
Northumbria Research Link

Citation: Faridpak, Behdad, Farrokhifar, Meisam, Alahyari, Arman and Marzband, Mousa
(2021) A Mixed Epistemic-Aleatory Stochastic Framework for the Optimal Operation of
Hybrid  Fuel  Stations.  IEEE  Transactions  on  Vehicular  Technology.  ISSN  0018-9545  (In
Press) 

Published by: IEEE

URL:  https://doi.org/10.1109/TVT.2021.3103799
<https://doi.org/10.1109/TVT.2021.3103799>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/46922/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/475604165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

A Mixed Epistemic-Aleatory Stochastic Framework
for the Optimal Operation of Hybrid Fuel Stations
Behdad Faridpak, Meisam Farrokhifar, Senior Member, IEEE, Arman Alahyari and Mousa Marzband, Senior

Member, IEEE

Abstract—The fast development of technologies in the smart
grids provides new opportunities such as co-optimization of
multi-energy systems. One of the new concepts that can utilize
multiple energy sources is a hybrid fuel station (HFS). For
instance, an HFS can benefit from energy hubs, renewable
energies, and natural gas sources to supply electric vehicles along
with natural gas vehicles. However, the optimal operation of an
HFS deals with uncertainties from different sources that do not
have similar natures. Some may lack in term of historical data,
and some may have very random and unpredictable behavior.
In this study, we present a stochastic mathematical framework
to address both types of these uncertainties according to the
innate nature of each uncertain variable, namely: epistemic
uncertainty variables (EUVs) and aleatory uncertainty variables
(AUVs). Also, the imprecise probability approach is introduced
for EUVs utilizing the copula theory in the process, and a
scenario-based approach combining Monte Carlo simulation with
Latin Hypercube sampling is applied for AUVs. The proposed
framework is employed to address the daily operation of a novel
HFS, leading to a two-stage mixed-integer linear programming
problem. The proposed approach and its applicability are verified
using various numerical simulations.

Index Terms—Hybrid fuel station, uncertainty, stochastic
scheduling, imprecise probability.

I. INTRODUCTION

IN the last few years, the emergence of new technologies
brought forward many challenges and opportunities within

the concept of the smart grid. The trend is changing from
managing and scheduling energy systems independently to-
ward multi-energy systems integrating energy infrastructures
with various natures such as natural gas and electricity [1].
Energy sources, as well as their networks and carriers, would
ideally interact together continuously acquiring an appropriate
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management tool to combine operations of all system com-
ponents [2]. In this regard, energy hub (EH) is introduced as
an encouraging option to combine the management of multi-
energy systems.

A. Motivation and Literature Review

EH employs various types of energy sources, converters
and storages thus attracting many researches investigating the
optimal operation of EHs [3]–[10]. In study [3], a multi-
objective particle swarm optimization (MOPSO) method is
utilized for optimizing EH performance. The optimal coupling
of energy systems is addressed in [4], [5] utilizing a mixed-
integer linear programming (MILP) approach. However, con-
sidering the structure of the optimization, other approaches
such as alternating direction method of multipliers (ADMM)
[6], multi-agent genetic algorithm (MAGA) [7] and a decom-
posed energy flow [8] were adopted to analyses the optimal
operation of EHs. In this scope, other solutions also have been
included, like stochastic dynamic programming (SDP) [9] and
chance-constrained programming (CCP) [10].

EHs have several practical applications, one of which is
in hybrid fuel stations (HFS) where, for instance, an electric
vehicle (EV) can be supplied along with other types like a
natural gas vehicle (NGV). In this sort of application, efficient
charging of EVs and refueling of NGVs is a new challenge
in the integrated management of EHs. Also, a structure to
efficiently utilize EH source while charging vehicles in the
station is required. There are studies that address the afore-
mentioned issues but only separately. For example, in [11],
the uncertain charging pattern of plug-in vehicles owners was
modeled by a stochastic approach. The effect of price-based
and incentive-based demand response programs (DRPs) on
the optimal behavior of EV owners was proposed in [12].
The main stakeholders of EVs charging and NGVs refueling
scheduling are the operators of HFS and vehicle owners. In this
regard, a bi-objective optimization problem was formulated
to optimize these stakeholders in [13] jointly. Furthermore,
to reduce operation cost, the authors in [14] proposed an
EV charging station integrated with energy storage (ES) and
photovoltaic system (PV). For a compressed natural gas (CNG)
station, the optimal switching process of the gas compressor
(GC) was achieved considering electricity tariff in [15].

Note that, considering multi-energy systems that consist of
an EH, in practical applications, the optimized operation faces
various uncertainties that complexify the decision-making
problem. The uncertainty sources in the previous researches
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mostly include renewable generations, market prices and de-
mand. There are several approaches available while dealing
with uncertainty. The authors in [16] propose a probability
density function (PDF)-based method combined with Latin
Hypercube sampling (LHS) to address the uncertainty of
renewable power generation. Other uncertainty approaches like
the interval optimization method and point estimate method
(PEM) to consider the uncertainty of generated power from
wind with variable speed (υ) in wind turbines (WTs) as well
as produced power from solar radiation (SR) in PVs were also
investigated in recent studies [1], [17], [18]. Besides, Monte
Carlo is also widely used when the generation of scenarios
for uncertain parameters is required [19], [20]. However,
uncertainty has more than one dimension or more generally
more than one type depending on the nature of the uncertainty
sources not adequately addressed in the related literature. In
this regard, in terms of nature, the uncertainty variables can
be classified into two different categories, including aleatory
uncertainty variables (AUVs) and epistemic uncertainty vari-
ables (EUVs). According to their random laws, the AUVs
sampling results from empirical distribution functions and
statistical estimates of the probabilities. In contrast, EUVs
include uncertainty variables with lack-of-knowledge about
formulations, parameters, and input data [21].

B. Proposed Approach and Paper Contributions

In this study, at first, we introduce different aspects of
uncertainty quantification and how to differentiate between
uncertainties. We present a general mathematical approach
incorporating aleatory variability and epistemic uncertainty
features applicable in cases that a decision-maker faces mul-
tiple uncertainties. In practical applications, all uncertainties
should not be modeled with the same approach. For instance,
conventional approaches, such as scenario-based approaches
are not practical to address uncertainties that lack a proper set
of historical data. Besides, in the scenario-based approaches
[5], [16], [20], [23], the scenarios with a high probability
of occurrences are selected, mostly neglecting extreme and
infrequent situations. To address this issue, it is possible
to increase the number of scenarios with the side effect of
the complexity and extra computational burden. Then, we
introduce a framework for an HFS that supplies electric and
gaseous vehicles. As the operator of this HFS deals with
multiple uncertainties, generally with different natures, we
apply the introduced mathematical approach for the optimal
scheduling of HFS while counting for natures of multiple
uncertainties. Finally, in the numerical studies with real-world
data, we demonstrate the application of our approach in the
proposed HFS daily operation.

Table I classifies proposed methodologies in EHs mod-
eling and scheduling in terms of components, application,
uncertainty handling and solution method. Accordingly, the
contributions of the study are summarized as follows:
• Proposing a stochastic mathematical framework to in-

clude different quantifications of uncertainty variables
in the optimization, namely: a mixed epistemic-aleatory
uncertainty modeling framework.

• Providing a detailed HFS structure to supply two different
types of vehicles while utilizing an EH.

• Incorporating the mixed uncertainty variable modeling in
a two-stage probabilistic optimization model for the daily
operation of the proposed HFS.

The remainder of the paper is organized as follows. Section
II presents mathematical modeling of the uncertainty variables,
scenario reduction, and HFS. Optimization framework of the
proposed HFS is explained in Section III. Numerical results
are illustrated in Section IV. Finally, Section V concludes the
paper.

II. MATHEMATICAL MODELLING

In this section, we first address the uncertainty quantification
details and then present our uncertainty models within the
introduced frameworks. Then, HFS and its components are
introduced. Finally, mathematical approaches for the optimal
daily operation of the HFS are demonstrated.

A. Uncertainty Variables Modeling

We propose an uncertainty modeling approach for an op-
timization where the decision-maker is dealing with multi-
ple sources of uncertainties with different innate natures. In
general, the uncertainty can have different conceptions and
can be divided into two types [21], namely: EUVs, which
are caused by the lack of information and in our study, we
represent them by imprecise probabilities, and AUVs which
are caused by the natural variability of random phenomena
and we model them by a probability-based approach. Note
that, the EUVs and AUVs are denoted by X and Y within this
study, respectively. We explain the detail of each uncertainty
type modeling in the next two subsections. This consideration
is the main contribution of the paper in terms of uncertainty
modeling. For instance, for the uncertainty variables such as
EVs’ load (Lev) the lack of information raises uncertainties in
state of charge (SOC), dwell times, demand distribution, driver
preferences regarding charging and the market penetration of
EVs. Therefore, we apply the imprecise probability to exhibit
how explicit the precision of HFSs charging limitation is
known. While, in practice, the implementation of conventional
PDF-based approaches for this type of uncertainty variables
is not efficient because the precise values of the model
parameters might not be accurately estimated due to lack of
data in the actual operational conditions. As a summary, we
use this classification for uncertainty variables, since epistemic
uncertainty is a severe problem for real-world operation. To
better clarify the explained approaches, the overall process
of uncertainty modeling for both types is demonstrated in a
flowchart in Fig. 1.

1) Epistemic Uncertainty Variables Modeling: We apply
imprecise probability to exhibit how explicit the precision
of something is known. Indeed, the fundamental source of
imprecision is incomplete knowledge of input variables. There
is no exact rule to assume a specific probability for uncertain
variables. They could realize to a random value within a
random uncertainty set. The idea is to model the imprecision
by considering a small random space between bounds when
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TABLE I
THE COMPARISON OF DIFFERENT METHODS FOR EH OPTIMAL OPERATION

Reference Components Utilization Uncertainty Modeling methodvariables characterization modeling
[1] WT, PV, ES, C1, P2G2, GT3, GS4, GC HFS SR, υ, EV, NGV Probability 2m+1PEM MILP
[3] WT, C, T5, CHP6, F7 Distribution system EV, υ, price Probability 2PEM MOPSO
[4] ES, T, CHP, TS8, F Distribution system - - - MILP
[5] PV, WT, CHP, HP Residential SR Probability 2PEM MILP
[6] PV, ES, SC9, CHP, TS, HP10, AC11 Residential - - - ADMM
[7] T, CHP, F, HE12 Distribution system - - - MAGA
[8] WT, PV, T, CHP, B13 Power system SR, υ, load Probability 2m+1PEM Decomposed
[9] ES, El, HS14, FC15, CHP, B, TS Power system Price, load Probability PDF SDP
[10] C, HP, F, CHP, WS16 Distribution system SR, υ Probability PDF CCP
[11] WT, ES, CHP, TS, B Parking lot EV, υ Probability PDF -
[22] PV, HP, T, CHP, B, TS, ES, AR17, AC Residential SR, load Probability PDF MILP

Proposed WT, PV, ES, C, P2G, GT, GS, GC HFS EV, NGV Non-probability Imprecise probability Two-stageSR, υ, price Probability PDF
1Converter, 2Power to gas, 3Gas turbine, 4Gas storage, 5Transformer, 6Combined heat and power, 7Furnace, 8Thermal storage, 9Solar combisystem,

10Heating pump, 11Absorption chiller, 12Heat exchanger, 13Boiler, 14Hydrogen storage, 15Fuel cell, 16Water storage, 17Air conditioner.

Run scenario reduction procedure

Divide the CDF into N 

equiprobable intervals

Determine the number of 

samples

Select a value randomly of 

each interval

Transform each CDF into 

the value with the inverse of 

the normal PDF

Apply LHS method by 

calculating CDF of samples

Randomly generate input samples

Normalize samples by (1b) and (1c)

Calculate statistics parameters by (1d) 

and (1e)

Determine the limitation of normal 

PDF by (1f)-(1j)

Construct p-box

Apply copula theory

Select N samples with maximum 

copula density function

Imply inverse normalization function

AUVs modelling EUVs modelling

Historical data is available Historical data is not available

Fig. 1. Uncertainty variables modeling for each time period t.

enough previously known data is available (e.g., historical
data), or a larger space when there is a lack of information
regarding the epistemic uncertainty. The proposed stochastic
framework regarding the epistemic uncertainty is demonstrated
in (1). Indeed, imprecise probabilities for each real-valued,
continuous and uncertain variable X ∈ {X1, X2, ..., Xτ1} are
the lower and upper cumulative distribution functions (CDFs)
indicated by F (x) and F (x), respectively. These are the upper
and lower probabilities of the X valued by x ∈ R. This is the
interpretation of probability bounds analysis visualized by the
probability box (p-box) as demonstrated in (1a). Where �X
denotes the p-box of X.

Indeed, the realizations of uncertain variable X , whose
distribution function is unknown, are restricted within the
p-box. When there is no extra data about the moments or
distribution family more than what is implied by the two
bounding CDFs. In this regard, the p-box representation of
X can be denoted more compactly as

[
F (x), F (x)

]
in which

F (x), F (x) : R → [0, 1]. Alternatively, p-boxes could have a
wider range of applications to deal with uncertainties com-
pared to other similar probability theories such as interval

SET 1 Mathematical model of stochastic framework

�X =
{
F (x) : ∀x ∈ R, F (x) ≤ F (x) ≤ F (x)

}
(1a)

Norm
(1)
X,i+1 =

xi+1 − xi
xi

i ∈ {0, 1, ..., N − 1} (1b)

Norm
(2)
X =

n

N
n ∈ {1, 2, ..., N} (1c)

µ =
1

N

∑N

n=1
Norm

(2)
X µ ∈ [0, 1] (1d)

σ2 =
1

N − 1

∑N

n=1

(
Norm

(2)
X − µ

)2
σ ∈ (0, 1] (1e)

f (x) =
1√

2πσ2
e−

(x−µ)2

σ2 (1f)[
µ, µ

]
=
[
µ− zα/2 σ/

√
N,µ+ zα/2 σ/

√
N
]

(1g)

zα/2 = Φ−1 (α/2 ) ∈ [0, 1] (1h)[
σ2, σ2

]
=
[
σ2 − zα/2 a, σ2 + zα/2 a

]
(1i)

a =

√(
(N − 1)

3
/N4

)
(1j)

probabilities [17], [18].
The imprecise probability modeling starts with generating,

random samples [x]
N×τ1 by Monte Carlo simulation in the

range of X limitations
[
X,X

]
as the input vector. Due to the

dissimilar properties of uncertainty variables, the input data
are normalized by defining a two-step normalization function
for each X. At first step, all quantities of x in which x :

R →
[
X,X

]
are transformed into the Norm

(1)
X,i+1 : R →

[−1, 1] by (1b). In the next step, to calculate the normalized
data-sets of the second step, Norm(2)

X : R → [0, 1], we sort
the data-sets numbered by n from first step to replace the
smallest number with the value 1/N , the second smallest
normalization number with 2/N and so on until the largest
number is replaced with the value (N − 1)/N . This provides
one ordering of numbers for each X as stated in (1c).

To derive p-box schematic of these samples, the normal
distributions N

(
µ, σ2

)
with mean µ and standard deviation

σ are obtained for each X from unbiased point estimates in
(1d) and (1e). Considering the previous steps procedures, the
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density function, f(x), can also be obtained as shown in (1f).
The p-box is defined based on unknown information about
bivariate µ and σ2. Note that, we presume the ranges of[
µ, µ

]
and

[
σ2, σ2

]
for generated samples. The values of this

marginal data are calculated by (1g)-(1j). Where, α determines
the confidence level as 100(1−α)%. As well, zα/2 is related
to inverse standard normal Φ−1 (.) [24]. In (1j), the parameter
a is defined to shorten (1i). In Set 1, parameters such as N
and α separately relate to the precision and the width of the
probability interval. Indeed, these are predefined parameters to
achieve the desired results based on the operator’s decision.

Finally, the CDFs of each X are calculated and its p-box can
be constructed accordingly. With the proposed normalization
function, the random values of Xs are transformed into the
same range of numbers resulting in a proper analysis with
the copula theory. The copula theory is a jointly modeling
approach to achieve a single independent and identical dis-
tribution for Xs. This theory is utilized in order to tighten
the probability interval and to increase the accuracy of the
probability method, which leads to a better data-set. It should
be mentioned that the utilization of copula theory does not
contradict the imprecise nature of Xs and covers all possible
occurrences [19]. The final output of the copula theory is
the construction of an uncertainty set based on the posterior
prognosticated distribution. According to this distribution, we

generate a new data-set of a normalized number
∗

NormX . We
apply copula density function to choose a posterior prognos-
ticated distribution for each pair of Xs. In fact, N values of
each paired X with the highest copula density are selected as
∗

NormX . With the inverse process of normalization function
in (1b), (1c) realistic input samples for the proposed optimiza-
tion framework can be achieved.

2) Aleatory Uncertainty Variables Modeling: For the sec-
ond type of uncertainty variables (Ys), a probability-based
method is proposed. We assume while modeling this type,
the decision-maker has access to historical data for generating
input samples. Subsequently, primary samples are generated
based on these statistical data. Then, the LHS method is
applied to estimate input values for the proposed optimization
framework.

The LHS method is a satisfied-random procedure for sam-
pling variables from a specific distribution [16]. Accordingly,
there is a vector for each Y ∈ {Y1, Y2, ..., Yτ2} from a
prescribed PDF. To select N samples, the LHS approach
divides this vector into N subsets. Each subset is characterized
by equal probability. The sampling process from each vector is
dependent on the subset. LHS method is carried by transform-
ing CDF of Y into the value with the inverse of the identical
and independent normal PDF. The normal PDF of each Y is
defined on the range of [Dn, Un] with Dn = (n− 1)/N and
Un = n/N . This procedure repeats N time for each Y.

B. Scenario Reduction

For total operation time horizon T, with assuming total
number of uncertain variables is equal to summation of
EUVs and AUVs numbers (τ = τ1 + τ2) and generating N
sample under proposed method, there is Nτ data-set at each
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Fig. 2. Basic structure of the proposed HFS.

t. Since this number is high, the complexity, running time
and calculation burden of the problem are also increased. To
alleviate this issue, we utilize SCENRED application which
is applied with GAMS software to reduce the number of
scenarios [25]. SCENRED is a useful solver of GAMS which
can be applied when scenario reduction is needed in scenario-
based stochastic optimization. The SCENRED solver utilizes
a fast backward/forward technique to reach a small number
of scenarios, which includes two algorithms, i.e. backward
reduction and forward selection [26].

C. Configuration of the Proposed Station

In this section, the mathematical formulation of HFS assets
is presented through (2)-(4). The overall structure of the HFS is
depicted in Fig. 2. The HFS can be divided into three layers.
The input layer includes received powers from an upstream
electricity grid (P tEG), υt and SRt as well as received gas
volume from the urban gas network (GtGN ). Then, in the
interface layer, converters, power to gas system (P2G), gas
turbine (GT) and compressor transform the input powers. In
this layer, the HFS utilizes ES and gas storage (GS) to store
multi-carrier energies. In the output layer, the HFS supplies
EVs (Lev) and NGVs load (Lngv). Based on the type of
energy, the constraints are divided into three main categories.

The first category includes the RESs, electricity grid, and
ES as expressed in (2). The relationship between input (P tυ)
and output wind power (P tWT ) of WT is presented in (2a). In
which, we use the formulation applied in [1] to calculate the
output power based on (υt). Also, power capacity limitation is
depicted in constraint (2b). Similarly, the correlation between
input SR power (P tSR) and output PV power (P tPV ) as well
as power capacity limitation of PV are modeled as (2c) and
(2d). The exchanged power capacity between the proposed
HFS and upstream electricity grid is demonstrated by (2e).
The energy balance for ES charging (P tch), discharging (P tdch),
and exchangeable (P tex) powers can be formulated as (2f). In
(2g), by dispatchable power from PV, WT, upstream electricity
grid, and GT modeled by dispatchable parameter γ the ES
is charged through the AC/DC and DC/DC converters with
predefined efficiency ηCs. The maximum charge and discharge
power limits are represented by (2h) and (2i). To avoid
simultaneous charging and discharging, binary variable Itch
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SET 2 Electricity system model

P tWT = ηWT .P
t
υ t ∈ [0, T ] (2a)

0 ≤ P tWT ≤ PWT (2b)
P tPV = ηPV .P

t
SR.A (2c)

0 ≤ P tPV ≤ PPV (2d)
−PEG ≤ P tEG ≤ PEG (2e)
P tex = P tch/ηES + ηES .P

t
dch (2f)

P tch = γ.ηCs.[(P
t
PV + P tWT + P tEG) + P tGT ] (2g)

0 ≤ P tch ≤ Itch.P ch Itch ∈ {0, 1} (2h)
0 ≤ P tdch ≤ (1− Itch).P dch (2i)
SoCt+1 = SoCt + [P tch.ηES − P tdch/ηES ] (2j)
SoC ≤ SoCt ≤ SoC (2k)
SoCt=0 = SoCt=T (2l)

SET 3 Coordination constraints

GtP2G = ηP2G.P
t
P2G (3a)

P tP2G = δ.ηCs.[P
t
WT + P tPV + P tEG] ∀δ ∈ [0, 1] (3b)

0 ≤ P tP2G ≤ PP2G (3c)
P tGT = ηGT .λ.G

t
GN ∀λ ∈ [0, 1] (3d)

0 ≤ P tGT ≤ PGT (3e)
Gtout,GC = ηGC .P

t
GC (3f)

P tGC = %.[P tWT + ηCs.P
t
PV + P tEG] ∀% ∈ [0, 1] (3g)

0 ≤ P tGC ≤ ut.PGC ut ∈ {0, 1} (3h)
Gtout,GC = CF.Gtin,GC (3i)

Gtin,GC = (1− λ).GtGN (3j)

is introduced in constraint (2h). Itch is equal to one when
charging mode is on. Additionally, the relationship between
charging or discharging power and state of charge (SOCt)
is presented in (2j). The state of charge is limited by (2k).
To ensure that the state of charge at the beginning and
end of optimization period is equal, the constraint in (2l) is
considered.

The operation constraints of the P2G, GT, and compressor
which coordinate electricity and natural gas are formulated
as the same category in (3). The P2G converting process
of electricity power (P tP2G) to natural gas flow (GtP2G), are
modeled as shown in (3a). In (3b), the P2G input power
is supplied utilizing dispatchable power of WT, PV, and
electricity grid constrained with (3c). The GT output power
(P tGT ) is generated by converting dispatchable natural gas
from urban gas network (GtGN ) in (3d) and limited by (3e). As
stated in (3f), the output CNG from the compressor (Gtout,GC)
mainly depends on received dispatchable power (P tGC) from
WT, PV, electricity grid, and ES modeled by dispatchable
parameter % in (3g) and limited in (3h). To extend the expected
lifetime and reducing maintenance cost of compressor, we
define auxiliary binary variable ut in which is 1 if compressor

SET 4 Gaseous system model

0 ≤ GtGN ≤ GGN (4a)

W t
s = W t=0

s +
∑T

t=1

(
W t
in −W t

out

)
(4b)

W s ≤W t
s ≤W s (4c)

W t=0
s = W t=T

s (4d)

Export the results

Run the proposed Two-stage approach
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Ɛ=Ɛ+1

Generated scenario from scenario reduction 
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Generated scenario from scenario reduction 

procedure considering HFS constraints

Start

Stop

Ɛ: Number of each scenario

E: Total number of scenarios

Details of the procedure are provided in Fig. 1Details of the procedure are provided in Fig. 1

Fig. 3. Summary of the optimization process.

is switched on. In (3i) the pressure of output CNG from the
compressor depends on CF as a compression factor. In (3j),
the compressor input gas (Gtin,GC) is supplied by dispatchable
gas flow from urban gas network.

The gaseous constraints include urban gas network and
GS specified as (4). Where Ws is stored gas weight in the
GS. Accordingly, the supplied natural gas from the urban gas
network is limited by (4a). The stored CNG in the GS is related
to input gas weight (W t

in) and output gas weight (W t
out)

quantified by (4b) and limited in (4c). The constraint in (4d)
guarantees the equality of the stored gas at the beginning and
ending of the optimization period. Since there is a unilateral
path for connecting the compressor, GS and NGVs, GS’s input
and output gas are limited. Besides, the type of gas is CNG, the
capacity of GS is relatively low, and GC compresses the gas
whenever sense the pressure drop, even NGVs are refueling.
Hence, the gas in the proposed GS can be practically stored
and used simultaneously.

The introduced HFS is implemented by energy transfor-
mation, redistribution, and storage among different types of
energies. Hence, the mathematical model of the HFS as well
as converting the relationship between the input and output
energies can be expressed as (5). Accordingly, the coupling
matrix H is considered as constant coefficient constructed
based on components efficiencies and dispatchable factors to
connect received energies in the input layer (P tin) and supplied
demand power in the output layer (P tout) as (5a). Regarding
connections in Fig. 2, the relationship in (5a) is rewritten
as (5b)-(5d). Where, the dispatch factors γ, λ, δ and % are
predefined parameters determined by HFS operator.
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SET 5 HFS model

[Pout] = [H]× [Pin] (5a)[
Ltev

Ltngv

]
=

[
He Hge

Heg Hg

]
×

[
P te

GtGN

]
(5b)

He = ηCs (1 + ηPV + ηWT ) + (γηES + 1− γ)

Hge = ληGT ηCs (γηES + 1− γ)

Heg = (δηP2G + %ηGC)
(
1 + ηWT + ηPV η

2
Cs

)
Hg = (1− λ) ηGC

(5c)

P te = P tWT + P tPV + P tEG (5d)

III. THE PROPOSED OPTIMIZATION FRAMEWORK

The objective function of the optimal operation framework
of the HFS is expected day ahead (DA) operation costs
demonstrated in (6). We employ a two-stage decision-making
approach to solve this problem as shown in Fig. 3. Indeed,
the operation of all components is classified into two differ-
ent types: deterministic (scenario-independent) and stochastic
(scenario-dependent), resulting in a two-stage approach. The
first type of components is considered as the first-stage to
minimize the ES’s charging and discharging number stated
by binary variables, i.e., Itch, Itdch as well as the unit-
commitment binary variables to constraint the compressor’s
turning-on and turning-off situation, i.e., yt, ut, zt under a
deterministic framework. As well, the second type components
including scenario-based day-ahead decision-making variables
to achieve minimum stochastic operation cost, i.e., P tEG, GtGN ,
Ltev and risk analyzing ξCV aR are considered as second stage
problems. The deterministic variables from the first-stage are
considered as input parameters for each scenario of the second-
stage to implement the interconnection between the proposed
solution methodology stages.

In (6a), different stages of the proposed approach are
presented by E1 (.) and E1|2 (.) in which the optimal decision
in the second stage depends on the results of the first stage. In
addition, ε = {1, 2, 3, ..., E} is number of each scenario, πε is
stochastic probability of each scenario in which

∑E
ε=1 πε = 1,

β is risk factor, and ξCV aR is CVaR with confident level α.
The decision variables of each stage ω1 and ω1|2 are shown
in (6b) and (6g).

The first-stage decision variables are scenario-independent
variables to represent the basic two damageable components
under various status changes. Hence, the decision variables in
the first stage are included in the compressor operation cost
CCt and electricity storage operation cost SCt. To minimize
the compressor switching number between on or off state, we
model compressor operation by defining two binary variables
yt and zt in (6c)-(6e). Where, SU and SD are compressor
start-up and shut-down costs, respectively. In (6f) the ES
charging SCCt or discharging cost SDCt is modeled. These
variables are determined before incorporating random samples
and generating realization scenarios. Thus, they are constant
in all scenarios.

The second-stage is run with incorporating uncertainty

SET 6 Two-stage optimal operation

Min
∑T

t=1

[
E1

(
ωt1
)

+
∑E

ε=1
πε.E1|2

(
ωt1|2

)]
(6a)

+β.ξCV aR

s.t.:
E1

(
ωt1
)

= CCt + SCt (6b)
CCt = yt.SU + zt.SD (6c)
yt − zt = ut − ut−1 (6d)
yt + zt ≤ 1 (6e)
SCt = ItchSCC + ItdchSDC (6f)

E1|2

(
ωt1|2

)
= PCtε +GCtε + LCtε (6g)

PCtε = Cte.P
t
EG,ε (6h)

GCtε = Ctg.G
t
GN,ε (6i)

LCtε = ρ
(
Cte.L

t
ev,ε

)
(6j)

ξCV aR = ξα +
1

1− α
∑E

ε=1
πε.pε (6k)∑T

t=1

[∑E

ε=1
πε.E1|2

(
ωt1|2

)]
− ξα ≤ pε (6l)

(2)− (5) (6m)

variables to make a decision about purchased power from
upstream distribution system PCt and purchased natural gas
from urban gas network GCt are indicated in (6h) and (6i),
respectively. Where, Cte and Ctg are prices of electricity and
natural gas. In (6j), the cost of participated load demand LCt

in a price-based DRP is modelled where ρ is participation rate
of EVs in the DRP. The decision variables of the second stage
are scenario-based to determine the real-time scheduling RESs
and other components operation.

Considering the uncertainty of the HFS operator decision-
making problem needs a risk measurement wherein our work
is provided with the conditional value-at-risk (CVaR) to man-
age financial risks and uncertainties as demonstrated in (6k)
and (6l); where, ξα is an auxiliary variable for calculating
CVaR criterion ξCV aR with confidence level α. The auxiliary
variable pε ∈ R+ determines the range of differences between
the expected DA operation cost and ξα in each scenario.

To summarize, the overall objective function of HFS optimal
operation in (6a) aims to reduce costs considering risk analyses
through the different values for the β parameter. Scenario-
independent costs related to the operation statuses of ES and
compressor are presented in (6b)-(6f). Besides, scenario-based
costs are calculated based on defining CVaR in (6g)-(6l). The
inclusion of the weighted correction factor β varied from 0
to 1, indicates the balance between risk and expected costs.
Therefore, to calculate these scenario-dependent and scenario-
independent costs, the variables are optimized as a two-stage
approach according to Fig. 4

IV. CASE STUDY

In order to investigate the proposed two-stage optimization
for the daily operation of the HFS numerical studies are carried
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Fig. 4. Scenario-tree for the proposed two-stage approach.

out over the course of a day as demonstrated in the following
subsections.

A. Input Data

Targeting higher accuracy, the operation time is split into
time intervals of 15-minute (T=96). Also, there are 10 chargers
and CNG dispensers in the HFS. The data of Cte and CtGN
are obtained from [27] and [6]. The maximum rated power
capacity of WT, PV, P2G, compressor, GT, ES and converters
are 80 kW, 50 kW, 100 kW, 400 kW, 100 kW, 20 kW and 500
kW, respectively. The maximum exchanged power with the
electricity grid is 500 kW and the maximum received natural
gas volume from the urban gas network is 1 Mm3/month.
Other data such as WT parameters and efficiency of compo-
nents are in accordance with [10], [20], [28].

We assume that before construction of the HFS, there is no
exact information about drivers refueling behavior as well as
the number of EVs and NGVs. The random values of initial
and final SOCs cause uncertainty in parameter Lev . Similarly,
initial and final CNG values of NGVs lead to uncertain Lngv .
We consider 10 charging sockets with fast charging rate of
60 kW DC and maximum charging time 20 min [29]. Also,
there are 10 CNG dispensers to fully refuel an empty NGV
with CNG capacity of 7 kg in a 5 min period. Accordingly, in
the proposed optimization framework, the uncertain Lev and
Lngv are modeled as EUVs (τ1=2) where the only information
available for these parameters is the power for supplying
capacity of the HFS. Therefore, the extreme vertexes of the
set which these parameters can realize within is identified as[
Lev, Lev

]
and

[
Lngv, Lngv

]
and set to [0, 450] kW and [0, 35]

kg to generate 100 random samples by Monte Carlo method.
Considering different natures, limitations, and units of these
EUVs, the proposed two-step normalization function in (1b)
and (1c) is utilized in HFS scheduling. Generated random
samples are transformed into a range of [0, 1]. Afterward, the
values of µ and σ are determined as explained in equations
(1d) and (1e) for each time slot. To construct the p-boxs the
limitations of

[
µ, µ

]
and [σ, σ] are calculated by applying (1g)-

(1j). For instance, the imprecise characterization of primary
samples are illustrated by p-box in Fig. 5 for confidence level
95%. The random area between bounds can be employed as a
non-parametric model of variability for each EUV. To tighten
the space between

[
F , F

]
and to generalize a single data-

set for the proposed EUVs, the copula theory is employed.
The EUVs include the variables of EHs output layer for
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Fig. 5. EUVs modeling: p-box construction and copula density function
calculation to generate new normalized values for EUVs at t=40.
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Fig. 6. AUVs modeling: samples are generated for wind speed under
predefined limitations then LHS method is applied based on the CDFs at
t=40. The same approach is employed for other AUVs for each time slot.

supplying Ltev and Ltngv . The output energy carriers are
related to each other by utilizing P2G and NGDG. Thus,
based on this interdependency, the copula theory is applied
to handle Xs. Furthermore, since the generated data for EUVs
are transformed into the similar range of [0,1] by normalized
functions in (1b) and (1c), the copula theory can be directly
utilized without considering the correlation matrix between
Xs. In this regard, we use Gaussian copula to connect p-
boxes of both EUVs [19]. As a result, 10 pair that coordinate

with the maximum copula density are chosen as
∗

NormLev

and
∗

NormLngv . For instance, as shown in Fig. 5, these
target samples are the pair coordinates with the whitest color.
Eventually, the final 10 stochastic samples for each EUV are
yielded by applying inverse normalization function.

For the probability-based modeling of AUVs, we utilize
LHS technique to obtain samples of υt and SRt. At each
t, the generated samples for υ and SR follow Gaussian and
beta distribution functions, respectively. Furthermore, in order
to visually indicate the range of variations for distribution
functions, a box-plot of the samples is represented in Fig.
6 based on historical data. This figure is an example of 50
generated samples at t=40 to obtain 10 samples which cover all
portions of the distribution; the CDF of each AUV is divided
into N=10 sub-set with an equal probability of 0.1. Then, a
unique sample is chosen from each determined sub-sets.

By gathering selected samples in each t, the scenarios are
generated for all of the operation time horizons. Given that
N=10, τ1=2 and τ2=3, the total number of scenarios is 105.

Note that, when necessary, to have better comprehensibility,
the unit of purchased gas is converted from m3 into kWh
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Fig. 7. Optimal operational intervals for GC and ES.

utilizing the low heating value of natural gas. The MATLAB
software is used for the sample gathering and SCENRED
is utilized to reduce the number of scenarios to 100. The
proposed optimization framework is an MILP problem solved
by the CPLEX solver of GAMS software on a PC with Intel
core i5, 320 GHz and 4GB of RAM.

B. Results of the first stage

As mentioned previously optimization has two stages where
the outputs of the first stage are binary variables: Itch, Itdch,
ut, yt, zt. Indeed, these variables determine a fixed scheduling
for both ES and GC. For instance, Fig. 7a shows a constant
either switching on or switching off statements of compressor
to avoid damaging it. In addition, the fix utilization program is
determined for ES either charging or discharging statements to
increase ES life spam and decrease its amortization schedule
as presented in Fig. 7b. The results of first stage are scenario
independent.

C. Results of the Second Stage

The values of the first stage decision variables are utilized
as inputs for the stochastic operation framework in the second
stage. In Fig. 8, the interactions of the proposed HFS with the
upstream electricity grid and urban gas network are illustrated
as second stage decision variables. It can be concluded that
at the beginning and ending of DA, the optimal operation
horizon purchased power is almost zero. This is due to the
high generation available from wind generation. It can be
perceived that the purchased power is significantly decreased
at t = [53, 73] in which the demand is supplied by generated
power from PV. Furthermore, in the high price time range,
t = [73, 88] the received gas is maximized to utilize GT in
order to sell more electric power to the electric market.

Fig. 9, Fig. 10 and Fig. 11 show the stored gas variation
in the GS, coordination procedure, and ES optimal operation,
respectively. Note that, in Fig. 9 growth or decrement of the
gas weight in GS is dependent on the compressor operation
and NGVs demand. For instance, the optimal commitment
of the compressor is determined from the first stage. Hence,
the HFS operator turns off compressor at high energy price
t = [70, 89]. In Fig. 10, the forecasted participation scheduling
of the jointing units GT and P2G depends on the real time
pricing (RTP) and generated power from RESs. In Fig. 11, the
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from urban gas network.
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Fig. 9. Optimal scheduling of GC and GS for desired CNG supplying.

operation principles of ES are presented according to obtained
results from the first stage. Due to the higher power price, the
ES charging rate in the range of t = [53, 93] is equal to zero.
Controversy, the value of ES discharging power in the high
price moments is increased effectively.

Fig. 12 shows the variation of two financial variables of
CVaR versus expected DA operation cost of HFS provided
for different values of β. The trade-off between the optimal
operation cost and cost variability from CVaR point of view is
modeled by modifying β parameter in the range of [0,1]. The
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Fig. 13. Comparing of the HFS expected operation cost with applying
different price-based DRPs for various EVs participation rates.

highest CVaR value is obtained in β=0. The highest optimal
operation cost is obtained in β=1. Given that β increases from
0 to 1, the HFS operation cost increases from 269 $ to 296 $
(10%), while CVaR decreases from 322 $ to 306 $ (5%). These
results illustrate an adequate trade-off between operation and
risk costs. Indeed, with increasing the operation cost, the risk
cost can be efficiently reduced. In addition, a higher risk factor
0.6 ≤ β ≤ 1 does not extremely affect neither operation nor
risk costs. Hence, the proper range to control trade-off between
these financial variables is 0 < β < 0.6.

Finally, in order to study the DA operational specifics of the
HFS, different price-based DRPs and participation rates are
compared in Fig. 13. In this regard, two other types of DA
energy pricing method time of use (TOU) and critical peak
pricing (CPP) are taken into account in which their tariffs
are in accordance with [12]. Considering the mean of RTP
in the peak tariff hours [16,24) which equals to 0.11 $/kWh,
we define three ranges for TOU as valley tariff 0.027 $/kWh

TABLE II
THE COMPARISON OF OPERATION COSTS BASED ON

DIFFERENT UNCERTAINTY MODELING METHODS (β , ρ=0).

Day
Optimal operation cost ($)

Proposed Stochastic adaptive robust [31] Pure stochastic [20] Deterministic
Γ=0.2 Γ=0.4 Γ=0.6

1 265.253 271.144 270.687 268.214 274.614 281.076
2 261.332 268.465 264.655 261.741 272.216 277.576
3 269.213 271.901 270.214 266.576 279.910 288.047
4 275.702 279.259 279.860 277.102 283.357 292.164
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Fig. 14. Comparison of different methods in terms of optimal operation cost
for alternative decisions by HFS operator (β, ρ=0)

within [0,8), off-peak tariff 0.055 $/kWh within [8,16) and
peak tariff 0.11 $/kWh within [16,24). The tariffs in CCP is
similar to TOU, except for a critical peak within [18,22] is
equal to the maximum RTP 0.28 $/kWh. To compare various
price-based DRPs, operation costs of HFS are presented under
different EVs participating rate in each DRP. As can be seen,
by increasing the participation rate, the operation costs of HFS
in both TOU and CPP are almost similar. This is due to the
fact that the HFS operator is able to utilize various options to
supply EVs as well as peak shifting. It is clear that the proper
DRP for our HFS is RTP-based DRP.

D. Comparative Analysis

In order to verify the economic benefits of our HFS
structure, we compare it with a conventional HFS. In the
conventional fuel stations, we assume that RESs, P2G, GT are
absent, and each type of demand is supplied independently.
By running the optimization process, the operation cost of
the proposed HFS for the worst scenario is 277 $ in a
whole day. However, the operation cost for the mentioned
conventional HFS is 921 $ over the course of a day. Even
if we add all capital costs of PV, WT, GT, ES and P2G from
available studies such as [30], the payback period would be
around 26 months. This proves the economic precedence of
the introduced structure.

Additionally, in order to verify the effectiveness and ef-
ficiency of the proposed uncertainty modeling approach, we
compare it with the most similar ones in the literature, namely
stochastic adaptive robust [31], pure stochastic [20], and
deterministic method. In so doing, we run the problem of
HFS scheduling with each optimization method considering
100 scenarios generated by Monte Carlo simulation. Note
that, for the deterministic approach, expected values of each
uncertain parameter are utilized. For the stochastic adaptive
robust method, the uncertainty budget can noticeably affect the
outcomes. Therefore, three uncertainty budgets (Γ=0.2,0.4,0.6)
are considered for the sake of a better comparison. The
expected HFS scheduling costs of four different days are
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TABLE III
RESULTS OF THE PROPOSED METHOD FOR VARIOUS NUMBER

OF SCENARIOS

E 5 10 50 100 150 200
Operation Cost ($) 279.3 268.7 264.9 262.7 261.7 261.1
CPU time (s) 1.73 2.62 19.7 47.6 91.8 358

TABLE IV
SPECIFICATIONS OF DIFFERENT PROBABILITY DENSITY

FUNCTIONS

PDF Skewness Kurtosis Std Median
Beta (BE) -1.921 6.832 0.111 0.9325
Gamma (GM) 1.394 5.452 0.103 0.119
Gaussian (GU) 1.244 4.4503 0.0869 0.513
Normal (NO) -0.058 2.795 0.096 0.492
Weibull (WE) -0.354 2.510 0.885 0.479

given in Table II for the aforementioned approaches. As can
be seen, the deterministic approach has the worst results,
and stochastic adaptive robust optimization is doing better
than full stochastic. However, for different uncertainty bud-
gets, different results are observed. Table II demonstrates the
effectiveness of the proposed method as it achieves better
results compared to the other approaches. Note that, when
the budget of uncertainty is considered to be 0.6 in day 3, the
cost of stochastic adaptive robust optimization is less than the
proposed approach. However, the acquired results are expected
values. So, to further investigate the results, we have provided
an out of sample analysis for which we assume that first stage
results are fixed, and we generate new 100 scenarios for the
uncertain parameters. Then, we run only the second stage to
acquire the scheduling cost of HFS for a typical day. The box-
plots related to each method are depicted in Fig. 14. It is clear
that for out of sample data, the proposed approach achieves the
lowest costs. Thus, in conclusion, our proposed approach can
outperform the existing uncertainty modeling methods in case
of an HFS, which deals with multiple sources of uncertainty.

It is worthy of mentioning that in both economic and
uncertainty modeling comparisons, the optimization process is
applied without participating in DRP and risk analyses. Also,
to have a reasonable comparison, the number of generated
scenarios for each method is equal to 100.

To further verify the effectiveness of the proposed MILP
two-stage approach, the expected operation cost and the cal-
culation time with respect to the number of scenarios generated
by SCENRED are presented in Table III. The operation cost
of HFS converges at almost 263 $ for different values of
E. It is clear that for more than 100 scenarios, there is a
negligible difference among results. Accordingly, an increase
in the number of scenarios will lead to unnecessary and exces-
sive computation burdens. In order to achieve an appropriate
balance between the objective function values and calculation
times, 100 scenarios have been selected for analyses.

For testing the effect of PDFs on HFS’s operation cost eval-
uation various comparisons have been obtained considering the
specifications in Table IV. To achieve a fair comparison among
PDFs the standard division (Std) of them are considered 10%
with a tolerance of ±2%. The evaluated operation cost based
on estimated data for AUVs , i.e. υ and SR, by different

TABLE V
COMPUTATIONAL ERRORS OF EXPECTED OPTIMAL

OPERATION COST FOR DIFFERENT PROBABILITY DENSITY
FUNCTIONS

Variable Error Variable Error
υ SR KS test RMSE χ2 υ SR KS test RMSE χ2

BE GM 0.0164 0.0061 0.0182 GM NO 0.0311 0.0123 0.0454
GM BE 0.0132 0.0058 0.0138 NO GM 0.0457 0.0289 0.0690
BE GU 0.0211 0.0076 0.0247 GM WE 0.0941 0.0534 0.2130
GU BE 0 0 0 WE GM 0.0707 0.0458 0.1533
BE NO 0.1031 0.0689 0.2190 GU NO 0.0520 0.0319 0.0661
NO BE 0.0367 0.0152 0.0456 NO GU 0.0629 0.0361 0.0864
BE WE 0.0420 0.0281 0.0606 GU WE 0.0161 0.0051 0.0168
WE BE 0.0140 0.0055 0.0171 WE GU 0.017 0.0046 0.0147
GM GU 0.0907 0.0511 0.1973 NO WE 0.0312 0.0128 0.0432
GU GM 0.0632 0.0376 0.0764 WE NO 0.0412 0.0156 0.0512

PDFs are compared considering three kinds of statistical
errors Kolmogorov-Smirnov (KS) test, root mean square error
(RMSE), and Chi-square error (χ2) [32] . As a result, Table V
lists the values computed for different PDF combinations of
AUVs. These errors are calculated by assuming the expected
cost 265.253 $ obtained from GU and BE PDFs as actual
value (Table II); so, the errors for these PDFs are zero. As
shown in Table V, the maximum errors of KS test, RMSE,
and χ2 is calculated as 10%, 6.8%, and 21%, respectively. The
calculated values for all error indices indicate that all PDFs are
matched well with the assumed actual value. Consequently,
the value of the expected operation cost is quite consistent
with the calculated one due to the flexibility of HFS against
uncertainties by utilizing multiple power sources.

V. CONCLUSION

There are many real-world applications that deal with
several uncertainty sources while trying to reach an opti-
mized performance. These uncertainties generally stem from
two reasons: lack of previously known data and randomness
in behavior. In this study, we introduced a mathematical
framework to separate types of uncertainties and employ
proper modeling while dealing with each type. To apply the
proposed optimization framework in a real-world application,
we considered an HFS that utilizes the energy hub structure
and several converters to supply EVs along with NGVs. The
HFS received electric power from the network, urban natural
gas grid and renewable energy sources, and converted them
through electric converters, the power to gas system and gas
turbine to supply demands. The HFS deals with multiple
uncertainties with different natures. In this regard, a two-stage
stochastic optimization was carried based on the proposed
uncertainty modeling. The applicability and effectiveness of
the introduced method were shown through numerical studies.
It was concluded with an out-of-sample analysis that the
proposed method could even outperform famous existing ap-
proaches in the literature, including stochastic adaptive robust
approach.

REFERENCES

[1] B. Faridpak, A. Alahyari, M. Farrokhifar, and H. Momeni, “Toward
small scale renewable energy hub-based hybrid fuel stations: Appraising
structure and scheduling,” IEEE Transactions on Transportation Elec-
trification, vol. 6, no. 1, pp. 267–277, 2020.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 11

[2] M. Farrokhifar, Y. Nie, and D. Pozo, “Energy systems planning: A
survey on models for integrated power and natural gas networks co-
ordination,” Applied Energy, vol. 262, p. 114567, 2020.

[3] M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-Firuzabad, and P. De-
hghanian, “Optimized probabilistic PHEVs demand management in the
context of energy hubs,” IEEE Transactions on Power Delivery, vol. 30,
no. 2, pp. 996–1006, 2014.

[4] C. Shao, X. Wang, M. Shahidehpour, X. Wang, and B. Wang, “An
MILP-based optimal power flow in multicarrier energy systems,” IEEE
Transactions on Sustainable Energy, vol. 8, no. 1, pp. 239–248, 2017.

[5] M. Rastegar, M. Fotuhi-Firuzabad, H. Zareipour, and M. Moeini-
Aghtaieh, “A probabilistic energy management scheme for renewable-
based residential energy hubs,” IEEE Transactions on Smart Grid, vol. 8,
no. 5, pp. 2217–2227, 2017.

[6] W. Zhong, C. Yang, K. Xie, S. Xie, and Y. Zhang, “ADMM-based
distributed auction mechanism for energy hub scheduling in smart
buildings,” IEEE Access, vol. 6, pp. 45 635–45 645, 2018.

[7] M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-Firuzabad, and E. Ha-
jipour, “A decomposed solution to multiple-energy carriers optimal
power flow,” IEEE Transactions on Power Systems, vol. 29, no. 2, pp.
707–716, 2013.

[8] H. R. Massrur, T. Niknam, and M. Fotuhi-Firuzabad, “Investigation
of carrier demand response uncertainty on energy flow of renewable-
based integrated electricity–gas–heat systems,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 11, pp. 5133–5142, 2018.

[9] S. Moazeni, A. H. Miragha, and B. Defourny, “A risk-averse stochastic
dynamic programming approach to energy hub optimal dispatch,” IEEE
Transactions on Power Systems, vol. 34, no. 3, pp. 2169–2178, 2018.

[10] D. Huo, C. Gu, K. Ma, W. Wei, Y. Xiang, and S. Le Blond, “Chance-
constrained optimization for multienergy hub systems in a smart city,”
IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1402–
1412, 2018.

[11] M. Yazdani-Damavandi, M. P. Moghaddam, M.-R. Haghifam, M. Shafie-
khah, and J. P. Catalão, “Modeling operational behavior of plug-in
electric vehicles parking lot in multienergy systems,” IEEE Transactions
on Smart Grid, vol. 7, no. 1, pp. 124–135, 2015.

[12] M. Shafie-khah, E. Heydarian-Forushani, G. J. Osório, F. A. Gil,
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