
The k-Centre Selection Problem for Multidimensional

Necklaces

Duncan Adamson, Argyrios Deligkas, Vladimir V. Gusev, Igor Potapov

August 5, 2021

Abstract

This paper introduces the natural generalisation of necklaces to the multidimensional set-
ting – multidimensional necklaces. One-dimensional necklaces are known as cyclic words,
two-dimensional necklaces correspond to toroidal codes, and necklaces of dimension three can
represent periodic motives in crystals. Our central results are two approximation algorithms
for the k-Centre selection problem, where the task is to find k uniformly spaced objects within
a set of necklaces. We show that it is NP-hard to verify a solution to this problem even in the
one dimensional setting. This strong negative result is complimented with two polynomial-
time approximation algorithms. In one dimension we provide a 1 + f(k,N) approximation

algorithm where f(k,N) =
logq (kN)

N−logq (kN)
− log2q(kN)

2N(N−logq (kN))
. For two dimensions we give a

1 + g(k,N) approximation algorithm where g(k,N) =
logq (kN)

N−logq (kN)
− log2q(k)

2N(N−logq (kN))
. In both

cases N is the size of the necklaces and q the size of the alphabet. Alongside our results
for these new problems, we also provide the first polynomial time algorithms for counting,
generating, ranking and unranking multidimensional necklaces.

1 Introduction

The problem of finding k uniformly spaced points (centres) in a metric space is well known as the
k-centre selection problem. Finding centres is important in many contexts: facility location
and distribution, representative samples for state space exploration or identification of cluster
centres. So far, the problem has been intensively studied for finite and explicitly given inputs like
the k-centre problem for graphs [14], grids [35] or strings [24, 28].

In graph theory, the objective of the k-centre problem is to find a set C of k vertices, in a
given undirected (weighted) graph G = (V,E), for which the maximal distance d(v, c) from any
vertex v to its nearest centre c in C is minimised min|C|=k maxv∈V minc∈C d(c, v).
In the area of stringology finding k-centres within a set of words can be seen as a problem in
a complete weighted graph. Thus, vertices are words and the distance between words depends
on their closeness such as the Hamming distance or overlap/Jaccard coefficients for contextual
similarity. However, the configuration space of many algebraic and combinatorial structures cannot
be explicitly given due to the exponential growth and infeasibility of listing/enumerating the space.
So the solutions for centre-selection problem on graphs, or explicitly given finite set of strings, is
impractical to apply directly on these objects.

In this paper we introduce a fundamental class of combinatorial objects, multidimensional neck-
laces, generalising the classical combinatorial necklaces, and we study k-centre selection problem
for these objects. Multidimensional words in automata theory literature are known as picture-
languages and they are a well-studied generalisation of one-dimensional languages to two dimen-
sions [3, 8, 18, 27, 29, 34]. The level of complexity to deal with such objects moves even higher if
we consider natural classes of words which are equivalent under translation symmetry, known as
necklaces [6, 19].

One-dimensional necklaces are known as cyclic words, i.e. strings over a finite alphabet, which
are equivalent under the cyclic shift operation. One-dimensional necklaces also closely related to
Lyndon words, i.e., aperiodic necklaces. For both one-dimensional necklaces and Lyndon words
efficient algorithms for generation, ranking and unranking have been discovered only recently

1

ar
X

iv
:2

10
8.

01
99

0v
1

 [
m

at
h.

C
O

]
 4

 A
ug

 2
02

1

[25, 26, 33]. Two-dimensional necklaces correspond to toroidal codes, which have recently attracted
attention in the combinatorics on words community in the context of bioinformatic applications
[4].

Periodic motives in crystals is another example to illustrate the application of necklaces up to
dimension three, e.g. see representation of SrT iO3 in Figure 1. The methods for effective explo-
ration of a configuration space of crystal structures and a search for potentially stable materials,
see EMMA [12, 13], FUSE [11], AIRSS [31], require procedures for selecting equally spaced seeding
configurations in contrast to purely random initial positions. The solution to k-centre problem on
combinatorial necklaces can be used to build representative sample in discrete configuration space
of crystalline materials [1, 5] and speed up in silico predictions of novel materials, known to be one
of the major scientific challenges of our time. The substantial gap of knowledge in solving k-centre
problem for implicitly represented objects and applications in computational chemistry motivate
the study of k-centre selection problem for multidimensional necklaces.

Figure 1: The crystal of SrT iO3 (left) and its 3D (middle) and 1D (right) necklace representations.

Main Contributions: Our contribution is twofold. Firstly, we introduce the k-centre problem
for necklaces and develop approximation algorithms for it. Secondly, we derive efficient procedures
for foundational operations on multidimensional necklaces. These operations are used by our
algorithms, and are of independent interest.

For the k-centre problem, we introduce the overlap distance for necklaces. Using this, we
provide both negative and positive results for the problem. On the negative side we prove that it
is NP-hard to evaluate the quality of a solution for the problem even for 1-dimensional necklaces.
Although this is does not resolve the complexity of k-centre problem, it is a strong indication
that the problem is hard. On the positive side, we design two polynomial-time algorithms that

achieve 1+f(N, k) approximation. In the 1-dimensional case this is 1+
logq (kn)

n−logq (kn)−
log2

q(kn)

2n(n−logq (kn)) ,

and for the multidimensional case it is 1 +
logq (kN)

N−logq (kN) −
log2

q(k)

2N(N−logq (kN)) where N is the size of

a necklace and q the size of the alphabet. Our analysis for both algorithms relies on technical
Lemma 2, providing an upper bound on the distance between necklaces and the nearest sample
based on the number of subwords which we cover with at least one sample. Our first algorithm
works when the input includes a de Bruijn sequences of logarithmic size relative to the number of
necklaces; these can be efficiently computed for one-dimensional necklaces, while no algorithm is
known for higher dimensions. Our second algorithm bypasses this limitation using new operations
on multidimensional necklaces like counting and ranking that we establish in Section 5.

Our second set of results contains the generalisation of several fundamental results from one-
dimensional necklaces to the multidimensional setting. This theme focuses on d-dimensional neck-
laces defined over a given set of dimensions n = (n1, n2, . . . , nd) and an alphabet Σ. Throughout
the paper we use N to denote n1 · n2 · . . . · nd. Our results include the first formal definition of
multidimensional necklaces, along with the algorithms to:

• Count the number of necklaces of dimensions n over the alphabet Σ in polynomial time.

• Generate the set of all necklaces of dimensions n over the alphabet Σ in at most O(N) time
per necklace.

• Rank a necklace
_
w in the set of all necklaces of dimensions n over the alphabet Σ in O(N5)

time.

• Unrank the ith necklace of dimensions n over the alphabet Σ in O(N6(d+1)) time.

The remainder of this paper is organised as follows. Section 2 provides definitions and notation
used throughout the paper. Section 3 gives the general results about the k-centre problem on
necklaces, including both hardness results and bounds on the optimal solutions. Section 4 provides

2

two approximation algorithms for this problem in one and d dimensional cases. Finally, Section 5
is devoted to the foundational results for multidimensional necklaces.

2 Preliminaries

We denote by [n] the set of integers from 1 to n inclusive and by [m,n] the set of integers from
m to n inclusive. Let Σ be a linearly ordered finite alphabet such that |Σ| = q. We denote by Σ∗

the set of all words over Σ and by Σn the set of all words in Σ∗ of length n. The notation w̄ is
used to clearly denote that the variable w is a word. The length of a word ū ∈ Σ∗ is denoted by
|ū|. We use ūi to denote the ith symbol of ū, where i ∈ [|ū|]. The concatenation of words w̄ and
ū, denoted w̄ : ū, returns the word w̄1w̄2 . . . w̄|w̄|ū1ū2 . . . ū|ū|. We extend the ordering from Σ to
Σ∗ in the usual lexicographic manner. Formally, let ū, v̄ ∈ Σ∗ be a pair of words, where |ū| ≤ |v̄|.
We say ū < v̄ if and only if there exists an i ∈ [min(|ū|, |v̄|)− 1] where ū1ū2 . . . ūi−1 = v̄1v̄2 . . . v̄i−1

and ūi < v̄i. For a given set of words S the rank of v̄ with respect to S is the number of words in
S that are smaller than v̄.

The translation of a word w̄ = w̄1w̄2 . . . w̄n by r ∈ [n − 1], denoted 〈w̄〉r, returns the word
w̄r+1 . . . w̄nw̄1 . . . w̄r. A word ū is equivalent to v̄ under translation if v̄ = 〈ū〉r for some r. The tth

power of a word w̄, denoted w̄t, is equal to t concatenations of w̄. A word w̄ is periodic if there is
some word ū and an integer t ≥ 2 such that w̄ = ūt. The smallest such t is called the period of w̄.
A word is aperiodic if it is not periodic.

A necklace, also called a cyclic word, is the equivalence class of words under the translation
operation. For notation, a word w̄ is written as

_
w when treated as a necklace. Given a necklace

_
w, the canonical representative is the lexicographically smallest element of the set of words in the
equivalence class

_
w. A cyclic subword of the word w̄, denoted w̄[i,j] v w̄, is the word ū such that

ūp = w̄i+p mod |w̄| for all p ∈ [0, n + j − i mod n]. Here and in the future we tacitly assume that
w̄0 is equivalent to w̄n. Since we consider only cyclic subwords in the paper, we omit “cyclic” in
the future. If w̄ = ū : v̄, then ū is a prefix and v̄ is a suffix. A prefix or suffix of ū is proper if its
length is smaller than |ū|.

Multidimensional Words and Necklaces A d-dimensional word over Σ is an array of d-
dimensions given by a vector n = (n1, n2, . . . , nd) of elements from Σ. For notation, given a vector
n = (n1, n2, . . . , nd) where every ni ≥ 0, [n] is used to denote the set {(x1, x2, . . . , xd) ∈ Nd|∀i ∈
[d], xi ≤ ni}. Similarly [m,n] is used to denote the set {(x1, x2, . . . , xd) ∈ Nd|∀i ∈ [d],mi ≤ xi ≤
ni}. Let |w̄| be the dimensions of w̄. Given a vector of dimensions n = (n1, n2, . . . , nd), Σn is used
to denote the set of all words of dimensions n over Σ. Let N = n1 ·n2 · . . . ·nd for a dimension vector
n. For a d-dimensional word w̄, the notation w̄(p1,p2,...,pd) is used to refer to the symbol at position
(p1, p2, . . . , pd) in the array. Given 2 d-dimensional words w̄, ū such that |w̄| = (n1, n2, . . . , nd−1, a)
and |ū| = (n1, n2, . . . , nd−1, b), the concatenation w̄ : ū is performed along the last coordinate,
returning the word v̄ of dimensions (n1, n2, . . . , nd−1, a + b) such that v̄p = w̄p if pd ≤ a and
v̄p = ū(p1,p2,...,pd−1,pd−a) if pd > a.

A multidimensional cyclic subword of w̄ of dimensions m is denoted v̄ vm w̄. As in the
one-dimensional case, a subword is defined by a starting position in the original word and set
of dimensions defining the size of the subword. The subword v̄ vm w̄ starting at position p
with dimensions m is the word v̄ such that v̄i = w̄j for all j of the form (p1 + i1 mod n1, p2 +
i2 mod n2, . . . , pd + id mod nd), where ij ∈ [nj]. Such a subword v̄ we denote by w̄p,m. One
important class of subwords are what we call slices, an example of which is given in Figure 2. The
ith slice of w̄, denoted by w̄i, is the subword of dimensions (n1, n2, . . . , nd−1, 1) starting at position
(i, 1, . . . , 1, 1) of w̄. In the 2D case, the ith slice corresponds to the ith row of a word. We use w̄[i,j]

to denote w̄i : w̄i+1 : . . . : w̄j . A prefix of length l for a multidimensional word w̄ is the first l
slices of w̄ in order. A suffix of length l for a multidimensional word w̄ is the last l slices of w̄ in
order. In the two-dimensional case, the prefix and suffix of length l corresponds to the first and
last l rows respectively.

A d-dimensional translation r is defined by a vector (r1, r2, . . . , rd). The translation of the
word w̄ of dimensions n by r, denoted 〈w̄〉r returns the word v̄ such that |v̄| = n and v̄p = w̄j

for all j of the form (p1 + r1 mod n1, p2 + r2 mod n2, . . . , pd + rd mod nd). We can assume that

3

Slice 1

Slice 2

Slice 3

Slice 4

Canonical Form (0,2) (2,0) (2,2)

Figure 2: Example of a 2-dimensional word w̄ of size (4, 4) over a binary alphabet: the 4 slices of
w̄; the canonical form of w̄; and three translations of w̄.

ri ∈ [0, ni − 1], so the set of translations is equivalent to the direct product of the cyclic groups
Zn1
× Zn2

× . . . × Znd
. For notation let Zn = Zn1

× Zn2
× . . . × Znd

. Given two translations
r = (r1, r2, . . . , rd) and t = (t1, t2, . . . , td) in Zn, t + r is used to denote the translation (r1 +
t1 mod n1, r2 + t2 mod n2, . . . , rd + td mod nd).

Definition 1. A multidimensional necklace (multidimensional cyclic word)
_
w is an equivalence

class of all multidimensional words under the translation operation.

Informally, given a necklace
_
w containing the word v̄,

_
w contains every word ū where there exists

some translation r such that 〈v̄〉r = ū. Let Nn
q denote the set of necklaces of dimensions n over an

alphabet of size q. As in the 1D case, a canonical representation of a multidimensional necklace
is defined as the smallest element in the equivalence class, denoted 〈_w〉. Similarly, given a word

v̄ ∈ _
w, 〈v̄〉 denotes the canonical representation of the necklace

_
w, i.e. 〈v̄〉 = 〈_w〉. To determine

the smallest element in the equivalence class, an ordering needs to be defined. First, we introduce
an ordering over translations.

Definition 2. Let Zn be the direct product of the cyclic groups Zn1
× Zn2

× . . . × Znd
, i.e. the

set of all translations of words of dimensions n. The translation g ∈ Zn is indexed by the injective

function index(g)→
d∑
i=1

(
gi ·

i−1∏
j=1

nj

)
The translation g ∈ Zn is smaller than t ∈ Zn if index(g) < index(t). Note that (0, 0, . . . , 0) is
the smallest translation and (n1 − 1, n2 − 1, . . . , nd − 1) is the largest. Using this definition an
ordering on multidimensional words is defined recursively. The key idea is to compare each slice
based on the canonical representations. For notation, given two words ū, s̄ ∈ _

w, let G(ū, s̄) return
the smallest translation g where 〈ū〉g = s̄. Note that G can be computed in O(N2) time by simply
checking each translation in Z|ū|. In one dimension, the smallest such translation can be found in
O(n) time [7].

Definition 3. Let w̄, ū ∈ Σn and let i be the smallest integer such that w̄i 6= ūi. Then w̄ < ū
if either 〈w̄i〉 < 〈ūi〉, or 〈w̄i〉 = 〈ūi〉 and index(G(w̄i, 〈w̄i〉)) < index(G(ūi, 〈ūi〉)). Further, given

necklaces
_
w and

_
u , we have

_
w <

_
u if and only if 〈_w〉 < 〈_u〉.

An example of the ordering is given in Figure 4. In what follows, Nn
q is assumed to be ordered

as in Definition 3. The rank of a necklace
_
w ∈ Nn

q is defined as the number of necklaces smaller

than
_
w in Nn

q . In the other direction, the ith necklace in Nn
q is the necklace

_
w ∈ Nn

q with the

rank i, i.e. the necklace
_
w for which there are i smaller necklaces.

In order to answer some of the key questions regarding multidimensional necklaces, there are
two further concepts that need to be defined for multidimensional necklaces. The first is the period
of a word. Informally the period of w̄ of dimensions n can be thought of as the smallest subword
that can tile d-dimensional space equivalently to w̄. In order to define the period of a word, it is
easiest to first define the concept of aperiodicity.

Definition 4. A word w̄ of dimensions n is aperiodic if there exists no subword v̄ v w̄ of dimen-

sions m 6= n such that mi ≤ ni for every i ∈ [1, d], and w̄j = v̄j′ where j
′

= (j1 mod m1, j2 mod

m2, . . . , jd mod md) for every position j ∈ n1 × n2 × . . .× nd in w̄.

4

Definition 5. The period of a word ā of dimensions n, denoted Period(ā), is the length of the
aperiodic subword b̄ v ā of dimensions m such that āi = b̄i′ for every position i ∈ n1×n2× . . .×nd
and i

′
= (i1 mod m1, i2 mod m2, . . . , id mod md).

period

([
0 0 1
0 0 1

])
= (3, 1)

period

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 = (2, 2)

period

([
0 0 1
0 1 0

])
= (3, 2)

Figure 3: Example of necklaces with the smallest period representing them.

See Figure 3 as an example. By Definition 5 every word, including aperiodic ones, has a unique
period [16]. In the case of an aperiodic word w̄, the period is equal to the dimensions of w̄. It

is easy to see that a multidimensional necklace
_
w is aperiodic if every word v̄ ∈ _

w is aperiodic.
Further, note that if some word in

_
w is aperiodic, then every word is. An aperiodic necklace is

called a Lyndon word. A related but distinct concept is an atranslational word. A word w̄ is
atranslational if there exists no translation g 6= (n1, n2, . . . , nd) such that w̄ = 〈w̄〉g.

Definition 6. A necklace
_
w if dimensions n is atranslational if there exists no pair of translations

g, h ∈ Zn where g 6= h and 〈_w〉g = 〈w〉h.

In one dimension every aperiodic necklace is atranslational, while in any higher dimension every
atranslational word is aperiodic, although not every aperiodic word is atranslational. For example[
a b
b a

]
is aperiodic but not atranslational, as there are only two unique representations of the

cyclic word. On the other hand

[
a a
a b

]
is both atranslational and aperiodic. For notation, TR(w̄)

is used to denote the index of the smallest translation g ∈ Zn where 〈w̄〉g = w̄. Similarly TP (w̄)
is used to denote the index of the smallest translation g ∈ Zn where 〈〈w̄〉〉g = w̄, i.e. the smallest
rotation of the canonical representative to get w̄.

w̄ =

w̄1

w̄2

w̄3

w̄4

 =

a a a b
a a b a
b a a a
b a a a

 , ū =

ū1

ū2

ū3

ū4

 =

a a a b
a a b a
a b a a
b a a a

 , v̄ =

v̄1
v̄2
v̄3
v̄4

 =

a a a b
a a b a
a a b b
b a a a

Figure 4: An example of three words, w̄, ū, and v̄, ordered as follows w̄ < ū < v̄. Note that
w̄1 : w̄2 = v̄1 : v̄2 = ū1 : ū2. However, 〈w̄3〉 = 〈ū3〉 = aaab, which is smaller than 〈v̄3〉 = aabb.
Further, w̄3 < ū3 as G(w̄3, 〈w̄3〉) = 1 and G(ū3, 〈ū3〉) = 2, which is larger than 1.

3 The Overlap Distance and the k-Centre problem

In this section we formally define the k-centre problem for necklaces. The input to our problem is
an alphabet of size q, a vector of dimensions n that defines the size of the multidimensional words,
and a positive integer k. The goal is to choose a set S of k necklaces from the set Nn

q such that

5

the maximum “distance” between any necklace
_
w ∈ Nn

q and the set S is minimised. Since there is
no standard notion of distance between necklaces, our first task is to define one. We introduce the
overlap distance, which aims to capture similarity between crystalline materials as an extension of
the overlap metric between words. This can be seen as a natural distance based “bag-of-words”
techniques used in machine learning [17].
The Overlap coefficient for Necklaces. Our definition of the overlap distance depends of the

well studied overlap coefficient, defined for a pair of set A and B as |A∩B|
min(|A|,|B|) . For notation let

C(A,B) return the overlap coefficient between two sets A and B. Observe that C(A,B) returns
a rational value between 0 and 1, with 0 indicating no common elements and 1 indicating that
either A ⊆ B or B ⊆ A. In the context of necklaces the overlap coefficient C(

_
w,

_
v) is defined as

the overlap coefficient between the multisets of all subwords of
_
w and

_
v . For some necklace

_
w of

dimensions n, the multiset of subwords of dimensions ` contains all ū v` w̄. For each subword ū

appearing m times in
_
w, m copies of ū are added to the multiset. This gives a total of N subwords

of dimensions ` for any `, where N = n1 · n2 · . . . · nd. For example, given the necklace represented
by aaab, the multiset of subwords of length 2 are {aa, aa, ab, ba} = {aa× 2, ab, ba}. The multiset
of all subwords is the union of the multisets of the subwords for every set of dimensions, having a
total size of N2; see Figures 5 and 6.

A aaaa B aaab C aabb
D abab E abbb F bbbb

_
w_v A B C D E F
A 0 10

16
13
16

14
16

15
16 1

B 10
16 0 9

16
10
16

12
16

15
16

C 13
16

9
16 0 10

16
8
16

13
16

D 14
16

10
16

10
16 0 6

16
14
16

E 15
16

12
16

8
16

10
16 0 10

16
F 1 15

16
13
16

14
16

8
16 0

Figure 5: Example of the overlap distance for binary cyclic words of length 4.

word ababab word abbabb Intersection
1 a× 3, b× 3 a× 2, b× 4 5
2 ab× 3, ba× 3 ab× 2, bb× 2, ba× 2 4
3 aba× 3, bab× 3 abb× 2, bba× 2, bab× 2 2
4 abab× 3, baba× 3 abba× 2, bbab× 2, babb× 2 0
5 ababa× 3, babab× 3 abbab× 2, bbabb× 2, babba× 2 0
6 ababab× 3, bababa× 3 abbabb× 2, bbabba× 2, babbab× 2 0
Total 11

Figure 6: Example of the overlap coefficient calculation for a pair of words ababab and abbabb.
There are 11 common subwords out of the total number of 36 subwords of length from 1 till 6, so
C(ababab, abbabb) = 11

36 and O(ababab, abbabb) = 25
36 .

Overlap Distance for Necklaces. To use the overlap coefficient as a distance between
_
w and

_
v ,

the overlap coefficient is inverted so that a value of 1 means
_
w and

_
v share no common subwords

while a value of 0 means
_
w =

_
v . The overlap distance (see example in Figure 6) between two

necklaces
_
w and

_
v is O(

_
w,

_
v) = 1− C(

_
w,

_
v). Proposition 1 shows that this distance is a metric

distance.

Proposition 1. The overlap distance for necklaces is a metric distance.

Proof. Let
_
a ,

_

b ,
_
c ∈ Nn

q , for some arbitrary vector n ∈ Nd and q ∈ N. In order for the overlap

distance to satisfy the metric property, O(
_
a ,

_

b) must be less than or equal to O(
_
a ,

_
c) +O(

_

b ,
_
c).

Rewriting this gives 1 − C(
_
a ,

_

b) ≤ 2 + C(
_
a ,

_

b) − C(
_

b ,
_
c) which can be rewritten in turn as

C(
_
a ,

_

b) +C(
_

b ,
_
c) ≤ 1 +C(

_
a ,

_

b). Observe that if C(
_
a ,

_
c) +C(

_

b ,
_
c) > 1 then |

_
a∪_

c |
N2 + |

_

b ∪_
c |

N2 > 1,

meaning that |_a∪_c |+|
_

b ∪_c | > N2. This implies that
_
a and

_

b share at least |_a∪_c |+|
_

b ∪_c |−N2

6

subwords. Therefore C(
_
a ,

_
n) must be at least C(

_
a ,

_
n)+C(

_

b ,
_
c)−1. Hence O(

_
a ,

_

b) ≤ O(
_
a ,

_
c)+

O(
_

b ,
_
c).

The k-Centre Problem. The goal of the k-Centre problem for necklaces is to select a set of k
necklaces of dimensions n over an alphabet of size q that are “central” within the set of necklaces
Nn
q . Formally the goal is to choose a set S of k necklaces such that the maximum distance between

any necklace
_
w ∈ Nn

q and the nearest member of S is minimised. Given a set of necklaces S ⊂ Nn
q ,

we use D(S,Nn
q) to denote the maximum overlap distance between any necklace in Nn

q and its
closest necklace in S. Formally:

D(S,Nn
q) = max

_
v∈Nn

q

min
_
s∈S

O(
_
s ,

_
v).

Problem 1. k-Centre problem for necklaces: Given a set of dimensions n, alphabet Σ of size
q, and an integer k, what is the set S ⊆ Nn

q of size k minimising D(S,Nn
q)?

There are two major challenges we have to overcome in order to solve Problem 1: the exponential
size of Nn

q , and the lack of structural, algorithmic, and combinatorial results for multidimensional
necklaces. We show that the conceptually simpler problem of verifying whether a set of necklaces
is a solution for Problem 2 is NP-hard for any dimension d.

Problem 2. Given a set of k necklaces S of dimensions n over the alphabet Σ and a distance `,
does there exist some necklace

_
v ∈ Nn

q such that O(
_
s ,

_
v) > ` for every

_
s ∈ S?

Theorem 1. Problem 2 is NP-hard for any dimension d.

Proof. We prove the claim via a reduction from the Hamiltonian cycle problem on bipartite graphs
to Problem 2 in one dimension. Note that if the problem is hard in the 1D case, then it is also hard
in any dimension d ≥ 1 by using the same reduction for necklaces of dimensions (n1, 1, 1, . . . , 1).
Let G = (V,E) be a bipartite graph containing an even number n ≥ 6 of vertices. The alphabet Σ
is constructed with size n such that there is a one to one correspondence between each vertex in V
and symbol in Σ. Using Σ a set S of necklaces is constructed as follows. For every pair of vertices
u, v ∈ V where (u, v) /∈ E, the necklace corresponding to the word (uv)n/2 is added to the set of
centres S. Further the word vn, for every v ∈ V , is added to the set S.

For the set S, we ask if there exists any necklace in Nn
q that is further than a distance of 1− 3

n2 .
For the sake of contradiction, assume that there is no Hamiltonian cycle in G, and further that
there exists a necklace

_
w ∈ Nn

q such that the distance between
_
w and every necklace

_
v ∈ S is

greater than 1− 3
n2 . If

_
w shares a subword of length 2 with any necklace in S then

_
w would be at

a distance of no less than 1− 3
n2 from S. Therefore, as every subword of length 2 in S corresponds

to a edge that is not a member of E, every subword of length 2 in
_
w must correspond to a valid

edge.
As

_
w can not correspond to a Hamiltonian cycle, there must be at least one vertex v for which

the corresponding symbol appears at least 2 times in
_
w. As G is bipartite, if any cycle represented

by
_
w has length greater than 2, there must exist at least one vertex u such that (v, u) /∈ E.

Therefore, the necklace (uv)n/2 is at a distance of no more than n2

3 from
_
w. Alternatively, if every

cycle represented by
_
w has length 2, there must be some vertex v that is represented at least 3

times in
_
w. Hence in this case

_
w is at a distance of no more than 1 − 3

n2 from the word vn ∈ S.
Therefore, there exists a necklace at a distance of greater than 1− 3

n2 if and only if there exists a
Hamiltonian cycle in the graph G. Therefore, it is NP-hard to verify if there exists any necklace
at a distance greater than l for some set S.

The combination of this negative result with the exponential size of Nn
q makes finding an

optimal solution for Problem 1 in polynomial time relative to the values of q and n exceedingly
unlikely. As such the remainder of our work on the k-centre problem for necklaces focuses on
approximation algorithms. Lemma 1 provides a lower bound on the optimal distance.

Lemma 1. Let S ⊆ Nn
q be an optimal set of k centres minimising D(S,Nn

q) then D(S,Nn
q) ≥

1− logq(k·N)

N .

7

Proof. We first prove the lemma for the one-dimensional case, then extend the proof to the multi-
dimensional setting. Recall that the distance between any pair of necklaces

_
u and

_
v is determined

by the overlap coefficient and by extension the number of shared subwords between
_
u and

_
v .

Hence the distance between the furthest necklace
_
w ∈ Nn

q and the optimal set S is bound from

bellow by determining an upper bound on the number of shared subwords between
_
w and the

words in S. For the remainder of this proof let
_
w to be the necklace furthest from the optimal set

S. Further for the sake of determining an upper bound, the set S is treated as a single necklace
_

S
of length n · k. This may be thought of as the necklace corresponding to the concatenation of each

necklace in S. Note that the length of S is k ·n. As the distance between
_
w and

_

S is no more than

the distance between
_
w and any

_
v ∈ S, the distance between

_
w and

_

S provides a lower bound on
the distance between

_
w and S.

In order to determine the number of subwords shared by
_
w and

_

S , consider first the subwords

of length 1. In order to guarantee that
_
w shares at least one subword of length 1,

_

S must contain

each symbol in Σ, requiring the length of
_

S to be at least q. Similarly, in order to ensure that
_
w

shares two subwords of length 1 with
_

S ,
_

S must contain 2 copies of every symbol on Σ, requiring

the length of
_

S to be at least 2q. More generally for
_

S to share i subwords of length 1 with
_
w,

_

S

must contain i copies of each symbol in Σ, requiring the length of
_

S to be at least i · q. Hence the

maximum number of subwords of length 1 that
_
w can share with

_

S is either bn·kq c, if bn·kq c ≤ n,
or n otherwise.

In the case of subwords of length 2, the problem becomes somewhat more complicated. Note
that in order to share a single word of length 2, it is not necessary to to have every subword of
length 2 appear as a subword of

_
w. Instead, it is sufficient to use only the prefixes of the canonical

representations of each necklace. For example, given the binary alphabet {a, b}, every necklace
has either aa, ab or bb as the prefix of length 2. Note that any necklace of length 2 followed by
the largest symbol q in the alphabet n − 2 times belongs to the set Nn

q . As such, a simple lower
bound on the number of prefixes of the canonical form of necklaces is the number of necklaces of

length 2, which in turn is bounded by q2

2 . Noting that these prefixes in
_

S may overlap, in order

to ensure that
_

S and
_
w share at least one subword of length 2, the length of

_

S must be at least
q2

2 . Similarly, for
_

S and
_
w to share i subwords of length 2, the length of

_

S must be at least i·q2
2 .

Hence the maximum number of subwords of length 2 that
_

S and
_
w can share is either b 2n·k

q2 c, if

b 2n·k
q2 c ≤ n, or n otherwise. More generally, in order for

_

S to share at least one subword of length j

with
_
w, the length of

_

S must be at least qj

j . Further the maximum number of subwords of length

j that
_

S and
_
w can share is either b j·n·kqj c, if b j·n·kqj c ≤ n or n otherwise.

Using these observations, the maximum length of a common subword that
_
w can share with

_

S is the largest value l such that ql

l ≤ n · k. By noting that ql

l ≥
ql

n , a upper bound on l can

be derived by rewriting the inequality ql

n ≤ n · k to l = 2 logq(n · k). Note further that, for any
value l′ > l, there must be at least one necklace that does not share any subword of length l′

with
_

S as
_

S can not contain enough subwords to ensure that this is the case. This bound allows

an upper bound number of shared subwords between
_
w and

_

S to be given by the summation
2 logq(n·k)∑

i=1

min(b i·n·kqi c, n) ≤ n · logq(n · k) +
logq(k·n)

q−1 ≈ q·n logq(k·n)

q−1 ≈ n logq(k · n). Using this bound,

the distance between
_
w and

_

S must be no less than 1− logq(k·n)

n .
The same arguments can be applied to the multidimensional case. Let m = (m1,m2, . . . ,md)

be a vector of d-dimensions such that M = m1 ·m2 · . . . ·md. The largest value of M such that
_

S can contain every subword with M positions is 2 logq(n · k). The upper bound on the number

of words of dimensions m is qM

M . Let F (x,m) return the size of the set [m], i.e. the number of
vectors with x positions that are less than or equal to m in each dimension. Using this notation,

8

the maximum number of shared subwords between
_
w and

_

S is
M∑
i=1

F (i,m) · i·N ·kqi . Note that

M∑
i=1

F (i,m) · i·N ·kqi ≤
M∑
i=1

i·N ·k
qi . Therefore, the upper bound on the number of common subwords in

the multidimensional setting is N logq(k ·N), giving a bound on the distance of 1− logq(k·N)

N .

4 Two Approximation Algorithms for the k-Centre Problem

In this section we provide two approximation algorithms for the k-centre problem. The first is

1+(
logq (kN)

N−logq (kN)−
log2

q(kN)

2N(N−logq (kN)))-approximate with a running time O(N ·k), but it requires access

to the de Bruijn hypertori of the multidimensional necklaces; this is a generalisation of de Bruijn
sequences. When d = 1, there exists an efficient algorithm for computing the de Bruijn sequence.
However, for d > 1, no algorithm is known for computing a de Bruijn hypertori. Therefore, we

develop a second algorithm that is 1+(
logq (kN)

N−logq (kN) −
log2

q(k)

2N(N−logq (kN)))-approximation with running

time O(N6), requiring techniques presented in Section 5.2.
The main idea behind both algorithms is to try to find the largest set of dimensions ` such that

every subword of length ` may appear in some word within the set. In this setting m is larger than
` if m1 ·m2 · . . . ·md > l1 · l2 · . . . · ld. This is motivated by observing that if two necklaces share a
subword of length l, they must also share 2 subwords of length l − 1, 3 of length l − 2, and so on.
Lemma 2 provides an upper bound for the overlap distance between any necklace in |Nn

q | and the
set S containing all subwords of length l.

Lemma 2. Given
_
w,

_
v ∈ Nn

q sharing a common subword ā of dimensions m, the distance between
_
w and

_
v is no more than O(

_
w,

_
v) ≤ 1− M2

2N2 where M = m1 ·m2 · . . . ·md and N = n1 ·n2 · . . . ·nd.

Proof. Note that the minimum intersection between
_
w and

_
v is the number of subwords of ā,

including the word ā itself. To compute the number of subwords of ā, consider the number of
subwords starting at some position j ∈ [|ā|]. Assuming that |ā|i < ni for every i ∈ [d], the number

of subwords starting at j corresponds to the size of the set [j, |ā|], equal to
d∏
i=1

mi− |ā|i. This gives

the number of shared subwords as being at least
∑

j∈[|ā|]

∏
i∈[d]

mi − |ā|i ≥
∑

j∈[M]

j ≥ M2

2 . Therefore,

the distance between
_
w and

_
v is no more than 1− M2

2N2 .

4.1 Approximating the k-centre problem using de Bruijn sequences

In this section we provide our first approximation algorithm that requires access to de Bruijn
sequences for the one-dimensional case and to de Bruijn hypertori for higher dimensions. The
main idea is to determine the largest de Bruijn sequence that can “fit” into the set of k-centres.
As the de Bruijn sequence of order l contains every word in Σl as a subword, by representing the
de Bruijn sequence of order l in the set of centres we ensure that every necklace shares a subword
of length l with the set of k-centres. Therefore, by determining the longest sequence that can be
represented by k centres, an upper bound on the distance between the furthest necklace and the
set of k-centres is derived.

Definition 7. A de Bruijn hypertorus of order n is a cyclic d-dimensional word T containing, as
a subword, every word of dimensions n over the alphabet Σ of size q. Further, each such word of
dimensions n over the alphabet Σ appears exactly once as a subword of T .

Lemma 3. There exists an O(nk) time algorithm for the k-Centre problem on Nn
q such that every

word in Nn
q shares a common subword of length at least logq(n · k) with one or more centres.

Further, no word in Nn
q is at a distance of more than 1− log2

q(kn)

2n2 from the nearest centre.

9

Sequence: 0000001000011000101000111001001011001101001111010101110110111111
Centre Word
1 000000100001100010100
2 101000111001001011001
3 110011010011110101011
4 010110110111111000000

Figure 7: Example of how to split the de Bruijn sequence of order 6 between 4 centres. Highlighted
parts are the shared subwords between two centres.

Proof. The high level idea of this algorithm is to spilt a de Bruijn sequence of order λ between
the k centres. The motivation behind this approach is to represent every word of length λ as a
subword of at least one centre. Note that the length of the de Bruijn sequence of order λ is qλ.

Given a de Bruijn sequence s̄, naively splitting s̄ into k words may lead to subwords being lost.
For example, take the de Bruijn sequence of order 4 over the alphabet {a, b} aaaabaabbababbbb,
dividing this between two words of length 8 results in the samples aaaabaab and bababbbb, missing
the words aabb, abba, and bbaa. In order to account for this, the sequence is split into centres of size
n− λ+ 1, with the final λ− 1 symbols of the ith centre being shared with the (i+ 1)th centre. In
this manner, the first centre is generated by taking the first n symbols of the de Bruijn sequence.
To ensure that every subword of length λ occurs, the first λ − 1 symbols of the second centre is
the same as the last λ− 1 symbol of the first centre. Repeating this, the ith centre is the subword
of length n starting at position i(n− λ+ 1) + 1 in the de Bruijn sequence. An example of this is
given in Figure 7.

The leaves the problem of determining the largest value of λ such that qλ ≤ k · (n−λ+ 1). The
inequality qλ ≤ k · (n−λ+1) can be rearranged in terms of λ as λ ≤ logq(k · (n+1)−k ·λ). Noting
that λ must be no more than logq(k · n), this upper bound on the value of λ can be rewritten as
logq(k · (n+1− logq(k ·n))) ≈ logq(k ·n). Using Lemma 2, along with logq(k ·n) as an approximate
value of λ gives an upper bound on the distance between between each necklace in Nn

q and the set

of samples of 1− log2
q(kn)

2n2 .
As the corresponding de Bruijn sequence can be computed in no more than O(k · n) time [32]

and the set of samples can be further derived from the sequence in at most O(k ·n) time, the total
complexity is at most O(k · n). Note that any algorithm that outputs such a set of centres must
take at most Ω(k · n) time.

Theorem 2. Problem 1 in 1D can be approximated in O(nk) time with an approximation factor

of 1 + f(n, k) where f(n, k) =
logq (kn)

n−logq (kn) −
log2

q(kn)

2n(n−logq (kn)) and f(n, k)→ 0 for n→∞.

Proof. Recall from Lemma 1 that the overlap distance is bounded by 1− logq(k·n)

n . Using the lower

bound of 1− log2
q(kn)

2n2 given by Lemma 3 gives an approximation ratio of
1−

log2q(kn)

2n2

1− logq(k·n)

n

=
2n2−log2

q(kn)

2n2−2n logq (kn)

= 1 +
2n logq (kn)−log2

q(kn)

2n2−2n logq (kn) = 1 +
logq (kn)

n−logq (kn) −
log2

q(kn)

2n(n−logq (kn)) . Note that f(n, k) =
2n logq (kn)−log2

q(kn)

2n2−2n logq (kn)

converges to 0 when n→∞ for a constant k < qn/n.

Theorem 3. Let T be a d-dimensional de Bruijn hyper torus of dimensions (x, x, . . . , x). There

exist k subwords of T that form a solution to the k-centre problem for N (y,y,...,y)
q with an approxi-

mation factor of 1 + f(n, k) where f(n, k) =
logq (kN)

N−logq (kN) −
log2

q(kN)

2N(N−logq (kN)) , f(n, k)→ 0, N →∞.

Proof. Recall from Lemma 1 that the lower bound on the distance between the centre and every

necklace in Nn
q is 1 − logq(k·N)

N . As in Theorem 2, the goal is to find the largest de Bruijn torus
that can “fit” into the centres. To simplify the reasoning, the de Bruijn hyper tori here is limited
to those corresponding to the word where the length of each dimension is the same. Formally, the
de Bruijn hypertori are restricted to be of the dimensions m1 = m2 = . . . = mj = j

√
N for some

j ∈ [d], giving the total number of positions in the tori as M . Similarly, the centres is assumed to
have dimensions n1 = n2 = . . . = nd = d

√
N , giving N total positions.

10

k\n 1 2 3 4 5 6 7 8
1 1.0 1.75 1.8242 1.75 1.6657 1.59388 1.53532 1.4875
2 1.0 1.0 4.54496 2.875 2.322 2.04096 1.86822 1.75
3 1.0 1.0 1.0 5.76696 3.17774 2.48677 2.15592 1.95785
4 1.0 1.0 1.0 1.0 4.61912 3.00217 2.43963 2.14583
5 1.0 1.0 1.0 1.0 7.98402 3.65337 2.73732 2.32623
6 1.0 1.0 1.0 1.0 27.84082 4.54496 3.06221 2.50535
7 1.0 1.0 1.0 1.0 1.0 5.88615 3.4276 2.68724
8 1.0 1.0 1.0 1.0 1.0 8.19368 3.84946 2.875

k\n 1 2 3 4 5 6 7 8
1 1.0 1.18333 1.19493 1.18333 1.16897 1.15565 1.144 1.13393
2 1.41667 1.41667 1.34509 1.29167 1.25296 1.22393 1.20138 1.18333
3 1.8242 1.59388 1.44797 1.36238 1.30633 1.26659 1.23682 1.2136
4 2.33333 1.75 1.53018 1.41667 1.34644 1.29825 1.2629 1.23575
5 3.09914 1.89704 1.6006 1.46153 1.379 1.32369 1.28372 1.25334
6 4.54496 2.04096 1.66333 1.50021 1.40664 1.34509 1.30113 1.26799
7 8.75423 2.18549 1.72065 1.53449 1.4308 1.36364 1.31615 1.28059
8 1.0 2.33333 1.77396 1.56548 1.45235 1.38007 1.32939 1.29167

Table 1: Table of approximation ratio for the algorithm given in Theorem 2 for different values of
n and k for a binary alphabet (top) and an alphabet of size 8 (below). Note that when k ≥ qn the
approximation ratio is 1 as every necklace can be represented in the set.

Observe that the largest torus that can be represented in the set of centres has M positions such
that qM ≤ k ·N (d−j)/d(d

√
N− j
√
M+1)j . This can be rewritten to give M ≤ logq(k ·N (d−j)/d(d

√
N−

j
√
M + 1)j). Noting that M is of logarithmic size relative to N , this is approximately equal to

M ≤ logq(k·N). Using Lemma 2, the minimum distance between any necklace inNn
q is 1− log2

q(kN)

2N2 .
This is compared to the optimal solution, following the arguments from Theorem 2 giving a ratio

of 1 + f(N, k) where f(N, k) =
2·N logq (k·N)−log2

q(k·N)

2·N2−2·N ·logq (k·N) =
logq (kN)

N−logq (kN) −
log2

q(kN)

2N(N−logq (kN)) .

For both cases table providing some explicit examples of the approximation ratio for different
values of n and k is given in Table 1. While this provides a good starting point for solving the
k-Centre problem for Nn

q , results on generating de Bruijn tori are highly limited, focusing on the
cases with small dimensions [10, 20, 21, 22, 23]. As such an alternate approach is needed.

4.2 Approximating the k-centre problem using Prefix Trees

In this section we present our second approximation algorithm. At a high level our algorithm
works as follows. It recursively builds a tree of possible necklace prefixes, starting with the empty
string, in a breadth first manner, continuing until there are k such prefixes. Once these prefixes
have been generated, the centres are built as necklaces containing these prefixes. Our algorithm
relies on the operations of efficiently counting and ranking multidimensional necklaces. However,
there are no known algorithms for these operations for high-dimensional necklaces. For this reason
Section 5 provides such algorithms.

Lemma 4. The number of necklaces in Nn
q sharing a given prefix ā can be determined in O(N5) time.

Proof. This is done by comparing the rank of the smallest and largest necklaces with the prefix ā.
Let

_
u ∈ Nn

q be the necklace with the smallest rank such that ā is a prefix of 〈_u〉. Note that the

value of 〈_u〉 can be found in O(N) time using Lemma 19 starting with the word Ā of dimensions n

where Āi = ā(i1 mod |ā|1,i2 mod |ā|2,....id mod |ā|d). Let
_
v ∈ Nn

q be the necklace with the largest rank

such that ā is a prefix of 〈_v 〉. _
v may be constructed from the prefix ā by filling every position

after the prefix with the symbol q ∈ Σ. The number of necklaces sharing ā as a pref is given by
rank(〈_v 〉)− rank(〈_u〉) + 1. Following Theorem 5 the rank is computed in O(N5) time. Therefore
the difference may also be computed with on more than O(N5) time.

11

The k-Centres selection based on a tree of necklace prefixes: At a high level, this prefix
algorithm works by finding a set of k-necklace prefixes, i.e. a set of k words corresponding to
prefixes of the canonical forms of necklaces. The algorithm recursively builds the tree of possible
necklace prefixes in a breadth first manner, starting with the empty string and continuing until
there are k such prefixes. Once these prefixes have been generated, the centres are built as necklaces
containing these prefixes.

This is achieved as follows. At each step there is the set of prefixes P with l symbols such that
the number of prefixes is less than k. The set P ′ of prefixes of length l + 1 is generated from the
set P by observing that every prefix p′ ∈ P ′ can be written as p̄ : x̄ for some prefix p̄ ∈ P and word
x̄ ∈ Σn1,n2,...,nd−1 . Given p̄ ∈ P and x̄ ∈ Σn1,n2,...,nd−1 , p̄ : x̄ is in P ′ if and only if it is the prefix
of a necklace. The set P ′ is generated by determining the set of prefixes for each p̄ repeating this
process for every p ∈ P , σ ∈ Σ. Once the size of P ′ is greater than k, the algorithm terminates
using the prefixes in P as a basis. For each p ∈ P , a centre is generated by appending an arbitrary
subword following the prefix. Note that as the number of necklaces with a given prefix must be
determined, this is only possible in the multidimensional case due to our novel ranking procedure.

Theorem 4. There exists a polynomial-time algorithm to construct k centres of Nn
q that is an

approximation of the optimal solution by a factor of 1 + f(N, k) where f(n, k) =
logq (kN)

N−logq (kN) −
log2

q(k)

2N(N−logq (kN)) and f(N, k)→ 0 for N →∞.

Proof. Let λ = (λ1, λ2, . . . , λd) be the dimensions of the prefixes at the termination of the algo-
rithm. To bound λ, observe that each centre corresponds to a prefix of length λ. Therefore, this
becomes the problem of determining the largest value of λ such that the number of prefixes over
the alphabet Σ of size q is no more than l. Let L = λ1 · λ2 · . . . · λd. Using L, an upper bound
on the number of prefixes of dimensions λ can be derived as qL. As the number of prefixes must
be no more than k, qL ≤ k, giving L ≤ logq(k). Using Lemma 2, the distance between each word

and the nearest centre is no more than 1− logq(k)(logq(k)+1)

2N2 , which is bounded by
log2

q(k)

2N2 . Lemma
1 gives a lower bound on the distance between every necklace in Nn

q and the nearest centre in

the centre of 1 − logq(k·N)

N . Therefore, this algorithm gives an approximation of the optimal solu-

tion by a factor of
1−

log2q
k 2N2

1−
log2q(k)

2N2

, which is simplified to a factor of 1 +
2N logq (kN)−log2

q(k)

2N2−2N logq (kN) . Note that

f(N, k) =
2N logq (kN)−log2

q(k)

2N2−2N logq (kN) =
logq (kN)

N−logq (kN) −
log2

q(k)

2N(N−logq (kN)) converges to 0 when n→∞ for any

fixed k.
To show that the method terminates in polynomial time, we note that the time to compute

the number of necklaces with a given prefix is O(N5) . For every i ≤ λ + 1, at most k centres
are checked. To determine the longest λ, let there be pi prefixes of length i. Observe that there
are at least pi + q − 1 words of length i = 1. Therefore the number of prefixes of length i is at
least (i + 1)q − i. Therefore the longest length is k−q

q−1 . Thus the maximum number prefixes that

need to be checked is k · k−qq−1 and the total complexity is O
(
k · k−qq−1N

5
)

, which is simplified to

O
(
k2N5

)
.

5 Efficient Operations on Multidimensional Necklaces

This section provides polynomial time algorithms for counting, ranking, unranking, and generating
multidimensional necklaces. These are well-studied problems in the 1D case, but to the best of our
knowledge our work is the first that considers these natural generalisations.

5.1 Counting Multidimensional Necklaces

In this section we prove closed form formulas for the size of several different subsets of multidi-
mensional words. In addition, the derived formulas allow us to provide bounds on the relationship
between the cardinality of these sets.

12

For both necklaces and Lyndon words, explicit counting is done by application of the Pólya
enumeration theorem to the group operations defined in Section 2. The equations below are clas-
sical formulas for counting the number of one-dimensional necklaces and one-dimensional Lyndon
words respectively. A classical proof for the Necklace Equation is provided by Graham et. al. [19],
while Perrin [30] provides a proof of the Lyndon word Equation.

|Nn
q | =

∑
d|n

φ
(n
d

)
qd. (1)

Lnq =
∑
d|n

µ
(n
d

)
qd. (2)

Where φ is Euler’s totient function and µ is the Möbius function. Formally, φ(n) gives the number
of natural numbers smaller than n which are co-prime to n, and µ(n) returns -1, 0, or 1 depending on
the prime factorisation of n. These equations form the starting point for counting multidimensional
necklaces. Recall from the preliminaries that multidimensional necklaces of dimensions n are
equivalence classes of words in Σn under the group Zn = Zn1 × Zn2 × . . .× Znd

where × denotes
the direct product and Zx the cyclic group of order x. A straightforward way to compute the
number of necklaces of dimensions n is by using the Pólya enumeration formula, giving:

|Nn
q | =

1

N

∑
g∈Zn

qc(g).

Where g = (g1, g2, . . . , gd) is some group action in Zn and c(g) returns the number of cycles from
the group action g. Since Zn is formed by the direct product of the cyclic groups, for each group
action g we have that g = (g1, g2, . . . , gd), where 1 ≤ ij ≤ nj . Therefore, the number of necklaces,
|Nn

q |, is rewritten as:

|Nn
q | =

1

N

n1∑
g1=1

n2∑
g2=1

. . .

nd∑
gd=1

qc((g1,g2,...id))

In order to determine the value of c(g), consider the permutation induced by g. Given some
position j = (j1, . . . , jd), let j′ be the position following j in the cycle induced by g, i.e. j′ = j · g.
The coordinate of j′ in the ith dimension is equal to the coordinate in the ith dimension of j shifted
by gi. Since this is a cyclic operation, this shift is done modulo the length of dimension i, ni. This
gives j′i = (ji + gi) mod ni.

Let gt denote the group action made by applying t times operation g to the identity operation
I, i.e. I · g · g . . . · g. The length of the cycle induced by some cyclic shift g is the smallest value
t > 0 such that j · gt = j. In other words, the length of the cycle equals the number of times g
must be applied to itself to become the identity operation. The length of this cycle is therefore
the smallest t such that for every i, (ji + t · gi) mod ni ≡ ji. To compute this, note that t must be
divisible by the smallest value li for each dimension such that (ji + li · gi) mod ni ≡ ji. As such,
the smallest value t may have is the least common multiple of every li. For any smaller non-zero
value, there is some dimension i for which (ji + t · gi) mod ni 6≡ ji. By the properties of modular
addition, it is clear that every cycle has the same length. Therefore, the number of cycles of length
t is N

t .
This is rewritten as follows. Observe that the only possible values for li are divisors of ni.

For each divisor fi of ni, there are φ(ni

fi
) values for which fi = li. As this is independent in each

dimension, this is used to derive the following equation for the number of necklaces:

|Nn
q | =

1

N

∑
f1|n1

φ (f1)
∑
f2|n2

φ (f2) . . .
∑
fd|nd

φ (fd) q
N

lcm (f1,f2,...,fd) .

The necklace counting formula is used to compute the number of Lyndon words through repeated
application of the Möbius inversion formula, giving:

13

Ln
q =

∑
f1|n1

µ

(
n1

f1

) ∑
f2|n2

µ

(
n2

f2

)
. . .

∑
fd|nd

µ

(
nd
fd

)
|N f1,f2...fd

q |

Related to the concept of aperiodic necklaces are atranslational necklaces. A necklace
_
w is atrans-

lational if there exists no cyclic shift g ∈ Zn such that g 6= (n1, n2, . . . , nd) and 〈_w〉g = 〈_w〉.
Note that while every atranslational word is aperiodic, not every aperiodic word is atranslational.
Lemma 5 formally characterises the aperiodic words that are not atranslational.

Lemma 5. Every word w̄ ∈ Ln
q is either in An

q or of the form ūp : ūp · g : . . . : ūp · gt−1 where:

• g is a translation where gd = p and there exists no translation r < g where 〈ūp〉r = ūp.

• ū ∈ L
(r/p,nd−1,...,n1)
q . t = nd

r and is the smallest value greater than 0 such that gt = I.

Proof. For the sake of contradiction let w̄ ∈ Ln
q be an aperiodic word that is neither atranslational

nor of the form ūp : ūp · g : . . . : ūp · gt−1 for ū ∈ L
(r/p,nd−1,...,n1)
q . As w̄ is not atranslational,

let g be the translation such that w̄ = 〈w̄〉g. Further let ū be the prefix of w̄ corresponding

to the first gd slices. If ū /∈ L
(r/p,nd−1,...,n1)
q then ū has some period which is also a period of

w̄. Otherwise note that 〈w̄〉 = w̄. Therefore as 〈w̄〉g = w̄, 〈w̄[gd+1,2gd]〉(g1,g2,...,gd−1) = ū. More
generally, 〈w̄[(l−1)·gd+1,l·gd]〉(g1,g2,...,gd−1)l = ū. This allows w̄ to be written as ū : 〈ū〉(g1,g2,...,gd−1) :
. . . : 〈ū〉(g1,g2,...,gd−1)t−1 . Note that if t < nd

gd
then 〈w̄〉g = 〈ū〉(g1,g2,...,gd−1) : 〈ū〉(g1,g2,...,gd−1)2 : . . . :

〈ū〉(g1,g2,...,gd−1)t+1 , therefore 〈w̄〉g = w̄ if and only if ū = 〈ū〉(g1,g2,...,gd−1). If ū = 〈ū〉(g1,g2,...,gd−1),
then w̄ = ū : 〈ū〉(g1,g2,...,gd−1) : . . . : 〈ū〉(g1,g2,...,gd−1)t = ūt. Hence in this case w̄ would be periodic.
Therefore for w̄ to be aperiodic and not a translational it must be of the form ū : 〈ū〉(g1,...,gd) : . . . :
〈ū〉(g1,...,gd)t−1 . In the other direction, if w̄ = ū : 〈ū〉(g1,g2,...,gd−1) : . . . : 〈ū〉(g1,g2,...,gd−1) and ū ∈
A

(n1,n2,...,nd−1,r)
q then w̄ ∈ An

q . Similarly if ū /∈ A
(n1,n2,...,nd−1,r)
q it must be in L

(n1,n2,...,nd−1,r)
q .

Following the characterisation of translational Lyndon words given by Lemma 5, the next obvious
question is how to count the number of atranslational words. To do so two further results are
needed to reduce the complexity of the counting problem. Lemmas 6 and 7 provide an outline for
how to reduce the number of atranslational words that need to be counted.

Lemma 6. Let ā, b̄ ∈ Ln
q . Given any integer r and translation g ∈ Z(n1,n2,...,nd−1) such that gt = I,

if ār : 〈ār〉g : . . . : 〈ār〉gt−1 ∈ L
n1,n2,...,nd−1,m
q then either b̄r : 〈b̄r〉g : . . . : 〈b̄r〉gt−1 ∈ L

n1,n2,...,nd−1,m
q

or b̄ = c̄r
′

: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′t′−1 and g′i + gi mod ni ≡ 0 for all i ∈ [d].

Proof. For the sake of contradiction assume that b̄r : 〈b̄r〉g : . . . : 〈b̄r〉gt−1 ∈ L
n1,n2,...,nd−1,m
q while

ār : 〈ār〉g : . . . : 〈ār〉gt−1 /∈ L
n1,n2,...,nd−1,m
q . As b̄r : 〈b̄r〉g : . . . : 〈b̄r〉gt−1 ∈ L

n1,n2,...,nd−1,m
q , g must

be some operation such that gl 6= I for any l < t, as otherwise either b̄r : 〈b̄r〉g : . . . : 〈b̄r〉gt−1 would
be periodic, or there would exist some translation smaller than b̄r : 〈b̄r〉g : . . . : 〈b̄r〉gt−1 . Note that
ār : 〈ār〉g : . . . : 〈ār〉gt−1 must be periodic, as otherwise it would belong to L

n1,n2,...,nd−1,m
q . As ā is

in Ln
q , either ā is atranslational or ā = c̄r

′
: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′t′−1 for some atranslational word c̄.

If ā is atranslational, then there is no translation g such that ār : 〈ār〉g : . . . : 〈ār〉gt−1 is periodic

without b̄r : 〈b̄r〉g : . . . : 〈b̄r〉gt−1 being periodic. On the other hand, if ā = c̄r
′

: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′
then (c̄r

′
: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′t′−1)r : (c̄r

′
: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′t′−1)r+g : . . . : (c̄r

′
: 〈c̄r′〉g′ : . . . :

〈c̄r′〉g′t′−1)r+gt−1 must be periodic. For any value of g′ where g′ + g 6= I, (c̄r
′

: 〈c̄r′〉g′ : . . . :

〈c̄r′〉g′t′−1)r : (c̄r
′

: 〈c̄r′〉g′ : . . . : 〈c̄r′〉g′t′−1)r+g : . . . : (c̄r
′

: 〈cr′〉g′ : . . . : 〈c̄r′〉g′t′−1)r+gt−1 must be
aperiodic.

Lemma 7. Let n be a vector of dimensions. Given some value f which is a factor of nd, and value
c which is a factor of f , for any word ā ∈ L

n1,n2,...,nd−1,c
q such that ār : 〈ār〉g : . . . : 〈ār〉gt−1 ∈ Ln

q

there exists some word b̄ ∈ L
n1,n2,...,nd−1,f
q such that ār : 〈ār〉g : . . . : 〈ār〉gt−1 = b̄ : 〈b̄〉g′ : . . . :

〈b̄〉g′t′−1 where r · c ≤ f .

14

Proof. This claim is shown by considering two cases based on the value of r relative to f . The
first case is when r = f

c . In this case let g′ = g and b̄ = ār−1 : 〈ā〉g. Clearly the Lyndon word

ār : 〈ār〉g : . . . : 〈ār〉gt−1 is equivalent to b̄ : 〈b̄〉g : . . . : 〈b̄〉gt−1 . In the second case r < f
c .

If c · r is a factor of f , then either the word ār : 〈ār〉g : . . . : 〈ā〉gf/(r·c) ∈ A
n1,n2,...,nd−1,f
q or

ār : 〈ār〉g : . . . : 〈ār〉gt−1 is periodic, contradicting the initial assumption. If c · r is not a factor

of f , then let r′ = f
c mod r and t′ = b fcṙ c. If ār : 〈ār〉g : 〈ār′〉gt′ is not atranslational then

ār : 〈ār〉g : . . . : 〈ār〉gt−1 must be periodic with a period in dimension d of at least f . Hence

ār : 〈ār〉g : 〈ār′〉gt′ ∈ A
n1,n2,...,nd−1,f
q .

In order to use these characterisations to relate the number of Lyndon words to the number of
atranslational words it is important to count the number of possible translations. To this end the

set G(l,n) = {(x1, x2, . . . , xd−1) ∈ [n] : x
nd/l
i mod ni ≡ 0, and for some dimension i, there exists

no value of j ∈ [nd

l − 1] such that xji mod ni ≡ 0} is introduced. This set counts the number
of possible translations of a d-dimensional atranslational word that may be used to build a d-
dimensional Lyndon word. The following Lemma provides an important step in the computation
of the number of d− 1-dimensional atranslational words that can be used to build a d-dimensional
Lyndon word.

Lemma 8. Let G(l,n) = {(x1, x2, . . . , xd−1) ∈ [n] : x
nd/l
i mod ni ≡ 0, and for some dimension i,

there exists no value of j ∈ [nd

l −1] such that xji mod ni ≡ 0}. Given some pair of translations t, s ∈
G(l, (n1, n2, . . . , nd−1)), (t1, t2, . . . , td−2,

nd−1

l) ∈ G(l,n) if and only if (s1, s2, . . . , sd−2,
nd−1

l) ∈
G(l,n).

Proof. For the sake of contradiction, assume that (t1, t2, . . . , ti−1
ni

l) ∈ G(1, (n1, n2, . . . , ni+1)) and
(s1, s2, . . . , si−1

ni

l) /∈ G(1, (n1, n2, . . . , ni+1)). There are two possible cases to consider. Either,
for every a ∈ [i − 1], there exists some j < ni+1 such that sja mod na ≡ 0 or, for some a ∈ [i − 1]
s
ni+1
a mod na 6≡ 0.

In the first case, observe that as ni+1 ≥ n, either ni+1 = ni and l = 1 or
(
ni

l

)ni+1
mod ni ≡ 0

and ni+1 is co-prime to ni+1. In either case, there will exist at least dimension a for which there
does not exist any ta value of j where j < ni+1 such that sja mod na ≡ 0.

This leaves the second case, that there must be some dimension a where t
ni+1
a mod na ≡ 0 while

s
ni+1
a mod na 6≡ 0. For this to be true, it must be the case that ni+1 is co-prime to ni

l , as otherwise

ni+1 = ni

l . If ni+1 is co-prime to ni then note that for t
ni+1
a mod na ≡ tni/l

a , ta = 0 for every dimen-
sion a. However, this leads to a contradiction, as (0, 0, . . . , 0) /∈ G(1, (n1, n2, . . . , ni+1)). Therefore
if (t1, t2, . . . , ti−1

ni

l) ∈ G(1, (n1, n2, . . . , ni+1)) then (s1, s2, . . . , si−1
ni

l) ∈ G(1, (n1, n2, . . . , ni+1)).

Lemma 8 provides the basis for generalising the set G(l,n) to count the number of ways a d − i-
dimensional atranslational word can be used to form a d-dimensional Lyndon word. More explicitly,
consider the i-dimensional atranslational word w̄. To use w̄ as the translational base of some
d-dimensional Lyndon word, note that there must be some translation applied to w̄ at every
dimension from i to d. Let ū = (w̄ : 〈w̄〉g : . . . : 〈w̄〉gt) : 〈(w̄ : 〈w̄〉g : . . . : 〈w̄〉gt)〉h : . . . :
〈(w̄ : 〈w̄〉g : . . . : 〈w̄〉gt)〉hs . For ū to be a Lyndon word, h must not be (g1, g2, . . . , gi, nd/l) as
(w̄ : 〈w̄〉g : . . . : 〈w̄〉gt) = 〈(w̄ : 〈w̄〉g : . . . : 〈w̄〉gt)〉(g1,g2,...,gi,nd/l).

Using this observation, the following two functions are needed to count the number possible ways
an i-dimensional atranslational word can be used to build a d-dimensional word. Let I(i, l,n) return
the number of dimensions j ∈ [i, d] where there exists some translation g ∈ G(lj , (n1, n2, . . . , nj))
such that (g1, g2, . . . , gj−1,

nj

l , 1, 1, . . . , 1) ∈ G(1,n), where lj equals 1 if j > i and l otherwise.
The function H(i, l,n, d) is used to return the number of possible sets of translations that can

be used to build a d-dimensional Lyndon word from w̄. Note that each such set requires d − i
translations if l = ni, or d − i + 1 translations if l < ni. If i = d then the value of H(i, l,n, d)
is either 1, if l = nd, or |G(l,n)| otherwise. If i < d, the number of possible translations of
dimensions d equals the size of G(1,n) minus the number of dimensions where the translation in
the lower dimension can be cancelled out by some translation in a higher dimension. Note that if
any translation in dimension i can be cancelled out by some translation in dimensions j > i, then

15

following Lemma 8 every translation can be. Therefore the value of H(i, l,n, d) is given by the
equation

H(i, l,n, d) =
{

(|G(1,n)| − (I(i, l,n))) · (H(i, l, (n1, n2, . . . , nd−1), d− 1))

Using these results, the number atranslational words of dimensions n are counted in terms of
atranslational words of smaller dimensions and Lyndon words of dimensions n. Lemma 9 shows
how to express the number of Lyndon words in terms of atranslational words. Lemma 1 builds on
this to show how to count the number of atranslational words using Lemma 9.

Lemma 9. The number of d-dimensional Lyndon words is given in terms of atranslational words
as:

Ln
q = |An

q |+
∑
i∈[d]

∑
l|ni

0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni

l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

Proof. Note that every Lyndon word is either atranslational itself, or of the form ār : 〈ār〉g :
. . . : 〈ār〉gt−1 for some ā ∈ An1,n2,...,nd−1,f . Following Lemma 7, every Lyndon word of the form

ār : 〈ār〉g : . . . : 〈ār〉gt−1 is rewritten as b̄ : 〈b̄〉g : . . . : 〈v̄〉gt−1 for some b̄ ∈ A
n1,n2,...,nd−1,l·r
q . Let ā be

an atranslational word of dimensions (n1, n2, . . . , nd−1, l). For Lyndon words with a d-dimensional
translational period there are three cases to consider. If l = nd, then ā ∈ An1,n2,...,nd

q . If nd

l
is prime then for every cyclic shift of X = (x1, x2, . . . , xd−1) where xi ∈ 1 . . . ni − 1 such that

x
nd/l
i mod ni ≡ 0 and for some i @j ∈ 1 . . . nd

l − 1, the word ā : 〈ā〉X : . . . : 〈ār〉X(n2/l)−1 ∈ Ln
q . The

number of words of the form ā : 〈ā〉g : . . . : 〈ā〉g(nd/l)−1 ∈ Ln
q is |G(l,n)| · |An1,n2,...,nd−1,l

q |.
In the case that nd

l is not prime, following Lemma 7 there exists some d′ such that b̄ = ā : 〈ā〉g :
. . . : 〈ā〉gt′ where b̄ has dimensions n1×n2× . . .× l′. If there are at least two distinct prime factors
of nd

l , then note that ā : 〈ā〉g : . . . : 〈ā〉gt is counted for each prime factor. Let p be the number of
distinct prime factors. To avoid over counting, every word of size n1 × n2 × . . . × nd−1 × l needs
to be subtracted p− 1 times. To this end, a new function P (t) is introduced to act as a correction
factor.

If p = 2 then by setting P (2) = −1 the over counting is avoided. If p = 3, then as these words
were counted three times for each prime factor, then subtracted three times n2

d·i for each i in the set
of prime factors, to avoid under counting these words P (3) must return 1. One special case is when
nd

l has a square prime factor, i2. In this case as nd

l·i has the same number of distinct primes, P (nd

l)
must return 0. Repeating this argument, P (s) is −1 if s has an even number of prime factors, 1 if
s has an odd number of prime factors, and 0 otherwise. Note that this corresponds to −1(µ

(
nd

l

)
)

where µ
(
nd

l

)
is the möbius function. Further, as P (1) = 1, both the prime and non-prime cases

can be combined into one case.
The same arguments may be applied to the lower dimensional case. Note that the number of

possible translations in this case is given by H(i, l,n, d). In order to account for over counting, the

number of possible Lyndon words is multiplied by

(
d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni

l

))
. Therefore the total

number of Lyndon words of dimensions n is equal to:

Ln
q = |An

q |+
∑
i∈[d]

∑
l|ni

0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni

l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

Corollary 1. The number of atranslational words is given by:

|An
q | = |Ln

q | −
∑
i∈[d]

∑
l|ni

0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni

l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

16

Proof. It follows from Lemma 9 that the number of translational words in

|Ln
q | =

∑
i∈[d]

∑
l|ni

0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni

l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

Hence the number of atranslational words is

|An
q | = |Ln

q | −
∑
i∈[d]

∑
l|ni

0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni

l

))
|An1,n2,...,nd−1,l

q | ·H(i, l,n, d) 1 < l < nd

From these equations, an upper and lower bound on the number of necklaces is derived.

Lemma 10. The number of necklaces is bounded by qN

N ≤ |N
n
q | ≤ qN where n is the dimension

vector and q is the size of the alphabet.

Proof. The upper bound comes directly as the number of possible words. Using the above equa-
tions, observe that for every word ni, 1 is a factor. As φ(1) = 1, this gives the number of necklaces

as at least qN

N .

Lemma 11. For two sets of necklaces Nn
q , and Nm

q , such that mi ≥ ni for every dimension i and

n 6= m, |Nn
q | < |Nm

q |.

Proof. For every necklace x ∈ Nn
q , a new necklace x′ of size m such that the symbol at position i

is:

• The symbol in x at i if ij ≤ nj for every dimension j.

• q Otherwise.

In addition to this, observe the necklace containing only the first symbol also belongs to Nm
q .

Therefore |Nn
q | < |Nm

q |.

Lemma 12. The number of aperiodic words is bounded by qN

N − q
N/2 ≤ Ln

q ≤
qN

N where n is the
dimension vector and q is the size of the alphabet.

Proof. The upper bound comes from the observation that every atranslational word must have

exactly N representations of it. As such, there is no more than qN

N Transnational words. The
lower bound is derived using the lower bound on the number of necklaces as a starting point. By
its definition, µ(ni

fi
) is 1 for ni = fi. To reduce the bound, note that given two values fi and gi such

that fi > gi where µ(ni

fi
) = µ(ni

gi
) = −1, there must exist some value hi between fi and gi such

that µ(ni

hi
) = 1. As the number of necklaces increases monotonically, the number of necklaces with

a length of hi in dimension i is more than those with a length of gi. Therefore the largest negative

value is qN/2. This gives a lower bound on the number of Atranslational words of qN

N − q
N/2.

5.2 Ranking Multidimensional Necklaces

In this section we provide a polynomial-time algorithm for ranking multidimensional necklaces.
Ranking classes of one-dimensional cyclic words such as Lyndon words, necklaces and bracelets
has received a lot of attention in the past [2, 25, 26, 33]. Recall that the rank of a necklace

_
w in

the set |Nn
q | is the number of necklaces smaller than or equal to

_
w under some ordering, in this

case the ordering given in Definition 3. More broadly, we can take any word v̄ and determine the
number of necklaces that are represented by a word smaller than v̄ using the same ordering. In
this case, the smallest necklace greater than or equal to v̄ is determined using the NextNecklace
algorithm given in Theorem 6. For the remainder of this section we assume that we are finding

17

the rank of some word that is the canonical representation of a necklace. Before we provide a
high level overview of how this problem is tackled, we need to define a method of comparing two

words of different sizes. In this section, two words w̄ ∈ Σn and ū ∈ Σf are compared if and only if

ni mod fi ≡ 0 for every i ∈ [d]. As such, given such a pair of words ūn/f is used to denote the word
ū′ where ū′(i1,i2,...,id) = ū(i1 mod n1,i2 mod n2,...,id mod nd). Using this notation, a comparison between
word w̄ and ū is given as:

Definition 8. Let ū ∈ Σ(f1,f2,...,fd), and v̄ ∈ Σ(n1,n2,...,nd) where ni mod fi ≡ 0. ū < v̄ if and only

if ūn/f < v̄ following Definition 3. Similarly, ū > v̄ if and only if ūn/f > v̄.

At a high level, the ranking algorithm for a word w̄ works by first determining the number of words
of size f1×f2× . . .×fd smaller than w̄, denoted T (w̄, f1, f2, . . . , fd), for every fi that is factor of ni.
This value is transformed, first from T (w̄, f1, f2, . . . , fd) to the number of aperiodic words smaller
than w̄, denoted L(w̄, f1, f2, . . . , fd), and finally to the number of atranslational words smaller than
w̄, A(w̄, f1, f2, . . . , fd). The set A(w̄, f1, f2, . . . , fd) is then translated into the rank of w̄ within the

set of atranslational necklaces A
(f1,f2,...,fd)
q , denoted RA(w̄, f1, f2, . . . , fd). This rank is than used

to calculate the rank within the set of Lyndon words RL(w̄, f1, f2, . . . , fd). Finally, this rank is
translated to the necklace rank RN(w̄, f1, f2, . . . , fd). Lemmas 13, and 14 show how to transform
the size of the sets Tw̄,f1,f2,...,fd into the size of A(w̄, n1, n2, . . . , nd). Lemmas 15, 16 and 17 show
how to transform the size of the sets A(w̄, f1, f2, . . . , fd) into the value RN(w̄, n1, n2, . . . , nd).

In order to compute the size of T (w̄, f1, f2, . . . , fd), the set is partitioned into the subsets
B(w̄, g, j, f1, f2, . . . , fd) ⊆ T (w̄, f1, f2, . . . , fd). Here B(w̄, g, j, f1, f2, . . . , fd) contains the set of
words v̄ ∈ T (w̄, f1, f2, . . . , fd) where: (1) g is the smallest translation such that 〈v̄〉g < w̄ and (2)

j is the length of the longest shared prefix between 〈v̄n/f 〉g and w̄′, i.e. the largest value such that(
〈v̄n/f 〉g

)
[1:j]

= w̄[1:j]. The size of each set B(w̄, g, j, f1, f2, . . . , fd) is computed by considering the

structure of the words in B(w̄, g, j, f1, f2, . . . , fd). This requires the size of two further sets to be
computed, the number of non-cyclic words where every suffix is greater than w̄, and the number
of words of dimensions (f1, f2, . . . , fd−1) that are smaller than w̄j+1. The first of these sets is the
more technical, requiring a new recursive technique to be built which is provided in Subsection
5.2.1.

The remainder of this section is structured as follows. Lemmas 13 to 17 provide the theoretical
tools needed to rank necklaces. Following these Lemmas, an overview of the method to compute
the size of T (w̄, f1, f2, . . . , fd) is provided. Subsection 5.2.1 covers the main sub method used in
the ranking process. Finally Theorem 5 is restated and formally proven.

Lemma 13. The size of L(w̄, n1, n2, . . . , nd) is computed in terms of T (w̄, f1, f2, . . . , fd) using the
equation:

L(w̄) =
∑
f1|n1

µ

(
n1

f1

) ∑
f2|n2

µ

(
n2

f2

)
. . .

∑
fd|nd

µ

(
nd
fd

)
T (w̄, f1, f2, . . . , fd)

Proof. Observe that every word in T (w̄, n1, n2, . . . , nd) is either aperiodic, in which case it is in
L(w̄, n1, n2, . . . , nd), or periodic, in which case it is in L(w̄, f1, f2, . . . , fd) where fi is a factor of ni.
Following the same arguments as given in Section 5.1, the size of T (w̄, n1, n2, . . . , nd) is equal to∑
f1|n1

∑
f2|n2

. . .
∑
fd|nd

|L(w̄, f1, f2, . . . , fd)|. By repeated application of the Möbius inversion formula,

the size of L(w̄, n1, n2, . . . , nd) is computed as:

L(w̄, n1, n2, . . . , nd) =
∑
f1|n1

µ

(
n1

f1

) ∑
f2|n2

µ

(
n2

f2

)
. . .

∑
fd|nd

µ

(
nd
fd

)
T (w̄, f1, f2, . . . , fd)

Lemma 14. The size of A (w̄, n1, n2, . . . , nd) equals

|L(w̄, n1, n2, . . . , nd)|−
∑
i∈[d]

∑
l|ni

0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni

l

))
|An1,n2,...,nd−1,l
q | ·H(i, l,n, d) 1 < l < nd

18

Proof. Following the arguments given in Lemma 9, observe that any Lyndon word in L(w̄, n1, n2, . . . , nd)
is either be atranslational, or of the form ā : 〈ā〉g : . . . : 〈ā〉gt−1 . In the latter case, let l = |ā|d.
Note that ā must be either in A(w̄[1,l], n1, n2, . . . , nd−1, l), if l > 1 or L(w̄1) if l = 1. Repeating the
same arguments as in Lemma 9 allows the size of A (w̄, n1, n2, . . . , nd) to be written as:

|L(w̄, n1, n2, . . . , nd)|−
∑
i∈[d]

∑
l|ni

0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni

l

))
|An1,n2,...,nd−1,l
q | ·H(i, l,n, d) 1 < l < nd

Lemma 15. The rank RA(w̄, n1, n2, . . . , nd) = 1
N |A (w̄, n1, n2, . . . , nd) |.

Proof. Observe that any atranslational necklace of dimensions n has exactly N representations.
Therefore the number of atranslational necklaces smaller than w̄ is 1

NA (w̄). Hence

RA(w̄, n1, n2, . . . , nd) =
1

N
A (w̄, n1, n2, . . . , nd) .

In order to used the rank RA(w̄, n1, n2, . . . , nd) to get the rank RL(w̄, n1, n2, . . . , nd), one ad-
ditional observation is needed. Let w̄ be a translational, aperiodic word, with a translational
period of (g1, g2, . . . , gd−1,

ni

l , 1, 1, . . . , 1) where g ∈ G(l, n1, n2, . . . , ni) for some i ∈ [d]. Let
ū be the word of dimensions g such that ūi = w̄i. Further, let ū[j] be the Lyndon word of
dimensions (g1, g2, . . . , gi−1,

ni

l , ni+1, . . . , nj) such that ū[j]i = w̄i. Note that ū[j] can be writ-
ten as ū[j]ū[j − 1] : 〈ū[j − 1]〉rj : . . . : 〈ū[j − 1]〉

r
nj−1

j

, for some rj ∈ G(lj , (n1, n2, . . . , nj))

where lj = 1 if j > i and 0 otherwise. Observe that the number of Lyndon word made from
¯̄u of dimensions n that are smaller than w̄ is equal to the sum of the number of translations
in G(lj , n1, n2, . . . , nj) multiplied by H(i, li,n). Let S(g, l, (n1, n2, . . . , nj)) return the number of
translations in G(l, (n1, n2, . . . , nj)) smaller than g. To this end let U(w̄) return either:

• 0 if w̄ is either atranslational or periodic.

•
d∑
j=i

{
S(rj , l, (n1, n2, . . . , nj)) j = i

S(rj , 1, (n1, n2, . . . , nj)) otherwise.
if w̄ is a Lyndon word with a translational period

of g.

Using U(w̄), the number of Lyndon words can be computed from RA(w̄, n1, n2, . . . , nd) as follows.

Lemma 16. The rank

RL(w̄, n1, n2, . . . , nd) = RA(w̄, n1, n2, . . . , nd) + U(w̄)+

∑
i∈[d]

∑
l|ni

0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni

l

))
|RA(w̄[1,l], n1, n2, . . . , ni−1)| ·H(i, l,n, d) 1 < l < nd

Proof. Note that every necklace smaller than w̄ is either atranslational, in which case it is counted
by RA(w̄, n1, n2, . . . , nd), or is translational. In the latter case following Lemma 9 for each necklace
counted by RA(w̄[1,l], n1, n2, . . . , nd−1, l), there are H(i, l,n) translational necklace counted by
RL(w̄, n1, n2, . . . , nd). Further, if w̄ is a translational Lyndon word of the form v̄ : 〈v̄〉g : . . . : 〈v̄〉g,
then there are there are U(w̄) Lyndon words of the form v̄ : 〈v̄〉g : . . . : 〈v̄〉g where v̄i = w̄i for every

i ∈ [|v̄|]. Following Lemma 9 RL(w̄, n1, n2, . . . , nd) is counted in terms of RA(w̄, n1, n2, . . . , nd−1, l)
as:

RL(w̄, n1, n2, . . . , nd) = RA(w̄, n1, n2, . . . , nd) + U(w̄)+

19

∑
i∈[d]

∑
l|ni

0 l = ni(

d−1∏
t=i+1

−µ(nt)

)(
−µ
(
ni

l

))
|RA(w̄[1,l], n1, n2, . . . , ni−1)| ·H(i, l,n, d) 1 < l < nd

Lemma 17. The rank RN(w̄, n1, n2, . . . , nd) =
∑
f1|n1

∑
f2|n2

. . .
∑
fd|nd

RL(w̄, f1, f2, . . . , fd).

Proof. Observe that every necklace counted by RN(w̄, n1, n2, . . . , nd) has a period of m where mi

is a factor of |w̄|i for every i ∈ 1 . . . d. As RL(w̄, f1, f2, . . . , fd) counts the rank among aperiodic
necklaces of size f1 × f2 × . . .× fd, the rank among necklaces is given by:

RN(w̄, n1, n2, . . . , nd) =
∑
f1|n1

∑
f2|n2

. . .
∑
fd|nd

RL(w̄, f1, f2, . . . , fd)

This leaves the challenge of computing the size of T (w̄, f1, f2, . . ., fd). To this end, T (w̄, f1, f2, . . . , fd)
is partitioned into the sets B(w̄, gd, j, f1, f2, . . ., fd) such that B(w̄, gd, j, f1, f2, . . ., fd) contains
every word v̄ ∈ T (w̄, f1, f2, . . ., fd) where:

• gd is the smallest translation in dimension d of v̄ such that 〈v̄〉(n1,n2,...,nd−1,gd) < w̄.

• j is the largest value such that (〈v̄′〉(n1,n2,...,nd−1,gd))[1:j] = w̄′[1:j].

For notation let g = (n1, n2, . . . , nd−1, gd). To compute the size of B(w̄, gd, j, f1, f2, . . . , fd), there
are two cases to consider based on the values of gd and j.
Case 1: gd+j ≤ nd. In this case every word v̄ ∈ B(w̄, gd, j, f1, f2, . . . , fd) is written as ā : (〈w̄[1,j] :
b̄〉θ) : c̄ where:

• ā is a word of dimensions (f1, f2, . . . , fd−1, gd) for which there exists no translation r ∈
Z(f1,f2,...,gd) such that (〈ā〉r)[1:gd−rd] < w̄[1,gd−rd].

• b̄ is some word of dimensions (f1, f2, . . . , fd−1) that is smaller than w̄j+1.

• θ is some translation in Z(f1,f2,...,fd−1).

• c̄ is an unrestricted word of dimensions (f1, f2, . . . , fd−1, fd − (gd + j + 1)).

To count the number of words of this form, it is necessary to compute the number of non-cyclic
words of dimensions (f1, f2, . . . , fd−1, i) where every suffix of length i is greater than w̄[1,i]. To this
end the set β(w̄, i, j, f1, f2, . . . , fd−1) is introduced containing every word ū where:

• The dimensions of ū are (f1, f2, . . . , fd−1, i).

• There exists no translation g ∈ Z(f1,f2,...,fd−1) where 〈ū[i−l,i]〉g ≤ w̄[1,l].

• The first j slices of ū are equal to the first j slices of w̄, i.e. ū[1,j] = w̄[1,j].

When it is clear from context β(w̄, i, j, f1, f2, . . . , fd−1) is denoted β(w̄, i, j, f). A method to com-
pute the size of β(w̄, i, j, f) is given in subsection 5.2.1. Using |β(w̄, i, j, f)| as a black box, the
number of possible values of ā is |β(w̄, i, j, f)|. Similarly, the number of possible values of b̄ is given
by qn1·n2·...·nd−1 − |β(w̄j+1, 1, 0, f)| − 1. The number of possible values of θ is equal to the size of
the set Θ = {r ∈ Zf : @s ∈ Zf where s < r and 〈w̄〉r = 〈w̄〉s}. Finally, the number of values of c̄ is
given by qn1·n2·...·nd−1·(nd−(gd+j+1)). Therefore the size of B(w̄, g, j, f1, f2 . . . , fd) when gd+ j < nd
is given by:

|β(w̄, gd, 0, f)| · (qn1·n2·...·nd−1 − |β(w̄j+1, 1, 0, f)| − 1) · |Θ| · qn1·n2·...·nd−1·(nd−(gd+j+1))

Case 2: gd+j > nd. In this case every word v̄ ∈ B(w̄, gd, j, f1, f2 . . . , fd) is written as 〈w̄[j+gd−nd,j] :
b̄〉θ : ā : 〈w̄[1,j+gd−nd]〉θ where:

20

• ā is a f1× f2× . . .× fd−1, fd− (j+ 1) dimensional word for which there exists no translation
r ∈ Z(f1,f2,...,fd−1,gd) such that 〈ā〉r < w̄[1,gd].

• b̄ is some word of dimensions (n1, n2, . . . , nd−1) that is smaller than w̄j+1.

• θ is a translation in the set Θ = {r ∈ Z(f1,f2,...fd−1) : @s ∈ Z(f1,f2,...fd−1) where s < r and
〈w̄[1:j]〉r = 〈w̄[1:j]〉s}.

The number of possible values of θ is equal to the size of the set Θ as in Case 1. The number
of possible values of b̄ in this case is somewhat more complicated than in Case 1. Let t be the
length of the longest suffix of w̄[j+gd−nd,j] such that w̄[j−t,j] = w̄[1,t]. To avoid 〈v̄〉ψ, for some
ψ ∈ Z(f1,f2,...,fd−1,nd−gd), being smaller than w̄, b̄ must be greater than or equal to w̄t+1. Note

that the number of words greater than w̄t+1 is given by β(w̄t+1, 1, 0, f). Therefore the number of
possible values of b̄ as (qn1·n2·...·nd−1·(nd−(gd+j+1))−β(w̄j+1, 1, 0)−1)−(qn1·n2·...·nd−1·(nd−(gd+j+1))−
β(w̄t+1, 1, 0, f)) = β(w̄t+1, 1, 0, f)− β(w̄j+1, 1, 0, f) + 1. If b̄ = w̄t+1, the number of possible values
of ā is given by |β(w̄, nd + t − j, t + 1, f)|. Otherwise the number of possible values of ā is given
by |β(w̄, nd − j − 1, 0, f)|. Therefore the total number of words of the form 〈w̄[j+gd−nd,j] : b̄〉θ : ā :
〈w̄[1,j+gd−nd]〉θ is:

|β(w̄, nd + t− j, t+ 1, f)|+ (β(w̄t+1, 1, 0, f)− β(w̄j+1, 1, 0, f)) · |β(w̄, nd − j − 1, 0, f)| · |Θ|

5.2.1 Computing |β(w̄, i, j, f)|

In the method outline in Section 5.2, in order to compute the size of T (w̄) it is necessary to compute
the size of the set β(w̄, i, j, f). Let v̄ ∈ β(w̄, i, j, f). Observe that if vj+1 > w̄j+1, then for any
translation g ∈ Z((f1, f2, . . . , fd−1, j + 1)), v̄[1,j+1] > w̄[1,j+1]. Therefore the number of possible

values of v̄[j+2,i] = |β(w̄, i − j − 1, 0, f)|. Similarly the number of values of v̄ where v̄j+1 = w̄j+1

is |β(w̄, i, j + 1, f)|. This allows the size of β(w̄, i, j, f) to be computed in a recursive manner. In
the special case where j = i, there is either one word in β(w̄, i, j, f), if j = 0, or none if j > 0. Let
NS(w̄, j, f) return the number of possible slices of dimensions f1× f2× . . .× fd−1 that are greater
than w̄j+1. Using NS(w̄, j, f) as a black box, the size of β(w̄, i, j, f) is computed as:

|β(w̄, i, j, f)| =

0 i = j, j > 0

1 i = j = 0

NS(w̄, j, f) · |β(w̄, i− j − 1, 0, f)|+ |β(w̄, i, j + 1, f)| Otherwise.

This leaves the problem of computing NS(w̄, j, f). This is done by considering two cases. First
are the set of slices that belong to a necklace class greater than w̄j+1. The number of such

necklaces is computed as |N (f1,f2,...,fd−1)
q | − RN(w̄j , f1, f2 . . . , fd−1), i.e. the number of necklaces

of dimensions (f1, f2, . . . , fd−1) minus the necklaces smaller than w̄j . To account for the number
of possible translations of each necklace, it is easiest to use the sets of aperiodic words instead.
These translations are counted by counting the number of atranslational words of dimensions
(f1, f2, . . . , fi−1, hi, 1, . . . , 1) for every i ∈ [d] and factor hi of fi. This rank is then multiplied by
the number of possible translations, given by f1·f2·. . .·fi−1·hi, and |G(h, (f1, f2, . . . , fi))| to account
for the number of necklaces corresponding to each word in T (w̄, f1, f2 . . . , fd). The second case to
consider are translations of w̄j1 greater than TR(w̄j+1). This is given by TP (w̄j+1)− TR(w̄j+1).
This allows the number of necklaces greater than w̄j along with the number of translations of these
necklaces to be counted as:

NS(w̄, j, f) = (TP (w̄j+1)− TR(w̄j+1)) +
∑

i∈[d−1]

∑
hi|fi

RA(w̄j ,h[i])) · |h[i]| · |G(hi, (n1, n2, . . . , ni))|

Where h[i] = (f1, . . . , fi−1, hi, . . . , 1) and |h[i]| = f1 · f2 · . . . · fi−1 · hi.

Theorem 5. The rank of a d-dimensional necklace with dimensions n is computed in O(N5) time.

21

Proof. Lemmas 13, 14, 15, 16, and 17 show that to rank RN(w̄), the first step is to compute
the size of T (w̄, f1, f2 . . . , fd). Following Lemma 14, to compute the size of A(w̄), f1, f2 . . . , fd,
the set A(w̄[1,l], f1, f2 . . . , fd−1, l) must be computed for every factor l of fd, alongside the set
L(w̄, f1, f2 . . . , fd) and L(w̄1, f1, f2 . . . , fd−1). Note that this requires at most log2(nd) sets to
be computed. The size of the set L(w̄, f1, f2 . . . , fd−1) is computed by computing the size of
T (V (w̄, h1, h2, . . . , hd)) where hi is a factor of fi. Therefore for L(w̄, f1, f2 . . . , fd−1), the size of at
most log2(N) sets T (ū, h1, h2 . . . , hd) must be computed.

Following the above observations, T (w̄, n1, n2 . . . , nd) is computed by determining the size of
B(w̄, g, j, n1, n2 . . . , nd−1) using n2

d combinations of j and g. For each pair j and g, the size of
β(w̄, i, j, n1, n2 . . . , nd−1) must be computed for some value of i. This is done in a dynamic pro-
gramming approach. Starting with i = j, the size of |β(w̄, i, j, n1, n2 . . . , nd)| is computed using the
previously computed values as a basis. As such, the size of |β(w̄, i, j, n1, n2 . . . , nd)| for every pair
i and j is computed in n2

d time multiplied by the complexity of computing NS(w̄, j, n1, n2 . . . , nd).

To compute NS(w̄, j, n1, n2 . . . , nd), d · log2N
d = log2

N
nd

words of dimensions d−1 must be ranked.

As there are n2
d values of β(w̄, i, j, n1, n2 . . . , nd), and log2(Nnd

) words of dimensions d − 1

must be ranked for each of the n2
d values of β(w̄, i, j, n1, n2 . . . , nd), to precompute every value

of β(w̄, i, j, n1, n2 . . . , nd) n
2
d · log2(Nnd

) time is needed, multiplied by the cost of ranking a d − 1

word. If d = 2, then the rank at this step is computed in O(n2
1) time using existing algorithms

due to Sawada and Williams [33]. Hence the size of β(w̄, i, j, n1, n2 . . . , nd) for every value of i
and j is computed in the two dimensional case in O(nd · N · log2(Nnd

) · n2
1) = O(N2 · log2(Nnd

))

time. To get the rank of a two dimensional word, a further n2
2 time is needed to compute the size

of T (w̄, n1, n2 . . . , nd), with log2(N) sets of T (w̄) to be computed. Therefore the rank of a two
dimensional word is computed in O(n2

2 · log2(N)N2 · log2(Nnd
)).

Similarly in the three dimensional case, the set of all values of β(w̄, i, j, n1, n2 . . . , nd) is com-

puted in O(n2
3 · n2

2 · log2(N)N
2

n2
3
· log2(n1)) = O(N2 · n2

2 · log2(N) · log2(n1)). Thus the complexity

of ranking a three dimensional word is O(n2
3 · log2(N) · N2 · n2

2 · log2(N) · log2(n1)) time. In the
more general case, a total of n2

d · log2(N) words of dimension d − 1 must be ranked. Using the
two and three dimensional cases as a base, the total complexity of ranking a d dimensional word

is O(
(∏d

i=2 n
4
i · log2(ni)

)
n2

1) ≤ O(N5) .

5.3 Generating and Unranking Multidimensional Necklaces

In this section we provide efficient algorithms for two further fundamental operations for necklaces:
generation, where the task is to generate all the necklaces of a given size over an alphabet Σ, and
unranking, where the task is to find a necklace of a given rank.

The idea presented here is based on generation of lower dimensional necklaces, generalising
the 1D techniques to the higher dimensional setting. For the 1D setting, there have been several
approaches for the generation of necklaces in constant amortised time, notably those of Cattell et.
al. [9] and of Fredricksen and Maiorana [15]. A tempting approach would be to make an alphabet
of size equal to the number of necklaces with dimensions (n1, . . . , nd−1) and to generate the 1D
necklaces from that. While this approach would generate a set of necklaces, as each d-dimensional
necklace is comprised of a set of d−1-dimensional necklaces, it would also miss any in which one or
more slices are translated by any degree. Similarly, representing every slice under each translation
would generate words that are not necklaces. Let us illustrate it for a set of necklaces over a binary
alphabet with dimensions (2, 2). The complete set of necklaces is given in Figure 8. Of particular

interest is the necklace represented by
[
A B
B A

]
. While the first row, AB, is the canonical form of

a 1D necklace, BA is not as it is equal to AB after a cyclic shift. Despite AB occurring as the
necklace representation multiple times prior to this, BA only occurs at this point. As such, the
situations where some slice may or may not be translated need to be understood and taken into
account in order to generate the set of necklaces.
Before generating the set of necklace, the idea of a multidimensional prenecklace must be estab-
lished. A prenecklace is a word w̄ of dimensions (n1, n2, . . . , nd) such that there exists some necklace
of dimensions (n1, n2, . . . , nd−1, nd +m) represented by a word ū such that ū[1,nd] = w̄. Note that
every necklace is a prenecklace.

22

[
A A
A A

]
→
[
A A
A B

]
→
[
A A
B B

]
→
[
A B
A B

]
→
[
A B
B A

]
→
[
A B
B B

]
→
[
B B
B B

]
[
1
1

]
→
[
1
2

]
→
[
1
3

]
→
[
2
2

]
→
[

2
translated(2)

]
→
[
2
3

]
→
[
3
3

]
Figure 8: An example of generation of (2, 2) necklaces, over the alphabet (A,B). The following
mapping from necklace to code has been used: AA→ 1, AB → 2, BB → 3.

Lemma 18. Given
_
w,

_
u ∈ |Nn

q | such that rank(
_
u) = rank(

_
w) + 1, let Pre(w̄, ū) = {v̄ ∈ Σn : ū >

v̄ > w̄, v̄ is a prenecklace}. The size of Pre(w̄, ū) is at most nd.

Proof. This is statement is proven constructively. Let NextPrenecklace(ū) return the smallest
prenecklace greater than ū. Given some word ū, let p be the length of the longest prefix of ū that
is a necklace. If p < nd, the word ū′ is defined ū′i = ūi mod p. If ū′ 6= ū, then ū′ is the smallest
prenecklace that is greater than ū. Otherwise, let i be the last slice of ū such that ūi 6= Q̄. Note
that ū[1,i−1]Q̄

nd−i is a necklace. The auxiliary function NextSlice(v̄) is introduced as returning
the subsequent word in the ordering defined in Section 2.

NextSlice(v̄) =

{
translate(v̄) TR(v̄) < TP (v̄)

NextNecklace(〈v̄〉) otherwise.

Here NextNecklace is treated as a black box that returns the next necklace in the ordering. Note
that ū[1,i−1] : NextSlice(ūi))j mod i must be a necklace as any suffix of ū[1,i−1] : NextSlice(ūi))j mod i

must be greater than ū[1,i−1]. The word ū′ is redefined as ū′j = (ū[1,i−1] : NextSlice(ūi))j mod i.
As ū[1,i−1] : NextSlice(ūi))j mod i is a necklace, ū′ is a prenecklace. Therefore ū′ is returned. To
determine the size of Pre(w̄, ū), note that the slice at position i + 1 must be smaller than Q̄,
therefore by repeating this process at most nd times, the necklace of rank rank(w̄) + 1 is found,
and hence the size of Pre(w̄, ū) is at most nd.

Lemma 19. Let w̄ be a word of dimensions n. NextNecklace(w̄) returns the smallest word ū > w̄
such that ū = 〈ū〉 in O(N) time.

Proof. Following Lemma 18, note that by applying the function NextPrenecklace at most nd
times, the smallest necklace greater than w̄ is determined. As each call to NextPrenecklace
requires NextNecklace as a subroutine, to determine the next prenecklace of dimensions d − 1,
nd−1 prenecklaces of dimensions d− 2 must be determined. Following this logic, to determine the
next prenecklace of dimensions d at most N

nd·nd−1·...·nd−i+1
prenecklaces of dimensions i must be

considered. Therefore a total of O(N) time is needed to compute all nd prenecklaces. As it takes
at most O(N) time to determine if a word is a necklace, this process takes at most O(N) time.

Theorem 6. Given an alphabet Σ of size q and set of dimensions n there exists an algorithm to
generate Nn

q in no more than O(N) time per necklace.

Proof. Let ā be the smallest necklace in Nn
q . Following Lemma 19, it is possible to generate each

necklace in Nn
q in at most O(N) time per necklace. Hence it is possible to generate every necklace

Nn
q in at most O(|Nn

q |N) time.

Theorem 7. The ith necklace in Nn
q can be unranked in O

(
N6(d+1) · logd(q)

)
time.

Proof. The unranking procedure is done in a similar manner to the one dimensional case as pre-
sented by Sawada and Williams [33]. At a high level, the idea is to iteratively generate the necklace
by generating prefixes of increasing length. Let w̄ be the canonical representative of the ith necklace.
Further let Q̄ = q(n1,n2,...,nd−1), the word of dimensions (n1, n2, . . . , nd−1) where every position is
occupied by the symbol k. The first slice of w̄ is determined through a binary search. Let ū be
the canonical representation of jth necklace of dimensions (n1, n2, . . . , nd−1). Note that if ū is the
first slice of w̄, then the rank of w̄ must be between the rank of the smallest necklace starting with
ū and the greatest. These necklaces are determined using the same process as laid out in Lemma

23

4. Let ā be the smallest such word and b̄ the greatest. Therefore ū is the first slice of w̄ if and
only if RN(ā) ≤ i ≤ RN(b̄. Otherwise, depending on the value of i relative to RN(ā) and RN(b̄)
the next value of ū is checked, with ū determined by a binary search. Note that there are at most
qN/nd necklaces of size (n1, n2, . . . , nd−1), the binary search requires at most log(qN/nd) = N

nd
log k

necklaces to be checked.
For the tth slice, where t ≥ 2, the process is slightly more complicated. As in the first case,

to determine if the 〈w̄t〉 = ū, the smallest and largest such words are determined and ranked. To
that end, let ā be the smallest possible word that is the canonical form of a necklace and has the
prefix w̄[1,t−1] : 〈ū〉g, and let b̄ be the greatest. The value of ā is computed in O(N) time following
the techniques outlined in Theorem 6. The word b̄ = w̄[1,t−1] : 〈ū〉g : Q̄nd−t where g is the largest
translation such that ū 6= 〈ū〉g. Using these words, 〈w̄t〉 = ū if and only if RN(ā) ≤ i ≤ RN(b̄).

The complexity of this process comes from the recursive nature of algorithm. In dimension
d, nd slices need to be computed, each requiring at most N

nd
· log(q) necklaces to be ranked, the

ranking having a complexity of N5. Note that while determining the necklace that needs to
be ranked has a complexity of N2, this is not multiplicative with the complexity of ranking as
each step is done independently. To determine each of these necklaces, a necklace of dimensions

(n1, n2, . . . , nd−1) must be unranked, adding an additional complexity of nd−1 · N
nd·nd−1

· N
5

n5
d
·

log(q). As each dimension requires necklaces of the dimension one lower to be computed, the total

complexity is O

(
d∏
i=0

N6·log(q)∏
j∈[1,i]

n6
d−j

)
. In the worst case, where n1 = N and ni = 1 for i ∈ [2, d], this

is simplified to O
(
N6(d+1) · logd(q)

)
.

References

[1] Duncan Adamson, Vladimir V. Gusev, Igor Potapov, and Argyrios Deligkas. On the hardness
of energy minimisation for crystal structure prediction. In SOFSEM 2020, volume 12011 of
Lecture Notes in Computer Science, pages 587–596, 2020.

[2] Duncan Adamson, Vladimir V. Gusev, Igor Potapov, and Argyrios Deligkas. Ranking
Bracelets in Polynomial Time. In Pawe l Gawrychowski and Tatiana Starikovskaya, editors,
32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021), volume 191 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:17, Dagstuhl, Germany,
2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.
de/opus/volltexte/2021/13955, doi:10.4230/LIPIcs.CPM.2021.4.

[3] F. S. Annexstein. Generating De Bruijn sequences: An efficient implementation. IEEE Trans-
actions on Computers, 46(2):198–200, 1997.

[4] M. Anselmo, M. Madonia, and C. Selmi. Toroidal Codes and Conjugate Pictures. In LATA
2019, volume 11417 of Lecture Notes in Computer Science, pages 288–301, 2019.

[5] D. Antypov, A. Deligkas, V.V. Gusev, M. J. Rosseinsky, P. G. Spirakis, and M. Theofilatos.
Crystal Structure Prediction via Oblivious Local Search. In SEA 2020, volume 160 of LIPIcs,
pages 21:1–21:14, 2020.

[6] Jean Berstel, Dominique Perrin, Christophe Reutenauer, and Jean Berstel. Codes and au-
tomata. Encyclopedia of mathematics and its applications: volume 129. Cambridge University
Press, 2009.

[7] Kellogg S. Booth. Lexicographically least circular substrings. Information Processing Letters,
10(4-5):240–242, jul 1980. doi:10.1016/0020-0190(80)90149-0.

[8] S. Bozapalidis and A. Grammatikopoulou. Picture codes. RAIRO - Theoretical Informatics
and Applications, 40(4):537–550, 2006.

[9] K. Cattell, F. Ruskey, J. Sawada, M. Serra, and C.R. Miers. Fast Algorithms to Generate
Necklaces, Unlabeled Necklaces, and Irreducible Polynomials over GF(2). Journal of Algo-
rithms, 37(2):267–282, 2000.

24

https://drops.dagstuhl.de/opus/volltexte/2021/13955
https://drops.dagstuhl.de/opus/volltexte/2021/13955
https://doi.org/10.4230/LIPIcs.CPM.2021.4
https://doi.org/10.1016/0020-0190(80)90149-0

[10] F. Chung, P. Diaconis, and R. Graham. Universal cycles for combinatorial structures. Discrete
Mathematics, 110(1-3):43–59, 1992.

[11] C. Collins, G. R. Darling, and M.J. Rosseinsky. The Flexible Unit Structure Engine (FUSE)
for probe structure-based composition prediction. Faraday Discuss., 211:117–131, 2018.

[12] C. Collins, M. S. Dyer, M. J. Pitcher, G. F. S. Whitehead, M. Zanella, P. Mandal, J. B.
Claridge, G. R. Darling, and M. J. Rosseinsky. Accelerated discovery of two crystal structure
types in a complex inorganic phase field. Nature, 546(7657):280–284, 2017.

[13] M. S. Dyer, C. Collins, D. Hodgeman, P. A. Chater, A. Demont, S. Romani, R. Sayers, M. F.
Thomas, J. B. Claridge, G. R. Darling, and M. J. Rosseinsky. Computationally assisted
identification of functional inorganic materials. Science, 340(6134):847–852, 2013.

[14] A. E. Feldmann and D. Marx. The parameterized hardness of the k-center problem in trans-
portation networks. Algorithmica, pages 1989–2005, 2020.

[15] H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences.
Discrete Mathematics, 23(3):207–210, 1978.

[16] Guilhem Gamard, Gwenaël Richomme, Jeffrey Shallit, and Taylor J. Smith. Periodicity in
rectangular arrays. Information Processing Letters, 118:58–63, 2017.

[17] Thomas Gärtner. A survey of kernels for structured data. ACM SIGKDD explorations newslet-
ter, 5(1):49–58, 2003.

[18] D. Giammarresi, F. Venezia, and A. Restivo. Two-Dimensional Languages. Handbook of
Formal Languages, Vol. III, pages 215–267, 1997.

[19] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics : a foundation for
computer science. Addison-Wesley, 1994.

[20] V. Horan and B. Stevens. Locating patterns in the de Bruijn torus. Discrete Mathematics,
339(4):1274–1282, 2016.

[21] G. Hurlbert and G. Isaak. On the de Bruijn Torus problem. Journal of Combinatorial Theory,
Series A, 64(1):50–62, 1993.

[22] G. Hurlbert and G. Isaak. New constructions for De Bruijn tori. Designs, Codes and Cryp-
tography, 6(1):47–56, 1995.

[23] G. H. Hurlbert, C. J. Mitchell, and K. G. Paterson. On the existence of de Bruijn Tori with
two by two windows. Journal of Combinatorial Theory. Series A, 76(2):213–230, 1996.

[24] Yishan Jiao, Jingyi Xu, and Ming Li. On the k-closest substring and k-consensus pattern
problems. In Combinatorial Pattern Matching, pages 130–144, 2004.

[25] T. Kociumaka, J. Radoszewski, and W. Rytter. Computing k-th Lyndon word and decod-
ing lexicographically minimal de Bruijn sequence. In Symposium on Combinatorial Pattern
Matching, pages 202–211. Springer International Publishing, 2014.

[26] S. Kopparty, M. Kumar, and M. Saks. Efficient indexing of necklaces and irreducible polyno-
mials over finite fields. Theory of Computing, 12(1):1–27, 2016.

[27] M. Latteux and D. Simplot. Recognizable picture languages and domino tiling. Theoretical
Computer Science, 178(1-2):275–283, 1997.

[28] Ming Li, Bin Ma, and Lusheng Wang. On the closest string and substring problems. J. ACM,
49(2):157–171, 2002.

[29] O. Matz. Regular expressions and context-free grammars for picture languages. In Lecture
Notes in Computer Science, volume 1200, pages 283–294, 1997.

25

[30] D. Perrin. Words. Cambridge University Press, 2 edition, 1997.

[31] Chris J Pickard and R J Needs. Ab initiorandom structure searching. Journal of Physics:
Condensed Matter, 23(5):053201, 2011.

[32] F. Ruskey and J. Sawada. Generating necklaces and strings with forbidden substrings. In
COCOON 2000, volume 1858 of Lecture Notes in Computer Science, pages 330–339, 2000.

[33] J. Sawada and A. Williams. Practical algorithms to rank necklaces, Lyndon words, and de
Bruijn sequences. Journal of Discrete Algorithms, 43:95–110, 2017.

[34] G. Stromoney, R. Siromoney, and K. Krithivasan. Abstract families of matrices and picture
languages. Computer Graphics and Image Processing, 1(3):284–307, 1972.

[35] Y.Zhang, Z.Chang, F.Y.L.Chin, H.F.Ting, and Y.H.Tsin. Uniformly inserting points on square
grid. Inf. Process. Lett., 111:773–779, 2011.

26

	1 Introduction
	2 Preliminaries
	3 The Overlap Distance and the k-Centre problem
	4 Two Approximation Algorithms for the k-Centre Problem
	4.1 Approximating the k-centre problem using de Bruijn sequences
	4.2 Approximating the k-centre problem using Prefix Trees

	5 Efficient Operations on Multidimensional Necklaces
	5.1 Counting Multidimensional Necklaces
	5.2 Ranking Multidimensional Necklaces
	5.2.1 Computing Beta(w,i,j,f)

	5.3 Generating and Unranking Multidimensional Necklaces

