

Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/143074/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Rebelo, A. Cristina, Rasser, Michael W., Ramalho, Ricardo S., Johnson, Markes E., Melo, Carlos S., Uchman, Alfred, Quartau, Rui, Berning, Björn, Neto, Ana I., Mendes, Ana Rita, Basso, Daniela and Ávila, Sérgio P. 2021. Pleistocene coralline algal buildups on a mid-ocean rocky shore – insights into the MIS 5e record of the Azores. Palaeogeography, Palaeoclimatology, Palaeoecology 579, 110598. 10.1016/j.palaeo.2021.110598 file

Publishers page: https://doi.org/10.1016/j.palaeo.2021.110598 <https://doi.org/10.1016/j.palaeo.2021.110598>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See

http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

> information services gwasanaethau gwybodaeth

1	Pleistocene coralline algal buildups on a mid-ocean rocky shore – insights into the
2	MIS 5e record of the Azores
3	
4	A. Cristina Rebelo ^{a,b,c,d*} , Michael W. Rasser ^d , Ricardo S. Ramalho ^{e,f,g,h,i} , Markes E.
5	Johnson ^j , Carlos S. Melo ^{b,c,f,g} , Alfred Uchman ^k , Rui Quartau ^{a,f} , Björn Berning ^{b,l} , Ana I.
6	Neto ^{m,n} , Ana Rita Mendes ^o , Daniela Basso ^p and Sérgio P. Ávila ^{b,c,m,q}
7	
8	^a Divisão de Geologia Marinha, Instituto Hidrográfico, Rua das Trinas, 49, 1249-093 Lisboa,
9	acfurtadorebelo@gmail.com*; Rui.Quartau@hidrografico.pt
10	^b CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado,
11	Pólo dos Açores, Azores, Portugal, sergio.pa.marques@uac.pt
12	[°] MPB-Marine Palaeontology and Biogeography lab, University of the Azores, Rua da Mãe de Deus,
13	9501-801 Ponta Delgada, Açores, Portugal
14	^d SMNS - Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany,
15	michael.rasser@smns-bw.de
16	^e School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, CF10 3AT, United
17	Kingdom
18	^f Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1746-016 Lisboa, Portugal,
19	ramalhor@cardiff.ac.uk; csmelo@fc.ul.pt
20	^g Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
21	^h School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8
22	1RJ, UK
23	ⁱ Lamont-Doherty Earth Observatory, Columbia University, Comer Geochemistry Building, PO Box 1000,
24	Palisades, NY10964-8000, USA
25	^j Department of Geosciences, Williams College, Williamstown, Massachusetts 01267, USA,
26	mjohnson@williams.edu
27	^k Jagiellonian University, Faculty of Geography and Geology, Institute of Geological Sciences,
28	Gronostajowa 3a; PL 30-387 Kraków, Poland, alfred.uchman@uj.edu.pl

- ¹Oberösterreichische Landes-Kultur GmbH, Geowissenschaftliche Sammlungen, Welser Str. 20, 4060
- 30 Leonding, Austria, <u>b.berning@landesmuseum.at</u>
- ^mDepartamento de Biologia da Universidade dos Açores, Faculdade de Ciências e Tecnologia, Rua da
- 32 Mãe de Deus, 13-A, 9500-321, Ponta Delgada, Portugal, <u>ana.im.neto@uac.pt</u>
- ⁿSubgrupo de Investigação em Ecologia Aquática de Sistemas Insulares do Grupo de Biodiversidade dos
- 34 Açores, cE3c Centro de Ecologia, Evolução e Alterações Ambientais, Universidade dos Açores
- ^oEarth and Ocean Sciences and Ryan Institute, National University of Ireland, Galway, H91TK33,
- 36 Ireland, <u>armarquesmendes@gmail.com</u>
- 37 ^PUniversity of Milano Bicocca, Dept. of Earth and Environmental Sciences, P.za della Scienza 4, 20126
- 38 Milano, Italy, <u>daniela.basso@unimib.it</u>
- ⁴Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto,
- 40 Portugal
- 41
- 42 *Corresponding author
- 43

44 ABSTRACT

45 Located on the northern coast of Santa Maria Island (Azores Archipelago, central North Atlantic), the Lagoinhas section preserves a carbonate buildup correlated with Marine 46 47 Isotope Substage (MIS) 5e, the warmest interval of the Last Interglacial. The buildup is formed mainly by crustose coralline algae (CCA) identified as Spongites sp., and some 48 subordinate crusts of *Lithophyllum* sp. and *Neogoniolithon* sp., as well as cf. 49 50 Titanoderma sp.. Extant CCA buildups are not recorded in the archipelago. Herein, we describe in detail the morphological and taphonomical features of the Lagoinhas CCA 51 52 buildup and interpret the environment in which it grew. Additionally, this buildup is 53 compared with another of similar age, exposed in the Prainha-Praia do Calhau section 54 on the island's opposite southern coast. The hydrodynamic regime appears to play a 55 crucial role in the development of Azorean CCA buildups during the MIS 5e. 56 57 **Keywords:** Rhodophyta, bio-construction, Last Interglacial, volcanic oceanic islands, 58 North Atlantic 59 Introduction 60 1. 61 Crustose coralline algae (CCA) are non-geniculate red algae (Rhodophyta) that produce Mg-calcite thalli, growing either as stable buildups, known as algal ridges, 62 algal reefs or Coralligène (Steneck et al., 1997; Ballesteros, 2006; Bracchi et al., 2015, 63 64 2016, 2017; Marchese et al., 2020), or growing around a nucleus to form free-living nodules known as rhodoliths (Bosellini and Ginsburg, 1971; Adey, 1978, 1986; 65 Bosence, 1983; McCoy and Kamenos, 2015; Aguirre et al., 2017). CCA buildups may 66 occur from the polar regions (Freiwald and Henrich, 194; Adey et al., 2015) to the 67 tropics where they constitute an important element of coral reefs, acting as frame-68

builders and contributing significantly to reef calcification and cementation (Fabricius 69 70 and De'ath, 2001; Caragnano et al., 2009). This role is particularly important in high-71 wave energy environments where wave-resistivity is crucial for reef growth (Littler and 72 Littler, 2013; Weiss and Martindale, 2017). In reefal and other settings, CCA are also key habitat providers to many benthic species, including several species with economic 73 interest (Bak, 1976; Basso, 2012; Littler and Littler, 2013). Moreover, CCA are one of 74 75 the world's most important calcium carbonate producers (second only to coral reefs, to which they also contribute) and in the Atlantic Ocean, in the near-absence of coral reefs, 76 they even constitute the most important reef builders (Adey, 1975; Steneck and Adey, 77 78 1976; Gherardi and Bosence, 2001; Tâmega et al., 2014; Spotorno-Oliveira et al., 79 2015), either on their own or together with other encrusting organisms such as corals, bryozoans, serpulids and molluscs (Bosence, 1983; Di Geronimo et al., 2002; Basso et 80 81 al., 2007; Aguirre et al, 2014). 82 Buildups are particularly important in marine geomorphology, given that calcareous 83 algae are capable of forming extensive solid substrates on an originally unconsolidated sea floor (Basso et al., 2007; Aguirre et al., 2012; Bracchi et al., 2017; Lo Iacono et al., 84 2018), or building algal crests on reef edges and thus serving a key reef-binding role, 85 86 and consequently becoming important sediment contributors (Adey, 1986). Common features of these buildups include decimetre to metre-sized three-dimensional eavernous 87 erosional cavities, depressions filled with sediment, and the occurrence of columns and 88 89 protruding ledges departing from the main mass (Basso et al., 2007). Their architecture and morphology are controlled mainly by taxonomic composition (Ingrosso et al. 2018) 90 as well as by biological carbonate productivity that responds to climate, oceanography, 91 physiography, changes in accommodation space, substrate stability and sediment input 92 (Rasser and Piller, 2004; Bracchi et al., 2015 and references therein). 93

- 94 Several types of modern CCA frameworks have been described based on the climate,
- 95 type of substrate and water depth (Table 1).
- 96 Whereas buildups constituted by CCA are well known from present oceanic settings,
- 97 descriptions of fossil representatives are still uncommon (Rasser and Piller, 2004; Nalin
- et al., 2006; Titschack et al., 2008; Bracchi et al., 2016, 2019; Weiss and Martindale,
- 99 2017). The aims of the present study are thus to: 1) provide identification and
- 100 description of an *in situ* CCA buildup from the Pleistocene fossil record of the central
- 101 North Atlantic Azores Archipelago, located at the Lagoinhas section on the high-energy
- 102 northern coast of Santa Maria Island; 2) compare the buildup on the windward northern
- 103 coast with a coeval buildup on the leeward, more sheltered southern coast of the same
- island; and 3) contribute to our scientific understanding of MIS 5e and its fossil record,
- 105 given the importance this interglacial holds as case study (or proxy) to the ongoing
- 106 global warming and associated future climate changes.
- 107 Table 1. Types of modern CCA frameworks according to climate, substrate type and water depth (after
 108 Ginsburg and Schroeder, 1973; Bosence, 1985; Adey, 1986; Steneck et al., 1997; Di Geronimo et al.,
 109 2002; Bracchi et al., 2015).

Framework type	Climate	Substrate type	Water depth
Algal ridges	Tropical	Rocky	Intertidal to shallowest subtidal
Algal cup reefs	Tropical	Rocky	Intertidal to shallowest subtidal
Trottoirs	Temperate	Rocky	Intertidal to shallowest subtidal
Coralligène	Temperate	Rocky	Shallow subtidal down to -160 m
Coralligène de Plateau	Temperate	Sedimentary	Shallow subtidal down to -160 m

111 **2.** Geological setting

112 2.1. Santa Maria Island

- 113 Santa Maria Island in the Azores (central North Atlantic), the oldest in the archipelago,
- is remarkably rich in exposed marine fossiliferous sediments (Ferreira, 1955;
- 115 Zbyszewki and Ferreira, 1962; Madeira et al., 2011; Ávila et al., 2012, 2015a, 2015b,
- 116 2015c, 2016, 2020; Meireles et al., 2012; Rebelo et al., 2014, 2016a, 2016b; Santos et

al., 2015; Uchman et al., 2016, 2017, 2018; Hyžný et al., 2021) and submarine volcanic 117 118 successions (Serralheiro and Madeira, 1990; Serralheiro, 2003; Johnson et al., 2017; Ramalho et al., 2017; Uchman et al., 2020). This richness, explained by its distinct 119 120 geological history, was characterised by an initial period (from 6 to 3.5 Ma) during which volcanism, erosion, sedimentation and fast subsidence contributed to the 121 122 formation of submarine sequences. Later, in the last 3.5 it reversed to a striking uplift 123 trend Myr (see Figs. 6 and 7 of Ramalho et al., 2017), thus contributing to the exposure of these sequences, which otherwise would be inaccessible (Ramalho et al., 2017, 124 2020). This trend in uplift, in conjunction with marine erosion and glacio-eustatic 125 126 oscillations, was also responsible for the formation of a staircase of raised and 127 submerged marine terraces that extend from the present-day shelf-edge at -140 m to up 128 to +200 m (or possibly +230 m) in elevation (Ramalho et al., 2017, 2020; Ricchi et al., 129 2018, 2020). It is in this context that well-preserved fossiliferous sections attributed to the last interglacial (e.g. see Callapez and Soares, 2000; Ávila et al., 2002, 2010, 2015a; 130 131 Amen et al., 2005; Meireles et al., 2013) are found on both the southern and northern coasts of the island, perched atop former rocky shore platforms which are now between 132 2 and 11 m in elevation (the actual terrace shore angle is at 7–11 m in elevation – see 133 Fig. 1B) (Ávila et al., 2015a; Ramalho et al., 2017; Ricchi et al., 2018). The Lagoinhas 134 section, the object of this study, is one of such outcrops, being located on the island's 135 136 north coast (Fig 1). 137 The Lagoinhas section displays a fossiliferous marine sequence, including a well-

138 developed CCA buildup, perched atop a former shore platform eroded on the volcanic

- 139 succession of the Anjos Volcanic Complex (dated 5.8–5.3 Ma; Ramalho et al., 2017).
- 140 The fossiliferous marine sediments are, in turn, covered by Pleistocene-Holocene slope

141 deposits and colluvium, which offered some protection to the buildup, ensuring its

142 preservation.

143

Figure 1. Geographical location of the Lagoinhas outcrop and study area in the wider context of the
Atlantic Ocean. (A) Location of Santa Maria Island within the Azores Archipelago (inset shows the
location of the Azores in the central North Atlantic); subaerial topography was generated from a 1:25,000
scale digital altimetric database from Instituto Geográfico do Exército; (B) Digital elevation model (~2 m
in resolution) of Santa Maria Island showing the location of Lagoinhas and Prainha sequences within the

150 MIS 5e palaeo-shoreline reconstruction of Ramalho et al., (2017); subaerial topography was generated

151 from a 1:5,000 scale digital altimetric database; (C) Vertical aerial photo of the study area, showing the

152 location and extent of Lagoinhas sequence; vertical aerial photo number 6177, row 2, at an approximate

scale of 1:18,000, dated of September 2005, and provided by Secretaria Regional do Turismo e

154 Transportes.

155

156 **2.2. Present-day local hydrodynamics**

157 The remote Azores Archipelago is impacted by northwesterly trade winds, and

158 frequently subjected to high wave energy (Quartau et al., 2010, 2012; Rusu and Soares,

159 2012). Extreme storms brought by the North Atlantic Oscillation and Eastern Atlantic

atmospheric circulation affect the Azores at least once every seven years (Borges, 2003;

161 Andrade et al., 2008; Zhao et al., 2019; Ricchi et al., 2020). Rare hurricanes can affect

the islands with storm surges from the south and southeast (Elsner et al., 2000; Andrade

163 et al., 2008; Johnson et al., 2017). A recent study by Ricchi et al. (2020) for the island

164 of Santa Maria showed that the prevailing swells approach the island from the northwest

165 (35%) and west (22%), with average significant wave heights (Hs) of 2.14 m and 2.44

166 m, respectively (Fig. 2). Waves from north and northeast are also frequent (respectively

167 19% and 12%) but of lower Hs (respectively 1.92 m and 1.83 m). Although the

168 remaining directions are less significant ($\leq 5\%$ each), waves from the southwest can still

reach 2.45 m, during 5% of the year, normally occurring during the arrival of tropical

170 depressions from the Caribbean, during the North Atlantic hurricane season.

Figure 2. Offshore significant wave heights around Santa Maria Island (modified after Ricchi et al.,
2020).

175

176 Finally, in terms of tides, the mid-oceanic Azores are subjected to a micro-tidal regime,

with a mean annual tidal amplitude of approximately 0.9 m. It is presumed that this

178 regime did not vary significantly during the last interglacial.

179

180 **2.3. CCA buildups and previous studies**

181 Pleistocene buildups formed by crustose coralline algae (CCA) developed both on the

182 north and south coasts of the island, and were hitherto uplifted to the present positions

that range between 2 to 7.4 m above present mean sea-level (Callapez and Soares, 2000;

184 Ávila et al., 2002, 2010; Amen et al., 2005).

185 The first study of the Lagoinhas outcrop, on the north coast, was compiled by Callapez

and Soares (2000), who focused on the composition of mollusc species and their

- palaeoecological interpretation. Later, Ávila et al. (2002, 2007, 2009, 2015a) re-
- 188 described the stratigraphic succession, and revised the checklist for molluscs, as well as

the palaeoecological reconstruction for both outcrops Lagoinhas and Prainha, on thenorth and south coasts, respectively.

Previous research (Callapez and Soares, 2000; Ávila et al., 2002, 2007, 2009, 2015a) 191 192 paid little attention to the fossil CCA buildups on the north coast at Lagoinhas. The framework supports a varied epifauna of molluscs, echinoderms and bryozoans. 193 Macrobioerosion structures in the biostrome are assigned to the ichnogenus 194 Gastrochaenolites Leymerie, 1842 (Ávila et al., 2009, 2015a). The sequence continues 195 with a 70-cm thick layer of poorly consolidated dominantly bioclastic white-yellowish 196 marine sands, which in turn are capped by fine terrigenous sediments (poorly 197 consolidated colluvial sandstones and breccias) (Ávila et al., 2002). The overlying 198 white-yellowish unconsolidated sands (facies 4, fig. 4 in Ávila et al., 2015a) exhibit 199 200 thicknesses as much as ~ 0.7 m and are rich in very-well preserved fossil assemblages 201 dominated by molluscs. In total, for the CCA buildup and the fossiliferous sands, 57 202 specific taxa were reported (46 gastropods, 5 bryozoan, 3 bivalve and 3 echinoderm 203 species), testifying a warm temperate rocky shore palaeoenvironment with 204 biogeographical relationships with the northeastern Atlantic and the Mediterranean (Madeira et al., 2011, Ávila et al., 2015a). 205

206

207 **3. Methods**

A stratigraphic cross section was constructed, of the exposed sequence at Lagoinhas (37°00'47.5" N, 25°04'58.1" W). The stratigraphy of the Prainha section is described in detail in Amen et al. (2005). Seven rock samples of the CCA buildup were randomly collected at within the succession for preparation of thin sections. Thirty thin sections (4.8 x 4.8 cm) representative of the CCA framework and sediment composition were studied under a compound polarizing microscope (Leica DM750P) equipped with a

- digital camera (Leica ICC50W). Anatomical and taxonomical terminologies on
- corallines conform to the works by Braga et al. (1993), Irvine and Chamberlain (1994),
- 216 Rasser and Piller (1999) and Hrabovský et al. (2016); growth form terminology follows
- 217 Woelkerling et al. (1993). Cell and conceptacle dimensions were measured according to
- 218 Rasser and Piller (1999) using ImageJ. Mean (M) and standard deviation (SD) were
- calculated for both cells and conceptacles, whenever the number of measurements
- allowed (n = 5). All material is stored in the fossil collection (DBUA–F) of the
- 221 Department of Biology of the University of the Azores (Faculty of Science and
- 222 Technology), Ponta Delgada, São Miguel Island.
- 223
- **4. Results**
- **4.1. Description of the CCA buildups**
- 226 The Lagoinhas and Prainha CCA buildups developed in some spots directly over the
- basalt surface, whereas in other places they grew on top of bioclastic sediments (Figs. 3
- 228 and 4).

Figure 3. General views of the A) Prainha outcrop on the southern coast (white horizontal line marks the
lateral extent of the outcrop ~800 m and vertial white line the height of the CCA buildup ~50 cm) and B)
the Lagoinhas outcrop on the northern coast (white line marks the lateral extent of the outcrop ~100 m);
Aspect of the CCA buildups of C) Prainha and D) Lagoinhas; Details of the CCA buildups of E) Prainha
and F) Lagoinhas.

235

236 4.1.1. Prainha section

- On the southern coast, the Prainha outcrop (36°57'06.8'' N, 25°06'47.1'' W) is exposed
- at an elevation of 3 to 4 m above present mean sea level (Serralheiro et al., 1987;
- 239 Serralheiro, 2003), exhibiting a lateral extension of ~800 m (Fig. 3A) (Ávila et al.,
- 240 2002). The outcrop consists of poorly consolidated shallow-water marine deposits
- 241 (conglomerates, limestones and sandstones/calcarenites) overlying an irregular shore

platform carved in the subaerial basaltic sequence of the Anjos Volcanic Complex. 242 243 Along the outcrop, many parts of the original buildup have been eroded. The visible 244 CCA buildup with warty to lumpy morphologies growing one over the other and with a 245 maximum thickness of ~50 cm, covers a coeval beach conglomerate or, locally, developed directly on the basaltic substrate (Figs. 3 C, 3E, 4). Fragments of mollusc 246 shells, bryozoans, and echinoderms, are accessory components (Ávila et al., 2009). 247 248 Amen et al. (2005) described four species of Corallinaceae: Spongites fruticulosus 249 Kützing, 1841 being the main builder of the framework, followed by *Lithophyllum* 250 incrustans Philippi, 1837, Neogoniolithon brassica-florida (Harvey) Setchell and 251 Mason, 1943, and Titanoderma pustulatum (Lamouroux) Nägeli, 1858. The buildup shows abundant macro-bioerosion structures, mostly clavate borings, assigned to the 252 253 ichnogenus Gastrochaenolites. Remains of the endolithic bivalve Leiosolenus aristatus 254 (Dillwyn, 1817) (= Myoforceps aristatus) can still be found in situ inside most of the borings. The boring clionid sponge Entobia Bronn, 1838 is present as well. The upper 255 256 surface and complete vertical section of the CCA buildup exhibit fractures that resulted 257 from local extension (Ávila et al., 2009, 2015a). The buildup is overlain by 1.3–2.5 m thick, yellowish, partly cross-laminated, dominantly bioclastic, uncemented sands that 258 259 also fill most of these fractures. The grain-size distribution is dominated by the 125–250 um fractions. The bioclasts consist almost exclusively of small mollusc fragments. 260 Lenses with ripple marks, trace-fossils and/or root casts are preserved locally (Ávila et 261 262 al., 2002, 2015a). The deposits correspond to a beach foreshore (intertidal) facies and show cross-lamination. A thin carbonate crust of pedogenic origin occurs at the top of 263 the bioclastic sandy sediments. The crust consists mostly of micrite that precipitated 264 together with clay and other silt-sized impurities and exhibits a clotted texture. 265 266 Sediment below the carbonate crust includes bioclasts (molluscs, echinoid spines, and

geniculate coralline algae), poorly-sorted volcanic grains and very poorly-sorted rock
fragments. Aeolian dunes and colluvial-alluvial deposits cover the carbonate crust
(Ávila et al., 2009, 2015a) (Fig. 4).

270

271 4.1.2. Lagoinhas section

272 The Lagoinhas buildup is today expressed as an erosional relict therefore the original 273 lateral and vertical extent is unknown. The buildup exhibits a variable height from 6 to 30 cm and covers an area up to $1,110 \text{ m}^2$, exposed along a ~80 m section (Fig.3). Initial 274 growth of the buildup starts directly on the basalt or the bioclastic sediments with an 275 276 encrusting form that transitions into warty, lumpy and branching forms, typically 277 infilled with sediment (Fig. 5A-C). Abundant borings Gastrochaenolites cf. torpedo 278 Kelly and Bromley, 1984 produced by the endolithic bivalve Leisolenus aristatus are in 279 the CCA buildup (Figs. 5D, 6A–D). These occur in patches on the seaward side of the 280 buildup. Moulds of shells are preserved in some borings, but most of them are empty 281 and partly or completely filled with sands different from the overlying bioclastic sand. 282 In some places the CCA framework is bored with *Entobia* isp. produced mostly by clionid sponges (Figs. 6B, D). Several specimens of the infralittoral hard bottom trochid 283 284 gastropod (Calliostoma lividum Dautzenberg, 1927) and disarticulated valves of the Semelidae bivalve Ervilia castanea (Montagu, 1803), a common dweller of subtidal, 285 were also incorporated in the buildup (for details on mollusc species see Ávila et al., 286 2002). Some small volcanoclastic pebbles are also encrusted within the buildup (Fig. 287 5C). 288 Visibly, the shore platform on which the Lagoinhas deposits sit is irregular with a relief 289 up to 30 cm above the general surface. Moreover, it exhibits large intertidal potholes (1-290

3 m in diameter, ~80 cm deep; Fig. 5E) on its seaward edge, eroded into the rocky

substrate by the gyratory grinding action of pebbles, cobbles and boulders stirred by 292 293 wave motion. These fossil potholes are filled by the same well-consolidated beach conglomerates that rest on the shore platform, and which exhibit a fossiliferous 294 295 calcarenitic matrix enveloping well-rounded basaltic boulders, cobbles, and pebbles (Fig. 5F). Among them are pebbles encrusted by coralline algae. The thickness of the 296 297 algal encrustation around the volcanic nucleus is generally thin, therefore these 298 elements, with a maximum diameter of 5 cm, would be more properly defined as coated grains (Steneck, 1986). Inside the potholes, the cobbles and boulders are usually larger 299 300 than the ones resting on the rocky shore platform, and so are the rhodoliths, which are 301 rare outside the potholes. Fragments of geniculate corallines often are present in the framework cavities and in the sediments (Fig. 7). 302

303

304

- 305 Figure 4. Simplified strip logs of the Prainha and Lagoinhas sections, representing main lithologies, and
- **306** contacts (modified after Ávila et al., 2015a).

Figure 5. Details of the Lagoinhas CCA buildup. A) General aspect of the CCA buildup; B) Detail of the
CCA framework growing directly on the basalt; C) CCA with long protuberances (arrow) filled with
sediment in between, and volcaniclasts incorporated (arrow heads); D) Shells of the bivalve *Leiosolenus aristatus* incorporated in the framework (arrows); E) Pool at the lower level of the relief. Vertical white
line = 80 cm; F) Detail of the conglomerate formed in the depression.

314 315

Figure 6. Section of the Lagoinhas CCA framework illustrating the taphonomic signatures. A) CCA

- 316 columnar structure (arrow heads), B) Borings of bivalves, i.e. Gastrochaenolites cf. torpedo (arrow
- 317 heads) and sponge boring Entobia isp. (small arrows), C) thin section photo of the calcarenitic sands that
- 318 cover the CCA buildup; D) The boring Entobia isp. in thin section (arrows) crossing CCA columnar
- 319 structure.

321 322

Figure 7. Schematic cross section of the outcrop illustrating the different facies and its relationship with 323 modern sea level (features not to scale).

324 Poorly consolidated bioclastic sands (white/yellow in coloration) rest on top of the CCA 325 buildup (or directly above the substrate when the CCA buildup is absent). These sediments are mostly composed of shell debris mixed with subordinate amounts of 326 327 volcanic lithoclasts/mineroclasts, in varying proportions. These sands exhibit a variable thickness, up to 50 cm; the top is deeply eroded with a very irregular relief, suggesting 328 the presence of erosional gullies. Unconformably above these sands, a package of dark 329 330 brown terrigenous sands can be found, completely filling the underlying erosive topography on the bioclastic sands. This package attains a maximum thickness of up to 331 332 1.5 m and exhibits rare sub-rounded to sub-angular pebbles "floating" in the terrigenous 333 matrix, as well as some incipient calcrete crusts (and possibly rhyzoconcretions) 334 towards the top. The sequence is capped by an unstratified and unconsolidated 335 colluvium-alluvial slope deposit, which abuts against the back beach cliff/slope; the top 336 of the colluvial fan rises several tens of meters in continuity with the present-day topography of the slope behind. 337

338

339 **4.2.** Coralline taxonomy

Two components of CCA are identified as being the main framework builders of the
Lagoinhas buildup. *Spongites* sp. is present in 92% of the studied thin sections, and *Lithophyllum* sp. in 34%. Few thalli of *Neogoniolithon* sp. and *Titanoderma* sp. also
were found within the framework. The subfamily for *Spongites* is still under revision
(Rösler et al., 2016; Caragnano et al., 2018), and therefore a subfamily assignment for
this genus is not given here.

347	Order Corallinales Silva and Johansen, 1986
348	Family Spongitaceae Kützing, 1843

349	Genus Spongites Kützing, 1841
350	Spongites sp.
351	(Fig. 8A)
352	Description: Growth form encrusting to lumpy. Thallus thickness varies from 674 μ m
353	in encrusting portions to 7.04 mm in the lumpy portions. The thallus organisation is
354	monomerous and non-coaxial. The core filaments, 116–434 μ m in thickness, curve
355	upwards to become perpendicular to the dorsal surface in the peripheral region. Core
356	cells are 13–27 μ m (M = 20, SD = 4) in length, and 8–18 μ m (M = 11, SD = 2) in
357	diameter. Cells of peripheral filaments are $13-22 \ \mu m$ (M = 17, SD = 2) in length, and 7–
358	14 μ m (M = 10, SD = 2) in diameter. Some cells of contiguous filaments are joined by
359	cell fusions. Epithallial cells flat and round, but not flared, 7–11 μ m (M = 8, SD = 1) in
360	diameter and 5–7 μ m (M = 6, SD = 0.7) long.
361	Sporangial uniporate conceptacles, usually completely raised above thallus surface,
362	older conceptacles can become buried in the thallus. Conceptacles are rounded in shape,
363	316–482 μ m (M = 395, SD = 38) in diameter and 137–205 μ m (M = 177, SD = 17) in
364	length. Pore canals in section vary from triangular to cylindrical shapes, $69-192 \ \mu m$
365	(M= 110, SD = 23) in diameter and 10–164 μ m (M = 108, SD = 26) in height. The pore
366	canals are lined by cells arranged subparallel to the conceptacle roof. In some
367	conceptacles, remnants of a columella are present.
368	Remarks: The genus Spongites comprises those corallines with non-geniculate,
369	monomerous, or thin dimerous thalli, non-coaxial primigenous filaments without
370	palisade cells, and trichocytes that can be absent, single or in vertical row. The cells of
371	adjacent filaments are joined by cell fusions, and the conceptacles are uniporate. The
372	pore canals of tetrasporangial conceptacles are bordered by cells that arise from
373	peripheral roof filaments, protruding into the canal, and are oriented more or less

374	parallel to the roof surface (Penrose and Woelkerling, 1992; Braga et al., 1993;
375	Hrabovský et al., 2016). The monomerous non-coaxial thallus, the presence of cell
376	fusions, the uniporate conceptacles and the cell filaments surrounding the conceptacle
377	pore canals subparallel to the roof surface of the studied specimens indicate the genus
378	Spongites.
379	Studied thin sections: DBUA–F 1107(1.1); 1107(1.2); 1107(1.3); 1107(1.4);
380	1108(2.1); 1108(2.2); 1108(2.2.1); 110(3.1); 1109(3.1.1); 1109(3.2); 1109(3.3);
381	1109(3.4); 1110(4.1); 1110(4.3); 1112(6.1); 1112(6.2); 1112(6.2.1); 1112(6.3);
382	1113(7.1); 1113(7.2); 1113(7.3); 1113(7.4); 1113(7.5); 1113(7.6).
383	
384	Neogoniolithon sp.
385	(Fig. 8B)
386	Description: The thallus organisation is monomerous and coaxial. The core region is
387	241–252 μ m in thickness and the peripheral region is 1070–1951 μ m. Cell fusions
388	absent. Of the three conceptacles present, only two were measurable, 282–320 μm in
389	diameter and 169–214 μ m in height, but the pore canals were not measurable.
390	Remarks: Only one fragment of this type of thallus and a coaxial core were found. The
391	uniporate conceptacles, the coaxial core and the cell fusions (Braga et al., 1993;
392	Hrabovský et al., 2016) indicate that the specimen belongs to the genus Neogoniolithon.
393	Studied thin section: DBUA–F 1109(3.1); 1112(6.1).
394	
395	Family Lithophyllaceae Athanasiadis, 2016
396	Subfamily Lithophylloideae Setchell, 1943
397	Genus <i>Lithophyllum</i> Philippi, 1837
398	Lithophyllum sp.

399	(Fig. 8C)
400	Description: The thallus organisation is dorsiventral with a dimerous construction and
401	no palisade cells on the primigenous filaments. The thallus thickness varies from 817 to
402	2304 μ m. Cell filaments are quite distinct and the lack of cell fusions indicate that only
403	secondary pit connections are present. Cells are rectangular in section, and their size
404	ranges from 6 to 11 μm in diameter and from 9 to 13 μm in length. The conceptacles are
405	uniporate, with a pronounced central columella, and some are buried in the thallus.
406	Conceptacles measure 175–235 μ m in diameter and 73–131 μ m in height. The pore
407	canal is conical in shape and varies from 19 to 66 μm in diameter and from 32 to 82 μm
408	in height.
409	Remarks: The uniporate conceptacles and the absence of cell fusions place this alga in
410	the Lithophylloideae subfamily (Irvine and Chamberlain, 1994; Hrabovský et al., 2016).
411	The vegetative and reproductive morphologies allow Lithophyllum to be identified.
412	Studied thin sections: DBUA–F 1109(3.1.1); 1109(3.2); 1109(3.3); 1109(3.4);
413	1110(4.2); 1110(4.3); 1112(6.2.1); 1113(7.5); 1113(7.6).
414	
415	Genus Titanoderma Nägeli, 1858
416	?Titanoderma sp.
417	(Fig. 8D)
418	Description: A few poorly preserved thalli appear interspersed in the algal framework.
419	Thallus organisation is dorsiventral with a single layer of palisade cells. No evidence for
420	cell fusions. No conceptacles were observed.
421	Remarks: Titanoderma pustulatum (J.V. Lamouroux) Nägeli, 1858 is present in the
422	algal framework from Prainha, on the south coast of the island (Amen et al., 2005). The

- 423 dimerous construction of the thalli with palisade cells and the apparent lack of cell
- 424 fusions may suggest that the specimens from Lagoinhas belong to *Titanoderma*.
- 425 **Studied thin sections:** DBUA–F 1108(2.2.1); 1110(4.3); 1113(7.2); 1113(7.3).

Figure 8. Representative CCA of the Lagoinhas buildup. A) *Spongites* sp., uniporate conceptacles

- 428 irregularly distributed throughout the thallus; B) Neogoniolithon sp., monomerous thallus with a coaxial
- 429 core; C) *Lithophyllum* sp., uniporate conceptacle with visible columella and dimerous thallus without
- 430 palisade cells; D) ?*Titanoderma* sp., two single layer thalli of palisade cells (arrows) interspersed other
- 431
- 432

433 **5. Discussion**

coralline thalli.

- 434 **5.1. Local sequence interpretation**
- 435 The Lagoinhas sedimentary sequence is perched atop a rocky shore platform, and both
- 436 are attributed to development during the last interglacial. The CCA buildup was
- 437 constructed directly above the basaltic substrate or above consolidated beach sediments

(conglomerates and calcarenites), which partially infill the topography of the shore 438 439 platform. Critically, bivalve borings at the top of buildups suggest that there was a long 440 enough exposition of the buildup's hard surface for bioerosion to take place, 441 immediately after their formation (or pene-contemporaneous of their formation). As proven by experiments, production of bivalve borings requires at least years of 442 exposition of the substrate (Bromley et al., 1990; Bromley and Aasgard, 1993). 443 444 Moreover, the borings are not truncated by erosion. This implies that the buildups were very rapidly buried by the overlying bioclastic sands, possibly as a result of a rapid 445 446 environmental change, which led to deposition of the sands on top of the buildups. The 447 very irregular erosive contact between the bioclastic and the terrigenous sands, in turn, 448 denotes rapid subaerial erosion prior to the deposition of the latter, possibly by torrential 449 rain leading to the formation of gullies. The resulting erosive topography was 450 subsequently infilled by the terrigenous sands and later covered by colluvium. 451 The succession of events described above is compatible with a scenario in which 452 relative sea level peaked during the construction of the CCA buildups and their rapid 453 burial by the bioclastic sands, followed by a regressive trend represented by the erosion 454 of the bioclastic sands and subsequent deposition of the terrigenous sands, and later by 455 the deposition of the colluvium as the result of subaerial slope evolution. This suggests 456 that the buildups and bioclastic sands were deposited during the peak of MIS 5e, and 457 therefore represent environmental conditions that characterised this last interglacial 458 along the northern shore of Santa Maria.

459

460 **5.2. Framework nomenclature**

461 Rasser and Piller (2004) reviewed several descriptive classification schemes for
462 autochthonous, organically bound carbonate structures and their applicability to CCA

frameworks. Following their summary, the framework described herein can be 463 464 considered a bindstone, a term used to describe boundstones (i.e. organically bound autochthonous limestones) in the classical carbonate nomenclature of Dunham (1962) 465 466 and expanded by Embry and Klovan (1971), where organisms encrust and bind. In the nomenclature of Cuffey (1985), the Lagoinhas framework can be identified as 467 cruststone, formed by different encrusting layers, forming a frame of their own 468 469 skeletons. Based on the nomenclature for the matrix-skeletons-cavity/cement by Riding (2002), the Lagoinhas framework fits in the skeleton-supported reefs-frame reefs, in 470 which in situ skeletons are in direct contact. 471 472 Evidence for fast growth can be seen by the encrusting to lumpy growth forms filled

473 with sediment in between, and the incorporated volcaniclasts (Fig. 5B and C).

474

475 **5.3.** Factors leading to the formation of CCA buildups

476 The occurrence of CCA buildups associated with MIS 5e deposits on Santa Maria

477 Island, with some noticeable differences (see Table 2) between sequences located in the

478 north and south coasts, raises questions as to which factors controlled the growth of

479 those framework structures.

480 The distribution of CCA buildups depends on the availability of substrate type (e.g.

481 basement rock, coarse detrital material) and on adequate irradiance, under low to

482 moderate sedimentation rate (Ballesteros, 2006; Nalin et al., 2006; Titschack et al.,

483 2008; Bracchi et al., 2016; Tosi et al., 2017). Generally, hard substrates are suitable for

the formation of the crustose frameworks. Growth forms of coralline algae are

485 genetically controlled, although they frequently show high phenotypic plasticity,

regulated by ecological conditions such as hydrodynamic energy and sedimentation rate

487 (Basso, 1998; Rasser and Piller, 2004; de Queiroz et al., 2016). Many corallines

compete for space by growing faster than their neighbours (Bosence, 1983 and 488 489 references therein; Benzoni et al., 2011). The dense, closely superposed crusts of the CCA, the abundance of boring bivalves and the coarse grained nature of sediment 490 491 trapped in the structural cavities are indicative of high-energy hydrodynamic conditions (Bosence, 1983, 1985; Di Geronimo et al., 2002), suggesting that the Lagoinhas 492 493 framework developed in an exposed setting, an observation that is compatible with both 494 its geographical position and its general characteristics. According to Bosence's seminal work (1985), high-energy hydrodynamic conditions are also suggested by the coralline 495 496 species forming the buildups at Lagoinhas, given that corallines involved in shallow, 497 high-energy reef construction are reported to be chiefly Lithophyllum and Porolithon 498 (Adey, 1979; Bosence, 1983). The two sequences of Lagoinhas and Prainha, however, 499 are very similar at the CCA composition, and so are in terms of their overall 500 stratigraphy and general characteristics. A slightly higher hydrodynamic 501 palaeoenvironment at Lagoinhas, is also supported by the mollusc faunal composition 502 reported by Callapez and Soares (2000) as revised by Ávila et al. (2002, 2015a), which 503 is indicative of a rocky, algal-covered, shallow-water and wave-impacted biota. Moreover, the inferred high-energy hydrodynamic conditions at this site is also 504 505 suggested by the fact that the carbonate buildups are thinner and generally occur 506 directly over a rocky surface, abraded by wave action, and occur side by side, and even 507 partially cover the walls, of the large potholes, which require a high wave 508 hydrodynamics to form. These potholes nowadays exhibit the described infill of 509 consolidated conglomerates and calcarenites. 510 As such and given that the Lagoinhas sequence is located at the base of an exposed bluff on the prevailing windward side of Santa Maria, it is reasonable to argue that the same 511

512 hydrodynamic conditions existed during the Last Interglacial. Notwithstanding the fact

that the overall sequence of Lagoinhas is very similar to the one exposed at Prainha 513 514 from a sedimentological and stratigraphic point of view, the absence of potholes and the 515 presence of smaller basaltic pebbles and cobbles in the conglomerates at Prainha, the 516 finer sand grain size at Prainha, and the higher diversity and density of sand-associated bivalves [e.g., Ensis minor (Chenu, 1843), Lucinella divaricata (Linnaeus, 1758), 517 Laevicardium crassum (Gmelin, 1791), Ervilia castanea (Montagu, 1803; Ávila et al., 518 519 2015a] also suggest that the southern coast developed under slightly calmer hydrodynamic conditions than the more exposed windward northern coast, as it happens 520 521 today. Likewise, Spongites and Lithophyllum are the two main framework builders on 522 both the northern and southern coasts. Therefore, the two sequences possibly represent 523 very similar environments, both energetic in terms of hydrodynamics, but with the 524 Lagoinhas sequence representing a slightly more exposed, wave-beaten setting than the 525 more protected leeward sequence of Prainha. This difference in hydrodynamics is visible on the shelf, with the inner northern shelf almost deprived of sediments and a 526 527 thick inner shelf deposit near Prainha (Ricchi et al., 2020). Windward coasts lack 528 significant nearshore deposits due to offshore transport of sediments during storms (Quartau et al., 2012; Meireles et al., 2013; Ricchi et al., 2020). 529

530

531 **5.4. Influence of hydrodynamics in species association**

Given the aforementioned considerations, the likely difference in species composition between the sections at Lagoinhas and Prainha (Tables 2 and 3) which are coeval and are very similar from the sedimentological and stratigraphic point of view may thus be explained by differing ecological factors, with local hydrodynamics being the most obvious. We therefore postulate that the small differences observed between the Lagoinhas and Prainha sequences, in terms of the characteristics of the CCA buildups

but also in terms of fauna and sedimentology, are probably due to slightly more 538 539 energetic hydrodynamics at the former. Consequently, Lagoinhas possibly represents an 540 ecological niche more robust and tolerant to higher wave hydrodynamics, whilst the 541 niche represented at Prainha conversely is more sensitive to this factor, preferring the calmer and more sheltered waters of the leeward shores. This study, therefore, provides 542 543 unique insights on how small changes in ecological factors influence the characteristics 544 of CCA buildups at a local scale. More importantly, these two reference sequences provide excellent case studies to gain insights on the warm-temperate coralline algae 545 546 (on other taxa) assemblages (Meneses, 1993; Steneck et al., 1997; Braga and Aguirre, 547 2001; Bracchi et al., 2014) that existed at the latitude and mid-ocean setting of the 548 Azores during the warmest period of the last interglacial, currently absent, but which 549 may reappear as a result of global warming.

550 Hydrodynamics also seem to play a crucial role on the formation of insular CCA buildups. Vinha Velha, another MIS 5e outcrop located on the southeastern tip of Santa 551 552 Maria Island, about 7.5 km from Prainha, lacks any CCA buildup or encrustation. We 553 believe the reason for this is that both Lagoinhas and Prainha are located in the middle 554 centre of wide bays, whereas Vinha Velha is situated on a promontory. Considering that 555 the coastline during MIS 5e was very similar to the one today in all these locations (cf. Fig. 1B), wave rays diverged in the bays reducing the wave energy and converged in the 556 promontories, increasing wave energy. Although Lagoínhas is exposed to the north, it is 557 558 protected from the NW and W waves (see Fig. 3), which account for 57% of the highest waves (average annual Hs of 2.14 m and 2.44 m respectively, in Ricchi et al., 2020). 559 560 Therefore it is hit only by N and NE waves which account for 31% of total waves and are also the smallest. In contrast, Vinha Velha, which is protected from most waves, is 561 562 still hit by W waves, SW waves, S waves SE waves and E waves, which account in total

to 34%. The W (22%) and SW (5%) waves are also the highest (average annual Hs of
2.44 m and 2.45 m) in Santa Maria Island.

- 565
- 566 **5.5. Comparison with other settings**

The mediolittoral trottoirs and algal ridges (Adey, 1986) as well as the sublittoral 567 568 temperate algal reefs of the Mediterranean (coralligenous, see next paragraph) offer the 569 best Recent analogues for the Pleistocene coralline algal buildups from Santa Maria Island. Trottoirs are known from the Mediterranean and northern Atlantic (Adey, 1986; 570 571 Rasser, 2000 and references therein). They are intertidal frameworks, usually growing 572 on steep rocky shores, but can also form algal "micro-ridges" (Thornton et al., 1978; 573 Rasser, 2000 and references therein). The genus *Lithophyllum* is common in shallow 574 environments and few distinctive lithophylloid species characterise the high-energy 575 intertidal zone, where the full force of the breaking waves ensures an almost constant 576 wetting. The trottoirs are formed mainly by lithophylloid corallines, such as Tenarea 577 tortuosa (Esper) Lemoine in the eastern Mediterranean, and Lithophyllum byssoides 578 (Lamarck) Foslie in the western Mediterranean and eastern Atlantic (Adey, 1986; Rindi 579 et al., 2019).

580 A possible coeval analogue for the Lagoinhas algal buildups is the *Lithophyllum*

byssoides buildup from the MIS 5e on Porto Alabe coast, NW Sardinia, Italy. This coast

is highly exposed to the northwesterly wind and storms, and the Pleistocene buildup

583 occurs over a large wavecut platform dominated by potholes (Sechi et al., 2020), as it

happened at Lagoinhas. However, the occurrence of *Lithophyllum byssoides*, the major

trottoir builder, could not be confirmed.

586 The algal ridges are built by *Lithophyllum congestum* (taxonomically revised by

587 Hernandez-Kantun et al., 2016) and *Porolithon* spp. in the tropical western Atlantic and

in the Pacific (Bosence, 1983; Taberner and Bosence, 1985; Adey, 1986). Species of

589 *Lithophyllum* and *Porolithon* have been involved in reef construction since the

590 Cenozoic and have been found useful as palaeoecological indicators (Taberner and

591 Bosence, 1985 and references therein). The genus *Titanoderma* is known to occur as a

592 pioneer colonizer of new substrates, like bare rocks (Basso, 1998; Walker and del

593 Moral, 2003; Basso et al., 2007).

594 *Spongites* appears to be the ecological equivalent of *Porolithon* in the tropical Pacific

and Indian Oceans (Maneveldt and Keats, 2014; Gabrielson et al., 2018), however in the

596 present-day Azores, no record of *Spongites* as intertidal dweller is known so far.

597 In summary, in what concerns the species involved and their ecological context, the

598 CCA buildups from the Azores cannot be compared with any other buildups described

so far, attesting to its importance as a case study at the global stage.

600

601 **5.6.** Tropical vs non-tropical reefs

The CCA taxonomic composition of the Lagoinhas framework differs from the Prainhaframework only on the species level, as they are represented by the same families of

604 Spongitaceae and Lithophyllaceae. Coralline algae from the subfamily Lithophylloideae

are commonly recorded or even predominate in shallow-water carbonate deposits,

typically formed in warm-temperate to warm-tropical seas (among other: Meneses,

1993, Sartoretto et al., 1996, Steneck et al., 1997; Braga and Aguirre 2001; Bracchi et

al., 2014; Robinson et al., 2017). Species of *Lithophyllum* and *Titanoderma* are known

to form frameworks since at least 243 kyrs in the Mediterranean Pleistocene, with no

610 major change across climate fluctuations (MIS7 – Basso et al., 2007; Nalin et al., 2007;

611 MIS6 – Bracchi et al., 2019; Holocene – Sartoretto et al., 1996). Spongites, which is the

main reef builder both in Lagoinhas and Prainha, is well known to form CCA buildups

613	and also is typically present in coral reefs, being characteristic of shallow-water
614	environments in clear and well-oxygenated tropical waters down to 30-40 m (Rösler et
615	al., 2015 and references therein). Given the algal association found at Lagoinhas – and
616	the considerations expressed above – the CCA buildups at this site thus reflect the
617	warmer waters in which they grew during the Last Interglacial. This is in agreement
618	with the mollusc species composition found at the outcrop, but also with a number of
619	other thermophilic species that have been reported for the MIS 5e fossil record of Santa
620	Maria, including at Vinha Velha, one of the few MIS 5e outcrops in the island that does
621	not feature fossil algal buildups (Ávila et al., 2015).
622	
623	Table 2. Comparison of the features from the CCA species of the Pleistocene of Santa Maria Island.

624 Taxonomy is based on conceptacle type, structure and size, thallus organisation and anatomy.

	S. fruticulosus	Spongites sp.	N. brassica-florida	Neogoniolithon sp.	L. incrustans	Lithophyllum sp.	T. pustulatum
Outcrop	Prainha	Lagoinhas	Prainha	Lagoinhas	Prainha	Lagoinhas	Prainha
Thallus	2-3 mm	0.7-7 mm	2.4 mm	1.2-2.4 mm	1-3 mm	0.8-2.3 μm	0.3 mm
thickness							
Thallus	Monomerous	Monomerous	Monomerous	Monomerous	Dimerous	Dimerous	Dimerous with
organisation	non-coaxial	non-coaxial	coaxial	coaxial			a single layer of
							palisade cells
Cell fusions	Yes	Yes	Yes		No	No	No
joining							
contiguous							
filaments							
Epithallial cells	Non-flared	Rounded non-	-	-	-	-	-
shape	15-20 x 10-13	flared					
Diameter x		7-11 x 5-7					
Height (µm)							
Cells of	15-18 x23-25	7-14 x 13-22	13-15 x 20-23		10-13 x 18-23	6-11 x 9-14	23-25 x 15-18
peripheral/posti							

genous							
filaments							
Diameter x							
Length (μm)							
Cells of	-	8-18 x 13-27	-	-	8-10 x 13-15	-	18-20 x 24-25
core/primigeno							
us filaments							
Diameter x							
Length (μm)							
Conceptacle	Uniporate	Uniporate	Uniporate	Uniporate	Uniporate	Uniporate	Uniporate
type	sporangial	316-482 x	sporangial	282-320 x 169-214	sporangial		sporangial
Diameter x	515-750 x	137-205	724 x 332		214-230 x	175-235 x 73-131	321 x 122
Height (µm)	316-450				112x117		
Conceptacle	-	-	-	-	Bean- shaped	-	Hemispherical
shape							
Central	ND	Present	Absent	Present	Present	Present	Absent
columella							
Roof thickness	9-30 cells	-	Over 20 cells above	-	13-21 cells	-	4-6 cells above
	above the		sporangial chamber		above		sporangial
	sporangial				sporangial		chamber
	chamber				chamber		
Source	Amen et al.,	This study	Amen et al., 2005	This study	Amen et al.,	This study	Amen et al.,
	2005				2005		2005

626 Table 3. Number of species/taxa reported from the Last Interglacial (MIS 5e) of Santa Maria Island, and

627 from Prainha and Lagoinhas fossiliferous outcrops. The last column displays the number of species that

628 occur in both outcrops (Prainha and Lagoinhas).

	Total MIS 5e	Prainha	Lagoinhas	Number of species in common
Algae	4	4	4	0
Cetacea	1	1	0	0
Crustacea Decapoda	7	4	0	0
Echinodermata	3	3	3	3
Bryozoa	11	8	5	2

Bivalvia	24	19	3	3
Gastropoda	112	100	43	40

630 **5.7. Where are the buildups today?**

A main question is, why are CCA buildups absent throughout today's Azores 631 632 Archipelago, since suitable shelf areas are present, and coralline algae fairly common? One aspect might be the taxonomic inventory, because the main framework builder of 633 634 the studied buildups, Spongites, seems to be absent today (for an updated checklist of 635 present-day corallines of Santa Maria Island see Neto et al. (2021)). The reason for this 636 could be the changing climate, because during MIS 5e the water temperature was higher 637 than today, and as discussed above, Spongites is well-represented in warmer Atlantic 638 habitats. Another hypothesis concerns the contrasting levels of storminess in the Azores between the last interglacial and the present day. It is inferred that with a warmer 639 climate, wave conditions in the Azores throughout most of the year would have been 640 641 calmer, notwithstanding the impact of occasional, possibly more intense hurricanes. 642 Today, however, the Azores are exposed to the brunt of the particularly energetic North Atlantic swell, which only eases considerably during the summer months. This more 643 644 energetic regime of today, when compared to the last interglacial, may thus be 645 responsible for inhibiting the growth of Spongites (and other reef-building coralline algae), preventing the development of CCA buildups in today's Azores waters. 646 647 At any rate, the knowledge of coralline algal-diversity of the Azores is incomplete, and 648 therefore these conclusions need to be tested in future studies. 649 This incompleteness of the record leads to another potential explanation: so far, no 650 researcher has extensively and systematically looked for CCA buildups in Azores

waters, and it is possible that comparable subtidal buildups do occur, but they have notyet been discovered.

653

654 6. Conclusions

Lagoinhas is one of two fossiliferous geosites in Santa Maria Island with well-655 656 developed crustose coralline algae (CCA) buildups. Located in the northern (windward) 657 shore of the island, this site is subjected today (and was also during the Last Interglacial) to a higher hydrodynamic regime than its counterpart geosite, Prainha, 658 659 located in the southern, more protected (leeward) shores of Santa Maria. The small but 660 noticeable differences in facies and fossil assemblages between the windward/leeward sides of the island is thus interpreted as direct result of varying hydrodynamics, with the 661 662 sections of Lagoinhas and Prainha providing the type-example of CCA buildups for, 663 respectively, the windward and leeward ecological conditions. Furthermore, given the rarity of this kind of environments on island settings, these two sites fulfil all the criteria 664 665 to be regarded as key outcrops relevant to the study of coralline algal buildups at midlatitudes and mid-ocean settings during the warmer climate of the Last Interglacial, 666 providing additional information on the conditions that were prevalent during this 667 668 climatic stage. The Lagoinhas buildup is unique and cannot be compared to any other related buildup published hitherto, further highlighting its importance at global scale. 669 670 The question, why such buildups are absent on the Azores shelves today, cannot yet be 671 satisfactorily answered and requires further research.

672

673 Sample CRediT author statement

674 Ana Cristina Rebelo, Michael W. Rasser, Ricardo S. Ramalho, Markes E.

575 Johnson: Conceptualization, Methodology, Writing. Carlos S. Melo, Alfred Uchman,

676 Rui Quartau, Björn Berning: Writing. Ana Rita Mendes: Data curation. Daniela

677 Basso, Ana I. Neto, Sérgio P. Ávila: Supervision, Writing

678

679 Acknowledgments

680 We thank Direcção Regional da Ciência e Tecnologia (Regional Government of the

681 Azores), FCT (Fundação para a Ciência e a Tecnologia) of the Portuguese Government,

and Câmara Municipal de Vila do Porto for financial support. We also acknowledge the

683 field assistance of Câmara Municipal de Vila do Porto. We are grateful to the organizers

and participants of the 16 editions of the International Workshop Palaeontology in

685 Atlantic Islands who helped with fieldwork (2002–2020). A.C.R. was supported by a

686 grant SFRH/BPD/117810/2016 from FCT (Fundação para Ciência e Tecnologia),

687 Portugal. S.P.A. and R.S.R. acknowledge their research contracts (IF/00465/2015 and

688 IF/01641/2015, respectively) funded by Fundação para a Ciência e a Tecnologia (FCT).

689 C.S.M. is benefiting from a PhD grant M3.1.a/F/100/2015 from Fundo Regional para a

690 Ciência e Tecnologia (FRCT). This work was supported by FEDER funds through the

691 Operational Programme for Competitiveness Factors – COMPETE, by Portuguese

692 National Funds through FCT under the projects UID/BIA/50027/2013,

693 UID/BIA/00329/2013-2023, POCI-01-0145-FEDER-006821, PLATMAR

694 (PTDC/GEO-GEO/0051/2014) and under DRCT-M1.1.a/005/Funcionamento-C-/2016

695 (CIBIO-A) project from FRCT, and by FEDER funds (in 85%) and by funds of the

Regional Government of the Azores (15%) trough Programa Operacional Açores 2020,

697 in the scope of the projects "AZORESBIOPORTAL – PORBIOTA": ACORES-01-

698 0145-FEDER-000072 and VRPROTO – Virtual Reality PROTOtype: the geological

history of "Pedra-que-pica": ACORES-01-0145-FEDER-000078. A.U. benefited from

additional support by the Jagiellonian University.

702 References Adey, W., 1975. The algal ridges and coral reefs of St. Croix: their structure and 703 704 Holocene development. Atoll Research Bulletin 187, 1-67. Adey, W.H., 1978. Coral reef morphogenesis: a multidimensional model. Science 202, 705 831-837. 706 707 Adey, W.H., 1979. Crustose coralline algae as microenvironmental indicators for the 708 Tertiary, in: Gray, J., Boucot, A.J. (Eds.) Historical biogeography, plate 709 tectonics and the changing environment. Oregon State University Press, 710 Corvallis, pp. 459–464. Adey, W.H., 1986. Coralline algae as indicators of sea-level, in: Van de Plassche, O. 711 (Ed.) Sea level Research: A Manual for the collection and evaluation of data. 712 713 Geo Books, Norwich, pp. 229-280. 714 Adey, W., Halfar, J., Humphreys, A., Suskiewicz, T., Belanger, D., Gagnon, P., Fox, 715 M., 2015. Subarctic rhodolith beds promote longevity of crustose coralline 716 algal buildups and their climate archiving potential. Palaios 30, 281-293. Aguirre, J., Braga, J.C., Martín, J.M., Betzler, C., 2012. Palaeoenvironmental and 717 718 stratigraphic significance of Pliocene rhodolith beds and coralline algal bioconstructions from the Carboneras Basin (SE Spain). Geodiversitas 34, 115-719 720 136. 721 Aguirre, J., Belaústegui, Z., Domènech, R., de Gibert, J.M., Martinell, J., 2014. Snapshot of a lower Pliocene Dendropma reef from Sant Onofre (Baix Ebre 722 Basin, Tarragona NE Spain). Palaeogeography, Palaeoclimatology, 723 Palaeoecology 385, 9-20. 724

725	Aguirre, J., Braga, J.C., Bassi, D., 2017. Rhodoliths and rhodolith beds in the rock
726	record. in: Riosmena-Rodríguez, R., Nelson, W., Aguirre, J. (Eds.)
727	Rhodolith/Maërl beds: a global perspective. Coastal Research Library, vol. 15.
728	Springer, Cham. https://doi.org/10.1007/978-3-319-29315-8_5
729	Amen, R.G., Neto, A.I., Azevedo, J.M.N., 2005. Coralline-algal framework in the
730	Quaternary of Prainha (Santa Maria Island, Azores). Revista Española de
731	Micropaleontología 37, 63-70.
732	Andrade, C., Trigo, R.M., Freitas, M.C., Gallego, M.C., Borges, P., Ramos, A.M., 2008.
733	Comparing historic records of storm frequency and the North Atlantic
734	Oscillation (NAO) chronology for the Azores region. Holocene 18, 745-754.
735	Ávila, S.P., Amen, R., Azevedo, J.M.N., Cachão, M., García-Talavera, F., 2002.
736	Checklist of the Pleistocene marine molluscs of Praínha and Lagoinhas (Santa
737	Maria Island, Azores). Açoreana 9, 343-370.
738	Ávila, S.P., Madeira, P., García-Talavera, F., Marques da Silva, C., Cachão, M., de
739	Frias Martins, A.M., 2007. Luria lurida (Gastropoda), a new record for the
740	Pleistocene of Santa Maria, Azores. Arquipélago. Life and Marine Sciences 24,
741	53-56.
742	Ávila, S.P., Madeira, P., Zazo, C., Kroh, A., Kirby, M., Silva, C.M. da, Cachão, M.,
743	Martins, A.M.F., 2009. Palaeoecology of the Pleistocene (MIS 5.5) outcrops of
744	Santa Maria Island (Azores) in a complex oceanic tectonic setting.
745	Palaeogeography, Palaeoclimatology, Palaeoecology 274, 18-31.
746	Ávila, S.P., Rebelo, A.C., Medeiros, A., Melo, C., Gomes, C., Bagaço, L., Madeira, P.,
747	Borges, P.A., Monteiro, P., Cordeiro, R., Meireles, R., Ramalho, R., 2010. Os
748	fósseis de Santa Maria (Açores). 1. A jazida da Prainha, OVGA – Observatório
749	Vulcanológico e Geotérmico dos Açores, Lagoa, 103 pp.

750	Ávila, S.P., Ramalho, R., Vullo, R., 2012. Systematics, palaeoecology and
751	palaeobiogeography of the Neogene fossil sharks from the Azores (Northeast
752	Atlantic). Annales de Paléontologie 98, 167-189.
753	Ávila, S.P., Melo, C., Silva, L., Ramalho, R.S., Quartau, R., Hipólito, A., Cordeiro, R.,
754	Rebelo, A.C., Madeira, P., Rovere, A., Hearty, P., Henriques, D., Marques da
755	Silva, C., de Frias Martins, A.M., Zazo, C., 2015a. A review of the MIS 5e
756	highstand deposits from Santa Maria Island (Azores, NE Atlantic):
757	palaeobiodiversity, palaeoecology and palaeobiogeography. Quaternary
758	Science Reviews 114, 126-148.
759	Ávila, S.P., Cordeiro, R., Rodrigues, A.R., Rebelo, A.C., Melo, C., Madeira, P.,
760	Pyenson, N.D., 2015b. Fossil Mysticeti from the Pleistocene of Santa Maria
761	Island, Azores (NE Atlantic Ocean), and the prevalence of fossil cetaceans on
762	oceanic islands. Palaeontologia Electronica 18.2.27A.
763	Ávila, S.P., Ramalho, R., Habermann, J., Quartau, R., Kroh, A., Berning, B., Johnson,
764	M., Kirby, M., Zanon, V., Titschack, J., Goss, A., Rebelo, A.C., Melo, C.,
765	Madeira, P., Cordeiro, R., Meireles, R., Bagaço, L., Hipólito, A., Uchman, A.,
766	da Silva, C.M., Cachão M., Madeira, J., 2015c. Palaeoecology, taphonomy, and
767	preservation of a lower Pliocene shell bed (coquina) from a volcanic oceanic
768	island (Santa Maria Island, Azores, NE Atlantic Ocean). Palaeogeography,
769	Palaeoclimatology, Palaeoecology 430, 57-73.
770	Ávila, S.P., Melo, C., Berning, B., Cordeiro, R., Landau, B., da Silva, C.M., 2016.
771	Persististrombus coronatus (Mollusca: Strombidae) in the early Pliocene of
772	Santa Maria Island (Azores: NE Atlantic): palaeoecology, palaeoclimatology
773	and palaeobiogeographic implications on the NE Atlantic Molluscan

774 Biogeographical Provinces. Palaeogeography, Palaeoclimatology, 775 Palaeoecology 441, 912-923. Ávila, S.P., Azevedo, J.M.N., Madeira, P., Cordeiro, R., Melo, C.S., Baptista, L., 776 777 Torres, P., Johnson, M.E., Vullo, R., 2020. Pliocene and Late-Pleistocene actinopterygian fishes from Santa Maria Island (Azores: NE Atlantic Ocean): 778 779 systematics, palaeoecology and palaeobiogeography. Geological Magazine 780 157, 1526-1542. 781 Bak, R.P.M., 1976. The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. 782 783 Netherlands Journal of Sea Research 10, 285-337. Ballesteros, E., 2006. Mediterranean coralligenous assemblages: a synthesis of present 784 knowledge. Oceanography and Marine Biology: An Annual Review 44, 123-785 786 195. 787 Basso, D., 1998. Deep rhodolith distribution in the Pontian Islands, Italy: a model for 788 the paleoecology of a temperate sea. Palaeogeography, Palaeoclimatology, 789 Palaeoecology 137, 173-187. 790 Basso, D., 2012. Carbonate production by calcareous red algae and global change. 791 Geodiversitas 34, 13-33. 792 Basso, D., Nalin, R., Massari, F., 2007. Genesis and composition of the Pleistocene 793 Coralligène de plateau of the Cutro Terrace (Calabria, southern Italy). Neues Jahrbuch für Geologie und Paläeontologie-Abhandlungen 244, 173-182. 794 795 Benzoni, F., Basso, D., Caragnano, A., Rodondi, G., 2011. Hydrolithon spp. 796 (Rhodophyta) overgrow live corals (Cnidaria, Scleractinia) in Yemen. Marine 797 Biology 158, 2419-2428.

- Borges, P. A., 2003. Ambientes litorais nos grupos Central e Oriental do arquipélago
 dos Açores, conteúdos e dinâmica de microescala. Unpublished PhD thesis in
 Geology. Universidade dos Açores, 412 pp.
- Bosellini, A., Ginsburg, R.N., 1971. Form and internal structure of recent algal nodules
 (rhodolites) from Bermuda. Journal of Geology 79, 669-682.
- Bosence, D.W.J., 1983. Coralline algal reef frameworks. Journal of the Geological
 Society 140, 365-376.
- Bosence, D.W.J., 1985. The "Coralligène" of the Mediterranean a recent analog for
 Tertiary coralline algal limestones, in: Toomey, D.F., Nitecki, M.H. (Eds.)
 Paleoalgology. Springer, Berlin-Heidelberg, pp. 216-225.
- Bracchi, V. A., Nalin, R., Basso, D., 2014. Paleoecology and dynamics of coralline
- dominated facies during a Pleistocene transgressive–regressive cycle (Capo
 Colonna marine terrace, Southern Italy). Palaeogeography, Palaeoclimatology,
- 811 Palaeoecology 414, 296-309.
- Bracchi, V.A., Savini, A., Marchese, F., Palamara, S., Basso, D., Corselli, C., 2015.
- 813 Coralligenous habitat in the Mediterranean Sea: A geomorphological
- description from remote data. Italian Journal of Geosciences 134, 32-40.
- 815 Bracchi, V.A., Nalin, R., Basso, D., 2016. Morpho-structural heterogeneity of shallow-
- 816 water coralligenous in a Pleistocene marine terrace (Le Castella, Italy).
- 817 Palaeogeography, Palaeoclimatology, Palaeoecology 454, 101-112.
- 818 doi.org/10.1016/j.palaeo.2016.04.014.
- Bracchi, V. A., Basso, D., Marchese, F., Corselli, C., Savini, A., 2017. Coralligenous
 morphotypes on subhorizontal substrate: a new categorization. Continental
 Shelf Research 144, 10-20.

- Bracchi, V. A., Basso, D., Savini, A., Corselli, C., 2019. Algal reefs (Coralligenous)
 from glacial stages: origin and nature of a submerged tabular relief (Hyblean
 Plateau, Italy). Marine Geology 411, 119-132.
- Braga, J.C., Aguirre, J., 2001. Coralline algal assemblages in upper Neogene reef and
 temperate carbonates in southern Spain. Palaeogeography, Palaeoclimatology,
 Palaeoecology 175, 27-41.
- Braga, J.C., Bosence, D.W.J., Steneck, R.S., 1993. New anatomical characters in fossil
 coralline algae and their taxonomic implications. Palaeontology 36, 535-547.
- Bromley, R.G., Asgaard, U., 1993. Two bioerosion ichnofacies produced by early and
 late burial associated with sea level change. Geologische Rundschau 82, 176280.
- Bromley, R.G., Hanken, N.-M., Asgaard, U., 1990. Shallow marine bioerosion:
- preliminary results of an experimental study. Bulletin of the Geological Societyof Denmark 38, 85-99.
- Callapez, P., Soares, A.F., 2000. Late Quaternary marine mollusks from Santa Maria
 (Azores): paleoecologic and paleobiogeographic considerations. Ciências da
 Terra (UNL) 14, 313-322.
- Caragnano, A., Colombo, F., Rodondi, G., Basso, D., 2009. 3-D distribution of
 nongeniculate corallinales: a case study from a reef crest of South Sinai (Red
- 841 Sea, Egypt). Coral Reefs 28, 881-891.
- 842 Caragnano, A., Foetisch, A., Maneveldt, G.W., Millet, L., Liu, L.C., Lin, S.M.,
- 843 Rodondi, G., Payri, C.E., 2018. Revision of Corallinacae (Corallinales,
- 844 Rhodophyta): recognizing *Dawsoniolithon* gen. nov., *Parvicellularium* gen.
- nov. and Chamberlainoideae subfam. nov. containing *Chamberlainium* gen.
- nov. and *Pneophyllum*. Journal of Phycology 54, 391-409.

- 847 Cuffey, R.J. 1985. Expanded reef-rock textural classification and the geological history
 848 of bryozoan reefs. Geology 13, 307-310.
- 849 Di Geronimo, I., Di Geronimo, R., Rosso, A., Sanfilippo, R., 2002. Structural and
- taphonomic analysis of a columnar coralline algal build-up from SE Sicily.Geobios 35, 86-95.
- Bunham, R.J., 1962. Classification of carbonate rocks according to depositional texture.
 Memoir American Association of Petroleum Geologists 1, 108-121.
- Elsner, J.B., Jagger, T., Niu, X.F., 2000. Changes in the rates of North Atlantic major
 hurricane activity during the 20th century. Geophysical Research Letters 27,
 1743-1746.
- Embry, A.F., Klovan, J.E., 1971. Absolute water depth limits of late Devonian
 paleoecological zones. Geologische Rundschau 61, 672-686.
- Fabricius, K., De'ath, G., 2001. Environmental factors associated with the spatial
- 860 distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs861 19, 303-309.
- 862 Ferreira, O.V., 1955. A fauna Miocénica da ilha de Santa Maria (Açores).

863 Comunicações dos Serviços Geológicos de Portugal 36, 9-44.

864

865 Circle: morphology and sedimentary dynamics under extreme environmental 866 seasonality. Sedimentology 41, 963-984.

Freiwald, A., Henrich, R., 1994. Reefal coralline algal build-ups within the Arctic

- Gabrielson, P.W., Hughey, J.R., Diaz-Pulido, G., 2018. Genomics reveals abundant
- speciation in the coral reef building alga *Porolithon onkodes* (Corallinales,
- 869 Rhodophyta). Journal of Phycology 54, 429-434. doi:10.1111/jpy.12761.

- Gherardi, D.F.M., Bosence, D.W.J., 2001. Composition and community structure of the
 coralline algal reefs from Atol das Rocas, South Atlantic, Brazil. Coral Reefs
 19, 205-219.
- Ginsburg, R.N., Schroeder, J.H., 1973. Growth and submarine fossilization of algal cup
 reefs, Bermuda. Sedimentology 20, 575-614.
- 875 Hernandez-Kantun, J.J., Gabrielson, P., Hughey, J.R., Pezzolesi, L., Rindi, F.,
- 876 Robinson, N.M., Peña, V., Riosmena-Rodriguez, R., Le Gall, L., Adey, W.,
- 877 2016. Reassessment of branched *Lithophyllum* spp. (Corallinales, Rhodophyta)
 878 in the Caribbean Sea with global implications. Phycologia 55, 619-639.
- Hrabovský, J., Basso, D., Doláková, N., 2016. Diagnostic characters in fossil coralline
 algae (Corallinophycidae: Rhodophyta) from the Miocene of southern Moravia
 (Carpathian Foredeep, Czech Republic), Journal of Systematic Palaeontology
 14, 499-525.
- Hyžný, M., Melo, C.S., Ramalho, R.S., Cordeiro, R., Madeira, P., Baptista, L., Rebelo,
- A.C., Gómez, C., Torres, P., Uchman, A., Johnson, M.E., Berning, B., Ávila,
- 885 S.P., 2021. Pliocene and Late Pleistocene (MIS 5e) decapod crustacean crabs
- from Santa Maria Island (Azores Archipelago: NE Atlantic): systematics,
- palaeoecology and palaeobiogeography. Journal of Quaternary Science 36, 91-109.
- 889 Ingrosso, G., Abbiati, M., Badalamenti, F., Bavestrello, G., Belmonte, G., Cannas, R.,
- 890 Benedetti-Cecchi, L., Bertolino, M., Bevilacqua, S., Bianchi, C.N., Bo, M.,
- Boscari, E., Cardone, F., Cattaneo-Vietti, R., Cau, A., Cerrano, C., Chemello, R.,
- 892 Chimienti, G., Congiu, L., Corriero, G., Costantini, F., De Leo, F.,
- B93 Donnarumma, L., Falace, A., Fraschetti, S., Giangrande, A., Gravina, M.F.,
- 894 Guarnieri, G., Mastrototaro, F., Milazzo, M., Morri, C., Musco, L., Pezzolesi, L.,

895	Piraino, S., Prada, F., Ponti, M., Rindi, F., Russo, G.F., Sandulli, R., Villamor,
896	A., Zane, L., Boero, F., 2018. Mediterranean bioconstructions along the Italian
897	coast. Advances in Marine Biology 79, 61-136.
898	Irvine, L.M., Chamberlain, M., 1994. Seaweeds of the British Isles. Vol. 1 Rhodophyta,
899	Part 2B Corallinales, Hildenbrandiales. London (HMSO), 276 pp.
900	Johnson, M.E., Uchman, A., Costa, P.J.M., Ramalho, R.S., Ávila, S.P., 2017. Intense
901	hurricane transport sand onshore: example from the Pliocene Malbusca section
902	on Santa Maria Island (Azores, Portugal). Marine Geology 385, 244-249.
903	Littler, M.M., Littler, D.S., 2013. The nature of crustose coralline algae and their
904	interactions on reefs. Research and Discoveries: The Revolution of Science
905	through Scuba. Smithsonian Contributions to the Marine Sciences, pp. 199-212.
906	Lo Iacono, C., Savini, A., Basso, D., 2018. Cold-Water Carbonate Bioconstructions. In
907	Micallef, A., Krastel, S., Avini, A. (Eds.), Submarine Geomorphology. Springer,
908	pp. 425-455.
909	Madeira, P., Kroh, A., Cordeiro, R., Meireles, R., Ávila, S.P., 2011. The fossil
910	echinoids of Santa Maria Island, Azores (Northern Atlantic Ocean). Acta
911	Geologica Polonica 61, 243-264.
912	Maneveldt, G.W., Keats, D.W., 2014. Taxonomic review based on new data of the reef-
913	building alga Porolithon onkodes (Corallinaceae, Corallinales, Rhodophyta)
914	along with other taxa found to be conspecific. Phytotaxa 190, 216-49.
915	Marchese, F., Bracchi, V.A., Lisi, G., Basso, D., Corselli, C., Savini, A., 2020.
916	Assessing fine-scale distribution and volume of Mediterranean algal reefs
917	through terrain analysis of multibeam bathymetric data. A case study in the
918	Southern Adriatic continental shelf. Water 12, 157.
919	https://doi.org/10.3390/w12010157.

920	Meireles, R.P., Faranda, C., Gliozzi, E., Pimentel, A., Zanon, V., Ávila, S.P., 2012. Late
921	Miocene marine ostracods from Santa Maria Island, Azores (NE Atlantic):
922	Systematics, palaeoecology and palaeobiogeography. Révue de
923	Micropaléontologie 55, 133-148.
924	Meireles, R.P., Quartau, R., Ramalho, R., Madeira, J., Rebelo, A.C., Zanon, V., Ávila,
925	S.P., 2013. Depositional processes on oceanic island shelves - evidence from
926	storm-generated Neogene deposits from the mid-North Atlantic. Sedimentology
927	60, 1769-1785.
928	Meneses, I., 1993. Vertical distribution of coralline algae in the rocky intertidal of
929	northern Chile. Hydrobiologia 260/261, 121-129.
930	McCoy, S.J., Kamenos, N.A., 2015. Coralline algae (Rhodophyta) in a changing world:
931	integrating ecological, physiological, and geochemical responses to global
932	change. Journal of Phycology 51, 6-24.
933	Nalin, R., Basso, D., Massari, F., 2006. Pleistocene coralline algal build-ups
934	(coralligène de plateau) and associated bioclastic deposits in the sedimentary
935	cover of Cutro marine terrace (Calabria, southern Italy), in: Pedley, H.M.,
936	Carannante, G. (Eds.) Cool-water carbonates: Depositional systems and
937	palaeoenviornmental controls. Geological society, London, Special
938	Publications 255, 11-22.
939	Nalin, R., Massari, F., Zecchin, M., 2007. Superimposed cycles of composite marine
940	terraces: the example of Cutro terrace (Calabria, Southern Italy). Journal of
941	Sedimentary Research 77, 340-354.
942	Neto, A.I.A., Parente, M.I., Cacabelos, E., Costa, A.C., Botelho, A.Z., Ballesteros, E.,
943	Monteiro, S., Resendes, R., Afonso, P., Prestes, A.C.L., Patarra, R.F., Álvaro,
944	N.V., Mila-Figueras, D., Neto, R.M.A., Azevedo, J.M.N., Moreu, I., 2021.

- 945 Marine algal flora of Santa Maria Island, Azores. Biodiversity Data Journal 9,946 e61909.
- 947 Penrose, D., Woelkerling, W.J., 1992. A reappraisal of *Hydrolithon* and its relationship
 948 to *Spongites* (Corallinaceae, Rhodophyta). Phycologia 31, 81-88.
- Quartau, R., Trenhaile, A.S., Mitchell, N.C., Tempera, F., 2010. Development of
 volcanic insular shelves: insights from observations and modelling of Faial
 Island in the Azores archipelago. Marine Geology 275, 66-83.
- Quartau, R., Tempera, F., Mitchell, N.C., Pinheiro, L.M., Duarte, H., Brito, P.O., Bates,
 R., Monteiro, J.H., 2012. Morphology of the Faial Island shelf (Azores): the
- 954 interplay between volcanic, erosional, depositional, tectonic and mass-wasting
 955 processes. G-cubed 13, Q04012. http://dx.doi.org/10.1029/2011GC003987.
- 956 de Queiroz, E.V., do Nascimento Araújo, P.V., Hammill, E., do Amaral, R.F., 2016.
- Morphological characteristics of rhodolith and correlations with associated
 sediment in a sandstone reef: Northeast Brazil. Regional Studies in Marine
 Science 8, 133-140.
- 960 Ramalho, R.S., Helffrich, G., Madeira, J., Cosca, M., Thomas, C., Quartau, R., Hipólito,
- A., Rovere, A., Hearty, P.J., Ávila, S.P., 2017. Emergence and evolution of
 Santa Maria Island (Azores) The conundrum of uplifted islands revisited. The
 Geological Society of America 129, 372-391.
- Ramalho, R.S., Quartau, R., Hóskuldsson, Á., Madeira, J., da Cruz, J.V., Rodrigues, A.,
 2020. Evidence for late Pleistocene volcanism at Santa Maria Island, Azores?
 Journal of Volcanology and Geothermal Research, 106829 pp.
- Rasser, M.W., 2000. Coralline red algal limestones of the Late Eocene Alpine Foreland
 basin in Upper Austria: component analysis, facies, and palecology. Facies 42,
 59-92.

970	Rasser, M.W., Piller, W.E., 1999. Application of neontological taxonomic concepts to
971	Late Eocene coralline algae (Rhodophyta) of the Austrian Molasse Zone. Journal
972	of Micropalaeontology 18, 67-80.
973	Rasser, M.W., Piller, W.E., 2004. Crustose algal frameworks from the Eocene Alpine
974	Foreland. Palaeogeography, Palaeoclimatology, Palaeoecology 206, 21-39.
975	Rebelo, A.C., Rasser, M.W., Riosmena-Rodríguez, R., Neto, A.I., Ávila, S.P., 2014.
976	Rhodolith forming coralline algae in the Upper Miocene of Santa Maria Island
977	(Azores, NE Atlantic): a critical evaluation. Phytotaxa 190, 370-382.
978	Rebelo, A.C., Meireles, R.P., Barbin, V., Neto, A.I., Melo, C., Ávila, S.P., 2016a.
979	Diagenetic history of lower Pliocene rhodoliths of the Azores archipelago (NE
980	Atlantic): application of cathodoluminescence techniques. Micron 80, 112-121.
981	Rebelo, A.C., Rasser, M.W., Kroh, A., Johnson, M.E., Ramalho, R.S., Melo, C.,
982	Uchman, A., Berning, B., Silva, L., Zanon, V., Neto, A.I., Cachão, M., Ávila,
983	S.P., 2016b. Rocking around a volcanic island shelf: Pliocene rhodolith beds
984	from Malbusca, Santa Maria Island (Azores, NE Atlantic). Facies 62, 1-31.
985	Ricchi, A., Quartau, R., Ramalho, R.S., Romagnoli, C., Casalbore, D., da Cruz, J.V.,
986	Fradique, C., Vinhas, A., 2018. Marine terrace development on reefless volcanic
987	islands: New insights from high-resolution marine geophysical data offshore
988	Santa Maria Island (Azores Archipelago). Marine Geology 406, 42-56.
989	Ricchi, A., Quartau, R., Ramalho, R., Romagnoli, C., Casalbore, D., Zhao, Z. 2020.
990	Imprints of volcanic, erosional, depositional, tectonic and mass-wasting
991	processes in the morphology of Santa Maria insular shelf (Azores). Marine
992	Geology 424, 106163.
993	Riding, R., 2002. Structure and composition of organic reefs and carbonate mud
994	mounds: concepts and categories. Earth-Science Reviews 58, 163-231.

995	Rindi, F., Braga, J.C., Martin, S., Peña, V., Le Gall, L., Caragnano, A., Aguirre, J.,
996	2019. Coralline algae in a changing Mediterranean Sea: how can we predict their
997	future, if we do not know their present? Frontiers in Marine Science 6, 723.
998	doi:10.3389/ fmars.2019.00723
999	Robinson, N.M., Fernández-García, C., Riosmena-Rodríguez, R., Rosas-Alquicira, E.
1000	F., Konar, B., Chenelot, H., Jewett, S.C., Melzer, R.R., Meyer, R., Försterra G.,
1001	Häussermann, V., Macaya, E.C., 2017. Eastern Pacific. in: Rhodolith/Maërl
1002	beds: a global perspective. Coastal Research Library, vol. 13. Springer, Cham.
1003	doi.org/10.1007/978-3-319-29315-8_13.
1004	Rösler, A., Pretković, V., Novak, V., Renema, W., Braga, J.C., 2015. Coralline algae
1005	from the Miocene Mahakam Delta (East Kalimantan, Southeast Asia). Palaios
1006	30, 83-93.
1007	Rösler, A., Perfectti, F., Peña, V., Braga, J.C., 2016. Phylogenetic relationships of
1008	Corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef-
1009	building corallines. Journal of Phycology 52, 412-431.
1010	Rusu, L., Soares, C.G., 2012. Wave energy assessments in the Azores islands.
1011	Renewable Energy 45, 183-196.
1012	Santos, A., Mayoral, E., Dumont, C.P., da Silva, C.M., Ávila, S.P., Baarli, B.G.,
1013	Cachão, M., Johnson, M.E., Ramalho, R.S., 2015. Role of environmental change
1014	in rock-boring echinoid trace fossils. Palaeogeography, Palaeoclimatology,
1015	Palaeoecology 432, 1-14.
1016	Sartoretto, S., Verlaque, M., Laborel, J., 1996. Age of settlement and accumulation rate
1017	of sub-marine 'coralligène' (-10 to -60 m) of the north-western Mediterranean
1018	Sea; relation to Holocene rise in sea level. Marine Geology 130, 317-331.

1019	Sechi, D., Andreucci, S., Stevens, T., Pascucci, V., 2020. Age and significance of late
1020	Pleistocene Lithophyllum byssoides intertidal algal ridge, NW Sardinia, Italy.
1021	Sedimentary Geology 400, 105618.
1022	Serralheiro, A., 2003. A geologia da Ilha de Santa Maria, Açores. Açoreana 10, 141-
1023	192.
1024	Serralheiro, A., Alves, C.M., Forjaz, V.H., Rodrigues, B., 1987. Carta Vulcanológica
1025	dos Açores, Ilha de Santa Maria. Escala 1:15.000 (Folhas 1 e 2). Centro de
1026	Vulcanologia INIC, Ponta Delgada.
1027	Serralheiro, A., Madeira, J., 1990. Stratigraphy and geochronology of Santa Maria
1028	island (Azores). Livro de Homenagem ao Prof. Carlos Romariz. Departamento
1029	de Geologia da Faculdade de Ciências da Universidade de Lisboa, 357–376 pp.
1030	Spotorno-Oliveira, P., Figueiredo, M.A., Tâmega, F.T., 2015. Coralline algae enhance
1031	the settlement of the vermetid gastropod Dendropoma irregulare (d'Orbigny,
1032	1842) in the southwestern Atlantic. Journal of Experimental Marine Biology and
1033	Ecology 471, 137-145.
1034	Steneck, R.S., 1986. The ecology of coralline algal crusts: convergent patterns and
1035	adaptative strategies. Annual review of ecology and systematics 17, 273-303.
1036	Steneck, R.S., Adey, W.H., 1976. The role of environment in control of morphology in
1037	Lithophyllum congestum, a Caribbean algal ridge builder.
1038	Steneck, R.S., Macintyre, I.G., Reid, R.P., 1997. A unique algal ridge system in the
1039	Exuma Cays, Bahamas. Coral Reefs 16, 29-37.
1040	Tâmega, F.T., Riosmena-Rodriguez, R., Mariath, R., Figueiredo, M., 2014.
1041	Nongeniculate coralline red algae (Rhodophyta: Corallinales) in coral reefs from
1042	Northeastern Brazil and a description of Neogoniolithon atlanticum sp. nov.
1043	Phytotaxa 190, 277-298.

1044	Taberner, C., Bosence, D.W.J., 1985. Ecological successions from corals to coralline
1045	algae in Eocene patch reefs, Northern Spain, in: Toomey, D.F., Nitecki, M.H.
1046	(Eds.), Paleoalgology, Springer, Berlin, Heidelberg, 226-236 pp.
1047	Thornton, S., Pilkey, O.H., Lynts, G., 1978. A lagoonal crustose coralline algal micro-
1048	ridge: Bahiret el Bibane, Tunisia. Journal of Sedimentary Research 48, 743-750.
1049	Titschack, J., Nelson, C.S., Beck, T., Freiwald, A., Radtke, U., 2008. Sedimentary
1050	evolution of a Late Pleistocene temperate red algal reef (Coralligène) on Rhodes,
1051	Greece: correlation with global sea-level fluctuations. Sedimentology 55, 1747-
1052	1776.
1053	Tosi, L., Zecchin, M., Franchi, F. Bergamasco, A., Da Lio, C., Baradello, L., Mazzoli,
1054	C., Montagna, P., Taviani, M., Tagliapietra, D., Carol, E., Franceschini, G.,
1055	Giovanardi, O., Donnici. S., 2017. Paleochannel and beach-bar palimpsest
1056	topography as initial substrate for coralligenous buildups offshore Venice, Italy.
1057	Scientific Reports 7, 1321.
1058	Uchman, A., Johnson, M., Rebelo, A.C., Melo, C., Cordeiro, R., Ramalho, R.S., Ávila,
1059	S.P., 2016. Vertically-oriented trace fossil Macaronichnus segregatis from
1060	Neogene of Santa Maria Island (Azores; NE Atlantic) records vertical
1061	fluctuations of the coastal groundwater mixing zone on a small oceanic island.
1062	Geobios 49, 229-241.
1063	Uchman, A., Quintino, V., Rodrigues, A.M., Johnson, M.E., Melo, C., Cordeiro, R.,
1064	Ramalho, R.S., Ávila, S.P., 2017. The trace fossil Diopatrichnus
1065	santamariaensis isp. nov. – a shell armoured tube from Pliocene sediments of
1066	Santa Maria Island, Azores (NE Atlantic Ocean). Geobios 50, 459-469.
1067	Uchman, A., Torres, P., Johnson, M.E., Berning, B., Ramalho, R.S., Rebelo, A.C.,
1068	Melo, C.S., Baptista, L., Madeira, P., Cordeiro, R., Ávila, S.P., 2018. Feeding

- traces of recent ray fish and occurrences of the trace fossil *Piscichnus waitemata*from the Pliocene of Santa Maria Island, Azores (Northeast Atlantic). Palaios
 33, 361-375.
- 1072 Uchman, A., Johnson, M.E., Ramalho, R., Quartau, R., Berning, B., Hipólito, A., Melo,
- 1073 C.S., Rebelo, A.C., Cordeiro, R., Ávila, S.P., 2020. Neogene marine sediments
- and biota encapsulated between lava flows on Santa Maria Island (Azores,
- 1075 north-east Atlantic): An interplay between sedimentary, erosional, and volcanic
 1076 processes. Sedimentology 67, 3595-3618.
- 1077 Walker, L.R., del Moral, R., 2003. Primary succession and ecosystem rehabilitation.
- 1078 Cambridge University Press. doi.org/10.1017/CBO9780511615078.
- Weiss, A., Martindale, R.C., 2017. Crustose coralline algae increased framework and
 diversity on ancient coral reefs. PloS ONE 12, p.e0181637.
- 1081 Winkelmann, K., Buckeridge, J.S., Costa, A.C., Dionísio, M.A.M., Medeiros, A.,
- 1082 Cachão, M., Ávila, S.P., 2010. Zullobalanus santamariaensis sp. nov. a new late
- 1083 Miocene barnacle species of the family Archeobalanidae (Cirripedia: Thoracica),
- 1084 from the Azores. Zootaxa 2680, 33-44.
- 1085 Woelkerling, W.J., Irvine, L.M., Harvey, A.S., 1993. Growth-forms in non-geniculate
- 1086 coralline red algae (Corallinales, Rhodophyta). Australian Systematical Botany1087 6, 277-293.
- 1088 Zhao, Z., Mitchell, N.C., Quartau, R., Tempera, F., Bricheno, L., 2019. Submarine
- 1089platform development by erosion of a Surtseyan Cone at Capelinhos, Faial
- 1090Island, Azores. Earth Surface Processes and Landforms 44, 2982-3006.
- 1091 Zbyszewski, G., Ferreira, O.V., 1962. La faune Miocène de l'ile de Santa Maria
- 1092 (Açores). Comunicações dos Serviços Geológicos de Portugal 46, 247-289.