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Abstract: Classification of clutter, especially in the context of shore based radars, plays a crucial
role in several applications. However, the task of distinguishing and classifying the sea clutter
from land clutter has been historically performed using clutter models and/or coastal maps. In this
paper, we propose two machine learning, particularly neural network, based approaches for sea-land
clutter separation, namely the regularized randomized neural network (RRNN) and the kernel
ridge regression neural network (KRR). We use a number of features, such as energy variation,
discrete signal amplitude change frequency, autocorrelation performance, and other statistical
characteristics of the respective clutter distributions, to improve the performance of the classification.
Our evaluation based on a unique mixed dataset, which is comprised of partially synthetic clutter
data for land and real clutter data from sea, offers improved classification accuracy. More specifically,
the RRNN and KRR methods offer 98.50% and 98.75% accuracy, outperforming the conventional
support vector machine and extreme learning based solutions.

Keywords: radar clutter classification; ECAV based feature extraction; KRR and RRNN; efficient and
generalizing

1. Introduction

In the context of target tracking and target identification, radar returns from unwanted objects,
termed as clutter, compete with the intended true returns. The exact candidates for clutter may vary
depending on the context. For instance, when ground objects are of interest, radar returns from nearby
sea, waves, and targets in the sea can be considered as clutter. However, when tracking sea-borne
targets, returns from ground objects can be considered as clutter. Regardless of the origin of the clutter,
their variability is often substantially high so as to render the tracking and identification of targets a
difficult process. This difficulty in tracking and identification of targets becomes even more severely
challenging when dealing with multiple clutter types. This scenario is very common at and near the
interfaces of multiple surface types, such as air and land, air and sea, or land and sea, where the actual
targets of concern are bound only to a single surface. For example, a ground based radar should focus
only on ground based targets, and thus, returns from sea-bound targets should be treated as clutter.
For this reason, discriminating between different clutter types is crucially vital for robust tracking
and identification of objects from one surface type [1]. In this paper, we focus on deriving a novel,
machine learning method for discriminating sea-land clutter.
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There are a number of methods that have been proposed to address this issue, with varying
degrees of success. Perhaps one of the earliest and simplest approaches for labeling the land based
returns (and thus, to discriminate against sea based returns) is to rely on pre-loaded maps of the
land under surveillance [2]. However, such an approach is not always feasible. For instance,
a clear land map may not be available, or may not be accurate enough, or the resolution is not
sufficient enough to separate the land-sea boundaries. Although manual processing is a possible
avenue to address this issue, it is not a scalable technique. A number of model based approaches
have been developed to address this issue. These include amplitude distribution analysis [3–7],
spectral analysis, auto-regressive modeling [8–10], and parametric and nonparametric statistical
decision rules. For instance, in [3], a generalized, compound distribution model incorporating thermal
noise was used to describe the high resolution radar clutter. In [4], the model parameters were
described using generalized compound probability density functions, and these distribution functions
were then used to classify the clutter types, in particular for high resolution radar echoes.

Although model-driven approaches have been demonstrated to be significant enough,
the accuracy of the land-sea clutter discrimination from a model-driven approach directly depends on
the correctness of the underlying model. For instance, this requires the model parameters not only to
be captured properly; their range of values also has to be reasonable enough to render accurate results.
As such, even if model-driven approaches are considered to be good enough, they do demand a great
deal of effort towards the estimation of the relevant parameter space for accurate discrimination of the
land-sea clutter. This is one of the major weaknesses of the model-driven approaches.

Another school of thought is to utilize data-driven, machine learning based approaches,
in particular supervised learning approaches. Although these approaches can stem from one or
more basis models, the actual model is constructed by learning from example data, which are often
referred to as training data. Here, the training data are constructed by combining a large number of
input and expected output pairs. These pairs are often known as labeled data. The general expectation
here is to learn from training so as to have a model that evolves to work on unlabeled data. In other
words, the learning process is guided and therefore known as supervised learning. More specifically,
the input will be a clutter, and the expected output is the indication of the class under which the input
clutter data fall. This approach, however, requires datasets that are somehow labeled. The overall
performance is then evaluated using the number of misclassifications or correct classifications.

Among different supervised learning approaches, neural network (NN) or artificial neural
network (ANN) based approaches have been shown to be very effective [2,5,6,8,10,11]. The common
theme among all the ANN based approaches is that a feed-forward, multi-layer neural network
is used to learn to classify a given clutter among multiple classes. The exact mechanism and the
overall performance, however, vary based on the network configuration (such as the number of layers,
activation functions, and/or neurons per layer) and the number of classes of the clutter. In [12],
a system consisting of a feature extractor using wavelet packets and a two-layer back-propagation
neural network was used to classify the underwater mine-like targets and non-targets from the
acoustic back-scattered signals. In [13], the wavelet method was applied to extract the sea clutter, so
that the estimation of oceanographic parameters and target detection were improved. Finally, in [14],
the extreme learning machine (ELM), which is a variant of regular ANNs, was used to classify the
target and sea clutter. In order to facilitate the classification process, a number of hand-picked features,
namely the de-correlation time, K distribution parameters, and the Hurst exponent in the fractional
Fourier transform domain, were used as feature vectors.

A number of non-neural network based supervised machine learning approaches have also been
used to address this problem. For instance, in [15], the problem of discriminating small maritime targets
against sea-clutter was discussed using K nearest neighbor (KNN) and support vector machines (SVMs).
A single class based supervised learning approach based on the one-class support vector machine
(OCSVM) was also used in the context of clutter discrimination. For instance, in [16], the OCSVM
was used for suppressing clutter arising from ocean waves, more specifically in the context of high
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frequency ground wave radar. Another example is [17], where OCSVM was used to detect ship wakes
using active sonar systems. In [18], another variant of SVM, cost sensitive support vector machine
(2C-SVM), was used to handle clutter from multiple models of clutter, in particular the Gaussian and
K-distributed clutters, and approximate the Neyman–Pearson detector for a specific false alarm rate.
More recently, in [19], a KNN classifier was proposed to yield a pixel-level sea-land segmentation of
the scene. The different solution types mentioned above are compared in Table 1.

Table 1. Pros and cons of different types of classification solutions.

Solution Type Method Pros Cons

Model-driven Amplitude analysis,
spectrum analysis

Good theoretical foundation,
strong interpretability

Difficulty of modeling,
parameter estimation

Neural network
based data-driven NN, ANN, ELM Deep features, independent

of clutter model accuracy

Mass sample data requirement,
large amount of calculation,
weak interpretability

Non-neural
network based

data-driven

SVM, OCSVM,
KNN

Good interpretability,
independent of clutter
model accuracy

High-dimensional data
bottleneck

In this paper, we propose two novel techniques for discriminating and classifying the sea and
land clutters using two supervised machine learning techniques, namely the regularized randomized
neural network (RRNN) and kernel ridge regression (KRR). Although our approaches are supervised
learning based, the overall focus here is the classification of clutter as opposed to suppression of
clutter or direct target discrimination [2,9,14–18,20]. As such, we use all possible information towards
the classification process rather than discarding useful information in favor of target discrimination.
Furthermore, the key challenges of distinguishing and classifying the sea-land clutter revolve around
high quality features that can provide this aid in the classification between these two classes of clutter.
To render the classification process more meaningful, we pay special attention to the feature space,
on which the training process relies. In particular, the proposed feature space for the sea and land
clutters includes classic parameters covering the statistical characteristics of clutters, short time energy,
amplitude variation, and the frequency and properties around autocorrelation. The feature space we
propose here, to the best of our knowledge, is novel and different from that of [2–6]. In doing these,
we make the following contributions:

1. We propose a novel set of features for improving the classification performance, namely the
energy, zero-crossing rate, the autocorrelation, and the shape parameter V (ECAV).

2. We present two novel classification systems based on the RRNN and KRR utilizing the ECAV
feature space; and

3. We conduct an in-depth, exhaustive analysis of the proposed methods and compare against the
routine baselines, namely the SVM and ELM, to observe the generalization and robustness of the
proposed system.

The rest of the paper is organized as follows: In Section 2, we provide the essential background
surrounding clutter models and the RRNN and KRR techniques. We then introduce our proposed
techniques in Section 3. In Section 4, the experimental results are discussed, and the complexity of the
proposed algorithm is analyzed. We finally conclude the paper in Section 5.
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2. Background

2.1. Clutter Modeling

Among many different approaches for modeling clutter [21], modeling them using a statistical
(or probabilistic) distribution is a robust and proven technique. Example clutter models include
Rayleigh, log-normal, Weibull, and K distributions [6,22].

In general, if a radar looks at a natural surface with a low resolution and at a not very low grazing
angle so that no dominant shadowing and multi-path effects are experienced, the resultant clutter
distribution is very likely to model the Rayleigh distribution. However, if the resolution cell becomes
very small or if illuminated areas contain discrete man-made scatters, the exact number of effective
scatters may decrease. With this, the distribution usually becomes much wider than the Rayleigh
distribution. Furthermore, if the low grazing angle scatters, multi-path effects, and shadowing
are accounted for, the amplitude statistics deviate from the Rayleigh distribution. In these cases,
the log-normal, Weibull, and K distributions are the most commonly used distributions to approximate
the resulting clutter distribution [6,22].

With this, the amplitude probability density function of a Weibull distribution is:

p(x) = αδ(x)α−1 exp(−δxα), x ≥ 0, α, δ > 0 (1)

where δ is the scale parameter and α is the shape parameter of the statistic model, which are usually
used to model the sea, weather, and land clutter.

The amplitude probability density function of the K distribution is:

p(x) =
2β

Γ(v)

(
βx
2

)v
Kv−s (βx) , x ≥ 0, β, v > 0 (2)

where Γ(·) is the gamma function and Kv−s(·) is the S-order modified Bessel function. The model
is characterized by the scale parameter β and shape parameter v. It is worth noting that the shape
parameter is the measure of clutter spikiness. In other words, the clutter becomes spikier with v
decreasing and becomes Gaussian distributed when v approaches infinity. The K distribution describes
the clutter as a compound distribution, which consists of two components: the speckle and the local
power. It is the particular case of the compound Gaussian (CG) model.

2.2. RRNN and KRR

Feed forward neural networks have been extensively used in many domains, primarily for their
ability to approximate complex non-linear functions. More specifically, feed forward neural networks
are a popular choice for classification tasks. However, there are several aspects that determine the
overall performance, which is often judged by the accuracy of the classification. First, the training
process, and thus the resulting classification performance on data other than training, relies on the
amount of training data used for training, which, in our case, are a scarce resource. Secondly, the overall
network performance depends on the optimal selection of the network parameters, which are often
referred to as hyperparameters. The parameters for optimal tuning include the number of layers,
the activation functions of the layers, the learning rate, the number of neurons in each layer, the loss
function used to quantify the convergence, and the optimization function used to minimize the loss
function. This is particularly a problem when the dimensionality of the hyperparameter space is
large. A large body of work that investigates the hyperparameter optimization problem can be found
in [23,24].

The RRNN is, however, a feed forward neural network with a single hidden layer. The weights of
the hidden layer are chosen randomly, as opposed to relying on back-propagation or gradient descent,
and the output layer is trained by a simple linear learning rule. This model reduces the dimensionality
of the hyperparameter space, and the process of finding the optimal values for the hyperparameters
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becomes rather simplified. In other words, given an RRNN and a feature space, the network is
trained by randomized selection of features during a single cycle of training. In particular, a nonlinear
squashing function is used to compute the weighted sum of the inputs and to map the input data into
the feature space. This does not imply that the parameters describing the hidden nodes, which are
independent of the training data, are unconstrained. The parameters for the hidden nodes are randomly
generated by adhering to a given continuous probability distribution function.

This approach, outlined and discussed in [25], is different from multi-layer based neural networks
and offers excellent efficiency. Once the input weights and biases are chosen during the training,
the overall output weight (of the output layer) setup can be considered as a linear system. Furthermore,
the output weights (linking the hidden layer to the output layer) can analytically be determined
through a simple generalized inverse operation of the hidden layer output matrices.

Consider a basic RRNN model with L neurons in the hidden layer and a training set with N
arbitrary distinct samples of (xj, tj). The output function for the network can then be expressed as [25]:

fL(x) =
L

∑
i=1

βigi(wixj + bi) , ∀j ∈ {1 . . . N} (3)

where xj, wi, and βi are the input, input-to-hidden weight, and hidden-to-output weight vectors,
respectively. Furthermore, g(.) and bi are the nonlinear piece-wise activation function and the bias of a
hidden node i.

Letting hi(x) = gi(wixj + bi) and:

h(x) =
[
h1(x), h2(x) . . . , hL(x)]

we render a nonlinear feature mapping between the feature space and the outputs. While the input
weights are expressed between a pair of input and hidden nodes, the output weights connect the i-th
hidden node to the output nodes. Thus, Equation (3) becomes:

fL(x) =
L

∑
i=1

βihi(x)

= h(x)β (4)

The output weights vector β should be determined by minimizing the L2 norm. In other words,

e2 = min
β∈RL×m

‖ Hβ− T‖2
2 (5)

where T is the target matrix of the training dataset and H is the output matrix of hidden layers,
given by:

H =

 h(x1)
...

h(xN)



=

 g(w1 · x1 + b1) · · · g(wL · x1 + bL)
...

...
...

g(w1 · xN + b1) · · · g(wL · xN + bL)


N×L

(6)
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The approximation of β can be given by β
∗
= H†T, where H† is the Moore–Penrose generalized

inverse of H. In order to obtain better generalization performance of the learning network, the smallest
training error and the smallest norm of the output weights must be sought as in [25], i.e.,

min
β

1
2
‖β‖2 +

C
2
‖T−Hβ‖2 (7)

where C is the regularization parameter between the training error and the norm of the output weights.
If N ≥ L (i.e., H has more rows than columns), then the approximated value of β can be given by:

β∗ ≈
(

HTH +
I
C

)−1

HTT (8)

where I is an identity matrix of dimension L. Conversely, if N < L (i.e., H has more columns than rows),
then the approximated value of β can be given by:

β∗ ≈ HT
(

HHT +
I
C

)−1

T (9)

where I is an identity matrix of dimension N.
Ridge regression is one of the classical statistical algorithms, and it is often used to transform

a non-linear regression function in the original input space as a linear regression function in the
feature space. Hence, the dual version of the ridge regression algorithm allows the use of kernel
functions. Furthermore, the ridge regression is easy to generalize to KRR using the kernel technique.
Assume that we have a training set {(x1, y1), . . . , (xN , yN)}, with N samples. Furthermore, xi ∈ Rn,
yi ∈ R, for i ∈ {1, . . . , N}. For a linear system y = ωx, ridge regression minimizes the following
cost [26]:

J(ω) = λ‖ω‖2 + ∑
i
(yi −ωTxi)

2
(10)

where λ > 0 and fixed. Furthermore, λ controls the trade-off between the bias and variance of the
estimate. The prediction ŷ given by the ridge regression on a new unlabeled data point x is [26]:

ŷ = yT(K + λI)−1κ (11)

where K is matrix of dot products of the vectors, and κ is vector of dot products of x and vectors of the
training set such that:

K = {K(xi, xj)} (12)

and

κ = {K(xi, x)}

for i, j = {1, 2, . . . , N}. In fact, these are also the kernel functions of interest. When using feature
vectors, each data point xi is replaced by a corresponding feature vector Φ(xi). Thus,

K(xi, xj) = < Φ(xi), Φ(xj) >

= Φ(xi)
TΦ(xj) (13)

Using this in Equation (11), the representation of the output weights and the estimated output of
the system can be expressed as:

w = Φ(ΦTΦ + λI)−1YT

= Φ(K + λI)−1YT (14)
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and:

Y(x) = Y(K + λI)−1ΦTΦ(x)

= Y(K + λI)−1κ(x) (15)

respectively. In this paper, we employ the RRNN and KRR algorithms and the ECAV based feature
extractor to build a novel classification system.

3. Algorithm for Sea-Land Clutter Classification

3.1. Overview of the System

Figure 1 shows the overall organization of the system, consisting of four key steps, namely dataset
management, preprocessing, feature extraction, and classification.

Sea clutter 
dataset

land  clutter 
dataset

Data 
preprocessing

ECAV‐feature 
extraction RRNN/KRR Accuracy of 

classification

Figure 1. Flowchart of the proposed system.

The detailed aspects of these steps are as follows:

• Dataset management: In general, real clutter data are rarely available due to the nature of the
study. However, in our case, we obtained the sea clutter from the IPIX radar. The land clutter,
however, has to be simulated. This component of the system handles the aspect of simulating the
land clutter and mixes with the real sea clutter. More specifically, the land clutter is modeled as
the Weibull amplitude compound Gaussian distribution.

• Preprocessing: To facilitate easier signal processing operations, the radar returns
(whether simulated or real) have to be expressed in the quasi-stable state form. This is feasible
only if the signals are pre-treated for short time interval information. In this stage, the sea and
land clutter data would be separated into a number of short time interval fragments using framing
and windowing techniques.

• Feature extraction: The features of sea and land returns, based on their inherent nature and
amplitude statistics, are extracted from the short time interval information. These features can
reflect the different properties between the two clutters in the time domain, such as the energy,
the zero-crossing rate, the autocorrelation function, and the shape parameters of the distribution.

• Classification: Two popular machine learning algorithms, namely RRNN and KRR, are used
to classify the sea and land clutter. Both algorithms rely on the features that have been
extracted above.

In the following subsections, each of these is covered in detail.

3.2. Sea and Land Clutter Preparing

In this paper, sea clutter data were acquired from the IPIX (Intelligent PIXel) radar shared by
McMaster University, Canada, with a carrier frequency of 9.3 GHz, pulse repetition frequency of 1 kHz,
and range resolution of 30 m. The dataset also includes four polarization states. The datasets include a
large number of pure sea clutter with targets embedded wherever possible. The dataset also includes
pure sea clutter (without any targets). However, the dataset does not include any land clutter [27].

With the dataset not containing land clutter, we addressed this issue by complementing the
dataset with land clutter through simulation. However, modeling land clutter is a rather complex
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process. First, the land clutter is not spatially uniform. This stems from the fact that land surfaces
contain natural and man-made structures, such as uniform terrains, farmlands, vegetation, buildings,
roads, and skyscrapers. Secondly, the backscatter may vary with the weather conditions. These two,
collectively, render any development of a complete theoretical or precise mathematical model for land
clutter a difficult process. Otherwise, the theoretical model under certain simplified conditions can
effectively assist research and engineering applications. There are two types of land clutter modeling
methods, namely the method based on electromagnetic scattering mechanism, such as the Georgia
Institutes of Technology (GIT) model, the Ulaby model, and alike models, and the method based on
statistics [28]. However, using models based on statistics is easier, efficient, and versatile. For this
reason, statistics based methods are considerably common when modeling land clutter. Among these,
the distribution of the amplitude can describe the temporal and spatial variation of land clutter.
The experimental results mentioned in [28,29] indicated that the corresponding statistical distributions
are Weibull, which is a particular case of the compound Gaussian (CG) distribution. More specifically,
the Weibull distribution can be used to describe the land clutter amplitude of uniform terrain for L
and X band radars, almost mimicking high resolution radars for land clutters

The CG distribution is widely used for high resolution radar echoes. It can be presented as the
product of a non-negative random process and a Gaussian process. The former is known as a texture
component, while the latter is known as a speckle component [21,22]. Thus,

Z(n) =
√

τ(n)x(n)

in which:
x(n) = xI(n) + jxQ(n) (16)

where τ(n) and x(n) are the real non-negative and complex zero-mean Gaussian process components,
respectively. In [30], the compound Gaussian (CG) model was used to describe clutter returns as a
complex process. The real, nonnegative modulation component is τ; hence, τ > 0. The corresponding
modulating variate has the following probability density function (PDF).

f (τ) =
1

πτ3

∫ ∞

0
e−δp cos θ cos

(
δrq sin θ − r

2τ2

)
dr (17)

where:
p = r

α
2 ,

q =
α

p
,

δ =

[
Γ(1 + 2/α)

2

] α
2

,

and:
θ =

απ

4
.

where τ > 0, α is the shape parameter, and the range 0 < α ≤ 2 guarantees that the generated clutter
conforms to the Weibull distribution. δ is the scale parameter, and Γ(·) is the gamma distribution. r is
the independent variable of the density function.

3.3. Preprocessing of Clutter Data

Conventional and common signal processing algorithms, such as the discrete Fourier transform
(DFT) and the fast Fourier transform (FFT), are suitable when the signal to be processed is in the steady
state. However, radar clutter is often time-varying, particularly when considered across the whole
time-span. Thus, direct application of FFT or DFT and relevant techniques cannot be used directly
on radar clutter returns. However, the signal can be considered piecewise steady state signals over
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a number of time segments. In other words, by segmenting the whole time series into a number of
segments, each segment represents a (temporary) steady state process, on which the existing techniques
can be applied. This property of relative stability, which is referred to as the quasi-steady state of signal
in the short time interval, is an important aspect of preprocessing of clutter data, in particular prior to
the feature extraction. More specifically, the overall time-series must be segmented into a number of
frames so that they can be framed into short time intervals [31].

One of the key aims (apart from establishing the near steady state signal) of windowing is to
avoid the feature mutation between consecutive frames. This is achieved by using a frame shift by s
points apart. Let x(t) be the sampled signal x(t) with a length of l time steps. Let d be the length of
each frame. Then, the signal x(t) can be segmented into N frames, where:

N =
(l − (d− s))

s

=
l − d

s
+ 1 (18)

Furthermore, let there be a windowing function w(t). The discrete signal x(m) can be preprocessed
as follows:

xw(m) = w(t) ∗ x(m) (19)

where 0 ≤ m ≤ l and ∗ is the convolution operator. In other words, Equation (19) represents the unit
impulse response FIR filter. With this, the signal in the i-th frame f (xi(k)) is:

f (xi(k)) = w(k) ∗ x(s(i− 1) + k) (20)

where 1 ≤ i ≤ N and k = 1, 2, · · · , d. The selection of frame length d plays an important role in
the extraction of relevant information. In our case, we determined the appropriate value for d using
experimental evaluation.

3.4. Short Term Time-Domain Signal Processing and Parameter Estimation

Radar returns from sea, land, and targets of interest are always mixed. Although sea-land maps
may be of help, as discussed before, it is not always possible to make use of pre-loaded maps, or they
may not offer the full capability to distinguish between clutter types and targets. As such, the selection
of features that would aid the classification algorithms is of paramount importance. There exists a
body of work on the aspects of feature selection for clutter classification. Features of interest include
characteristics of the sea clutter, such as the amplitude value, the shape parameter of the distribution,
and high order features like kurtosis, skewness, and reflection coefficients. The features we opt for in
this paper are based on windowed signals and include the signal short time energy, the zero-crossing
rate, the autocorrelation function, and the shape parameters to structure the feature space. We discuss
these features in detail below. The simulation results based on the IPIX processing radar datasets in
1998 and simulated land clutter data are demonstrated for the ease of understanding.

1. Short time energy:

The radar echo intensity, which is representative enough of the return energy, can be used to
discriminate between the two classes of clutter [22]. From the signal processing perspective,
both the short time amplitude function and the energy function can characterize the energy
information of the quasi-steady state signals. The latter have a magnifying effect on different signal
characteristics. In our work, we extract the time domain short time energy as a distinguishing
indicator and compare it with the amplitude feature, as in [2]. The mathematical formulation is
as follows: Assume that the short time energy of the signal in the i-th frame is E(i). The general
formulation of the short time energy of the whole signal x(t) is defined as:
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E[x(t)] = {E(1), E(2), . . . , E(N)} (21)

where N is the number of frames. Figure 2 shows the raw and short-term signals of the sea-land
clutter ((a) and (b)). We also show the distribution of the energy amplitude as a histogram for each
of these clutters by binning energy amplitudes accordingly. From the histograms, it can observed
that the energy for sea clutter is distributed from 5.5× 105 to 7.0× 105 J, while the energy for the
land clutter is distributed from 0.95× 106 to 1.15× 106 J. The range of the distributions can easily
facilitate identifying the classes of these clutters.
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Figure 2. (a) Short time energy of the sea clutter; (b) short time energy of the land clutter.

2. Short time zero-crossing rate: Given a radar system with a predetermined configuration, such as
the frequency, polarization, and resolution, the echo from the clutter would vary depending
on a number of parameters as discussed before. As for returns from sea and land, it is worth
noting that the sea surface is partially homogeneous, while the land surface is heterogeneous
with complex terrain conditions, in particular including the discrete scatters such as buildings
and other structures. These differences lead to different amplitude profiles for the clutters from
sea and land [29]. One of the important metrics for estimating the frequency value of a signal is
zero-crossing (ZC) [32], which essentially accumulates a number of times a given signal crosses
the zero-line. Albeit that it is simple, it is an effective technique: it not only has much fewer
calculation requirements than the traditional fast Fourier transform (FFT) approach, but also
demonstrates a high sensitivity to the amplitude change of the signal [32]. In this work, the ZC
based feature space is proposed to distinguish the clutter from sea and land. Let C(i) denote the
short time zero-crossing rate (STZCR) of the signal in the i-th frame, namely f (xi(k)), which is
defined as:

C(i) =
1
2

d−1

∑
k=0
|sgn[ f (xi(k)]− sgn[ f (xi(k− 1)]| (22)

where 1 ≤ i ≤ N, 1 ≤ k ≤ d, and sgn(·) is a symbolic function.

The general formulation of the STZCR of the whole signal x(t) is:

C[x(t)] = {C(1), C(2), · · · , C(N)} (23)
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Figure 3 shows the short time zero-crossing rate and the histogram of the amplitude variation
for the sea and land clutter. Although both signals appear to be similar, the distribution of the
zero-crossing rate for the sea clutter is more concentrated around 250, when compared against the
land clutter. This is primarily due to the homogeneous nature of the sea surface.
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Figure 3. (a) Short time zero-crossing rate of the sea clutter; (b) short time zero-crossing rate of the
land clutter.

3. Short time autocorrelation function: Although radar echoes from sea and ground surfaces pose
different challenges to processing, autocorrelation both in the spatial and temporal domain may
provide more insight into the behavior of the signals. In this paper, we focus on the autocorrelation
in the time-domain. Let A(i) be the autocorrelation function (ACF) of the signal in the i-th frame,
f (xi(k)). A(i) can be expressed as:

A(i) =
d−m−1

∑
k=0

f (xi(k)) f (xi(k + m)) (24)

where d is the length of the frame and m is the delay. The general formulation of the whole signal
x(t) is:

A [x(t)] = {A(1), A(2), . . . , A(N)} (25)

Figure 4 shows the result of the autocorrelation for one of the frames (100th frame), of the sea
and land clutter signals. We also show the corresponding amplitude histogram for both cases.
Although the peaks of the result are the same, the attenuation periods (to zero) for the of sea and
land clutter are different.

4. Shape parameter of the clutter distribution: Although the Weibull and K distribution are two
different distributions, they both can be derived from the same general form with different
values in their parameters [33]. The shape parameter v represents the texture of the clutter.
Homogeneous clutters lead to high values for v, while strong returns such as land clutter are
represented by small values [10] of the same. Hence, the shape parameter can be a useful feature in
the classification of clutter. The probability density distribution function of different distributions
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with different shape parameters can be found in [6]. In this paper, we obtained this feature using
the moment estimation approach outlined in [5].

The general formulation of the shape parameter V̂(x(t)) of the whole signal x(t) is:

V̂ [x(t)] = {v̂(1), v̂(2), · · · · · · , v̂(N)} (26)

Figure 5 shows the distribution of the clutters (both sea and land), computed as described above.
For the sea clutter, the range of values for the shape parameter is 2.65 to 3.0, while for the
land clutter, it is 1.75 to 1.85. The parameter values here reflect the sharpness of the statistical
characteristics of the echo under different clutter conditions.
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Figure 4. (a) Autocorrelation function of the sea clutter (i = 100); (b) autocorrelation function of the
land clutter (i = 100).

(a) (b)

Figure 5. (a) Parameter estimation for the sea clutter; (b) Parameter estimation for the land clutter.
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With the four features outlined above, one may build the overall feature space F(x) over an input
signal x(t) as follows:

F[x] =


E(1) E(2) · · · E(N)

C(1) C(2) · · · C(N)

A(1) A(2) · · · A(N)

V̂(1) V̂(2) · · · V̂(N)


M×N

(27)

where M is the number of features of the clutter and N is the number of samples, which is the same
as the number of frames in the data. The raw inputs are not suitable to be used as features for the
RRNN and KRR classifiers. However, the preprocessed version eliminates the dimensionality issues,
hence being suitable to be utilized by the RRNN and KRR classifiers.

3.5. RRNN Based Classification Algorithms

Both the RRNN and KRR based algorithms outlined above are two, single hidden layer based
feed forward neural networks. Given a training dataset D = {xi, ti}, i = 1, 2, ..., N, and activation
function g(·), a high-level algorithmic description of the RRNN is given in Algorithm 1, where H is the
output matrix of hidden layer, β∗ is the hidden-to-output weights, and w and b are the input-to-hidden
weights and bias, respectively. What needs to be emphasized here is that once the node parameters of
the hidden layer are randomly generated, they will be fixed during training and solving the output
weight with the least-squares approach.

Algorithm 1 RRNN Algorithm—Training

1: . nE : Number of epochs
2: . nB : Batch size
3: . S : Overall dataset size
4: . C : Regularization parameter
5: . L : Hidden node number
6: M← d S

nB
nEe

7: Randomly generate w b
8: for i = 0; i < M; i++ do
9: H ← Equation (6)

10: if N ≥ L then
11: β∗ ← Equation (8)
12: else
13: β∗ ← Equation (9)
14: end if
15: end for

4. Experimental Results and Analysis

To evaluate the effectiveness of the proposed classification algorithms, we performed a number
of experiments in a methodical way. We discuss the procedure and the experimental results in the
subsections that follow. We also discuss the results in detail in the relevant subsections.

4.1. Experimental Setup

A large number of experiments were carried out to test the effectiveness of the proposed approach.
These experiments were:
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1. Assessing the impact of the frame length on the classification accuracy by varying the frame
length d;

2. Understanding the performance of the RRRN classifier through exhaustive evaluation.
3. Understanding the performance of the KRR classifier through exhaustive evaluation.
4. Assessing the impact of different features on the classification accuracy; and
5. Assessing the performance of the RRNN and KRR classifiers against other classifiers.

In all these cases, the data for the tests were as discussed in Section 3, where we mixed the real sea
clutter data from the IPIX radar with simulated ground clutter data. In all the experiments, the dataset
was split into an 80:20% ratio for training and testing. We also used a modest computing system with
an Intel Core-2 processor (San Francisco, CA, USA), clocked at 2.30 GHz with 16 GB RAM. The dataset
used for the evaluation in the following subsections contains the sea clutter from an IPIX radar with
60,000 measurements over a region R1 and the land clutter, which is modeled as Weibull amplitude
compound-Gaussian distribution. We used the same dataset configuration (referred to as DS-0) across
all of the experiments below, unless otherwise stated.

4.2. Impact of Frame Length on Classification Performance

To understand the impact of frame length on the classification performance, we varied the
frame length among {128, 256, 512, 1024}, while using the proposed features, namely the energy,
the zero-crossing rate, the autocorrelation, and the shape parameter v (ECAV), for the RRNN and KRR
networks. We show the resulting performance in Table 2 and Figure 6. In general, the training time
decreased with the frame length, for both methods. For a fixed number of frames, when the frame
length increased, the length of the signal decreased, and thus, the resulting feature set became smaller
(see Equation (17)), leading to fewer computations during the classification. Furthermore, the best
testing accuracy corresponded to the frame length d = 512, for both RRNN and KRR. Although,
in theory, this can provide a more detailed description of the signal characteristics, a signal with a
limited length leads to fragmented information. The rest of the experiments outlined in the following
subsections used a frame length of d = 512.
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Figure 6. (a) Accuracy of the KRR and RRNN algorithms with varying frame lengths; (b) Training time
for the KRR and RRNN algorithms with varying frame lengths.
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Table 2. Variation of testing accuracy with frame length.

Accuracy (%)

Frame Length (d) RRNN KRR

128 85.24 85.56
256 90.13 91.08
512 98.72 98.51

1024 95.04 94.34

4.3. Evaluation of the RRNN Classifier

The overall performance of the RRNN classifier varied with a number of parameters, even when
the frame length was fixed. The two main important parameters of interest were the number of nodes in
the hidden layer L and the regularized parameter C, where L ∈ {100, 200, 300, 400, 500, 700, 1000, 1500}
and C ∈ {10−5, 10−4, . . . , 105}. The overall search space was L × C. To understand the overall
performance behavior of the RRNN, we performed a grid search over the space of L× C.

The search results are shown in Figure 7. We first show the variation of the performance across the
L× C search space (Figure 7a). We then extracted the optimal L value, for which the performance was
the best and show the variation of the performance across the range of C values (Figure 7b). We then
repeated the same for the optimal C value (Figure 7c).

The results show that a near-optimal performance can be sustained over a large range of the
parameter space. In other words, the overall performance was smooth and was insensitive to the
variation of the parameters in this range. In the non-smooth region of the performance, the parameter L
was a dominant factor of the performance for C ∈ {0, . . . , 105}. Parameters L and C jointly influenced
the overall performance for C ∈ {10−4, . . . , 10−1}.

From Equation (6) , the value of the parameter L determined the hidden layer output matrix
H, which in turn influenced the cost error between the estimated output and target output.
From Equation (7), the regularized parameter C was a balanced parameter between the training
error and the norm of the output weight.
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Figure 7. (a) Performance of the RRNN across the search space; (b) Performance of RRNN for the
optimal L value; (c) Performance of RRNN for the optimal C value.

4.4. Evaluation of the KRR Classifier

Similar to the RRNN, the overall performance of KRR also depends on the selection of
hyperparameters. However, in the case of KRR, the parameters of interest are the width of the Gaussian
kernel σ and regularized parameter C, where σ ∈ {2−13, 2−12, . . . , 213} and C ∈ {10−5, 10−4, . . . , 105}.
The overall search space is σ× C, and as before, we performed a grid search on this space.

The Gaussian kernel function used by the KRR is a type of radial basis function, representing
the nonlinear feature mapping from the hidden layer to the outputs. The width parameter σ of
the KRR controls the radial scope of the function. Carefully adjusting the radial scope can provide a
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compromise between over-fitting and under-fitting. In addition to σ, KRR obtained a better generalized
performance through the regularization parameter C.

We show the overall performance results in Figure 8. We first show the variation of the performance
across the σ×C search space (Figure 8a). We then extract the optimal σ value, for which the performance
was the best, and show the variation of the performance across the range of C values (Figure 8b). We then
repeat the same for the optimal C value (Figure 8c).
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Figure 8. (a) Performance of the KRR algorithm across the search space; (b) Performance of KRR
algorithm for the optimal σ value; (c) Performance of KRR algorithm for the optimal C value.

As can be observed, the best performance was almost the same as for the RRNN with the relevant
parameters. However, the KRR classifier was more sensitive to parameter variation than the RRNN
classifier. With sharp, non-smooth variation, the performance of the classifier varied rather sharply
and thus indicated that a careful selection of parameters is important for achieving the best possible
performance. Although the performance varied rather sharply, improved performance was observed
over a subset of the parameter space σ0 × C0, where C0 ∈ {100, 101, 102, 103} and σ0 ∈ {22, 23, . . . , 213}.

4.5. Impact of Features on the Classification Performance

To assess the performance of the proposed feature selection, we evaluated the impact of different
features on the overall performance of the RRNN and KRR networks.

Although a large set of features can be engineered, we opted for three common feature sets,
extracted through two different wavelets, namely the db3 and f k6 wavelets, and the amplitude,
shape parameter V, and correlation function (AVC). These features are common in the context of
clutter separation and commonly used in signal separation tasks [12,13,34–36]. Both the db3 and f k6
wavelets were used to extract four feature vectors from each frame.

Both the RRNN and KRR classifiers were tested on the same dataset, using different features,
and the resulting performance is reported in Table 3. It is worth noting that we also compared
the performance of the networks with no features specified (marked as “None”). In other words,
the networks consumed only the raw data, and no features were specified explicitly. We also illustrate
this in Figure 9, showing both the classification performance and training times. As can be observed,
the proposed feature set offered the best possible performance. In addition to this, the training time for
KRR was better than the RRNN.

Table 3. Testing accuracy as % (for d = 512).

Feature Set KRR RRNN

ECAV (Proposed) 98.51 98.72
AVC 91.28 92.12

Wavelet (db3) 59.57 59.95
Wavelet ( f k6) 57.23 56.42

None 68.00 69.40
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Figure 9. (a) Accuracy of the KRR and RRNN algorithms across different feature sets; (b) training time
for the KRR and RRNN algorithms across different feature sets.

4.6. Comparison against Other Classifiers

To assess the relative performance of RRNN and KRR classifiers, we used the support vector
machine (SVM) and extreme learning machine (ELM) classifiers as the baselines due to [14]. To make
the comparison fair, we maintained the same feature set across all these classifiers and maintained
d = 512.

First, we performed the evaluation over the existing dataset configuration, which was used in all
experiments hitherto. We show the overall resulting performance in Figure 10. As can be observed,
RRNN offered the best and KRR the second best classification performance. The testing accuracy and
training time of RRNN were both better than ELM and SVM.
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Figure 10. (a) Testing accuracy of ELM, KRR, and RRNN based on the ECAV feature set;
(b) Training time for the ELM, KRR, and RRNN based on the ECAV feature set.
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To further test the overall performance of the classifiers, we introduced two additional dataset
configurations, resulting in an exhaustive evaluation of the classifiers over three different dataset
configurations, namely:

• Dataset Configuration-1 (DS-1): sea clutter from an IPIX radar with 120,000 measurements over a
region R1. The land-clutter is modeled as a Weibull amplitude compound-Gaussian distribution.
In other words, the sea-clutter has twice as much as DS-0.

• Dataset Configuration-2 (DS-2): sea clutter from an IPIX radar with 60,000 measurements over a
region R2. The land-clutter is modeled as a Weibull amplitude compound-Gaussian distribution.

• Dataset Configuration-3 (DS-3): sea clutter from an IPIX radar with 60,000 measurements over a
region R1. The land-clutter is modeled as a log-normal distribution.

We show the overall performance of the RRNN and KRR classifiers against the SVM and ELM
classifiers tested over dataset configurations DS-1, DS-2, and DS-3 in Figure 11. As can be observed,
the performance of the KRR and RRNN classifiers was almost the same and was better than ELM and
SVM in training accuracy, which is because ELM achieves the optimal result by minimizing the cost
error between the estimated output and target output, while SVM obtains high-dimensional feature
mapping by selecting the appropriate kernel function. Meanwhile both RRNN and KRR consider
the trade-off between the output weight and cost error, which improved the classifier’s performance.
However, the impact of training a network on an unbalanced dataset is not clear. When comparing
the training time of the classifiers, the RRNN offered the best advantage over the others, and it was
insensitive to different datasets. However, KRR was sensitive to different datasets, such as a significant
increasing in training time under DS-1. Two recent methods, namely SVM and ELM, showed slightly
worse accuracy performance than the method we adopted. Despite the training times being similar,
this was due to SVM adopting the sequential minimal optimization strategy to solve the quadratic
programming problem, and RRNN fixed the random parameters in the hidden layer rather than
iteratively updating them to minimize the output error, which is the common pattern of traditional
neural networks. We also can see that DS-1 and DS-2 were more suitable for the RRNN, and DS-2 was
more suitable for KRR; however, both classifiers’ testing accuracy were reduced under DS-3.

ELM KRR RRNN SVM ELM
92

93

94

95

96

97

98

99

100

T
es

ti
n

g
 A

cc
u

ra
cy

 (
%

)

DS-1

DS-2

DS-3

(a)

ELM KRR RRNN SVM
0

5

10

15

T
ra

in
in

g
 T

im
e 

(m
s)

DS-1

DS-2

DS-3

(b)

Figure 11. (a) Accuracy of the ELM, KRR, and RRNN algorithms across different datasets;
(b) Training time for the ELM, KRR, and RRNN algorithms across different datasets. DS, dataset.

5. Conclusions

The identification and separation of clutter from true measurements is one of the essential
operations in many target tracking applications. One of the specific problems that is encountered in
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many target tracking applications is the classification of clutter types, particularly at the interfaces,
such as sea-land or air-land, among many others.

Conventionally, these problems are often addressed using model based approaches, such as
binary hypothesis testing, or by using well-formulated statistical models of the clutter types. However,
with clutter (and target) statistics being highly variable, measurements from radar rarely fit these
statistical models. In other words, unless the models are data-adaptive, they are unlikely to perform
very well on classification.

Machine learning based techniques are known to be data adaptive and have been used to classify
clutter types [2,5,6,8–10], often by exploiting certain features of the datasets. In this paper, we proposed
two different approaches to this problem, namely the regularized randomized neural network (RRNN)
and the kernel ridge regression neural network (KRR), along with a novel feature set, collectively
referred to as ECAV, which captures the energy, the zero-crossing rate, the autocorrelation function,
and the distribution shape parameter V.

The exhaustive evaluation based on a number of mixed datasets showed that the proposed classifiers
offer superior classification performance when used against the proposed feature set and when compared
against other classifiers, namely support vector machine and extreme learning machine.
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The following abbreviations are used in this manuscript:

RRNN regularized randomized neural network
KRR kernel ridge regression neural networks
ECAV energy, zero-crossing rate, autocorrelation, and shape parameter V
NN neural networks
ANN artificial neural networks
ELM extreme learning machine
KNN K nearest neighbor
SVM support vector machine
OCSVM one-class support vector machine
2CSVM cost sensitive support vector machine
CG compound-Gaussian
IPIX Intelligent PIXel
GIT Georgia Institutes of Technology
PDF probability density function
DFT discrete Fourier transform
FFT fast Fourier transform
ZC zero-crossing
STZCR Short time zero-crossing rate
ACF autocorrelation function
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