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Abstract: The current cosmological probes have provided a fantastic confirmation of the standard Λ Cold

Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the

increase of the experimental sensitivity a few statistically significant tensions between different independent

cosmological datasets emerged. While these tensions can be in portion the result of systematic errors, the

persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological

scenario and the need for new physics. In this Letter of Interest we will focus on the 4.4σ tension between

the Planck estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing

the H0 evaluations made from different teams using different methods and geometric calibrations, we will

list a few interesting new physics models that could solve this tension and discuss how the next decade

experiments will be crucial.
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State-of-the-art – The 2018 legacy release from the Planck satellite1 of the Cosmic Microwave Background

(CMB) anisotropies, has provided a fantastic confirmation of the standard Λ Cold Dark Matter (ΛCDM)

cosmological model. However, the improvement in estimating the uncertainties has led to statistically-

significant tensions in the measurement of various quantities between Planck and independent cosmological

probes. While some proportion of these discrepancies may have a systematic origin, their magnitude and

persistence across probes strongly hint at cracks in the standard cosmological scenario and the need for new

physics. The most statistically significant tension is in the estimation of the Hubble constant H0 between

the CMB, assuming a ΛCDM model, and the direct local distance ladder measurements. In particular, the

Planck collaboration2 finds H0 = (67.27± 0.60) km/s/Mpc1. This constraint is in tension at about 4.4σ
with the 2019 SH0ES collaboration (R193) constraint, H0 = (74.03±1.42) km/s/Mpc, based on the analysis

of the Hubble Space Telescope observations using 70 long-period Cepheids in the Large Magellanic Cloud.

66 68 70 72 74 76 78 80
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Figure 1: 68% CL constraint on H0

from different cosmological probes

(from Ref.4).

As shown in Fig. 1, preferring smaller values, we have the

early universe estimates of H0, as obtained by Planck or by

ACT+WMAP5 (H0 = (67.6 ± 1.1) km/s/Mpc), and their com-

bination with Baryon Acoustic Oscillation (BAO) data6–8, the Y1

measurements of the Dark Energy Survey9–11, supernovae from

the Pantheon catalog12, and a prior on the baryon density derived

from measurements of primordial deuterium13 assuming standard

Big Bang Nucleosynthesis (BBN). A reanalysis of the BOSS full-

shape data14;15, as well as BAO+BBN16 from BOSS and eBOSS

provides H0 = (67.35 ± 0.97), while SPTpol17 finds H0 =
(71.3 ± 2.1) km/s/Mpc. In contrast, standard distance ladder and

time delay distances agree on a low-z high-H0 value, as the SH0ES

estimate18 H0 = (73.5 ± 1.4) km/s/Mpc, and the H0LiCOW19

inferred value H0 = (73.3+1.7
−1.8) km/s/Mpc, based on strong grav-

itational lensing effects on quasar systems. However, the strong

lensing TDCOSMO+SLACS20 sample prefers H0 = 67.4+4.1
−3.2

km/s/Mpc. Then, we have the reanalysis of the Cepheid data

by using Bayesian hyper-parameters21, the local determination of

H0
22 considering the cosmographic expansion of the luminosity

distance, the independent determination of H0 based on the Tip of

the Red Giant Branch23–25, and that obtained by using the Surface Brightness Fluctuations method4;26, or

the Cosmic Chronometers27–30. Finally, a larger value for H0 is preferred by MIRAS31 (variable red giant

stars), by STRIDES32, using the Infrared33 or Baryonic Tully–Fisher relation34, or by Standardized Type

II supernovae35. There is no single type of systematic measurement error in Cepheids which could solve

the H0 crisis, as speculated in36 (e.g., it would not work for Cepheids calibrated in NGC 4258), and in any

case it could not explain the final result from the Maser Cosmology Project37, completely independent from

these considerations, that finds H0 = (73.9± 3.0) km/s/Mpc. If the late universe estimates are averaged in

different combinations, these H0 values disagree between 4.5σ and 6.3σ with those from Planck38.

Possible solutions – Models addressing the H0 tension are extremely difficult to concoct. The simplest

possibility is a sample-variance effect, due to an underdense local universe. However, this is a factor of

∼ 20 too small to explain the H0 tension, and thus decisively ruled out39;40. This leaves a host of many

proposed partial explanations41–206, but none of them offer a fully satisfactory solution when all other data

and parameters are taken into account 207–209. The models can have a dark energy (DE) explanation or not:

• A DE component with an equation of state w 6= −1, i.e. allowing for deviation from the cosmolog-

1All the bounds are reported at 68% confidence level in the text.
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ical constant Λ, both constant or dynamical with redshift2;73–79. These models usually solve the H0

tension within two standard deviations at the price of a phantom-like DE, i.e. w < −1, because of the

geometrical degeneracy present with the DE equation of state w.

• Early dark energy (EDE) which behaves like Λ at z ≥ 3000 and decays away as radiation or faster at

later times80;81;210. Related models include: (i) coupling of the EDE scalar to neutrinos153; (ii) a first-

order phase transition in a dark sector before recombination which leads to a short phase of EDE112;

(iii) an EDE model with an Anti-de Sitter phase around recombination155;156; (iv) an evolving scalar

field asymptotically oscillating or with a non-canonical kinetic term88;98, (v) an axion-like particle

sourcing dark radiation107, (vi) a scalar field with a potential inspired by ultra-light axions96;97.

• Interacting dark energy (IDE) models, where dark matter (DM) and DE share interactions other than

gravitational52–64;211–214. The IDE model solves the tension with R19 within one standard deviation,

leading to a preference for a non-zero DE-DM coupling at more than 5 standard deviations62;63, fixing

the DE equation of state to a cosmological constant. However, this category can be further extended

into two classes63: (i) models with w < −1 in which energy flows from DE to DM, (ii) models with

w > −1 in which energy flows from DM to DE. Related models can be realized in string theory163–165.

• Phenomenologically Emergent Dark Energy173–178, where the H0 tension with R19 is alleviated

within one standard deviation without additional degrees of freedom with respect to ΛCDM.

• Extra relativistic degrees of freedom at recombination, parametrized by the number of equivalent light

neutrino species Neff
215. For three active massless neutrino families, NSM

eff
≃ 3.046216–218. For the

well-known degeneracy, we can increase H0 at the price of additional radiation at recombination.

Sterile neutrinos, Goldstone bosons, axions, and neutrino asymmetry are typical examples to enhance

the value of Neff
138–151;219;220. Future surveys will detect deviations from NSM

eff
within ∆Neff . 0.06

at 95% CL, allowing to probe a vast range of light relic models221;222.

• Modified recombination and reionization histories through heating processes, variation of fundamen-

tal constants, or a non-standard CMB temperature-redshift relation157–162.

• Modified Gravity models166 in which gravity changes with redshift, such that the H0 estimate from

CMB can have larger values167–172;223–226.

• Decaying dark matter179–188 or interacting neutrinos45;86;197.

Theoretical efforts to find a dynamic model describing the data have been placed side by side to kinematic

models, as the cosmography, where the current expansion is a function of the cosmic time227–229.

Standard Sirens – In the next decade an important role will be played by standard sirens (GWSS)230–234,

the gravitational-wave (GW) analog of astronomical standard candles. In fact, the observations of the merger

of the binary neutron-star system GW170817235 provided H0 = 70+12
− 8 km/s/Mpc. While this constraint is

significantly relaxed, it does not require any form of cosmic ‘distance ladder’ and it is model-independent.

It can be important in an extended parameter space236 in which CMB data are unable to strongly constrain

H0. At least 25 additional observations of GWSS237 are needed to discriminate between Planck and R19.

An uncertainty of 1−2% in H0 is expected in the early(mid)-2020s232, from the analysis of GW events with

electromagnetic counterparts. Finally, complementary dark GWSS, as the GW190814 in238, are expected

to provide a 1− 4% constraint on H0 using the second generation of the detector networks239;240.

Looking into the future – Solving the H0 tension is very much an ongoing enterprise. The resolution of

this conundrum will likely require a coordinated effort from the side of theory and interpretation (providing

crucial tests of the exotic cosmologies), and data analysis and observation (expected to improve methods

and disentangle systematics). This agenda will flourish in the next decade with future CMB experiments, as

the Simon Observatory or CMB-S4, that combined with gigantic cosmic surveys, as Euclid and LSST, are

expected to reach an uncertainty of ∼ 0.15% in the H0 estimate. In summary, the next decade will test the

ΛCDM model and build the next-generation experiments that will usher in a new era of cosmology.
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