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Abstract

In this work attention is directed to general structural optimization problems considering discrete-
continuous design variables. The optimization problem is formulated as the minimization of an
objective function subject to multiple design requirements. The mathematical programming state-
ment is set into the framework of a Bayesian model updating problem. Constraints are handled
directly within the proposed scheme, generating designs distributed over the feasible design space.
Based on these samples, a set of designs lying in the vicinity of the optimal solution set is obtained.
The Bayesian model updating problem is solved by an effective Markov chain Monte Carlo sim-
ulation scheme, where appropriate proposal distributions are introduced for the continuous and
discrete design variables. The approach can efficiently estimate the sensitivity of the final design
and constraints with respect to the design variables. In addition, the numerical implementation
of the optimization algorithm depends on few control parameters. For illustration purposes, the
general formulation is applied to an important class of problems, specifically, reliability-based
design optimization of structural systems under stochastic excitation. Three numerical examples
showing the effectiveness and potentiality of the approach reported herein are presented.
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1. Introduction

In a large number of practical design situations some of the design variables must be selected
from a list of discrete values. For example, cross-sectional areas of truss, beam and column
members usually have to be chosen from a list of commercially available member sizes. Also, the
growing use of composite materials underlines the importance of being able to treat structural
optimization problems where some or even all of the design variables are discrete. Thus, due to
manufacturing limitations the design variables cannot be considered as continuous but should be
treated as discrete in a large number cases. Standard optimization procedures involving discrete
design variables have been extensively studied in the literature [1, 2, 3]. Methods such as branch
and bound techniques, and combinatorial methods treat the discrete variable design optimization
problems directly in the primal variable space [4, 5]. Similarly, dual methods have also been used in
this context, especially for convex and separable formulations. In these cases, the primal problem
can be efficiently solved by dual methods of mathematical programming [6, 7]. The previous
methods are rather general and they have been applied in a number of standard optimization
problems [5, 8, 9].

Another class of optimization algorithms for solving mixed-discrete constrained optimization
problems is based on stochastic search algorithms. A number of stochastic optimization algo-
rithms based on natural mechanisms have been proposed for the purpose of dealing with this class
of problems. The most used heuristic techniques include Genetic Algorithms [10, 11, 12, 13], Sim-
ulated Annealing [14, 15, 16], and Particle Swarm Optimization [17, 18, 19]. In this context, one
important problem is how to handle multiple constraints. Several strategies such as the rejection
method, the penalty function method, the constraint fitness priority based ranking method, and
the multi-objective function method have been devised for the previous stochastic optimization
algorithms [20, 21, 22, 23, 24, 25]. Although the previous algorithms have been applied in a num-
ber of mixed-discrete optimization formulations, it is clear that each method has its own definition
and formulation as well as specific properties and limitations. Besides, and based on the fact that
design optimization is still a challenging problem, there is still room for further developments in
this area, specially when dealing with complex structural optimization problems.

In this work, a stochastic search algorithm for mixed discrete-continuous constrained design op-
timization is developed based on a Bayesian model updating formulation. The proposed approach

represents a generalization of the contribution presented in [26] to the case of mixed discrete-



continuous design variables. First, samples (designs) distributed over the feasible design space are
generated. Based on these samples, a set of designs lying in the vicinity of the optimal solution set
is obtained. The Bayesian model updating problem is solved by an efficient Markov chain Monte
Carlo (MCMC) simulation scheme. In particular, the transitional Markov chain Monte Carlo
(TMCMC) method is considered [27, 28]. Appropriate proposal distributions, in the context of
the Metropolis-Hastings algorithm [29, 30], are suggested for the continuous and discrete design
variables. A salient feature of the present work is the development of a population-based stochas-
tic optimization algorithm for solving constrained design optimization problems involving mixed
discrete-continuous design variables. The methodology is based on a well-developed and widely
employed Bayesian model updating approach and therefore the same framework is adapted for an
effective optimization scheme. The proposed solution scheme can efficiently explore the sensitivity
of the final design and constraints with respect to the design variables in the neighborhood of the
optimal solution set. In addition, the proposed constraint-handling approach is direct and does
not require special constraint-handling techniques. Moreover, the optimization algorithm can be
implemented with few control parameters. Finally, the proposed general formulation is applied
to an important class of problems, specifically, reliability-based design optimization of structural
systems subject to stochastic excitation.

The structure of the paper is as follows. In Section 2, the general formulation of the problem
is presented. The solution scheme is outlined in detail in Sections 3 and 4. A number of numerical
implementation aspects are discussed in Section 5. The scope of application and some benefits
of the proposed optimization scheme are addressed in Section 6. The application of the general
formulation to reliability-based design optimization of structural systems subject to stochastic
excitation is discussed in Section 7. Three numerical examples are presented in Section 8. The

paper closes with some final remarks.

2. Optimization Problem

Consider the following structural optimization problem defined as the identification of a vector

of design variables x, to minimize an objective function f(x)

Minimize f(x) (1)

subject to the design constraints



which represent the requirements that must be satisfied by the system to give an acceptable
design. These constraints can be given in terms of geometric conditions, demand levels, robustness
conditions, design specifications characterized by means of different performance measures, etc.

Additionally, the system is subject to the side constraints

ol <wu <% i=1,...,n, (3)

and
Tqi € Xgi = {Zaijy, =1, .. ,nai} , 1=1,...,n4 (4)
where x.(zq,1=1,...,n.) € X. C R"™ denotes the set of continuous design variables, x4(z4,7 =
1,...,nq) € X4 C R™ denotes the set of discrete design variables, and x = (x!, x2)7 € X = X, x

X4 C R"™ '™ is the vector of all design or control variables involved in the problem. The constants
x!, and 2% in Eq. (3) are the lower and upper limits for the design variables that are continuous, i.e.,
Zeiyt = 1,...,m.. Onthe other hand, Eq. (4) represents the side constraints for the design variables
that are discrete, i.e., xq4, i = 1, ..., ng, where the set X ; represents the available discrete values for
the ' discrete design variable. Thus, the side constraints characterize physical limitations on the
design variables directly in terms of their allowable values. Moreover, the objective function f(x)
can be defined in terms of general cost functions or expected performance measures. Therefore,

the above formulation is rather general in the sense that different optimization formulations can

be considered.

3. Solution Scheme

3.1. Underlying Idea

First, it is noted that finding the minimum of the objective function f(x) is equivalent to find
the maximum of the auxiliary function exp(—f(x)/T), for any given value of 7' > 0 [14]. Next,
treating the design variables as random variables uniformly distributed over the feasible design
space Xfeasible, Where

Xeasible = {X = (X0, x5)" X, € X, Axg € XgA hj(x) <1, j=1,...,n,}, (5)

C
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consider the non-normalized auxiliary distribution

pr( o exp (~100) ) ©)

where Ix,_ ... (x) is the indicator function of the feasible design space Xgeasible, that is, Ix,. ... (X) =
1, for x € Xyeasible, and Ix, .. (x) = 0, otherwise. Based on the previous definition, it is seen that
pr(x) becomes proportional to Ix, . (x) as T — oo. Besides, as T' — 0 the distribution pr(x)
becomes spikier, and it puts more and more of its probability mass into the set that maximizes
the auxiliary function exp(—f(x)/T). Thus, a sample drawn from pr(x) will be in the vicinity of
the optimal solution set X’ with a very high probability when 7" — 0 [31, 32]. In other words,
a sample point (design) with smaller value of f(x) has higher probability density function value
and the distribution pr(x) is concentrated in a volume around the optimal solution set X when
T — 0, i.e., designs having the smallest values of f(x) in the feasible design space. Note that the
treatment of the design variables as random variables is just a tool in the present formulation for

setting the optimization problem into a Bayesian framework [31, 32, 33].

3.2. Bayesian Framework

Based on the previous ideas, if a number of samples (designs) following the distribution pr(x)
as T — 0 can be generated, then the sample points with the smallest value of f(x) among the
generated designs can provide a good approximation for the optimal solution set of the problem.
For generating the required samples, a Markov chain Monte Carlo (MCMC) simulation scheme is
considered. Markov chain Monte Carlo is a class of algorithms for sampling from target probability
distributions that cannot be directly sampled in an efficient manner [34]. These algorithms are
based on the construction of Markov chains that have the distribution of interest as its stationary
distribution. In this context, the conventional Metropolis-Hastings (MH) algorithm [29, 30], one
of the most popular MCMC techniques, has proved to be quite general but it may encounter some
difficulties. One of the difficulties includes the proper definition of the proposal distribution so that
the acceptance rate of the candidate state is not too small to avoid highly repetitive samples, and
at the same time so that the optimal solution set is effectively explored. One of the consequences
of using the direct MH algorithm is that the convergence rate of the stationary distribution of
the state to the target distribution may be very slow. In this regard, the transitional Markov

chain Monte Carlo method (TMCMC) provides a good alternative for sampling from the target



probability distribution pr(x) as T — 0 [27, 35]. The TMCMC method has proved to be quite

effective in a number of Bayesian model updating problems [27, 36, 37, 38, 39].

3.3. Basic TMCMC' Implementation

In the framework of the TMCMC method, define a sequence of non-normalized intermediate

distributions as

pTO <X> X IXfcasiblc (X) (7)
f(x .
b (X) X €xp (_ ;) IXensie (X) , J=12,... (8)
J
where oo =Ty > Ty > ... > T; > ... is a sequence of monotonically decreasing parameters with

T; — 0 as j — oo. In the context of the original TMCMC implementation for Bayesian model
updating, the design variables x correspond to the model parameters to be updated, the function
Ix,..... (X) represents the non-normalized prior distribution, the function exp(—f(x)) takes the
role of the likelihood function, and pr, (x) is the posterior distribution as 7; — 0 [33]. Note that
the corresponding prior normalized distribution is the uniform distribution, Ux,__,,.(x), defined

0 0

over the feasible design space. In the first step, the samples (designs) x3,...,x, are generated

from the prior distribution Ux,,, .. (x) in order to populate the feasible design space. The samples
at stage j + 1, i.e. X{”Ll, ..., xIT1 5 =0,1,..., are obtained by generating Markov chains using
the Metropolis-Hastings algorithm. It is noted that the candidate sample should belong to the
feasible design space. If not, the sample is rejected. Otherwise, the standard acceptance/rejection
test is applied to the generated sample. The parameters T}, j = 1,2, ... are constructed adaptively
in such a way that the distributions pr,(x) and pr, ,(x) be similar. To this end, different criteria
can be used [27, 40, 41]. This small change of the shape between consecutive distributions allows
to efficiently obtain samples from pr,,, (x) based on the samples from pr,(x). The procedure is
repeated until a stopping criterion is satisfied. The idea of the method is to iterate until the
parameter 7}, is small enough so that the corresponding samples X{H, ..., x3T1 are distributed
over the optimal solution set X7%. In fact, due to the annealing property of the TMCMC method,
the samples at the last stage, that is, when 7; — 0, tend to maximize the likelihood function and

therefore minimize the objective function f(x). The reader is referred to [27, 28, 35] for a detailed

implementation of the TMCMC method.



3.4. MH Proposal Distribution

In the context of the Metropolis-Hastings algorithm, the candidate sample (design) x* is
drawn from a proposal distribution q. Generally, the proposal distribution can be symmetric, i.e.
q(x*|%) = q(x|x*), where X is the current state or lead sample, asymmetric, i.e. ¢(x*|X) # ¢(X|x*),
or an independent sampler, i.e. ¢(x*|X) = ¢(x*). For the independent sampler (global proposal)
to work well, the proposal distribution must be a good approximation of the target distribution,
otherwise a large fraction of the candidate samples will be rejected and the Markov chain will be
too slow in covering the important regions of the target distribution. Such a proposal is usually
difficult to construct in practical cases. On the other hand, when the proposal distribution is of
the form ¢(x*|X) (local proposal) it is less sensitive to the target distribution, and therefore this
option, which is more frequently used than global proposals, is considered in the present formula-
tion. In this work, the proposal distribution is written in terms of two independent distributions,
one related to the continuous design variables and the other one associated with the discrete design

variables. The description of the proposal distributions is given in Sections 5.2 and 5.3.

4. Procedure

4.1. Constraint Handling

Based on the proposed solution scheme, it is observed that a set of samples distributed over
the feasible design space Xieasible 1S required at the first stage. Such samples (designs) must verify
the side constraints, i.e., x, € X, xq € Xy, and the design constraints h;(x) < 1,7 =1,...,n,.
Following the ideas suggested in [26], the samples confined in the feasible design space can be

generated as follows. First, define an auxiliary optimization problem of the form

Minimize g(x) 9)
with side constraints
xiigxciga:; ,i=1,...,n. (10)
and
xdiEXdi:{xdi(j),jzl,...,ndi} , 1=1,...,nq (11)



where the objective function g(x) is taken as

man:me {h](X>} if Elj . hJ(X) > 1
9(x) = ' T (12)

1 ifvy, hij(x) <1
Note that the above optimization problem is unconstrained in the sense that only side con-
straints on the design variables are considered. It is observed that the corresponding optimal

solution set X7 is given by

Xi={x=(x0,x))" i xe € Xe Axg € XgAhj(x) <1, j=1,...,n4} (13)

where the minimum value of the objective function g(x) is equal to one. Thus, as it can be seen
by comparing Egs. (5) and (13), the optimal solution set X of the unconstrained optimization

problem provides a set of samples in the feasible design space, that is, Xgeasible = X;.

4.2. Samples in the Feasible Design Space

The required designs in the feasible design space can be obtained by the proposed solution
scheme (see Section 3.3) where the sequence of non-normalized intermediate distributions is rede-

fined as

Py (x) oc Ux(x) (14)
pr;(X) o< exp (—Q;X)) Ux(x) , 7=1,2,... (15)

where Ux (x) is the uniform distribution defined over the set that characterizes the side constraints,
e, X ={x=(xI',x))T:x, € X.Axq € X4}. Note that for the case of discrete design variables,
each available value has equal probability to be observed during the first stage (j = 0). According
to the proposed solution scheme, the samples at the last stage of the process (7; — 0) represent
possible designs with similar minimum values of the objective function g(x). Consequently, such
samples constitute the sought feasible designs, as previously pointed out. Moreover, all feasible
samples generated during the different stages of the procedure are uniformly distributed over the
feasible design space. Note that the feasible designs are obtained in the framework of the solution
scheme outlined in the previous section. Therefore, special constraint-handling techniques are not

necessary.



In addition, it is noted that the feasible samples generated from the sequence of distributions
defined in Egs. (14) and (15) can be used for exploring the feasible design space. At the same
time, the information from the generated samples can be used for evaluating and estimating the
interaction between the different design variables in the feasible design space. Such information
can give important insight into the optimization problem. Moreover, the feasible samples can be
used in the context of other optimization algorithms. For example, the best design among the

generated samples can be used as the initial design for a given optimizer.

4.8. Samples in the Optimal Solution Set

Once the set of feasible designs has been generated, the procedure outlined in Section 3.3 is
used to iteratively generate samples following the distributions defined in Eq. (8). The samples
tend to be distributed over the optimal solution set X’}, as indicated before. If a single final
design is needed, a reasonable choice is the design with the smallest objective function value
among the samples in the optimal solution set. In other words, x* = arg min,—__,f (x{“),
where the designs X{H,i =1,...,n are the samples at the last stage of the process. Note that the
proposed procedure does not require the use of the so-called move-limits for the design variables.

The procedure directly updates the important region in the feasible design space that contains a

significant portion of the intermediate distribution probability mass during the updating process.

5. Numerical Implementation Aspects

5.1. Updating Implementation

The proposed updating process for the continuous design variables is performed in an underly-
ing normal space Y. C R" of independent standard normal variables rather than in the physical
space X.. In fact, validation calculations have shown that performing the updating process in
the underlying standard normal space has some numerical advantages due to normalization and
boundedness issues [28, 33]. The mapping between the spaces Y. and X, that is, x. = x.(y,) is
given by = 2 (yei) = 2L, + ®(ye)(z% — 2%,),i = 1,...,n,, where ®(-) is the standard normal
cumulative univariate distribution function. Nonetheless, a direct implementation of the updat-
ing process in the physical design space of the continuous design variables is also possible. On
the other hand, additional calculations have indicated that it is more convenient to perform the
sample generation process for the discrete design variables directly in the physical space of the

design variables, i.e., Xy [42].



5.2. Proposal Distribution: Continuous Design Variables

A symmetric proposal distribution ¢. is considered for the continuous design variables. At
stage 7 + 1, and based on the sampling spaces outlined in Section 5.1, the proposal is taken as
a Gaussian distribution centered at the current state or lead sample y/*', and with covariance
matrix 3; equal to a scaled version of the estimate covariance matrix of the current marginal

intermediate distribution pr;, that is,

n o . o . _N\T
X = 5 ij (Yiz - Yi) (yjcz - Yi) (16)
i=1
where yiz-,i = 1,...,n are the samples at stage 7 in the underlying standard normal space,

yi=>", w{ yii, [ is a scaling parameter, and w{ is the normalized importance weight of the

sample involving all design variables, that is, (yg, xéj}T,i =1,...,n. The normalized importance

n
weight is given by w! = wf/g w) i =1,...,n, where w
p=1

weight of the sample <yiiT, XéiT>T. The sample importance weight is equal to

is the corresponding importance

| T
w! =exp | —g(x! ——1), i=1,...,n 17

for the step that generates feasible samples, and

wg_exp<—f(ng) {Tl _TLD i=1,....n (18)

Jj+1 J

for the step producing samples distributed in the vicinity of the optimal solution set, where
x) = <xc(yii)T,x£>T. The scaling parameter § can be defined directly by the user, or it can
be determined by an adaptive scheme that monitors the acceptance rate during the updating
process [28, 43]. Note that the current state vector <§/£+1T, )Ncg+1T)T is a sample from stage j that
is selected according to a probability equal to the normalized importance weight of the samples

<y§, Xf;>T,i =1,...,n. The candidate sample generated by the previous distribution is denoted

by y;.

10



5.8. Proposal Distribution: Discrete Design Variables
5.3.1. Definition

The proposal distribution g4 for the vector of discrete design variables x, is defined in terms of
independent proposal distributions corresponding to each discrete variable in the physical design

space, that is,

qa(x3|%; j+1 Hle xdl|xj+1 (19)

1 1 1
I = (@)t 71T is the current state

* * *
where X = (23;,...,2},,)" is the candidate sample, x Ty Ty

or lead sample of the discrete design variables at stage j + 1 as indicated before, and qg (5 |Z, +1)

is the proposal distribution for the discrete variable x4. The candidate sample z7; is selected from

Jr

the set of discrete values adjacent to xj , including the current state value. This set is denoted

by Adj(#)"), and it is defined as

AdG(E) = {xaiy,_y ., NE S Tae) <A} (20)

where /\(iflfl, Tqs)) is the distance between the lead sample jgl and the sample x4;). If the lead
sample corresponds to the s available value of the discrete variable x4, that is, id;r = Tai(s),

then the distance between these two samples is defined as

M@ za) = Maaes), Tam) = |s — i (21)

Recall that the available discrete values for the discrete design variables are listed in an ascend-

]+1

ing order. To allow for the possibility to consider a nonadjacent value of 2, *, a small probability

7 of randomly selecting a nonadjacent value is considered. Note that the chance of moving to a

nonadjacent value is independent of the current state value & x . Based on the previous ideas, the

lth

proposal distribution for the [** discrete design variable is defined as

1-7 : * Jj+1
g+1) _ ) Card(Adi(@) ) if oy € Adj(ry,") (22)

T SE ok j+1
Cordagerry; it o & Adj (Zg )

where Card(Adj(#7;")) is the number of discrete available values in the set Adj(#, "), Adje(&,")

qar (|7

is the complement set of Adj(i/"), and Card(Adj¢(#;")) is the number of discrete available

values which are not adjacent to 7, A

11



5.3.2. Distribution Parameters

Clearly, the value of the distribution parameters A\; and 7 is problem-dependent. They can be
selected directly by the user or they can be modified by an adaptive scheme that monitors the
acceptance rate during the updating process. In this regard, a number of schemes can be devised.
It is noted that the parameter A\ is related to the definition of the support of the proposal
distribution. Generally, if this parameter is large, the probability to accept a new candidate
state is relatively low and this results in a chain remaining still for long periods of time. On
the other hand, if the parameter is small the chain explores the state space very slowly. Thus,
the selection of this parameter has an important impact on the speed of convergence of the
Markov chain to its stationary distribution. In terms of the parameter 7, validation calculations
carried out in the context of the present work have shown that a value 7 < 0.1 is adequate for
the proposed procedure that generates samples in the feasible design space. Moreover, for the
proposed scheme that generates samples in the vicinity of the optimal solution set, a small value
is recommended. Generally, if this is not the case, the acceptance rate during the corresponding
updating process tends to decrease, and therefore the scheme becomes less efficient. Specific values

for the distribution parameters are provided in the numerical examples.

5.4. Acceptance/Rejection Test

Considering the sampling spaces for the design variables indicated before, the acceptance/rejection

test, in the context of the MH algorithm, is implemented as follows. The candidate sample that

includes all design variables, i.e, (y:T, x5")7 is accepted with probability p* given by

i Ly e (oG T wvE) qay 1) 23
po= gL /T oit1 x| 1 (23)
exp (—g(X™*)/Tjia) m(F2) qa(x1%5H)
for the step that generates feasible samples, and
) : o P (= f(x)/Ti1)  w(ys) qalxy %)
P = Min ]‘7‘[Xfcasiblc<x) S+l = S+l f~j+cll (24)
exp (_f<x )/TJ—H) m(y! )Qd(xd|xd )

for the step that generates samples in the vicinity of the optimal solution set. In the previous

expressions, x* = (x.(y*)7, x5")T, 91 is the current state of the continuous design variables rep-
resented in the standard normal space as previously pointed out, 7(+) is the multivariate standard

normal probability density function associated with the underlying normal space Y., and all other

12



terms have been previously defined. Moreover, according to the definition of the discrete proposal

1 N
Al It is given by

distribution, the ratio ¢q(x}" |x})/qa(x}|X)

n, Card(Adj (:c )) . % 1
qa(X ]H\Xd) _ l_dl Card(Ajlj(:;l; )_) if z3 € Adj (lezr ) (25)
~J+1 - Card(Adjc(# ™)) 1
(Xd‘ ) =1 W if xdl ¢ Ad]( ]+ )
If the candidate state (y’T,x37)7 is rejected, the current sample (y? T leT)T is repeated.

For completeness and self-containment, schematic flowcharts for generating samples in the feasi-
ble design space and samples in the optimal solution set are provided in Appendices A and B,

respectively [26].

6. Scope of Proposed Procedure

It is noted that due to the generality and flexibility of the proposed formulation, it can han-
dle, in principle, different types of optimization problems. From the structural point of view,
these problems may include complex linear and nonlinear systems, disjoint feasible design spaces,
multiple optima, as well as problems involving noisy objective or constraint functions (noisy op-
timization problems), e.g., general performance-based design optimization problems. Additional
potential benefits of using the proposed optimization scheme include the following. First, the
methodology produces a set of nearly optimal solutions instead of a single optimal solution. This
feature can be advantageous in many practical cases where alternative criteria can be taken into
account to select the appropriate final design. Thus, the approach provides flexibility to the
decision-making process. Second, the scheme is a useful tool for exploration of complex feasi-
ble design spaces, which is especially useful when design variables exhibit a complex interaction
between them. Third, valuable sensitivity information is provided by the approach. In fact, sen-
sitivity of the feasible designs and the final design with respect to the design variables can be
obtained directly. Fourth, the algorithm does not require special constraint-handling techniques.
Actually, samples in the feasible design space are obtained from the solution of an unconstrained
optimization problem which is directly defined in terms of the constraint functions of the original
problem. Moreover, the same framework for obtaining samples in the vicinity of the optimal solu-
tion set is used for solving the unconstrained optimization problem. This feature is an advantage
from a practical viewpoint. Finally, the technique is very-well suited for parallel implementation
in a computer cluster, which is very important when dealing with optimization problems involving

expensive function evaluations.

13



7. Application to Structural Systems under Stochastic Excitation

As previously pointed out, due to the generality of the proposed formulation, a number of
structural optimization problems can be considered. In this regard, an important class of problems
is considered within the context of this work. Specifically, reliability-based design optimization of
structural systems subject to stochastic excitation. In this framework, design constraints can be
characterized by means of different performance measures, such as reliability measures. In fact,
for systems under stochastic excitation the probability that design conditions are satisfied within
a particular reference period t7 provides a useful reliability measure. Such measure is referred to
as the first excursion probability and quantifies the plausibility of the occurrence of unacceptable
behavior (failure) of the structural system [44, 45]. The failure domain 2p corresponding to a
failure event F' can be characterized in terms of a demand function d as Qp(x) = {z | d(x,2) > 1}

where the demand function is defined as

r'(t, %, 2)|

,,ni*

(26)

d(x,2z) = max;—1, MaXc[0,y]

where z € Z C R" is the vector of uncertain parameters involved in the problem, 7%(¢,x,z),7 =
1,...,1, are the response functions associated with the failure event F', and r™* > 0 is the acceptable
response level for the response r*. The responses r',7 = 1,...,[ are functions of time (due to the
dynamic nature of the excitation), the design variable vector x, and the random vector z. These
responses are obtained from the solution of the equation of motion that characterizes the structural

model. Given a design x, the corresponding probability of failure Pp(x) can be expressed in terms

of the probability integral

Pr(x) = / e (27)

where p(z) is the probability density function of the vector of uncertain parameters. This function
indicates the relative plausibility of the possible values of the uncertain parameters z € Z. Gener-
ally, the previous probability integral involves a large number of uncertain parameters (hundreds
or thousands)[46, 47, 48]. Therefore, the reliability estimation for a given design constitutes a
high-dimensional problem which is usually estimated by advanced simulation techniques. The

corresponding reliability constraint, say the j** design constraint, can be written as

14



() = ) < (2%)

where P (x) is a failure probability function, and P;'ij is the corresponding target failure prob-
ability. Finally, it is noted that the design objective can also be defined in terms of expected
performance measures such as the system reliability. In this case, the objective function becomes

the failure probability function, that is, f(x) = Pr(x).

8. Illustrative Examples

Three numerical examples are presented in this section. In the first example, the minimization
of the system reliability of a simple linear structural model is considered. The second example
comprises the reliability-based design of a two-story frame structure equipped with friction-based
devices. Finally, the third example deals with the design of a three-dimensional non-linear struc-
tural model under reliability constraints related to stress and displacement responses. The objec-
tive of the first two examples is to explore in detail the performance of the proposed scheme in a
rather didactical manner by means of relatively simple structural models. Moreover, the goal of
the third example is to apply the optimization scheme in an application problem that deals with

a somewhat involved three-dimensional structural model.

8.1. Example No. 1

A simple structural model which is a lumped mass supported by a column is considered in the
first example. The model is shown in Fig. 1, where m (m = 1) is the mass of the system, ¢ is the
damping ratio, k is the stiffness coefficient, and u(t) is the displacement relative to the base.

The system is subjected to a base acceleration modeled as a non-stationary stochastic pro-
cess. In particular, a stochastic model based on a point-source model is considered [49, 50]. The
model is characterized by a sequence of white noise and a series of parameters such as radiation
pattern, shear wave velocity in the vicinity of the source, corner frequencies, local site conditions,
velocity pulse parameters, and additional seismicity parameters such as the moment magnitude
and rupture distance. Details of the procedure can be found in [49, 50, 51, 52]. The base accel-
eration can be written as i,(t,z), where z € R" is the vector of uncertain parameters involved
in the characterization of the stochastic excitation model. The objective of the design problem is

to minimize the system failure probability with respect to the stiffness and damping coefficients.
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Figure 1: Single-degree-of-freedom system.

The stiffness parameter is treated as a discrete design variable where the available discrete values
are given by the set K = {1+0.45,7 =0,1,...,10}. Thus, the discrete set K has 11 components.
Moreover, the damping ratio is considered as a continuous design variable with side constraints

0.02 < ¢ <0.1. Then, the design problem is stated as

Minx PF(X)
st 0.02<€£<0.1

ke K (29)

where x = (£, k)T is the vector of design variables. In terms of the system failure probability,
two design scenarios are considered. In the first scenario, the response of interest is the absolute

acceleration (¢, x,z) + iy4(t,z), and therefore the normalized demand function is given by

d(x,2z) = maxco ] i(t,x,2) + tg(t,z) | /i"} (30)

with an acceptable response level equal to ©* = 0.55. In the second scenario, two responses
are simultaneously considered for defining the failure event, namely, the absolute acceleration
i(t,x,2z) + i,(t,z) and the displacement relative to the base u(t,x,z). The corresponding nor-

malized demand function is written as
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d(x,8) = maxiepo ) {| i(t,x,2) +iy(L,2) | /07 [ ult, x,2) | /u"} (31)

with acceptable response levels 4* = 0.85, and v* = 0.33. These values have been calibrated
during preliminary calculations in order to obtain a significant interaction between the design
variables while maintaining acceptable computational efforts. The duration of the excitation is
taken as tr = 10s, with a sampling interval equal to 0.01s. Based on these values and according
to the stochastic excitation model under consideration, it can be shown that more than 1000
random variables are involved in the generation of base acceleration samples [46, 49]. Therefore,

the reliability estimation for a given design constitutes a high-dimensional problem.

8.1.1. Results of First Scenario

The iso-probability curves in the continuous design space are shown in Figure 2 for reference
purposes. These curves are constructed by using a set of failure probability estimates distributed
over the design space. The estimates are obtained by averaging the estimates of 10 independent
Subset simulation runs with 1000 samples per stage [46, 56]. The resulting curves have been
smoothed for presentation purposes. The figure shows a relatively weak interaction between the
design variables. Thus, the system reliability is mostly controlled by the stiffness parameter. In
addition, it is observed that the smallest failure probabilities are located at the upper-left corner of
the design space. That is, the system reliability is maximized for more flexible and more damped

designs, which is compatible from a structural point of view.

i
()()2 Q

2

—10

o o
Failure probab1hty)

Damping ratio ( f

-2.5 5

log

Stlffness

Figure 2: Iso-probability curves. Example No.1: First scenario
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Figure 3 shows the samples obtained during the different stages of the design process. The
number of samples per stage is equal to 100. The distribution parameters of the proposal distri-
bution for the discrete design variable are set equal to A} = 1, and 7 = 0. With this selection of
i, Card(Adj(+)) is equal to 3 except when the lead sample takes the lowest or highest value of
the available values. In that case, Card(Adj(-)) is equal to 2. It is noted that in this problem,
the initial set of feasible designs can be obtained directly by Monte Carlo simulation since only
side constraints for the design variables are involved in the optimization problem. Thus, there is
no need to solve the auxiliary optimization problem defined by Egs. (9) to (12). After a number
of stages the samples populate the vicinity of the optimal design. The corresponding objective
function values, i.e., failure probabilities, obtained at each stage are presented in Fig. 4. For
convenience, they are sorted in a decreasing manner. At the last stage, the failure probability
ranges from 4.02 x 107 to 4.19 x 10~*. Thus, the minimum value obtained during the updating
process (sample-based minimum failure probability) is equal to 4.02 x 10™*, which is associated
with the design k& = 1.0 and £ = 0.099 (sample-based optimum design). It is noted that the

previous results correspond to a single optimization run.
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Figure 3: Evolution of samples during different stages. Example No.1: First scenario
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Figure 4: Objective function values obtained during the updating process. Example No.1: First scenario

The performance of the proposed optimization scheme in terms of the number of samples
per stage, n, is summarized in Table 1. The statistical performance assessment is based on 30
independent runs of the optimization process. For each run, the sample-based minimum failure
probability, that is, the minimum value of the failure probability function across all its stages,
is obtained. Based on the 30 independent solutions generated by the proposed method, the
corresponding best, mean and worst values as well as the corresponding coefficient of variation,
in terms of the system failure probability, are reported in the table. The number of samples per
stage ranges from 10 to 200, and the total number of stages is taken equal to 9 (including the
initial stage). It can be seen that the best, the mean, and the worst solutions remain almost
invariant when the number of samples is greater than 50. Moreover, as expected, the coefficient of
variation of the minimum failure probability values obtained in different runs tends to decrease as
n increases, and more significantly when n is small. Therefore, the scheme is able to explore the
design space in a very effective manner, even with a relatively small number of samples per stage.
A different interpretation of this result is that the proposed scheme, which is based on Markov

chain simulation, shows a good performance in terms of its ergodicity in this example problem.

8.1.2. Results of Second Scenario

Results of the second scenario are presented in the following figures. Figure 5 shows the
iso-probability curves in the continuous design space. As in the previous case, these curves are
constructed by using a set of failure probability estimates distributed over the continuous design
space. A complex interaction between the design variables is observed in this scenario. This is

due to the nature of the response functions considered in the definition of the failure event. The
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n best mean worst, C.0.V.

10 4.02x107% 574x107* 2236 x 107* 8.0 x 107!
25 4.02x107* 4.18x107* 559x107* 1.0x 107!
50 4.02x107* 4.03x107* 4.04x107* 2.0x 1073
100 4.02x 107* 4.02x107* 4.03x107* 1.0 x 1073
200 4.02x 107* 4.02x107* 4.03x107* 0.5 x 1073

Table 1: Statistical performance of proposed scheme. Example No.1: First scenario

designs that minimize the failure probability lie in a region associated with intermediate stiffness

values and highest damping ratios.
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Figure 5: Iso-probability curves. Example No.1: Second scenario

The samples obtained during the different stages of the proposed design process are shown in
Fig. 6. The same setting used in the first scenario, in terms of the number of samples per stage
and proposal distribution parameters, is considered here. At the last stage, the samples populate
a vicinity of the optimal solution, which is consistent with Fig. 5. Note that the results of Fig.
5 have been validated by means of an exhaustive evaluation of all available values of the stiffness
parameter.

The trend of the objective function values obtaining during the different stages is shown in
Fig. 7. At the last stage, the failure probability ranges from 5.50 x 107* to 5.58 x 107*. The
optimal design is given by k£ = 2.6 and £ = 0.099 (sample-based optimum design), with associated
probability of failure equal to 5.50 x 10™* (sample-based optimal solution). To get more insight
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Figure 6: Evolution of samples during different stages. Example No.1: Second scenario

into the updating process, the normalized coefficient of variation of the objective function values
during the different stages is shown in Fig. 8 (see Appendix B). It is observed that the sample
coefficient of variation decreases with the number of stages reaching a value close to 0.1% of the
initial coefficient of variation of the objective function values at the last stage. This small value
explains the fact that the failure probability estimates are very similar at the different designs
obtained at last stage (see Fig. 7). In addition, it is clear that the optimization scheme reaches
the optimal solution. That is, all samples are concentrated around the global optimal solution, as
previously pointed out.

Finally, Table 2 shows the statistical performance of the optimization scheme based on 30
independent runs of the updating process, with the number of samples n used in one stage ranging
from 10 to 200. As in the previous scenario, the best, the mean, and the worst solutions across the
different optimization runs are obtained in terms of the system failure probability. It is seen that
these values show a very small variation when n > 50. Similarly, the corresponding coefficient of
variation (c.0.v.) of the minimum failure probability values reduces as n increases. In other words,

the optimization scheme is insensitive to n with respect to the optimum design when n > 50. Thus,
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Figure 8: Evolution of the normalized coefficient of variation of the objective function values during the different

stages. Example No.1: Second scenario

n best mean worst C.0.V.

10 550x107* 572x107* 7.79 x 107* 9.0 x 1072
25 550x107* 555 x107* 570 x 107* 9.0 x 1073
50 5.50x107* 551 x 107 5.56 x 107* 4.0 x 1073
100 5.50 x 107* 5.50 x 107* 5.52 x 107* 2.0 x 1073
200 5.50 x 107* 550 x 107* 551 x 107* 0.3 x 1073

Table 2: Statistical performance of proposed scheme. Example No.1: Second scenario

even with a relatively small number of samples per stage the algorithm is capable to explore the

design space in a very effective manner.
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8.2. Example No. 2
8.2.1. Model Description

The two-story frame structure with friction-based devices under earthquake loading shown
in Figure 9 is considered in this example. The floor masses are m; = 107 kg, i = 1,2, and
the linear interstory stiffnesses are denoted by ki and ko. In addition, a 5% of critical damping
is assumed in the model. For an improved earthquake resistance, the structure is reinforced
with a friction-based device at each floor. The devices follow the inter-story restoring force law
K(t) = kq ((5(t) —n'(t) + n2(t)), where k, denotes the initial stiffness of the device, §(t) is the
relative displacement between floors, and n'(t) and 7%(t) denote the plastic elongations of the
device. Using the auxiliary variable p(t) = 6(¢t) — n'(t) + n*(¢), the plastic elongations n'(¢) and
n%(t) are specified by the differential equations [54]

Figure 9: Two-degree-of-freedom system.

01(0) = BOHEO) % [HO0) =) 5O Gy = ) + HOu) = )] (32

and

(1) = =) H(=0(t))  |H(—p(t) - mHHmp +plt) + H(=p(t) = )| (33)
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where H(-) denotes the Heaviside step function, i, is a parameter specifying the onset of yielding,
and kg p, is the maximum restoring force of the device. The values p, = 6.0 x 107® m, u, = 0.7u,,
and kg = 6.0 x 10°N/m are used for the nonlinear elements. Note that because of yielding,
energy dissipation due to hysteresis is introduced in the structural response. It is noted that even
though the nonlinear model is relatively simple from a structural point of view, different levels of

interaction between the design variables may be obtained.

8.2.2. Stochastic Excitation

The system is subjected to a ground acceleration that is modeled as a non-stationary fil-
tered white noise process. Specifically, the ground acceleration is defined as i, (t) = Qfw(t) +
26,0 ws(t) — Q2ws(t) — 20w (t), where the filter state variables w;,i = 1,2,3,4, satisfy the

differential equation

(o] | o 1 o o0 J[woen)l [ o )
d ) w(t) _ -0 =260, 0 0 wo(t) N w(t)e(t) (3)
dt | ws(t) 0 0 0 1 ws (1) 0

Lwi) || 9 260 —0F 200, | | w() ] | 0|

where w(t) denotes white noise, and e(t) is an envelope function. The envelope function is taken
of the form e(t) = (e — e™") /maxp-c(o 1,y (e7"" — e™""). The values Oy = 15.0 rad/s, & = 0.6,
Qy = 1.0 rad/s, and & = 0.9, and white noise intensity I = 0.036 m?/s® are used in this example.
For numerical implementation, the sampling interval and the duration of the excitation are taken
as At = 0.01s, and t7 = 10s, respectively. Moreover, a discrete-time white noise sequence w(t;) =
\/m zj, where z;,7 = 1,...,1001, are independent identically distributed standard Gaussian
random variables, is considered. Note that a total of 1001 random variables are involved in the
characterization of the excitation. Thus, the vector of uncertain parameters z involved in the

problem is high-dimensional.

8.2.3. Design Problem

The objective of this example problem is to perform a reliability-based design of the two-story
frame structure with respect to the linear interstory stiffnesses k; and ky. The objective function
is defined in terms of an initial cost which is assumed to be proportional to the linear interstory

stiffnesses. Two reliability constraints are considered. The first constraint is related to a failure
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event associated with the lateral displacement of the first floor, while the second constraint is
associated with the lateral displacement of the second floor. Thus, the corresponding demand

functions are given by

dj(x,2z) = maxcp{| vi(t,x,2) | /uj} , j=1,2 (35)

where x = (kq, ko)™ is the vector of design variables, u;(t,x,2z) is the lateral displacement of the
4" floor, and uy,j = 1,2 are the acceptable response levels equal to u] = 0.015m, and u3 = 0.03m.
In addition, a geometric design requirement in terms of the design variables is also considered,
i.e., ko < ki . A pure discrete variable treatment of the problem is considered in this case. The

optimization problem is written as

Mil’l(kl,]w) f(k'l, kQ) = (6/1010) (kl + kg)
st. Pp(ki ko) <1070, j=1,2
ko /ky <1

kieK; , j=1,2 (36)

where (c¢/10') is a cost factor, Pp, (ki k2) is the failure probability function associated with the
failure event characterized by the demand function d;, and the sets of available discrete values for

the design variables are given by

K, =K, ={03+0.015,7 =0,...,90} 10'°N/m (37)

Note that the previous setting leads to 91 available options for each design variable, leading
to a total of more than 8,000 possible designs. The linear interstory stiffnesses can take values

between 0.3 x 10'°N/m and 1.2 x 10'°N/m.

8.2.4. Results

The iso-probability curves associated with the failure events related to the lateral displacements
of the first and second floor are shown in Fig. 10. As in the previous example, the smoothed
curves are shown in the continuous design space and they are constructed by using a set of failure

probability estimates distributed over the design space. It is observed that the failure probability
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related to the displacement of the first floor depends mainly on the first interstory stiffness and
a small interaction with the second interstory stiffness is observed. Contrarily, the interaction
between the design variables is clear for the failure probability associated with the displacement

of the second floor. These results are reasonable from an engineering viewpoint.
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Figure 10: Iso-probability curves. Left figure: failure event related to the lateral displacement of the first floor.

Right figure: failure event related to the lateral displacement of the second floor.

A sketch of the corresponding feasible design space of the optimization problem in the con-
tinuous and discrete spaces is presented in Fig. 11, where some contour curves of the objective
function are also shown. From a practical point of view, it is seen that the optimal solution set
X7 can be defined in terms of the five designs marked by red dots in the right figure of Fig.
11, that is, X7} = {(0.98, 0.63)T,(0.99,0.62), (1.00,0.61)7, (1.01,0.60)7, (1.02,0.59)7} x 10'°N/m,
with optimum normalized objective function value equal to f = 1.61. These results have been
validated by means of an exhaustive evaluation of all available designs.

The set of feasible samples uniformly distributed over the feasible design space is shown in
Fig.12 (Stage 0). These samples are obtained after four stages of the proposed procedure for
obtaining samples in the feasible design space. To this end, and for illustration purposes, the
algorithm is implemented by considering 100 samples per stage. The distribution parameters of
the proposal distributions for the discrete design variables are set equal to A\j = 10,1 = 1,2, and
7 = 0.05. Note that with this selection of A}, the maximum number of discrete values adjacent to
a lead sample is equal to 21, including the lead sample. This number is about 20% of the available
discrete values for the design variables, and therefore this value defines a somewhat medium-size
support for the proposal distributions. This is done in order to explore the entire feasible design

space in an effective manner. In fact, almost 100 different feasible designs are generated in four
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Figure 11: Sketch of the feasible design space. Left figure: feasible design space and some contour curves of the
objective function in the continuous design space. Right figure: feasible design space in the discrete design space.

Unfeasible designs (white dots). Feasible designs (black dots). Optimal designs (red dots).

stages. Note that the shape generated by these samples resembles the feasible design space shown
in Fig. 11. The designs obtained from the first five stages of the procedure outlined in Sections
3.3 and 4.3 for generating samples distributed in the vicinity of the optimal solution set are also
shown in Fig. 12. The number of samples per stage is also set equal to 100. The distribution
parameters of the proposal distributions are set equal to A\j = 5,1 = 1,2, and 7 = 0 for this
step of the process. Note that this choice of A results in proposal distributions with smaller
supports than the ones used in the procedure for obtaining samples in the feasible design space.
Thus, the algorithm favors samples in the vicinity of the current state. Numerical results show
that this selection is appropriate in the sense that the proposed scheme converges to the target
optimal solution set in an efficient manner. At the last stage, the samples populate a vicinity of
the optimal solution set, which is consistent with Figure 11. In other words, all samples at the
last stage are in the vicinity of the optimal solution set.

The maximum and minimum normalized objective function values obtained during the different
stages are shown in Figure 13. It is seen that from stage number four, the maximum and minimum
values are almost coincident. Actually, the minimum normalized objective function value obtained
during the simulation process (sample-based optimum cost) is equal to 1.61, which is obtained
at the following sample-based optimal designs: (0.98,0.63)7 x 10'°N/m; (0.99,0.62)7 x 10'°N /m;
(1.00,0.61)T x 10N /m; (1.01,0.60) x 10'°N/m; and (1.02,0.59)7 x 10N /m. Thus, the scheme
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Figure 13: Maximum and minimum normalized objective function values obtained during the different stages.

is able to identify the designs that define the optimal solutions in this particular run. Moreover,
information about the value of the reliability constraints at the optimal designs is given in Table
3. Considering the variability of the reliability estimates, it is observed that from a practical
viewpoint the reliability constraints Pp, (ki,k2) < 107% and Pg,(ki, ko) < 107* are active at
the optimal design k; = 0.98 x 101°N/m, ky = 0.63 x 10'°N/m, while the reliability constraint
Pr,(ky1, ky) < 107% is active at the other optimal designs. Note that these results are compatible

with the information provided by Fig. 11, which have been corroborated with a comprehensive
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assessment of all available designs.

kl(loloN/m) k2(1010N/m) PF1 (]{71, kg)/10_4 PF2 (kl, kz)/10_4

0.98 0.63 0.95 0.94
0.99 0.62 0.65 0.94
1.00 0.61 0.43 0.93
1.01 0.60 0.31 0.94
1.02 0.59 0.22 0.99

Table 3: Reliability constraint values at the optimal designs.

A study about the statistical performance of the design scheme based on 200 independent runs
indicates that the scheme performs in an effective manner when the number of samples per stage
n is greater than a value around 50. Actually, when n > 50 all samples concentrate around the
optimal solution at the last stage of the scheme. Moreover, in 99% of the cases, at least one design
in the optimal solution set X; is identified. In other words, the algorithm is capable to explore
the discrete design space in a very effective manner with a relatively small number of samples
per stage. Based on the previous information, the total number of function evaluations during
the entire optimization process is less than 400 in this case. This small number of function calls

indicates that the proposed scheme is quite effective in terms of computational cost.

8.2.5. Effect of Nonlinear Devices

The effect of the friction-based devices on the final design is next investigated. In particular,
the influence of the initial stiffness of the devices, kg, on the final design is studied. Figure
14 shows samples in the feasible design space for the case of three different values of k;, namely,
ks = 0.0 (Case-A), ks = 6.0x 10°N/m (Case-B), and k; = 12.0x 10¥N/m (Case-C). For illustration
purposes, about 200 feasible samples are shown in each case.

Note that Case-A (kg = 0.0) corresponds to a linear model, that is, the structure without the
friction-based devices. On the other hand, Case-C can be interpreted as a device stiffer than the
device used in the example, that is, Case-B. It is observed that the effect of this parameter is
significant. An increase of the device initial stiffness increases the size of the feasible design space.
This is reasonable since the model becomes stiffer and therefore designs which are more flexible, in

terms of the linear interstory stiffnesses, also satisfy the reliability constraints. The corresponding
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Figure 14: Samples uniformly distributed over the feasible design space. Left figure: kg = 12.0 x 108N/m. Middle
figure: kg = 6.0 x 108N /m. Right figure: k4 = 0.0.

optimal normalized objective function values are given in Table 4.

k4(108N/m)  normalized objective

initial stiffness function value
0.0 (Case-A) 1.79
6.0 (Case-B) 1.61
12.0 (Case-C) 1.43

Table 4: Objective function values at final designs.

Note that an increase of the device initial stiffness decreases the objective function values. In
other words, the linear structure at the final design is more flexible, or equivalently, the dimension
of the structural columns decreases as the initial stiffness of the devices increases. This is due to the
fact that the nonlinear devices provide additional stiffness to the model, as previously pointed out.
Comparing Case-A with Case-C, it is observed that the objective function value corresponding
to the linear model is almost 25% higher than the objective function value corresponding to the
nonlinear model characterized by kg = 12.0 x 103N/m. Thus, the effect of the nonlinear devices

is quite beneficial in terms of the final design from this point of view.

8.3. Example No. 3
8.3.1. Description of the Model

The structural model shown in Figure 15 is considered as an application problem. The system
is subjected to a ground acceleration modeled as in the first example problem, where the duration
of the excitation is taken as t = 15s. Thus, more than 1500 random variables are involved in the

characterization of the stochastic excitation in this case. Each floor is supported by 48 columns
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as shown in Fig. 15. The axes A, C, D, and F contribute mainly to the horizontal resistance of
the floors in the x direction. On the contrary, the resistant axes B and E work primarily in the
y direction. All floors have a constant height equal to 3.2 m, leading to a total height of 12.8 m.
For a given floor, all columns are assumed to be equal and their specifications are given in Table

5 [55].

Slab

® 25 cm\ “ ”
® X : 4 ] i
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0) / \‘ T
© ¥
® z ]
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o ® ® ®@ 66 ® © ®

Figure 15: Isometric and plan view of the structural model.

Floor Type of section
W24 x 131
W24 x 131
W24 x 104
W24 x 104

[

Table 5: Specification of column elements.

In addition, a bracing system is considered in the model. Specifically, tubular steel brace
elements are placed in axes A, C, D and F (acting in the x direction), and in axes 1, 2, 7 and 8
(acting in the y direction). In axes A, C, D, F, 1, and 8 two brace systems are placed, while one
brace system is placed in axes 2 and 7. A typical configuration of the brace elements is shown
in Fig. 16. Thus, a total of 128 brace elements are used in the model, with material properties
E = 2.1 x 10" N/m?, and weight density p = 7.42 ton/m3.

From the modeling viewpoint, it is assumed that each floor may be represented sufficiently

accurate as rigid within the x — y plane when compared with the flexibility of the horizontal
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Figure 16: Typical configuration of brace elements. A). Brace system in axes 2 and 7. B) Brace system in axes A,

C,D, T, 1, and 8.

resistance elements. Hence, each floor can be represented by three degrees of freedom, i.e. two
translatory displacements in the direction of the x and y axes, and a rotational displacement about
the z axis. The associated masses m, = m, and m, are taken as constant for all floors and equal
to 5.98 x 10° kg, and 1.10 x 10® kg m?, respectively. In addition, a 2% of critical damping is
assumed in the model. For aseismic design purposes, the model is reinforced with friction-based
devices at each floor. At each floor, six devices are implemented as shown in the floor plan of
the model. Specifically, four devices in the z direction and two devices in the y direction are
considered. These elements provide additional resistance against relative displacements between
floors. The devices follow the inter-story restoring force law described in Example No. 2 (see
Section 8.2.1). The restoring force of the devices acts between the adjacent floors with the same

orientation of the devices.

8.3.2. Optimization Problem

The objective function for the optimization problem is defined in terms of total volume asso-
ciated with the brace elements. The vector of design variables x is defined in terms of the areas
of the cross-sections of the steel brace elements. The available discrete values for the design vari-
ables (areas of tubular cross-sections) are presented in Table 5. Each of the design variables can
be chosen from a discrete set of 48 tubular elements. Two failure events are considered. They are
defined in terms of the maximum roof displacement (in the z or y direction), and the maximum

axial stress of the brace elements. The related demand functions are given by
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D (in) | A (mm?) | D (in) | A (mm?) | D (in) | A (mm?)
2 719 4 1517 6 2315
21/8 769 41/8 1567 61/8 2365
21/4 819 41/4 1617 61/4 2415
23/8 869 43/8 1667 6 3/8 2465
21/2 919 41/2 1717 61/2 2515
25/8 969 45/8 1767 65/8 2565
23/4 1019 43/4 1817 6 3/4 2615
27/8 1069 47/8 1866 67/8 2664
3 1118 ) 1916 7 2714
31/8 1168 51/8 1966 71/8 2764
31/4 1218 51/4 2016 71/4 2814
33/8 1268 53/8 2066 73/8 2864
31/2 1318 51/2 2116 71/2 2914
35/8 1368 55/8 2166 75/8 2964
33/4 1418 53/4 2216 73/4 3014
37/8 | 1468 | 57/8 | 2265 | 77/8 | 3063

Table 6: Available values for the design variables

dl (X7 Z) = maXtG[OﬂfT]{’ u7“<t7X> Z) ’ /u:}

da(X,2) = max;—y,  128MaXscios,]1] 0i(t, %, 2) | /o*} (38)

where u,(t,x,2) is the roof displacement in the x or y direction, o;(t,x,z) is the axial stress of
the i'" brace element, and u* and o* are the acceptable response levels equal to u* = 0.033m, and

o* = 3.31 x 108Pa (80% of yield stress).

8.3.3. Results: Case of Two-Linked Design Variables

Two design variables are first considered in order to get insight into the optimization problem.
Design variable number one (1) represents the area of the brace elements acting in the z direction,
while the second design variable (x2) controls the brace elements acting in the y direction. The

design problem is written as
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s.t. Pp(x) <5.0x107", j=1,2

z;eX | j=1,2 (39)

where x = (2, 25)7 is the vector of design variables, ¢; and ¢, are normalization constants and
equal toc; = 1.7x 1074, ¢y = 1.55x 1074, Pr,(x) is the failure probability function associated with
the failure event characterized by the demand function d;, and X represents the set of available
discrete values for the design variables given in Table 6. Note that there are 2304 possible designs
in this case. As in the previous examples, the reliability estimation for a given design constitutes
a high-dimensional problem.

For illustration purposes, the smoothed iso-probability curves associated with the failure events
related to the roof displacement and maximum axial stress of the brace elements are presented
in Fig. 17. Moreover, a sketch of the feasible design space in the continuous and discrete spaces
is shown in Fig. 18. A strong interaction between the design variables is observed for the failure
probabilities associated with both failure events especially for stiff brace systems. This is due to
the type of response functions considered in the definition of the failure events and the relative

complexity of the structural model.
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Figure 17: Left Figure: Iso-probability curves associated with the failure event related to the roof displacement.
Right Figure: Iso-probability curves associated with the failure event related to the maximum axial stress of the

brace elements.

A statistical performance assessment of the proposed design scheme indicates that the scheme

performs in an effective manner when the number of samples per stage n is such that n > 50. The
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Figure 18: Sketch of the feasible design space. Left figure: feasible design space and some contour curves of the

objective function in the continuous design space. Right figure: feasible design space in the discrete design space.

Unfeasible designs (white dots). Feasible designs (black dots). Optimal design (red dot).
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Figure 19: Evolution of samples during different stages of the proposed procedure for obtaining samples in the

optimal solution set

corresponding set of feasible samples uniformly distributed over the feasible design space is shown
in Fig. 19 (Stage 0). These samples are obtained after three stages of the proposed procedure for
obtaining samples in the feasible design space. The algorithm is implemented with distribution
parameters of the proposal distributions for the discrete design variables equal to A} = 5,1 =1, 2,

and T 0.05. The shape generated by these samples is similar to the feasible design space

shown in Fig. 18. The designs obtained from the first five stages of the proposed procedure for

generating samples distributed in the vicinity of the optimal solution set are also shown in Fig.
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19. At the last stage of the process, the samples populate a vicinity of the optimal solution set,
which is consistent with Figure 18. For this step of the process, the distribution parameters of
the proposal distributions are equal to A\ = 3,1 = 1,2, and 7 = 0. The optimal design is given by
7y = 2116mm?, and xo = 1817mm? (sample-based optimum design), with minimum normalized
objective function value (sample-based minimum weight) equal to 0.644. The associated failure
probabilities at the sample-based optimal solution are such that Pp, (z1,72)/5.0 x 107 = 0.996
and Pr,(z1,72)/5.0 x 107* = 0.57. Then, the reliability constraint Pg, (z1,22) < 5.0 x 107* can be
considered, from the practical viewpoint, active at the final design. These results are compatible
with the information provided by Fig. 18, which is based on an exhaustive evaluation of all
available designs. Thus, the sample-based optimum obtained by the proposed approach is, in fact,
the global optimum. The total number of function evaluations during the entire optimization
process is around 400. This number of function calls, which is relatively small in the context of

stochastic optimization algorithms, indicates that the scheme is very effective.

8.8.4. Results: Case of Four-Linked Design Variables

As in the previous case, the design variables are the areas of the cross-sections of the steel
brace elements. The brace elements located every two floors are linked to two design variables,
one associated with the x direction and the other one related to the y direction. Specifically, x;
and x3 are associated with the brace elements pointing in the = direction, while x5 and z, with
the brace elements pointing in the y direction. The axes and stories corresponding to each design
variable are given in Table 7. Note that in this case there are more than 5 x 10 available options

for the possible designs.

Design variables Stories Axes

1 1-2 ACDF
To 1-2 1278
T3 34 ACDF
T4 3-4 1278

Table 7: Design variables.

The samples uniformly distributed over the feasible design space are shown in Fig. 20. This

figure shows the two-dimensional projections and marginal distributions of all feasible designs
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obtained during four steps of the proposed approach. The algorithm is implemented by considering
100 samples per stage, with distribution parameters of the proposal distributions for the discrete
design variables equal to A} = 5,1 = 1,2,3,4, and 7 = 0.025. A total of 250 feasible samples are
obtained, among which 200 are distinct. It is seen that the range of the design variables related
to the upper floors is larger than the one observed for the lower floors. This result indicates that

the system performance tends to be more sensitive to changes in the lower stories’ stiffnesses, as

expected.
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Figure 20: Two-dimensional sample projections and marginal histograms of the feasible samples.

The set of samples obtained after seven stages of the procedure for generating samples dis-
tributed in the vicinity of the optimal solution set are shown in Figure 21. It is observed that the
samples are concentrated in a very small region of the feasible design space, i.e., almost a single
value. For this step of the process, the distribution parameters of the proposal distributions are
set equal to \] = 2,1 =1,2,3,4, and 7 = 0. The maximum and minimum normalized objective
function values obtained during the different stages are shown in Figure 22. From stage num-
ber seven, the maximum and minimum values are almost coincident. The minimum normalized

objective function value obtained during the simulation process (sample-based optimum cost) is
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Figure 21: Two-dimensional sample projections and marginal histograms of the design variables in the vicinity of

the optimal solution set

equal to 0.6235, which is obtained at the sample-based optimal design given by z; = 2615mm?,

o = 2216mm?, z3 = 1418mm?, and x4, = 1368mm?. The reliability constraint values at this

design are equal to Pg, (71, 22)/5.0 x 107* = 0.994 and Pg,(z1,72)/5.0 x 107* = 0.0534. Thus,
the reliability constraint Pp, (z1,22) < 5.0 X 10~* can be considered active at the final design,
which is compatible with the previous case. It is seen that the final design favors larger val-
ues of the optimization variables associated with the brace elements of the lower floors, which is
consistent from a structural point of view. Results obtained from other stochastic optimization
methods., e.g., genetic algorithms [12], confirm that the sample-based optimal cost obtained by
the proposed approach can be regarded as the global solution. Moreover, the analysis shows that
alternative designs in the vicinity of the sample-based optimum can also be considered as optimal
from the practical viewpoint, given the inherent variability of the failure probability estimates.
In this regard, the development of a posteriori analysis that reuses information drawn during the

optimization process to identify potential new solutions can provide additional flexibility to the

overall design process.
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Figure 22: Maximum and minimum normalized objective function values obtained during different stages.

In terms of numerical efforts, the total number of function evaluations is of the order of 1000
in this case. Then, it is seen that the algorithm is capable to obtain the optimal solution set in
an effective manner with a relatively small number of samples. Based on the results obtained in
the previous examples and additional validation calculations, it is anticipated that the proposed
algorithm will compare favorably with respect to other population-based stochastic optimization
algorithms for the class of problems considered in the context of this work. An exhaustive com-
parison of the proposed method with other optimization techniques, in the framework of different

mixed discrete-continuous optimization formulations, will be conducted in a future contribution.

9. Conclusions

An approach for solving structural optimization problems considering discrete-continuous de-
sign variables has been proposed. The design problem is set into the framework of a Bayesian
model updating problem, which is solved by an effective Markov chain Monte Carlo simulation
scheme. In particular, the transitional Markov chain Monte carlo method is considered. In the
context of the Metropolis-Hastings algorithm, appropriate proposal distributions are suggested
for the continuous and discrete design variables. The proposed general formulation is applied
to an important class of problems, specifically, reliability-based design optimization of structural
systems under stochastic excitation.

Numerical results indicate that feasible samples can be generated in an effective manner even in
problems with involved feasible design space geometries. Moreover, the proposed scheme converges
to the target optimal solution set in a rather efficient manner. In other words, all samples at the last

stage of the process are in the vicinity of the optimal solution set. The samples generated during
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the optimization process provide valuable information about the interaction of the design variables.
At the same time, they give information about the sensitivity of the final design and constraints
with respect to the design variables in the vicinity of the optimal design. This information is quite
relevant, specially when dealing with complex structural optimization problems.

Generally, the total number of function evaluations during the entire optimization process is
relatively small, indicating that the proposed scheme is quite effective in terms of computational
cost. Thus, it is anticipated that the proposed algorithm will compare favorably with respect to
other population-based stochastic optimization algorithms. The results of the example problems
and additional validation calculations also indicate that, generally, the proposed scheme shows
a good performance in terms of its ergodicity. That is, the optimization scheme is able to ex-
plore the design space in an effective manner, even with a relatively small number of samples
per stage. Nonetheless, as usually observed in the implementation of general stochastic search
techniques, the number of function evaluations required to effectively explore the design space
might significantly increase for high-dimensional spaces. Based on the preceding observations,
it is believed that the proposed design scheme is potentially a useful tool for solving a class of
mixed discrete-continuous constrained optimization problems, including problems that deal with
stochastic dynamical systems.

A future research effort aims to perform an exhaustive comparison of the proposed method
with other stochastic search algorithms in the framework of different mixed discrete-continuous
optimization formulations. The consideration of more complex problems in terms of the dimen-
sionality of the design space and the development of specialized techniques to handle them are
to follow in the near future. When dealing with problems in which the computational time for
evaluating objective and/or constraint functions is significant, the use of meta-models could be
very attractive. In this regard, the implementation of the proposed approach by considering an
adaptive meta-model for approximating expensive function evaluations during the design process
is an additional topic for future research. Besides, the assessment of alternative discrete proposal
distributions within the proposed framework is also a future research direction. Work in some of

these topics is currently underway.

40



Acknowledgments

The research reported here was supported in part by CONICYT (National Commission for
Scientific and Technological Research) under grant number 1200087. Also, this research has been
supported by CONICYT and DAAD under CONICYT-PFCHA /Doctorado Acuerdo Bilateral
DAAD Becas Chile/2018-62180007. In addition, this research has been implemented under the
PAC (Programa Asistente Cientifico 2017)-UTFSM program. These supports are gratefully ac-
knowledged by the authors.

41



10. Appendix A

The following schematic flowchart illustrates how the samples in the feasible design space are

generated.

1) Initial samples:

j =0, To = oo. Generate samples {yi17 ...,¥2.} for the continuous design
variables in the underlying standard normal space, and samples {xﬂl, . ,xﬂn}
for the discrete design variables in the physical design space by Monte Carlo
simulation. Evaluate the function values {g(x]),...,g(x})}, where x =

<XC(Y£¢)T

The parameter T4 is obtained by using an effective sample size criterion for
measuring how similar the non-normalized intermediate distribution pr; is to
P14, [40,41]. Based on this criterion the following nonlinear equation for T)
can be established [31]

gexp (—2g(XZ) { 1 - TLD

Tj+1 J

T
VARV A
xpoti=1,000n.

2) Parameter Tjq:

1

(gexp (—g(x{f) [leﬂ _%Dy n

where v € (0,1) is a user-defined parameter. For the present numerical imple-

mentation, v = 0.5.

) ) o T
The importance weight w] of the sample x] = (x.(y’;)" , xJ, ) is given by

J

) ( j [ 1 ID »

w] = ——"~ =exp | —g(x]) — =], i=1,...,n
Yoo () T T

i

The samples are generated as indicated in Section 4.2, with non-normalized in-
termediate distributions defined in Eqs. (14) and (15), by using the Metropolis-
Hastings algorithm with proposal distributions given in Sections 5.2 and 5.3.
An adaptive scheme is adopted for the scaling parameter /3, with initial value
B =2.4/\/nc [28, 43]. The lead sample of the Markov chain is selected accord-

ing to the normalized weight [27], i.e., u‘)g = w{/zzzl wg, i=1,...,n.

l

Identify all feasible samples generated during the current stage. Add these
samples to the feasible samples generated in previous stages. Denote these

feasibleT 7T . .
samples as (yrsible Yy ,i = 1,...,m. If the required number of

feasible samples Nfeasivle has been reached, i.e., m > Ngeasible, Stop the process
and continue generating samples in the optimal solution set (see Appendix B).
If not, return to step 2 with j < j + 1.

3) Importance weights:

4) Samples at stage j + 1:

5) Stopping criterion:

feasible
» Xdi
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11. Appendix B

The following schematic flowchart illustrates how the samples in the vicinity of the optimal

solution space are generated.

1) Initial stage:

.7 .7 T
j = 0, Ty = oco. Redefine the feasible samples as (y!, ,x}, ) =
. . T
(yﬁ,‘,“;as‘bleT,xfﬁaS‘bleT) vi=1,...,m, with n = m. Evaluate the function values
{f(x]),..., f(xJ)}, and the corresponding coefficient of variation (c.0.v.)

n n 2 n
3 = nilz{ﬂx{)(%zf(x;))] / Ly i)
i=1 p=1 p=1

l

The parameter 7)1, associated with the non-normalized intermediate distri-
butions defined in Eqs. (7) and (8), is computed as in Appendix A, i.e.,

S esp (~216) [ - 7])

Tron

. T .7 T
where x] = (x.(y}) ,x}; )

2) Parameter Tjq:

1

(gexp (—f(x{) {T;ﬂ _ TH))? ~

The generation of samples proceeds in a similar manner as in step 4 of Ap-
pendix A, with non-normalized intermediate distributions defined in Eqgs. (7)
and (8). In this case, the candidate sample should belong to the feasible design
space Xfeasible- 1f not, the sample is rejected. The lead sample of the Markov
chain is selected according to the normalized weight, that is, w] = w]/ 22:1 w},
i=1,...,n where

i i 1 1
) = —f(x! - — i=1,...
wl =exp (16 7= | ). it

l

Compute the sample c.o.v. of the objective function values at the (j + 1)-th
stage, 0j41, as

- 41
0j41 = nj;(f(xf )~

If 041 > Otarget = Y00, where 7y is a user-defined parameter (v € [0.001,0.01]),
set j «— j+ 1 and return to Step 2. Otherwise, stop the process. Alternatively,
the process can be stopped if a maximum number of stages has been reached.

3) Samples at stage j + 1:

4) Stopping criterion:

n

2 n
Y f(x;;“)]) WA
p=1

p=1
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