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Abstract 
The edge-based Spatial Frequency Response (e-SFR) is an 

established measure for camera system quality performance, 
traditionally measured under laboratory conditions. With the 
increasing use of Deep Neural Networks (DNNs) in autonomous 
vision systems, the input signal quality becomes crucial for 
optimal operation. This paper proposes a method to estimate the 
system e-SFR from pictorial natural scene derived SFRs (NS-
SFRs) as previously presented, laying the foundation for 
adapting the traditional method to a real-time measure.  

In this study, the NS-SFR input parameter variations are 
first investigated to establish suitable ranges that give a stable 
estimate. Using the NS-SFR framework with the established 
parameter ranges, the system e-SFR, as per ISO 12233, is 
estimated. Initial validation of results is obtained from 
implementing the measuring framework with images from a 
linear and a non-linear camera system. For the linear system, 
results closely approximate the ISO 12233 e-SFR measurement. 
Non-linear system measurements exhibit scene-dependant 
characteristics expected from edge-based methods. The 
requirements to implement this method in real-time for 
autonomous systems are then discussed. 

Introduction 
Deep neural networks (DNNs) are currently used as one of 

the main technologies in image recognition tasks. However, 
recent studies have shown that DNNs are susceptible to 
adversarial natural noise in input images [1, 2] that degrade their 
performance and sometimes result in unpredictable object or 
scene classification decisions. With the application of DNNs in 
decision critical systems, such as autonomous vision systems, it 
is important to develop camera performance measures that can 
monitor the output quality at any given moment, i.e., in real-time. 

There are several reasons why camera signal may 
deteriorate during real-time operation, including camera system 
failure, motion blur, defocus, and environmental conditions. 
Through live monitoring, the DNN can be adapted according to 
the measured and expected camera performance, adjusting the 
image signal processing (ISP), or completely removing the 
automation when the SFR drops under what is deemed safe 
operation. 

The ISO12233 e-SFR is a standardised method for 
measuring camera system performance from slanted edges [3].  
The SFR is an adaptation of the Modulation Transfer Function 
(MTF). MTFs/SFRs are traditionally obtained from captured test 
charts under laboratory conditions. This study attempts to 
estimate the traditional e-SFR measurement using the natural 
scene derived SFR (NS-SFR) measures, as previously presented 
in [4, 5]. Thus, laying the foundation for monitoring live camera 
performance whilst providing results that are in accord with an 
accepted and much-used standard. 

Measuring camera performance obtained directly from 
natural scenes is not a new concept. In several applications, step-
edges are selected from images for camera system 
characterisation. Such applications include assessing aerial 

camera systems [6] and optimising digital scan resolution for 
film archives [7]. The texture-MTF method [8] was recently 
modified to work with input images of natural scenes for 
evaluating scene dependency of non-linear camera systems [9, 
10]. This technique works effectively with little computation, but 
it assumes that the input noise power spectrum is known, making 
it unsuitable for real-time measurements.  

To date, the most effective approach to measure camera 
performance from natural scene images is a prediction of the 
Point Spread Function (PSF) through a convolutional neural 
network (CNN) to then calculate the MTF [11]. This approach 
yields accurate MTF estimates for linear systems, with 
computational times of a few minutes per image. However, out 
of focus or textureless image regions produce errors in the 
estimated MTF, or return non-predictions. This method is not 
based on a traditional technique, and therefore, conventional 
SFR/MTF measures cannot be compared with its estimates. 

Background: The NS-SFR 
Previous work proposed a novel framework to adapt the 

ISO 12233 e-SFR to measure the NS-SFR [4, 5]. This 
methodology is based on an automated process that selects step-
edge regions of interest (ROIs) from natural scene images. 

The NS-SFR methodology extracts, isolates, and validates 
suitable step-edges from natural scene images to derive the 
camera SFR by subsequently implementing the standard e-SFR 
(slanted-edge) algorithm. Unlike e-SFRs obtained from test 
charts with known edge contents, the NS-SFRs are derived from 
step-edges with unknown spatial frequency content. Thus, the 
measure inherently contains variations since it accounts for both 
camera performance and scene contents. Its output cannot be 
classed as an e-SFR; it is therefore referred to as an NS-SFR. 

NS-SFRs for a given camera system and setting form an 
envelope. Such envelopes were shown to be scene-dependant 
due to selected edge locations, surrounding scene texture (noise) 
and depth of focus/depth of field.  

Further, variations in the SFR parameters, such as edge 
angle, edge contrast and the ROI size, are also shown to 
introduce variation in the measured NS- SFRs [4, 5]. This study 
takes the NS-SFR measure a step further by examining each 
parameter’s range, thus, analysing and regulating the sources of 
such variations to allow for a stable estimate. These ‘calibrated’ 
NS-SFRs are then used to estimate the system e-SFR, i.e., a 
measure designed to match the e-SFR obtained using the ISO 
12233 test chart. The system e-SFR estimation is validated using 
two camera systems, one with linear performance and the other 
incorporating highly non-linear ISP. The paper finally briefly 
discusses the advantages and caveats of the proposed measure 
and requirements for real-time implementation.  

Parameter Range for e-SFR estimation 
The NS-SFR data is derived from isolated edges in ROIs 

with a range of parameters. These include edge angle, edge 
contrast, and ROI height and width. The first step in deriving the 
system e-SFR estimate was to reduce extensive NS-SFR 
variations by determining suitable parameter ranges. This step 



should be applied without restricting the amount of valuable NS-
SFR data, as suitable edges are not commonly found in natural 
scenes.  

A large range of step-edge angles and contrasts, region of 
interest (ROI) heights and widths, and signal-to-noise ratios 
(SNRs) were tested, using edges captured from standard test 
charts and camera simulations. In addition, edge isolation 
techniques applied in the NS-SFR methodology, such as pixel 
stretching  [5], were applied to the selected ROIs to evaluate their 
impacts on the system e-SFR variation. The results gave details 
and information that previous e-SFR variation evaluations and 
benchmarking publications had not [12–14].  

Figures 1 and 2 demonstrate some of the findings. Results 
in both figures are from simulations. Figure 1 used ROIs with 
image noise level set to SNR18 and utilised the mean absolute 
error (MAE) from the ISO12233 e-SFR (SFR measured from a 
noiseless ROI with the standard e-SFR parameters) to colour 
map the scatter plot data. The MAEs were calculated from spatial 
frequencies 0 to 0.5 cyc/pixel. SNR18 was used to introduce a 
high noise level to illustrate a high MAE variation introduced by 
these parameters. The image noise was simulated using both 
Poisson and Gaussian distributions, corresponding to shot and 

read noise.  Figure 2 shows the edge angle MAE introduced in 
the higher frequencies (0.4 to 0.5 cyc/pixel), with and without 
pixel stretching. The figure illustrates how this isolation method 
reduces the effects of image noise on the measured SFR, but the 
variation caused by angle changes remains. The noise reduction 
allows the possible SFR parameter range to be expanded. The 
other SFR parameters examined in this study, i.e., edge contrast, 
ROI height and width, showed similar trends. 

Using SFR variance data, the NS-SFR parameter ranges 
adequate for estimating the system e-SFR were established. All 
parameter values are listed and compared to the recommended 
ISO 12233 standard parameters in Table 1. 

ROI with isolated step-edges from natural scenes need 
ideally to be small to reduce the probability of including 
unwanted artifacts, such as changes in illumination and focus 
across the edge, double-edges and overlapping scene structures. 
However, small ROIs have been shown to introduce higher error 
due to image noise and insufficient edge data points. Pixel 
stretching reduces this error as the effects of noise were reduced, 
allowing small ROI heights of a minimum of 20 pixels and 
widths of 20 pixels, as long as the ROI neither interferes with 
the edge nor inhibits the Edge Spread Function (ESF). Although 
smaller ROIs are shown to be usable, if there are larger ROIs 
available in the selection process [5] they are prioritised. 

It is well documented that the smaller the edge angle from 
the vertical, the less error is introduced in the measured SFR 
[12–14]. However, significantly restricting the angle limits the 
number of edges isolated from natural scenes. Edge angle, 
therefore, was kept within a broad range, 2.5 to 35 degrees.  

In the working examples, contrast variations did not 
introduce a large error. Nonetheless, contrast provokes non-
linear image processing changes, so it was kept in a narrow range 
to minimise non-linear ISP effects, as recommended in the ISO 
12233. 

 System e-SFR Estimation Methodology  
With the SFR parameter ranges established, the system e-

SFR can be estimated via the following four steps: 
1. To minimise optical imaging circle performance variation, 

the frame is segmented into uniform radial distances. The 
number of segments is adjustable for different application 
requirements. In this study, six radial distances were used. 

2. For each radial distance, the distribution of the ROI Line 
Spread Function (LSF) half peak widths is analysed.  
Isolating the narrowest LSFs for the system e-SFR 
estimation, i.e., the edges most likely to be a response from 
a perfect step-edge input. This study uses the 10th percentile 
of the LSF half peak width distribution for this purpose. 

3. The selected ROIs, per radial distance, are assigned to a 
multi-dimensional grid, binning the NS-SFRs to represent 
the output with unique combinations of SFR parameters. 
This binning process helps to reduce any anomalous NS-
SFR values and bias due to larger quantities of specific 
parameters.   

 
Figure 1.  Matrix illustrating the variance introduced to the slanted-edge e-

SFR measurement when changing edge angle, edge contrast, ROI height 

and width. The diagonal of the matrix plots the MAE introduced by each 

SFR parameter.  

 

Figure 2.   MAE introduced in the slanted-edge SFR measurement with 

changing edge angle with and without pixel stretching. 

Parameter  ISO 12233 e-SFR NS-SFR 
ROI Size >64 x 80-500 pixels >20 x 20-130 pixels 
Edge  
Angle 

<45°  
(5° Recommended) 

2.5° – 35° 

Edge  
Contrast 

0.55 – 0.65  
Michelson Contrast 

0.55 – 0.65   
Michelson Contrast 

Table 1. The parameter ranges for the e-SFR ISO 12233 method 
against those used to estimate the system-SFR from the NS-SFR data. 



4. The NS-SFRs derived with parameter ranges presented in 
Table 1 are averaged, per radial distance, in the spatial 
domain. This is achieved by aligning the maxima of their 
resampled natural scene LSFs and taking a mean at each 
sample point. The averaged LSF is converted into the 
frequency domain via the Fourier transform, providing an 
averaged NS-SFR. These mean NS-SFRs form the six 
system e-SFR estimates across the frame. The weighted 
mean of these system e-SFR estimates is calculated, again 
in the spatial domain, obtaining an overall system e-SFR 
estimate [15]. This weighted mean is applied to the six 
radial distance system e-SFR estimates to eliminate bias due 
to areas of high-density NS-SFRs.  

System e-SFR Estimation Results 
The methodology presented above was implemented using 

two image datasets, each taken with a single camera system. The 
first system consisted of a Nikon D800 DSLR, equipped with a 
24mm lens set at f/4. The second was the Apple iPhone7 
smartphone camera. The DSLR and smartphone camera datasets 
included 1800 and 2000 images, respectively. They contained 
images captured using the same optical focal length and aperture 
but various shutter speeds and ISO gain settings. The captured 
scenes varied in content and illumination. They included urban 
and rural architecture, indoor and outdoor scenes, and various 
nature scenery, with forests, beaches, and mountains.  

NS-SFR data was gathered from each image in the dataset 
according to the framework presented in [5]. The data from the 
entire dataset was compiled to estimate the system e-SFR. Using 
NS-SFR data from many diverse images achieved two traits to 
allow a more robust measure for the development of this 
proposed method. Firstly, it improved the chances of obtaining 
edges from optimal step-edge inputs, reducing the scene 
component of the NS-SFRs. Secondly, it minimised the potential 
of missing data in the radial distance segments.  

DSLR Camera System 
RAW files from this system were converted into 16-bit 

TIFF files, with sharpening and denoising turned off in the 
demosaicing process. In most research applications, the TIFF file 
is adequate for system SFR/MTF measurement since it is 
considered to incorporate minimum non-linear ISP. In addition 
to the TIFF files, the green channel of the mosaiced RAW files 
(sensor images) was used for comparison. 

The ISO 12233 slanted-edge method [3] was employed to 
characterise the system e-SFR. The RAW images of the captured 
test chart were converted to TIFF files in the same manner as the 
captured natural scenes dataset. The mean SFR obtained from 
the target’s edges and the standard deviation was calculated for 
each radial distance, providing the target ISO12233 e-SFR 
across the frame. The weighted mean of the average SFRs from 
all six radial distances was calculated to represent the system 
ISO12233 e-SFR of the entire frame.  

The weights used in this instance were 1.00 for the centre, 
0.75 for the partway regions and 0.50 for the corners of the 
frame. They correspond to the default weights in Imatest 
software employed for SFR analysis [15] but can be adjusted 
depending on the application. For example, image quality 
metrics apply a higher weight in the frame’s corners than in the 
centre (higher weights assigned to the poorer SFRs) [16].  

The DSLR system e-SFR estimates, obtained from the 
demosaiced TIFF natural image files and the mosaiced RAW 
files, were compared to the ISO12233 e-SFR in Figure 3. This 
figure illustrates the vertical system e-SFR estimate for three 

radial distance segments: the centre (1/6), partway (3/6) and the 
corners of the frame (6/6), and also the weighted mean of the 
entire frame. The left column shows the system e-SFR estimate, 
the middle the absolute error from the mean ISO12233 e-SFR 
and the last the radial distance. 

In this instance, comparing the system e-SFR estimates to 
the ISO12233 e-SFR assesses the accuracy of the method. 
Excluding the high-frequencies, the system e-SFR estimates 
derived from TIFF and RAW file types stay within or close to 
the ISO12233 e-SFR standard deviation limits.  

The system e-SFR estimated from the TIFF versions of the 
image files is consistently higher than that of the RAW 
counterpart, which shows a closer match to the ISO12233 e-SFR. 
However, the RAW estimates contain a boosted high-frequency 
SFR, a known image noise attribute [17]. These system e-SFR 
signatures indicate that denoising is in the TIFF pipeline. 

Smartphone Camera System 
JPEG files from the smartphone camera were used, 

meaning that the dataset contains artefacts from compression and 
a non-linear ISP. Effects from such processes can be observed in 
the system SFR in Figure 4. This figure illustrates the vertical 
mean e-SFR and the standard deviation envelope (obtained from 
the ISO 12233 test chart), along with the corresponding system 
e-SFR estimate. Figure 4 also illustrates the texture-MTF, 
calculated using the Imatest spilled-coins test chart [18], 
typically used to access camera performance with high ISP, for 
further comparison [8].  

Isolated step-edges from ISO 12233 test charts are prone to 
heavy sharpening, denoising and compression, boosting the 
system e-SFR, especially at low spatial frequencies. Sharpening 
is not as effective when extracting step-edges from complex 
natural scene images due to surrounding scene content and 
textures, so the low-frequency boost is reduced. Additionally, 
noise reduction in textured areas will be greater than isolated test 
chart edges, reducing the estimated system e-SFRs. This non-
linear behaviour is reflected in the estimate having a higher 
association with the texture-MTF in the low frequencies.  

These observations indicate that the system e-SFR estimate 
can potentially be a scene-dependant performance measure, 
unlike the e-SFR. However, further work is required to establish 
the full impact of non-linear ISPs on the measure.  

Discussion and Conclusions 
The proposed methodology for estimating the system e-

SFR is accurate and comparable to the standardised ISO 12233 
slanted-edge method for linear camera systems. This reliability 
makes it ideal for several vision systems, including autonomous 
vehicles and live security systems.  

However, the method has caveats that need to be addressed 
to allow for a live-SFR measure. The current computation time 
is extensive, taking on average 20 minutes per DSLR 36.3-
megapixel image. This computation time is far from a minimum 
of 24 images per second required for live-SFRs to characterise 
cameras incorporated in real-time systems. Thus, to work with 
such systems, the proposed algorithm calls for optimisation. 
First, lowering frame resolution, reducing it to typical 
magnitudes for real-time systems, would significantly improve 
computation times. Incorporating a trained CNN for ROI 
localisation and validation of step-edges from natural scenes 
would allow the framework to select the edges most likely to 
conform to the selected ROI parameters (Table 1). This approach 
would reduce the time spent processing edges that are 
subsequently not included in the system e-SFR estimation.   



System e-SFR results here are produced from compiling 
1800-2000 images with very diverse scene content. To produce 
a live-SFR, the number of images required would have to be 
reduced. It is worth noting that in autonomous vision systems, 
such as autonomous vehicles, the camera input signals are 
unlikely to be as diverse as this study’s image datasets. Thus, 

further research is currently being carried out to assess the 
reliability of the method with fewer images, along with more 
targeted scene contents. 

In summary, this paper proposes a method to estimate the 
camera ISO 12233 e-SFR directly from natural scene SFRs (NS-
SFRs). These estimates were taken from the NS-SFR data with 
tested SFR parameter ranges (edge angle, edge contrast and ROI 
size) that gave a stable result without limiting the number of 
extracted natural scenes edges. The camera frame was divided 
into radial distance segments to reduce variation introduced 
across the optical image circle, and the highest performance 
edges were selected per radial distance segment. The selected 
NS-SFRs were averaged in the spatial n to form system e-SFR 
estimates across the frame. A weighted mean was then used to 
produce the system e-SFR estimate.  

The resulting system e-SFR gave good approximations of 
the ISO 12233 e-SFR, especially for systems with less heavy ISP 
(as expected from an edge-based method). Non-linear system 
processes produced an estimated system e-SFR that exhibits 
signs of a scene dependent nature.  

Further work is required to make the proposed measure 
suitable for implementation in autonomous vision systems. This 
work includes improving the computational time by 
implementing a CNN for edge localisation, reducing image 
resolution to a typical number for such systems, the number of 
images required for a reliable estimate, and finally determining 
the types of scenes best suited to the application at hand. 

 
 Figure 3.  The vertical system e-SFR estimation for three radial distances out of six and a weighted mean of all six radial distances. The first 

column contains the estimated e-SFR in relation to the ISO12233 e-SFR. The second column contains the absolute error of these estimated 

system e-SFRs. The third column contains a visual representation of the radial distance the data belongs. 

 
Figure 4.  This graph shows the vertical system e-SFR estimation 

from the iPhone7 database. This data is compared to the vertical e-

SFR envelope measured from an ISO 12233 test chart and the 

texture-MTF calculated from the spilled-coins test chart.  
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