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Continuous-discrete multiple target tracking with
out-of-sequence measurements

Ángel F. García-Fernández, Wei Yi

Abstract—This paper derives the optimal Bayesian processing
of an out-of-sequence (OOS) set of measurements in continuous-
time for multiple target tracking. We consider a multi-target
system modelled in continuous time that is discretised at the time
steps when we receive the measurements, which are distributed
according to the standard point target model. All information
about this system at the sampled time steps is provided by
the posterior density on the set of all trajectories. This density
can be computed via the continuous-discrete trajectory Poisson
multi-Bernoulli mixture (TPMBM) filter. When we receive an
OOS measurement, the optimal Bayesian processing performs a
retrodiction step that adds trajectory information at the OOS
measurement time stamp followed by an update step. After the
OOS measurement update, the posterior remains in TPMBM
form. We also provide a computationally lighter alternative based
on a trajectory Poisson multi-Bernoulli filter. The effectiveness of
the two approaches to handle OOS measurements is evaluated
via simulations.

Index Terms—Multiple target tracking, sets of trajectories,
Poisson multi-Bernoulli mixtures, out-of-sequence measurements.

I. INTRODUCTION

Multiple target tracking (MTT) systems are ubiquitous in
many applications ranging from air-traffic control to driving
assistance systems [1]–[3]. In MTT, there are an unknown
number of targets that may appear, move and disappear from
a scene of interest, and the objective is to infer their trajectories
based on noisy sensor measurements.

In multi-sensor tracking systems, these measurements are
usually obtained in scans and are sent to a processing center.
Due to different time delays in transmission, a measure-
ment scan may be received out-of-sequence (OOS). That
is, the processing center has already processed some up-to-
date information, and receives sensor information obtained
at a past time. To use all available sensor information and
improve tracking performance, it is of interest to process these
OOS measurements in a computationally efficient manner, i.e.,
without having to reprocess previously received measurements
[4].

Optimal algorithms to process an OOS measurement for a
single target in linear Gaussian systems were provided in [5]–
[7], and for nonlinear/non-Gaussian systems in [8]. Processing
an OOS measurements can be done with a retrodiction step,
which obtains target information at the time stamp of the
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OOS measurement, and a measurement update. This approach
was extended in [4], [9], [10] to consider the posterior of
a single trajectory, and in [11], to include multiple OOS
measurements. OOS measurement processing algorithms for
a fixed and known number of targets, or with external track
initiation and termination, are provided in [12]–[14] and [15],
[16], respectively. An approximate algorithm for processing
OOS measurements within a probabilistic hypothesis density
filter is provided in [17].

In this paper, we derive the exact Bayesian update with
an OOS set of measurements, with a continuous-time time
stamp, for multi-target systems. In this setting, at the OOS
measurement time, we have to account for target appearances
and disappearances in continuous time, including the possible
existence of targets that did not exist at previously sampled
time steps.

In order to explain the processing of an OOS measurement,
we first review how to process the in-sequence measurements
in a Bayesian manner. We consider a continuous-time multi-
target system [18]–[20] in which target appearance and disap-
pearance are given by an M/M/∞ queuing system [21] and
single-target dynamics are modelled by a stochastic differential
equation (SDE) [22]. This multi-target system can be discre-
tised at the time steps when we receive in-sequence measure-
ments to obtain a standard multi-target dynamic model [23],
which consists of a time-dependent probability of survival,
single-target transition density and a Poisson point process
(PPP) birth model [18].

All information on the set of all (sampled) trajectories, i.e.,
trajectories that have been discretised at the time steps when
we receive the measurements, is contained in its posterior
density [24]. For in-sequence measurements, the posterior
is a Poisson multi-Bernoulli mixture (PMBM) that can be
calculated by the trajectory Poisson multi-Bernoulli mixture
(TPMBM) filter [25]–[27] with the resulting discretised multi-
target dynamic model. The TPMBM filter is an extension of
the PMBM filter [28], [29] for sets of targets to sets of trajecto-
ries. When the system is modelled in continuous time, we refer
to the TPMBM filter as the continuous-discrete TPMBM (CD-
TPMBM) filter. The TPMBM and PMBM filters are state-of-
the-art multiple hypothesis tracking algorithms [30], with a
Bayesian birth model and an efficient representation of the
posterior via probabilistic target existence [28], [31], [32] and
a PPP intensity to keep undetected target information, which
is important, for example, in search-and-track operations [33].

The first contribution of this paper is that we derive the
Bayesian processing of an OOS set of measurements in
an MTT system by applying a retrodiction step followed
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Figure 1: Diagram of the update with a set of OOS measurements at time
τ . The posterior over the set of all (sampled) trajectories up to the current
time step tk is a PMBM. To process the OOS measurements, we perform
a retrodiction step, which yields a PMBM density that includes trajectory
information at time τ . The update of a TPMBM density results in another
TPMBM density. We marginalise out the trajectory information at time
τ to only keep trajectory information on the in-sequence sampled times,
which yields a PMBM density.

by a measurement update. The retrodiction step takes into
account continuous-time target appearances, dynamics and
disappearances. This step adds state information at the OOS
measurement time for the previously sampled trajectories and
new trajectories that were not discretised at the in-sequence
sampling times. Importantly, we show that the posterior keeps
the PMBM form after the retrodiction and update steps.
In order to only keep trajectory information at in-sequence
sampling times, we then marginalise out trajectory information
at OOS measurement time, which also keeps the PMBM form
[34], see Figure 1.

The second contribution of this paper is to derive the
Gaussian implementation of the OOS measurement processing
when the SDE corresponds to the Wiener velocity model [22].
To enable a Gaussian implementation of the CD-TPMBM
filter, we first obtain the best Gaussian PPP approximation
to the birth model by minimising the Kullback-Leibler diver-
gence (KLD) [18]. The resulting discretised model, along with
linear/Gaussian measurement models with constant probability
of detection, directly allows us to implement the CD-TPMBM
filter in its Gaussian form [25], [27]. To carry out the OOS
measurement processing for the Gaussian CD-TPMBM filter,
we also require a KLD minimisation to account for new
trajectories at the OOS time.

The obtained OOS measurement update can also be used
with the continuous-discrete (track-oriented) trajectory Pois-
son multi-Bernoulli (CD-TPMB) filter, which is an approx-
imation to the CD-TPMBM filter that only has one mixture
component [27], [28], [35]. The (track-oriented) Poisson multi-
Bernoulli filter is a variant of the joint integrated probabilistic
data association filter [1] that accounts for the influence of
undetected targets in the association events [28, Sec. IV.A].
Finally, we evaluate the benefits of OOS measurement pro-
cessing for both the CD-TPMBM and CD-TPMB filters via
simulations.

The rest of the paper is organised as follows. Section II
provides an overview on the considered models. Section III
explains the continuous-discrete models and the CD-TPMBM
filter. The update of the CD-TPMBM filter with an OOS
measurement is addressed in Section IV. Section V provides
the Gaussian implementation of the OOS measurement up-
date. Simulation results are provided in Section VI. Finally,
conclusions are drawn in Section VII.

II. BACKGROUND

This section provides a general background on the models
used to solve the problem of continuous-discrete multiple

Table I: Notation

• xk: set of targets at time step k, x ∈ xk is a target state.
• Xk: set of all sampled trajectories up to time step k.
• X =

(
β, x1:ν

)
∈ Xk: a trajectory state, with start time step β, length

ν and states
(
x1, ..., xυ

)
(sampled at the in-sequence sampling times).

• Yk: set of all sampled trajectories up to time step k, including
information at OOS time τ .

•
(
u, β, x1:ν

)
∈ Yk: a trajectory with information at OOS time τ .

– u = 1: trajectory exists at OOS time with state xν .
– u = 1, β = −1, ν = 1: OOS new trajectory (it was not sampled

at the in-sequence sampling times, e.g. the blue one in Fig. 2).
– u = 0: trajectory does not exist at OOS time.

• fk|k′ (·): density of Xk given measurements up to time step k′.
• fτ,k|k (·): density of Yk given measurements up to time step k, but

not at time τ .
• fτ,k|,τ,k (·): density of Yk given measurements up to time step k,

including time τ .
• λ: rate of appearance of new targets.
• µ: rate of the exponentially distributed life span of a target.
• g(∆tk)

(· |x ): single target transition density from state x with a time
interval ∆tk .

target tracking with in-sequence measurements. The main
notation of the paper is summarised in Table I.

A. Sets of targets

The multi-target state at time t, where t ∈ [0,∞), is the
set x (t) ∈ F (Rnx), where Rnx is the single-target space,
and F (Rnx) is the space of all finite subsets of Rnx . Targets
move independently with a continuous time model and, at any
time t, targets may be added or removed from x (t). These
models will be explained in Section III-A.

At time step k ∈ N ∪ {0}, which corresponds to a time
tk, we take noisy measurements from the multi-target state
xk = x (tk). These measurements are in-sequence, which
means that tk > tk−1. At time step k, the set zk ∈ F (Rnz ) of
measurements follows the standard point target measurement
model [23]. That is, the set zk is the union of the set of target-
generated measurements and the set of clutter measurements.
Given xk, each target x ∈ xk is detected with probability
pD (x) and generates a measurement with conditional density
l (·|x), or missed with probability 1 − pD (x). The clutter
process is an independent PPP with intensity λC (·).

The posterior density of xk given the sequence z1:k =
(z1, ..., zk) of measurements is a PMBM density that can
be computed via the prediction and update equations with
continuous-discrete dynamic models [18], [28], which will be
explained in Section III-B.

B. Sets of sampled trajectories

In order to include target trajectory information in the
filter, we consider target trajectories up to the current time tk
sampled at the times when the in-sequence measurements are
taken. Specifically, a trajectory is characterised by its initial
time step β ∈ {0, 1, ..., k}, its length υ (number of time
steps that the trajectory has been present) and, its sequence
x1:ν =

(
x1, ..., xυ

)
of target states from time step β to

time step β + ν − 1. A trajectory up to time step k is a
variable X =

(
β, x1:ν

)
, where (β, ν) belongs to the set



0 2 4 6 8 10 12

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5
T

a
rg

e
t 
s
ta

te

Figure 2: Illustration of a set of one-dimensional trajectories in con-
tinuous time and its discretisation. The vertical dashed lines indicate
the times at which measurements have been taken, which are used to
discretise the trajectories. The set Xk of sampled trajectories is shown
in red (the trajectories exist at least at one of the sampled times). The
blue trajectory has not been sampled and does not belong to Xk .

I(k) = {(β, ν) : 0 ≤ β ≤ k and 1 ≤ ν ≤ k − β + 1}, which
ensures that the beginning and end of the trajectory belong
to the considered time window. The single-trajectory space up
to time step k is T(k) = ⊎(β,ν)∈I(k)

{β} × Rνnx , where ⊎
stands for disjoint union, which is used to highlight that the
sets are disjoint. The set of (sampled) trajectories up to time
step k is denoted by Xk ∈ F

(
T(k)

)
.

Example 1. We consider one-dimensional targets and the five
trajectories in continuous time shown in Figure 2. We have
received measurements at the times indicated by the vertical
dashed lines. The continuous trajectories are discretised at
these time steps to obtain a set Xk of (sampled) trajectories.
For example, the trajectory that appears first is (approximately)
represented in discretised form as (1, (1.16, 1.34)). This means
that it was born with the first round of measurements with a
state 1.16, has a duration of two time steps, and has a state
1.34 at time step two. The discretised version of the rest of the
trajectories is obtained analogously. The blue trajectory does
not belong to Xk, as it appeared and disappeared in between
sampling times. These types of unobserved trajectories will
play an important role in OOS measurement updates, see
Section IV. ♢

Similarly to integrals on a single-target space Rnx , we can
define integrals on the single-trajectory space T(k). For a real-
valued function π (·) on the single-trajectory space, its integral
is [24] ∫

π (X) dX =
∑

(β,ν)∈I(k)

∫
π
(
β, x1:ν

)
dx1:ν . (1)

This integral sums over all possible start times and lengths,
and integrates the sequence of states. Integral (1) is the basis
for the set integral on trajectories [24].

III. CONTINUOUS-DISCRETE TRAJECTORY PMBM FILTER

This section describes the CD-TPMBM filter for in-
sequence measurements. Before this, Sections III-A and III-B
review the continuous and continuous-discrete multi-target
models.

Following [18], we use the terms target appearance and
disappearance for the continuous time process, and target birth
and death for the discretised process. A target appearance may
not imply target birth, as the target may appear and disappear
in between two sampling times, see Figure 2.

A. Continuous time multi-target model

The continuous time multi-target model has the following
characteristics [18]. A Poisson process (in time) with rate λ
models the times of target appearances [21]. The life span of
a target is independent and exponentially distributed with rate
µ. These two properties define an M/M/∞ queuing system
[21] for the evolution of the number of targets across time.

The distribution of a target state at the time of appearance is
an independent Gaussian with mean xa and covariance matrix
Pa. Targets move independently following an SDE [22]

dx (t) = Ax (t) dt+ Ldϖ (t) (2)

where x (t) ∈ Rnx is the target state at time t, A ∈ Rnx×nx

and L ∈ Rnx×nβ are matrices, dx (t) is the differential of
x (t), and ϖ (t) ∈ Rnϖ is a Brownian motion with diffusion
matrix Qϖ.

B. Continuous-discrete multi-target model

The continuous time model in Section III-A is discretised
at the times when we receive in-sequence measurements.
The resulting discretised model results in a (time-dependent)
standard multi-target dynamic model [23], in which targets
evolve independently and target birth is also independent. In
particular, given xk−1, each x ∈ xk−1 survives to time step k
with a probability of survival

pSk = e−µ∆tk , (3)

where ∆tk = tk − tk−1, and moves to a new state with
transition density g(∆tk) (· |x ) [22]

g(∆tk) (x (tk) |x (tk−1) ) = N
(
x (tk) ;F(∆tk)x (tk−1) , Q(∆tk)

)
(4)

F(∆tk) = exp (A∆tk) (5)

Q(∆tk) =

∫ ∆tk

0

exp (A (∆tk − ξ))LQϖLT

× exp (A (∆tk − ξ))
T
dξ (6)

where superscript T denotes transpose, exp (A) denotes the
matrix exponential of A and N (x;x,Q) denotes a Gaussian
density with mean x and covariance matrix Q evaluated at x.

Targets are born according to a PPP with intensity

λB
k (xk) =

λ

µ

(
1− e−µ∆tk

) ∫ ∆tk

0

p (xk |t ) p(∆tk) (t) dt

(7)



p (xk |t ) = N
(
xk;F(t)xa, F(t)PaF

T
(t) +Q(t)

)
(8)

p(∆tk) (t) =
µ

1− e−µ∆tk
e−µtχ[0,∆tk) (t) (9)

where χ[0,∆tk) (t) = 1 if t ∈ [0,∆tk) and χ[0,∆tk) (t) = 0
otherwise. The quantity λ

µ

(
1− e−µ∆tk

)
is the expected num-

ber of targets that are born at time step k, i.e., targets that
appeared between times tk−1 and tk and are still alive at time
tk [18], [36]. For example, the blue trajectory in Figure 2 is
not considered in the birth model as it has not been sampled.
Eq. (9) is a truncated exponential density with parameter µ in
the interval [0,∆tk) and represents the density of the time lag
t of new born targets. That is, if a target appears at time step
tk − t with t ∈ [0,∆tk), then t denotes the time lag between
appearing time and tk. Density (8) represents the single-target
density at time step tk given that the target appeared with a
time lag t.

C. CD-TPMBM filter

As the discretised dynamic model in Section III-B is a stan-
dard multi-target dynamic model, the posterior and predicted
densities on the set of all trajectories (which include alive and
dead trajectories) are PMBMs [25], [27].

Given z1:k′ with k′ ∈ {k − 1, k}, the density fk|k′ (·) of
the set Xk of all trajectories up to the current time step k is
a PMBM [25]–[27], [37]

fk|k′ (Xk) =
∑

Xu⊎Xd=Xk

fp
k|k′ (X

u) fmbm
k|k′

(
Xd
)

(10)

fp
k|k′ (X

u) = e−
∫
λk|k′ (X)dX

∏
X∈Xu

λk|k′ (X) (11)

fmbm
k|k′

(
Xd
)
=

∑
a∈Ak|k′

wa
k|k′

∑
⊎

n
k|k′

l=1 Xl=Xd

nk|k′∏
i=1

f i,ai

k|k′

(
Xi
)
(12)

where in (10) we sum over all disjoint and possibly empty
sets Xu and Xd such that Xu ∪Xd = Xk, and

f i,ai

k|k′ (X) =


1− ri,a

i

k|k′ X = ∅
ri,a

i

k|k′p
i,ai

k|k′ (X) X = {X}
0 otherwise.

(13)

We proceed to describe the aspects of (10) that are relevant
to this work. Details can be found in [25]. The density fk|k′ (·)
is the union of two independent random finite sets: a PPP with
density fp

k|k′ (·) and intensity λk|k′ (·), and a multi-Bernoulli
mixture (MBM) with density fmbm

k|k′ (·). The PPP contains
information on trajectories that have never been detected,
but have been discretised at in-sequence measurements, see
Figure 2. The number of potential trajectories that have ever
been present and detected in the surveillance area is nk|k′ ,
which is the number of Bernoullis in each MBM component.
Each received measurement generates one of these potential
trajectories, which are indexed by i. A global hypothesis is
a =

(
a1, ..., ank|k′

)
, where ai ∈

{
1, ..., hi

}
is the index to

the local hypothesis for the i-th potential trajectory and hi

is the number of local hypotheses. Each global hypothesis

corresponds to a multi-Bernoulli in the MBM, and indicates
a possible way to associate the received measurements so
far to potential trajectories. The density of the i-th potential
trajectory with local hypothesis ai is Bernoulli f i,ai

k|k′ (·), whose

probability of existence is ri,a
i

k|k′ and its single-trajectory density

is pi,a
i

k|k′ (·). The set of all global hypotheses is Ak|k′ [28].
The TPMBM posterior (10) can be calculated recursively

via a prediction and an update step [25], [37]. The prediction
step is performed as in the TPMBM filter using the corre-
sponding (interval dependent) probability of survival, single-
target transition density and intensity of new born targets, see
(3), (4) and (7). The update step is similar to the TPMBM
filter update.

IV. CD-TPMBM UPDATE WITH OOS MEASUREMENTS

This section explains the Bayesian processing of OOS mea-
surements based on the posterior (10). Section IV-A defines the
retrodicted set of trajectories. Section IV-B and IV-C explain
the retrodiction and update steps. Section IV-D addresses the
marginalisation step.

A. Retrodicted set of trajectories

We consider we know the PMBM posterior over the set
Xk of all (sampled) trajectories up to the current time tk,
fk|k (·) in (10). We receive an OOS set of measurements with
time stamp τ , such that t0 < τ < tk. The closest previously
sampled time steps to τ are ko − 1 and ko, with continuous
times tko−1 < τ and tko > τ . We denote ∆to,1 = τ − tko−1

and ∆to,2 = tko − τ .
To perform the update with this OOS set of measurements,

we first perform a retrodiction step in which we calculate the
density of the retrodicted set Yk of trajectories, e.g., the set
of all trajectories including trajectory state information at time
τ . The set Yk can be written as Yk = Xa

k ∪ N, where Xa
k

corresponds to the set Xk with additional state information at
time τ , and N denotes the set of trajectories that existed at
time step τ , and appeared and disappeared between time steps
ko − 1 and ko. The trajectories in N do not belong to Xk,
see Figure 2, and we refer to them as OOS new trajectories
at time τ .

We denote the retrodicted trajectories as (u, Y ) ∈ Yk,
where mark u = 0 if the trajectory Y =

(
β, x1:ν

)
does not

exist at time τ (but exists at other sampled times) and u = 1 if
Y =

(
β, x1:ν

)
exists at time τ , being the last state xν its state

at time τ . More information on marks and point processes can
be found at [38, Chap.8].

For notational convenience, we write
(
u,
(
β, x1:ν

))
=(

u, β, x1:ν
)
. In particular, if the trajectory

(
β, x1:ν

)
∈ Xk

does not exist at time τ , it is included in Xa
k as

(
0, β, x1:ν

)
.

If the trajectory
(
β, x1:ν

)
∈ Xk exists at time τ , it is included

in Xa
k as

(
1, β, x1:ν , y

)
, where its last state y is the state at

time τ . These two possibilities are modelled by a transition
density gτ,k|k (·|X) that converts each trajectory X ∈ Xk into
(u, Y ) ∈ Xa

k. As we explain in Section IV-B, the set N is
a PPP independent of Xa

k and a trajectory (u, Y ) ∈ N is
represented as (1, β, x), where we set u = 1 and β = −1 to



mark that it is an OOS new trajectory. We proceed to illustrate
with an example how sets Xa

k and N are formed.

Example 2. Let us consider we have the trajectories in
Example 1 and Figure 2. We receive an OOS measure-
ment at time τ = 6 s. The trajectory that appeared first
(1, (1.16, 1.34)) ∈ Xk does not exist at τ so it in included
in Xa

k as (0, 1, (1.16, 1.34)). The trajectory on top in Figure
2, (2, (2.55, 2.63, 2.63, 2.76, 3.05)) ∈ Xk exists at τ so it is
included in Xa

k as (1, 2, (2.55, 2.63, 2.63, 2.76, 3.05, 2, 96)),
where 2.96 is the trajectory state at τ . The blue trajectory
was not previously sampled and exists at τ , so it belongs to
N and has a state (1,−1, 2.1). ♢

The single retrodicted trajectory space is then

⊎1
u=0 ⊎(β,ν)∈I(k,u)

{u} × {β} × Rνnx ,

where I(k,0) = I(k) and I(k,1) = {(−1, 1)} ∪
{(β, ν) : 0 ≤ β ≤ k and 1 ≤ ν ≤ k − β + 2}. For a real-
valued function π (·) on the single-retrodicted space, its in-
tegral is∫

π (u, Y ) d (u, Y ) =

1∑
u=0

∑
(β,ν)∈I(k,u)

∫
π
(
u, β, x1:ν

)
dx1:ν .

(14)

B. Retrodiction step

Given a trajectory Y =
(
β, x1:ν

)
, ν > 1, the trajectory

without the last state is denoted by Y − =
(
β, x1:ν−1

)
. We also

use symbols ∧ and ∨ to denote “and” and “or”, respectively.
The transition density to obtain (u, Y ) ∈ Xa

k from X ∈ Xk

is provided in the following proposition.

Proposition 3. The transition density gτ,k|k (·|X) to augment
each trajectory X =

(
β, x1:ν

)
∈ Xk with state information at

OOS time τ and produce (u, Y ) ∈ Xa
k is

gτ,k|k (u, Y |X)

=



δX (Y ) δ0 [u] β > ko ∨ ω < ko − 1

δX (Y −)

×p
(
y|xko−β , xko−β+1

)
δ1 [u] β ≤ ko − 1 ∧ ω ≥ ko(

1− pS,o1

)
δX (Y ) δ0 [u] + pS,o1

×δX (Y −) g(∆to,1) (y|xν) δ1 [u] ω = ko − 1(
1− pS,o2

)
δX (Y ) δ0 [u]

+pS,o2 δX (Y −) p
(
y|x1

)
δ1 [u] β = ko

(15)

where y is the last state of Y , ω = β + ν − 1, pS,o1 =
pS,ok (∆to,1), p

S,o
2 = pS,ok (∆to,2) with

pS,ok (∆t) =
e−µ∆t − e−µ∆tko

1− e−µ∆tko
(16)

and

p
(
y|xko−β , xko−β+1

)
=

g(∆to,2)

(
xko−β+1|y

)
g(∆to,1)

(
y|xko−β

)
g(∆tko ) (xko−β+1|xko−β)

(17)

p
(
y|x1

)
=

g(∆to,2)

(
x1|y

) ∫∆to,1
0

p (y |t ) p(∆to,1) (t) dt∫
g(∆to,2) (x

1|y)
∫∆to,1
0

p (y |t ) p(∆to,1) (t) dtdy
.

(18)
The first entry in (15) indicates that if a trajectory X was

born after ko or its final time step ω occurred before ko−1, its
state does not exist at time τ with with probability one. That
is, this entry considers trajectories that do not exist at time τ
but exist at other sampled time steps. The second entry in (15)
indicates that if a trajectory X was born at time step ko − 1,
or earlier, and finished at time step ko, or afterwards, then the
trajectory exists at time τ with probability one. In addition,
given the states of X at time steps ko − 1 and ko, its state at
at time τ can be directly obtained using Bayes’ rule and the
properties of the discretised single-target transition density (4),
resulting in (17). The third entry in (15) considers a trajectory
X that finished at time step ko−1. This trajectory disappeared
(in continuous time) at any time between tko−1 and tko , and
the probability that it disappeared between times τ and tko ,
which implies that it existed at time τ , is pS,o1 . If it exists, its
state is obtained using the single-target transition density (4)
with a time interval ∆to,1. The fourth entry in (15) considers
a trajectory X that was born at time step ko. This trajectory
appeared (in continuous time) at any time between tko−1 and
tko , and the probability that it appeared between times tko−1

and τ , which implies that it existed at time τ , is pS,o2 . If it
exist, its state at τ is given by applying Bayes’ rule to its prior
density at time step τ corrected by the information provided
by its state at time tko . The resulting transition density is (18).
More details on how to calculate pS,o1 and pS,o2 are provided
in Appendix A.

Once we have the transition density for the retrodiction step,
we can obtain the PMBM retrodiction step via the following
theorem.

Theorem 4. Given the PMBM posterior fk|k (·) in (10) on
the set of all sampled trajectories, the retrodicted density on
the set Yk of trajectories augmented with information at time
τ < tk is a PMBM with density

fτ,k|k (Yk) =
∑

Yu⊎Yd=Yk

fp
τ,k|k (Y

u) fmbm
τ,k|k

(
Yd
)

(19)

fp
τ,k|k (Y

u) = e−
∫
λτ,k|k(u,Y )d(u,Y )

∏
(u,Y )∈Yu

λτ,k|k (u, Y )

(20)

fmbm
τ,k|k

(
Yd
)
=

∑
a∈Ak|k

wa
k|k

∑
⊎

nk|k
l=1 Yl=Yd

nk|k∏
i=1

f i,ai

τ,k|k
(
Yi
)

(21)

where the intensity of the PPP fp
τ,k|k (·) is

λτ,k|k (u, Y ) = λB
τ,k|k (u, Y )

+

∫
gτ,k|k (u, Y |X)λk|k (X) dX, (22)

and the intensity of OOS new trajectories is

λB
τ,k|k

(
u, β, x1:ν

)
= wB (∆to,1,∆to,2) δ1 [u] δ−1 [β]

× δ1 [ν]

∫ ∆to,1

0

p
(
x1 |t

)
p(∆to,1) (t) dt.

(23)



wB (∆to,1,∆to,2) =
λ

µ

(
1− e−µ∆to,1

) (
1− e−µ∆to,2

)
.

(24)

The probability of existence and single-target density of
Bernoulli f i,ai

τ,k|k (·) are

ri,a
i

τ,k|k = ri,a
i

k|k (25)

pi,a
i

τ,k|k (u, Y ) =

∫
gτ,k|k (u, Y |X) pi,a

i

k|k (X) dX. (26)

Theorem 4 is proved in Appendix A, and results from the
application of the single-trajectory transition density in (3) to
a PMBM density (10), accounting for the distribution of the
set N of OOS new trajectories, which is a PPP with intensity
λB
τ,k|k (·).
The probability of existence of the Bernoulli components

does not change, see (25). The reason is that all the tra-
jectories that belong to Xk also belong to Yk, so there
is no change in their probability of existence. A similar
phenomenon happens in the TPMBM prediction step when we
consider all trajectories [25], [27]. The single-target densities
(26) are transformed using the transition density gτ,k|k (·|·),
which augments trajectories with state information at time
τ . The intensity of the PPP (22) is the sum of the intensity
λB
τ,k|k (·) and the intensity of the undetected trajectories in

Xk augmented with information at time τ . Equation (24)
represents the expected number of OOS new trajectories. This
number is the expected number of trajectories that appear in
an interval ∆to,1 and are alive at its end, which is given by
λ
µ

(
1− e−µ∆to,1

)
[18], [36], multiplied by the probability that

a trajectory disappears in an interval ∆to,2, which is given by(
1− e−µ∆to,2

)
, see (3).

We plot the mean number of OOS new trajectories, see (24),
as a function of ∆to,1 in one illustrative example in Figure
3. The maximum is obtained at the middle of the interval
∆to,1 = ∆tko/2, which can also be proved analytically. This
means that if the OOS measurement falls in the middle of
two sampled times, the number of OOS new trajectories is
at its maximum. The mean number of OOS new trajectories
increases with λ, as more targets appear in the scene. In
addition, the mean number of OOS new trajectories initially
increases with µ, but it then decreases. We recall that 1/µ
is the expected life span of the trajectories [18, Sec. II]. For
sufficiently small µ, targets that appeared between tko−1 and
τ are still alive at tko with high probability and wB (·) is
small. As µ starts increasing, the probability that these targets
are not alive at tko increases, and therefore, wB (·) increases.
However, as µ increases the number of targets that appear
between tko−1 and τ and are alive at τ also decreases, which
implies that wB (·) starts to decrease after a certain point.

C. Update step

The measurement model at time τ , see Section II-A,
can be written in terms of Yk, as follows. Each trajectory(
u, β, x1:ν

)
∈ Yk is detected with probability

pD
(
u, β, x1:ν

)
=

{
pD (xν) u = 1

0 otherwise
(27)

0 0.2 0.4 0.6 0.8 1

 t
o,1

 (s)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

M
e
a
n
 n

u
m

b
e
r 

o
f 
O

O
S

 n
e
w

 t
ra

je
c
to

ri
e
s

=0.001 (s
-1

)

=0.01 (s
-1

)

=0.1 (s
-1

)

=1 (s
-1

)

=10 (s
-1

)

Figure 3: Mean number of OOS new trajectories, see (24), as a function
of ∆to,1 for a time interval tko − tko−1 = 1 s and λ = 0.08 s−1. The
maximum is achieved for the middle of the time interval ∆to,1 = 0.5 s.

and generates a measurement with density l
(
·|u, β, x1:ν

)
=

l (·|xν), or misdetected with probability 1 − pD
(
u, β, x1:ν

)
.

The clutter model remains unchanged.
For this measurement model and a PMBM prior (19), the

updated density fτ,k|,τ,k (·) is also PMBM [25], [27], [28].
The update is analogous to the trajectory PMBM filter update
[25], [27], but using the retrodicted trajectory integral (14).

D. Marginalisation

The steps in Sections IV-B and IV-C provide the closed-
form update when we receive the first OOS set of measure-
ments. In order to continue with the filtering recursion, we
can proceed in two forms. One is to transform the augmented
trajectories (u, Y ) into trajectories of the type

(
β, x1:ν

)
, with

the states arranged in consecutive time steps. In order to
do this, the time index k of the measurements changes as
we insert a new measurement in the previous sequence. In
addition, the meaning of β changes. For trajectories born
the time step corresponding to τ , it represents trajectories in
N, which appear and disappear in between the two closest
sampling times. If we follow this approach, it is possible
to generalise the process in this section to deal with OOS
measurements in an exact way.

However, as most of the measurements are expected to be
in-sequence, we pursue the simpler approach of marginalising
out the information at time τ . That is, once we have updated
all trajectory information based on the OOS measurement, we
only keep the information at the in-sequence measurement
sampled times, not at OOS measurement times. This marginal-
isation can be obtained by applying the transition density

gm
(
X|
(
u, β, x1:ν

))
=


δ∅ (X) β = −1

δ{(β,x1:ν)} (X) β > −1, u = 0

δ{(β,x1:ν−1)} (X) β > −1, u = 1

0 otherwise

(28)



to each trajectory in Yk. This transition density is actually a
Bernoulli transition density with state dependent probability
of survival. When applied to the updated PMBM, the result is
a PMBM that discards trajectory information at time τ [26],
[34].

Every time we receive an OOS measurement, we perform
the steps of retrodiction, update and marginalisation. The
procedure provides the exact solution posterior at the in-
sequence sampling times unless we get more than one OOS
set of measurements in the same time interval (tko−1, tko).
In this case, the procedure is an approximation as, for the
exact retrodiction in Theorem 4, we require access to the two
closest states of the trajectories at the time steps when we have
received measurements.

V. OOS MEASUREMENT PROCESSING WITH GAUSSIAN
CD-TPMBM IMPLEMENTATION

This section explains how to process OOS measurements
with a Gaussian implementation of the CD-TPMBM filter.
The single-target models are explained in Section V-A, the
Gaussian TPMBM posterior in Section V-B, the retrodiction
step in Section V-C. Finally, practical aspects are discussed in
Section V-D.

A. Single-target models

For the Gaussian implementation, we use a linear/Gaussian
measurement model l (·|x) = N (·;Hx,R) and a constant
probability pD of detection. We consider the Wiener velocity
model [22] for single-target dynamics with a single-target state

x (tk) = [p1 (tk) , ..., pd (tk) , v1 (tk) , ..., vd (tk)]
T (29)

where d = nx/2 is the dimension of the space where the
target moves. For this dynamic model, we can obtain a best
Gaussian fit to the PPP of new born targets that enables
Gaussian implementations [18, Prop. 2]. This result directly
extends to the PPP of OOS new trajectories in (23).

For the Wiener velocity model, we also have [22]

F(∆tk) =

(
Id ∆tkId
0d Id

)
(30)

Q(∆tk) = q

(
(∆tk)

3

3 Id
(∆tk)

2

2 Id
(∆tk)

2

2 Id ∆tkId

)
(31)

where q is a model parameter.

B. Gaussian TPMBM posterior

For the models explained in Section V-A, we can use the
Gaussian implementation of the TPMBM filter for the set of all
trajectories in [27]. We proceed to describe the main aspects.
Details can be found in [25], [27].

A Gaussian density in the single-trajectory space is

N
(
β, x1:ν ;β, x, P

)
=

{
N
(
x1:ν ;x, P

)
β = β, ν = ι

0 otherwise

(32)

where ι = dim (x) /nx and dim (x) is the dimension of x.
Equation (32) represents a Gaussian trajectory density with

start time β, duration ι, mean x ∈ Rιnx and covariance matrix
P ∈ Rιnx×ιnx evaluated at

(
β, x1:ν

)
.

The i-th Bernoulli component with local hypothesis ai has
a single-trajectory density

pi,a
i

k|k (X) =

k∑
κ=βi,ai

αi,ai

k|k (κ)N
(
X;βi,ai

, xi,ai

k|k (κ) , P i,ai

k|k (κ)
)

(33)

where βi,ai

is the start time, αi,ai

k|k (κ) is the probability that the
corresponding trajectory terminates at time step κ (conditioned
on existence), and xi,ai

k|k (κ) ∈ Rιnx and P i,ai

k|k (κ) ∈ Rιnx×ιnx ,

with ι = κ − βi,ai

+ 1, are the mean and the covariance
matrix of the trajectory given that it ends at time step κ. The
coefficients αi,ai

k|k (κ), κ = βi,ai

, ..., k, sum to one.
For simplicity, the intensity of the PPP only considers alive

trajectories and has the form

λk|k (X) =

np
k|k∑

q=1

wp,q
k|kN

(
X;βp,q

k|k, x
p,q
k|k, P

p,q
k|k

)
(34)

where np
k|k is the number of components, wp,q

k|k, βp,q
k|k, xp,q

k|k and
P p,q
k|k are the weight, starting time, mean and covariance matrix

of the qth component, respectively. As the PPP trajectories are
alive, βp,q

k|k + dim
(
xp,q
k|k

)
/nx − 1 = k.

C. OOS retrodiction step
To perform the retrodiction step, we need to calculate (22)

and (26) when the input is (33) and (34). These results can
be directly established by calculating the integral (26) for a
Gaussian input (32). We denote F1 = F(∆to,1), F2 = F(∆to,2),
Q1 = Q(∆to,1) and Q2 = Q(∆to,2).

We approximate the integral w.r.t. time in (18) for the
Wiener velocity model by its best Gaussian fit via KLD
minimisation. The resulting moments, called xb,1 and Pb,1, are
given by Prop. 2 in [18] using ∆to,1 as the time interval. The
rest of the calculations are closed-form to yield this lemma.

Lemma 5. Given p (X) = N
(
X;β, x, P

)
and gτ,k|k (·|X)

in Prop. 3 and the best Gaussian fit to the integral in (18),
with moments xb,1 and Pb,1 [18, Prop. 2], the density of its
augmented trajectory (u, Y ) is∫

gτ,k|k (u, Y |X) p (X) dX

=



p (Y ) δ0 [u] β > ko ∨ ω < ko − 1

N
(
Y ;β, ypp, Ppp

)
δ1 [u] β ≤ ko − 1 ∧ ω ≥ ko(

1− pS,o1

)
p (Y ) δ0 [u]

+pS,o1 N
(
Y ;β, ypn, Ppn

)
δ1 [u] ω = ko − 1(

1− pS,o2

)
p (Y ) δ0 [u]

+pS,o2 N
(
Y ;β, ynp, Pnp

)
δ1 [u] β = ko

(35)

where ω = β + dim (x) /nx − 1 is the final time step. For
p (X) present at ko − 1 and ko, we have

ypp =
[
xT , (Fppx)

T
]T

, Ppp =

[
P PFT

pp

FppP FppPFT
pp +Qpp

]



Fpp =
[
0nx×nx(ko−β−1), F1 −KppF2F1,Kpp, 0nx×nx(ω−ko)

]
Qpp = Q1 −KppF2Q1 (36)

Kpp = Q1F
T
2

(
F2Q1F

T
2 +Q2

)−1
. (37)

For p (X) present at ko − 1 but not at ko, we have

ypn =
[
xT , (Fpnx)

T
]T

, Ppn =

[
P PFT

pn

FpnP FpnPFT
pn +Q1

]

Fpn =
[
0nx×nx(ω−β), F1

]
.

For p (X) not present at ko − 1 but present at ko, we have

ynp =
[
xT , ((I −KnpF2)xb,1 + Fnpx)

T
]T

Pnp =

[
P PFT

np

FnpP FnpPFT
np +Qnp

]

Fnp =
[
Knp, 0nx×nx(ω−β)

]
(38)

Qnp = Pb,1 −KnpF2Pb,1 (39)

Knp = Pb,1F
T
2

(
F2Pb,1F

T
2 +Q2

)−1
. (40)

The proof of Lemma 5 is given in Appendix B. In the
lemma, there is one entry per each of the entries in the transi-
tion density in Prop. 3. The first entry deals with trajectories
that start after ko or end before than ko− 1, which imply that
there is no OOS state and the density remains unchanged. The
second entry considers trajectories that are present at ko − 1
and ko so the trajectory exists at the OOS time. The third
entry correspond to trajectories that are present at ko − 1 but
not at ko, which implies that the trajectory is extended with
probability pS,o1 . The fourth entry represents trajectories not
present at ko−1 but present at ko, in which case the trajectory
is extended with probability pS,o2 .

Applying Lemma 5 to each Gaussian component of the
PPP (34) and the Bernoulli single-trajectory density in (33),
we obtain the retrodicted PMBM density fτ,k|k (·), see (19)
The number of components in the PPP and in (33) may
increase due to the entries that have two terms in (35). After
computing fτ,k|k (·), we apply the TPMBM update for a
Gaussian implementation with all trajectories, explained in
[26], [27], with some minor differences that are explained in
Appendix C.

The marginalisation step for PMBMs on sets of trajectories
is explained in [34]. In our case, this step marginalises out
variable u and the state information corresponding to time τ
for each Gaussian. The result is a Gaussian mixture of the
form (33).

D. Implementation aspects

In this section, we discuss some aspects required for the
implementation of the proposed OOS update. First of all, we
implement the Gaussian CD-TPMBM for all trajectories in
a similar manner as the TPMBM in [27]. That is, to deal
with the high number of hypotheses, we use ellipsoidal gating

for the data associations, Murty’s algorithm to select global
hypotheses with high weights, and pruning to remove global
hypotheses and PPP components with low weights. If αi,ai

k|k (k)
in (33) for a Bernoulli is less than a threshold Γa, we set
αi,ai

k|k (k) = 0, which implies that it is considered dead at time
step k and is not further propagated through filtering.

The CD-TPMBM filter is implemented using an L-scan
window. That is, for each single-trajectory density, the states
corresponding to time steps outside the interval from k−L+1
to k are approximated as independent. This implies that the
covariance matrices have a block-diagonal structure [27, Eq.
(73)]. Due to this structure, in our implementation, we only
process a set of OOS measurements if it arrives inside the
L-scan window, i.e., ko ≥ k − L+ 2. Apart from the L-scan
implementation, it is also possible to implement the Gaussian
filters in information form [25], [26].

The CD-TPMB filter is analogous to the CD-TPMBM
filter but adding a projection step after each update to keep
the TPMB form [27]. Therefore, we can directly apply the
proposed OOS update to a CD-TPMB filter followed by this
projection step after the OOS measurement update.

VI. SIMULATIONS

In this section, we compare the CD-TPMBM and CD-
TPMB filters, with and without OOS measurement process-
ing1. The CD-TPMBM and CD-TPMB filters with the optimal
OOS processing explained above are referred to as OOS-
TPMBM and OOS-TPMB filters. If the OOS measurement
time stamp is exactly the time stamp of an in-sequence
measurement, we do not have to account for target appearances
and disappearances at OOS time and proceed as in Sections IV
and V. Instead, we can update each single trajectory density
of the TPMBM filter using the approach in [4]. Therefore, we
consider another baseline algorithm, in which for each OOS
measurement, we calculate the nearest in-sequence measure-
ment time stamp, and apply the single-trajectory update in [4].
We use the acronyms (N)OOS-TPMBM and (N)OOS-TPMB
to refer to these variants of the filters. The variants of the
filters without OOS measurement processing simply discard
OOS measurements.

The filters have been implemented with the parameters:
maximum number of global hypotheses Nh = 200, threshold
for pruning global hypotheses 10−4, threshold for PPP pruning
Γp = 10−5, L ∈ {3, 5} and Γa = 10−4. The TPMB filters
estimate trajectories whose existence is higher than 0.5 [27,
Sec. V.D] and the TPMBM filters use Estimator 1 in [29] with
threshold 0.4. The algorithms are implemented in Matlab with
the compiled Murty’s algorithm in [39].

We consider a 2-D scenario with the Wiener velocity model
and dynamic parameters: λ = 0.12 s−1, µ = 0.02 s−1,
q = 0.2m2/s3, d = 2. Thus, the average life span of a target
is 1/µ = 50 s and, in the stationary regime of the birth/death
process, the number of alive targets is Poisson distributed
with parameter λ

µ = 6. The prior moments at appearance

time are: xa =
[
pTa , v

T
a

]T
with pa = [200, 200]

T
(m),

1Matlab code is available at https://github.com/Agarciafernandez/MTT.
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Figure 5: Scenario of the simulations with the set of trajectories sampled
at the in-sequence measurement time steps. The beginning of a trajectory
is marked with a filled circle and its position every 10 time steps is
marked with a circle. A number next to the trajectory start time indicates
the (in-sequence) time step when it was born.

va = [3, 0]
T
(m/s), and Pa = diag ([P pp

a , P vv
a ]) with P pp

a =
diag

([
502, 502

]) (
m2
)

and P vv
a = diag ([1, 1])

(
m2/s2

)
.

The sensor measures position with likelihood l (·|x) =
N (·;Hx,R),

H =

(
1 0 0 0
0 1 0 0

)
, R = σ2I2,

where σ2 = 4
(
m2
)
, and pD = 0.9. The clutter intensity

is λC (z) = λ
C
uA (z) where uA (·) is a uniform density in

A = [0, 800] × [0, 400] (m) and λ
C

= 10. The sensor takes
120 measurements with a time interval between measurements
that is drawn from an exponential distribution with parameter
µm = 1 s−1. To simulate OOS measurements, for every 5
of the 120 measurements, we draw a random number no

from a Poisson distribution with parameter 1 and place this
measurement no time steps afterwards. The resulting time
difference between received measurements in our simulation
is shown in Figure 4.

The scenario of the simulations is shown in Figure 5. There
are 19 targets in total and the maximum number of targets
alive at the same time step is 10. We evaluate the filters via
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Figure 6: RMS trajectory metric error to estimate the set of all trajectories
for each received measurement. The TPMBM filter with optimal OOS
processing with L = 5 has the lowest error.

Monte Carlo simulation with Nmc = 100 runs. For each
received measurement and Monte Carlo run i, we calculate
the error between the true set Xk of all trajectories up to
the current time and its estimate X̂i

k (both sampled at in-
sequence sampling times). The error is calculated by the metric
d (·, ·) for sets of trajectories in [40] with parameters p = 2,
c = 10 and γ = 1. We only use the position elements of the
trajectories to compute d (·, ·) and normalise the squared error
by the length of the time window to obtain d2

(
Xk, X̂

i
k

)
/k.

The root mean square (RMS) error at time step k is

d (k) =

√√√√ 1

Nmck

Nmc∑
i=1

d2
(
Xk, X̂i

k

)
. (41)

The RMS trajectory metric (TM) errors (41) of the TPMBM
algorithms against the measurement number are shown in
Figure 6. As expected, for a given L, the OOS-TPMBM filter
is the one with lowest error, followed by the (N)OOS-TPMBM
filter, and the TPMBM filter without OOS processing. The
filters with L = 5 have lower error than the filters with
L = 3, as they update a longer time window. We can also
see that all filters have quite similar performance up to around
processing 30 measurements, when differences arise. The
reason is that for the first two OOS measurement, see Figure
4, there are not any targets present yet, and the processing of
the OOS measurements does not improve performance. It is
the processing of the subsequent OOS measurement that have
an impact on performance.

To analyse more thoroughly filter performance, we show the
decomposition of the trajectory metric in Figure 7. The filters
without OOS processing have a higher false target cost. The
main reason is that the start time of a trajectory (the one born
at at time step 29 with position [151, 174]

T
(m)) is estimated

more accurately by processing the third OOS measurement.
The filters with optimal OOS processing show better perfor-
mance than (N)OOS processing mainly due to improvement in
localisation cost. Increasing L decreases the localisation costs,
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Figure 7: RMS trajectory metric decomposition into localisation cost,
missed target cost, false target cost and track switching cost for each
received measurement. Filters with OOS measurement processing mainly
lower the cost for false targets in this scenario.

Table II: RMS trajectory metric and its decomposition across all time
steps, and computational time in seconds

L Algorithm Tot. Loc. Fal. Mis. Swi. Time
TPMBM 3.44 2.76 1.37 1.52 0.06 11.3

(N)OOS-TPMBM 3.28 2.75 0.79 1.59 0.05 11.9
5 OOS-TPMBM 3.10 2.63 0.75 1.46 0.04 12.3

TPMB 3.84 2.77 1.39 2.28 0.07 2.5
(N)OOS-TPMB 3.51 2.71 0.86 2.05 0.07 3.0

OOS-TPMB 3.42 2.63 0.78 2.04 0.05 3.0

3

TPMBM 3.54 2.88 1.37 1.52 0.06 11.0
(N)OOS-TPMBM 3.37 2.87 0.79 1.59 0.06 11.8

OOS-TPMBM 3.20 2.74 0.75 1.46 0.04 12.3
TPMB 3.93 2.88 1.40 2.28 0.07 2.5

(N)OOS-TPMB 3.61 2.83 0.87 2.05 0.07 3.0
OOS-TPMB 3.52 2.75 0.79 2.05 0.06 3.0

as the filters are able to improve estimation of past states.
Track switching costs are zero up to measurement number 26.

In Table II, we show the RMS trajectory metric error across
all time steps [27], also including TPMB filter performance
and the average time to run one Monte Carlo iteration of our
implementations with a 1.6 GHz Intel i5 laptop. As indicated
before, the best performing filter is the OOS-TPMBM with
L = 5. In this scenario, the TPMB approximation mainly im-
plies an increase in the number of missed targets, irrespective
of the type of OOS processing. As expected, processing OOS
measurements increases running times. TPMBM filters have
higher computational complexity than TPMB filters. There is
little difference in computational times between L = 3 and
L = 5.

VII. CONCLUSIONS

This paper has explained how to perform the Bayesian
update with out-of-sequence measurements for multiple target
tracking when the multi-target dynamics are given in continu-
ous time and we compute the posterior of the set of all sampled
trajectories. When processing in-sequence measurements, the
posterior density of the set of all sampled trajectories is a
Poisson multi-Bernoulli mixture. This paper shows that the
processing of out-of-sequence measurements consists of two

steps: retrodiction and update. After performing these two
steps, the posterior is also a Poisson multi-Bernoulli mixture.

The paper also explains the out-of-sequence measurement
processing when we consider a Gaussian implementation of
the trajectory Poisson multi-Bernoulli mixture filter. Simula-
tion results show that lower error is achieved by optimally
processing out-of-sequence measurements.
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APPENDIX A

In this appendix, we explain how to calculate pS,o1 and pS,o2

in Proposition 3, and also provide the proof of Theorem 4.

A. Probability pS,o1

The probability pS,o1 corresponds to the probability that a
trajectory that is alive at time step ko − 1, but not at ko, is
alive at time τ . In this subsection, we denote the time lag of
disappearance of this trajectory w.r.t. tko−1 as t, which implies
that the trajectory disappears at time t+ tko−1. Given that the
trajectory is alive at time step ko − 1, the distribution of the
time lag of disappearance is an exponential distribution with
parameter µ [18]. Then, given that the trajectory is alive at
time step ko − 1 and dead at time step ko, the distribution of
t is a truncated exponential distribution

pok (t) =
µ

1− e−µ∆tko
e−µtχ[0,∆tko ) (t) . (42)

Therefore, the probability that this trajectory is alive at time
τ is the probability that t ≥ ∆to,1 (i.e. it disappears after time
τ ), which is calculated as

pS,o1 =

∫ ∆tko

∆to,1

pok (t) dt = pS,ok (∆to,1) (43)

where pS,ok (·) is given by (16).

B. Probability pS,o2

The probability pS,o2 corresponds to the probability that a
trajectory that is not alive at time step ko − 1, but it is at ko,
is alive at time τ . This implies that this trajectory is born at
time step ko and has appeared between times tko−1 and tko .
In this section, we denote the time lag of appearance w.r.t. tko

as t, which implies that the trajectory appears at time tko − t.
The distribution of t is the truncated exponential distribution
(42) [18]. Then, the probability that the trajectory is alive at
time τ is the probability that t ≥ ∆to,2 (i.e. it appears before
time τ ), which can be calculated as

pS,o2 =

∫ ∆tko

∆to,2

pok (t) dt = pS,ok (∆to,2) . (44)

C. Proof of Theorem 4

We prove Theorem 4 by noticing that the retrodiction step
corresponds to a PMBM prediction step with a suitable choice
of single-object transition density and PPP intensity for new
born objects [25], [28].

We first obtain the intensity for the set of OOS new
trajectories N. The trajectories in N existed at time step τ ,
and appeared and disappeared between time steps ko − 1 and
ko. That is, these trajectories appeared in an interval ∆to,1
and are alive at its end, and disappeared in the following

time interval ∆to,2. Due to the continuous time multi-target
model and the independent increments property of PPPs [23,
pp. 99], N is independent of the sampled set of trajectories
Xk. In addition, N corresponds to a thinning operation on
a birth PPP with intensity (7) (on an interval ∆to,1 instead
of ∆tk). This thinning operation produces a PPP λB

τ,k|k (·)
with the same spatial distribution [41]. Also, the expected
number wB (∆to,1,∆to,2) of OOS new trajectories, which is
the integral of λB

τ,k|k (·), is the expected number of trajectories
that appear in an interval ∆to,1 and are alive at its end, which
is given by λ

µ

(
1− e−µ∆to,1

)
[18], [36], multiplied by the

probability that a trajectory disappears in an interval ∆to,2,
which is given by

(
1− e−µ∆to,2

)
, see (3). We then obtain the

intensity in (23) by adding the information that the trajectories
have length one with a single state at time τ , and are marked
with β = −1.

Each X ∈ Xk is transformed with probability one to
(u, Y ) ∈ Xa

k and transition density gτ,k|k (u, Y |X) in Propo-
sition 3. With these results, we can now apply the PMBM
prediction step [25], [28], [29] to obtain the density of
Yk = Xa

k ∪N, which yields Theorem 4.

APPENDIX B

In this appendix, we prove Lemma 5. In this lemma, we
should first note that p (X) represents a trajectory with known
start time β and end time ω, so the trajectory integral (1)
reduces to a standard integral on an Euclidean space. The first
entry in (35) is the integral w.r.t. a Dirac delta on the single-
trajectory space, which leaves the density p (·) unchanged,
evaluated at Y . The third entry corresponds to the transition
density applied to a density that is present at time step ko− 1
but not at ko. The output has two terms. The first one is
the integral w.r.t. a Dirac delta that leaves p (·) unchanged.
The second term is straightforward as the transition density
is a linear/Gaussian dynamic model with transition matrix F1

and covariance matrix Q1, which is extended to include full
trajectory information, see also [27], [42]. The second and
fourth entries in (35) are more complicated, so we analyse
them in the next subsections.

A. Trajectory present at ko − 1 and ko

The second entry corresponds to the transition density
applied to a density of a trajectory that is present at both time
steps ko−1 and ko. We proceed to calculate the corresponding
transition density (17) for the Wiener velocity model. For
notational simplicity, we denote x1 and x2 the states of(
β, x1:i

)
at steps ko − 1 and ko. Then, (17) is analogous to

the Kalman filter update of a prior

N (y;F1x1, Q1)

with a measurement density (on x2)

N (x2;F2y,Q2) .

By direct application of the Kalman filter update [43], we
obtain

p (y|x1, x2) = N
(
y; [F1 −KppF2F1, Kpp]

[
x1

x2

]
, Qpp

)
(45)



where Kpp and Qpp are defined in Lemma 5. Then, the integral
of Lemma 5 corresponds to the density of a Gaussian density
augmented with another state y whose conditional density is
Gaussian. The result is a Gaussian with moments in Lemma
5. Note that in the lemma we write the transition matrix Fpp

applied to the whole trajectory, not only to x1 and x2.

B. Trajectory present at ko but not at ko − 1

The fourth entry corresponds to the transition density ap-
plied to a density of a trajectory that is present at time step ko

but not at ko − 1. There are two terms in the output. The first
one corresponds to the Dirac delta and leaves the density p (·)
unaltered. It represents that the trajectory appeared at a time
between τ and tko . The second term considers the hypothesis
that the trajectory appeared at a time between tko−1 and time
τ , and is therefore alive at time τ and at time step tko . We
proceed to compute this term by first calculating the transition
density (18) for the Wiener velocity model.

The integral w.r.t. t in (18) is approximated by the Gaussian
that minimises the KLD. Its mean and covariance are denoted
by xb,1 and Pb,1 and are given by Prop. 2 in [18] using ∆to,1
as the time interval. After this approximation, the transition
density p

(
y|x1

)
can be calculated as the Kalman filter update

of a prior with moments xb,1 and Pb,1 and a measurement
density (on x1)

N
(
x1;F2y,Q2

)
. (46)

This yields

p
(
y|x1

)
= N

(
y; (I −KnpF2)xb,1 +Knpx

1, Qnp

)
, (47)

where Knp and Qnp are given in Lemma 5. Then, as in Section
B-A, the output of the integral is Gaussian with the moments
in Lemma 5.

APPENDIX C

In this appendix, we provide more details on the TPMBM
Gaussian update [25], [27] with OOS measurements. In par-
ticular, we provide the steps on how to compute the updated
local hypotheses for previous Bernoulli components, which is
the main difficulty in the update.

In the standard TPMBM Gaussian update for in-sequence
measurements, there is only one hypothesis (term in the
mixture) of each Bernoulli, see (33) and [27, Eq. (64)], that
has information on the current state of the trajectory. On
the contrary, for OOS measurement processing, there may be
more than one term that has information on the state at OOS
measurement time due to the application of Lemma 5 to each
Gaussian in (33).

We write the retrodicted single-target density for previous
Bernoulli i with local hypothesis ai as

pi,a
i

τ,k|k (u, Y )

= δ0 [u]

k∑
κ=βi,ai

αi,ai

0,k|k (κ)N
(
Y ;βi,ai

, xi,ai

k|k (κ) , P i,ai

k|k (κ)
)

+ δ1 [u]

k∑
κ=βi,ai

αi,ai

1,k|k (κ)N
(
Y ;βi,ai

, xi,ai

τ,k|k (κ) , P
i,ai

τ,k|k (κ)
)

(48)

where

αi,ai

0,k|k (κ) = αi,ai

k|k (κ) (1− p (κ)) (49)

αi,ai

1,k|k (κ) = αi,ai

k|k (κ) p (κ) (50)

where p (κ) ∈
{
0, 1, pS,o1 , pS,o2

}
depending on the correspond-

ing entry of Lemma 5 for each Gaussian in (33). The Gaussian
components that are augmented with an OOS state have
u = 1, mean and covariances xi,ai

τ,k|k (κ) and P i,ai

τ,k|k (κ), and are
included in the third line in (48). The Gaussian components
without state augmentation have u = 0, remain unchanged
w.r.t. the prior, and are included in the second line in (48).

In the rest of the appendix, Sections C-A and C-B explain
the update with a misdetection and a detection, respectively.

A. Misdetection hypothesis

The update with misdetection hypothesis of a Bernoulli with
single-trajectory density (48) is

pi,a
i

τ,k|τ,k (u, Y )

∝ δ0 [u]

k∑
κ=βi,ai

αi,ai

0,k|k (κ)N
(
Y ;βi,ai

, xi,ai

k|k (κ) , P i,ai

k|k (κ)
)

+ δ1 [u]

k∑
κ=βi,ai

αi,ai

1,k|τ,k (κ)N
(
Y ;βi,ai

, xi,ai

τ,k|k (κ) , P
i,ai

τ,k|k (κ)
)

(51)

where, in this case,

αi,ai

1,k|τ,k (κ) =
(
1− pD

)
αi,ai

1,k|k (κ) . (52)

We can see that the Gaussian densities in (51) are unchanged
after the update. The update only changes the weights of terms
with an OOS state by multiplying them by

(
1− pD

)
, see (52).

The weight and existence probability of the updated
Bernoulli with local hypothesis ai become [25], [28]

wi,ai

τ,k|τ,k = wi,ai

k|k

1− ri,a
i

k|k p
D

k∑
κ=βi,ai

αi,ai

1,k|k (κ)

 (53)

ri,a
i

τ,k|τ,k =
ri,a

i

k|k

(
1− pD

∑k
κ=βi,ai αi,ai

1,k|k (κ)
)

1− ri,a
i

k|k p
D
∑k

κ=βi,ai αi,ai

1,k|k (κ)
. (54)

It should be noted that pD
∑k

κ=βi,ai αi,ai

1,k|k (κ) is the average
probability of detection at OOS time for a prior (48).

B. Detection hypothesis

The update of a Bernoulli with a single-trajectory density
(48) with a measurement z (corresponding to an updated local
hypothesis ãi) is [28]

pi,ã
i

τ,k|τ,k (u, Y ) ∝ δ1 [u]

k∑
κ=βi,ai

αi,ãi

1,k|τ,k (κ)



×N
(
Y ;βi,ai

, xi,ãi

τ,k|τ,k (κ) , P
i,ãi

τ,k|τ,k (κ)
)
(55)

where xi,ãi

τ,k|τ,k (κ) and P i,ãi

τ,k|τ,k (κ) are obtained by a Kalman
filter update on a Gaussian single-trajectory prior with mean
xi,ai

τ,k|k (κ) and covariance P i,ai

τ,k|k (κ), see (53)-(57) in [27]. In
addition, the weights of the mixture in (55) are

αi,ãi

1,k|τ,k (κ) = pDN
(
z; zi,a

i

(κ) , Si,ai

(κ)
)
αi,ai

1,k|k (κ) (56)

where zi,a
i

(κ) and Si,ai

(κ) are the mean and covariance
matrix of the predicted measurement for hypothesis κ [27].

The weight and existence probability of the updated
Bernoulli with local hypothesis ãi are

wi,ãi

τ,k|τ,k = wi,ai

k|k r
i,ai

k|k

k∑
κ=βi,ai

αi,ai

1,k|τ,k (κ) (57)

ri,ã
i

τ,k|τ,k = 1. (58)

As this is a detection hypothesis, we have that the updated
probability ri,ã

i

τ,k|τ,k of existence is 1. Moreover, the Gaussian
components with factor δ0 [u] in the prior (48) cannot be de-
tected, as they do not exist at OOS time, so they do not appear
in the posterior (55). Then, the posterior weight αi,ãi

1,k|τ,k (κ),

see (56), depends on its previous weight αi,ai

1,k|k (κ) and how
well this component explains the received measurement.


