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Intelligent In-Vehicle Interaction Technologies

Prajval Kumar Murali, Mohsen Kaboli,* and Ravinder Dahiya*

With rapid advances in the field of autonomous vehicles (AVs), the ways in which
human-vehicle interaction (HVI) will take place inside the vehicle have attracted
major interest and, as a result, intelligent interiors are being explored to improve
the user experience, acceptance, and trust. This is also fueled by parallel research
in areas such as perception and control of robots, safe human-robot interaction,
wearable systems, and the underpinning flexible/printed electronics technolo-
gies. Some of these are being routed to AVs. Growing number of network of
sensors are being integrated into the vehicles for multimodal interaction to draw
correct inferences of the communicative cues from the user and to vary the
interaction dynamics depending on the cognitive state of the user and contextual
driving scenario. In response to this growing trend, this timely article presents a
comprehensive review of the technologies that are being used or developed to
perceive user’s intentions for natural and intuitive in-vehicle interaction. The
challenges that are needed to be overcome to attain truly interactive AVs and their

(OEM) such as Tesla, BMW, Daimler, and
big technology giants such as Google’s
Waymo and Apple Car pushing toward
the full self-driving objective. According
to the SAE J3016 taxonomy!!! of autono-
mous driving, there are six levels of auto-
mated driving systems ranging from level
0 (completely manual) to level 5 (full self-
driving [FSD]) automated systems that
are expected to function in all geographic
locations, all weather conditions, and under
all conditions. The proposed benefits of
intelligent vehicles include fewer road acci-
dents, enhanced safety, reduced traffic con-
gestion, effective commute time usage, and
importantly enjoyable and comfortable
ride. With increased autonomy, the drivers

potential solutions are discussed along with various new avenues for future

research.

1. Introduction

Autonomous vehicles (AVs) will soon become a reality with
almost every major automotive original equipment manufacturer
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also assume the role of mere passengers
who are engaged in nondriving activities
and are unavailable to participate in traffic
interactions. This would increase complex-
ity in a mixed-autonomy traffic environ-
ment as interactions with pedestrians and cyclists are based
on visual cues with the driver. Therefore, intelligent vehicles also
need to autonomously interact with other traffic participants
such as pedestrians and cyclists and other vehicles.

Human-vehicle interaction (HVI) is closely related to the field
of human-robot interaction (HRI). It entails the problem of
understanding and shaping the interaction dynamics between
humans and vehicles. Particularly, the domain of interaction
involves the study of sensation, perception, information
exchange, inference, and decision-making.”” With increasing lev-
els of automation, the driver will have more time and choice to
perform various tasks other than driving and this opens new ave-
nues for interaction. As a result, a growing number of sensors
are being incorporated into the vehicles to understand the driv-
er’s and/or passenger’s actions, emotions, and personal choices
to offer the precise functionalities and services for an enjoyable
ride.”! Figure 1 shows the schematic of in-vehicle interaction
consisting of various interactive interfaces and sensing modali-
ties present in the vehicle as well as some modes of interaction
such as gestures, speech, and eye gaze.

The advances in HVI have been presented in previous review
articles, which have mainly focused on the detection of particular
characteristics for driving assistance such as driver attention
detection,' emotion recognition,”” drowsiness detection,® men-
tal workload,”! and so on. A few other articles have reviewed the
interior designs of AVs to better support and interact with drivers
and passengers.®? Likewise, the user interfaces (Uls) and user
experience (UX) of vehicle interiors have been studied in context
with manual as well as automated driving."” A number of pre-
vious works have also studied the interaction with the external
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Figure 1. Schematic of in-vehicle interaction. Visual interfaces and sensors are shown in red, haptic interfaces in orange, exterior sensors in blue, and
audio interfaces in green. Head pose recognition shown in dashed blue lines as well as various modes of interaction such as eye gaze, hand gestures, and

speech are displayed.

world such as vehicle-to-pedestrian (V2P),['*? vehicle-to-vehicle

(V2V),!**! vehicle-to-infrastructure (V2I),"" and vehicle-to-every-
thing communication (V2X)."*'% These reviews present the
challenge arising due to introduction of AVs into the traffic sce-
nario, for example, interaction between pedestrians, cyclists, and
other vehicles on the road. With comprehensive analysis of vari-
ous technologies and strategies for in-vehicle interaction, this arti-
cle complements the aforementioned reviews on the topics closely
related to the emerging concept of HVL. In this review article, we
focus on intelligent interior interaction between a vehicle and the
driver or passengers. We review the technologies and interfaces
for interaction, in particular haptic interfaces which are growing
in importance in addition to visual and auditory interfaces.

20000

Furthermore, we surveyed the state-of-the-art methods and tech-
niques used for sensation, perception, and interaction. Such an
analysis is timely considering the growth in the field. This is evi-
dent from Figure 2, which shows exponential growth of research
articles published on AVs (Source: Web of Science. Keywords:
“autonomous vehicle” or “autonomous driving”) during 2000—
2020. Although the number of articles on HVI (Source: Web of
Science. Keywords: “human-vehicle interaction” or “driver—vehi-
cle interaction” or “interactive vehicle,” 9490 articles) published
during the same period is much lower, their steady increase dur-
ing the same period reflects the growing shift toward HVI and
therefore the growing importance of technologies and methodol-
ogies for in-vehicle interaction.
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Figure 2. Comparison between number of papers on AVs and human—vehicle interaction over the last 20 years. Source: Web of Science. Keywords:
“autonomous vehicle” or “autonomous driving”; “human—vehicle interaction” or “driver—-vehicle interaction” or “interactive vehicle.”.
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The organization of the article is as follows: relevance and
types of in-vehicle interaction are described in Section 2.
Various sensing technologies for HVI are described in
Section 3. An in-depth discussion about the methodologies that
use these sensing technologies to enable various interaction
modes is described in Section 4. Section 5 presents the chal-
lenges for natural and intuitive interaction as well as attempts
to provide future directions of research in this field. Finally,
Section 6 provides the conclusions. In the Appendix, we provide
a list of acronyms used in this article to aid the reader. We hope
this article can provoke engineers, designers, and researchers
toward developing novel multimodal interfaces and intelligent
methods for interaction.

2. Level of Automation and In-Vehicle Interaction

There are six levels of automated driving systems ranging from
level 0 (completely manual) to level 5 (FSD) automated systems.
These are shown in Table 1. At each of these levels, there are
distinct problems for HVI and roles of the driver, which can be
classified as follows!'”): 1) primary tasks involve maneuvering
the vehicle such as steering and braking; 2) secondary tasks
involve maintaining safety functions such as operating turn sig-
nals and windshield wipers; and 3) tertiary tasks involve all
other comforts and operating in-vehicle infotainment systems
(IVIS).

In level 0-3, tertiary tasks which involve driver—vehicle inter-
action should not cause distraction from the primary and second-
ary tasks. The main task of the driver is to comprehensively
analyze the information of vehicle’s movement state and traffic
condition and make the correct driving strategy and make corre-
sponding driving action. For instance, the SAE established the
so-called 15s rule, i.e., any tertiary task that takes more than
15 s to conduct while stationary is not allowed while the vehicle
is in motion.!"® However, with the advent of level 4 and level 5,
the primary tasks for the drivers and passengers are to perform
nondriving-related tasks such as in-vehicle infotainment, work-
ing, and so on and secondary tasks will be supervising the AV
and traffic situation.!"”) Therefore, depending on the driving con-
text the vehicle needs to interact with the humans in certain ways
according to established regulations and personal preferences of
the drivers. Furthermore, the driver—vehicle interface is also
responsible to smoothly handover from full self-driving to

Table 1. SAE J3016 levels of autonomous driving.™
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manual control when necessary and regulate other interaction
modalities upon temporal priority. The role of intelligent vehicle
assistants (IVA) or intelligent driver assistants can vary depen-
dent on the current task, the level of automation, and the cogni-
tive state of the driver. There is no clear demarcation of the role to
undertake and the IVA can perform a variety of roles in unison
depending on the needs for the user. Some of the major roles and
objectives of the IVA can be characterized as follow.

2.1. Entertainment

Studies have shown that to increase the acceptance of AVs, the
AV must engage the users in activities to avoid boredom while
removing the cognitive load and allowing them to relax.”® From
large screen displays for working"! or watching movies to
immersive technologies such as augmented reality (AR) and vir-
tual reality (VR) for gaming,*? infotainment, and so on, IVA can
enrich the joy of ride for the passengers.””! The objective is to
transform the vehicle into a “living space” for mobile working,
gaming, socializing, relaxing, and even to sleep.

2.2. Safety

One of the major objectives of autonomous driving is the
increased safety for the driver, passengers, and other road users.
In-vehicle interfaces play a crucial role in assisting the driver to
enhance the level of awareness and safety. In level 5, an AV can
handle all possible situations and the driver need not pay atten-
tion to the road situation. Up to level 4 automation, the driver will
have to take control of the vehicle in certain situations. Currently,
level 2 vehicles are entering the automotive markets. Therefore,
driving assistance systems are provided through in-vehicle inter-
faces which are capable of recognizing implicit behaviors such as
driver distraction, drowsiness detection,® emotion detection,”
and various other activities of the driver. Different modalities
(visual, auditory, haptic, or multimodal sensing) may be used
to recognize the driver’s behavior and activities and make infer-
ences on the situational awareness of the driver. The driving
assistance systems can even provide additional features such
as blind-spot assistance, parking assistance, navigation assis-
tance, collision detection, and so on. A particular problem of level
3 driving is the take-over requests (TOR), wherein the AV signals
through various in-vehicle interfaces to the driver to take over

SAE automation level Name Description
0 No automation Driver has full control and responsibility for all aspects of vehicle control even if automated system may provide warnings.
1 Driver assistance Driver has full control of vehicle; the automated system provides features such as lane keeping assistance or
adaptive cruise control.
2 Partial automation The automated system can take control of vehicle functions such as accelerating, braking, and steering. Driver is
required to continuously monitor the automated system for possible intervention.
3 Conditional automation The automated system takes over vehicle function as level 2. The driver is necessary to be present, however
not required to monitor the automated system at all times.
4 High automation The automated system is capable of performing all driving functions under certain conditions.
The driver may have the option to control the vehicle.
5 Full automation The automated system is capable of full self-driving in all possible conditions. Driver intervention is not required.
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control of the vehicle. The intelligent vehicle assistant is respon-
sible for identifying the best modality (visual, haptic, or auditory)
to notify TOR to the driver. In very time-critical situations such as
impending collisions, a highly AV might require the driver to
disengage to autonomous maneuver the vehicle to safety.
Again, the selection of correct modality for communicating to
the driver is important. Recognition of driver’s mental state is
key enabler for increasing safety during assisted driving.”’

2.3. Personalization and Recommendation System

By tailoring in-vehicle services to user’s preferences, learnt over
the long term, it may be possible to enhance user acceptance and
usability of AVs. Some vehicle OEMs such as Land Rover have
proposed the concept of “self-learning car”®*! that leverages arti-
ficial intelligence (AI) to learn user habits. The IVA should be
capable of identifying the distinct characteristics of every individ-
ual and personalize the behavior accordingly, such as setting the
in-vehicle climate control, providing personalized music for each
passenger without disturbing the others and seat configuration,
and so on. Upon learning the habits and preferences, the recom-
mendation system can provide precise recommendations to the
users.” The IVA can also assist in safety, for instance, recom-
mending to take a break during long drives when drowsiness of
driver is detected.

2.4. Natural and Empathetic Interaction

For a natural and intuitive interaction with a human, the IVAs
needs to understand the subtleties of human communication
such as facial expressions, eye gaze, hand gestures, voice tonali-
ties, contextual cues, body language, and so on. To ensure such a
natural interaction, multimodal sensing is needed along with
perception algorithms capable of handling the different kinds
of multimodal data. Furthermore, active sensation and percep-
tion are necessary so that unnecessary data collection is avoided,
and framework can select the most informative data for the task
being modeled. Contextual decision-making is necessary to adapt
the vehicle behavior or in-vehicle interfaces.’! In additional,
empathetic interaction entails the IVA to keenly observe the emo-
tional state of the user such as anger, happy, sad, and so on and
provide recommendations or alter the interactions to adapt to the
user.P! Studies have shown that such empathetic interactions can
increase trust, usability, and acceptance of IVAs.”*)

The rich interaction with the intelligent vehicle is under-
pinned by various sensing technologies discussed in

(a)

Head-Down Display (HDD)

(b)

Head-Up Display (HUD)

Tum feft

Section 3. These sensing technologies are typically coupled with
basic human sensory modalities for interaction such as visual,
auditory, and haptics.

3. Technologies for Interaction

To learn about its environment and the passengers, the AVs
require accurate sensing technologies. The AVs need to recog-
nize human actions and intentions and provide interfaces for
feedback. Typically, the input (humans to AV) and output (AV
to humans) modalities are dependent on the human sensory
capabilities. Humans can interact with AVs explicitly by perform-
ing specific actions to recognize human’s intention. In this sec-
tion, we review the technologies that enable intuitive interactions
between humans and vehicles of the future.

3.1. Vision-Based Technologies

Visual feedback is one of the primary senses for humans. The
visual touchscreen displays are now common in modern vehicles
and provide information related to the vehicle, navigation, info-
tainment, and control functionalities such as in-vehicle climate
control, parking assistance, sunroof control, and so on.?% The
touchscreen displays have rapidly replaced the buttons and knobs
in the head unit. Different types of displays that are being used or
explored for current and future vehicles are shown in Figure 3.
Displays offer multiple functionalities that can be used alongside
third-party applications as well just as with smart phones. They
can provide over-the-air updates to fix bug reports and can be
customized to user requirements. As an example, Mercedes-
Benz has recently showcased its concept car termed the
VISION EQS featuring a central display seamless emerging from
the central console along with separate side display units for the
passengers in front and back seat allowing personalized viewing
for each passenger.’”) Unlike conventional buttons and knobs,
these head-down displays (HDDs) shown in Figure 3a require
visual attention causing distractions. Placed in the central con-
sole, the HDDs require the driver to take eyes-off-the-road to view
information from the display and cause increased cognitive load
while performing a primary task.!*®

The alternative to this is the head-up displays (HUDs), which
are designed to project information through the windshield onto
the road ahead described through Figure 3b. Traditionally used
in aircraft to project information that would be seen on the
instrument panel, the HUDs have permeated the automotive

(c) Head-Mounted Display (HMD)

Figure 3. Different types of display ranging from a) touchscreen-based head-down displays (HDD), b) head-up displays on the windshield using AR

technology (HUD), and ¢) HMDs.
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industry, and have become a common feature on a long list of
new cars. By projecting information onto the road, where the
driver is already looking, the HUD systems limit the amount
of distractions for a driver and therefore improve safety. The
HUDs often complement the conventional dashboard displays
and provide supplementary driving-related information. For
example, the information that they project could be anything
from which radio station is playing to your speed limit or they
can assist the drivers to navigate effectively in accident-prone and
low visibility situations.”® The HUD technology is quickly being
refined because it is being seen as the next major advancement in
interior automotive technology. For example, the use of AR holo-
graphic technology for HUD has recently attracted interest of
automotive industry. As such, the AR-HUD technology is not
new as it has been used for Boeing 727 class commercial trans-
port in 1990s.%*) The AR-HUD uses optical projection to present
virtual information enhancements in the driver’s line-of-sight
without frequent adjustment between the real world and dash-
board/navigation data.*>”! Automotive manufacturers have used
the windshield of the car as a holographic display unit to provide
road intersection guidance,*! ego-lane analysis,** and virtually
see through objects that are obstacles in the path.**) The AR-
HUD technology could also find its way to infotainment in future
AVs. For example, the novel touch enabled holographic display
based on the frustrated total internal reflection (FTIR) principle
could be fitted in the car to allow interaction with midair holo-
graphic objects through the sense of touch.?***! The growing
applications scope of such smart displays will also lead to contin-
uous innovation in technologies and materials used. For exam-
ple, high-performance materials such as polymer films, inks, and
adhesives may emerge as the key components that will transform
in-vehicle panels, touchscreens, and many other applications fea-
turing smart displays.***”! Likewise, such applications are driv-
ers for research in transparent electronics or flexible electronics
for roll-up displays.>*~*"

The head-mounted displays (HMDs) is another class of dis-
plays gaining popularity among vehicle manufacturers
(Figure 3c). HMD is a display device worn on the head or as hel-
met that has a display optic device in front of one (monocular) or
both eyes (binocular). A typical HMD has one or two small dis-
plays, with lenses and semitransparent mirrors embedded in eye-
glasses (also termed data glasses), a visor, or a helmet. AR
goggles or smart glasses worn by the drivers can offer a plethora
of use-cases such as providing vehicle speed and traffic informa-
tion, navigation assistance in poor visibility conditions, parking
assistance coupled with rearview cameras, digital assistants that
can provide information such points of interest, messages, and
so on during highly automated driving (HAD). Furthermore, AR
displays can provide “see-through” technology wherein image
processing techniques are used from various cameras placed
around the car to superimpose digital images of unseen objects
over the actual scene visible to the driver.[*”

Autostereoscopic display (S3D) is another alternative, which
allows the perception of 3D images without the need for any spe-
cial headgear. Such 3D displays are composed of a color imaging
liquid crystal display (LCD) and a monochromatic barrier liquid
crystal display optically bonded. Vertical transparent and light
blocking stripes will alternate on the barrier LCD. The subtly
opposite viewing positions of the right and left eyes toward

Adv. Intell. Syst. 2022, 4, 2100122 2100122 (5 of 27)
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the screen create two interwoven viewing areas on the imaging
LCD. This generates the feeling of depth in the eyes of the
viewer."®! S3D displays have been used in cars such as
Mercedes-Benz User Experience (MBUX)?”! which features
autostereoscopic displays.

Visual sensors including monocular and stereo RGB cameras,
depth cameras (RGB-D), time-of-flight laser sensors, and so on
are increasingly present in the vehicles these days. While exterior
perception for highly automated driving may include sensors
such as RGB cameras, light detection and ranging (LIDAR), radio
detection and ranging (RADAR), and ultrasonic sensors, they can
also be used within the car for interior perception such as gesture
recognition,** human activity recognition,**) head pose estima-
tion,*®! driver distraction or fatigue detection,*”! and so on. The
interior cameras are located near the back-view mirror and on the
vehicle’s rear flank. To capture a 180°-360° view of the surround-
ings, more than one camera or pan-tilt-zoom (PTZ) cameras are
needed in some applications. As RGB cameras are affected by
illumination, infrared (IR) cameras are also used for in-vehicle
applications such as head pose estimation!*® as they are robust
to lighting conditions. RADAR, in particular impulse radio ultra-
wide band (IR-UWB) radar, has been used in-vehicle detection of
babies or pets to prevent accidental locking inside the car.[*”)
Exterior sensors such as LIDAR, RADAR, and stereo-cameras
are used for pedestrian detection and intention estimation.
Multiple cameras and LIDAR on the vehicle need to be calibrated
with respect to the vehicle coordinate frame.*® As the positions
are fixed relative to the vehicle, calibration may be done when
necessary and typically use special calibration targets such as
boxes,PY planar checkerboards,”? and so on. Recent works have
also explored laser sensor calibration in a target-agnostic
approach in the robotic domain which can be extended to the
automotive domain.>*! A comparison between various exterocep-
tive sensors including visual sensors is shown in Table 2.

3.2. Haptics or Touch-Based Technologies

There has been a clear trend in the automotive industry for
replacing buttons and dials with a central touchscreen display
providing multiple functionalities. As discussed in previous sec-
tion, the touch-based visual displays have become the new norm.
The touch-based control in visual displays is generally achieved
through transduction mechanisms such as resistive, capacitive,
and surface acoustic waves.?>** Among these the capacitive
sensing is most popular in touchscreens due to simple electron-
ics and multitouch sensing.®>! However, considering that the
visual display may distract drivers, researchers have started to
explore other intuitive and nondistractive methods for providing
feedback to the drivers. In this regard, tactile or haptic interfaces
offer several advantages such as) nonvisual: secondary informa-
tion can be communicated to drivers and tasks completed with-
out performing glances toward any screen and taking eyes off the
road; 2) natural control: controls using touch are known to be
more intuitive and natural to humans and require less cognitive
load; 3) privacy: communication can be discretely performed
between the person and the car without the need to be displayed
or announced; 4) spatial resolution: touch sensing in humans
have a high spatial resolution and it has been shown that humans
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Table 2. Comparison of exteroceptive sensors.

www.advintellsyst.com

Sensor Measured information ~ Depth range  Resolution  Sensitivity to illumination  Sensitivity to weather conditions  Sensitivity to transparency
Camera RGB - High Yes Yes Yes
Stereo-camera RGB, depth 100 m High Yes Yes Yes
LIDAR Depth 200 m High No No Yes
RADAR Depth <180m Low No No No
Ultrasonic Depth 10m Low No Moderate No
Event camera Events - - No Yes Yes
IR camera Short wave IR images - Medium No Yes Yes
Thermal camera  Long wave IR images - Medium No Yes Yes

can distinguish patterns up to 13 nm from a smooth surface®®;

and 5) reaction time: it has also been shown that tactile feedback
is faster than visual feedback.’”)

The technical requirements for haptic or tactile interfaces
within the car include large area distributed multimodal sensing,
good spatial resolution, bendability and flexibility, fast response
time, low hysteresis, high durability to repeated contacts, and
robustness.”®*?) The tactile sensors can be embedded within
the vehicle interiors where there is usually contact with the
humans such as steering wheel, dashboard, seat, head-rest,
and so on. Dynamic force sensing, distributed pressure sensing,
and point of contact localization are required for extracting tactile
information.®® Capacitive sensing is a popular choice due to
high sensitivity, simple read out electronics, robustness, and
low power consumption.” Novel sensors which are extremely
thin, flexible, and stretchable can be designed by printing con-
ductive material into thin stretchable sheets.®!! These sensors
can be integrated into vehicle interiors that have complex shapes
and structures. A detailed review on tactile sensing technology
particularly in the robotic application domain, but also suitable
for automotive applications, can be found in previous stud-
ies.’#6263 imilar to capacitive touch sensing, proximity sensing
can detect conductive objects, such as humans at close proximity.
Therefore, it can be used to detect in-air gestures as well as touch-
based gestures.®*! A capacitive sensing layer can be embedded
under a nonconductive material such as leather, plastic, or wood
and these materials are usually present within a car. For example,
an active sensing armrest, reported using capacitive proximity
sensing, combines limb detection and recognition of multiple
gestures.®”) Along the same lines, a comprehensive review of
the usage of capacitive proximity sensing in smart environments
is given in Braun et al.*! Other alternative for haptic feedback is
the vibrotactile inputs, which can be provided to alert a drowsy or
distracted driver.[*”*® For instance, by providing tactile alerts to
the driver through sensorized seat, TOR in the context of highly
automated driving (HAD) have been investigated.!* Six tactile
sensors from Engineering Acoustics Inc. were placed on the seat
such that directional tactile signals will be provided to the user on
either side of the thighs.

The novel device capable of providing tactile sensing as well as
vibrotactile feedback integrated into one single module is
another interesting example.”” The vibrotactile component of
the device can provide feedback at frequencies (10-200 Hz) that
are within the perceivable tactile frequency thresholds of the

Adb. Intell. Syst. 2022, 4, 2100122 2100122 (6 of 27)

human hand. Such devices could be possibly integrated into
areas of the car such as steering wheel and armrest wherein sens-
ing and feedback is necessary. Pressure sensing can also be com-
bined with other modalities such as temperature. For example, a
multifunctional touch sensing electronic skin with stacks of
capacitive pressure sensors and temperature sensors has been
reported.”! This flexible skin is capable of sensing pressure
>10kPa and temperature up to 80°C with fast response
(2.5 s) and recovery (4.8 s) time. Human activity monitoring such
as driver posture monitoring use-cases require the calculation of
mechanical strain and deformation. In this regard, the highly
sensitive flexible strain sensor using conductive polymer polysty-
rene sulfonate (PEDOT:PSS) microchannel inside a polydime-
thylsiloxane substrate is worth noting.”? Such a device could
also be used as wearable sensors for the driver to measure mus-
cle fatigue. Haptic feedback is also provided using large tactile
displays that are present in modern-day vehicles. As an example,
the Active Sensing Technology system designed by immersion
using piezoactuators can provide precise and high-fidelity haptic
feedback on display units.”* Integrating haptic feedback over
large area surfaces is not trivial as it requires precise calculation
of mass, direction, and localization of the haptic effects.
Furthermore, haptic feedback can also be provided in accelerator
pedals’* and steering wheels in order to minimize driver dis-
traction.l”>~77]

Smart interactive surfaces present another new direction pro-
viding seamless integration of user interfaces into the interior
surfaces of vehicles, which were originally designed for purely
aesthetic purposes only. In the past, there was a clear demarca-
tion between the interior surfaces which are meant for decorative
purposes and those that provide control inputs or feedback out-
puts. However, this clear boundary has blurred recently with the
advent of smart interactive surfaces which have control elements
integrated into decorative surfaces. A combined use of decorative
lighting elements, capacitive switching technologies, and tactile
actuation integrated with force sensors embedded under a textile
material for a functionalized door component has been demon-
strated in Blomeyer and Schulte-Gehrmann.”® In this case, the
capacitive switching functions for seat memory and seat heating
are visible only when search lighting is activated. Furthermore,
tactile feedback to activate the switch is supplemented by visual
feedback through colors of different switching units. Such tech-
nologies can be used only when necessary and exhibit the func-
tionality of secret-till-lit.”®! Other example of smart soft surfaces,
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with control elements seamlessly integrated into textile for seats
and other soft interiors, has been demonstrated by Yangfeng
automotive interiors.’”! Recently, BMW has also demonstrated
the intelligence surface called “Shy Tech,” for both interior
and exterior surfaces.® This intelligence surface contains cam-
eras, RADAR, and many sensors, takes on digital functions, and
has a self-healing effect.

Smart textiles as sensing elements have also been explored to
develop intelligent interior surfaces as textile is typically used in
the car for seat covers, seat belt, roof top, door panel, and parts of
the dashboard. The fiber-based capacitive and resistive sensors
are quite common. Among capacitive textile sensors, the com-
mon approach is to include single element sensors, conductive
fabric stripes, e-broidery, printed patterns, coated fiber, and hol-
low structured fiber.®! Single element sensors can sense contact
at one point. An example includes capacitive sensors for seat,
wherein electrodes built with conductive textiles were arranged
on both sides of a compressible spacer, forming a variable capac-
itor.®? The hollow structured fiber often uses the air inside the
fiber as a spacer and can be very robust to repeated sitting and
washing typical of car seats. Conductive fabric stripes, knitted or
woven by conductive yarn, can also be used as both support struc-
ture and conducting electrode. For instance, silver yarns-based
sensor knitted into a fabric has been demonstrated with low hys-
teresis,®* as shown in Figure 4c. The patterns of conductive ink
printed on the fabric to form small sensing elements, which can
be scaled at low cost, are another attractive route for smart inte-
rior. The printed patterns are also robust to washing. An example
for this approach is the printed textile-based strain sensor, which
has been demonstrated to measure finger angle and the move-
ments of the pharynx when speaking, coughing, and swallow-
ing.®* Another variant of smart textile sensors is based on
coated fibers, wherein the fabric is knitted or woven by specially
coated fiber and the capacitive change between two fibers gives a
measure of pressure variation.®*! Xsensor®® and Tekscan®”! are
some of the manufacturers of textile-based pressure sensors
which can be used with vehicle seats for monitoring driver ergon-
omy, as shown in Figure 4a,b.

On the contrary, the resistive textile sensors often include sin-
gle element sensor made of various screen-printed transducer
materials, e-broidery, or nanofiber.®” Examples include piezor-
esistive textile sensor wherein the transducer material is sand-
wiched between a nonconductive textile and a conductive

(@) (b)
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grid-structure.® The sensor can detect multitouch points or
can be multimodal. As an example, the stretchable and weavable
piezoresistive multimodal textile sensor capable for distributed
pressure and strain sensor have been reported recently,®” as
shown in Figure 4d. Such multimodal sensors can be advanced
to have wireless data transmission by using innovative methods
such as using stretchable antenna as strain sensors.’ In fact,
there are other interesting avenues such as self-powered sensors
that have been explored in other application areas. For example,
triboelectric nanogenerators have been demonstrated to show
varying power output with applied load, indicating that they
can be used as both energy harvesters and pressure sensors.*>%%
Considering the increasing demand for energy, such solutions
can add significant value to the automotive sector. The conduc-
tive cotton and jute fiber- and resistance-based sensors have also
been explored for temperature and humidity sensing and energy
storage devices.”! Such sensors, made from sustainable materi-
als, offer good solutions for interiors such as foot mats where
fibers are relatively thicker. With fiber-based supercapacitor foot
mats, one could implement interesting, distributed energy para-
digm.®* In contrast to using centralized batteries in future elec-
tric vehicles, the distributed energy can help to generate more
space inside the vehicle and improve the passenger comfort.

Other examples of in-vehicle interaction include midair ges-
tures while having realistic haptic feedback without touching
any surface. These technologies can create rich, 3D shapes
and textures that can be felt. To this end, aerohaptic and ultra-
sonic wave-based methods have been explored.** In this regard,
the ultrasonic wave-based IVIS by Ultraleap and Harman®! is
noteworthy. This system responds to the driver’s gesture com-
mands with tactile sensations confirming instructions.

3.3. Auditory Technologies

Auditory modality plays a central role in environment perception
for driving-related tasks as, for some situations, no other modal-
ity can replace the hearing modality such as honking or the sirens
from an oncoming emergency vehicle. Typically, the auditory
modes of interactions include in-vehicle microphones to receive
human commands in the context of voice-user interface and
loudspeakers for providing in-vehicle infotainment and feedback
suggestion in the case of voice-based interaction. Auditory per-
ception can complement traditional visual and haptic-based

(c) (d) 1

B

Figure 4. Examples of commercial and research prototypes of textile-based sensors. a) Xsensor. Reproduced with permission.! Copyright 2021, Xsensor
Technology Corporation. b) Tekscan. Reproduced with permission.®”! Copyright 2021, Tekscan, Inc. c) Knitted capacitive textile sensor. Reproduced with
permission.®*! Copyright 2019, Wolters Kluwer Medknow Publications. d) Piezoresistive carbon nanotube-based weavable and stretchable sensor.
Reproduced with permission.®¥ Copyright 2020, Elsevier Ltd.
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interaction to perceive and interact with humans and require
research attention. Novel technologies for auditory perception
are discussed in this section.

Considering in-cabin infotainment and audio, passengers may
want to listen to an audio of personal preference with minimum
cross interference from the audio of the person seated next to
them. Although it can be achieved through headphones, greater
comfort and joy of ride can be achieved by creating personal
audio zones through loudspeakers around the headrest or in
proximity to the passenger.’®’! The idea of personal audio
zones has been explored by many automotive manufacturers
such as Hyundai Motor Group.®® Other examples of such tech-
nologies include loudspeaker array on the ceiling of the car cabin
to generate independent listening zones in the front and rear
seats at higher frequencies.’

The microphones typically present within the car can also be
placed on the exterior to detect sirens, vehicles in proximity, and
even pedestrians.'°>1% Other interesting use-cases of acoustic
sensors include learning algorithm for audio-only odometry that
only measured the acoustic signals from external microphones
with good prediction accuracy.’®®! This system was not affected
by the scene’s appearance, lighting conditions, and structure.
The experimental evaluation demonstrated significant resilience
to environmental noise and it can be used as an auxiliary modal-
ity for visual mode for egomotion estimation.

3.4. Physiological Sensing Technologies

Future AVs are expected to provide rich experience that goes
beyond infotainment. In this regard, real-time health status
and mental state make important set of areas considering safety
and well-being of the passengers. A wide range of physiological
sensors developed for wearable applications are being repur-
posed to measure specific health-related data and reveal the cog-
nitive state so that the distraction levels of the drivers can be
reduced. These sensors measure physiological parameters such
as heartbeat, blood pressure, muscles movements, eye-tracking,
and so on. Detailed description of such sensors, particularly for
wearable systems, is given elsewhere**°%!% and some of these
commonly used in automotive context are described later.

1) Electroencephalography (EEG) is a monitoring method to
record electrical activity on the scalp that has been shown to rep-
resent the macroscopic activity of the surface layer of the brain
underneath. Research in driver distraction has shown that EEG
signal is one of the most conclusive measures of measuring
driver fatigue or sleepiness.'>'%! EEG is characterized by four
activity bands depending on the frequency range as beta, alpha,
delta, and theta. The onset of sleepiness is characterized by the
Theta waves and sleep state characterized by Delta activity.**”

2) Electrooculography (EOG) provides information about both
eye movement and blink patterns. Typically, cognitive alertness
in drivers is characterized by rapid eye movements and onset of
drowsiness causes slower movements and longer blink rates.!"*®!
For instance, eye movement monitored using EOG can provide
an accuracy of 80% for driver drowsiness detection.!'”!

3) Electromyography (EMG) is a technique used for recording
electrical activity in muscles. For instance, in Katsis et al.™'% the
authors observed a marked decrease in amplitude and frequency
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on EMG signals with the onset of driver distraction and therefore
can be used as an effective method to measure alertness levels.
4) Electrocardiography (ECG) monitors the cardiac activity and
the heart rate. ECG is easier to capture and can provide a variety
of signals that can reveal the alertness state of the driver.'*!
Furthermore, heart rate can also reveal the mood of the driver
as excited or angry (high heart rate) and calm (normal) state.
5) Body temperature sensing can reveal the comfort levels of
the drivers and passengers and can help regulate the internal
temperature of the car as per the personal preference of the
driver and passengers. A wide variety of wearable systems have
been reported for measurement of body temperatures!***=1
and some of the advanced solutions can wirelessly transmit
the data to smartphone or to electronic units in the vehicle.

3.5. Proprioceptive Sensing Technologies

Another important category is the proprioceptive sensing which
measures the internal state of the vehicle.'*® For example, vehi-
cle states such as speed, acceleration, and yaw must be continu-
ously measured for safe operation. Commonly used
proprioceptive sensors include inertial measurement units
(IMU) for determining the vehicles acceleration, heading sensors
(gyroscopes and inclinometer), wheel encoders for counting rota-
tions of the wheel, altimeters to measure altitude, and tachom-
eters for calculating the revolutions per minute of the shaft.
Several such sensors are described in detail elsewhere.'"”!

4. Methods for In-Vehicle Interaction

In-vehicle interactions in the next-generation vehicles promise to
promote driver situation awareness, trust, comfort, better user
experiences, as well as usability and safety. Traditional in-vehicle
displays are expected to be expanded beyond graphical user inter-
face (GUI) displays with multimodal interfaces, including audi-
tory,''% tactile/haptic,!**”! gesture,!'*®! wearable sensors,"** and
AR/ VR/mixed reality (MR) technologies.!'*”! Vehicles are being
equipped with multimodal sensing technologies, as described in
Section 3, to ensure accurate predictions for in-vehicle interac-
tions. Furthermore, driver or passenger monitoring is crucial
for interaction. In-vehicle interaction systems need to estimate
and infer driver/user actions, states such as fatigue or drowsi-
ness, cognitive state of the driver, and emotions of the users.
Typically, users can interact with an intelligent vehicle implicitly
as well as explicitly. In the implicit communication, users or driv-
ers conduct their behavior in its own right and an observer can
infer the state or intention of the user performing certain behav-
iors."?!) Examples include driver fatigue recognition, emotion
recognition, and even posture or pose estimation which can con-
vey certain cues to the intelligent vehicle. On the contrary, exam-
ples of explicit communication where the users intend to
communicate with the vehicle or vice versa include voice com-
mands, gestures, and communication through haptic and display
interfaces. At times, the implicit cues can also assist while inter-
acting explicitly with the humans. In this section, we review the
state-of-art methods used for in-vehicle or interior interactions.
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4.1. Implicit Interaction

Recognizing driver and passenger behaviors and activities has far
reaching implications for in-vehicle interaction systems and
safety functions. The human-machine interaction can be guided
to the most appropriate modality (visual/audio/haptic) at each
moment if the driver’s intentions are correctly classified. The
safety functions, such as airbags, steering, brake, and crash
avoidance patterns, can be tailored to the best in-time deploy-
ment if the car knows the full body position (sitting, lying,
etc.) of its passengers. During semiautonomous mode, the AV
will use in-vehicle movement and driver attention/disengage-
ment in the driving task to determine if a handover can be
achieved safely or whether a safe stop should be performed
instead. The current best modality for in-vehicle warnings can
also be optimized based on the situation in the cabin (e.g.,
not rely on visual HMI when driver is reading or looking at a
phone). From the interaction perspective, the ride in an autono-
mous or semi-AV can be adapted to the state and activity of the
driver and passengers. Furthermore, with tracking of face expres-
sions, gestures, and body position, the emotional state and
response of the driver and/or passengers can be used to evaluate
the automated vehicle’s actions in traffic. Research on safe
human-robot interaction and in particular human activity recog-
nition techniques is particularly useful even in the automotive
context."*?! Mapping of all passengers in the AV will enable
new methods of understanding how not only social interaction
between passengers, but also between passengers and the intel-
ligent car will look like in the future.'"*) Upon detecting driver
distraction or fatigue, the intelligent vehicle assistant (IVA) may
choose to provide visual or vibrotactile alerts. Furthermore, the
IVA can also engage in conversation with the driver to keep them
alert. If a nonoptimal body posture is detected, the actuated inte-
riors can nudge the driver to a correct body posture for optimal
driving attention. Similarly, if the driver’s mood is found to be
angry or sad, the IVA can recommend soothing music, control
the in-vehicle temperature, and create a relaxing environment.
Furthermore, if the driver is found to be incapable of controlling
the vehicle, the AV can disengage the driver to take the driver to
safety as well as communicate to other vehicles nearby (V2V) and
related authorities (V2X).

4.1.1. Driver Fatigue and Distraction Recognition

Driver distraction is one of the major causes of accidents on the
road and the US National Highway Traffic Safety Administration
(NHTSA) estimate up to 25% of the road accidents happening
due to some form of driver distraction.'*"! Driver distraction
or inattention can be defined as “Driver inattention represents
diminished attention to activities that are critical for safe driving
in the absence of a competing activity.”l'*! Distraction and
fatigue are two common forms of driver inattention leading to
driving accidents.

Prior works have identified various distinctions in the types of
distractions such as performing secondary or tertiary tasks with
hands (manual), eyes (visual), and/or mind (cognitive) off-the-
r0ad.["?*7'?8 While these being the major sources of distractions,
there can be also other inputs such as auditory stimuli which
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cause distraction. Furthermore, some activities can be a combi-
nation of the different types of distractions such as texting, while
driving is a combination of manual, visual, and cognitive distrac-
tion. To detect driver distractions, various sensing technologies
have been discussed in Section 3. We discuss the relevant meth-
ods and algorithms employed using the different sensing tech-
nologies and, furthermore, discuss the methods of fusing one or
more types of sensing information in this section.

Exterior sensors such as vehicle IMU, GPS, and exterior cam-
eras can be used to infer driving behaviors and patterns of erratic
driving which can mean distraction. Vehicle speed is one mea-
sure that is crucial and must be used with other sensor measure-
ments while inferring distractions. Deep neural networks
(DNNs) with architectures such as YOLOv4!'*) and Faster R-
CNNM™ have been used with exterior cameras for detecting
other vehicles and pedestrians in traffic as well as road signs.
Identifying lanes and lane-keeping error can be a metric for
detecting driver distraction.!"*"! For instance, a logistic regression
model has been used to distinguish between distraction driving
and normal driving using lane-keeping errors.*?! Steering wheel
sensors also provide an indirect indication of driver distraction. A
method to predict steering angle through a second-order Taylor
series and the observed angles to calculate steering error has
been demonstrated.'**! The error increases when the driver is
distracted.

In comparison, interior visual sensors such as stereo-cameras,
IR cameras, ToF sensors, and RGB-D sensors have been widely
used to recognize driver and passenger activities, intentions, and
behaviors. State-of-the-art neural network architectures for
detecting driver distraction such as VGG, AlexNet, GoogleNet,
and ResNet have been compared and ResNet architecture seems
to outperform other competing strategies.'**! Even single image-
based driver activity recognition to detect activities such as talk-
ing on phone, texting, eyes-off-road, rubbing eyes, and so on has
been demonstrated using neural networks.*”! An end-to-end net-
work based on pretrained CNN VGG-19 architecture has been
proposed which is robust to luminance, shadows, camera pose,
and driver ethnicity to detect driver distraction."**! Furthermore,
focused areas of the face can also be used to detect distraction,
such as yawning can mean fatigue, eyes-off-the-road with eye-
tracking, blinking rate, and so on. In contrast to DNNs, machine
learning techniques such as support vector machine (SVM) have
also been used to detect eye closures.’** To tackle the sparse
labeled data problem, a novel framework termed Few-shot
Adaptive GaZE Estimation (FAZE) capable of learning a compact
person-specific latent representation of gaze, head pose, and
appearance has been explored.'**! Gaze estimation is then uti-
lized to classify distracted driving and normal driving behaviors.
The internal camera can also be used to detect hands-off-the-
wheel activity. Other metrics to detect fatigue and distraction
include percentage of eye closure (PERCLOS),'**! eyes-off-
road-time,"*”! and yawning and nodding!****** using video
sequences from RGB cameras. Furthermore, infrared cameras
can be used to mitigate variation in lighting conditions.["**!

Apart from visual sensing technologies, physiological wear-
able sensors such as electromyography (EMG), electroencepha-
logram (EEG), electrocardiogram (ECG), electrodermal activity
(EDA), electrooculography (EOG), and heart rate sensors have
also been used for detecting distraction. EEG signals can be
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classified into four categories from vigilant to sleepiness while
driving by training a SVM classifier."*") As EEG measurements
require placing electrodes on the head of the driver, they serve
very little practical use-cases; however, certain novel in-ear EEG
may be deployed for real use-cases."*!) ECG measures the elec-
trical activity of the heart and the driver’s emotions, mental activ-
ity, and body exertion affect the heart rate.***'*}! EOG sensors
are used to record eye movements and can be used to detect
fatigue and sleepiness. For instance, a blink is detected when
the contact between the eye’s upper and lower lids lasts for about
200-400 ms, and a microsleep is detected if the eye remains
closed for more than 500ms and can be detected by the
EOG."** Studies have shown that on the onset of fatigue, the
amplitude of EMG signals decreases gradually which can be
detected by an EMG device."™ ™) The physiological
sensors are intrusive in nature which inhibits their practical
usage. However, novel techniques such as the Neuralink
(https://neuralink.com/) brain—machine interface wherein the
wireless device is implanted directly into the skull may offer
details of the brain activity and cognitive distraction which can
assist driving as well as highly automated driving.

4.1.2. Emotion Recognition

Emotion recognition is critical for daily function in decision-
making, communication, general mood, motivation, and even
driving. Emotion recognition is a complex field of research
requiring the use of physiological sensors and controlled studies
thus increasing the complexity for in-vehicle driver emotion rec-
ognition. Recognition of emotions can also assist in detecting
driver distraction and fatigue that has been discussed in
Section 4.1.1, but can also elicit far more information about
the driver behaviors and can aid in the objective of an intelligent
vehicle that understands and responds to the driver.

Emotions can be classified into six categories as anger, dis-
gust, happiness, sadness, surprise, and fear."*® Studies on
driver emotion recognition have been conducted for recognizing
the six main emotions or a smaller subset such as anger and hap-
piness. With annotated datasets of head and face from RGB or IR
cameras, supervised learning techniques can be used to classify
emotions such as k-nearest neighbors (kNN),[1%150) gy [151:152]
and DNNs.!'*313* The studies provide frame-level predictions as
well as window-level wherein different frame-level predictions
are aggregated using a voting scheme. Using physiological sig-
nals instead, high dimensional signals are extracted using the
variety of physiological sensors. Therefore, dimensionality reduc-
tion algorithms such as principal component analysis
(PCA)!">>1>¢ and linear discriminant analysis (LDA)!"*”'*®! are
used. PCA helps in finding a set of uncorrelated features that
explain the variance in the original data while LDA fits the data
with a linear combination of features while finding a linear func-
tion that discriminates classes. Upon dimensionality reduction,
the popular methods used include SVM and Naive Bayes for
supervised learning to classify the emotions. As biophysical data
consist of time varying signals, recurrent neural networks which
can capture the features from time varying signals have demon-
strated good performance in emotion recognition."** Speech
signals are also used for emotion recognition as speech can
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provide cues which can be used to decipher the emotion of the
driver. Speech signal also consists of high dimensional signals that
require dimensionality reduction techniques such as biophysical
signals. Studies also reveal that features for speech signals such as
pitch, energy, and intensity are useful for emotion recognition.mo]
The emotion state of the driver can also be inferred using the
behaviors such as grip strength on the steering wheel is shown
to vary when the driver was happy or angry.'"®Y) To identify the
best framework for detecting frustration, five different supervised
learning algorithms and their combinations (Bayesian neural net-
work [BNN], SVMs, Gaussian mixture models [GMMs], multino-
mial regression [MNR], and GMM + SVM) have been compared.
The results showed that SVMs and MNR performed the best for
the task of frustration detection from a driver’s sitting posture.¢?
A comprehensive review of emotion recognition in automotive
use-cases is provided in recent reviews such as the work by
Zepf et al.’) A summary of the techniques used for driver distrac-
tion, fatigue, and emotion detection is shown in Figure 5.

4.1.3. In-Vehicle Pose Recognition

For interaction, safety and analyzing driver or passenger activity,
it is crucial to track body parts and the kinematics of the body
such as head pose, body pose, position of hands, feet and trunk,
presence of baby, and so on. Driver posture monitoring is also
important from an ergonomic viewpoint of driving. Studies have
shown that poor posture contributes to driver discomfort over
long-haul drives.'®*%" Therefore, pose recognition is analyzed
separately in addition to the previously discussed sections on
activity, emotion, and distraction detection.

Head pose estimation and tracking, as shown in Figure 6a, is
critical for variety of use-cases such as driver monitoring, distrac-
tion detection, gaze detection, calibration of head-mounted devi-
ces, and so on. Template matching approaches have been
demonstrated for head pose estimation and tracking.'®*! The
head region is detected using feature extraction techniques on
RGB images and then matched to an exemplar head image in
training data. The pose of the exemplar image is the estimated
head pose. Similarly, discrete head yaw and pitch values are
detected by using a coarse-to-fine strategy using a quantized pose
classifier in the work by Wu and Trivedi.'*®! Head pose can also
be estimated by tracking key facial features such as eye corners,
nose tip, and nose corners.[*® The method demonstrates good
performance when the face is in a full frontal view. As it is based
on a monocular camera-based approach, performance degrades
with single perspective, occlusions, or the presence of large
movements. To tackle illumination issues of RGB cameras, IR
camera-based approaches have been devised. For instance, a
novel network termed Head Orientation Network (HON) and
ResNetHG has been designed to estimate head pose from IR
images in the AutoPOSE dataset.*®! Monocular estimation is
sensitive to rapid head movements, which can be tackled by plac-
ing multiple cameras in the field of view of the driver.!"*”]

Structured-light depth cameras have also been proposed for
driver pose estimation, as shown in Figure 6¢. For instance, a
graph-based algorithm to fit a 7-point skeletal model to the body
of the driver using a sequence of depth frames has been pro-
posed.l'®® Similarly, a time-of-flight depth sensor has been used
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Figure 5. Framework for driver distraction, fatigue and emotion detection, and consequent interactions. Note that representative interactions are pre-
sented, as many more types of interactions may be implemented depending on the situation. Prop. Sensors, proprioceptive sensors; Phy. Sensors,
physiological sensors.

Vision and tactile-based head-pose

estimation

Head trac[(ing/ h
Upper body
tracking ’
Leg tracking )
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Figure 6. Various in-vehicle pose estimation use-cases demonstrated in the literature: a) head-pose estimation through visual sensors, b) vision and
tactile-base sensing based head-pose estimation, full body-pose recognition and tracking through c) visual sensing and d) tactile sensors embedded on
the seat.

to estimate the location and orientation of a driver’s limbs, articulated 3D model of a human. However, as is well known
including arms, hands, head, and torso.!"* Iterative closest point  ICP gets stuck in local minima and requires a good initial guess
(ICP) algorithm was used for pose estimation using an to execute the pose estimation process.
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Apart from visual sensors, tactile sensors such as force-sensor
arrays, tactile sensor skins, and proximity sensors have also been
used for body pose and head pose estimation, as shown in
Figure 6b,d. As discussed in detail in Section 3.2, tactile sensing
arrays can be unobtrusively and seamlessly integrated into the
seat. For instance, a seat with distributed pressure sensors on
the backrest and cushions has been used to measure the driver
sitting posture.’’% Such force sensing arrays on seats have been
used to measure driver and passenger body posture for safety
critical applications such as airbag deployment.’”!) Similarly,
pressure-maps fused with IMU measurements have been
deployed to robustly recognize body pose.'”? A sensorized head-
rest with capacitive proximity sensors has been used for head
pose estimation and headrest servoing wherein the headrest
can move according to the movement of the head of the user
using a nonparametric neural network-based method.l"”?!
Other works demonstrate sensors such as ultrasonic sensors
embedded in the headrest for head pose estimation.'”*
However to robustly estimate body and head pose, haptic sensors
need to be combined with visual sensors in a multimodal
fashion.

4.2. Explicit Interaction

In contrast to implicit interaction, users such as driver and pas-
sengers can explicitly interact with the intelligent vehicle assis-
tants through engaging in conversation, proactively
performing tasks, gesturing, and so on. The IVA also needs to
consider various cultural and geographic aspects while proac-
tively interacting with users. For instance, different gestures
can mean different things in Italy or Japan. Furthermore, by ana-
lyzing the emotion of the user, the IVA can adapt its interaction
mode suitably, thus leading to more empathetic interaction.
Explicit interaction can take place via voice-based, display-based,
haptic-based, and even multimodal interfaces as described in the
sections hereafter.

4.2.1. Voice-Based Interaction

Voice—user interface (VUI) can drastically reduce driver distrac-
tion by allowing the driver to interact with the vehicle without
taking the eyes-off-the-road or hands-off-the-wheel and reducing
the visual cognitive load. Voice assistants are more commonly
implemented for OEMs such as BMW Intelligent Personal
Assistant with the “Hey, BMW!” prompt,'”"! Daimler’s
MBUX voice assistant,'”®! and also integration of third-party
assistants such as Amazon Alexa and Apple CarPlay. The digital
voice assistant (VA) needs to understand the commands pro-
vided in a naturalistic way without relying on predefined key
words that require prior training for the users. In-vehicle func-
tions such as infotainment, climate control, communication
such as making calls or sending texts, vehicle status (such as fuel
left) and even providing assistance outside the car by syncing
with other voice assistants.!'”*! Navigation is one of the most used
VUI tasks wherein drivers can request navigation directions on
the go, without typing-in to a touchscreen console and looking at
a display route in safety critical driving conditions.!””)
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During long drives especially during the night, it is known that
engaging in conversation with fellow copassengers in the front
seat can help keep the driver alert and awake.!'’”®) However, con-
versation increasing the cognitive load of the driver such as cell-
phone conversations can be detrimental to driver alertness.
Furthermore, passive listening may not be as effective as active
participation in a conversation.’”?! Therefore, studies have been
done wherein the driver and the VA are engaged in a casual con-
versation rather than information gathering sequence of voice
commands and have shown that it can be effective in preventing
driver distraction.'’®78! Studies showed that short intermittent
conversation with a VA can help increase driver alertness.!'”")
Furthermore, driving simulator-based studies has been per-
formed to show that VAs should provide assertive voices to grab
driver attention."®! Guidelines for designing conversational VAs
for engaging drivers in natural conversation are provided in the
work by Large et al.'®*!

Voice assistants can also assist in alerting the driver for
oncoming emergency vehicles. Sirens are a unique sound gen-
erated by emergency vehicles such as police cars, ambulances,
and fire trucks. The siren sound is issued by the emergency vehi-
cle to alert other vehicles and pedestrians to give way. Due to
driver distractions or sound-proofing of modern cars, drivers
may not aware of the oncoming emergency vehicle. Acoustic-
based emergency vehicle detection method and providing acous-
tic and/or visual alerts for the driver is one method of tackling the
problem. One of the initial real-time siren detection systems
through a signal processing-based pitch detection algorithm
was developed in the work by Meucci et al.'®? The prior work
on siren detection was extended to sound source localization
and providing alerts to drivers with the proximity of the sound
source.’® A CNN-based ensemble model was proposed to clas-
sify traffic soundscape to noise, siren sounds, and other vehicle
sounds.'®? The method demonstrated 96% accuracy for even
short 0.25 s samples to correctly classify emergency sirens.

A big challenge in human-vehicle interaction is the TOR from
level-3 driving to manual control considering the driver’s situa-
tional awareness and distraction levels wherein voice assistants
can be useful. Studies have been performed for the time taken by
the driver to take control once a TOR has been issued with and
without a VA."™® The VA offered a conversational discourse on
traffic situation, infotainment suggestions, and calendar event
reminders. The studies were conducted in a driving simulator
and showed that VA helped in a timely takeover by 39%.
Consequently, other research has also evaluated the use of con-
versational VA for takeover requests during level 3 automated
driving.["®! The study suggested that a simple countdown-based
interface ranked highest in usability and perceived acceptance
but offered least engagement and they proposed design guide-
lines for dialogue-based interaction for TOR.

VUI has inherent issues due to its sequential and temporal
nature. Turn-taking issues are quite common wherein the users
are not sure if the VUI is listening or preparing to
respond."®'8”! Users also need to rely on short-term memory
which is inherently ephemeral.'®® ') This reliance on short-
term memory can be problematic during driving tasks when
the driver needs to multitask between primary tasks and tertiary
tasks. Furthermore, users complain of lack of control during
voice interaction such as accessing particular menus and so
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on.'® 1% This motivates the use of multimodal interaction
which is discussed in Section 4.3.

4.2.2. Display-Based Interaction

As discussed in Section 3.1, a central display unit is commonly
available in modern vehicles wherein the inputs can be with tra-
ditional button and knob-based, touchscreen-based interaction,
voice-interaction or gesture-based interaction."®] However, as
they typically demand visual attention, HUDs and HMDs have
been designed that fuse the informative virtual elements with the
real scene and prevent the drivers to take eyes off the road.
The HUDs are typically used during high-speed driving so that
the driver need not take his eyes off the road while maneuvering
through traffic. As one may imagine, for HUDs and HMDs to fix
objects or cues to the real world scene, head pose tracking and
registration is necessary. The registration method enables to fix
virtual objects/text onto the real-world scene in a precise manner.
More concretely, the following are necessary: 1) the absolute pose
of the vehicle, 2) the head and eye relative position and orienta-
tion with respect to the vehicle coordinate system, and 3) identify
and track objects (such as vehicles) outside the vehicle."*? A
detailed description on head pose estimation is provided in
Section 1.1.3. Registration algorithms need to be real time to pre-
vent visual latency issues, adapt for vehicle vibrations, rapid head
or eye movements and occlusions from the real scene. A real-
time registration algorithm was proposed with an average regis-
tration time of 0.0781 s for AR HUD applications, thus prevent-
ing visual-latency issues.*” Vehicle vibration can cause issues for
registration and a method was proposed for hiding virtual objects
from HUD during large vibrations.*>*! A comprehensive review
on registration methods for AR-based systems is provided in the
work by Jiang et al.."® AR HUDs also present unique lighting
and color blending challenges. As in automotive applications,
there is a high variability of ambient light during daytime and
nighttime driving requiring compensation in the AR HUD to
be visible to the drivers. To tackle this, an active strategy was
designed which samples the background scene and ambient light
to adaptively adjust the brightness and color of the displayed AR
images.!"! Furthermore, in designing display elements, clutter
plays a crucial role which can negatively affect usability if badly
designed. Furthermore, accidental occlusions in HUDs can
cause accidents wherein the virtual object is placed directly in
the line of sight of the driver and occludes the real scene in
front.'* Therefore, robust registration algorithms are necessary
for deploying immersive and informative HUD/HMDs. As men-
tioned in Section 3.1, autostereoscopic displays can be used to
provide display information in passive 3D format. Alerts and
other necessary information can be provided through autostereo-
scopic displays as 3D information are known to capture human
attention faster.'®® For instance, studies have been performed to
investigate the use of autostereoscopic displays in vehicle dash-
boards and found that users performed better in secondary tasks
with 3D-like displays.’®® The studies provided guidelines for
incorporating S3D displays in vehicles. There is also a trade-
off as complex displays are more attractive and immersive for
drivers but increase distraction from primary task. Therefore,
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proper design considerations are required while incorporating
autostereoscopic displays.

4.2.3. Haptic-Based Interaction

Haptic perception involves haptic sensing as well as haptic feed-
back. The haptic modality is a combination of tactile and kines-
thetic modes.'®”) For humans, tactile perception relates to
understanding information from the skin, whereas kinesthetic
perception is the perception of body positions and movements.
Unlike visual and auditory modalities, the haptic modality
requires contact with objects and the environment. In particular,
humans perform active exploratory actions to perceive object
properties, thereby perhaps changing the state of the world.!*®!
Traditional haptic inputs include buttons, sliders, and rotary
devices present in the dashboard or center console that allows
the user to control vehicular functions without taking eyes of
the road. Novel haptic interfaces discussed in Section 3.2 can
be used for haptic sensing and feedback within the vehicle by
covering the interior surfaces such as dashboard, hand rests,
seats with tactile sensors, and vibrotactile feedback actuators.
In this section, we explore methods to process haptic data and
in particular tactile data as well as techniques from providing
haptic feedback in various use-cases.

Possible use-cases for interaction with the haptic modality in
particular vibrotactile feedback in the vehicle are detailed as
follows! ")

1) spatial information from around the vehicles can be
communicated directly via the skin thereby reducing visual
cognition load;

2) warning signals are ideally suited for tactile modality about
immediate dangers;

3) communication of private information silently to passen-
gers without disturbing other passengers;

4) coded information of all types such as car status can be com-
municated to the driver when the driver requests or when spe-
cific conditions are met (such as in-vehicle climate control); and

5) general: providing information of settings of switches, pref-
erences, and so on.

Gesturing is a natural and intuitive mode of communication
developed in humans from birth and spans across cultures, ages,
and tasks.[?°” Gesture-based interfaces can be broadly classified
as 1) systems involving the use of wearable sensors for instance
accelerometers, RFID tags, or data gloves®*'; 2) touch sensitive
interfaces®®?; and 3) noncontact technologies such as depth
cameras, thermal imaging cameras, ultrasonic tracking, and
so on*****"l or a multimodal combination. Depending on the
type of tactile sensors used, a human performing various action
such as patting, scratching, or specific encoded gestures will gen-
erate high dimensional time-varying signals. To capture useful
information, signal processing methods and data-driven
machine learning algorithms are used. Raw tactile signals need
to be converted to corresponding force and pressure values for
subsequent processing.?*” There have been extensive studies for
tactile perception in the domain of robotics??®®! which can be
transferred to the automotive domain. For instance, robust tactile
descriptors have been proposed to extract tactile information
regardless of number of sensors, sensing technologies, types,
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and duration of exploratory movements or gestures.?”’ 2% The
proposed tactile descriptors are inspired by Hjorth parame-
ters?'% and represent the statistical properties of the tactile sig-
nals in the time domain, i.e., activity, mobility, and complexity.
Furthermore, the novel tactile descriptors were used to classify
various actions and gestures such as scratching, tickling, rub-
bing, poking, stroking, punching, patting, pushing, and slapping
as well as a combination of the gestures using a SVM classi-
fier. 211713 Tt was also shown that the framework is invariant
to different subjects performing the actions and to contact loca-
tions as well as provided dynamic cell allocation wherein only
those cells of the distributed tactile sensor were utilized for
the classifier to reduce computational complexity and improving
accuracy. The experiments were conducted on a humanoid robot,
but they can be potentially transferred to the automotive domain
for sensorized vehicle interiors. Tactile sensors can also be used
to learn to recognize and distinguish objects in contact as dem-
onstrated in previous studies.*'*?'>! Recognizing gestures can
be used to actuate parts of the car during autonomous mode
(level 4/5) such as turning the chairs to face the rear and socialize
with other passengers, control various vehicle infotainment func-
tions, and so on. Touch-based and in-air gesture interactions with
a novel active armrest designed with capacitive proximity sensors
were studied in Braun et al..!*” The framework consisted of three
distinct steps. First, by using distributed capacitive proximity
sensors the posture of the human arm is estimated by using a
thresholding technique. Second, single touch or multitouch of
fingers is detected using a weighted average and an additional
thresholding of raw data. Upon preprocessing, the data are
fed into a SVM classifier for recognizing gestures. An empirical
study was performed to observe the effects on in-vehicle touch-
based interfaces and in-air/midair gesture-based interfaces on
driver distraction and user experience in Graichen et al.*'®
Subjective data, such as acceptance and workload, and objective
data, including glance behavior, were collected from the partic-
ipants of the study. Participants rated their perceived safety as
higher while using gesture-based interaction and they performed
significantly fewer glances at the visual display and the glances
were shorter.

Upon sensing, haptic feedback is used by the intelligent vehi-
cle interface to communicate and interact with the users. As
explained in Section 4.1, vibrotactile feedback is typically used
as a form of implicit communication to the drivers.
Vibrotactile feedback is very effective to warn the driver of poten-
tially dangerous situations such as collision during parking,”®
lane departure,**”! overspeeding,**®! and so on. Apart from
warning signals, haptic feedback can also provide informative
signals. For instance, a study has been performed to provide nav-
igation assistance using a wearable belt with eight tactors or devi-
ces providing vibrotactile feedback.*'® The tactors triggered
differently depending on the distance to a turn. The authors
show that such a device can reduce visual cognitive load of fol-
lowing navigation instructions. Similarly, a 5x5 haptic feedback
matrix was embedded on the seat and deployed for providing
directions for navigation in Hwang et al.***!

Haptic interaction may not be the best modality in all use-
cases as suggested in the study by Gaffary and Lécuyer.*”!
For instance, haptic feedback alone is prone to errors in naviga-
tion tasks as demonstrated in the study by Nukarinen et al.*!!
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Although alerts and controls could be provided with this modal-
ity, detailed information or instructions cannot be provided
which is more effectively done using auditory or visual modality.
Furthermore, careful design consideration when a driver should
be provided with tactile feedback as improper use can be poten-
tially startling and dangerous while driving. Therefore, there
have been studies done wherein haptic modality is used in con-
junction with other modes such as visual and auditory for effec-
tive communication.??*=%! This is further explored in Section
4.3 on multimodal interaction.

4.3. Multimodal Interaction

Multimodal systems in user interaction may be defined as “those
that process two or more combined user input modes—such as
speech, pen, touch, manual gestures, gaze, and head and body
movements—in a coordinated manner with multimedia system
output".[ZZG] As with monomodal interaction, multimodal inter-
action can have multiple inputs and outputs. Multimodal inter-
action can offer drivers different methods of interacting with the
vehicle depending on the driving situation and the cognitive state
of the driver. Furthermore, the drawbacks of any single modality
can be compensated using another modality. One modality may
even correct or verify the outputs of another modality. Various
ways of incorporating multimodal inputs in automotive domain
can be detailed as follows!"®!

1) Temporally cascaded modalities: two or more modalities
temporally sequenced such that the partial information which
is recognized from the earlier modality is able to constrain
the possible interpretations of the later modality. For instance,
if a driver provides a speech input to change the menu on the
head-down display screen and immediately uses the central con-
trol knob to manipulate it, the intelligent vehicle assistant (IVA)
already can provide the intended menu as it had recognized the
earlier command.

2) Redundant modalities: it is a special form of cascaded
modality wherein given multiple modes of interaction; each
modality is available at each step. For instance, navigation sys-
tems that can be controlled by touchscreen inputs and equiva-
lently by voice inputs.

3) Fused modalities: multiple modalities can be fused as part
of a single interaction step. For instance, pointing at a structure
while driving and asking “what is that” to the virtual assistant
fuses gesture, speech, and gaze.

Speech modality is often used in conjunction with visual or
tactile feedback as a multimodal interaction method.**”! For
example, a system of interacting with the voice user-interfaces
with gestures for fine-grained manipulation and easy-to-undo
actions has been designed in the work by Pfleging et al.l?*®!
The study compares the voice+gesture multimodal input with
physical buttons as baseline and results show that although mul-
timodal input is slower, it results in similar driving performance
and reduces the visual demand. Similarly, multimodal output of
speech and visual aids for effective user interaction was investi-
gated in the work by Braun et al..”??! The voice user-interface
(VUI) is augmented with visual texts and icons for increasing
the effectiveness of interaction and minimizing distractions.
Their studies conducted with 64 participants in a driver
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simulation setup resulted in the following conclusions: 1) text
summaries help drivers remember facts and improve the user
interface, but they can also cause distraction; 2) keywords reduce
cognitive load and have a positive impact on driving efficiency,
and 3) the use of icons enhances the appeal of the user interface.
Likewise, voice commands were studied in conjunction with hap-
tic buttons and knobs on the steering wheel to navigate and cor-
rect the dictated sentences.”??) The study found that using visual
feedback, voice commands, and manual interactions together
may cause significant distraction. Considering haptics and
voice-based interaction, a study was performed with a
voice+tactile framework wherein VUI is augmented with high-
resolution tactile outputs.”*”! The study had four voice-tactile
schemes: Status Feedback, Input Adjustment, Output Control,
and Finger Feedforward. User studies showed that the proposed
framework improved the VUTI efficiency and its user experiences
without incurring significant additional distraction overhead on
driving. Therefore, the study concluded that multimodality can
help reduce driver distraction.

Considering other multimodal inputs, gestures have been
used in conjunction with visual modalities such as head-up dis-
plays to control menus.?*"! Another study compared interacting
with IVIS with gestures on steering wheel, touch on central dash-
board, and speech.**” The study found no statistically significant
improvement in performance with any modality while the touch
modality required the least time to completion. Considering tech-
niques for processing multimodal data, DNNs are frequently
used for multimodal fusion such as to combine the gaze, head
pose, and finger pointing gestures for object selection.”’]
Similarly, another framework demonstrated use-cases for inte-
grated multimodal modulation of in-vehicle functions using
either a single modality (speech, look, or gesture) or a combina-
tion of two or more.**! Having multiple modalities can help the
driver to choose which modality to use for communication that is
least affected by environmental influences.”**! Multimodal
inputs can be used for controlling vehicle functions in addition
to selecting a particular task or object. For instance, a mixture of
three modalities, voice, gaze, and movements, was used to pick
vehicle objects, such as side mirrors or windows, and then con-
trol these objects with gestures or speech in the study by
NefRelrath et al.[*%

In-air gestures, i.e., those which do not require contact with a
surface and controlled through multimodal interfaces, are
increasingly available in commercial vehicles such as the
BMW iNext.*”) The goal of gesture-based interaction (GBI) is
to reduce the cognitive workload, reduce the demand for visual
attention thereby increasing safety.”*®! As with designing inter-
active interfaces, it is necessary to ensure the GBI mechanism aid
in reducing driver distraction. As an example of midair gestures,
an RGB-D sensor was used to track hand gestures in Riener
et al.** The participants controlled a display screen through
in-air gestures by pointing actions. Their studies showed that
the system is capable of discerning static finger and hand ges-
tures than dynamic gestures. The gestures are performed while
placing the hand on the gear-shift area, thereby reducing the
safety concern. In a similar way, a study was performed to evalu-
ate the degradation of driver performance using in-air gestures
versus touch gestures to control an infotainment system (second-
ary task) while performing the driving task (primary task).[**%
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They performed the The Lane Change Test (ISO 26022 stan-
dard®*%) which aims at measuring the degradation of human
performance with respect to a certain primary task while con-
ducting a secondary task. The result served as an estimate for
the demand of the secondary task. The study consisting of 17
participants found comparable results for driver performance
degradable for both types of interactions. However, as all partic-
ipants were experienced with touch-based interactions and had
no experience with in-air gestures, the study showed promising
avenues for in-air gesture control. Eye-gaze and midair pointing
gestures were demonstrated to be the preferred mode of recog-
nizing points of interests for participants in a study.**"
Furthermore, the participants regulated the vehicle speed (pri-
mary task) while interacting using pointing gestures, thus com-
pensating for distraction.

There is a need for large-scale multimodal datasets to foster
research focus toward development of fusion algorithms and
for comparing various proposed methods. Multimodal interac-
tion has shown great potential and future directions will involve
developing robust algorithms for detecting driver distraction,
emotion, and activity using multitude of sensors increasingly
present in the cars.

5. Discussions: Challenges and Outlook

HVI research is still in its infancy in comparison with similar
areas such as wearable systems and home interiors. In this
regard, the overview of various sensing modalities and techni-
ques for in-vehicle interaction provided here is just the beginning
of this rapidly emerging field. Like any newly emerging field
there are multiple challenges intertwined with huge opportuni-
ties for future research and some of these are described later.
While some of the challenges (e.g., communication, energy,
etc.) are common with areas such as wearable systems, others
(e.g., interior designs) are unique to automotive sector.

5.1. Empirical Studies for HVI

Many of the technological solutions developed so far are used for
various HVI studies (e.g., driver distraction and emotion recog-
nition) that are typically conducted in driving simulator environ-
ments, 24 open source annotated datasets, or controlled outdoor
environments with preplanned routes. Although in controlled
environments, it is possible to elicit emotions by providing rele-
vant triggers, such studies are not always representative of the
real emotional or cognitive state in real-world conditions.®
Furthermore, many of these studies are not diverse enough to
cover different cultural and geographical situations. Therefore,
“universal” annotated datasets which are unbiased to geographi-
cal, environmental, cultural, regional, and traffic signal variations
are necessary to test various algorithms and technologies devel-
oped for HVI. In connection to this, the issue of annotation
errors in tasks such as emotion recognition from facial expres-
sions which is subjective and is dependent on the annotator’s
mental state, cultural and geographical influences are rele-
vant.”**! Datasets having different annotation biases cannot
be effectively merged during the training process and
models evaluated on cross-datasets demonstrate deteriorating
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performance.*** Some works have designed frameworks that
can robustly learn from various datasets with differing annotator
preferences.***! Methods such as Expectation Maximization
(EM) have been used to identify the latent ground-truths from
different annotators.***?* Another issue as noted in Li and
Deng®* is the data imbalance due to practical data collection
reasons: annotating and collection of smiling emotion is easier
than eliciting emotions such as disgust or anger. A possible solu-
tion may be balancing the class distribution during preprocess-
ing using data augmentation. Research toward developing
models robust to annotation bias and labeling errors deserves
attention. Moreover, majority of the recognition studies are per-
formed with initial data collection and postprocessing is done to
compare different methodologies. In this regard, there is need to
study the online recognition systems with real-world experi-
ments. To this end, robust and certifiable perception algorithms
and decision-making frameworks are needed so that failure can
be easily noted.***!

5.2. Robust Multimodal Perception and Interaction

With a multitude of sensors present within the car, the research
on effectively combining different complementary sensing infor-
mation becomes necessary. As an example, with novel haptic
interfaces being integrated into the vehicles, the visuo-haptic
fusion techniques need to be designed to utilize complementary
qualities of vision and haptic data.?°¢**%! In this regard, the
methods developed in the robotic manipulation domain can
serve as reference. Furthermore, cross-modal transfer between
vision and touch sensory modalities can bring redundancy in
the system, making it more reliable, especially when one sensing
modality is unavailable.”**** For instance, pose estimation
within the vehicle can be performed using multimodal fusion
approach of visuo-haptic data. It is important to formalize a
representation for visual and haptic data considering the dense
and sparse nature of these modalities. In this regard, a novel
active approach based on Bayesian filtering has been designed
which can handle sparse tactile data in addition to dense visual
data for robustly estimating object pose.’?*® Multimodal sensing
further provides the opportunity to detect faulty or erroneous
data from one sensing modality using another modality. Such
corrupted information may be rejected for any inference based
on sensor inputs. In addition, alternative sensing modalities can
also correct the faulty modality using the built-in redundancy of
the data. The active selection of the correct sensing modality for a
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given task is necessary as depending on the nature of the task; a
certain modality may perform better in monomodal fashion
rather than through multimodal fusion. Therefore, appropriate
sensor selection is critical for a safe and reliable vehicular sys-
tem." Another novel research path is interior and exterior sen-
sor fusion. This can assist in predictive support wherein internal
sensors monitor driver state, distractions, and fatigue levels and
fuse the data from exterior sensors which can detect obstacles
and pedestrian intention and proactively inform the driver pre-
venting a late intervention.”>® Perception errors due to sensing
inaccuracies or algorithmic errors can be corrected on-the-fly
through human-vehicle teaching as well. Through HVI, the vehi-
cle can learn from humans and correct its internal models.**”)

5.3. Functional Vehicle Interior Designs

Starting from level 3, the role of the driver can change gradually
to a mere passenger and responsibilities shift from focusing on
the traffic and vehicle control to more hedonic and entertainment
oriented. For instance, in level 4 the steering wheels and accel-
erator and braking pedals will be minimally used when the driver
needs to take over control and in level 5, they need not be present
at all. Therefore, new possibilities of designing the interiors of
the car will emerge. The seats no longer need to face the front;
they could even be turned to face each other as shown in
Figure 7. Such configuration (with rotating seats in front-facing
and rear-facing) has been investigated for TOR task in a driving
simulator.”*® Numerous entertainment units can fill up the
commute time through large screen displays, holograms, or
workstations. Novel designs can also foster socializing with other
passengers in a natural way as well as reconfigurable interiors
wherein the interiors can be modified into various configurations
to satisfy the personal preferences of the passengers. New inte-
rior interfaces also need to clearly communicate to the users the
intentions of the AV as well as guide the users who will be unfa-
miliar with the interfaces to take over control and so on.
Therefore, the interior designs will be crucial to foster trust
and acceptance of AVs by the people. Moreover, novel interior
designs will also foster other challenges such as haptic sensing
surfaces that can adapt to reconfiguration, wiring considerations
(or wireless communication), actuators capable of performing
smooth reconfiguration by understanding the pose and intent
of the users, and so on. Furthermore, as an increasing number
of sensors are integrated into the vehicle, interesting questions
on placement of sensors, cost, and redundancy of sensors will

Functional Vehicle Interior Designs

Figure 7. a—c) Examples of functional interiors for concept vehicles. Part (a): Reproduced with permission.* Copyright 2021, Daimler AG. Part (b):
Reproduced with permission.?°”) Copyright 2021, BMW Group. Part (c): Reproduced with permission.’® Copyright 2021, Yanfeng Automotive Interior

Systems.
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emerge. As various sensor setups are designed in a very early
stage of vehicle development, it is challenging to test the different
types of sensors, sensor positioning or number of sensors in real-
world environments. For sensor positioning, number of sensors
or even make the design future-proof. Therefore, simulations can
play a crucial role in terms of designing sensors and their posi-
tioning. In this regard, the work involving simulation-based eval-
uation of arbitrary sensor setups for environment perception is
worth noting.?*® Similar research efforts toward simulation of
interior perception are needed.

5.4. Communication Protocols

Traditional communication systems such as local interconnect
network (LIN),**”  controller area network (CAN),*!
FlexRay,”*” and CAN with flexible data rate (CAN-FD)?”** have
been used for in-vehicle communication over the years. The
modern vehicle electrical/electronic (E/E) architecture is focused
on automotive Ethernet (1000Base-T1 and 100Base-T1).[¥
Ethernet is a key enabler for level 2/ level 3 autonomous driving
functionalities as well as for intelligent vehicle assistants. It
appears that the automotive Ethernet is the future of in-vehicle
networking.?®*! This is because 1) It directly supports service-
oriented architectures (SOA); 2) AVs use high compute systems
as well as diverse sensing devices which work on IP-based net-
working. Therefore, high-bandwidth, full-duplex Ethernet is
required to exchange data between them; 3) in traditional
CAN-based networking, the essential information of the CAN
bus needs to be available to other services outside the car as well
where the receiver would face difficulty understanding the
vendor-specific CAN bus data. Ethernet protocol and IP address-
ing are well established also outside the vehicles. Comparison
between the various intravehicle protocols is shown in Table 3.

New technologies such as 5 G/ 6 G offering ultralow latencies
and ultrahigh reliability can be used for V2V/V2X networks.[2%¢!
On the lines of ultralow latencies and ultrahigh reliability, the
notion of Tactile Internet has emerged recently. The IEEE
P1918.1 working group®®”! defines the Tactile Internet as “a net-
work, or a network of networks, for remotely accessing, perceiv-
ing, manipulating, or controlling real and virtual objects or
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processes in perceived real time.” Particular applications include
platooning or cooperated automated driving wherein vehicles in
a platoon autonomously follow each other at a close distance, all
driven by a common shared leader. The leading vehicle may be
manually controlled by a professional driver, autonomously
driven or teleoperated.**® Thus, platooning is a safety critical
application wherein follower vehicles rely on local perception
information as well as V2V information transmitted wirelessly
from other vehicles as well as the leader vehicle. The state-of-
art networking protocols are still lacking in terms of low latencies
and reliability guarantees that the tactile Internet is aiming to
tackle.”®! Detailed reviews on tactile internet can be found else-
where.2*??7% In.vehicle networks are also susceptible to mali-
cious adversarial attacks detailed in Section 5.5.

5.5. Security, Privacy, and Trust

Protecting in-vehicle sensors from adversarial cyberattacks is cru-
cial for the safety and privacy of the vehicle users. As the sensors
and most vehicular functions such as steering, sensors, and so on
are controlled by electronic control units (ECUs), they are suscep-
tible to adversarial attacks. For instance, GPS signals can be
attacked by spoofing or jamming the signals. GPS signals can
be jammed by sending signals at the same frequency.?”"]
Once jammed, the attacked may spoof the GPS signal by locking
onto the GPS detector with a spurious signal which can then pro-
vide abrupt changes to the vehicle’s ego position.*”?7% Some
studies to investigate possible attacks on sensors such as
LIDAR, RADAR, and cameras have brought to fore some inter-
esting facts. For example, fake obstacles can be presented to a
LIDAR by using a transceiver to receive the laser pulse sent
by the LIDAR and delay the response pulse back to the
LIDAR.?”*%7%] Similarly, interior sensors such as microphones
and cameras are also susceptible to potential attacks to the pri-
vacy of the passengers.[?”%)

In-vehicle communication channels as well as V2V and V2X
communication streams can also be susceptible to adversarial
attacks. For example, remote attacks could be performed without
any alteration to the vehicle and control of critical functions such
as braking and steering. A similar case led Fiat-Chrysler

Table 3. Comparison between selected intravehicle networks.?%3%? Note: the power consumption is based on average values for computed for a typical

transceiver device from each protocol 1%

Protocol ~ Bandwidth Max Typical topology Power requirement  Relative Selected application
[bits s ] efficiency [mW] cost
LIN <20K 51.6% Linear bus 45-75 Low Battery monitoring, window control, steering wheel, temperature sensor,
sunroof control, alternator module
CAN 100-500 K 59.6% Mostly linear bus ~50 Low/ Engine controller, transmission unit, seat module, climate control,
Medium electrical stability control, headlamp assembly

FlexRay 5-10m 97% Linear bus, star or ~50 High  Steering angle sensor, safety RADAR, all-wheel drive, dynamic suspension
hybrid control, throttle control, network backbones

Ethernet 100 m 97.5% Point-to-point ~150 + 507 Medium Cameras, LIDAR, RADAR, entertainment unit, navigation system,

audio module, amplifier control, wireless electronics connector, network
backbones

3For Ethernet, each port adds up to 50 mW of power consumption.
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Automobiles (FCA) to recall 1.4 million vehicles.”””! Similarly,
the CAN protocol is vulnerable to malicious attacks through
injection of spurious packets into the bus.*’®) For instance, a type
of denial-of-service (DoS) attack, called bus-off attack, may exploit
the error handling scheme of the CAN bus to shut down or dis-
engage ECUs.””®! On the contrary, CAN-FD provides a larger
payload that could be used for encryption of the data.
Blockchain frameworks can also be used for protecting in-vehicle
networks.”®) An open challenge for blockchain-based vehicle
security is the consensus mechanism, i.e., the election of peers
for the consensus algorithm!?®” as it directly impacts the integ-
rity of the data in the network. Another challenge for blockchain
is to integrate with existing in-vehicle protocols such as CAN
and LIN.

As detailed in Section 4, DNNs are commonly used for per-
ception from raw sensor signals for interior as well as exterior
of the vehicle. DNNs are very vulnerable to adversarial examples
as demonstrated very recently by OpenAI”®Y) wherein, among
other examples, a state-of-art DNN classified an apple incorrectly
just by placing a sticker with “iPod” written on it. These attacks
are called typographic attacks. Similarly, an AV was caused to
drive recklessly by deliberating generating toxic signs on the road
by an attacker.”®? Defense against adversarial attacks is a rapidly
progressing research field and explainable or interpretable learn-
ing models may prove to be a way forward for robust perception
and decision-making.

In-vehicle systems are also susceptible to breaches of privacy.
For example, exterior cameras may capture sensitive videos and
data of pedestrians as well as confidential areas such as militarized
zones.[®¥ Similarly, interior cameras and microphones can always
listen in and observe the driver and passenger activities. Even if
these sensors are turned off, vehicle’s trajectories from GPS data
can reveal information such as work and home addresses.**"
Haptic interfaces monitoring vital signals can reveal sensitive
health-related information to any potential attack. More research
is required for data privacy and protection for AVs.***!

Overreliance and trust on immersive interactive technologies
may prove to be detrimental during assisted driving. Studies have
shown that humans are incapable of effectively focusing on mul-
tiple information channels simultaneously.”®*®! For instance,
drivers may become overreliant on AR cues provided through
HUDs or HMDs such as taking the next turn and prioritize it
over real-world cues such as sudden vehicle stoppage in front
of the vehicle.”®”! Research toward trust on the virtual assistants
in the car requires attention as over trust can result in missing
real-world cues and mistrust may result in the driver ignoring the
interface completely, thus resulting in no interaction.!'?
Research on transparency and explainability of AVs is also crucial
to improve the trust and adoption of AVs in the future.

5.6. Data Processing and Energy Challenges

5.6.1. Data Processing

With a multitude of sensors being integrated into the vehicle, the
amount of information collected and processed by the vehicle
increases rapidly. In a study conducted by Intel in 2016 showed
that AVs will generate up to 4000 GB of data every day and each
AV will generate the same amount of data as 3000 people.l®® For
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instance, the amount of data generated by cameras (40 MB/s),
LIDAR (70 MB/s), RADAR (100 KB/s), GPS (50 KB/s), and
Ultrasonic (100 KB/s), whereas novel interior sensors are yet to
be benchmarked for the amount of data collected. Powerful com-
pute hardware is included in vehicles to handle the large amount
of sensor data produced and perform inference and control
actions. For instance, graphic processor unit (GPU) such as
NVidia DRIVE PX2 and NVidia DRIVE AGX are capable of per-
forming 30 and 320 trillion operations per second (TOPS) while
utilizing 60 and 300 W power, respectively.”®*! Furthermore, high-
performance compute hardware raises the cost of the overall sys-
tem significantly. As a consequence, affordable edge computing
devices that are low powered have seen research interest®®’)
but require further attention. Moreover, new methods for han-
dling the information flood are required and are an active area
of research. Active perception can mitigate collection and process-
ing of redundant data.*” Compute resources can be centralized
wherein the compute hardware and associated power source lie in
the same space within the vehicle but does not provide fail-safe
redundancies for the sensors that are distributed around the vehi-
cle. In contrast, by distributing compute infrastructure in the vehi-
cle can increase robustness to failures and provide redundancy for
safety critical features such as object detection and steering during
level 3-5. Additional communication channels for distributed
computing may lead to increased costs and weight of the vehicle
due to increased wiring which can be potentially tackled through
wireless communication.”"! Distributed computing framework
for AVs relies on middleware software stacks such as Data
Distribution ~Service (DDS),*? Robot Operating System
(ROS),”Y  Automotive =~ Open  System  Architecture
(AutoSAR),*" and so on for seamless integration of different
functionalities, services, and compute hardware. However, auto-
motive OEMs may prefer to use proprietary middleware as part
of their autonomous driving software stack which can decrease
software reusability and vendor specific software modules.***
Therefore, flexible software architecture capable of using ven-
dor-specific components, open source software as well as different
real-time processing, is required.?®> A robust, open-source real-
time vehicle operating system remains to be an open challenge.
Furthermore, for real-time functioning, various data sources from
multimodal sensors require proper time synchronization which
can be potentially problematic due to the different relative frequen-
cies of the sensors. Time synchronization using network time pro-
tocol (NTP) can lead to timestamp differences of up to 100 ms.**]
A comprehensive review on data processing and computing chal-
lenges for autonomous driving can be found elsewhere *°!

5.6.2. Energy Challenges

Typical battery capacity of full battery electric vehicles (BEVs)
ranges from 80 to 100 kWh. For fully AVs, the auxiliary electrical
load requirement is expected to increase by few kilowatts to power
the various on-board electronics, sensors, and computation units
such as GPUs. Thus, the range of full autonomous electrical vehi-
cle would be reduced compared with the standard BEV. For
instance, the heating, ventilation, and air condition system
(HVAC) is one of the largest auxiliary loads on the BEV.**!
Sensors and computing units are other auxiliary electrical loads
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which are connected to the battery power source via a DC/DC con-
verter connected to a 12 V bus. For a minimal number of sensors
and compute for an AV such as LIDAR, RADAR, IMU, cameras,
and NVidia GPU, the power requirement is estimated to be
approximately 200 W.[?*! This does not consider the interior sens-
ing stack, display units, and infotainment systems. A study showed
that energy consumption of connected and AVs is expected to
increase the current energy consumption up to 15%.1%%%
Therefore, increase in autonomy without accounting for energy
efficiency will reduce range and increase costs for the consumers,
thereby reducing the potential adoption by consumers.

Considering renewable sources of energy, recent studies have
shown that novel low-cost, thin film and flexible solar cells inte-
grated into all upward facing parts of the vehicle may provide a
viable solution for battery range extension.**”) Simulation stud-
ies with such solar cells showed up to 17.5% reduction in annual
net vehicle energy usage and average range extension of 47 km/
day in Detroit on an average sunny day.**”’ Similarly, a novel
electronic tactile skin designed with miniaturized solar cells
showed the potential to generate more than 100 W if covered over
an area of 1.5 m%*®®! In addition, vehicle-to-grid (V2G) technol-
ogy will enable electric vehicles to provide energy back to the grid
in case of increased demands as well as to store and discharge
electricity produced from renewable energy such as solar or wind
which can fluctuate during the day.**”!

Energy can be stored in vehicles in a centralized or distributed
form. Apart from redundancy in communication wiring as seen
in Section 5.6.1, redundancy for wiring for energy distribution is
also critical. A typical nonautomated sedan will have wiring up to
3640 m and additional communication and power wiring due to
sensing such as LIDAR and RADAR may be up to 120 m.**"1 A
central power source would require lesser and simpler wiring
architecture but compromises on fail-safe redundancy of power
failures to any sensing, compute, or motor units. On the con-
trary, distributed power storage with small storage units strate-
gically placed around the vehicle can offer redundancy to power
failures in wiring to any device. However, this would increase the
length of wires and cabling and also the overall weight of the
vehicle. Therefore, a trade-off needs to be struck for redundancy
and power efficiency. Research in this field is nascent and novel
techniques for distributed energy harvesting and storage are
required to account for increase in auxiliary electrical loads.®
With the growing number of BEVs, environmental sustainability
issues have been raised with increasing use of batteries.
Sustainability must be a criterion at every stage of vehicle produc-
tion and in particular, biocompatible and biodegradable materi-
als could be used for energy harvesting and storage.**

Therefore, there is a clear challenge for energy and data effi-
cient sensing and compute devices within the car. To have natu-
ral interaction and increased autonomy, edge compute devices
require high computational capabilities. Intel, NVidia, and
Qualcomm are building processing units optimized for self-driv-
ing cars with high compute and low power consumption.*°”
Traditional GPUs that are used to execute DNNs are exception-
ally power and data hungry which can drain out the vehicle’s bat-
tery whereas relying on cloud computing can increase lag and
latency issues in safety-critical processes such as driving.
Recent studies have shown that neuromorphic technologies
enable energy efficient edge computing possible by using a
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thousand times less power than a traditional GPU.°*2%% For
instance, spiking neural networks (SNNs) running on an embed-
ded neuromorphic hardware have been used to recognize voice
commands 0.2 s faster than a GPU alternative while consuming
much less power.*®"! Low-powered edge computing devices
implemented on NVidia Jetson TX1 module have been shown
to support most AV functionalities while consuming as less as
11 W of power in comparison to high powered GPUs that con-
sume around 300 W.*°!

Similar to neuromorphic computing devices, low-powered and
neural-like sensing devices have also emerged to tackle the data
processing and energy requirement problems. Although it is
promising to consider the entire vehicle interior covered with
large-area flexible tactile sensing e-skin, the information process-
ing of a large amount of data emerging from the distributed tactile
sensing has remained a challenge.’®* Similarly, powering such
large area tactile sensors can also be a constraint for future battery
electric vehicles. There has been research for distributed local
processing of tactile data performed in situ to release the compu-
tational load from the central processing compute units. For
instance, a novel hardware-implementable neural network based
on neural nanowire field effect transistors (»-NWFETs) has been
proposed for distributed local tactile neuromorphic processing
mimicking a human skin.?** Essentially, the possibility of print-
ing nanowires®*” shows potential to fabricate large area, conform-
able tactile sensors capable of local distributed computations to be
covered on curved surfaces.l*”

Research toward novel energy management systems, high
compute hardware with low energy consumption, and low-
powered or self-powered sensing devices are necessary for
energy-efficient AVs.

6. Conclusions

With increasing levels of automation and intelligence in the vehi-
cle, the scope for interaction between the human and the vehicle
is also growing. While there has been tremendous research in the
field of environment perception and control for autonomous driv-
ing, the growing need for in-vehicle interaction is also leading to
more sensors being integrated within the car. Legacy display
interfaces and haptic devices such as buttons and knobs are being
replaced by novel multi-modal sensing devices. In this article, we
have attempted to provide a review of the state-of-art of human-
vehicle interaction in terms of automotive sensing technologies
and associated methods and techniques for providing natural
and intuitive interaction. The role and need for such interactive
interfaces are outlined. Recent technologies which enable inter-
action are reviewed. State-of-the-art methods which enable a vehi-
cle to understand the implicit contextual cues of communication
as well as explicit communication modes such as speech and ges-
tures are discussed. Furthermore, the advantages and disadvan-
tages of using any particular modality for interaction have been
detailed as well as methods for multimodal fusion have been out-
lined. Finally, we discussed the current challenges in human—
vehicle interaction research and raised several questions such
as: How can AVs understand contextual cues using multiple sour-
ces of sensing data? How can we develop intelligent vehicle assis-
tants that are not only effective to interact but are also empathetic

© 2021 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH


http://www.advancedsciencenews.com
http://www.advintellsyst.com

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

toward the users? How can AVs analyze passenger behavior and
activities while respecting privacy and being nonintrusive? How
can novel interior be codesigned with sensing and interaction
modes in mind? How can AVs change the internal structure
or functions to minimize occupant stress and increase productiv-
ity or comfort? How can human-machine interfaces (HMIs) in
AVs foster trust through transparency and explainability of
actions and intentions? What kind of communication protocols
are necessary to keep up with growing number of sensors and
information generation in the vehicle? How can AVs achieve
energy efficiency whilst consuming battery power for motors,
sensors, intelligent interiors, and so on? We believe that future
interactive AVs should focus on tackling these questions.

7. Appendix

Table of acronyms used in this article.

Acronym Explanation

AV Autonomous vehicle

HVI Human-vehicle interaction
HRI Human-robot interaction
FSD Full self-driving

OEM Original equipment manufacturer
SAE Society of Automotive Engineers
vav Vehicle-to-vehicle

V2P Vehicle-to-pedestrian
V2X Vehicle-to-Everything
V2G Vehicle-to-grid

V2l Vehicle-to-infrastructure
VIS In-vehicle infotainment system
IVA Intelligent vehicle assistant
TOR Take over request

HDD Head-down display
HUD Head-up display

HMD Head-mounted display

AR Augmented reality

FTIR Frustrated total internal reflection
HAD Highly automated driving
S3D Autostereoscopic display
LCD Liquid crystal display
RGB-D Red green blue-depth
LIDAR Light detection and ranging
RADAR Radio detection and ranging
IR Infrared

ToF Time-of-flight

PTZ Pan-tilt-zoom

IR-UWB Impulse radio ultrawide band
LED Light-emitting diode

EEG Electroencephalography
ECG Electrocardiography

EOG Electrooculography
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Acronym Explanation
EDA Electrodermal activity
EMG Electromyography
GUI Graphical user interface
IMU Inertial measurement unit
VR Virtual reality
MR Mixed reality
HMI Human-machine interface
NHTSA National Highway Traffic Safety
Administration
GPS Global positioning system
CNN Convolutional neural network
DNN Deep neural network
SVM Support vector machine
PERCLOS Percentage of eye closure
kNN k-nearest neighbors
PCA Principal component analysis
LDA Linear discriminant analysis
BNN Bayesian neural network
GMM Gaussian mixture models
MNR Multinomial regression
VUI Voice user interface
VA Voice assistant
RFID Radio-frequency identification
GBI Gesture-based interaction
LIN Local interconnect network
CAN Controller area network
CAN-FD Controller area network with
fixed data rate
E/E Electrical/electronic
SOA Service-oriented architecture
ECU Electronic control unit
DoS Denial of service
TOPS Trillion operations per second
DDS Data Distribution Service
ROS Robot Operating System
AutoSAR Automotive Open System
Architecture
NTP Network time protocol
BEV Battery electric vehicle
GPU Graphics processing unit
HVAC Heating, ventilation, and air
condition system
SNN Spiking neural network
NWFET Neural nanowire field effect transistor
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