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based on drought state, duration, and se-
verity.

• Cluster analysis was based on both
gauge-measured and TRMM-estimated
rainfall data.
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tion, and severity identified typical areas.

• This divisionwas evident when assessing
short-term droughts.

• Proximity to the ocean, climatic systems,
and relief influences the drought regime.
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Droughts threaten water resources, agriculture, socio-economic activities and the population at the global and
regional level, so identifying areas with homogeneous drought behaviors is an important consideration in im-
proving the management of water resources. The objective of this study is to identify homogenous zones over
Paraíba State in relation to the state, duration and severity of droughts that have occurred over the last 20
years (1998–2017) using hierarchical cluster analysis based on both gauge-measured and Tropical Rainfall Mea-
suringMission (TRMM) estimated rainfall data (TMPA 3B42). The drought serieswere calculated using the Stan-
dardized Precipitation Index (SPI) based on eight time scales and were grouped according to drought state,
duration and severity time series. The integrated results of state, duration and severity of droughts indicate
that there is a basis for dividing Paraíba State into two major regions (a) Zone I, formed by Mata Paraibana and
Agreste Paraibano, and (b) Zone II, composed by Borborema and Sertão Paraibano. This division is evident
when assessing short-term droughts, but in the case of long-term droughts, Paraíba State has a high similarity
in terms of drought state, duration, and severity. Factors such as proximity to the ocean, active climatic systems,
and the local relief configuration were identified as influencing the drought regime. Finally, it is concluded that
TMPA rainfall estimates represent a valuable source of data to regionalize and identify drought patterns over
this part of Brazil and that other studies of this type should be carried out to monitor these phenomena based
on other satellite-based rainfall data, including the Global Precipitation Mission (GPM).
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The future impacts of climate change for semiarid regions can cause
the intensification and prolongation of droughts and generate serious
problems, such as water scarcity and collapse in the water supply (Li
et al., 2020). Droughts can also cause socio-environmental impacts of var-
ious magnitudes, such as desertification, reduction of agricultural poten-
tial and the rural exodus (Vieira et al., 2020). Drought events in many
semiarid regions are frequent and are expected to increase in frequency
and severity in the coming decades (IPCC, 2014). Precipitation measure-
ments are therefore essential for water resources monitoring and in eval-
uating regional and global climate change (Mossad and Alazba, 2018).

Many developing or less developed countries have problems with
collecting and storing high-quality and long-term meteorological data
due to poorly developed and maintained hydrometric infrastructure and
limited financial resources, which is especially difficult in arid and semi-
arid regions (Tan, 2019). Therefore, satellite precipitation products are
used as an alternative data source to study the climate system in large
or in non-instrumented watersheds (Tan and Duan, 2017). Among
them, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA) dataset (Huffman et al., 2007; Liu et al.,
2012) is a suite of precipitation products that includes daily long-term re-
cords of precipitation with acceptable accuracy for various regions of the
globe (Qin et al., 2014; Prakash et al., 2015), and where reliability has
been widely evaluated in relation to the general aspects of precipitation
measurement (AL-Falahi et al., 2020) and hydrological modeling (Ur
Rahman et al., 2020; de Medeiros et al., 2019; Silva et al., 2018).

TRMM precipitation data have also been used extensively in meteo-
rological drought analysis. TMPA was one of the most important satel-
lite products used to monitor rainfall in its era and used a fine spatial
scale (i.e., 0.25°), whereas the resolution of other datasets, such as
CRU (Climate Research Unit) or GPCC (Global Precipitation Climatology
Centre), for example, is four times larger (i.e., 0.50°), which makes
TMPA a useful dataset for regional analysis. Naumann et al. (2012)
tested the feasibility of using TRMM 3B43 estimates for monitoring
drought conditions and their uncertainties over four river basins in
Africa, concluding that TRMM-based SPI estimation was reliable. Zeng
et al. (2012) demonstrated the value of TRMM in mapping drought in
the susceptible Lancang River Basin, China and validated themonitoring
accuracy of TMPA 3B43 for two severe droughts, confirming the poten-
tial of TMPA for drought monitoring in data-poor regions. TRMM data
were also found to be well correlated with ground observations in the
Loess Plateau of Northwest China (Zhao et al., 2018). For Jiangsu Prov-
ince, China, Tao et al. (2017) suggested that TRMM3B43 data performed
well for short-term drought monitoring, but the accuracy decreased for
longer time scales.

Chen et al. (2020) reported good correlations at a shorter time scale
(1, 3, 6 months) and conclude that the TRMM 3B43 precipitation prod-
uct is reliable in drought monitoring over the Yangtze River Basin. Sim-
ilar comparative studies have been undertaken in other localities, for
example, Mexico (De Jesús et al., 2016), Malaysia (Tan et al., 2017),
Brazil (Ferreira da Silva et al., 2020; Brasil Neto et al., 2020), Iran
(Amini et al., 2019), Iraq (Suliman et al., 2020), Nepal (Sharma et al.,
2020) and Morocco (Hadria et al., 2019), all of which broadly confirm
the use of TRMMdata in regional drought analysis. Although these stud-
ies show the potential value of TRMM data in drought analysis, further
studies are still needed to analyze the quality of the TRMMrainfall prod-
ucts in the identification of state, duration, and severity of droughts for
different regions (dry and wet), as is the case of Paraíba State.

Paraíba State is a predominantly semiarid region located in theNorth-
east of Brazil, one of themost vulnerable areas in theworld due to climate
change and where droughts are frequent (Dantas et al., 2020). Further-
more, Paraíba State has diverse climatic and geomorphological character-
istics that control the spatiotemporal distribution of rainfall (Santos et al.,
2019a), whichmakesmonitoring precipitation and droughts at more de-
tailed space-time scales a complex task. For this reason, it is a good
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locality for evaluating the utility of TRMM in the monitoring and analysis
of drought across different climatic zones. Furthermore, the regionhas re-
cently experienced oneof themost severe drought events of recent times,
with significant socio-economic consequences for the population of the
state (Marengo et al., 2017; Santos et al., 2019b). For this reason, im-
proved drought monitoring is therefore critical for improved resilience
in water resource management.

To monitor the state, duration and severity of droughts, several met-
rics have been developed (RajKhatiwada and Pandey, 2019). These indi-
ces integrate various variables such as precipitation, temperature, flow,
evapotranspiration, and humidity and can be interpreted on a severity
scale (normal, wet, medium, or dry) to provide a comprehensive view
of this phenomenon for decision-making. However, each drought index
has different characteristics and is suitable for specific environments
(Zhang et al., 2017), a factor that has stimulated several comparisons of
alternative indices in various climatic regions of the planet. Studies of
this nature are scarce in Paraíba State because the hydrometeorological
time series havemany gaps, challenging the analysis usingmultiple indi-
ces (Santos et al., 2019b; Brasil Neto et al., 2020; Brasil Neto et al., 2021).
In ungauged, remote, and complex regions, as is the study area, obtaining
a reliable rainfall data time series is easier than obtaining time series for
other meteorological variables. The advantage of using the SPI in areas
such as Paraíba State is that the SPI is only based on precipitation data
and can be used for monitoring drought and wet conditions. In this con-
text, SPI (McKee et al., 1993) is an important tool to assess the geospatial
distribution of meteorological drought over Paraíba State.

Identifying areas with similar drought characteristics is an important
but challenging task, as it typically requires high levels of local knowledge,
understanding and experience for each region. Hierarchical cluster analy-
sismethods offer ameans of extracting greater understanding fromdiffer-
ent time series and have become notable as one of the most suitable
instruments for defining pluviometrically homogeneous regions and
their climate trends at regional and global scales (Unal et al., 2003;
Keller Filho et al., 2005; Lyra et al., 2014; Teodoro et al., 2016; Oliveira-
Júnior et al., 2017; Brito et al., 2017; Santos et al., 2019a). Drought zoning
based on the state, duration and severity of thesephenomena is a themeof
interest in some studies (Rad and Khalili, 2015; Li et al., 2015;Wang et al.,
2015; McGree et al., 2016; Shiau and Lin, 2016; Yang et al., 2017), but
there is a lack of more detailed studies in the arid and semiarid regions.

This study aims to address this specific knowledge gap and further
contribute to the literature onmonitoring, classifying andmappingmete-
orological drought using hierarchical cluster analysis, a methodology that
should be applied for other regions. The findings of our paper allow not
only the comparison between rain gauge-measured and TRMM-
estimated data, but also make it possible to identify regions based on dif-
ferent drought characteristics and different time scales. As far as we are
aware, this is the first study to evaluate the performance of the TRMM
product for drought regionalization overmultiple time scales and charac-
teristics over this area. The results can inform decision-making by differ-
ent water resources sectors, such as agriculture and public water supply,
which is particularly relevant in ungauged, remote, and complex regions,
such as this. The specific objective of this study is to identify homogenous
zones over Paraíba State as to the state, duration and severity of droughts
that occurred over the last 20 years (1998–2017) using hierarchical clus-
ter analysis based on both gauge-measured and TMPA-estimated rainfall
data. In sodoing,weprovide an important understanding for themanage-
ment of scarce water resources in a region of Brazil characterized by fre-
quent and severe droughts.

2. Material and methods

2.1. Study area

The study area is Paraíba State, with a total area of 56,469.78 km2 and
a population of about fourmillion inhabitants living in 223municipalities
(IBGE, 2016). Paraíba State is located between latitudes 5.875°S and
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8.375°S and longitudes 38.875°O and34.625°O (Fig. 1). Paraíba State has a
rectangular shape and is subdivided into four administrative
mesoregions, namely Mata Paraibana, Agreste Paraibano, Borborema
and Sertão Paraibano (Fig. 1). Its rectangular shape influences different
factors that interfere with the circulation of winds and the climate of
the region; standingout among these factors is theproximity to theAtlan-
tic Ocean, the existence of plateaus, themountain range, and depressions.
Details about Paraíba State can be found in Santos et al. (2019a), Santos
et al. (2019b) and Brasil Neto et al. (2020).

2.2. Rainfall datasets

2.2.1. In-situ measurement data
Gauge-measured rainfall data for the period 1998 to 2017 were pro-

vided by the Agência Executiva de Gestão de Águas (AESA). Although
there are 251 rainfall stations across the region, a prior analysis of rain-
fall network quality and time-series consistency over Paraíba State
identified limitations (Brasil Neto et al., 2020). For the present analysis,
all stations with missing data were therefore excluded, resulting in 78
complete series of daily data which were then accumulated at a
monthly level for SPI calculation. More details regarding the qualitative
and quantitative analysis of the available data can be found in Brasil
Neto et al. (2020).
Fig. 1. Location of Paraíba State, the spatial distribution of the
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2.2.2. Estimated rainfall dataset
To carry out drought monitoring using complete and equally distrib-

uted satellite estimated rainfall data over Paraíba State, the Tropical Rain-
fallMeasuringMission (TRMM)datasetswere used. TRMMwas a 17-year
joint mission between the American Space Agency (NASA) and the
Japanese Space Agency (JAXA) (Huffman et al., 2007; Liu et al., 2012).
Launched at the end of 1997, the TRMM satellite was developed to mon-
itor rainfall in tropical regions but suffered technical problems around
2014 and started to fall slowly while continuing to collect data (Xia
et al., 2018). The mission has published critical datasets, including the
TRMM Multi-satellite Precipitation Analysis (TMPA) (Huffman et al.,
2010), which is a product that combines the precipitation data estimated
by the TRMM satellite and remote sensing measurements from multiple
satellites with the available observations of rain gauge for bias correction.

TMPA products cover extensive space domains, between latitudes
50°N and 50°S and longitudes 180°W and 180°E, with a refined spatial
resolution of 0.25° × 0.25°, allowing themonitoring of rainfall in various
areas of the globe (Zhao et al., 2018). In Paraíba State, several studies
have used TMPA estimates, and the results indicate that these estimates
are a viable alternative to conventional rainfall measurement for re-
sources management purposes (Soares et al., 2016; Santos et al.,
2019a; Santos et al., 2019b; Brasil Neto et al., 2020). In this work, data
from TMPA 3B42v7 were used, hereafter called TRMM, and the study
TMPA grid, the selected rain gauges, and its mesoregions.
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areawas divided into 187 grids (11 × 17). Fig. 1 shows the spatial distri-
bution of the TRMM cell grids and the rain gauges used in this work. The
daily rainfall time series were accumulated at a monthly level from Jan-
uary 1998 to December 2017, totaling approximately 45,000 monthly
rainfall data points (187 TRMM-estimated series × 20 years × 12
months) estimated by satellite.

2.3. SPI: Run Theory and time series development

The drought analysis from January 1998 to December 2017 was
based on eight SPI multitemporal scales, i.e., (a) short-term droughts:
SPI-1, SPI-3 and SPI-6, (b) medium-term droughts: SPI-9 and SPI-12,
and (c) long-term droughts: SPI-18, SPI-24 and SPI-48. All eight-time
scales were calculated by adjusting the precipitation data to fit a
gamma distribution of two parametersα and β. The SPI series were cal-
culated for each of the 78 gauge-measured and 187 TRMM-estimated
rainfall time series. Details regarding the calculation of the SPI index
can be found in Santos et al. (2017). In this study, each drought event
was characterized by the continuity of dry events, i.e., SPI ≤ 0, based
on the premise of Run Theory (Yevjevich, 1967). The rationale for this
is that anything less than 0 is drier than the median and therefore rep-
resents ‘dry’ rather than ‘wet’ conditions. Further division of ‘dry’ condi-
tions into categories of drought is somewhat objective, and drought and
dry events can be classified differently, depending on purpose or appli-
cation (McKee et al., 1993; Liu et al., 2011; Azhdari et al., 2020;
Bazrafshan et al., 2020). In this study, the classification proposed by
Santos et al. (2017), Santos et al. (2019b), Brasil Neto et al. (2020) and
Brasil Neto et al. (2021) was used, primarily for the reason of wanting
to maintain consistency with this previous research.

The SPI is sensitive to the series size and using less than 30 years of
data can have consequences, depending on the evaluated timescale.
However, it is important to note that the time series of the rain gauges
distributed across Paraíba State have many gaps and extending the pe-
riod of analysis to increase series size would also mean reducing the
number of rain gauge time series used as a reference, which introduces
a new problem of under-representation. In addition, the behavior of the
SPI time series tended to be the samewhen considering the SPI in differ-
ent time scales (R>0.90) (Brasil Neto et al., 2020), and the length of the
time series did not make the study unfeasible. Furthermore, there were
interesting and notable recorded drought events from 1998 to 2017,
making this period a suitable choice for evaluating SPI, based on differ-
ent data sources, as a meteorological drought monitoring tool.

Finally, Zamani and Bazrafshan (2020) highlighted that in comput-
ing the SPI, selecting an accurate distribution can be a basic and key
step in estimation-desired index and droughtmonitoring. The goodness
of fitness of gauge-measured and satellite-estimated rainfall data to the
gamma distribution of two parameters α and β was carried out based
on the Lilliefors test (Lilliefors, 1967) with α = 0.05. In the present
case, if the null hypothesis is rejected, the time series do not fit the
gamma distribution, whereas if the null hypothesis is accepted, the pre-
cipitation data fit the gamma distribution. This study evaluated the ad-
equacy of all available precipitation series, months, and time scales,
totaling more than 25,000 analyses (265 time series × 8 time scales ×
12 months). Fig. 2 shows the percentage of time series that do not fit
the gamma distribution for each time scale.

For example, we detail the results of rain gauge-measured rainfall
data for SPI-3 and evaluate the adequacy of these time series consider-
ing the accumulated quarterly rainfall in each rainfall month and
gauge. White circles indicate that the data fit the gamma distribution,
while red circles indicate that the temporal series does not fit this distri-
bution. From this figure, the percentage of time series that do not fit the
gamma distribution is small and that there is a variation between
months and regions. In general, the results present in the graph indicate
that in less than 10% of cases (i.e., 78 rain gauges × 12months), the null
hypothesis was rejected, which shows that, in general, the results are
satisfactory, and the time series fit the gamma distribution.
4

With the exception of the results obtained for the SPI-48, the per-
centage of time series that did not fit the gamma distribution is less
than 10%. It can be observed that as the time scale increases, the per-
centage of time series that do not fit the gamma distribution also in-
creased. This must be closely related to the size of the time series
being evaluated andwasmore evidentwhen evaluating the series com-
ing from the TRMM. Indeed, we recommend that longer data series be
used whenever possible to improve the reliability of the results, but
we believe that using this period (1998–2017) was not inappropriate,
given that this dataset has been successfully used in other studies
(Brasil Neto et al., 2020; Brasil Neto et al., 2021) and the objective of
the study has not been undermined.

Fig. 3 illustrates the definition of a drought event and the behavior of
the three time series evaluated in this study: (a) the drought state time
series (SPI), (b) the drought duration time series (DDS), and (c) the
drought severity time series (DSS). The DDS is the series that increases
incrementally during a drought event, and theDSS is the result of the ac-
cumulated SPI values during the drought event. For these two series,
when the events are no longer dry (i.e., SPI ≤ 0), the series are null.
The drought state series, in turn, reflects the SPI values themselves
over time. In the case of the example in Fig. 3, all three series are com-
posed of 50 values.

2.4. Cluster analysis

Hierarchical cluster analysis techniques were used to divide Paraíba
State into homogeneous regions based on drought state, duration, and
severity. The analyseswere performed for the eight time scales and con-
sidered the gauge-measured rainfall data and the satellite-estimated
rainfall data, totaling 48 cluster analyses (2 databases × 3 types series
× 8 time scales). The following section describes the basic steps of the
hierarchical cluster analysis, such as choosing themetric of dissimilarity,
the method of the linkage between clusters, and the optimal number of
clusters (Keller Filho et al., 2005). To ensure the reliability of results,
where relevant, the effect of different choiceswas evaluated against sta-
tistical criteria.

Pearson's linear coefficient was selected as the dissimilarity metric
and calculated between the time series, considering that the time series
will be grouped based on the similarity of their temporal variation. Thus,
it was possible to evaluate how similar the state, duration and severity
time series at multiple time scales are over time, which is important in-
formation to assess the influence of the weather phenomena active in
the region, for example. Eq. (1) shows how the correlation distance be-
tween two different time series was calculated:

d ¼ d xs, xtð Þ ¼ 1−
∑
n

i¼1
xs−xsð Þ xt−xtð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1
xs−xsð Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
xt−xtð Þ2

s ð1Þ

where d is the correlation distance between two time series xs and xt, xs
and xt represent the averages of the historical series xs and xt that con-
tain n data.

Then, we defined which linkage method was the most appropriate
to perform the cluster analysis, and for that, the results were evaluated
based on three different methods: single, complete, and average. The
single method considers the distance between the clusters as the
shortest distance between the elements (Eq. (2)); in the complete
method, the largest distance between the components of different clus-
ters is considered (Eq. (3)), and in the average method, the average of
the distances between the series of cluster r with those of cluster s is
considered (Eq. (4)). Eqs. (2)–(4) illustrates the difference between
the calculation of distances between two different clusters:

D r, sð Þ ¼ min d xri, xsj
� �� � ð2Þ
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D r, sð Þ ¼ max d xri, xsj
� �� � ð3Þ

D r, sð Þ ¼ 1
nrns

∑
nr

i¼1
∑
ns

j¼1
d xri, xsj
� � ð4Þ

whereD(r, s) is the distance between clusters r and s, nr is the number of
components in cluster r, ns is the number of elements in cluster s, d rep-
resents themetric of dissimilarity between the time series xr and xs, xri is
component i of cluster r, and xsj is element j of cluster s.

Additionally, the cophenetic correlation coefficient c was computed
to assess the consistency and similarity of representativeness between
the clusters. This coefficientmeasures the appropriateness of the choice
of linkagemethod to perform the cluster analysis. The closer the value of
coefficient c is to 1, the more appropriate the choice of the dissimilarity
metric and the linkage method. In other words, since Pearson's linear
coefficient was chosen as the dissimilarity metric, the cophenetic corre-
lation coefficient c evaluated which linkage method (i.e., single, com-
plete or average) was most appropriate for the clusters analysis. The
cophenetic correlation coefficient was calculated according to Eq. (5):
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c ¼
∑
j

i¼1
x i, jð Þ−xð Þ t i, jð Þ−t

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
j

i¼1
x i, jð Þ−xð Þ2 ∑

j

i¼1
t i, jð Þ−t
� �2s ð5Þ

where x(i, j) is the distance between the time series i and j based on the
chosen dissimilarity metric and t(i, j) is the dendrogram distance be-
tween the time series i and j based on the chosen method.

Finally, to define the optimal number of clusters to perform the re-
gionalization, the silhouette method (Rousseeuw, 1987), the Calinski-
Harabasz criterion (Calinski and Harabasz, 1974), and the variation
curve of the distance between the clusters were used. Based on the var-
iation curve of the distance between clusters by the number of clusters,
it was assumed that the optimum quantity is equivalent to the number
of clusters in which this variation curve remained constant. The idea of
adopting this criterion is that when the derivative of this curve is prac-
tically null, there is no advantage in dividing the time series into several
clusters because the variation between the clusters is not relevant. The
silhouette method measures how similar the time series of a given
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cluster are in relation to the original cluster when compared to the time
series of other clusters. The final value of the silhouette is the average
value among the all-time series, and the values range from −1 to 1,
with the best result being 1 (Eq. (6)):

Si ¼
bi−aið Þ

max ai, bið Þ ð6Þ

where Si is the silhouette value of time series i, ai is the average dis-
tance from time series i to the time series of the origin cluster and bi
is the distance from series i to the time series that forms the other
clusters.

The Calinski-Harabasz criterion, in turn, expresses the ratio be-
tween the variance between the different clusters and the variance
within the different clusters. In general, based on this criterion,
well-defined clusters present high variance between different clus-
ters and small variance within clusters, and therefore, in the case of
the CH ratio, the higher the value, the more adequate the cluster
analysis was (Eq. (7)):

CH ¼ SSb
SSw

� N−kð Þ
k−1ð Þ ð7Þ

where SSb is the variance between clusters, SSw is the variance between
clusters, N is the number of time series analyzed and k is the number of
clusters.
6

3. Results and discussion

3.1. Definition of the linkage method

To avoid random choices, the best linkagemethod between the clus-
ters was evaluated using the cophenetic coefficient c of state, duration
and severity time series of droughts which was calculated for eight-
time scales, three linkage methods and two databases (Fig. 4). Because
of the variability of the results, it is worthwhile to provide a brief expla-
nation of how to interpret them: the c calculated from the drought state
time series based on the 187 TRMM cells grids was 0.80 when using the
average distance as the linkagemethod and 0.76when using single and
complete distances, in the case of SPI-1 (see top left panel in Fig. 4).

From gauge-measured rainfall data, these valueswere 0.84, 0.83 and
0.60 when using the average, complete and single linkage methods, re-
spectively. It is noteworthy that the results show high variability when
considering all combinations and as for the variation between the types
of drought time series, the results tend to vary according to the time
scale. For short- (SPI-1, SPI-3 and SPI-6) and medium-term (SPI-9 and
SPI-12) droughts, the values of c are higher for drought state time series,
but for long-term droughts (SPI-18, SPI-24 and SPI-48), the duration
and severity time series presented the best results, i.e., higher c values.

Regarding the variation of c values between the time scales, it is im-
portant that for the drought state time series, the best results were
found in the case of medium-term droughts, but there is no great differ-
ence between these results and those found in the case of short- and
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long-term droughts. On the other hand, when evaluating the duration
and severity time series, the sensitivity of c is evident as a function of
the change in the temporal scale, such that the results are better as
the time scale increases. For long-term droughts, the values are more
notable and indicate greater consistency in the analysis of clusters,
while the results of short- and medium-term droughts are slightly
worse.

In relation to the two rainfall datasets, it can be seen that making a
direct comparison, i.e., same time scale, type of time series and linkage
method, the c values obtained from TRMM-estimated rainfall data are
predominantly higher than those calculated based on gauge-measured
rainfall data. Furthermore, it indicates that the cluster analyses devel-
oped based on the TRMM estimates are more consistent than the anal-
yses developed based on the rain gauge data. Finally, regarding the
variation of coefficient c according to the linkage method, it is noted
that the average linkage method presented the best performance.

In general, the results based on the complete linkage method per-
formed moderately, while the poorest values occurred when using the
single linkage method. It can be highlighted that there is a variation be-
tween the values of these two methods (i.e., single and complete), and
these values depend on the combination of the series, time scale, or da-
tabase used. In addition, it is noteworthy that the results based on the
average linkage method were not as sensitive to these combinations.
In other words, from the single linkage method, the coefficient c values
calculated based on the gauge-measured rainfall data, for example, are
0.285, 0.535 and 0.535 for the SPI-9 state, duration, and severity time se-
ries. However, when evaluating this result considering the SPI-48, the
values exceed the order of 0.800, which shows considerable variability.

Contrary towhat occurredwhen using the single and complete link-
agemethod, there is consistency in the correlation coefficient values be-
tween the time scales and types of drought time series when using the
average linkage method. These results corroborate with Unal et al.
(2003), who concluded that the average linkage method could fill
gaps of other methods as it can minimize the variance within the series
of the same cluster and maximize the variance between the different
clusters. Several studies have been carried out based on this linkage
method, and the results have been extremely satisfactory, although
the purpose in these instances was to regionalize different areas based
on the precipitation regime (Santos et al., 2019a) or according to the
drought pattern (McGree et al., 2016; Shiau and Lin, 2016; Yang et al.,
2017).

3.2. Definition of number of clusters

Based on the average linkage method, Fig. 5 shows the relationship
between the correlation distance between clusters, silhouette method
and the Calinski-Harabasz criterion with the number of clusters for
drought state, duration, and severity time series over Paraíba State
(1998–2017). These results help to define the optimal number of clus-
ters to develop an efficient cluster analysis for the region. The results
based on satellite-estimated data presented shorter Pearson correlation
distances, indicating greater similarity between these time series. The
variation curve of the distances between the clusters by the number of
clusters related to TRMM is, in most cases, below that obtained from
the gauge-measured rainfall data. This difference is smaller for short-
term droughts but increases when assessing medium- and long-term
droughts and the duration and severity time series.

Calinski-Harabasz values tend to be higher when using TRMM-
estimated data, regardless of the type of drought time series, time
scale, or the number of clusters, and this scenario only changes in
some cases, e.g., in the case of SPI-9 for drought state, duration and se-
verity time series. In addition, there is a similarity between the
Fig. 5. Relationship between the correlation distance between clusters (Z), the silhouette criter
series of state, duration, and severity of droughts over Paraíba State (1998–2017).
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silhouette's values with those of CH, and these values were predomi-
nantly higher when using TRMM-estimated data, especially for
medium- and long-term droughts. It is noteworthy that the best results
for CH and Siwere obtained for less than five clusters.

Comparing the three drought time series results, the distances be-
tween the clusters are shorter for the drought state time series and lon-
ger for the duration and severity time series. For SPI-1, when evaluating
four clusters, the distance between groups is about 0.45 for the drought
state time series, but for the duration and severity time series, the dis-
tance is 0.55. For the SPI-12, the patternwas evenmore evident because
after grouping the drought state time series into four clusters, with am-
plitudes ranged0.25, 0.60 and 0.60 for the state, and duration and sever-
ity time series, respectively. The results show that regardless of the time
scale or database, the drought state time series can be considered more
homogeneous with each other than the duration and severity time
series.

Concerning CH values, the results indicate that the values tended to
be higher for the drought state time series for short- and medium-term
droughts. Also, the CH values obtained from the TRMM-estimated data
had greater variability between the types of drought time series com-
pared to the results obtained from the rain gauge-measured data. Re-
garding the silhouette method, there is no significant variation
between the results for the same time scale, except for what was ob-
tained when evaluating long-term droughts. In this case, the duration
and severity time series values were higher than those found when
evaluating the drought state time series, as found for the CH (Fig. 5).

For the drought state time series, there is a kind of stability in the
distance values between the clusters for a small number of groups,
mainly for short- and medium-term droughts. This means that the
curves in the figure relate the distance between the clusters, and
their number becomes less steep (almost constant) from four clus-
ters, indicating that it is unnecessary to divide the TRMM cells grid
or rain gauges into more groups. For example, for the SPI-3 state
time series, the distances between four clusters are 0.25 based on
TRMM-estimated data and 0.35 based on rain gauge-measured data
(Fig. 5), whereas for ten clusters, the distances are almost the
same, i.e., 0.30 based on TRMM-estimated data and 0.20 based on
rain gauge-measured data.

Therefore, as the distance between the clusters has been subtly al-
tered, it is irrelevant to divide the TRMM cells grid and the rain gauges
into more groups. In contrast, when developing the same analysis for
the SPI-48, the distances between the clusters using four and ten groups
already vary from 0.40 (TRMM) to 0.20 (rain gauges), which shows a
greater jump in the curve compared to the results presented for short-
and medium-term droughts. For duration and severity time series, this
pattern was maintained, and for short- and medium-term droughts,
the values of correlation distance stabilized with a smaller number of
groups. For long-termdroughts, therewas a greater distinction between
the series, and the stability of the curvewas foundwith a higher number
of clusters.

Using these three methods (i.e., variation curve, CH and Si) to define
the number of clusters, it is noted that using few clusters is the adequate
alternative in most cases. In this sense, we adopted four as the number
of clusters to perform the analysis, which is also the number of territo-
rial divisions over Paraíba State. For this quantity, the values of the sil-
houette and the CH criterion are expressive, as well as the variation
curves tend to be less steep, which makes a choice effective from the
perspective of different methods. Although there are cases in which
this quantity is not so appropriate, it should be noted that the choice
was based on the results of the 48 cluster analyses. In addition, the ca-
pacity of TRMM-estimated data to reproduce the same pattern of results
as rain gauge-measured data stands out.
ion (Si) and the Calinski-Harabasz criterion (CH) with the number of clusters for the time
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3.3. Analysis of drought state time series

After defining the dissimilaritymetric (i.e., Pearson correlation coef-
ficient), the linkage method (i.e., average linkage method), and the op-
timal number of clusters (i.e., four), the distribution process of the
clusters was carried out based on the time series of state, duration,
and severity of droughts over the region. Initially, Fig. 6 shows the re-
sults of the hierarchical cluster analysis developed for the drought
state time series based on gauge-measured and TRMM-estimated rain-
fall data for different time scales. A variation between the results ob-
tained when considering the different SPI indices and the rainfall
datasets was observed.

For short-term droughts, there is a correspondence between the
spatial distribution of clusters and the mesoregions of Paraíba State
(Fig. 1). Based on gauge-measured rainfall data, the results indicate
that at a distance of 0.50 between clusters, a group encompasses the
mesoregions of Sertão Paraibano and Borborema (♦ ), while Agreste
Paraibano andMata Paraibana are covered by another cluster ( ). In the
case of SPI-3, Sertão is bisected into an area to the west ( ) and another
to the east ( ), with the latter extending towards the coast of Paraíba
and covering the entire Borborema to the west of Agreste Paraibano.
In the case of SPI-6, the difference in the behavior of the clusters on
the border between Borborema and Agreste Paraibano becomes clearer
(♦).

When assessing the dendrograms, the pattern in the inland of
Paraíba State is more heterogeneous than in the regions closest to the
coast. In SPI-3 and SPI-6, the rain gauges located in Agreste Paraibano
and Mata Paraibana only differ from each other at a distance of less
than 0.25, while at a distance of 0.30, there are already two clusters di-
viding the inland of Paraíba State. Based on TRMM-estimated data, the
time series tend to be more homogeneous when compared to the re-
sults obtained from the rain gauge-measured data and the results
show a good correspondence between the spatial distribution of the
clusters and the mesoregions of Paraíba (Fig. 1).

Still based on TRMM-estimateddata, it is noteworthy that, except for
the SPI-1 results, where there was a distinction between time series in
Sertão Paraibano ( ) and south of Borborema (♦), these two
mesoregions were always grouped in a cluster, differently from the re-
sults found based on rain gauge- measured data. These results indicate
that there is greater variability between the drought state in the
mesoregions of Agreste Paraibano and Mata Paraibana. It is noted that
although the TRMM satellite has shown an accuracy in separating the
regions of Sertão and Borborema from the mesoregions of Agreste and
Mata Paraibana, there was a certain inaccuracy when estimating
which of these two mesoregions were more homogeneous with each
other.

For medium-term droughts, the distances between four clusters
were the shortest among the time scales, indicating greater similarity
between the series over the region. Based on rain gauge-measured
data, the division of Paraíba State between the mesoregions of Sertão
Paraibano and Borborema, and the region of Agreste Paraibano and
Mata Paraibana became increasingly evident. A cluster is formed at
the western Sertão Paraibano, and the other part of this mesoregion is
covered by another cluster ( ) that extends to Agreste Paraibano. In
Mata Paraibana, the behavior is the same for SPI-9 and SPI-12, and the
existence of only one cluster over the entire area is noted ( ).

Based on TRMM-estimated data, the distances found between the
clusters are smaller than those found based on rain gauge-measured
data. At a correlation distance of 0.40, the TRMM series are grouped
into a large group that covers the entire state, which differs from the re-
sults based on rain gauge-measured data. Despite the differences, the
results obtained from the TRMM-estimated data demarcate the division
of Paraíba State into two major regions: one located in the interior and
Fig. 6. Analysis of hierarchical cluster and its dendrograms using four clusters based on the tim
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formed by Sertão and Borborema ( ), and the other on the coast of
Paraíba State, standing out that the region close to the coastwas divided
into two zones: one located in the north and the other in the south.

It is noteworthy that TRMMestimates did not identify theparticular-
ities of western Sertão Paraibano and Agreste Paraibano and Mata
Paraibana. However, just as for short-term droughts, it identified that
clusters located in the inland of the state are more homogeneous than
the clusters near the coast. Finally, the results show a high variation
for long-term droughts in relation to the results of short- and
medium-term droughts, especially in the case of SPI-48. Based on rain
gauge-measured data, the spatial distribution of the clusters for the
SPI-18 and SPI-24 indices are similar, but the results of the SPI-48
have a more particular pattern.

For SPI-18 and SPI-24, the regions of Borborema and Sertão
Paraibano showed less similarity to each other despite being mostly
covered by a cluster ( ). From the border between Borborema and
Agreste Paraibano to the central portion of this mesoregion, there is a
cluster, while from the center of Agreste to the coast, there is another.
For the SPI-48, the behavior is more intriguing, and the reason is that
there is a predominance of a group ( ) in all mesoregions of the state,
covering from the Sertão Paraibano to the coast. In Mata Paraibana,
four different clusters could be found, highlighting the variability of
the drought pattern in this region.

Based on the TRMM-estimated data, the division of Paraíba State
based on SPI-18 and SPI-24 into two regions is clearer: one formed by
Sertão Paraibano and Borborema ( ) and the other by Agreste and
Mata Paraibana (♦ ). From the dendrograms, the clusters are more
similar to each other when dealing with the Sertão Paraibano and
Borborema and that thesewill only start to differentiate at a correlation
distance of 0.15.When evaluating the SPI-48, almost all TRMMgrids are
grouped in a cluster ( ), as well as in the results obtained based on rain
gauge-measured data. This indicates that for the long-term drought
state time series, there is a high similarity pattern between the series
over the region.

One of the possible explanations for the distances between the clus-
ters in the case of short-termdroughts to be so high is that as the behav-
ior of these SPI series is very variable, it is expected that the time series
have less similarity. In other words, any disturbance in the precipitation
time series can cause an extremely dry or wet SPI value to appear, and
this can lead to differences in the similarity between the time series.
Evaluating medium- and long-term droughts, except for rare cases,
the time series tend to behave in the sameway due to the accumulation
of precipitation over time, which makes the series have high similarity.

The pronounced similarity of the drought state time series based on
TRMM-estimated data can be linked to the algorithm employed by the
mission, which can tend to compensate for the precipitation values be-
tween the regions. In this case, as the drought state time series are
grouped according to the similarity of the SPI variation over time, the
compensation may have made the series more similar to each other.
When using rain gauge-measured data, on the other hand, point varia-
tions are captured in a more particular way, and this increases the dis-
similarity between the state time series from the rain gauges.

3.4. Analysis of drought duration time series

Fig. 7 shows the result of the hierarchical cluster analysis for the
drought duration time series based on gauge-measured and TRMM-
estimated rainfall data for different time scales. It is noteworthy that
the spatial distribution of the clusters based on the drought duration
time series differs in some situations from the configuration obtained
when evaluating the drought state time series (Fig. 6). This result is rel-
evant because it shows that a given rain gauge (or TRMM grid) may be
highly similar to another concerning the drought state time series but
e series of drought state over Paraíba State (1998–2017).



SP
I-2

4
SP

I-1
8

SP
I-1

2
SP

I-9
SP

I-6
SP

I-3
SP

I-4
8

SP
I-1

Clusters (TRMM) TRMM

0.50.50 1

Rain gauge Clusters ( )Rain gauge

Fig. 7. Analysis of hierarchical cluster and its dendrograms using four clusters based on the time series of drought duration over Paraíba State (1998–2017).

R.M. Brasil Neto, C.A.G. Santos, R.M. Silva et al. Science of the Total Environment 799 (2021) 149492

12



R.M. Brasil Neto, C.A.G. Santos, R.M. Silva et al. Science of the Total Environment 799 (2021) 149492
differ when assessing the drought duration time series. For short-term
droughts, this is more evident when considering the gauge-measured
data. For SPI-1, Sertão Paraibano and Borborema are now mostly cov-
ered by only one cluster ( ), while Mata Paraibana and Agreste
Paraibano are formed by two distinct zones, one to the east (♦) and
the other to the west ( ).

For SPI-6, it can be noted that the Sertão Paraibano and Borborema
were grouped in a cluster ( ), while Mata Paraibana and Agreste
Paraibano were formedmostly by another one ( ). For SPI-3, the distri-
bution of clusters ismore irregular compared to the pattern of SPI-1 and
SPI-6: the Sertão is divided into three regions, one in the southwest (♦),
the other in the center ( ), and another in the northeast ( ), while
Agreste andMata Paraibana are composed by single cluster ( ). This re-
sult differs from that found in Fig. 6, where the groupingwasmore con-
sistent with the limits of the mesoregions of Paraíba State, especially in
the case of the Sertão and Borborema mesoregions.

However, it is interesting to note that there are indications that the
regions of Mata and Agreste Paraibano continue to have homogeneous
behavior between them, while Sertão and Borborema have a pattern
of higher dissimilarity. Moreover, it is important to emphasize that the
mesoregions of Mata Paraibana and Agreste Paraibano are no longer
so similar between themselves when compared to the similarity that
exists between the Sertão Paraibano and Borborema, a fact that differs
from the pattern that was obtained when evaluating the drought state
time series.

From the TRMM-estimated data, changes were noted regarding the
spatial distribution of clusters over Paraíba State, and in general, what
is noticeable is that the regions of the Sertão and Borborema tend to
have a large part of their territory composed of a cluster. In addition,
in comparison to the cluster analysis of the drought state time series,
it is clear that the spatial distribution of the clusters wasmaintained, es-
pecially in the case of SPI-6. In the case of SPI-1, there was a greater var-
iation in the distribution of clusters in Agreste and Mata Paraibana,
which started to be divided into three clusters (♦ ); in the case of
SPI-3, a cluster appeared between Agreste Paraibano and Borborema
(♦).

For the SPI-6, it is worth noting that there is a greater similarity be-
tween the clusters that cover the mesoregions of Sertão, Borborema and
Agreste (♦ ). The other cluster covers the north of Agreste and a large
part of Mata Paraibana ( ) and has a unique behavior compared to the
others. This result shows that, in contrast to the state time series of
short-termdroughts, for the duration series of the SPI-3 and SPI-6 indices,
there is evidence to zonemost of Paraíba State in a single cluster, which is
what occurs when evaluating the long-term drought state time series.

Formedium-termdroughts and based on rain gauge-measured data,
there is a similarity regarding the spatial distribution of the clusters over
Paraíba State compared to the results in Fig. 6, but some differences
should be noted. For SPI-9, the region of Sertão Paraibano and
Borborema start to be composed by a single cluster ( ), and this cluster
crosses the border between these mesoregions and extends to the cen-
ter of Agreste Paraibano. From this region to the coast, another cluster (
) is formed that covers Agreste Paraibano andMata Paraibana. For SPI-

12, the change in the spatial distribution of the clusters intensifies such
that from the Sertão to the central portion of Agreste, there is a more
representative cluster ( ), and from Agreste to the coast, there is an-
other cluster ( ), as well as in the case of SPI-9.

Thus, differently from the results shown in Fig. 6, Paraíba State
started to be divided into less representative clusters. However, from
the dendrograms, it can be seen that the interior mesoregions showed
greater dissimilarity between them when compared to the pattern of
the mesoregions closer to the coast, as found for the drought state
time series. Based on TRMM-estimated data, the division of Paraíba
State into two major regions is even more evident, especially when
evaluating SPI-9. In a way, these results corroborate those found by
using rain gauge-measured data, considering that the formation of
two main clusters on Paraíba State was identified.
13
The results indicate that the Sertão Paraibano and Borborema are
more homogeneous among themselves than the regions of Agreste
and Mata Paraibana, as obtained in the analysis of the drought state
time series. Moreover, the dendrogramic distances between the clusters
over Paraíba State have high stickiness when evaluating long-term
droughts, but these are the smallest when only four clusters are evalu-
ated. This implies that when considering a distance between the clus-
ters of 0.80, the short- and medium-term drought duration time series
would be grouped into a single cluster, while when evaluating SPI-18,
SPI-24 and SPI-48, the time series obtained based on rain gauge-
measured data and satellite-estimated data are subdivided into at
least two clusters, which highlights the heterogeneity of long-term
droughts.

On the other hand, at the level of four clusters, these distances are
not pronounced, and this shows that the rain gauges and the TRMM
grids have unique behavior, which distinguishes the clusters with a
high dissimilarity. Based on rain gauge-measured data, the results ob-
tained for SPI-18 and SPI-24 are more similar, while those for SPI-48
have particularities. In general, for SPI-18, the Sertão, Borborema and
Agreste are covered by a cluster ( ), while Mata Paraibana is composed
of another ( ), results similar to those obtained for the SPI-24. For SPI-
48, one cluster covered a large part of the state ( ), and the others
were concentrated in the center-south portion of Agreste, as well as in
the case of Fig. 6.

Based on TRMM-estimated data, Paraíba State is covered by the
same cluster, and this applies to the SPI-18, SPI-24 and SPI-48 indices.
In detail, except a grid in the center of Agreste ( ) for SPI-18, from the
southwest region of Sertão and north of Mata Paraibana ( ) for SPI-24
and from south of Agreste ( ) for SPI-48, all regions showed the same
pattern of variation as to the drought duration time series over time. Al-
though there are differences, TRMM-estimated data identified that
there is basically a cluster over Paraíba State.

3.5. Analysis of drought severity time series

Finally, Fig. 8 shows the result of the hierarchical cluster analysis for
the drought severity time series based on gauge-measured and TRMM-
estimated rainfall data for the different time scales. In general, there is a
high similarity between the results of the cluster analysis of the drought
severity and duration time series (Fig. 7). It is worth noting that for
short-, medium- and long-term drought severity time series, the dis-
tances between the first two clusters based on TRMM-estimated data
are greater than those obtained from gauge-measured data, and this re-
sult occurred systematically when evaluating SPI-1, SPI-6, SPI-9, SPI-18
and SPI-48.

Based on gauge-measured rainfall data, it is noted that for SPI-1,
Paraíba State was divided into two clusters: one of which covered much
of the Sertão and Borborema ( ) and the other the Mata and Agreste
Paraibano ( ). The spatial pattern of the clusters in the case of SPI-3 was
similar to SPI-1, and the division of the state into twomain regions is ev-
ident, with the central region of Borborema ( ) starting to behave a little
more distinctly from the interior of the state. As for SPI-6, the center-west
of Agreste also started to behavemore similarly to Sertão and Borborema
( ) and more dissimilar to regions close to the coast. Based on satellite-
estimated data, the regions of the Sertão Paraibano and Borborema
were covered by a single cluster, i.e., SPI-1 ( ), SPI-3 ( ), SPI-6 ( ),
while that Agreste and Mata Paraibana showed greater variability when
compared to the results of the drought duration time series.

In the case of medium-term droughts, the distances between the
clusters have the same order of magnitude as the drought duration
time series. Based on rain gauge-measured data, there is once again a
high similarity between the results obtained in Figs. 6 and 8. For SPI-9,
there is a small change in the north and central portion of the Agreste,
but the same regionalization when evaluating the drought duration
and severity time series. For the SPI-12, two main clusters stand out
over the region: one located from Sertão to Agreste ( ) and another
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from Agreste to the coast ( ). Regarding the results based on TRMM-
estimated data, for both SPI-9 and SPI-12, Paraíba State was divided
into two major regions.

The region closest to the coast has greater variability than the inte-
rior, especially in the case of SPI-9. When comparing the results be-
tween the datasets, clustering using TRMM clearly subdivided Paraíba
State into two distinct homogeneous zones for SPI-9. This was less
clear from gauged data and the most significant difference within the
two datasets was to the north of the Borborema zone, as this zone was
incorporated into the cluster that covers the interior of the state (♦).
For long-term droughts, it is noted that based on gauge-measured
data, for the SPI-18, Paraíba is covered by two clusters, one that runs
from the Sertão to the center of Agreste ( ) and the other that goes
from the east of Agreste to the coast of Paraíba ( ).

For SPI-24, there are two distinct clusters in the vicinity of Mata
Paraibana; one is to the north (♦) and another to the south ( ). For
the SPI-48, as well as for the results of the drought state and duration
time series, a cluster covers the entire Paraíba State ( ). In general, the
increase in the time scale of the SPI indices causes the entire state to be-
have in the same way concerning the drought severity time series.
Based on the TRMM-estimated data, Paraíba tends to be grouped into
a single cluster. For SPI-18, however, this pattern is not so evident, and
one can see the existence of a cluster that covers the Sertão, the north
and southwest of Borborema (♦), and another that extends from the
central portion of Borborema to the coast of Paraíba ( ). For SPI-24, ex-
cept for southwestern Sertão (♦), all regions are members of the same
cluster ( ), and this is repeated when evaluating SPI-48.

4. Discussion

Earlier research has mapped Paraíba State into different homoge-
neous regions based on the pluviometric regime, and the results provide
interesting points of comparison. Keller Filho et al. (2005), for example,
delimited about 25 homogeneous rainfall zones over Brazil, of which
ten are in Northeast Brazil, and four are over Paraíba State. The results
indicate that one of the zones is located on the coast of Paraíba, another
covers a large part of Agreste Paraibano and the others cover the areas of
Borborema and Sertão Paraibano. Reboita et al. (2010) suggested that
Paraíba State could be categorized into two main regions: one close to
the coast and the other in the Northeastern Sertão.

The coastal region, which presents the Intertropical Convergence
Zone as its main climatic system, has an average annual rainfall greater
than 1500mm,while the Northeastern Sertão area has rainfall less than
500mm, which corroborates our study and the results found by Santos
et al. (2019b). In Northeast Brazil, Araújo and Souza (2012) identified
four different zones regarding precipitation pattern, two of which are
distributed over Paraíba State. In such a study, it was noticed that the
coastal area has a distinct pattern compared to the interior of the
state, which corroborates with our research. The caveat is that the
coastal area consists of a less significant area than the other region
that covers the interior and much of the state, which indicates that
Paraíba tends to behave very homogeneously.

In Paraíba, Macedo et al. (2010) delimited three different zones: one
coversMata Paraibana and the eastern half of Agreste, another is located
from thewestern half of Agreste to Borborema, and the third zone is sit-
uated in the Sertão Paraibano. Despite this unconventional division in
relation to the separation of the Sertão Paraibano from Borborema, the
researchers emphasize that these regions are the most similar to each
other and that the behavior found on the coast hasmore unique charac-
teristics, similar to the results found in this paper. Using the TRMM-
estimated data, Santos et al. (2019a) showed an evident differentiation
of precipitation in the regions of Agreste and Mata Paraibana from the
behavior of the regions of Borborema and Sertão, and that this cluster-
ing pattern can be found even when evaluating different time scales.

The conclusions of these studies reaffirm the results found in this re-
search. In general, there is evidence to zone Paraíba State into two
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regions, one comprising Sertão and Borborema, and the other compris-
ing Agreste and Mata Paraibana. The TRMM-estimated data identified
this behavior at multiple scales and for different categories of drought
time series. The results may be related to several factors, such as the in-
fluence of altitude and the Borborema Plateau, among others. This for-
mation blocks the effects of atmospheric systems and influences
precipitation and droughts in the region. In addition, factors such as
the proximity of the regions to the ocean or the performance of different
climatic systems may have caused this grouping pattern.

This study has illustrated the value of TRMMdata in the regional char-
acterization of drought and the utility of using hierarchical cluster analysis
to extract important understanding regarding the heterogeneity of
drought state, duration, and severity. Although neither TRMM based as-
sessment using gauged observations nor drought monitoring represent
novel applications, we consider that the use of TRMM in the context of
drought assessment based on multi-scale accumulation is of significant
interest and this is evenmore relevant whenwe integrate this methodol-
ogy with the use of hierarchical cluster analysis. Although a limited time
series was used, the approach demonstrates the potential for application
with other drought indices and remote sensing data products. The ob-
tained results are encouraging and the proposed innovativemethodology
proved to be adequate for such an analysis, andmay be perfectly applica-
ble in other regions, which should present even better results for regions
with long complete time series. Finally, future research could focus on the
influence of the length of time series, the use of other drought indices and
other types of satellite-estimated rainfall data.

5. Conclusions

This study evaluated the performance of the TRMM rainfall product
for monitoring drought over Paraíba State using hierarchical cluster anal-
ysis to identify areas with homogeneous behaviors, duration and severity
of droughts over eight time scales across Paraíba State (1998–2017). For
short-term droughts, there is a rationale for dividing the state into two
large regions: Mata Paraibana and Agreste Paraibano and another by the
Sertão Paraibano and Borborema. For long-term droughts, there is a
stronger argument to group the entire state into a single cluster.

The TRMM-estimated time series are more similar to each other and
demonstrate that the Sertão andBorboremamesoregions have greater ho-
mogeneity between them, while the results obtained from gauge-
measured rainfall data have greater variability and show that the Mata
Paraibana andAgrestemesoregions aremore similar. Factors such as prox-
imity to the ocean, the behavior ofmacro-,meso- andmicro-scale climatic
systems, and the configuration of the local relief are potential influencers
of the pattern of occurrences of droughts and rains in the region, especially
the Planalto da Borborema as a determining agent. It is concluded that the
TMPAprecipitation estimates of the TRMMare a valuable source of data to
regionalize and identify the drought pattern and Paraíba State.

Finally, further studies of this type should be carried out to catego-
rize and monitor these phenomena more accurately from satellite data
derived from subsequentmissions such as the Global Precipitation Mis-
sion (GPM), and in particular, the IMERG precipitation datasets which
offer near real time opportunities for analysis and monitoring.
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