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Ageing causes extensive structural changes to the human cerebral microvasculature,

which have a significant effect on capillary bed perfusion and oxygen transport.

Current models of brain capillary networks in the literature focus on healthy adult

brains and do not capture the effects of ageing, which is critical when studying

neurodegenerative diseases. This study builds upon a statistically accurate model of the

human cerebral microvasculature based on ex-vivo morphological data. This model is

adapted for “healthy” ageing using in-vivo measurements from mice at three distinct

age groups—young, middle-aged, and old. From this new model, blood and molecular

exchange parameters are calculated such as permeability and surface-area-to-volume

ratio, and compared across the three age groups. The ability to alter the model

vessel-by-vessel is used to create a continuous gradient of ageing. It was found that

surface-area-to-volume ratio reduced in old age by 6% and permeability by 24% from

middle-age to old age, and variability within the networks also increased with age. The

ageing gradient indicated a threshold in the ageing process around 75 years old, after

which small changes have an amplified effect on blood flow properties. This gradient

enables comparison of studies measuring cerebral properties at discrete points in time.

The response of middle aged and old aged capillary beds to micro-emboli showed a

lower robustness of the old age capillary bed to vessel occlusion. As the brain ages, there

is thus increased vulnerability of the microvasculature—with a “tipping point” beyond

which further remodeling of the microvasculature has exaggerated effects on the brain.

When developing in-silico models of the brain, age is a very important consideration

to accurately assess risk factors for cognitive decline and isolate early biomarkers of

microvascular health.
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1. INTRODUCTION

The human brain is the central organ of the nervous system, accounting for 2% of the body’s
mass but 14% of the volumetric blood flow (Fantini et al., 2016). The cerebral microvasculature
is the primary surface for perfusion and oxygen transport in the brain and is therefore crucial to
maintaining functionality and quality of life. Ageing is associated with deterioration of this capacity
and in abnormal cases the onset of neurodegenerative diseases.
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The importance of the impact of ageing is brought into focus
by the increasingly ageing global demographic. In the UK, the
number of people over the age of 65 is expected to reach 26%
of the population by 2066 (Office for National Statistics, 2018).
Many of these individuals will suffer from neurological disorders
caused by extrinsic factors such as viral or bacterial infections
(e.g., multiple sclerosis or meningitis, respectively), or which
develop intrinsically either due to acute events (traumatic brain
injury) or chronic illness [small vessel disease (SVD), dementia]
(Rosenberg, 2014). Dementia is now the leading cause of death
in the UK (John, 2019). Age is the common denominator in the
majority of these cases, with approximately 32% of people over
the age of 85 affected (Hebert et al., 2013). There is now thought
to be a large overlap between vascular dementia and AD, with
most patients having a form of “mixed dementia” centered on the
permeability of the blood-brain barrier (Javanshiri et al., 2018).
Therefore it is critical to understand the ageing process of the
human cerebral vasculature.

Significant changes to brain anatomy are seen with increasing
age. A decrease in overall volume by 5% per decade after age
60 (Hedman et al., 2012) and reduced angiogenesis leading
to reduction in vessel density (Riddle et al., 2003; Murugesan
et al., 2012) are common even in “healthy” ageing. Increasing
vessel stiffness, tortuosity and hypoperfusion (Xu et al., 2017)
also develop, even without confounding pathological factors.
These statistics vary widely between individuals, population
demographics and individual regions of the brain. Assessing
“normality” in terms of the ageing brain is thus a difficult and
imprecise process. However, brain performance is ultimately
judged on functionality which affects everyday quality of life,
such as memory and processing speed. There is still a lack
of understanding in linking measurable brain characteristics to
cognitive function in the face of age-related performance decline
(Glisky, 2019). The cerebral microvasculature is increasingly
being seen as key to understanding global level perfusion and
oxygen transport (Lauwers et al., 2008) and therefore a key area
of research interest.

In spite of this, measuring changes in the microvasculature
in-vivo is still a significant challenge. This is due to the
imaging resolution of industry-standard technologies such
as Magnetic Resonance Imaging (MRI), Positron Emission
Tomography (PET) and Perfusion Computed Tomography
(PCT) being unable to detect vessels with diameter of less
than c.1mm (Wintermark et al., 2005). The average diameter
of human capillaries is around 6µm (Cassot et al., 2006).
Models have previously been developed to simulate the cerebral
microvasculature in rodents (Reichold et al., 2009; Blinder et al.,
2010; Schmid et al., 2017) and in humans (Lorthois et al., 2011;
Linninger et al., 2013; El-Bouri and Payne, 2015). However, much
of the research into computational modelling of the brain has
focused on understanding the mechanisms of a healthy young
adult at a discrete point in time.

As such, in this study we develop a model of ageing
human brains based on El-Bouri and Payne (2015) which
creates statistically accurate networks of old-age capillaries. These
periodic structures can be homogenised to derive macro-scale
flow equations for the capillary bed. Permeability and molecular

exchange parameters are then calculated to assess how ageing
alters perfusion and blood flow. A continuous gradient of ageing
is also created to overcome the difficulties of discrete datasets
in the literature, and to attempt to chart the shape of “healthy”
decline. Vulnerability of the brain due to ageing is then assessed
by simulating micro-emboli and comparing the response of a
healthy adult brain and a healthy old-aged brain.

2. MATERIALS AND METHODS

2.1. Inter-species Vascular Morphology
The cerebral capillary bedmodel developed in Su et al. (2012) and
extended in El-Bouri and Payne (2015) forms the starting point
for this research. This model has also previously been used to
scale-up the capillary bed to model blood flow in large regions of
the brain computationally efficiently (El-Bouri and Payne, 2018).
Themodel represents the cerebral capillary bed of a healthy adult,
with data extracted from the collateral sulcus in the temporal lobe
of a preserved brain (Duvernoy et al., 1981).

A recent study uses two-photon phosphorescence microscopy
to measure the cerebral properties of mice microvasculature in-
vivo (Moeini et al., 2018). Mice have long been used as a basis
for biomedical research, due to similar genetic and structural
properties to humans. Previous work suggests that cerebral
capillary networks between the two species are topologically
equivalent, and that geometric metrics differ only in scaling
(Smith et al., 2019b). Therefore data from mice are used here
as the basis for updating our existing model of the human
microvasculature to represent the ageing process.

The measurements in Moeini et al. (2018) were performed on
three groups of C57BL/6J male mice of age 6-8, 13–15, and 24–26
months old, respectively. These groups are characterised as young
(YA), middle-aged (MA) and old (OA). In order to understand
these ages relative to human life expectancy, three reviews of
mouse-to-human age conversion were identified (Flurkey et al.,
2007; Dutta and Sengupta, 2016; Agoston, 2017). These reviews
discuss the relative length of different periods of life, from
childhood through puberty all the way through senescence. The
age group results of 6–8, 13–15, and 24–26 months converted
to human years following the methodology in the literature are
summarised in Figure 1. There is clearly a range of values in the
literature rather than a widely accepted conversion framework.
The biggest discrepancy is in the parameterisation of an “old”
mouse, as two of these reviews suggest that at 24 months there
are commonly signs of dementia and severe cerebrovascular
degradation present. As the mice in Moeini et al. (2018) are
extensively imaged and shown to be healthy, the mean age of the
old group is considered to be an overestimation. Therefore YA,
MA, and OA were chosen to correspond to 25, 45, and 75 years
old, respectively, although the methodology presented here could
easily be adjusted to any changes in these values.

2.2. Ageing Brain Model Development
Data measured in mice are used to adapt the human brain model
from El-Bouri and Payne (2015) to model the ageing process. The
human cerebral capillary bed is represented by voxels of 375µm
side length containing statistically accurate microvascular
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FIGURE 1 | Mouse-human age conversion identified in the literature.

networks randomly generated through the minimum-spanning
tree method (Su et al., 2012). A length scale of 375 µm was used
as this was found to be the representative elementary volume
large enough to be characteristic of the large-scale capillary
network. The networks match many geometric properties of the
capillary network such as vessel length distributions, diameter
distributions, and connectivities of the network measured from
studies analysing India-ink injected brain regions using laser
microscopy (Cassot et al., 2006). A set of 498 statistically accurate
microvascular networks from El-Bouri and Payne (2015) was
taken and split into three groups. One of these groups of 166
cubes was left unmodified to represent the middle-aged set of
networks, as the original model represents the microvasculature
of a healthy middle-aged adult brain. The other two sets were
altered according to the ageing algorithm described below to
model young and old brain microvasculatures.

The need to characterise a scaling factor between mice and
humans for every geometrical property is eliminated by using a
ratio method, comparing young and old networks to the middle-
aged baseline. The data available in Moeini et al. (2018) and
subsequently used in this work describe changes of vessel radius,
haematocrit, resistance and density with ageing. These scalings
are then taken and used to generate separate young and old
networks via the ageing algorithm proposed here:

1. The radius is scaled in the young and old groups;
2. The haematocrit is scaled in the young and old groups;
3. A new viscosity is calculated for the vessels in the networks

assuming haematocrit is constant in each individual network
at the representative value for the age group (Pries et al., 1992);

4. A new conductance for each vessel can be calculated using

Poiseuille’s law where the conductance is πr4

8µL , r is the radius,

µ the viscosity, and L the length of the vessel;

Table 1 shows the ratios of key parameters from Moeini et al.
(2018) used to scale the networks.

At this point, an assumption is made that the length
of individual vessels remains constant throughout the ageing
process. This is consistent with the literature as the cerebral
microvasculature is shown not to spatially remodel with ageing,
and although a mild increase in tortuosity is expected (Bullitt
et al., 2010) this has a minimal effect on vessel resistance and flow
(Han, 2012).

TABLE 1 | Parameters used at each age group to scale the capillary

networks—ratios obtained from Moeini et al. (2018).

YA ratios MA ratios OA ratios

Radius 1.00 1.00 1.07

Haematocrit 1.04 1.00 0.81

Volume density 0.91 1.00 0.79

Cerebral blood flow 0.71 1.00 0.79

Two differentmethods were next implemented to calculate the
expected change in vessel number density n with ageing (number
of vessels per unit volume). The first method randomly prunes
vessels from the network structure to match the volumetric
density change from the baseline middle-age group measured in
Moeini et al. (2018). As individual vessels are randomly pruned
from the network, the volume density of vessels remaining is
calculated. When this value matches the expected volume density
reduction compared to middle-age, the corresponding number
density reduction can be calculated using the absolute number of
vessels pruned to match a specific volume reduction.

The second method randomly prunes vessels from the
network structure to match the cerebral blood flow (CBF)
change from the baseline middle-age group measured in Moeini
et al. (2018). By removing a single vessel at a time, the
model can be finely tuned to the ageing parameters, with the
number density reduction calculated for each individual cube
and averaged over the age group set. For continuity, all of the
blood flowing into a regionmust also flow out. Therefore periodic
distribution of the surface nodes is maintained on each unit
volume for homogenisation purposes. This allows the model to
represent large volumes of the cerebral capillary bed through a
homogenised permeability tensor.

2.3. Key Model Parameter Calculations
The model allows a homogenised 3-D permeability tensor
to be calculated for the vascular networks. This links the
microvasculature to macro-scale blood flow properties to enable
the development of continuum models of the cerebral capillary
bed. By defining the ease with which blood can flow through a
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FIGURE 2 | Flowchart mapping route of calculations.

particular region, the effect of ageing can thus be quantified in
terms of flow and molecular exchange parameters.

As previously described in El-Bouri and Payne (2015), the
permeability is calculated by solving a periodic boundary value
problem over the generated cubes of the capillary network.
The Poiseuille equation is used to find the flux through each
individual capillary vessel. Pressure gradients are then imposed
on each principal direction to create a 3 × 3 tensor. The
permeability tensor K is calculated in terms of the resolved flux
through cube surfaces, cube surface area, and pressure gradients.

Kij =

∑
q
j

m,surf

Ŵj∇pj
i, j = 1, 2, 3 (1)

where q
j

m,surf
is surface outflow in jth direction, Ŵj is outflow

surface area and pj is the pressure gradient in the jth direction.
In this case, i and j refer to Cartesian co-ordinates. The flowchart
in Figure 2 summarises both of the methods for calculating
vessel number density and how these outputs are taken to
calculate permeability.

Permeability is a robust proxy for understanding perfusion,
but further parameters are required to understand molecular
exchange. The capillaries are the primary exchange medium
for molecules within the brain (Hadjistassou et al., 2015)—
albeit the penetrating arterioles also play a key role in oxygen
transport to tissue (Sakadžić et al., 2014).Surface-area-to-volume
ratio (SA:Vol) and volumetric density give an indication of how
effectively they continue to deliver these molecules in spite of
ageing. SA:Vol is important because the large surface area of the
vessels in the cerebral compartment drives molecular exchange
in the vasculature. As with permeability, SA:Vol and density
are variables derived from the homogenisation of the equations

describing blood flow and molecular exchange on the local scale
(Shipley and Chapman, 2010).

2.4. Interpolating Between Discrete Age
Groups
A limitation of the data presented in Moeini et al. (2018) is the
discrete nature of the age group measurements. Brain ageing
varies greatly between individuals due to genetic factors such
as APOE ǫ4 (Pietzuch et al., 2019) and demographic differences
such as sex and education (Curiati et al., 2009). “Healthy” ageing
is hard to define as common pathologies such as hypertension
and diabetes have a significant impact on the way the brain ages
(Gasecki et al., 2013). In addition to these medical effects on
the cerebral microvasculature, there is also evidence that lifestyle
differences such as diet, education level and exercise can have a
marked effect (Ungvari et al., 2018; Walters et al., 2018). These
are not considered here but will be an important topic for future
research. Many human studies measure discrete intervals in
time on small, precise cohorts which makes comparison between
papers difficult. The model that we propose here, however, allows
assessment of how the brain deteriorates “healthily” over time
by proposing a continuous pathway using interpolation between
ages. The ageing process from middle-age to old-age was focused
on as this is the time frame within which most age-associated
neurological diseases manifest.

From a literature review of regional cerebral blood flow (CBF)
changes with ageing, an expected drop per year of 0.42% ± 0.08
was found—a typical value for association regions responsible for
complex processing tasks (Chen et al., 2011; Aanerud et al., 2012;
De Vis et al., 2015; Leoni et al., 2017; Jezzard et al., 2018). In
this paper we use the average of 0.42%. The cube flow reduction
caused by pruning one vessel at a time was found, taking an
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TABLE 2 | Physical characteristic ratios for interpolation between age groups.

MA OA 50 OA 75 OA

Radius 1.00 1.03 1.05 1.07

Conductance 1.00 1.16 1.24 1.32

average over all 166 cubes in each set. It was assumed, consistent
with findings in this work, that CBF and permeability drop at the
same rate (i.e., driving pressure remains the same with ageing). In
fact, the computed permeability can be used as a robust surrogate
for CBF when considering small volumes of tissue. It is important
to note that this model considers normotensive ageing, but
hypertension and other comorbidities are very common in the
ageing population. This permeability drop per pruned vessel was
then compared to the expected permeability drop (or effectively
CBF drop) per year. This allowed a characterisation to be made
of the number of vessels being naturally removed per year.

Physical characteristics (vessel radius and conductance) are
accounted for here in the ageing gradient by linearly interpolating
between the measurements in middle-age (MA) and old-
age (OA). The groups that we used here are MA, OA 50
(physical characteristics half way between MA and OA), OA
75 (physical characteristics 75% of way from MA to OA) and
OA. These fractions are chosen to capture the point at which
changing physical characteristics begins to have an influence
on permeability drop with ageing. No difference in gradient of
permeability decline is seen with smaller changes. The statistics
used for each set are summarised in Table 2.

These statistics were used to generate four different rates of
ageing to represent decades from age 45 to 85, which could
be combined to provide an overall graded chart. By comparing
percentage vessel decline against number of years and percentage
vessel decline against permeability drop, a decline in permeability
per year in association regions of the brain can be calculated
in four 10-year phases. The permeability is matched at the end
of each 10 year period and the physical characteristics of the
network changed to simulate ageing, starting from a MA brain
at age 45. This gives a chart interpolating between ages, starting
from a healthy, middle-aged adult brain.

2.5. Simulating Micro-Emboli in the Ageing
Brain
The ageing process leads to substantial changes in the cerebral
microvasculature which are next incorporated into a 3-D model
through methodology described in the previous sections. This
model can be used to test how the brain capillary bed responds to
events differently through a human lifetime. In this section, the
effect of micro-emboli on the brain is investigated. These micro-
infarcts occur at a scale where in-vivo detection is challenging and
therefore computer simulation is important in assessing these
effects. It has previously been shown in-silico that the severity
of micro-strokes in mice is strongly linked to vascular topology
(Schmid et al., 2021) and therefore this simulation quantifies
increased vulnerability to micro-stroke introduced through the
natural ageing process.

FIGURE 3 | Number density ratios using volume density matching (left) and

cerebral blood flow matching (right)—Y = Young; M, Middle-age; O, Old-age.

Computationally, a micro-embolism follows the same process
as pruning a vessel. A no-flow condition is imposed on an
individual capillary to simulate a clot fragment preventing blood
flow. For 166 middle-age cubes and 166 old-age cubes, vessels
are blocked randomly, one-by-one until the cube permeability
reaches zero. The fractions of vessel number, vessel volume and
vessel surface-area blocked in the networks are recorded for each
micro-emboli and plotted against the permeability fraction. A
permeability reduction rate can therefore be calculated as (%
permeability reduction / % blockage fraction).

3. RESULTS

3.1. Quantification of Separate Ageing
Effects
Pruning vessels by matching cerebral blood flow (described in
section 2.2) gives a similar reduction in number density to
pruning vessels by matching the volume density from Moeini
et al. (2018). The number density ratios for the three age group
sets of young, middle-aged and old, where the baseline middle-
age is 1.00 are 0.92 : 1.00 : 0.87 and 0.94 : 1.00 : 0.89 for matching
of CBF and volume density, respectively (Figure 3).

The drop calculated using bothmethods is within the expected
10–20% range (Leenders et al., 1990; Desjardins et al., 2014;
Nagata et al., 2016). Due to the equivalence in results of both
methods, a decision was made to continue with just one method
for the remaining calculations in the paper. Therefore, the flow
matching method is used to calculate all future permeability.
Figure 4 illustrates an example of the CBF pruning algorithm.
The network structure before and after pruning 13% of vessels
is shown—the expected number density reduction moving from
middle-age to old-age.

The flexibility of the model allows isolation of the two
separate quantities influencing the drop in flow (and therefore
permeability) with age. Figure 5 plots the permeability ratios
of young and old networks against the MA base permeability,
to compare how the physical property changes (radius dilation,
conductance) affect the network before and after vessels are
removed (each data point represents the average over 166
networks). When no vessels are removed, this is simulating the
effect of no reduction in vessel density vs. MA baseline whilst
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FIGURE 4 | Visualising the change in vessel parameters in a cubic volume of the ageing brain with a middle-age network (A) and old-age network (B). Blue dashed

lines indicate the vessels pruned to achieve an accurate old-age vessel density.

FIGURE 5 | Ratio of pruned network permeability to the unpruned MA base permeability (data points represent the average permeability over 166 networks for each

specific number of pruned vessels). Note that the YA, MA, and OA brains all start with the same vessel density—only radius and viscosity is modified for the different

age groups. This elucidates the impact of removing individual vessels on permeability in young (left) and old (right) brains.

continuing tomodel the physical changes of ageing. Although not
a physiologically accurate process, this illustrates the flexibility
of the capillary network in responding to loss of vessel density.
It is therefore possible to understand how dilation contributes
on its own to capillary network robustness in ageing. Figure 5

shows that the conditions of increasing diameter and decreasing
viscosity would actually increase the permeability to 1.3 times the
middle aged value if the same vessel density as in the MA group
remained. The percentage reduction in permeability (shown in
Figure 5) and flow per vessel are equal for each age group, and
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FIGURE 6 | Permeability distributions for young (top), middle aged (middle),

and old (bottom) capillary networks.

see a 0.8% drop per vessel removed in the young group and a
1.0% drop per vessel in the old group.

This illustrates a potential mechanism by which the brain
partly accounts for the reduction in vessel density. The dilation of
vessels allows a greater volumetric flow, increasing conductance
and therefore perfusion from the remaining vessels. The flow
in the YA and OA sets was matched to 71 and 79% of the
MA flow, respectively, in Moeini et al. (2018), but flow through
individual vessels increases in old age compared to middle age
due to dilation of the remaining vessels. This physiological
reaction to the decrease in vessel density could potentially be
due to the autoregulation mechanisms in the brain. In younger
subjects, vessel vasoconstriction can protect against development
of hypoxic regions but this capacity reduces due to the stiffening
and dilating of capillaries with age (Wagner et al., 2012).

3.2. Capillary Network Permeability
Figure 6 shows the distribution of permeability values in the
measured cubes of each age set. The permeability tensor was
found to be isotropic with off-diagonals distributed around 0,
as in El-Bouri and Payne (2015). The off-diagonal permeability
values were on average two orders of magnitude smaller than
the permeability of the principal terms. Therefore simply the
first term of the tensor K is presented in this paper. The mean
and variance of the permeability values are (3.17 ± 0.55) ×

10−4 mm3 s kg−1, (4.48 ± 0.66) × 10−4 mm3 s kg−1 and
(3.39 ± 0.77) × 10−4 mm3 s kg−1 for YA, MA, and OA sets,
respectively. Interestingly, the permeability drops in both YA and
OA compared to the middle-aged set. CBF would normally be
expected to be largest in the young population and therefore so
would permeability (Prince et al., 2013). However, CBF is used
as an input for the model when pruning vessels (Figure 2) and

TABLE 3 | Quantified mean and variation of model oxygen parameters.

YA MA OA

Density (%) 2.5 ± 0.08 2.9 ± 0.07 2.6 ± 0.11

SA:Vol (mm
2

mm3 ) 607 ± 5 608 ± 6 569 ± 6

CBF input for the young age is lower than the MA in mice,
leading to this “inverted U shape” trend. There is also shown to
be an increase in variability with ageing through the three age
group sets.

3.3. Molecular Exchange Parameters
The capillary density and surface-area-to volume ratio (SA:Vol)
distributions are shown in Figure 7, with the mean and variance
statistics summarised in Table 3.

The relative results of YA, MA and OA groups between
volume density and SA:Vol show different patterns of
development with ageing. The volume density in YA and
OA groups is similar, which matches the overall shape of
permeability histograms in Figure 6. However in the OA group,
SA:Vol is considerably reduced relative to MA and YA. This
suggests that the capacity for molecular exchange into the tissue
is substantially reduced in old age.

A likely cause is the increase in average capillary radius in the
OA set. Due to rarefaction of the network, capillaries dilate to
maintain the required perfusion through a specific tissue volume.
Comparably in dementia patients, chronic hypoperfusion causes
capillary dilation and cerebral microvessel restructuring that
affects brain function (Hase et al., 2019). A future aim is to use
these data with an oxygen transport model previously developed
in the research group (El-Bouri et al., 2019). Understanding the
potential development of hypoxic regions due to ageing will show
to what extent this is normal in “healthy” brains.

3.4. Continuous Ageing Gradient
The rate of permeability decline at different ages is a key indicator
of network robustness with ageing in terms of the damage
caused by individual vessel loss and morphometric changes. A
continuous gradient for drop in permeability per year allows
capillary bed health to be analysed for a healthy individual
between middle-age and old-age. Modelling four rates of brain
ageing from age 45, data are presented in terms of a percentage
permeability drop per year. Note that the percentage change in
Figure 8 is calculated relative to the permeability in the MA
network before pruning. Plateaus in the figure were due to the
fact that a decrease in target CBF did not necessarily correspond
to an entire vessel being removed each year (where the decrease
in CBF is averaged over all networks in that age bracket).

The graph in Figure 8 is created by combining calculations
of percentage permeability drop per vessel and calculations for
expected vessel reduction per year, to give a permeability drop
per year in the cerebral capillary bed. Analysis of expected vessels
lost per year, calculated by matching cerebral blood flow drop
in ageing, suggests that fewer vessels are lost each year in old
age than in the middle-aged brain. However, the gradient of
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FIGURE 7 | Distributions of capillary volume fraction (left) and surface-area-to-volume ratio of the capillaries (right) in young (top), middle aged (middle), and old

(bottom) capillary networks.

FIGURE 8 | Percentage permeability drop per year in healthy ageing starting from 45 years old ranging up to 85 years old.

permeability decline per vessel lost increases with increasing
age, showing increased sensitivity of the cerebral permeability
to vessels being pruned. This shows lower robustness of the
permeability to structural changes in OA.

The results show an increasing rate of permeability reduction
per year with age. The rate of decline increases by 35% from
MA to OA 50 sets / OA 50 sets to OA 75 sets but only
by 5% from OA 75 to OA sets. This contrasts with the
expectation that most serious cases of cognitive decline are
seen after the age of 75. For example, rates of dementia in the
population increase by 0.5% per year up to the age of 75 and
by 6–8% per year above that (Checkoway et al., 2011). This
potentially indicates that the human brain reaches a tipping
point, after which small permeability changes have a much

larger impact. Therefore cerebral ageing might be described as
a period of microvascular decline before manifestation in actual
cognitive function, explaining the timeframe of increased rate of
brain deterioration.

Linear deterioration between age sets in discrete time
measurements was assumed. Testing this would require more
discrete measurements to be taken, but the assumption is
frequently made (Ziegler et al., 2012) and agrees with many
measurable biomarkers of ageing (Finch and Crimmins, 2016).
However, this does not correspond to life expectancy as ageing
is a very individual process due to lifestyle and underlying
health. The primary value of the work presented here lies in
understanding the trend of healthy ageing. There is also potential
to look at the relative brain age of individuals, who follow the
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FIGURE 9 | The drops in permeability per vessel blocked in young (A), middle-age (B), and old-age (C) for statistically accurate capillary networks. Lines of best fit are

in blue with values of the gradient given in the top right corner of each graph. Each data point shows the permeability fraction at any given vessel blockage fraction for

a given network, with 166 networks simulated at each age group.

trend observed offset by a certain number of years. If imaging
techniques develop to measure capillary density in-vivo, it will
be possible to longitudinally study individuals and assess their
ageing trajectory. This could potentially allow identification of
“unhealthy” ageing before symptoms appear.

3.5. Micro-Emboli in the Ageing Cerebral
Capillary Bed
The permeability drop in the middle-aged capillary bed was
calculated to be: −8.5 % / % surface area lost, −3.4 % /
% vessels blocked and −4.3 % / % volume blocked. This is
comparable to the results in section 3.4 for the ageing gradient,
and also with synthetic mice models in the literature (Cruz
Hernández et al., 2019). Figure 9 shows the scatter distribution
of 166 middle-aged and 166 old-age network cubes for the
vessel blockage fraction. For each cube, a number of vessels
were blocked until the overall permeability reached zero. These
were then all plotted to show the reduction rate in permeability
from 100 to 0% i.e., each cube has multiple points in Figure 9

demonstrating the impact of successive occlusions on the
blood flow.

The permeability drop in the old-age capillary bed was
calculated to be: −9.5 % / % surface area lost, −4.1 % / %

vessels blocked and −4.9 % / % volume blocked. This shows a
faster permeability decline in old-age than in middle-age, which
is consistent with the reduction in network robustness described
earlier. The changes in rate of permeability decline from middle-
age to old age are: +11.2% for surface area lost, +18.5% for
vessels blocked and +14.9% for volume blocked. Therefore old-
age has a significant effect on the response of the cerebral capillary
networks to micro-emboli.

Interestingly, the permeability drop in the young capillary bed
was calculated to be: −8.8 % / % surface area lost, −3.5 % / %
vessels blocked and −4.3 % / % volume blocked. The changes
in rate of permeability decline from the young-age group to
the middle-aged group are: +3.5% for surface area lost, +2.9%
for vessels blocked and −0.4% for volume blocked. Therefore,
the impact of occlusions on young and middle-aged networks
are largely similar, but in old-aged networks the impact of an
occlusion is much larger.

There is also around twice the variability in the old age
group in comparison to the middle-aged group and 20% greater
variability in the young age group compared to the middle-aged
group, illustrated by the widening 95% confidence intervals. This
is consistent with the idea that as the size of the network reduces,
specific individual vessels will play more of a critical role in
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perfusion and if these are randomly blocked, an oversized effect
on the permeability and molecular exchange will be seen.

4. DISCUSSION

In this paper, a computational model of the ageing brain was
developed. Brain microvascular robustness is shown to decrease
significantly with age, particularly with regards to permeability.
The analysis of continuous ageing indicates that the majority of
significant structural changes in the cerebral capillary bed occur
before old-age, the expected time frame for cognitive decline.
Therefore the model captures early biomarkers in microvascular
health leading to deterioration of brain functionality. In addition,
testing the robustness of the capillary bed to micro-emboli
in ageing confirms increased vulnerability of the old age
capillary bed, as well as increased variability between individuals
with ageing.

The permeability and molecular exchange distributions for
ageing show significant reduction from middle-age to old-age, as
well as increased variability in old-age. The findings, especially
the drop in permeability, show that healthy ageing will still affect
the baseline perfusion of the capillary bed. In future work it will
be important to quantify how this extends to the larger vessels, by
coupling arteriolar and venular trees to the homogenised cubes in
whole brain perfusion models. The deterioration seen in healthy
ageing is replicated at extremes in neurodegenerative diseases,
and this illustrates the difficulty in identifying how “healthy” the
rate of ageing is in the brain.

The continuous gradient of the ageing model proposed here
attempts to tackle this problem by proposing a method for
comparing discrete longitudinal studies charting the reduction
of the permeability in the capillary bed of the brain, a proxy for
the health of an individual brain region. A continuous timeline of
ageing allows assessment of the relative brain age of an individual,
as well as providing a benchmark for a healthy trend in ageing.
The rate of ageing is shown to increase from the age of 45.
However, the sharpest increase in rate of decline comes before
the age of 75, which is considered to be a threshold for dementia
onset. This suggests a tipping point of the ageing network,
beyond which smaller changes become much more physically
significant. This model tracks small-scale deterioration before
changes become apparent in brain function. The hypothesis of
a critical threshold or tipping point in the cerebral circulation
that leads to pathologies characterizing dementia and Alzheimer’s
has previously been postulated—a critically attained threshold
of cerebral hypoperfusion (CATCH) (De la Torre, 2000). The
model presented here supports this theory, clearly demonstrating
a threshold in the integrity of the cerebral microvascular network
after which small vascular changes lead to large changes in
the permeability.

The test case of modelling micro-emboli in the cerebral
capillary bed clearly shows the increased vulnerability of the brain
microvasculature in ageing. There is also increased variability
which is consistent with increased variability of permeability
and molecular exchange parameters in old age. This is an initial
characterisation of the use for an ageing brain model as a

tool to simulate important clinical events. Further extensions
of this idea, as well as combining the results with macro-scale
models, will create models of more complicated ageing scenarios
with comorbidities, and potentially even disease states such as
Alzheimer’s Disease. This will allow a direct comparison between
healthy ageing and a patient state to inform better treatment.

Brain integrity and functionality is guaranteed through an
energy balance, with a steady supply of oxygen from the
microvasculature to the tissue. As the brain ages healthily,
despite a reduction in vascular density, tissue cell density
appears to remain constant (Thulborn et al., 2016). However,
the vascular network is now much more susceptible to minor
changes, as demonstrated in this paper using micro-emboli.
Therefore, minor changes in the vascular structure can lead to
energy imbalance and regional neuronal cell loss over a period
of years or decades. Future research will look at adding an
oxygen metabolism and tissue cell death model to simulate
this behaviour.

It is important to recognise the limitations of assumptions
made here. Many of the outputs are driven by the measurements
taken in Moeini et al. (2018), a paper with limited comparable
literature for corroboration. The parallel assumption of mice
and human ageing creates uncertainty, especially due to the
regional discrepancies known to exist in the brain. The region
of the brain observed in Moeini et al. (2018) has no direct
equivalent in humans. It is therefore also different to the brain
region upon which the underlying model is based. It should,
however, be noted that previous research has demonstrated a
topological equivalence in the cerebrovascular capillary networks
of mice and humans that reproduces both structure and function
of the networks (Smith et al., 2019a). In addition, the data
are measured from three differing populations of mice rather
than longitudinally so confounding factors between individuals
cannot be isolated (Salthouse, 2012). Furthermore, we assumed
the length of the capillary vessels does not change with age. This
assumption helped simplify the modelling but did not account
for previously demonstrated increases in capillary length with
age—primarily due to an increase in tortuosity of the vessels
(Kalaria and Hase, 2019; Propson et al., 2021). The impact of
the increased tortuosity on blood flow and permeability will be
2nd order, however, as radius dominates blood flow dynamics
in vessels through Poiseuille’s Law. A further limitation of this
study is the neglect of phase separation of the red blood cells
in the capillary bed. When simulating oxygen transport on the
local scale this can have a large effect and should be accounted
for, although the impact on permeability will be minor.

There is a lack of clarity over the term “healthy” ageing due
to the high frequency of comorbidities in the elderly, such as
hypertension or diabetes, as well as the large impact lifestyle, diet
and social participation have. These have large effects on ageing
and therefore the “healthy” old age modelled here is a relatively
rare physiological scenario. The current model architecture
cannot capture certain parameters which change with age, such
as tortuosity and stiffness. The cerebral capillary bed is also
heavily reliant on the upstream properties of the vasculature,
as the autoregulatory capacity of the arteries shields / exposes
the capillaries themselves. Without quantifiable coupling of the
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capillary bed to larger vessels, this model must thus remain a
standalone tool. Furthermore, the vascular component of ageing
is only one facet of an incredibly complex process which depends
on genetics, neurotransmitters and hormones, amongst other
factors, that determine brain ageing (Peters, 2006). By simply
focussing on the vascular component, significant heterogeneity
will be missed and needs to be addressed in future work.
However, the attempt to standardise “healthy” ageing will provide
useful insights in identifying what effects these other factors can
produce in the microvasculature.

The next stage is to increase the physiological accuracy of this
model. Modelling the interactions between penetrating arterioles
and the capillary bed will show how the changing parameters
upstream may effect what is observed downstream or vice versa
(Adams et al., 2015). In particular, the penetrating arterioles have
a large impact on oxygen flux to the tissue and hence would need
to bemodelled when simulating oxygen transport (Sakadžić et al.,
2014). This will allow prediction of global changes from capillary
bed development and show how the role of the capillary bed
changes with age.

The nature of the model allows separate quantification of the
effects that different physiological changes have on ageing. The
reduction in vessel density observed in the literature is thought to
be due to declining levels of growth factors throughout the body
(Ambrose, 2017). Capturing the effect of the subsequent dilation
of the remaining vessels on the network flow and permeability
illustrates the excess capacity of the cerebral microvasculature
in a healthy adult brain. Understanding the reduction of this in
ageing is an interesting area for further exploration, especially in
the context of common comorbidities in old age. In a healthy
brain, there is a buffer as the vessels can dilate, at least up to the
radius seen in old age. In old age, it is expected this buffer reduces
as there is less ability of the vessels to dilate beyond the old age
radius, and therefore the vessels are nearer functional capacity.

One of the major outputs of this paper is the healthy ageing
gradient. This has the capability to use potentially measurable
parameters (haematocrit, CBF, radius) to create a clinically useful
tool. Ability to measure these parameters in-vivo in humans is
improving rapidly. This, combined with the rise of personalised
medicine, will see more regular scans and tests to enable tracking
of “healthy” ageing based on a more extensive medical history. A
tool tomap “relative brain age” of an individual would summarise
whether there was unexpected deterioration. This could be used
to inform suggestions for lifestyle changes, or further research
into factors that affect ageing in the population. An equivalent

gradient for Alzheimer’s Disease could highlight differences over
time in the health of the capillary bed, potentially before they
manifested in brain function. After comparison, a prediction
method of future brain health based on lifestyle and physiological
measurements could be built from this information. It should
be noted that currently this model does not account for sex-
based differences or comorbidities. However, the model inputs
are flexible enough such that we should be able to account for
sex-based differences as well as comorbidities such as diabetes or
hypertension—as long as the data is available.

Brain computer models allow in-silico estimation of blood
flow properties and insight into clinically unmeasurable
parameters. However, they are currently sparsely used in
clinical practice. A working computer model of the brain
microvasculature in ageing would allow earlier identification
of “at-risk” groups for cerebrovascular degeneration, to inform
lifestyle changes and medical intervention. This could be
achieved through comparisons of “healthy” and “unhealthy”
ageing based on more standardised definitions. Physiological
parameters measurable in-vivo such as cerebral flood flow
can be fed into the model to determine patient risk. Deeper
understanding of inhibited localised flow patterns and potential
new ideas to target biomarkers of disease will maximise cost
effectiveness of treatment and patient outcomes.
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