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Abstract 13 

The cerebral microvasculature plays a key role in the transport of blood and the delivery of nutrients 14 

to the cells that perform brain function. Although recent advances in experimental imaging 15 

techniques mean that its structure and function can be interrogated to very small length scales, 16 

allowing individual vessels to be mapped to a fraction of 1 μm, these techniques currently remain 17 

confined to animal models. In-vivo human data can only be obtained at a much coarser length scale, 18 

of order 1 mm, meaning that mathematical models of the microvasculature play a key role in 19 

interpreting flow and metabolism data. However, there are close to 10,000 vessels even within a 20 

single voxel of size 1 mm3. Given the number of vessels present within a typical voxel and the 21 

complexity of the governing equations for flow and volume changes, it is computationally 22 
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challenging to solve these in full, particularly when considering dynamic changes, such as those 23 

found in response to neural activation. 24 

We thus consider here the governing equations and some of the simplifications that have been 25 

proposed in order more rigorously to justify in what generations of blood vessels these 26 

approximations are valid. We show that two approximations (neglecting the advection term and 27 

assuming a quasi-steady state solution for blood volume) can be applied throughout the cerebral 28 

vasculature and that two further approximations (a simple first order differential relationship 29 

between inlet and outlet flows and inlet and outlet pressures, and matching of static pressure at 30 

nodes) can be applied in vessels smaller than approximately 1 mm in diameter. We then show how 31 

these results can be applied in solving flow fields within cerebral vascular networks providing a 32 

simplified yet rigorous approach to solving dynamic flow fields and compare the results to those 33 

obtained with alternative approaches. We thus provide a framework to model cerebral blood flow 34 

and volume within the cerebral vasculature that can be used, particularly at sub human imaging 35 

length scales, to provide greater insight into the behaviour of blood flow and volume in the cerebral 36 

vasculature. 37 

1 Introduction 38 

Since 2006 there has been a great deal of interest in models of the cerebral microcirculation. This 39 

has been driven by the recent ability to obtain experimental data about microvascular networks, 40 

both in humans and in animal models. The former has mainly been based on the collection of post-41 

mortem casts obtained by Duvernoy et al. (1981), and these experimental data have been presented 42 

in detail by Cassot et al. (2006), Lauwers et al. (2008) and Lorthois et al. (2011). Casts of animal 43 

microvascular networks have also been extracted and the flow in them modelled, see for example 44 

Fang et al. (2008), Weber et al. (2008), Reichold et al. (2009), Tsai et al. (2009), Guibert et al. (2010), 45 

Blinder et al. (2010), Safaeian et al. (2011), Kasische et al. (2011), Linninger et al. (2013), Gagnon et 46 
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al. (2015), Gould et al. (2017) and Schmid et al. (2017). Many of the models listed above have also 47 

examined the transport of oxygen and the coupling between this and cerebral blood flow. 48 

Although there has been a great deal of progress on robustly extracting vascular networks from 49 

imaging data and converting them into accurately segmented three-dimensional networks, see for 50 

example Gould et al. (2017), acquiring large volumes of such data remains a time-consuming and 51 

expensive task that can only be undertaken with considerable expertise. The strong dependence of 52 

vessel resistance on vessel radius means that accurate values of the vessel diameter are critical if the 53 

flow field is to be calculated accurately. The strong dependence of the chosen boundary conditions 54 

on the flow simulations has also been noted by many authors, for example Lorthois et al. (2011). 55 

These factors, together with the high vessel density that means that solving the flow field in volumes 56 

of tissue that are of the length scale of a human imaging voxel (of order 1 mm) is highly 57 

computationally challenging, has driven the development of homogenisation techniques based on 58 

the creation of artificial networks that match experimentally measured properties, Su et al. (2012), 59 

El-Bouri and Payne (2015) and El-Bouri and Payne (2016), and coupling these with models over 60 

multiple length scales, El-Bouri and Payne (2018). These techniques enable a scaling up of networks 61 

to a voxel scale and hence the flow fields can be related to imaging data, most easily through the use 62 

of transit time distributions, see for example Park and Payne (2013). Other authors have developed 63 

vascular networks through the use of bifurcating vessels, for example Boas et al. (2008) and Payne 64 

and Lucas (2017), although in these models no spatial information is considered. 65 

At a voxel level, the vasculature comprises vessels over a relatively wide range of length scales, with 66 

diameters ranging from a few micrometres to hundreds of micrometres. Consideration does thus 67 

need to be given to the assumptions and choice of equations that govern blood flow over these 68 

length scales, in particular when attempting to bridge the ‘imaging gap’, when the assumptions valid 69 

in the large vessels and those in the microvasculature may be significantly different. At the smallest 70 

length scales, nearly all authors use the Poiseuille equation in some form, with viscosity either taken 71 
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to be constant, based on vessel diameter or based on vessel diameter and haematocrit, as shown in 72 

Table 1. In the latter two cases, empirical relationships are normally used, with a variety of different 73 

relationships having been applied. Once the resistance to flow is known, then the network reduces 74 

to a conductance matrix, which can be solved numerically, either by simple inversion for networks 75 

with constant haematocrit or by iteration for networks with non-constant haematocrit. It is usually 76 

assumed that at small length scales static pressure is conserved at nodes, as has been done in all the 77 

studies listed thus far. 78 

Most of the models listed in Table 1 assume steady state flow conditions, with only a few 79 

considering the dynamic response, although this plays an important part in interpreting the 80 

response to changes in neural activity. Only the models by Boas et al. (2008), Reichold et al. (2009), 81 

Gagnon et al. (2015) and Payne and Lucas (2017) consider the dynamic response of the small vessels 82 

in the cerebral vasculature. These mostly assume a non-linear compliance of the vessels, enabling 83 

changes in flow to drive changes in volume. Such changes in blood volume are of particular 84 

importance in the context of imaging techniques such as the BOLD response, where short-term 85 

changes in blood volume can strongly influence the response. 86 

Model Static/dynamic Flow model Viscosity model 

Fang et al. 

(2008) 

Static Poiseuille equation Constant 

Boas et al. 

(2008) 

Dynamic Poiseuille equation and 

non-linear compliance 

Pries et al. (1992), with 

haematocrit as function of 

diameter 

Reichold et al. 

(2009) 

Dynamic Poiseuille equation and 

non-linear compliance 

Pries et al. (1992), with 

haematocrit as function of 

diameter 

Guibert et al. Static Poiseuille equation Kiani and Hudetz (1991) or Pries 
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(2010) and Secomb (2005), with 

haematocrit model 

Lorthois et al. 

(2011) 

Static Poiseuille equation Pries et al. (1996), with 

haematocrit model 

Safaeian et al. 

(2011) 

Static Poiseuille equation Pries and Secomb (2005), with 

haematocrit model 

Linninger et al. 

(2013) 

Static Poiseuille equation Pries et al. (1996), with constant 

haematocrit 

Gagnon et al. 

(2015) 

Dynamic Poiseuille equation and 

non-linear compliance 

Pries et al. (1990), ‘corrected 

for haematocrit’ 

Gould et al. 

(2017) 

Static Coupled model of flow and 

haematocrit, rigid vessels 

Plasma skimming model 

Schmid et al. 

(2017) 

Static Poiseuille equation Pries et al. (1992), with tracking 

of red blood cells 

Payne and 

Lucas (2017) 

Dynamic Poiseuille equation Pries et al. (1992), with constant 

haematocrit 

El-Bouri and 

Payne (2018) 

Static Poiseuille equation Pries et al. (1992), with constant 

haematocrit 

Table 1 Summary of network models of cerebral blood flow and assumptions used 87 

Other approaches have taken a more ‘top-down’ methodology, where lumped parameter models 88 

(e.g. windkessel models) are used, with the lumped parameters aiming to capture the overall 89 

behaviour of flow through large numbers of vessels in a very small number of parameters, see for 90 

example those used by Ress et al. (2009), Kim et al. (2013) in the context of models of oxygen 91 

delivery, and Buxton et al. (1998) and many subsequent studies (for example Aquino et al. (2014)) in 92 

the context of models of the BOLD response. Such models have a valuable role to play in 93 
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understanding the behaviour at large scales, but are inevitably limited by both their simplicity and 94 

the difficulties involved in linking the model parameters to the underlying network physiology. 95 

The assumptions made are often very different in models of flow in the larger vessels, for example 96 

when the dynamic behaviour of the flow field plays an important part in both flow and volume, and 97 

when total pressure is often conserved at nodes, see for example Alastruey et al. (2007). In order to 98 

link models across the ‘imaging gap’, care has to be taken and the limits of assumptions fully 99 

understood. For a comprehensive review of models of cerebral blood flow, the reader is referred to 100 

Payne (2017). 101 

In this paper we thus consider the modelling of cerebral blood flow and volume in networks of blood 102 

vessels in detail, justify suitable approximations that can be made, and propose a framework that 103 

can be used that is mathematically rigorous and computationally simple. We will also consider the 104 

limits of the approximations and hence illustrate how models can be developed that will cover 105 

multiple scales. In order to do this, we consider the governing equations and use these to develop a 106 

model relating blood flow and volume to pressure in a single vessel; finally we link vessels together 107 

within a network and then show how the equations can be solved dynamically within a network. In 108 

the last section we will consider each of these in turn before illustrating our proposed approach in 109 

the context of the cerebral vasculature, comparing simulation results with those obtained using 110 

previous approaches. 111 

2 Theory 112 

We assume blood to be a Newtonian fluid of viscosity 𝜇𝜇 and density 𝜌𝜌 in a flow field that is governed 113 

by the incompressible form of the Navier-Stokes equations. These fundamental fluid flow equations 114 

are based on the concepts of conservation of mass and balance of forces; a full explanation and 115 

derivation can be found in many sources, see for example Acheson (1990). Hence: 116 

𝜕𝜕𝐮𝐮
𝜕𝜕𝜕𝜕

+ (𝐮𝐮.∇)𝐮𝐮 = −
1
𝜌𝜌
∇𝑝𝑝 +

𝜇𝜇
𝜌𝜌
∇2𝐮𝐮 (1) 117 
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with velocity field u driven by a pressure field p. In an axisymmetric vessel this reduces to: 118 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

+
𝜇𝜇
𝜌𝜌
∇2𝜕𝜕 (2) 119 

where the flow velocity has only an axial component, u, which is a function of radius, r, axial position, 120 

x, and time, t. In this latter case, the pressure gradient can be shown to be only a function of axial 121 

position and time, i.e. the pressure is uniform over the cross-sectional area, based on order of 122 

magnitude arguments, Canic and Kim (2003). A similar order of magnitude argument can be used to 123 

neglect the radial component of the velocity field when the variations in the vessel cross-section are 124 

not too fast, Canic and Kim (2003). We note that the assumption of a Newtonian fluid is a limitation 125 

to this analysis, but one that we will consider more fully in the Discussion. For ease of reference, 126 

schematics of the different components of the model are shown in Figure 1, to which we refer 127 

throughout. 128 

 129 
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Figure 1 Schematic of components of model: (a) single vessel model; (b) continuum model; (c) node 130 

model; (d) coupled penetrating vessel and capillary bed continuum model. Figures (b) and (d) 131 

reproduced from El-Bouri (2017) 132 

2.1 Result 1: The advection term can be neglected when 𝐸𝐸
𝜌𝜌𝑈𝑈2

ℎ
𝑅𝑅
≫ 3

2
 (E is Young’s modulus, 𝝆𝝆 is fluid 133 

density, U is flow velocity, h is wall thickness and R is vessel inner radius) 134 

The first result that we show is that the advection term can be neglected in models of cerebral blood 135 

flow when the vessel wall stiffness scaled by wall thickness to radius ratio is greater than a multiple 136 

of the dynamic head. This result is required first to enable us to write down the governing equations 137 

in a simplified form so that we can derive a model for the inlet and outlet flows in the next section. 138 

We will demonstrate this in two parts. We first consider the flow in individual vessels, Figure 1a, 139 

since a simple result can be obtained, before considering the flow field across multiple scales, Figure 140 

1b. This latter approach allows us to consider the flow field as a whole; this is valuable since it links 141 

to previous work that has shown how the flow field in the capillary vessels can be modelled using 142 

homogenisation, El-Bouri and Payne (2015). For simplicity we only consider the steady state solution, 143 

but this does not affect the result. 144 

Single vessels 145 

We firstly reduce the steady state form of Equation 2 to non-dimensional form, where we reference 146 

velocity and pressure to characteristic values, U and P respectively: 147 

𝜕𝜕∗
𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕∗
= −�

𝑃𝑃
𝜌𝜌𝑈𝑈2�

𝜕𝜕𝑝𝑝∗

𝜕𝜕𝜕𝜕∗
+

1
𝑅𝑅𝑅𝑅𝐿𝐿

∇2𝜕𝜕∗ (3) 148 

where the star is used here to denote a value as a fraction of its characteristic value, i.e. 𝜕𝜕∗ = 𝜕𝜕 𝑈𝑈⁄ , 149 

𝑝𝑝∗ = 𝑝𝑝 𝑃𝑃⁄  and 𝜕𝜕∗ = 𝜕𝜕 𝐿𝐿⁄ , and noting that we do not assume any relationship between characteristic 150 

pressure and characteristic velocity, retaining generality at this stage. The co-ordinate x is 151 
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referenced to vessel length, L (and hence the ∇2 operator is also made non-dimensional with respect 152 

to L). Note that Reynolds number in Equation 3 is based on vessel length: 153 

𝑅𝑅𝑅𝑅𝐿𝐿 =
𝜌𝜌𝑈𝑈𝐿𝐿
𝜇𝜇

 (4) 154 

We use a subscript for Reynolds number throughout to make it clear what length scale is being used. 155 

The aim is then to consider the relative magnitudes of the advection and pressure gradient terms, 156 

since these are the two terms with first order axial derivative terms and thus terms that can be 157 

compared directly through order of magnitude arguments. 158 

Conservation of mass, averaged over the cross-sectional area, gives: 159 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 (5) 160 

where the flow rate, q, is the integral of the axial velocity over the cross-sectional area: see Canic 161 

and Kim (2003) for a formal derivation of this result. In the steady state this reduces to a flow rate 162 

that is invariant over axial length, as expected. Hence: 163 

𝜕𝜕 =
𝜕𝜕
𝑈𝑈�

 (6) 164 

where the area-averaged velocity is given by 𝑈𝑈� (which can vary along the vessel). We next assume 165 

that a relationship can be formulated between steady state pressure and cross-sectional area 166 

(without at this stage specifying its form), i.e. 𝑝𝑝 = 𝑝𝑝(𝜕𝜕). We neglect any viscous component of the 167 

wall response here as we are only considering the steady state behaviour: note, however, that we 168 

retain the viscous behaviour of the fluid, which means that the pressure will drop in the direction of 169 

flow and hence the cross-sectional area of the vessel will also change in order to maintain flow rate. 170 

We also neglect any axial stiffness, only considering the radial stiffness, as is commonly done, for 171 

simplicity. 172 

Using this assumption, Equations 3 and 6 yields: 173 



10 
 

𝜕𝜕∗
𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕∗
= �𝜕𝜕

𝑑𝑑𝑝𝑝
𝑑𝑑𝜕𝜕

�
1
𝜌𝜌𝑈𝑈2�

𝑈𝑈
𝑈𝑈�
�
𝜕𝜕𝑈𝑈�∗

𝜕𝜕𝜕𝜕∗
+

1
𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅 𝐿𝐿⁄ )∇

2𝜕𝜕∗ (7) 174 

where Reynolds number in Equation 7 is now based on vessel radius and this is scaled by the ratio of 175 

vessel radius to length (𝑅𝑅 𝐿𝐿⁄ ). The key parameter is then the square bracket, since if this is much 176 

larger than 1, the advection term can be neglected in comparison with the pressure gradient term 177 

(note that although the derivatives are of different velocity terms, one being velocity as a function of 178 

radius and one the area-averaged velocity, they are of the same order of magnitude). 179 

We therefore need to consider the pressure-area relationship more closely. Many different forms 180 

have been proposed for this, for example those by Langewouters et al. (1984), Stergiopoulos et al. 181 

(1992) and Formaggia et al. (1999). For simplicity we use the relationship that results from assuming 182 

static radial equilibrium of an isotropic elastic material with Young’s modulus E, Poisson ratio 183 

𝜈𝜈,reference wall thickness ℎ𝑟𝑟𝑟𝑟𝑟𝑟 and radius 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟, as quoted by Formaggia et al. (1999) and widely 184 

used elsewhere: 185 

𝑝𝑝 − 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐸𝐸ℎ𝑟𝑟𝑟𝑟𝑟𝑟

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟(1 − 𝜈𝜈2)��
𝜕𝜕

𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟
− 1�  (8) 186 

where the wall stiffness relates changes in pressure relative to a reference value, 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟, to changes in 187 

cross-sectional area relative to a reference value, 𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜋𝜋𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟2 . Note that this model assumes that 188 

there is no axial stiffness: the wall thus responds at each axial location to the pressure at that 189 

location without reference to the remainder of the pressure field. More sophisticated models have 190 

been used, see for example Pedrizzetti and Perktold (2003), but this assumption is very commonly 191 

made in models of blood flow and is sufficient for the order of magnitude argument being made 192 

here. 193 

This then gives: 194 
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�𝜕𝜕
𝑑𝑑𝑝𝑝
𝑑𝑑𝜕𝜕

�
1
𝜌𝜌𝑈𝑈2�

𝑈𝑈
𝑈𝑈�
� =

1
2

𝐸𝐸
𝜌𝜌𝑈𝑈2

ℎ𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟(1 − 𝜈𝜈2)�

𝜕𝜕
𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟

𝑈𝑈
𝑈𝑈�

 (9) 195 

Since we can select the characteristic velocity to be close to the area-averaged value and assuming 196 

that all values are close to their reference value, this simplifies to give: 197 

�𝜕𝜕
𝑑𝑑𝑝𝑝
𝑑𝑑𝜕𝜕

�
1
𝜌𝜌𝑈𝑈2�

𝑈𝑈
𝑈𝑈�
� ≈

2
3

𝐸𝐸
𝜌𝜌𝑈𝑈2

ℎ
𝑅𝑅

 (10) 198 

where we also assume a value of Poisson ratio of 0.5, denoting an incompressible material, as is 199 

commonly done. For advection to be neglected, this term must be significantly greater than 1, hence 200 

𝐸𝐸
𝜌𝜌𝑈𝑈2

ℎ
𝑅𝑅
≫ 3

2
. We will examine this result again in the context of the cerebral vasculature later. 201 

Note that although we have only considered the steady state response here, the result is also valid 202 

for dynamic flow fields, since we have compared the two terms with first order axial derivatives and 203 

thus including dynamic terms in the equations will not affect the validity of this particular result. It 204 

would be worth considering in future the relative magnitudes of the acceleration term and the 205 

viscous wall behaviour (the two terms with first order time derivatives). It should be noted, however, 206 

that the available data for visco-elastic models of the vessel wall in the cerebral vasculature are very 207 

sparse. 208 

Continuous flow field 209 

Having considered the flow in individual vessels above, we next show how the advection term can be 210 

neglected when considering the flow field as a continuous one. This approach is based on the 211 

method set out by Shipley and Chapman (2010) and previously adapted for the cerebral 212 

microcirculation by El-Bouri and Payne (2015). We include this analysis since we have previously 213 

shown how the flow field within volumes of brain tissue can be modelled using a coupled approach 214 

that incorporates both the flow in individual non-capillary vessels and a Darcy flow for the capillary 215 
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vessels, El-Bouri and Payne (2018), and thus wish to show that the advection term can be neglected 216 

when considering the flow field as a continuum. 217 

As before, we consider the solution in the steady state but start from the Navier-Stokes equations 218 

for incompressible flow: 219 

(𝐮𝐮𝑐𝑐 .∇)𝐮𝐮𝑐𝑐 = −
1
𝜌𝜌
∇𝑝𝑝𝑐𝑐 +

𝜇𝜇
𝜌𝜌
∇2𝐮𝐮𝑐𝑐 𝑖𝑖𝑖𝑖 Ω𝑐𝑐  (11) 220 

where the velocity field in the capillary domain, Ω𝑐𝑐, is given by 𝐮𝐮𝑐𝑐. The boundary conditions are as 221 

given in El-Bouri and Payne (2015): however, since we are not attempting to solve the equations 222 

here, we will not consider the boundary conditions further as they are not directly relevant to the 223 

derivation below. We define a small parameter 𝜀𝜀 = 𝑑𝑑 𝐷𝐷⁄  that relates the micro length scale, d, to 224 

the macro length scale, D, as shown in Figure 1b (note that this definition of 𝜀𝜀 is only used in this 225 

section). 226 

We reduce the equations to non-dimensional form using the following scaling: 227 

𝐮𝐮𝑐𝑐 = 𝑈𝑈𝐮𝐮𝑐𝑐∗  (12) 228 

𝑝𝑝 =
𝜇𝜇𝐷𝐷𝑈𝑈
𝑑𝑑2

𝑝𝑝∗ + 𝑝𝑝0 (13) 229 

𝐗𝐗 = 𝑑𝑑𝐗𝐗∗ (14) 230 

based on a characteristic velocity U, capillary length scale d, voxel length scale D, and a characteristic 231 

pressure that is based on viscous forces with an arbitrary offset. This scaling of pressure is based on 232 

the fact that viscous forces dominate at the local scale and thus to bring the characteristic value of 233 

pressure to the macro scale it is rescaled by 𝜀𝜀−2: this is due to the fact that the inter-capillary 234 

spacing is of order 𝜀𝜀 and so there are of order 𝜀𝜀2 capillaries per unit area, meaning that pressure 235 

scales with 𝜀𝜀−2. These characteristic values reduce Equation 11 to the following (where we drop the 236 

star notation straight away for ease of notation): 237 
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𝜀𝜀𝑅𝑅𝑅𝑅𝑑𝑑(𝐮𝐮𝑐𝑐.∇)𝐮𝐮𝑐𝑐 = −∇𝑝𝑝𝑐𝑐 + 𝜀𝜀𝜇𝜇∇2𝐮𝐮𝑐𝑐  (15) 238 

where Reynolds number on the micro scale is defined as: 239 

𝑅𝑅𝑅𝑅𝑑𝑑 =
𝜌𝜌𝑈𝑈𝑑𝑑
𝜇𝜇

 (16) 240 

and the Reynolds number on the macro scale is therefore equal to 𝑅𝑅𝑅𝑅𝐷𝐷 = 𝑅𝑅𝑅𝑅𝑑𝑑 𝜀𝜀⁄ . Since the problem 241 

is more commonly formulated in terms of this parameter, Equation 15 thus becomes: 242 

𝜀𝜀2𝑅𝑅𝑅𝑅𝐷𝐷(𝐮𝐮𝑐𝑐 .∇)𝐮𝐮𝑐𝑐 = −∇𝑝𝑝𝑐𝑐 + 𝜀𝜀𝜇𝜇∇2𝐮𝐮𝑐𝑐 (17) 243 

Since we consider the capillary bed relative to the larger vessels here, this gives micro and macro 244 

length scales of approximately 100 μm and 1 cm respectively (noting that this analysis can be applied 245 

to any separation of scales where the parameter 𝜀𝜀 is small). In this case, this parameter is equal to 246 

approximately 0.01. For typical values of blood viscosity and density (3 mPa.s and 1040 kg/m3 247 

respectively), the macro Reynolds number is of order 1, where we assume a capillary velocity of 248 

order 1 mm/s, see for example Unekawa et al. (2010). There is thus no need to re-scale Equation 17. 249 

We now use a classical separation of scales approach. Since 𝜀𝜀 ≪ 1, the local and macro length scales 250 

are well separated and can be defined as 𝐗𝐗 and 𝐱𝐱 = 𝜀𝜀𝐗𝐗. Hence, using the standard approach, see for 251 

example Holmes (2013), for separation of scales: 252 

∇= ∇𝑋𝑋 + 𝜀𝜀∇𝑥𝑥  (18) 253 

∇2= ∇𝑋𝑋2 + 2𝜀𝜀∇𝑥𝑥 .∇𝑋𝑋 + 𝜀𝜀2∇𝑥𝑥2  (19) 254 

and a multiple scales expansion: 255 

𝐮𝐮𝑐𝑐 = 𝐮𝐮𝑐𝑐0(𝐱𝐱,𝐗𝐗) + 𝜀𝜀𝐮𝐮𝑐𝑐1(𝐱𝐱,𝐗𝐗) + 𝜀𝜀2𝐮𝐮𝑐𝑐2(𝐱𝐱,𝐗𝐗) + ⋯ (20) 256 

𝑝𝑝 = 𝑝𝑝0(𝐱𝐱,𝐗𝐗) + 𝜀𝜀𝑝𝑝1(𝐱𝐱,𝐗𝐗) + 𝜀𝜀2𝑝𝑝2(𝐱𝐱,𝐗𝐗) + ⋯ (21) 257 
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Substituting Equations 18-21 into the governing equation (Equation 17) orders of 𝜀𝜀 can now be 258 

compared. 259 

First in 𝜀𝜀0: 260 

∇𝑋𝑋𝑝𝑝0 = 0 (22) 261 

and then in 𝜀𝜀1: 262 

∇𝑋𝑋𝑝𝑝1 + ∇𝑥𝑥𝑝𝑝0 = ∇𝑋𝑋2𝐮𝐮𝑐𝑐0 (23) 263 

Equations 22 and 23 can be solved along the lines proposed by Shipley and Chapman (2012) and as 264 

performed in the cerebral microvasculature by El-Bouri and Payne (2015): these two equations are 265 

sufficient to solve to leading order. The full derivation is given in Appendix A, with the end result 266 

being a volume-averaged Darcy equation: 267 

〈𝐮𝐮𝑐𝑐
(0)〉Ω𝑐𝑐 =  −𝐊𝐊∇𝒙𝒙𝑝𝑝𝑐𝑐

(0) (24) 268 

where the permeability tensor, 𝐊𝐊, is given in full in Appendix A. The advection term thus plays no 269 

role in this context at leading order and can be considered only as a small correction term. 270 

These two results thus combine to show that the advection term can be neglected in both individual 271 

vessels (under the condition given above) and in the microvasculature when treated as a continuum. 272 

This is a very important result, as it removes the only non-linear term in the Navier-Stokes equations. 273 

Based on this result, we can utilise a wide range of results based on linear theory. It is worth noting 274 

in passing that a number of authors have neglected the advection term by linearizing the governing 275 

equations about a zero mean velocity, see for example Flores et al. (2016). Although the final result 276 

obtained is the same, this linearization is, strictly speaking, unnecessary and can appear to limit the 277 

validity of the solution. The results above offer a more rigorous and general proof that has a simple 278 

condition: one that we will examine in more detail in the context of the cerebral circulation later. 279 
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2.2 Result 2: A first order differential model relating inlet and outlet flows to inlet and outlet 280 

pressures in a vessel can be used when 𝛼𝛼 < 1 (𝜶𝜶 is Womersley number) 281 

Having considered the flow as continuous in the second half of the result above, we now return to 282 

consideration of a single vessel, as shown in Figure 1a. The aim here is to solve for the flow field such 283 

that a relationship can be derived between the inlet and outlet flows and the inlet and outlet 284 

pressures. In this way a simple relationship can be used for the flow in and out of each vessel in a 285 

network such that a network of vessels can be connected together, using the results presented later. 286 

In Result 1, we showed that the advection term can be neglected. As a result the governing 287 

equations for flow in a single compliant vessel (the area-averaged Navier-Stokes equations coupled 288 

with an elastic wall model) reduce to a linear form, enabling them to be transformed into the 289 

frequency domain and written in the following form: 290 

�̂�𝑝′′ = �
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿2

� �̂�𝑝 (25) 291 

where: 292 

𝑖𝑖 = ℛ
𝑖𝑖𝛼𝛼2

8
�1 −

2
𝛼𝛼𝑖𝑖3 2⁄

𝐽𝐽1�𝛼𝛼𝑖𝑖3 2⁄ �
𝐽𝐽0(𝛼𝛼𝑖𝑖3 2⁄ )

�
−1

 (26) 293 

and impedance, 𝑖𝑖, resistance, ℛ, and compliance, 𝑖𝑖, are defined here for the whole vessel, of length 294 

𝐿𝐿 . 𝐽𝐽0 and 𝐽𝐽1 denote Bessel functions of the first kind. We omit the dependence on frequency for 295 

clarity, since the overhat denotes that the variable has been transformed into the frequency domain. 296 

Womersley number is denoted by 𝛼𝛼 = 𝑅𝑅�𝑖𝑖 𝜈𝜈⁄  and can be considered to be the ratio of oscillatory 297 

inertial forces to shear forces. The derivation for these equations is based on the results of 298 

Womersley (1955) and can be found in full in Flores et al. (2016). A schematic of the single vessel 299 

model is shown in Figure 1a: we now consider this single vessel in this section without further 300 

reference to the continuum model. 301 
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We can then use a perturbation series for pressure: 302 

�̂�𝑝 = �̂�𝑝0 + 𝜀𝜀�̂�𝑝1 + 𝜀𝜀2�̂�𝑝2 … (27) 303 

in the small parameter, 𝜀𝜀, defined in this section as: 304 

𝜀𝜀 = 𝛼𝛼𝑖𝑖3 2⁄  (28) 305 

We will examine the magnitude of this parameter later, but note that for the moment we are simply 306 

assuming that it has magnitude less than one. Note that this is a different definition for 𝜀𝜀 from that 307 

used in Section 2.1: we use this definition here as it is the standard notation for perturbation 308 

methods and thus enables results obtained here to be easily compared with equivalent results 309 

elsewhere. 310 

Substituting Equation 28 into Equation 26 and Equations 26 and 27 into Equation 25 then yields: 311 

[𝜀𝜀𝐽𝐽0(𝜀𝜀) − 2𝐽𝐽1(𝜀𝜀)](�̂�𝑝0′′ + 𝜀𝜀�̂�𝑝1′′ + 𝜀𝜀2�̂�𝑝2′′ … ) = 𝜀𝜀5 �
𝜈𝜈ℛ𝑖𝑖

8𝐿𝐿2𝑅𝑅2
� 𝐽𝐽0(𝜀𝜀)(�̂�𝑝0 + 𝜀𝜀�̂�𝑝1 + 𝜀𝜀2�̂�𝑝2 … ) (29) 312 

We next convert the variables to non-dimensional form, such that pressure is computed relative to a 313 

reference value (the value of this is irrelevant, since both sides of Equation 29 are linearly 314 

proportional to pressure) and length relative to the length of the vessel, 𝐿𝐿. The prime thus becomes 315 

relative to fractional length along the vessel. The problem is then defined in just two parameters, 𝜀𝜀, 316 

and: 317 

𝛽𝛽 =
𝜈𝜈ℛ𝑖𝑖
8𝑅𝑅2

 (30) 318 

where resistance and compliance are equal to: 319 

ℛ =
8𝜇𝜇𝐿𝐿
𝜋𝜋𝑅𝑅4

 (31) 320 

𝑖𝑖 = 𝐿𝐿
𝑑𝑑𝜕𝜕
𝑑𝑑𝑝𝑝

 (32) 321 
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The non-dimensional parameter 𝛽𝛽 is of similar form to the (inverse square of) Womersley number, 322 

but based on the time constant of the vessel (where 𝑇𝑇 = ℛ𝑖𝑖, as defined later) rather than the 323 

oscillation frequency. The behaviour of each vessel is thus governed by the relative magnitudes of 324 

these two non-dimensional groups. 325 

To calculate the pressure series, we next use the series expansion of the Bessel functions, 326 

Abramowitz and Stegun (1964): 327 

𝐽𝐽0(𝜕𝜕) = �
(−1)𝑘𝑘

22𝑘𝑘(𝑘𝑘!)2
𝜕𝜕2𝑘𝑘

∞

𝑖𝑖=0

= 1 −
𝜕𝜕2

4
+
𝜕𝜕4

64
−

𝜕𝜕6

2304
+ ⋯  (33) 328 

𝐽𝐽1(𝜕𝜕) = �
(−1)𝑘𝑘

22𝑘𝑘+1𝑘𝑘! (𝑘𝑘 + 1)!
𝜕𝜕2𝑘𝑘+1

∞

𝑖𝑖=0

=
𝜕𝜕
2
−
𝜕𝜕3

16
+

𝜕𝜕5

384
−

𝜕𝜕7

18432
+ ⋯  (34) 329 

Balancing terms in ascending powers of 𝜀𝜀 gives: 330 

�̂�𝑝0′′ = 0 (35) 331 

which means that the pressure field to zeroth order is linear, set by the inlet and outlet boundary 332 

conditions, as would be expected; 333 

�̂�𝑝1′′ = 0 (36) 334 

which means that the first order pressure field is zero everywhere, since the inlet and outlet 335 

boundary conditions at first and higher orders are zero; 336 

�̂�𝑝2′′ = −8𝛽𝛽�̂�𝑝0 (37) 337 

which can be solved as described below; 338 

�̂�𝑝3′′ = 0 (38) 339 

which means that the third order pressure field is also zero everywhere; and 340 
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�̂�𝑝4′′ = −8𝛽𝛽 ��̂�𝑝2 −
1
6
�̂�𝑝0�  (39) 341 

We can now proceed to solve for the pressure field in the vessel up to this order. Equation 35 can be 342 

solved using the inlet and outlet boundary conditions, defined here to be: 343 

�̂�𝑝0(𝜕𝜕 = 0) = �̂�𝑝𝑖𝑖𝑖𝑖 (40) 344 

�̂�𝑝0(𝜕𝜕 = 1) = �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜 (41) 345 

noting that these boundary conditions can of course be dynamically varying, since this is the solution 346 

in the frequency domain, which can easily be inverted into the time domain. The zeroth order 347 

pressure field is: 348 

�̂�𝑝0 = �̂�𝑝𝑖𝑖𝑖𝑖(1 − 𝜕𝜕) + �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝜕𝜕 (42) 349 

The resulting second order expression is calculated by substitution of Equation 42 into Equation 37 350 

and solving given zero boundary conditions: 351 

�̂�𝑝2 = �̂�𝑝𝑖𝑖𝑖𝑖
4𝛽𝛽
3
𝜕𝜕(1 − 𝜕𝜕)(2 − 𝜕𝜕) + �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜

4𝛽𝛽
3
𝜕𝜕(1 − 𝜕𝜕2) (43) 352 

and the fourth order expression similarly using Equations 42, 43 and 39: 353 

�̂�𝑝4 = −8𝛽𝛽 ��̂�𝑝𝑖𝑖𝑖𝑖𝜕𝜕(1 − 𝜕𝜕) �−
𝛽𝛽

45
(3𝜕𝜕3 − 12𝜕𝜕2 + 8𝜕𝜕 − 8) +

1
36

(2 − 𝜕𝜕)�354 

+ �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝜕𝜕(1 − 𝜕𝜕) �
𝛽𝛽

45
(3𝜕𝜕3 + 3𝜕𝜕2 − 7𝜕𝜕 − 7) +

1
36

(1 + 𝜕𝜕)��  (44) 355 

The full solution is then: 356 

�̂�𝑝 = �̂�𝑝0 + 𝜀𝜀2�̂�𝑝2 + 𝜀𝜀4�̂�𝑝4 … (45) 357 

It should be noted that the expansion has been performed in terms of 𝜀𝜀, but gives an expansion in 358 

terms of even powers of 𝜀𝜀, where 𝜀𝜀 is proportional to the square root of frequency: hence the 359 

expansion is in integer powers of frequency. 360 
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Given the solution for the pressure field in the vessel, the flow field in the vessel can be calculated. 361 

This is most easily done using a second perturbation series for flow of the form: 362 

𝜕𝜕� = 𝜕𝜕�0 + 𝜀𝜀𝜕𝜕�1 + 𝜀𝜀2𝜕𝜕�2 … (46) 363 

where we substitute this into the expression for impedance: 364 

𝜕𝜕� = −
1
𝑖𝑖
�̂�𝑝′ (47) 365 

where the impedance is given by Equation 26 and the pressure by Equation 45, to obtain an 366 

expression along the lines of Equation 29. We then calculate the flow field by balancing terms in 367 

powers of 𝜀𝜀, as done for the pressure field earlier, to give: 368 

𝜕𝜕�0 = −
1
ℛ
�̂�𝑝0′  (48) 369 

𝜕𝜕�2 = −
1
ℛ �

�̂�𝑝2′ +
1
6
�̂�𝑝0′ �  (49) 370 

𝜕𝜕�4 = −
1
ℛ ��̂�𝑝4′ +

1
6
�̂�𝑝2′ +

11
384

�̂�𝑝0′ �  (50) 371 

where the differentials are again relative to non-dimensional length. Equations 42-44 can then be 372 

substituted into these equations to derive an expression for the whole flow field. Most usefully, 373 

however, the inlet and outlet flows can be calculated in terms of the inlet and outlet pressures. Since 374 

these are linear, they are most easily written in matrix form: 375 

� 𝜕𝜕�𝑖𝑖𝑖𝑖𝜕𝜕�𝑜𝑜𝑜𝑜𝑜𝑜
� = 𝛂𝛂0 �

�̂�𝑝𝑖𝑖𝑖𝑖
�̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜

�+ 𝛂𝛂2𝜀𝜀2 �
�̂�𝑝𝑖𝑖𝑖𝑖
�̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜

� + 𝛂𝛂4𝜀𝜀4 �
�̂�𝑝𝑖𝑖𝑖𝑖
�̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜

� + ⋯  (51) 376 

where: 377 

𝛂𝛂0 =
1
ℛ
�1 −1

1 −1� (52) 378 

𝛂𝛂2 =
1
6ℛ

�1 −1
1 −1� +

4
3
𝛽𝛽
ℛ
�−2 −1

1 2 �  (53) 379 
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𝛂𝛂4 =
11

384
1
ℛ
�1 −1

1 −1�+
4
9
𝛽𝛽
ℛ
� 2 1
−1 −2�+

8
45

𝛽𝛽2

ℛ
�−8 −7

7 8 �  (54) 380 

At zeroth order, i.e. steady state, the solution is exactly matched with the Poiseuille flow solution, i.e. 381 

the inlet and outlet flows are equal to the driving pressure divided by the vessel resistance. The 382 

Poiseuille solution is thus the leading order term in the dynamic solution. The second order 383 

component of the solution (linearly proportional to frequency) then provides a dynamic ‘correction’ 384 

that is dependent upon the non-dimensional group defined by Equation 30. This term is in turn 385 

dependent upon both the vessel resistance and the compliance and hence dependent on both the 386 

fluid and vessel properties. Note that the inlet and outlet can be swapped round and the formulation 387 

will remain the same, as would be expected given the original equations. The fourth order 388 

component is proportional to the square of frequency and can be neglected to a high degree of 389 

accuracy (it is included here primarily for use in the following section). 390 

As well as the frequency domain representation, it is useful to consider the results back in the time 391 

domain. Considering Equation 51 and truncating the solution after terms up to 𝜀𝜀2 gives: 392 

�
𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜� = 𝛂𝛂0 �

𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜� −

𝑅𝑅2

𝜈𝜈
𝛂𝛂2

𝑑𝑑
𝑑𝑑𝜕𝜕
�
𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜� (55) 393 

These (first-order differential) equations can then be used to relate the flows and pressures in each 394 

vessel in a network, based on the two parameters 𝛽𝛽 and ℛ, calculated for each vessel, by 395 

substituting in the expressions for 𝛂𝛂0 and 𝛂𝛂2 given in Equations 52 and 53 respectively. For example, 396 

in a single vessel, the inlet and outlet flows can be calculated directly from the inlet and outlet 397 

pressures using Equation 55 and specific values of the two parameters. For a single vessel, the model 398 

can be represented using two 2x2 matrices, relating the flows to the pressures; with the addition of 399 

each vessel to a network, an additional unknown variable will be added, increasing the size of the 400 

matrices by 1 in each dimension. This can then be done up to a network of arbitrary size, although it 401 

is likely that alternative mathematical formulations would be used in very large networks due to the 402 

computational cost. 403 
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For most networks this will be a sufficient representation, without the need for further terms: the 404 

first term on the left hand side of Equation 55 is the ‘traditional’ term that relates steady flow to a 405 

steady pressure difference along the vessel, with the second term adding in the dynamic effects that 406 

occur due to the oscillation of the fluid and the interaction between the unsteady fluid motion and 407 

an elastic wall. Note that the dynamic term thus exists even in a rigid vessel. We will consider in 408 

more detail how these equations can be linked together later, once we have considered the 409 

equations for volume and for connecting vessels in the next two sections, and then give an example 410 

of the solution obtained using this approach. 411 

2.3 Result 3: Blood volume can be modelled as quasi-steady-state when 𝑖𝑖𝑇𝑇 ≪ 180 (𝝎𝝎 is driving 412 

frequency, T is vessel time constant) 413 

In the previous result, we derived a relationship between the inlet and outlet flows and the driving 414 

pressures in a single vessel, Figure 1a. This enables us directly to consider changes in the volume of 415 

the vessel, V, through the difference between inlet and outlet flows: 416 

𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

= 𝜕𝜕𝑖𝑖𝑖𝑖 − 𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜 (56) 417 

In the frequency domain, using Equation 51 and Equation 56 gives: 418 

𝑖𝑖𝑖𝑖𝑑𝑑� = −4
𝛽𝛽
ℛ
𝜀𝜀2(1 1) � �̂�𝑝𝑖𝑖𝑖𝑖�̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜

� + 𝜀𝜀4
4
9
𝛽𝛽
ℛ
�1 −

2
5
𝛽𝛽� (1 −1) � �̂�𝑝𝑖𝑖𝑖𝑖�̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜

� + ⋯  (57) 419 

Substituting in Equation 28 and dividing by 𝑖𝑖𝑖𝑖 (i.e. integrating) then gives: 420 

𝑑𝑑� =
𝑖𝑖
2

(�̂�𝑝𝑖𝑖𝑖𝑖 + �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜) + 𝑖𝑖𝑖𝑖
𝑅𝑅2

18𝜈𝜈
�1 −

2
5
𝛽𝛽�𝑖𝑖(�̂�𝑝𝑖𝑖𝑖𝑖 − �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜) +⋯  (58) 421 

Hence to first order, the volume is equal to the product of compliance with average pressure, as 422 

expected. The second term in Equation 58 is the dynamic component of volume changes: this is 423 

particularly important in the context of localised changes in flow in response to activation. This 424 
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second term can be considered to be a ‘dynamic’ compliance term. If we assume that 𝛽𝛽 is large 425 

(strictly much larger than 5/2), then Equation 58 approximates to: 426 

𝑑𝑑� =
𝑖𝑖
2

(�̂�𝑝𝑖𝑖𝑖𝑖 + �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜)− 𝑖𝑖𝑖𝑖
𝛽𝛽𝑅𝑅2

45𝜈𝜈
𝑖𝑖(�̂�𝑝𝑖𝑖𝑖𝑖 − �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜) + ⋯  (59) 427 

We then formally define the product of resistance and compliance to be the time constant of the 428 

vessel: 429 

𝑇𝑇 = ℛ𝑖𝑖 (60) 430 

and hence Equation 59 simplifies to (eliminating 𝛽𝛽 using Equation 30): 431 

𝑑𝑑� =
𝑖𝑖
2 �

(�̂�𝑝𝑖𝑖𝑖𝑖 + �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜) −
𝑖𝑖𝑖𝑖𝑇𝑇
180

(�̂�𝑝𝑖𝑖𝑖𝑖 − �̂�𝑝𝑜𝑜𝑜𝑜𝑜𝑜) + ⋯ � (61) 432 

Hence, the dynamic component can be neglected when 𝑖𝑖𝑇𝑇 ≪ 180. Note that in the case where 𝛽𝛽 is 433 

not much larger than 5/2, then the dynamic component in Equation 58 will depend primarily on the 434 

square of Womersley number, which then should be much less than 18 for the dynamic component 435 

to be negligible: since we have already discussed this in Section 2.3, we will not consider this case 436 

further. For completeness, as in the previous section, we convert Equation 61 back to the time 437 

domain: 438 

𝑑𝑑 =
𝑖𝑖
2 �

(𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜) −
𝑇𝑇

180
𝑑𝑑
𝑑𝑑𝜕𝜕

(𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜) + ⋯�  (62) 439 

However, under the condition above (𝑖𝑖𝑇𝑇 ≪ 180), the volume then essentially follows a quasi-440 

steady state dependence on the average pressure in the vessel as follows: 441 

𝑑𝑑 =
𝑖𝑖
2

(𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜) (63) 442 

Note of course that we have not considered the viscoelastic nature of the vessel wall, which would 443 

of course influence the result; however, the oscillation of the fluid makes only a negligible 444 

contribution to the effective compliance of the vessel under this condition. 445 
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2.4 Result 4: Matching of static pressure at nodes can be used when 𝜀𝜀𝑅𝑅𝑅𝑅𝐷𝐷 ≪ 100 (𝜺𝜺 is ratio of 446 

vessel radius to length, 𝑹𝑹𝑹𝑹𝑫𝑫 is Reynolds number based on vessel diameter) 447 

In the previous two sections we have derived relationships for inlet and outlet flows and volume in a 448 

single vessel as a function of the inlet and outlet pressures. The final stage in modelling the cerebral 449 

vasculature is to connect the vessels together. The main consideration here is the choice of 450 

boundary conditions relating flows and pressures at the nodes that connect individual vessels. Once 451 

these have been determined, all of the flows and volumes can be determined. 452 

The first boundary condition that is universally applied is conservation of flow at nodes, i.e. the flow 453 

entering a node and the flow exiting a node must balance at all times. However, there is less 454 

agreement over the second boundary condition, related to pressure; two approaches have been 455 

used, essentially assuming that either static pressure remains the same as flow passes from one 456 

vessel into the next (as the flow velocity changes, this means that energy is not conserved), or that 457 

total pressure (and hence energy) is conserved, as discussed in the Introduction. The former 458 

approach however has the advantage that it is a linear condition and thus results in less 459 

computationally expensive numerical solutions. We thus examine in this section whether or not 460 

there is a significant difference between the two approaches. 461 

We consider a bifurcating node, as shown in Figure 1c, where a parent vessel supplies two child 462 

vessels, where the inlet and outlet to the parent vessel are termed nodes 1 and 2a respectively, and 463 

the inlet to both child vessels is termed node 2b, i.e. points 2a and 2b are taken to be immediately 464 

before and after the node. If we assume identical conditions in both child vessels, the velocities are 465 

in the ratio: 466 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑃𝑃

=
1
2
�
𝑅𝑅𝑃𝑃
𝑅𝑅𝐶𝐶
�
2

 (64) 467 
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relative to that in the parent vessel, from conservation of flow, where the subscripts P and C refer to 468 

conditions in the parent and child vessels respectively. If we next assume Murray’s law, Murray 469 

(1926), with exponent n, we can also calculate the ratio of the vessel radii: 470 

(𝑅𝑅𝑃𝑃)𝑖𝑖 = (𝑅𝑅𝐶𝐶)𝑖𝑖 + (𝑅𝑅𝐶𝐶)𝑖𝑖 = 2(𝑅𝑅𝐶𝐶)𝑖𝑖 (65) 471 

since we are assuming identical child vessels. Hence: 472 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑃𝑃

=
1
2 �

21 𝑖𝑖⁄ �
2 = 2�−1+

2
𝑖𝑖� (66) 473 

Matching total pressure at the node gives: 474 

𝑝𝑝2𝑎𝑎 +
1
2
𝜌𝜌𝜕𝜕𝑃𝑃2 = 𝑝𝑝2𝑏𝑏 +

1
2
𝜌𝜌𝜕𝜕𝐶𝐶2  (67) 475 

We can thus calculate the change in pressure across the node, i.e. from the outlet of the parent 476 

vessel to the inlet of the child vessel, as a fraction of the inlet velocity head: 477 

𝑖𝑖𝑝𝑝 =
𝑝𝑝2𝑏𝑏 − 𝑝𝑝2𝑎𝑎

1
2𝜌𝜌𝜕𝜕𝑃𝑃

2
= 1 − 2

2(2−𝑖𝑖)
𝑖𝑖  (68) 478 

This is equal to 0 for n = 2, 0.18 for n = 7/3 and 0.37 for n = 3: these values being selected based on a 479 

number of studies that have examined the value of this exponent in a number of scenarios, see for 480 

example Mut et al. (2014). The largest value of this pressure coefficient is thus 0.37, which will tend 481 

to occur at the smallest length scales as this is where n is closest to 3. Note that it is of course also 482 

equal to 0 for the case of conservation of total pressure (the case where n = 2 is thus the only one 483 

where both are matched). Now compare this to the pressure loss due to friction in the parent vessel: 484 

𝑖𝑖𝑝𝑝 =
𝑝𝑝1 − 𝑝𝑝2𝑎𝑎

1
2𝜌𝜌𝜕𝜕𝑃𝑃

2
=

32
𝜀𝜀𝑅𝑅𝑅𝑅𝐷𝐷

 (69) 485 

where Reynolds number is here based on the parent vessel diameter, similar to Equation 4, and: 486 
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𝜀𝜀 =
𝑅𝑅𝑃𝑃
𝐿𝐿𝑃𝑃

 (70) 487 

is the radius to length ratio of the parent vessel (note that we again use 𝜀𝜀 in this section with a 488 

different definition from earlier). This calculation for head loss is based on the assumption of laminar 489 

flow (a reasonable approximation in this context since Reynolds number is low), as outlined in 490 

standard fluid mechanics texts, see for example Caro et al. (2012). 491 

Since the largest head loss coefficient at a node (Equation 68) is equal to 0.37, as shown above, this 492 

is only comparable in magnitude to the head loss coefficient for an individual vessel (Equation 69) 493 

when the product 𝜀𝜀𝑅𝑅𝑅𝑅𝐷𝐷 is approximately 100. Hence, if this product is less than 100, the difference 494 

between assuming matched static pressure and matched total pressure is small, since the head loss 495 

across the node is small in comparison with the head loss along the upstream vessel. Since the 496 

matching of static pressure results in linear equations, this can be used under this condition to 497 

simplify the solution procedure without significant loss of accuracy. The question of whether static 498 

or total pressure should be matched in the vessels where this condition does not hold is a difficult 499 

one and one that needs further investigation but which is outside the scope of this paper. 500 

2.5 Result 5: Flow in a network can be solved using a series of matrices 501 

Based on Result 4, we can assume matched static pressure at nodes without any significant loss of 502 

accuracy if 𝜀𝜀𝑅𝑅𝑅𝑅𝐷𝐷 < 100. The resulting equations for a network, for example that shown in Figure 1d, 503 

can then be expressed in matrix form: 504 

𝛂𝛂𝑖𝑖𝑖𝑖𝑜𝑜𝐩𝐩𝑖𝑖𝑖𝑖𝑜𝑜 = 𝛂𝛂𝑟𝑟𝑥𝑥𝑜𝑜𝐩𝐩𝑟𝑟𝑥𝑥𝑜𝑜 (71) 505 

in terms of the (unknown) pressures at the internal nodes and the (known) pressures at the external 506 

nodes. Equation 71 holds separately for each order of the solution. Once the matrices have been 507 

formulated, Equation 71 can be solved for the unknown internal node pressures separately for each 508 

order and the flows calculated through each vessel using the formulation above. Note that this can 509 
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be done in either the time domain or the frequency domain; in the latter case, it should be noted 510 

that our approach, through exploitation of small values of Womersley number, is considerably 511 

simpler than the method of Flores et al. (2016). The approach can of course be applied to networks 512 

of arbitrary complexity as long as the assumptions are valid in every vessel, although for very large 513 

networks it would be more likely that alternative methods (such as homogenisation techniques) 514 

would be applied, see for example the approach proposed by El-Bouri and Payne (2015). 515 

3 Numerical simulations 516 

Having completed this analysis, we now consider the results in the context of previous models. In 517 

particular we directly consider those models that model dynamic changes in the flow field. These 518 

models, Boas et al. (2008), Reichold et al. (2009), Gagnon et al. (2015) and Payne and Lucas (2017), 519 

are actually very similar in their approach, using a non-linear compliance model coupled with the 520 

Poiseuille equation that uses an empirical model for viscosity based on vessel diameter and 521 

haematocrit (which is taken to vary with vessel diameter). Although we have assumed a constant 522 

compliance in our analysis here, we have shown that the assumption of quasi steady state (inherent 523 

in all of the models listed above) is a valid one over all of the length scales that occur within the 524 

cerebral vasculature. 525 

However, we have shown in our analysis how to model the dynamic relationship between flow and 526 

pressure in individual vessels and this has not been considered by the models listed above, where 527 

only the leading order (Poiseuille) term is considered. Although the result given in Equation 55 is 528 

more complicated, the dynamic term is not negligible in time-varying flow fields. We will illustrate 529 

the effect that this can have in the simulations that we present below. 530 

We consider the very simple bifurcating network shown in Figure 2 below, where we take the vessel 531 

properties from the model proposed by Payne and Lucas (2017), as given in Table 2. We use this 532 

network model as it is very similar to that proposed by Boas et al. (2008), where different modelling 533 
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assumptions were applied, as we will discuss below. It thus provides a simple means of comparison 534 

of the dynamic behaviour of the model. 535 

 536 

Figure 2 Bifurcating network used in model simulations 537 

Branch Number 

of 

vessels 

Diameter Length Wall 

thickness 

Velocity Viscosity Pressure 

drop 

Saturation 

μm μm μm mm/s mPa.s mmHg % 

A1 1 23.97 1267.6 4.84 8.2 1.59 6.93 94 

A2 2 19.17 930.3 4.25 6.41 1.50 5.87 93 

A3 4 15.28 543.6 3.81 5.05 1.42 4.02 92 

A4 8 12.08 302.3 3.49 4.03 1.34 2.70 89 

A5 16 9.46 161.2 3.27 3.29 1.28 1.82 84 
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A6 32 7.32 154.7 3.14 2.75 1.23 2.35 76.5 

C 64 8 243.9 0.309 2.30 1.24 2.62 66.5 

V6 32 11.51 473.9 1.15 1.11 1.33 1.27 61 

V5 16 14.53 272.3 1.45 1.40 1.40 0.61 59.75 

V4 8 17.79 426.6 1.78 1.86 1.48 0.89 58.75 

V3 4 21.45 632.5 2.15 2.56 1.55 1.31 58.25 

V2 2 25.70 844.2 2.57 3.57 1.62 1.78 57.75 

V1 1 30.77 936.3 3.08 4.97 1.70 2.01 57.25 

Table 2 Vascular parameters used in network model 538 

For comparison, we plot the results obtained for the same network but using the flow and volume 539 

model proposed by Boas et al. (2008) and used by other authors; the equations in this and in our 540 

model are set out for comparison and for convenience of reference in Table 3. This approach 541 

assumes that there is an instantaneous equilibrium between flow and pressure: 542 

𝜕𝜕𝑖𝑖𝑖𝑖 =
1
ℛ𝑖𝑖𝑖𝑖

�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖� (72) 543 

between nodes i and j, i.e. as Equation 55, but neglecting all dynamic terms. It then assumes that the 544 

volume of each vessel, 𝑑𝑑𝑖𝑖, follows changes in pressure through a non-linear relationship of the form: 545 

𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑐𝑐 = 𝑘𝑘𝑑𝑑𝑖𝑖
𝛽𝛽 (73) 546 

where k is a constant, set by baseline conditions, and 𝛽𝛽 is a compliance parameter that is set to 2 by 547 

Boas et al. (2008). The loop of equations is closed by conservation of volume: 548 

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝜕𝜕

= 𝜕𝜕𝑖𝑖,𝑖𝑖𝑖𝑖 − 𝜕𝜕𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜  (74) 549 

These equations can easily be solved dynamically for the same dynamic inlet pressure and network 550 

parameters given above. 551 
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 New approach Previous approach 

Pressure-flow 

relationship 

�
𝜕𝜕𝑖𝑖𝑖𝑖
𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜� = 𝛂𝛂0 �

𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜� −

𝑅𝑅2

𝜈𝜈
𝛂𝛂2

𝑑𝑑
𝑑𝑑𝜕𝜕
�
𝑝𝑝𝑖𝑖𝑖𝑖
𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜� 

(Equation 55) 

𝜕𝜕𝑖𝑖𝑖𝑖 =
1
ℛ𝑖𝑖𝑖𝑖

�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖� 

(Equation 72) 

Pressure-volume 

relationship 

𝑑𝑑 =
𝑖𝑖
2

(𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜) 

(Equation 63) 

𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑐𝑐 = 𝑘𝑘𝑑𝑑𝑖𝑖
𝛽𝛽 

(Equation 73) 

Flow-volume 

relationship 

𝑑𝑑𝑑𝑑
𝑑𝑑𝜕𝜕

= 𝜕𝜕𝑖𝑖𝑖𝑖 − 𝜕𝜕𝑜𝑜𝑜𝑜𝑜𝑜 

(Equation 56) 

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝜕𝜕

= 𝜕𝜕𝑖𝑖,𝑖𝑖𝑖𝑖 − 𝜕𝜕𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 

(Equation 74) 

Nodal relationship Conservation of flow 

Matching of static pressure 

Conservation of flow 

Matching of static pressure 

Table 3 Summary of model equations in both approaches; for terminology, see original equations 552 

We now illustrate our approach by considering the response to changes in inlet pressure. For 553 

simplicity, we assume a reduction in inlet pressure from 60 mmHg to 48 mmHg (a drop of 20 %). In 554 

order to give a smoothly varying inlet pressure, we assume a function of the form: 555 

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑎𝑎 �1 + �
𝑘𝑘 − 1

2
� �1 + tanh �

𝜕𝜕 − 1
0.1

���  (75) 556 

with k denoting the fractional value of baseline pressure to which the function tends, set here to 0.8 557 

(i.e. a 20 % drop in driving pressure). This drop occurs at a time of 1 second (allowing the model to 558 

settle before the change occurs) with a rapid rate of change. The resulting changes in nodal pressure 559 

and vessel volume across all 13 generations are then calculated using both sets of model equations 560 

set out in Table 4. 561 

We first examine the changes in blood pressure within the network. Since our new approach is 562 

based on nodal pressures and the previous approach on pressures in the middle of the vessel, we 563 

interpolate the nodal pressures to plot the pressures half way along the vessels. We plot the 564 

pressures in the third generation of the arteriolar bed, in the capillary bed, and in the fourth 565 
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generation of the venous bed for both models, as shown in Figure 3. We assume a value of 10 mmHg 566 

for intracranial pressure and an exponent of 1 in Equation 73; we then calculate the value of k from 567 

baseline conditions. 568 

It is clear from Figure 3 that the changes in pressure propagate downstream from inlet to outlet, 569 

with the largest and fastest changes occurring at the vessels closest to the inlet. Whilst the response 570 

times to changes in inlet blood pressure in these vessels is of order only a couple of seconds, as 571 

shown in Figure 3, we note that the response is not instantaneous, and care thus needs to be taken 572 

in calculating the flow response to changes in inlet pressure since there is a delay in the propagation 573 

of pressure changes through the network. Without considering the delay, there would be an 574 

instantaneous response in all vessels. 575 

The previous model exhibits a much faster response throughout the vasculature; this is caused by 576 

neglecting the second term in Equation 55. As a result, the speed of response is substantially 577 

different; our model shows how the dynamic term in Equation 55 does play an important role in 578 

setting the speed of response, even at this small length scale. Estimating the time constant of the 579 

response yields values of 0.17, 0.76 and 1.15 seconds in our new model for the mid-arteriolar, 580 

capillary and mid-venous vessels respectively, compared to 0.14, 0.34 and 0.47 seconds for the 581 

previous model, showing how although the earlier vessels respond at a similar speed, the later 582 

vessels respond much more slowly. 583 
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 584 

Figure 3 Dynamic changes in blood pressures in bifurcating network in response to 20 % decrease in 585 

inlet blood pressure (for definitions of locations, see main text) 586 

The results for volume, Figure 4, follow those for pressure, as would be expected from the analysis 587 

above and the justification of quasi steady state behaviour in response to changes in pressure. The 588 

later generations of the network thus respond much more slowly in response to changes in inlet 589 

blood pressure than would be assumed from the previous modelling approach. This difference is 590 

caused by the fact that previous approaches assumed a dynamically varying volume in response to 591 

instantaneous changes in pressure: our analysis shows rather that pressure responds dynamically to 592 

changes in inlet conditions with volume following these pressure changes quasi-statically (and hence 593 

with the same delay as the pressure changes). 594 
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 595 

Figure 4 Dynamic changes in blood volumes in bifurcating network in bifurcating network in 596 

response to 20 % decrease in inlet blood pressure (for definitions of locations, see main text) 597 

This is an important distinction and the fact that the changes in pressure and volume have now been 598 

shown to be slower than previously thought will significantly alter the dynamic behaviour of 599 

pressure and volume changes in models of the cerebral microvasculature. Note that the differences 600 

in absolute values of volumes between the two models, shown in Figure 4, are due to the slightly 601 

different models that are used for compliance in the two approaches; however this does not affect 602 

the main finding of this study. Experimental validation, through simultaneous measurements of 603 

blood flow and blood volume will be extremely valuable in validating the approach set out here and 604 

quantifying the importance of the dynamic term in Equation 55. 605 

4 Discussion 606 
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In the previous section we have shown that the non-linear advection term can be neglected, when 607 

considering both single vessels and the flow field as a continuum; derived a relationship between 608 

inlet and outlet flows in single vessels and inlet and outlet pressures; derived the condition for a 609 

quasi-steady-state approximation for blood volume; and then shown how single vessels can be 610 

linked together and the flow field in a network solved as a matrix problem. For each of these 611 

derivations there is a limit on the validity of the approximation: we thus consider these now in the 612 

particular context of the cerebral vasculature. We will then also consider the limitations of the 613 

approach that we have adopted. We should note that since we are basing many of the assumptions 614 

on order of magnitude arguments, the precise values are often less important than the relative 615 

magnitudes of different parameters. 616 

We will assume throughout this section that blood has a density of 1040 kg/m3 and a kinematic 617 

viscosity of approximately 3 μPa.s (we will consider the value of viscosity in more detail below) and 618 

that the oscillation frequency is approximately 1 Hz (based on a typical heart rate of around 60 beats 619 

per minute), see for example Caro et al. (2012). We can therefore quantify the magnitude of the 620 

Womersley number immediately. This has magnitude less than one in vessels smaller than 621 

approximately 1.4 mm in diameter. The first order model presented in Result 2 is thus only valid for 622 

vessels of such diameter. Since the lower limit for imaging individual vessels is down to those with 623 

diameters of approximately 0.8-0.9 mm, see for example Mut et al. (2014), this approach does thus 624 

cover all of the generations of ‘unseen’ vessels and can therefore be applied to these vessels, i.e. 625 

those of diameter less than approximately 1.4 mm. 626 

We next consider the product 𝑖𝑖𝑇𝑇. As a first approximation, we assume the same elastic isotropic 627 

model of the vessel wall as in Section 2.1; this then yields, see for example Chappell and Payne 628 

(2016): 629 

𝑖𝑖𝑇𝑇 = 12 �
𝜇𝜇𝑖𝑖
𝐸𝐸
��

𝐿𝐿2

𝑅𝑅ℎ�
 (76) 630 
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where the right hand side comprises non-dimensional groups, as shown in brackets, the latter based 631 

on the geometry of the vessel and the former based on a mixture of properties. If we assume a value 632 

of wall Young’s modulus of 104 Pa, Caro et al. (2012), then this former term is approximately equal to 633 

2 x 10-6. The condition for the quasi-steady-state volume relationship then becomes 634 

approximately 𝑅𝑅ℎ 𝐿𝐿2⁄  > 1.2x10-7, which is satisfied by every vessel in the cerebral vasculature, since 635 

the radius to length ratio is rarely less than 0.01 and the wall thickness to radius ratio is normally in 636 

the range 0.1 to 0.5, see for example Payne (2007), Lucas (2012), Caro et al. (2012) and Payne (2017). 637 

It is worth noting that this is in good agreement with recent studies into the neurovascular coupling 638 

response, which have indicated a relatively small volume component to the short term response, 639 

Hillman et al. (2007), Vazquez et al. (2010) and Drew et al. (2011). It also points away from the use of 640 

the delayed compliance model, Kong et al. (2004) and Zheng and Mayhew (2009), since the time 641 

constant has been shown here to be negligible in all vessels in the cerebral vasculature. 642 

We next consider the ratio 𝐸𝐸
𝜌𝜌𝑈𝑈2

ℎ
𝑅𝑅

, which needs to be much greater than 3/2 for advection to be 643 

neglected. Since the ratio of wall thickness to radius, ℎ
𝑅𝑅

, is typically in the range 0.1 to 0.5 (see above) 644 

in any vessel, a lower bound for this can be taken to be 0.1: the ratio 𝐸𝐸
𝜌𝜌𝑈𝑈2

 needs to be much greater 645 

than approximately 15. The flow velocity thus needs to be much less than �𝐸𝐸 15𝜌𝜌⁄ , which, for the 646 

values of wall Young’s modulus and blood density quoted above, is equivalent to being much less 647 

than approximately 0.8 m/s. This is well above any flow velocity found in the cerebral vasculature 648 

under normal conditions, Lucas (2012) and Payne (2017), and thus advection terms can be neglected 649 

throughout the cerebral vasculature, although it should be noted that under certain conditions, for 650 

example severe stenosis, flow velocities can rise substantially and that care would have to be taken 651 

under such circumstances to re-evaluate this approximation. 652 

Finally, we consider the product 𝜀𝜀𝑅𝑅𝑅𝑅𝐷𝐷, which should be below 100 for the difference between 653 

matching of static and total pressures to be negligible. In the largest blood vessels in the brain, the 654 
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flow velocity is of order 0.5 m/s with diameters of order 5 mm, see for example Lucas (2012). Such 655 

values give a Reynolds number based on diameter of approximately 1000. Since the typical radius to 656 

length ratio values found in these large vessels are of order 0.1, Mut et al. (2014), the product 𝜀𝜀𝑅𝑅𝑅𝑅𝐷𝐷 657 

is thus of order 100 in the largest vessels in the brain. The difference between matched static and 658 

matched total pressure can thus be significant in these largest vessels; however, in the vessels below 659 

the imaging threshold of approximately 1 mm in diameter, Mut et al. (2014), this ratio will be below 660 

this limit, making the matching of static pressure a justifiable assumption in such vessels. Care simply 661 

needs to be taken when modelling the larger vessels, essentially those that can be imaged directly. 662 

In these vessels, the product 𝜀𝜀𝑅𝑅𝑅𝑅𝐷𝐷 can be calculated for each vessel and the assumption of matched 663 

static pressure examined in each individual vessel. 664 

We have thus explored how the four relationships derived earlier relate to individual blood vessels in 665 

the cerebral vasculature. It has been shown that advection can always be neglected in the equation 666 

governing blood flow and that blood volume can be assumed to be in quasi-steady state at all times; 667 

however, the first order approach for pressure and flow (arising from the perturbation series 668 

analysis) and the matching of static pressure should only be applied in vessels below approximately 669 

1 mm in diameter (using this as an approximate threshold for the distinction). Since this 670 

approximately corresponds to the imaging threshold, it is then possible to apply all four 671 

simplifications to models at this length scale. This does make the application of such models 672 

significantly easier. For simplicity we summarise these results in Table 4 below. 673 

 Vessels of diameter < 1 mm Vessel of diameter > 1 mm 

Neglect advection Yes Yes 

First order model Yes No 

Blood volume quasi steady state Yes Yes 

Match static pressure Yes Possibly 

Table 4 List of assumptions in vessels of different diameter 674 
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Note that whilst we have considered every vessel in each generation to respond in exactly the same 675 

manner, due to the symmetry of the change that we have imposed (and for simplicity of 676 

presentation), it would easily be possible to consider the response to localised changes in individual 677 

vessels, as has been examined by other authors; although it should be noted that this model is at 678 

present a purely passive one and that a model of the active response should be coupled with this 679 

model in future to provide good agreement with experimental data, for example examining the 680 

response to activation, as discussed in the Introduction. 681 

It would be possible to characterise the overall behaviour of the network in terms of lumped values 682 

of resistance and compliance, reducing the network to simpler form: characterising the response of 683 

the network to changes in terms of time constants would be a valuable exercise, since this enables 684 

the behaviour of the network to be considered as a whole, along the lines of the 6 second time 685 

constant for oxygen transport in the same network found by Payne and Lucas (2017). This would 686 

help to construct more detailed models of the larger vasculature, of which this network is only one 687 

very small part. However, the approach set out in Table 3 under the restrictions set out in Table 4 688 

can be used across the cerebral vasculature and it is suggested that these modelling equations, 689 

validated by the analysis presented earlier, be used in this context in place of the other approaches 690 

that have been used. 691 

It is worth noting that alongside the model framework presented here that considers each vessel 692 

individually, we also discussed earlier the use of a continuous approach to flow in the 693 

microvasculature, based on the work of El-Bouri and Payne (2015) in providing a Darcy 694 

approximation for the capillary flow field, as presented above, that has been coupled to a network 695 

model in El-Bouri and Payne (2018), as shown in Figure 1d. This approach offers a complementary 696 

method to the ‘discrete’ flow field presented here, since the two approaches can be coupled 697 

together, dependent upon the length scale being considered and the size of the network that is 698 
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being studied, potentially reducing the computation time very significantly by exploiting the wide 699 

range of length scales. 700 

We do note that there are a number of limitations to the analysis above. We have assumed 701 

axisymmetric vessels and flow fields, which is a reasonable assumption to these flows, although care 702 

should be taken when considering vessels with any significant tortuosity. A more significant 703 

assumption, however, is that we have assumed the fluid to be Newtonian, which does limit the 704 

analysis. However, since the non-Newtonian effects will be greatest in the smaller vessels, which we 705 

have found to be furthest away from the limits derived here, it thus seems reasonable to assume 706 

that the non-Newtonian effects will have little impact on the results found here, although a more 707 

rigorous analysis would be required to justify this more completely. 708 

We have also neglected variations in haematocrit, which can have a significant impact on the flow 709 

field throughout microvascular networks, Gould and Linninger (2015). The choice of model for 710 

haematocrit distribution can also strongly influence the local flow patterns, although further 711 

examination of the effects of this on the overall network behaviour is still needed. It would be 712 

extremely interesting to examine the effects of the variability in haematocrit distribution on the 713 

results that we have presented here. 714 

In addition to this, future work will also involve extending the analysis to the transport of oxygen and 715 

glucose between blood and tissue, using the approach set out in Payne and Lucas (2017), since 716 

solving these equations is key to understanding the relationship between flow and metabolism. The 717 

coupled nature of the equations means that this is a more difficult problem to investigate, although 718 

considerable progress has been made by many of the studies listed in the Introduction. However, by 719 

doing so, it will be possible to develop more rigorous models of both flow and metabolism that will 720 

hopefully help to provide more insight into their behaviour in both normal and abnormal 721 

physiological conditions. 722 
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This will also help to link to models of the BOLD response, providing a sounder theoretical 723 

justification for the haemodynamic components of such models, in particular the lumped parameter 724 

components, which often have to be assumed on a somewhat ad hoc basis, see for example Aquino 725 

et al. (2014). Such multi-scale modelling approaches have a great deal to offer in terms of 726 

understanding the relationship between the underlying physiology and experimental measurements 727 

and provide a rich avenue for exploration in the future. They also offer the possibility of 728 

experimental validation through the characterisation of models over different length scales, enabling 729 

the assumptions used in the model proposed here to be more directly tested, using potentially a 730 

very wide range of measurement modalities, including but not restricted to BOLD, MRI and PET. 731 

  732 
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Appendix A 733 

A fundamental assumption when using homogenization is that the large-scale structure, in 734 

this case the capillary bed, is locally periodic. This allows the removal of secular terms in 735 

multi-dimensional problems without the need to solve higher order equations explicitly. It is 736 

of course possible to homogenize non-locally periodic structures, however finding the 737 

solvability condition to eliminate the secular terms becomes very difficult. Periodicity is thus 738 

regularly used in homogenization to simplify the removal of secular terms and is used here. 739 

As 𝜀𝜀 ≪ 1 the local and macro length scales are well-separated and can be defined as 𝐗𝐗 and 740 

𝐱𝐱 = ε𝐗𝐗 respectively. Using the assumption of scale separation both 𝐱𝐱 and 𝐗𝐗 can be treated 741 

as independent variables and so 742 

∇= ∇𝑋𝑋 + 𝜀𝜀∇𝑥𝑥, ∇2= ∇𝑋𝑋2 + 2𝜀𝜀∇𝑥𝑥.∇𝑋𝑋 + 𝜀𝜀2∇𝑥𝑥2  (A. 1)  743 

Using this to expand out Equation 17 gives: 744 

𝜀𝜀2𝑅𝑅𝑅𝑅𝐷𝐷[(𝐮𝐮𝑐𝑐.∇𝑿𝑿)𝐮𝐮𝑐𝑐 + 𝜀𝜀(𝐮𝐮𝑐𝑐.∇𝒙𝒙)𝐮𝐮𝑐𝑐] =  −∇𝑿𝑿𝑝𝑝𝑐𝑐 − 𝜀𝜀∇𝒙𝒙𝑝𝑝𝑐𝑐 + 𝜀𝜀∇𝑿𝑿2𝐮𝐮𝑐𝑐
+ 2𝜀𝜀2∇𝒙𝒙.∇𝑿𝑿𝐮𝐮𝑐𝑐 + 𝜀𝜀3∇𝑥𝑥2𝐮𝐮𝑐𝑐   in Ω𝑐𝑐 (A. 2)

 745 

We also use non-dimensional forms of the continuity equation and the boundary conditions:  746 

∇𝑿𝑿.𝐮𝐮𝑐𝑐 + 𝜀𝜀∇𝒙𝒙.𝐮𝐮𝑐𝑐 =  0   in Ω𝑐𝑐 (A. 3)   747 

𝐮𝐮𝑐𝑐.𝒏𝒏 = 0   on Γ𝑐𝑐 (A. 4)  748 

𝐮𝐮𝑐𝑐. 𝝉𝝉 = 0   on Γ𝑐𝑐 (A. 5)  749 

where Ω𝑐𝑐  denotes the blood space and Γ𝑐𝑐 denotes the boundary between blood and tissue. 750 

We then apply the multiple scales expansion for velocity and pressure given in Equations 20 751 

and 21. In order to maintain periodicity each component of 𝐮𝐮 and 𝑝𝑝 is assumed to be 752 

periodic in 𝐗𝐗. The expansions of Equations 20 and 21 are substituted into Equations A.2-A.5 753 

and successive orders of 𝜀𝜀 equated to determine the leading order homogenized equations 754 

for capillary flow and pressure: 755 
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𝜀𝜀2𝑅𝑅𝑅𝑅𝐷𝐷[((𝐮𝐮𝑐𝑐
(0) + 𝜀𝜀𝐮𝐮𝑐𝑐

(1) + ⋯ ).∇𝑿𝑿)(𝐮𝐮𝑐𝑐
(0) + 𝜀𝜀𝐮𝐮𝑐𝑐

(1) + ⋯ ) +
𝜀𝜀((𝐮𝐮𝑐𝑐

(0) + 𝜀𝜀𝐮𝐮𝑐𝑐
(1) + ⋯ ).∇𝒙𝒙)(𝐮𝐮𝑐𝑐

(0) + 𝜀𝜀𝐮𝐮𝑐𝑐
(1) + ⋯ )] =

−∇𝑿𝑿 (𝑝𝑝𝑐𝑐
(0) + 𝜀𝜀𝑝𝑝𝑐𝑐

(1) + ⋯ ) − 𝜀𝜀∇𝒙𝒙(𝑝𝑝𝑐𝑐
(0) + 𝜀𝜀𝑝𝑝𝑐𝑐

(1) + ⋯ ) + 𝜀𝜀∇𝑿𝑿2(𝐮𝐮𝑐𝑐
(0) + 𝜀𝜀𝐮𝐮𝑐𝑐

(1) + ⋯ )

+ 2𝜀𝜀2∇𝒙𝒙.∇𝑿𝑿�𝐮𝐮𝑐𝑐
(0) + 𝜀𝜀𝐮𝐮𝑐𝑐

(1) + ⋯� + 𝜀𝜀3∇𝑥𝑥2�𝐮𝐮𝑐𝑐
(0) + 𝜀𝜀𝐮𝐮𝑐𝑐

(1) + ⋯�  in Ω𝑐𝑐 (A. 6)

 756 

∇𝑿𝑿. �𝐮𝐮𝑐𝑐
(0) + 𝜀𝜀𝐮𝐮𝑐𝑐

(1) + ⋯�+ 𝜀𝜀∇𝒙𝒙. �𝐮𝐮𝑐𝑐
(0) + 𝜀𝜀𝐮𝐮𝑐𝑐

(1) + ⋯� =  0   in Ω𝑐𝑐 (A. 7)  757 

�𝐮𝐮𝑐𝑐
(0) + 𝜀𝜀𝐮𝐮𝑐𝑐

(1) + ⋯�. 𝝉𝝉 = 0 (A. 8)  758 

�𝐮𝐮𝑐𝑐
(0) + 𝜀𝜀𝐮𝐮𝑐𝑐

(1) + ⋯�.𝒏𝒏 = 0 (A. 9)  759 

Equating powers of 𝑂𝑂(𝜀𝜀0) in Equations A.6-A.9 gives: 760 

∇𝑿𝑿 𝑝𝑝𝑐𝑐
(0) = 0 (A. 10)  761 

∇𝑿𝑿.𝐮𝐮𝑐𝑐
(0) = 0 (A. 11)  762 

𝐮𝐮𝑐𝑐
(0). 𝝉𝝉 = 0 and 𝐮𝐮𝑐𝑐

(0).𝒏𝒏 = 0   on Γ (A. 12)  763 

and equating powers of 𝑂𝑂(𝜀𝜀1): 764 

∇𝑿𝑿 𝑝𝑝𝑐𝑐
(1) + ∇𝒙𝒙𝑝𝑝𝑐𝑐

(0) = ∇𝑿𝑿2𝐮𝐮𝑐𝑐
(0) (A. 13)  765 

∇𝑿𝑿.𝐮𝐮𝑐𝑐
(1) + ∇𝒙𝒙.𝐮𝐮𝑐𝑐

(0) = 0 (A. 14)  766 

𝐮𝐮𝑐𝑐
(1). 𝝉𝝉 = 0 and 𝐮𝐮𝑐𝑐

(1).𝒏𝒏 = 0   on Γ (A. 15)  767 

From Equation A.10 it is evident that 𝑝𝑝𝑐𝑐
(0) is constant at the local-scale, hence 𝑝𝑝𝑐𝑐

(0) = 𝑝𝑝𝑐𝑐
(0)(𝐱𝐱). 768 

In order to determine the leading order problem it is necessary to solve for 𝐮𝐮𝑐𝑐
(0)and 𝑝𝑝𝑐𝑐

(1). 769 

From Equation A.13 it can be seen that 𝐮𝐮𝑐𝑐
(0) and 𝑝𝑝𝑐𝑐

(1) are both linear functions of ∇𝒙𝒙𝑝𝑝𝑐𝑐
(0) and 770 

so solutions are proposed of the form: 771 

𝐮𝐮𝑐𝑐
(0) =  −𝒘𝒘𝑐𝑐

𝑖𝑖(𝐗𝐗)
𝑑𝑑𝑝𝑝𝑐𝑐

(0)

𝑑𝑑𝜕𝜕𝑖𝑖
 (A. 16)  772 

𝑝𝑝𝑐𝑐
(1) =  −𝑃𝑃𝑐𝑐

𝑖𝑖(𝐗𝐗)
𝑑𝑑𝑝𝑝𝑐𝑐

(0)

𝑑𝑑𝜕𝜕𝑖𝑖
+  𝑝𝑝𝑐𝑐� (1) (A. 17)  773 
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Einstein notation has been used here for clarity where 𝑗𝑗 can take the values 1, 2, or 3 and 774 

refers to the Cartesian co-ordinate directions. The notation used is a simple substitution for 775 

what would otherwise be a dot product of the two 𝑗𝑗 components. 𝒘𝒘𝑐𝑐
𝑖𝑖(𝐗𝐗) and 𝑃𝑃𝑐𝑐

𝑖𝑖(𝐗𝐗) account 776 

for the local variations in 𝐮𝐮𝑐𝑐
(0) and 𝑝𝑝𝑐𝑐

(1) and are known as the cell variables. It is from these 777 

local variables that the homogenized macro-scale parameters of the blood flow in the 778 

capillary network can be determined. These variables are determined by inserting them into 779 

Equations A.10-A.12 to obtain the cell problem: 780 

∇𝐗𝐗.𝒘𝒘𝑐𝑐
𝑖𝑖(𝐗𝐗) = 0   in Ωc (A. 18)  781 

∇𝐗𝐗𝑃𝑃𝑐𝑐
𝑖𝑖(𝐗𝐗) = ∇𝐗𝐗𝟐𝟐𝒘𝒘𝑐𝑐

𝑖𝑖(𝐗𝐗) + 𝐞𝐞j   in Ωc (A. 19)  782 

𝒘𝒘𝑐𝑐
𝑖𝑖(𝐗𝐗). 𝝉𝝉 = 0 and 𝒘𝒘𝑐𝑐

𝑖𝑖(𝐗𝐗).𝒏𝒏 = 0   on Γ (A. 20)  783 

where 𝐞𝐞j is the unit vector in the 𝑗𝑗-direction. This is the local periodic cell problem which 784 

must be solved numerically in order, as shall be seen, to derive the parameters for the 785 

macro-scale problem. Note that Equation A.19 is a forced Stokes flow problem. From this is 786 

derived the Poiseuille equation (making assumptions on the radial and swirl components of 787 

the velocity). Therefore, despite having left in the convective acceleration term in the 788 

original equations, to leading order the cell problem is Stokes flow. 789 

From Equations A.19-A.20 it can be seen that the cell problem is underdetermined and 790 

hence the local pressure term 𝑃𝑃𝑐𝑐
𝑖𝑖  is only defined up to a constant value. A uniqueness 791 

condition is thus imposed which states that the volume average of the local pressure is zero: 792 

〈𝑃𝑃𝑐𝑐
𝑖𝑖〉𝑐𝑐 =

1
|Ω|� 𝑃𝑃𝑐𝑐

𝑖𝑖  𝑑𝑑𝑑𝑑
Ω𝑐𝑐

= 0 (A. 21)  793 

Taking a volume average over 𝐮𝐮𝑐𝑐
(0), Equation A.16 results in: 794 

〈𝐮𝐮𝑐𝑐
(0)〉Ω𝑐𝑐 =  −𝐊𝐊∇𝒙𝒙𝑝𝑝𝑐𝑐

(0) (A. 22)  795 

where 796 

𝐾𝐾𝑖𝑖𝑖𝑖 =  
1

|Ω|
� 𝑤𝑤𝑐𝑐𝑖𝑖

𝑖𝑖  𝑑𝑑𝑑𝑑
Ω𝑐𝑐

 (A. 23)  797 
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This is Darcy’s Law with 𝐊𝐊 defining the permeability tensor. Therefore, to leading order, the 798 

homogenization of the incompressible, steady state Navier-Stokes equations gives Darcy’s 799 

Law. The permeability tensor 𝐊𝐊 encapsulates the geometry of the problem and how the 800 

geometry affects the flow for given pressure gradients. It is an averaged coefficient tensor, 801 

calculated by solving the micro cell problem, and is the volume average of the velocities in 802 

the cell problem. 803 

  804 
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