packed bed counterparts under the same operating conditions, revealing the impact of the novel design on both 

regular geometry and composition. What is of particular interest in the catalytic measurements shown is that the combined stacking of two 

monoliths in a flow reactor, Al2O3-supported Fe and GO-supported FePd catalysts, can significantly improve the performance with an increase 

in TOF of up to 90% in comparison to their FePd analogues. Mathematical modelling was used to obtain additional insights into the physical 
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and chemical processes governing the rate of BA conversion. It was found that due to the flow regime inside the microchannels, an axial 

dispersion model was appropriate, which allowed for mapping the concentration profiles of the reactants and products within the respective 

monolith geometries. 

Keywords: Continuous flow reactor · Heterogeneous Catalysis · 3D printed catalysts · Benzyl alcohol oxidation · Alcohol 

aerobic oxidation 

1.  INTRODUCTION 

Over the past 10 years, the organic chemical industry has shown a growing interest in the development of continuous systems 

for gas- and liquid-phase reactions, where the catalyst is retained within a fixed bed (rather than having to be removed from the 

product stream). 1,2 More recently, there has been a gradual switchover from conventional stirred batch reactors to plug flow 

reactors, in particular for the production of fine chemicals and pharmaceuticals. The emerging (continuous) flow reactor 

technology offers clear advantages in terms of greater control of operating parameters (that can be varied on the fly) such as 

reagent concentration, temperature, pressures, usage of volume with the benefits of high surface-area-to-volume ratios, changes 

in reaction kinetics, product ratios and their yield. The latter can ensure better surface contact between the phases and reduce 

mass and heat transfer limitations. The modular nature and design flexibility of the multi-channel continuous flow reactors allow 

for ease of scalability and integrated operation, safety advantages and more (atom) economical organic synthesis3,4. 

The oxidation of alcohols to aldehydes and ketones is crucial from an industrial point of view because compounds containing 

carbonyl groups are intermediates of various valuable speciality chemicals such as fragrances, flavourings, perfumes, flame 

retardants and pharmaceuticals5. The oxidation of alcohol is of relevance to the fine chemicals industry, particularly the 

oxidation of primary alcohols to aldehydes in the synthesis of valuable intermediates. Among these intermediates, benzaldehyde 

is one of the most produced molecules in synthesis processes involving the oxidation of alcohols, due to the rising demand for 

its derivatives 6,7. To evaluate the efficiency of the new catalyst design, benzyl alcohol oxidation to benzaldehyde was used as a 

model reaction 8–10; a well-referenced reaction for iron, cobalt and palladium-based catalysts8–16. Significant advances have been 

made in applying various metals and supports to the selective oxidation of benzyl alcohol, mostly in batch systems and less 

commonly in lab-scale flow reactor systems17,18. This involves the use of metal promoters such as ruthenium18–20, platinum17,21, 

rhodium22, copper23, chromium24, bimetallic gold-palladium and gold catalyst15,21–24. Furthermore, in order to develop a process 

with greener credentials, we used molecular oxygen in combination with an aqueous solvent11,25–27. 

3D printing technology for catalyst fabrication and chemical synthesis is in the early stages of development. However, 3D 

printed, and micro-structured monoliths hold considerable promise for delivering more performant solutions in reactor design28–
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30. 3D printed monoliths offer several advantages over their conventional counterparts of random packings of pellets, such as 

high surface-area-to-volume ratio, low-pressure drop along the reactor and improved mass and heat transfer. Previously, 3D 

micro-structured reactors were applied in catalytic continuous flow processes in the gaseous phase and batch multiphase 

reactors, taking advantage of the newly developed formulations with tailor-made geometries31–34. Most recently, two different 

types of 3D printed ceramic structures, impregnated with 2 wt% Pd structures, were investigated in flow reactors for the 

hydrogenation of squalene into squalane, showing excellent conversion rates at temperatures from 180°C to 240°C, at a pressure 

of 25–30 bar.35 To date, there has been some notable research on selective oxidation of benzyl alcohol (BA) to benzaldehyde 

(BZ), such as TiO2
36

 or ZnO-coated37 continuous flow photocatalytic micro-reactors (ca 100-500µm), as well as research on Pt 

coated extruded carbon monoliths with a channel size of 3 mm × 3 mm17. In the present work, a series of novel and well-tuned 

formulations of iron, cobalt and palladium, deposited onto γ-Al2O3 or graphene oxide (FeCo@Al2O3, FePd@Al2O3 and 

FePd@GO), have been 3D printed into monoliths with a 600-800µm channel size. The monoliths were integrated into a flow 

reactor for triphasic (gas-liquid-and solid) selective oxidation from BA to BZ under mild operating conditions (80-100 °C and 

atmospheric pressure). The potential of 3D printed monoliths in BA oxidation was evaluated to establish whether the palladium 

content could be reduced or completely replaced by iron or cobalt, in order to gain improved catalytic performance compared to 

the current processes. In addition, the impact of both regular geometry and composition was demonstrated by comparing 

monolithic catalyst beds to their packed bed counterparts under the same operating conditions and to their analogues under batch 

reactor conditions.  

To obtain further insight into the benzyl alcohol oxidation reaction to benzaldehyde, modelling of the reaction has been 

performed to evaluate the effect of the operating conditions and map the concentration profiles. The mass balances inside the 

monolith reactor were calculated by considering convective transport with axial dispersion and chemical reaction in the liquid 

phase as well as oxygen transport from the gas to the liquid phase. The axial dispersion coefficient was determined, as well as 

the reaction kinetics, by regression analysis with the obtained experimental data. 

2.  MATERIALS AND METHODS 

2.1 Catalyst Preparation 

Alumina supported catalysts have been synthesised using a wet co-impregnation method similar to the one documented in the 

literature for iron39, cobalt40 and palladium41 precursors. The bimetallic catalysts were prepared with three salts, purchased from 

Sigma Aldrich: Fe(NO3)3.9H2O(s), Co(NO3)2.6H2O(s) and Pd(NO3)2.4NH3. They were dissolved in water to the desired 

concentrations aiming at 15 wt.% Fe, 15 wt.% Co and 1 wt.% Pd; see an overview of the obtained compositions in Table 1. 
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Puralox TH 100/150 Alumina powder, obtained from Sasol, was stirred for 24 h with the appropriate amount of catalyst 

precursors. The resulting precipitate was collected and dried for 24 - 48h in an oven at 80 °C. An additional bimetallic 15wt.% 

Fe-1wt.% Pd was deposited on graphene oxide support powder by utilising an environmentally benign, single-step and rapid 

chemical synthesis route, Continuous Hydrothermal Flow Synthesis (CHFS), as previously described.31 Prior to the printing 

process, the catalyst powders were crushed and sieved through a 45µm mesh to ensure good flowability and smooth extrusion 

through the nozzle.  

The inks (pastes) for the extrusion-based 3D printing (direct write) were mixed to obtain the desired and reproducible 

rheological properties. The formulation of the printing paste was based on methylcellulose, a typical polymer binder, which, 

after being removed by thermal decomposition, left the resulting structure behind with 80 wt.% dry solid content of the 

supported catalytic material and 20wt% bentonite additive. The printing process involved optimising the printing parameters for 

the ink to exit through 600 and 800 µm diameter nozzles and stack layers in three selected patterns (see Table 1 and Table S1).  

After printing, the monoliths were dried in a humidity chamber at 25 °C for two days to remove excess moisture from the binder 

and give the structure its firmness. Prior to catalytic testing, the dry monoliths were subjected to thermal treatment at a slow 

heating rate of 1°C min-1 to 500 °C under 100 mL min-1 He to remove the organic binder from the printed catalyst bodies. 

Subsequently, once 500 °C was reached, the monoliths were activated under 20% O2 in He for 2 hours. After that the catalysts 

were flushed with 100 % He for 30 min and then reduced in 50% H2 in He for 4h, at 500 °C with a total flow rate of 100 mL 

min-1 to reduce metal oxides to their respective metallic forms.  

Table 1. 3D Printing of Fe-containing supported monolithic catalysts using the micro-extrusion-based direct-write 3D technique: 

(top row) two geometries studied; (middle row) a close-up of CAD model unit cells; (bottom) examples of monoliths printed in 

different dimensions and compositions with fibre diameters and interfibre distances of 800 µm and 600 µm; the neighbouring 

channels are connected 

 

Lattice type 

(cross section) 

‘1-1’ straight channels 

 

‘1-3’ crossed channels 
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Top view

 
  

   

 

2.2 Reactor set-up and catalyst testing 

The screening of 3D printed catalytic monoliths was carried out in a set up with a tubular reactor under continuous flow. Figure 

1 presents a schematic of the set-up. The monoliths as well as packed bed samples, were mounted into a stainless-steel column 

reactor. Both the batch and packed bed samples were crushed monoliths sieved to fractions representative of monolith fibres 

within a range of 800±20 µm. 3D printed monoliths or their pellet analogues were loaded from the top of the reactor tube and 

placed between an inert packing media of quartz sand – grain size between 780µm-820µm. In addition, quartz wool was placed 

at the top and bottom of the catalyst bed. The quartz sand and quartz wool placed on the top of the catalyst bed were expected to 

promote pre-mixing and ensure an equal liquid flow distribution before reaching the bed of catalysts. The volume of the reactor 

taken up by two catalyst monoliths was estimated to be around 16 cm³, with a 21.6 mm diameter and 48 mm total catalyst bed 

height. The retention time of the feed mixture depended on the liquid flow. The gas and liquid flows were fed to the reactor 

column co-currently from the top. Under gravitational influence, the gas flow and liquid solution moved down the column 

through the catalyst bed.  

A number of parameters were initially tested to identify the optimal set of operating conditions (see an overview of these 

preliminary parameters in the Supplementary Material, Tables S2 and S3). A HPLC Gilson 305 pump, fitted with a 10 mL pump 

head, provided a flow within a range of 0.01 to 10 mL.min-1. The gas flow was varied between 1 to 100 mL.min-1. After the 

initial parameters were set, the following conditions were selected to evaluate the 3D printed monoliths: a liquid flow of 0.1 

mL.min-1 of 0.2 mol.L-1 BA (Benzyl Alcohol, purchased from Sigma Aldrich 99-100.5% GC) in dimethylformamide (DMF, 

purchased from Sigma Aldrich 99% solution) under a controlled synthetic air flow (purchased from Air liquid 99.5%) of 85 

mL.min-1, corresponding to 0.2086 mol/h, of which oxygen constitutes 21 %, which is 0.04381 mol/h. The reaction took place at 
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a temperature of 100 °C and 1 atm. DMF was both used as a solvent in the presence of K2CO3 (Potassium Carbonate 

Anhydrous,99.5%, VWR), saturated up to a maximum of 30 mg.L-1, and as a base preventing the oxidation of benzaldehyde to 

undesired benzoic acid. In addition, oxygen was dissolved in a saturated amount in DMF. DMF has been selected as the most 

suitable solvent due to its boiling point of 145 °C and the favourably high solubility of the organic reactant within it. 

The experiments in the flow reactor were carried out with a set of parameters chosen to achieve a flowing steady-state and 

maximum retention time for a duration of 4h. After 4h, the product samples were collected at the bottom of the column once an 

hour for another 4 hours. Under batch conditions 50 mg of catalyst pellets prepared from the crushed monoliths was placed in a 

70 mL stainless steel autoclave and stirred for 8h at 100°C under 5 bar of air in the presence of 0.2 mol.L-1 benzyl alcohol and 

50 mL of the DMF solvent saturated in the K2CO3 salt in an identical manner as that for the continuous flow experiment.  The 

concentration of the reaction product in the mixtures was analysed by High-Performance Liquid Chromatography (HPLC) using 

a Thermo Scientific Dionex UltiMate 3000 instrument. 

The following equations have been used to derive reaction parameters and calculate conversion, selectivity and Turn Over 

Frequency (TOF): 

A.  Molar Flow benzyl Alcohol 

Unit: [mol]BA·[L]-1·[min]-1 

ḞBA
in = [BA] × Q̇liquid

tot  

B.  Conversion benzyl Alcohol 

Unit: [standard] or [%] 

XBA
out = 1 −

ḞBA
out

ḞBA
in  

C.  Productivity of catalyst  

Unit: [mol]BA converted·[min]-1·[g]-1
cat metal 

 

pBA =
ḞBA

in × XBA
out

mcat metal
tot  

D.  TOF 

Unit: [mol]BA converted·[min]-1·[mol]-1
cat metal 

 

TOF = pBA × M̂cat metal  
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E.  [�̂�] 

Average molar mass catalytic sites per quantity of catalyst 

Unit: [g]·[mol]-1
cat metal 

M̂cat metal ==
{∑ Mcat metalii × mcat metal i }

mmonoliths
  

F.  Selectivity into Benzaldehyde 

Unit: [standard] or [%] 

SBZ
out =

ḞBZ
out

ḞBA
in × XBA

out 

G.  Retention Time on liquid flow 

Unit: [min] 

 

τliquid =
Vmonolilth section

Q̇liquid
tot  
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Figure 1. Left: schematic diagram of continuous flow tubular reactor showing (1) liquid solution on a VWR® stirrer-hot plate; 

(2) Gilson® 305 HPLC pump; (3) synthetic air, O2:N2/21:78; (4) Brooks® mass flow controller; (5) stainless steel column fed 

from the top containing the catalyst bed between layers of quartz; the steel column was placed in a Carbolite® high-temperature 

furnace; (6) thermocouple inserted from the bottom and connected to software for real-time data logging (7) computer control 

for reactant flow and temperature monitoring; (8) reactor-outlet for product sampling via the HPLC pump. Right: schematic 

illustration of the monolith stack in the reactor (this image is not scaled to size). 

The RTD (Residence Time Distribution) measurements were performed for both the monoliths and their packed bed analogues 

in the same set-up except for using a Harvard Apparatus PHD ULTRA syringe pump to supply the diode I2 salt solution to the 

column and using a Mettler Toledo electrometer to measure conductivity. The solution samples were collected at the bottom of 

the column. After firstly passing deionised water as a non-conductive reference, the salt solution with a significant conductivity 

was introduced into the column. Subsequently, the conductivity of the solution samples was measured to determine which 

fraction was still deionised water or a salt solution and at which point it had turned into a pure salt solution. 

Comparable catalytic reactions have been performed in batch conditions. In a stainless-steel autoclave reactor of 70 mL a DMF 

volume of 50 mL saturated in K2CO3 and 0.2 mol.L-1 BA was mechanically stirred for 8h under 5 bar of air at 100 °C in 

presence of 50 mg of catalytic material in powder form.  
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2.3 Catalyst characterisation 

The surface area (Brunauer Emmett Teller, BET) and porosity analyses of the catalysts were performed using nitrogen 

adsorption on a Quantachrome Autosorb IQ gas sorption analyser. The element content was determined using an MP-AES 

Agilent 5100 ICP analyser. The paste viscosity measurements were performed using a HAAKE MARS rheometer in a plate-to-

plate configuration with a rotational continuous ramp of 0.01 s-1 – 100 s-1 at 25°C. The macro and microstructure and elemental 

distribution images were obtained using a FEI Nova NanoSEM 450 operated at 20 kV and coupled with an EDX (Energy 

Dispersive X-Ray Spectroscopy) QUANTAX 200 system. X-ray diffraction (XRD) analysis was carried out on a 

Philips/Panalytical X'Pert Pro powder diffractometer with a CuKα radiation source operated at 40 keV and 40 mA. X-ray 

photoelectron spectroscopy (XPS) measurements were carried out to determine the surface chemistry of the catalysts using a 

ThermoFisher Scientific ESCALAB 220iXL instrument.  

2.4 Reactor modelling  

The two-phase flow in the monolith reactor has a much higher gas than the liquid flow rate (85 mL.min−1 gas to 0.1 mL.min−1 

liquid at the inlet at 25 °C). Since the reaction takes place on the catalyst, it is presumed that DMF wets the walls and a DMF 

liquid film is formed on the monolith channels walls. A much higher gas flow rate is also present, which contributes to the liquid 

movement towards the reactor outlet through shear. Due to the irregular shape of the walls, namely the non-flat surfaces, the 

nonuniform thickness of the DMF film on the walls and nonuniform gas flow, the flow regime can be most closely 

approximated with a one-dimensional axial dispersion model for the liquid flow, which describes the level of axial mixing in 

comparison to the well-defined plug flow conditions. 

The reactant and product concentration profiles inside the liquid phase of the fixed bed monolith reactor were calculated with an 

axial dispersion model considering the time, convection, dispersion and chemical reaction terms. Benzyl alcohol (BA) reacts 

with oxygen in the liquid phase on the catalytic walls, forming benzaldehyde and other by-products. Oxygen is involved in both 

reactions and is supplied from the gas phase (air) by mass transfer. The validity of the axial dispersion model was verified with 

residence time experiments. Because the liquid and gas phase are heated from 25 – 100 °C inside the reactor, Aspen Plus 

(AspenTech) calculations were used to determine the phase distribution at elevated temperatures using the Peng–Robinson 

equations of state. See the Supplementary Material for further details on modelling (such as partial differential equations). 

Several models of benzyl oxidation kinetics have been developed in recent years based on catalysts27,42, solvents43 and 

oxidants43. In most cases, the activation energy of these models depends on the conditions created and remain constant while the 

order of the reaction is one over benzyalcohol44.  
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The geometry data of the monolith required for the model (cross-sectional area and channel volume) was taken from the CAD 

(computer-aided design) model prepared in SolidWorks (Dassault Systèmes). The actual average linear velocity of the liquid 

phase was determined together with the axial dispersion coefficient from the measurements of the residence time distribution 

with regression analysis using the Nelder–Mead optimisation algorithm. In a similar way, he kinetic constants were estimated by 

analysis of the kinetic data for the reactions taking place on the FeCo@Al2O3 catalyst. The system of partial differential 

equations, describing the mass balances, was transformed into a set of ordinary differential equations, which were solved with 

the Runge–Kutta 45 solver in Python (see the Supplementary Material). 3D printed monoliths as well as their CAD model with a 

close-up of the channels are presented in Table 1. Two monoliths were positioned inside the continuous flow reactor stacked on 

top of each other, within the reactor with an inner diameter of 21.6 mm. The monolith fibres were of circular shape with a 

diameter of 0.7 mm. The channels of the monolith were approximately 0.67 mm apart at the narrowest points and 1.26 mm from 

the centre of the walls in horizontal direction.  

 

Figure 2. Schematic representation of (a) benzyl alcohol oxidation into (b) benzaldehyde and (c) possible by-product, benzoic 

acid 

An inverse geometry was created for the computational fluid dynamics (CFD) simulations. Since the majority of the domain is 

comprised of repeating channels, only 1 channel was modelled. The effect of irregular channels at the monolith edge were not 

considered in this work, but large deviations from the rest of the monolith solution are unlikely. The velocity and pressure 

profiles were obtained for the incompressible laminar fluid flow with COMSOL Multiphysics. The inlet boundary condition was 

6.76 × 10−3 m s−1, while the channel walls had the no-slip boundary condition. Symmetry was prescribed at the surfaces where 

the channels are in contact with each other. At the outlet, zero pressure and zero velocity gradient were set. The mesh was 

composed of approximately 500k tetrahedral elements. Grid independence was checked with denser and coarser meshes. 
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3.  RESULTS AND DISCUSSION 

3.1 Physico-chemical characterisation of 3D printed monoliths 

The formulation of the paste material constitutes a decisive step towards obtaining the desired characteristics of the final 

structures, including satisfactory mechanical stability which required an adequate calcination step. The aim was to avoid 

potential organic binder residual, structure shrinkage and fracture. The particle size of the starting powder components, 

rheological behaviour of the printing inks, as well as the pH of the mixtures (of ca. 5.0) were maintained in the optimal range to 

ensure composite flowability and a smooth printing process. The printing inks exhibit non-Newtonian, shear-thinning behaviour 

with the viscosity in the range of 500 to 5000 mPa·s (see Figure S2 in the Supplementary Material for typical viscosity versus 

shear rate curves). The typical particle size of the sieved powders used for ink mixing was ca. 30 µm  (D90) for FeCo@Al2O3 

and Pd-Fe@Al2O3 respectively.  

The measured ICP values for metal loading, specific surface area, pore radius and volume of the samples are shown in Table 2. 

The molar ratio between iron Fe and co-metal stays constant for the duration of the calcination and reaction processes. The 

leaching of metals after the reaction is negligible due to the similar metal content measured in the fresh and spent catalysts. The 

elemental concentrations obtained by ICP are close to those of the (theoretical) target Fe, Co and Pd compositions. 

 

Table 2. Overview of values for metal loading, surface area, porosity and pore diameter  

Catalyst composition with nominal 
metal loading in wt%a 

Actual molar 
ratio 

(Fe:M) 

ICP (actual metal  
loading in wt%) b 

BET Surface 
Area  (m²/g) 

Pore 
Volume 
(cm³/g) 

Pore 
Diameter 
(nm) 

Fe M 

Puraloxc TH 100/150 Al2O3 powder 0 0 0 150 0.8-1.1 11 

VWR Bentonitec 0 0 0 50 / / 

Printed Al2O3  calcined 0 0 0 165  0.68 11.8 

FePd@Al2O3 as-synthesised powder 96.4 : 3.6 12.15 0.86 142 0.59 8.6 

Printed FePd@Al2O3 calcined  96.8 : 3.2 8.84 0.56  85 0.30 8.6 

Printed FePd@Al2O3 spent 96.9 : 3.1 8.89 0.55 75    0.22 8.6 

FeCo@Al2O3 as-synthesised powder 47.9 : 52.1 11.54 13.23 129 0.54 8.0 

Printed FeCo@Al2O3 calcined 44.9 : 55.1 8.51 11.03 103 0.49 19.1 

Printed FeCo@Al2O3 spent   43.4 : 56.6 8.52 11.15 84 0.45 16.4 

Abalonyxc Graphene Oxide powder 44.6 : 55.4 0 0 ̴ 1600 / / 

Printed FePd@GO calcined 96.9 : 3.1 13.45 0.71 223 / / 

Printed FePd@GO Spent 95.0 : 5.0 13.28 0.70 / / / 
a Nominal catalytic material. Percentage calculated on basis of the support weight. Initial theoretical metal loading was calculated at wet impregnation step. 
b Percentage calculated on basis of the final catalyst weight (determined by ICP). 
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More detailed data obtained from the nitrogen adsorption–desorption isotherms of the printed catalysts presented in Table 2 

include the specific surface area using the BET method; pore size distribution and mesopore volumes derived from 

the desorption branch of isotherms using the Barrett-Joyner-Halenda (BJH) method. Both FeCo@Al2O3 and FePd@Al2O3 

materials exhibit Type IV isotherms showing a hysteresis loop in the P/Po region of 0.4 -1.0 indicative of mesoporous materials 

(see Figure S3 in the Supplementary Material). The micropore volume and micropore surface area determined using the t-plot 

method showed that the micropores make a negligible contribution to the total specific surface area. It can be seen from the N2 

adsorption data for both catalyst materials that impregnation of the Al2O3 support and subsequent calcination led to a progressive 

reduction in the surface area as well as  the pore volume. However, the calcined printed FeCo@Al2O3 catalyst had a higher 

surface area than that of its FePd analogue. Its pore diameter increased through the calcination step while it decreased slightly 

during the reaction. This could be attributed to particle sintering during the calcination step which can cause the blocking of 

some of the Al2O3 pores (the calcined Pd particles in particular are more likely to be larger than the uncalcined ones). The 

analysis after the reaction showed the BET surface area and pore volume decreased for both catalysts. It should be noted that 

these values decreased progressively over time due to a number of possible reasons, such as the accumulation of residual solid 

from the quartz sand filling of the reactor upstream of the catalytic bed and the local high concentration of K2CO3 solidifying 

and agglomerating into the available pores. The N2 adsorption porosity results (pore radius and volume) are complemented by 

the SEM images of uniformly printed fibres and consistent cross-hatch patterns. The SEM images in Figure 3 and Figure 4 show 
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the macrostructure of the 3D printed monoliths as well as their highly porous microstructure with intra-fibre porosity and 

sufficiently high surface area tailored to host active catalytic species. The calcined structures shrunk to 85 % of the original size, 

which caused the initial inter-fibre spacing to be reduced. The change in the final external dimensions (i.e. volumetric shrinkage) 

of individual monoliths after the drying and calcination steps was assessed by measuring their diameter and height using a 

Vernier caliper and calculating the shrinkage results (of ca. 85%) as an average of 3-5 samples from the same printing batch. 

The actual fibre diameter and inter-fibre spacing with the nominal values of 800µm and 600µm were determined by taking 

measurements from the SEM micrographs.  

The SEM and accompanying EDX images show different morphology of Fe-containing samples but uniform distribution of the 

active material in their micro-scale environment across the support and within the inorganic co-binder (bentonite) matrix. 

Blending the support materials (Al2O3 and GO) in the polymer matrix and its subsequent removal enables overall control over 

the particle dispersion.  The EDX images in Figure 4 obtained at higher resolution confirm the uniform distribution of Pd 

particles across the GO-based support down to the sub-100 nm scale (in addition see a TEM image in Figure S10 in the 

Supplementary Material). In this study GO was introduced to be able to show the effect of different support morphologies due to 

the GO specific carbon atom network.  

 

Figure 3 SEM images of 3D printed FeCo supported on Al2O3 monolith after calcination with straight channels of 600µm fibre 

thickness and 600µm spacing: a-b) SEM cross-section at two different magnifications; c-d) top-view of the structure; e-h) 

microstructure within the selected region of interest; i-l) EDX mapping of elements present corresponding to the region of 

interest within the fibre. (grey-CBS, orange-Iron, purple-Cobalt, red-Alumina at 100 µm scale bar) 
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Figure 4. (Top row) SEM analysis of the morphology and particle dispersion of FePd on GO support; (bottom row) EDX 

elemental mapping of a selected region of interest showing Fe, Pd and O distribution (indicated by a blue square in c 

corresponding to the CBS image in h at 5µm scale bar). 

Crystalline phases identified by XRD after heat-treatment before the reaction and after the reaction are presented in Figure S11). 

The XRD patterns confirm that the presence of metallic Fe is present in all the calcined and reduced samples prior to the 

reaction. The identification of the Fe species post reaction indicates Fe phase transformations during the reaction (in the 

presence of oxygen) and the formation of magnetite (Fe3O4) possibly due to the Fe(III) oxyhydroxide undergoing decomposition 

to Fe2O3 and high-temperature reduction. Probably worth adding a statement that Co and Pd phases are not seen in the sample 

by XRD since they are present at low concentration/signals obscured by the Fe phase(s) present.  

 

The XPS survey spectra and individual peak profiles obtained for FeCo@Al2O3, FePd@Al2O3 and FePd@GO monoliths (shown 

in Figures S12-20) provide a more detailed information on the chemical state of the active catalyst species. A summary of the 

corresponding peak positions (binding energies) for each spent catalyst are given in Table S4 in the Supplementary Material. 

A complementary set of XRD data and a high resolution XPS spectrum of the Fe2p orbital in FeCo@Al2O3 are presented in 

Figure 4 as well as in Figure S15 in the Supplementary Material. The sample exhibits mixed oxidation states indicating co-

existence of CoO and Co3O4. This is in agreement with the XRD analysis (Figure 5 left). The Fe2p spectra for all the examined 

samples exhibit the co-existence of Fe in mixed oxide states (Fe2O3 and Fe3O4 species) which is in agreement with the XRD 

analysis (Figure S11). 
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Looking at the relative intensity of both Fe2p and Pd3d spectra it can be observed that FePd GO supported sample exhibits 

higher peak intensity and peak area than the Alumina supported sample indicating a significant difference in binding of the 

catalytic metal atoms on respective supports and their surface concentrations. XPS survey spectrum of FePd@GO exhibits the 

characteristic peaks for carbon (centred at 284.8 eV), oxygen (530.1 eV), Fe (710.4 eV) and Pd (337.1 eV). The XPS data 

corroborate the benefits of depositing particles onto the GO support: the GO support sample shows palladium in oxide state 

PdO, indicating the catalytic metal deposited binds preferentially on the free oxygen atoms of the support and, as a result, the 

FePd@GO monolith stacked onto a Fe@Al2O3 monolith was found to show a greater (up to 70% higher) selectivity towards 

BZ than two stacked FePd@Al2O3. In contrast the Al2O3 supported sample shows (two doublets of) palladium in its metallic 

state, Pd and ionic state Pd2+ and overlaps with Ca-2p in the 355-345eV region. 

 

 

Figure 5. XRD and XPS complimentary analysis on representative FeCo@Al2O3 monolith and Co phases identified (after 

reaction).  

 

Figure 6 High resolution XPS Fe2p spectra for all four samples after reaction showing a characteristic peak with pronounced 

satellite features centred around a binding energy of 730 and 705eV 
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Figure 6 presents an XPS spectrum comparison of all Iron-containing formulations. The difference in the features of the Fe2p 

spectra is more pronounced for that of the FePd@GO spectrum in comparison to the Al2O3 supported compositions (further 

details are shown in Figure S14 in the Supplementary Material). 

The results of the pressure drop measurements (see Figures S1, to S4) were used to support the selection of the preferred 

patterns (with the straight channels ‘1-1’ and crossed channels ‘1-3’), fibre diameters and inter-fibre distances for printing the 

monoliths. The permeability of the monoliths was confirmed by pressure drop measurements. 

3.2 Catalytic testing and discussion 

In comparison to the preliminary tests conducted in a batch reactor for 8h (Figure 7 see a set of bars on the left of both plots), the 

3D printed monoliths in the flow reactor with the same loading of iron and palladium exhibited equally high catalytic activity 

with a conversion rate of over 80 %, a Turn Over Frequency (TOF) of 0.04 h-1 , with a residence time of the two-phase mixture 

through the catalyst beds of about 2h and the total reaction time of 8 h; see Figure S8 in the Supplementary Material for detailed 

measurements of the residence time distribution for different catalyst beds. 

Furthermore, the FeCo@Al2O3 and FePd@Al2O3 monolithic catalyst beds showed higher conversion and TOF than their packed 

bed counterparts under the same operating conditions, revealing the impact of the novel design concerning both regular 

geometry and composition. The 3D printing of catalyst monoliths offers a better control of the reaction process as the monolith 

geometry and its channels provide a high surface area to volume ratio for the reactant mixture to come into contact with the 

solid.  

However, the catalytic conversion of BA occurring along the entire length of the FePd@Al2O3 monoliths (with the highly active 

Pd phase) leads to lower selectivity into BZ than in the batch reactor. This can be explained by the number of  the Pd active sites 

available, at high  conversion; the reaction proceeds into a consecutive reaction BZ to benzoic acid. Replacing Pd by Co as an 

alternative catalytic material offers still high selectivity at lower cost and improved sustainability even with up to five times 

higher selectivity to BZ (see comparison between FeCo@Al2O3 and FePd@Al2O3 monoliths; for further comparison see Table 

S2 and Table S3 in the Supplementary Material).  In particular in the case of the FeCo@Al2O3 1-3 structures, the selectivity 

towards BZ is significantly higher in comparison to that of their FePd@Al2O3 1-3 analogues, thus pointing to a consecutive 

(secondary) reaction in favour of benzoic acid. The FeCo@Al2O3 ‘1-3’ monoliths gave 60% selectivity to BZ and 30% to 

benzoic acid. It has previously been shown by the authors that the substitution of PMG based catalysts by even with a small 

fraction of other metal, such as Fe, Co (of about 1.5wt%) already can affect the selectivity (of 19%) toward benzoic acid45. 
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In contrast, the FePd@GO monolith stacked onto a Fe@Al2O3 monolith was found to show a greater (up to 70% higher) 

selectivity towards BZ than two stacked FePd@Al2O3. It is interesting to observe that the selectivity towards BZ for the 

FePd@GO-Fe@Al2O3 stacking arrangement remains high (87%) at 60º C. The best overall performance for the FePd@GO - 

FePd@Al2O3 stacking arrangement can be attributed largely to the presence of Graphene oxide as a support. Indeed, the metal 

atoms of Iron and Palladium once deposited on GO, are extremely active due to their high accessibility to reactant. The graphene 

oxide support offers a high surface area and flake morphology. Therefore, the frequency of catalysed reaction is maximised. 

While keeping the same volume and weight of catalytic bed constant, this stacking arrangement enables the optimisation and 

rationalisation of already highly active FePd@GO: benzyl alcohol oxidation and conversion has just started in the first monolith, 

Fe@Al2O3 and is significantly progressing to the second monolith, FePd@GO which is selectively converting nearly all 

remaining benzyl alcohol. 

 In addition, see Figure S1 in the Supplementary Materials for typical results of the benzoic acid product that has been identified, 

as well as an additional by-product. This compound can be attributed to a secondary reaction occurring and is likely to be 

associated with a double phenyl group linked by a nitrogen atom. As reported by a number of authors, alongside benzoic acid 

other secondary by-products are detected during the benzyl alcohol oxidation: dibenzyl ether and benzyl benzoate,1,42,46.   

A data comparison between the monoliths with a fibre thickness/interfibre distance of 800µm and 600µm indicates that a change 

in the dimensions within this range has a limited effect (of ca. 3% difference) on the performance of the monolith as whole (see 

Figure S9 in the Supplementary Material). In terms of the reliability of the findings, the 3D printed catalysts were repeatedly 

tested under the same benzyl alcohol oxidation conditions to ensure the stability of the 3D monoliths and reproducibility of the 

tests. The standard deviation of the reproducibility of catalyst testing was calculated to be Σ(XBA)= 1.32%, Σ(SBZ)= 1.34% and 

Σ(TOF)= 2.21% (see Figure S21 in the Supplementary Materials). Jo
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The retention time measurements on the packed bed and monolith configurations are presented in Figure S10.

 

Figure 7 Performance comparison for 3D printed monoliths with their packed bed analogues for benzyl alcohol oxidation in 

continuous flow reactor as well as in batch reactor. Left: Fe and Co deposited on Al2O3; right: Fe and Pd deposited on Al2O3 and 

GO; reaction conditions in  flow reactor: 100 °C, 1 atm, 1 mL.min-1 of 0.2 mol.L-1 benzyl alcohol in DMF solution saturated in 

K2CO3 in co-current flow of air of 85 mL.min-1 passing through equal mass of catalytic material, 12 g of 3D printed catalyst 

monoliths with fibre thickness and interfibre distance of 800µm or packed beds of crushed fractions of 3D printed monoliths 

sieved between 780 µm and 820 µm which is comparable to fibre diameters of monoliths. The reaction conditions in batch 

reactor: 0.2 mol.L-1 benzyl alcohol in 50 mL of DMF solvent saturated in K2CO3 in the presence of 50 mg of solid powder 

catalyst stirred for 8h at 100°C under 5 bar of air. Legend for both graphs: left bar corresponds to conversion of benzyl alcohol 

XBA(■) in %, right bar to selectivity into targeted benzaldehyde SBZ(■) in %; turn over frequency TOF (●) is expressed in h-1. 

3.3 Modelling results and discussion 

3.3.1 Flow characteristics 

The major components in the case under consideration, air and DMF, are fed into the reactor with a molar flow ratio of 

0.73:0.27 at a temperature of 100 °C. In this case, the calculated vapor fraction was 0.92 and the liquid fraction 0.08. Table S4a 

and Figure S6 show the phase equilibrium constitution for different temperatures at a DMF fraction of 0.27 and the values of the 

vapor fraction at different DMF fractions are shown in Table S4b. At 110 °C, it is expected that the whole mixture is in the 

gaseous phase. At 100 °C, if the DMF fraction is lower than around 0.2, the mixture as a whole is also in the gaseous phase. 

Table 3 shows the inlet reactant streams at 100 °C and 0.72 air fraction, which are the conditions used for the simulations. 
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Table 3. The inlet reactant streams at 100 °C and 0.72 air fraction. 

Phase Units Vapour  

at 25 °C 

Liquid 

at 25 °C 

Vapour   

at 100 °C 

Liquid 

 at 100 °C Component Mole Flow 

AIR kmol h−1 0.0002086 0 0.0002086 1.83×10−8 

DMF kmol h−1 0 7.74×10−5 5.41×10−5 2.34×10−5 

BA kmol h−1 0 1.16×10−7 3.40×10−8 8.23×10−8 

Mole Flow kmol h−1 0.0002086 7.76×10−5 0.0002627 2.35×10−5 

Mass Flow kg h−1 0.006039 0.005672 0.009993 0.001718 

Volume Flow L min−1 0.085 0.0001 0.1336 3.29×10−5 

Temperature °C 25 25 100 100 

Pressure bar 1.01325 1.01325 1.01325 1.01325 

Vapor Fraction [0/1] 1 0 1 0 

Liquid Fraction [0/1] 0 1 0 1 

3.3.2 Reactor modelling 

The molar fraction of O2 in DMF at 25 °C is 3.89 × 10−4. 47 One channel cross-section of the monolith is 1.44 × 10−6 m2, while 

the volume of the channel is 3.59 × 10−8 m3 (obtained from the 3D model). Firstly, the residence time distribution experiments 

were used to determine the liquid velocity (through the average residence time, without the reaction, Figure S9). The average 

residence time obtained was 82.5 min, while the axial dispersion coefficient was 5.37 × 10−8 m2 s−1.  A good agreement of the 

fitted model and the results is presented in the breakthrough curve in Figure S7. Considerable deviation from plug flow 

behaviour can be observed and a wide residence time distribution (from approximately 25 – 150 minutes). 

At 100 °C, the concentration of BA inside DMF entering the catalytic channel is 463.6 mol m−3. 90.5 % conversion is achieved 

and selectivity toward benzaldehyde was 60 %. After regression analysis, the values for both kinetic constants for FeCo@Al2O3 

catalyst were obtained: kreak,1’ = 9.04 × 10−8 m s−1 and kreak,2’ = 6.80 × 10−8 m s−1. The concentrations of BA and BZ along the 

reactor length up until 250 min are presented in Figure S7. At that moment in time, steady-state is achieved, which can be seen 
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from the absence of further changes in the concentration in time. At t = 0 there is zero concentration of BA and BZ inside the 

channel. The outlet concentrations can be seen on the concentration profiles at x = 48 mm.  

 

Figure 8. The concentration profiles of benzyl alcohol (left) and benzaldehyde (right) along the length of the reactor with time. 

The concentration is in mol m−3. 

The concentration profiles at 250 min at steady-state are presented in Figure S7. In the figure, the low saturated concentration of 

O2 can be seen, which needs to be replenished by the flow of air. If mass transfer from the gas to liquid phase was not efficient, 

the amount of O2 in DMF would be depleted, the concentration would be zero at all times and mass transfer of O2 into DMF 

would be the limiting process. The experimental data present 90.5% BA conversion and 57% selectivity to BZ. The transient 

RTD measurements and the axial dispersion model provided a very good agreement and important insight into the reactor 

convection-dispersion dynamics, in this case showing a high level of dispersion in the system. Since the system is too complex 

for intrinsic kinetic studies and the identification of the precise chemical and physical background, it is only suitable and 

appropriate to provide a simple apparent kinetic model, which does not favour a particular mechanism, flow profile and mass 

transfer specifics, but it does consider the effect of the determined level of axial dispersion. Since the system is well mixed 

across the lateral cross-section, the obtained concentration profile should be very close to the actual one, which suffices for the 

basic requirement of the usefulness of a mathematical model and provides a visual representation of the conversion process. 

 

3.3.2 Computational fluid dynamics 

CFD simulations of mass transfer and chemical reactions can be accurately performed for both the liquid and vapor phase, also 

when the liquid and vapor phases are well defined in space. The majority of the fluid inside the microchannels is in vapor phase, 

while the liquid mostly flows along the channel walls and the CFD simulations were therefore performed for the vapor phase.  

Jo
urn

al 
Pr

e-p
roo

f

Journal Pre-proof



Revised manuscript-clean copy 

 

Figure 8 shows the fluid flow field and the pressure drop. A typical parabolic-type velocity profile, which is characterised by the 

highest velocity in the centre of the channel is formed. The velocity at the walls is zero. There are approximately 250 such 

channels in the monolith and this profile is assumed to be the same for each channel. It should be noted that the irregularly-

shaped side channels have a more complex geometry (triangular or trapezoidal prisms). The flow in them has not been modelled 

separately as these channels have a smaller channel cross-section; hence a lower volumetric flow rate would be predicted at the 

same pressure drop conditions. For the kinetic model, however, all the effects of the irregular geometry were taken into 

consideration by the measured axial dispersion through the residence time distribution measurements. The solution is presented 

along the entire channel, showing, from left to right, the velocity field and the pressure field. The pressure drop is linear, as 

expected, and very small, mostly due to the low velocity. 

 

Figure 9. The velocity and the pressure fields along the entire length of the channel. The flow regime is not ideal and as 

such a model respecting the locations of both phases is not easily and objectively developed, and the 1D axial dispersion model 

offers a much better approximation of the actual reaction conditions inside the reactor. However, mostly gaseous flow is present 

inside the channels, and the much smaller amount of liquid is mostly located on the channel walls. In order to obtain the 

predominant gaseous velocity profile and its specifics, as well as the pressure drop of the system, the presented 3D model is the 

best approximation, and although it is not coupled with the reaction kinetics, it should give a good visualisation of the flow and 

pressure fields inside the channels, as can be expected in the reactor. 

Jo
urn

al 
Pr

e-p
roo

f

Journal Pre-proof



Revised manuscript-clean copy 

 

4.  CONCLUSION 

3D printed multi-channel catalytic reactors with tailored microporous bed architectures present a promising approach to 

improving continuous processes in terms of intensification, sustainability, and economic viability. 3D-microstructured reactors 

provide an attractive solution for multiphase heterogeneous catalysis such as selective oxidation of BA to BZ, making them a 

highly effective alternative to batch systems and PGM systems. The present work demonstrates the integration of different 3D 

printed catalyst configurations into a continuous process while allowing for optimal metal utilisation and significant reduction of 

the palladium content by iron or cobalt to gain improved catalytic performance compared to the conventional processes. The 

comparison of 3D-structured design with conventional batch and packed bed reactors serves as a reference to the state-of-the-art 

technology. The data presented show a clear advantage of the printed configuration of the channels and distribution of metals in 

it over conventional configurations (batch and packed bed) both in terms of alternative loading (FeCo on Al2O3) and stacking 

arrangement . It was shown that the alternative stacking of Fe on Al2O3 and FePd on GO can significantly improve the 

performance resulting in an increase of up to 90% in TOF in comparison to the FePd on GO batch analogue. The clear 

conclusion of this study is that the reactor concept and its configuration and operating conditions have led to optimised 

performance in terms of conversion, selectivity and TOF, as successfully demonstrated in the case of FeCo@Al2O3 ‘1-3’ 

monoliths. In contrast, its FePd@Al2O3 1-3 analogues exhibit  a significantly lower selectivity toward Benzaldehyde as the 

secondary reaction proceeds from Benzaldehyde to benzoic acid. In addition, the mixed gas-liquid flow regime inside the 

microstructured reactor was successfully described with a dispersion model, as was determined from the residence time 

experiments. It was found that the concentration of oxygen in DMF is limiting and needs to be replenished by mass transfer 

from the gas to the liquid phase. A good agreement was found with the measured and simulated BA conversion and selectivity 

towards BZ after appropriate kinetic constants were obtained, for the FeCo@Al2O3 catalyst.  

 

ABBREVIATIONS 

BA - Benzyl Alcohol 

BZ - Benzyl Aldehyde 

DMF - N,N-Dimethylformamide 

EDX – Energy-dispersive X-ray spectroscopy 

HPLC - High Performance Liquid Chromatography 
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PGM - Platinium Groups Metals 

RTD - Residence Time Distribution 

SCCM - Standard Cubic Centimeters per Minute 

SEM - Scanning Electron Microscopy 

XRD - X-ray diffraction 
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