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Abstract 28 

The impact of climate change on Malagasy amphibians remains poorly understood.  Equally, 29 

deforestation, fragmentation, and lack of connectivity between forest patches may leave 30 

vulnerable species isolated in habitat that no longer suits their environmental or biological 31 

requirements. We assess the predicted impact of climate change by 2085 on the potential 32 

distribution of a Critically Endangered frog species, the golden mantella (Mantella aurantiaca), 33 

that is confined to a small area of the central rainforest of Madagascar. We identify potential 34 

population distributions and climatically stable areas.  Results suggest a potential south-35 

eastwardly shift away from the current range and a decrease in suitable habitat from 2110 km2 36 

under current climate to between 112 km2 – 138 km2 by the year 2085 – less than 7% of 37 

currently available suitable habitat. Results also indicate that the amount of golden mantella 38 

habitat falling within protected areas decreases by 86% over the same period.  We recommend 39 

research to ascertain future viability and the feasibility of expanding protection to newly 40 

identified potential sites. This information can then be used in future conservation actions such 41 

as habitat restoration, translocations, re-introductions or the siting of further wildlife corridors 42 

or protected areas. 43 

Introduction  44 

Madagascar is one of the world’s mega-biodiversity hotspots, with extremely high levels of 45 

endemism across the island (Myers et al., 2000; Vieilledent et al., 2013).  Amphibians follow 46 

the trend with 314 assessed frog species, 99% of which are endemic (IUCN, 2021), and there 47 

are potentially many more yet to be described (Glaw & Vences, 2007). Most species are located 48 

within the Eastern rainforest belt (Glaw & Vences, 2007). However, forests across Madagascar 49 

are being depleted at an alarming rate, i.e. from 1953 to 2014 forested land cover decreased 50 

from 27% to 15 % (Brown et al., 2015; Vieilledent et al., 2017).  Forest fragments that remain 51 
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are also decreasing in size with mean distance to forest edge dropping from 1.5 km to 300 m 52 

respectively (Brown et al., 2015; Vieilledent et al., 2017). Fragmentation of already degraded 53 

forest areas may impede the movement of species with low vagility between habitat patches, 54 

increase access for loggers or hunters, expose deep forest species to forest edge effects, increase 55 

competition for limited resources, or result in habitat patches too small to sustain viable 56 

populations (Cushman, 2006; Echeverria et al., 2006; Vieilledent et al., 2017).   57 

Predictions for climate change across Madagascar suggest a rise in temperature of 1.1 ºC –2.6 º 58 

C by 2050 (Tadross et al., 2008).  Temperatures vary along a gradient from north to south, with 59 

the lowest rises predicted in the northern and coastal areas, and highest rises in the southern 60 

spiny forest region (Hannah et al., 2008).  Rainfall is predicted to increase across the island 61 

except along the south-east coast where it will become drier in winter months (Hannah et al., 62 

2008).  According to Seidl et al. (2017), climate change has the potential to affect forests in 63 

complex ways i.e. an increase in temperature and lower rainfall may lead to higher instances 64 

of tree die-off, forest fires, fuel build up, or insect abundance.  Under hotter and wetter 65 

conditions, soil erosion, runoff and sedimentation become more likely (Seidl et al., 2017). 66 

Deforestation and climate change may therefore act synergistically driving species to shift their 67 

range to areas with more favourable conditions (Raxworthy et al., 2008). Historically, large 68 

tracts of contiguous forest may have made dispersal to higher, cooler or more climatically 69 

stable areas easier. However, with many montane forest areas in Madagascar now highly 70 

fragmented, dispersal for some species is difficult, if not impossible (Brown et al., 2015).  71 

Golden mantellas (Mantella aurantiaca) are Critically Endangered montane forest dwelling 72 

frogs from the Central Eastern Rainforest areas of Mangabe and Analamay in Madagascar 73 

(Piludu et al., 2015; Edwards et al., 2019). They are found at altitudes of between 900 m and 74 

1000 m asl and the area of suitable habitat occupied by this species is low at around 10 km2.  75 

A recent survey by Piludu et al. (2015) found 139 breeding sites, many of which were in areas 76 
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under threat from agricultural expansion, industrial or artisanal mining, or collection for the 77 

pet trade, with the majority in areas already classed as protected.  78 

Climate change may exacerbate problems faced by golden mantellas as they are already found 79 

at altitudes close to the summits of the slopes they inhabit, leaving no real opportunity for 80 

dispersal to higher, cooler altitudes.  It is clear there are few in-situ conservation management 81 

options remaining: the frogs either adapt to climate change, or alternative suitable habitat needs 82 

to be restored in areas where it is required.  To this end Species Distribution Modelling (SDM) 83 

can play an important part in identifying suitable areas for the possible translocation or 84 

reintroduction of golden mantella populations. SDM is the process of exploring the 85 

relationships between species distribution and associated environmental and habitat variables, 86 

and then predicting spatial relationships (Márcia-Barbosa et al., 2013 Bateman et al., 2013; 87 

Cao et al., 2013; Meynard et al., 2013; Rodriguez-Rey et al., 2013). We follow several other 88 

authors (Blank & Blaustein, 2013; Chunco et al., 2013; Groff et al., 2014; Sharifi et al., 2017) 89 

in using SDM to identify and prioritise optimum habitat requirements, where potential 90 

anthropogenic disturbance and climate change impacts are at their lowest. Results can then be 91 

used to guide future management decisions regarding the placement of protected areas and the 92 

reintroduction or translocation of golden mantellas to favourable sites if needed. 93 

Methods 94 

Data collection and study area 95 

The aim of modelling was to explore potential suitable habitat to inform broader conservation 96 

decisions, in an area around Moramanga Province, Madagascar.  Records of golden mantella 97 

sightings were collected by Madagasikara Voakajy research teams from ten sites within the 98 

protected areas of Mangabe, each containing or bordering known golden mantella breeding 99 

ponds. Nine of these sites were surveyed between 28 November 2014 – 12 December 2014, 100 
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and the tenth earlier on in the year in March 2014.  These periods correspond to the main 101 

breeding activity periods for this species.  All surveys took place between 0700-1400 hrs each 102 

day, one visit per forest. The surveys were centered on breeding pools located in shallow 103 

depressions within the forest.  104 

Species distribution modelling  105 

A total of 198 golden mantellas were recorded across the ten surveyed sites in Moramanga.  In 106 

order to meet the assumptions of Maxent with environmental data and reduce spatial bias, we 107 

needed to reduce golden mantella presence data to one observation (one frog) per 250 m grid 108 

square (See: Elith et al., 2011). In doing so we reduced presence data to 98 Mantella aurantiaca 109 

locations at a 250 m spatial grain.  110 

Remotely sensed data have greatly improved over recent years and now provide good, useable 111 

information to answer ecological questions (Pfeifer et al., 2011). We used remotely sensed data 112 

for climate and habitat variables to model current and future distributions for golden mantellas. 113 

Four climate variables were selected from Worldclim (Hijmans et al., 2005) due to their 114 

biological relevance to frogs and because of low intercorrelation (Pearson’s r < 0.7);  115 

Temperature seasonality ( ºC x 10, standard deviation over monthly values); Mean temperature 116 

of the warmest quarter ( ºC x 10, any consecutive 3-month period); Mean rainfall of the wettest 117 

quarter (mm, any consecutive 3-month period); Maximum water deficit (mm, Consecutive 118 

months that experience rainfall < monthly PET (Potential Evapotranspiration, Hargreaves 119 

method), over which the shortfall in rain is accumulated. Raster development followed Pfeifer 120 

et al. (2018). This variable is also defined by Stephenson (1998) as the amount of water by 121 

which potential evapotranspiration (PET) exceeds actual evapotranspiration (AET).  122 

Four habitat variables were selected because of their potential relevance to amphibians; Canopy 123 

height, Topographic wetness index, Landcover and Enhanced Vegetation Index (EVI). Canopy 124 
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height (m) was sourced from NASA Earthdata (Simard et al., 2011; ORNL DAAC, 2017). 125 

Topographic wetness is a measure of the potential for water to flow into the grid cell and of 126 

how likely it is to remain there. We built the raster by using a 30 m filled Aster Digital Elevation 127 

Model (NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team, 128 

2001). From this we made two further rasters using ArcGIS 10.3.1 (ESRI, 2015) which 129 

described the accumulation of water flow (w) from the surrounding pixels and slope(s). We 130 

then used these respective rasters to calculate Topographic index from Ln(900w/tan(s) and 131 

values were normalised. Landcover classes are categorical variables such as cropland, forest 132 

etc, represented as a percentage of a grid square and interpolated from 1 km to 250 m resolution 133 

using bilinear interpolation (weighted distance average) in ArcGIS 10.3.1 (ESRI, 2015) (Arino, 134 

et al., 2012); Enhanced vegetation index reflects variation in canopy structure and architecture 135 

(Vieilledent et al., 2017). Mean annual Enhanced Vegetation Index is from 16-day 250 m 136 

MODIS MOD13Q1 data from the years 2007 – 2017 (Didan, et al., 2015). 137 

Future climate projections  (Representative Concentrations Pathways (RCP) 4.5 and 8.5) were 138 

sourced from AFRICLIM (Platts et al., 2015). RCP are greenhouse gas concentration 139 

projection scenarios adopted by the Intergovernmental Panel on Climate Change so that climate 140 

change studies and modelling might use a set of standardised measures (Van Vuuren et al., 141 

2011).  RCP 4.5 assumes CO2 concentrations will continue to rise to approximately 650 parts 142 

per million (ppm) by 2100 and stabilise thereafter (Van Vuuren et al., 2011). RCP 8.5 assumes 143 

rising CO2 concentrations to approximately 1370 ppm by 2100 (Van Vuuren et al., 2011).  144 

Potential distributions were modelled using Maxent (v. 3.3.3k), a standard SDM technique 145 

using presence-only data (Hernández et al., 2006; Pearson, 2007). Climate data were at 1 km 146 

resolution and habitat/vegetation data were at 250 m resolution, but for Maxent to work, both 147 

sets of data must be at the same scale. All 1 km data were therefore interpolated to 250 m 148 

portions, ensuring that values in each grid cell were maintained, e.g. if the 1 km grid square 149 
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had a temperature of 20°C , then all of the 250 m grid squares that make up that 1 km grid 150 

square would also be at 20°C. Habitat variables were included as static variables (a variable 151 

that may change with climate change, but we are unable to predict the amount of change due 152 

to confounding factors such as anthropogenic disturbance within the distribution models for 153 

future scenarios). We used static variables as it is difficult to model dynamic variable change 154 

(e.g. vegetation growth) along with projected climate change. Although we understand 155 

vegetation will alter with climate, preliminary runs of the model suffered from the exclusion 156 

of vegetation variables altogether: we therefore chose to keep these static variables (Stanton et 157 

al., 2012).   158 

Maxent makes several assumptions that affect the performance of the model (Phillips et al., 159 

2006) and constrain final spatial patterns of species distribution. We therefore used a 160 

regularization multiplier, described by Merow et al. (2013) as placing a Bayesian priori 161 

distribution on model parameters (i.e. using current knowledge and reasonable expectation to 162 

predict potential distribution). The regularization multiplier effectively constrains or relaxes 163 

the fit around the data balancing the need for both accuracy of predictions and generality (Elith 164 

et al., 2011). Prior to running final models, we adjusted the regularization multiplier and 165 

selected the most appropriate model using Akaike Information Criteria (AIC) (Warren et al., 166 

2010; Warren & Seifert, 2011). In addition, the  final models were cross-validated ten times, 167 

and to determine drivers of distribution, we jack-knifed environmental data (Phillips et al., 168 

2006). All other settings were set to default. We used Albers Africa Equal-area projection to 169 

equalise grid cell size (Elith et al., 2011) to ~0.250 m2  and an appropriately scaled kernel 170 

density bias file was used to restrict the placement of pseudo-absences (Fourcade et al., 2014). 171 

Maxent is a presence-only modelling system based upon reliable species sightings, which 172 

means it does not utilize any known absence information. Instead, it fills the gaps using pseudo-173 

absences (estimated absences). Pseudo-absences are estimated by taking known presence data 174 
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for large numbers of similar species (kernel density file) and then determining the probability 175 

of finding a given species across different areas and habitat. This research used a kernel density 176 

file constructed from amphibian sightings across Madagascar. To identify areas of suitable 177 

habitat in current and future scenarios, we used maximum test sensitivity plus specificity 178 

logistic threshold which minimises error between specificity and sensitivity (false positives and 179 

false negatives) (Liu et al., 2005). The Habitat Suitability Index (Fig. 1), i.e. how suitable an 180 

area is for a species based upon the variables entered into the model, was calculated using 181 

Maxent. To describe the current golden mantella area of occurrence we developed a Minimum 182 

Convex Polygon (MCP) based on the raw data for M. aurantiaca occurrences and then added 183 

a 10 km buffer (e.g. Smith & Green, [2005] suggest maximum dispersal distances for most 184 

amphibians would not exceed far beyond 10 km), to create an over-estimate of current area 185 

(Fig. 2). Habitat suitability was projected across Moramanga district to identify potential areas 186 

of suitable habitat for current conditions and whether suitable habitat fell within the MCP.  187 

For each climate scenario we used a metric from Bungard (2020) to measure the level of 188 

imperilment based on the index of net change (𝑁𝑐) in area: 𝑁𝑐 is calculated for golden 189 

mantellas, as the sum of the change for each future scenario; future increase in area (𝑇𝑓𝑖) (km2) 190 

minus future decrease in area (𝑇𝑓𝑑) over the area under current climate conditions (𝑇𝑐). 191 

Equation 1. 192 

𝑁𝑐 =  ∑
(𝑇𝑓𝑖 −  𝑇𝑓𝑑)

𝑇𝑐
  193 

We used Protected Planet (2021) to identify the protected areas networks.  Finally, we assessed 194 

how well the current system of protected area networks surrounding golden mantella area of 195 

occupancy accounts for golden mantella distribution in both current and future climate 196 
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scenarios. To do this, we calculated for each scenario, the simple metric of area of suitable 197 

habitat within the protected area network/total area of suitable habitat using ARCGIS proTM. 198 

Results 199 

Our model demonstrated a good fit with the data (AUC = 0.994, SD = 0.001) and showed that 200 

two main drivers influence M. aurantiaca distributions under current climatic conditions: 201 

landcover (contributed 32% to the final model) and the length and severity of the dry season 202 

(water deficit; model contribution: 31%) (Fig. 1). Mean temperature of the warmest quarter 203 

contributed 24% to the final model, whilst all other variables each contributed < 2% to the final 204 

model except mean rainfall of the wettest quarter (< 9%). Golden mantellas are found mainly 205 

in broadleaved evergreen forest (rainforest) and only have a narrow tolerance of extended dry 206 

conditions. The potential distribution of golden mantellas under current climate conditions 207 

extends outside the current MCP (Fig. 3) with potentially highly suitable habitat occurring in 208 

a narrow south-west to north-east band divided into two distinct areas. These areas embrace 209 

the two known population centres for golden mantellas: Mangabe in the south and 210 

Torotorofotsy/Analamay in the north. From our models, local protected areas currently offer 211 

protection to 24% of potentially suitable habitat for golden mantellas. As climate changes, so 212 

does the distribution of golden mantellas, with the area of suitable habitat decreasing from 213 

2,110 km2 (current climate) to 121 km2 (𝑁𝑐 = -0.94) and 138 km2 (𝑁𝑐 = -0.93) (RCP 4.5 and 214 

8.5 respectively; Fig. 3). Furthermore, occupancy of suitable protected area decreases by 86% 215 

for both climate scenarios. Slightly larger areas of suitable habitat predicted under the higher 216 

RCP 8.5 scenario would seem counter-intuitive, however it may be that more variation in 217 

topography or changes in range and availability of water at higher altitudes increases available 218 

area.  Equally, although the overall distribution within protected areas is reduced, more of the 219 

range is shifted into existing protected areas under RCP 8.5 than under RCP 4.5 (see later 220 
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discussion).  Further, we observed a range shift under scenarios RCP 4.5 and RCP 8.5 to the 221 

south-east of the current distribution by 10-15 km (Fig. 3).  Within the projected habitat 222 

distribution range under RCP 4.5 and 8.5, there are several areas that are predicted to be 223 

climatically stable (Fig. 4). By climatically stable we mean consistently provides areas of 224 

suitable habitat for golden mantellas across climate scenarios. Assuming landcover is 225 

appropriate, the areas predicted here could also provide suitable habitat in terms of water deficit 226 

i.e. the range of water deficit stays within the boundaries needed by golden mantellas.  227 

Discussion 228 

We investigated whether projected climate change scenarios would influence current golden 229 

mantella population distributions in rainforest habitat in Madagascar. Our results suggest 230 

golden mantella population distribution is driven by the type of available habitat and the 231 

amount of water retained within those habitats. Our models predict that as the length and 232 

severity of the dry season increases, the availability of suitable habitat for golden mantellas 233 

decreases by more than 93%, from 2110 km2 currently to 121 km2 under RCP 4.5, and to 138 234 

km2 under RCP 8.5 by 2085.  Consequently, less than 7% of currently available suitable habitat 235 

is likely to remain suitable under these scenarios. We also reveal that local protected areas 236 

currently offer protection to 24% of potentially suitable habitat for golden mantellas. Models 237 

predict that the distribution of viable habitat will shift 10 – 15 km away from its current location 238 

with the majority (86%) falling outside of protected areas.  239 

The northern part of the RCP 8.5 projection falls within the Corridor Ankeniheny-Zahamena 240 

(CAZ) protected area. Covering some 3691 km2, CAZ is one of the largest areas of rainforest 241 

in Madagascar and comprises a core protected area and sustainable use near the boundary. 242 

Likewise, the southern part of the RCP 8.5 projection falls within the Mangabe protected area 243 

which also includes a core protected zone and areas of sustainable use. In contrast, the 244 
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projections of the RCP 4.5 model place the future distribution of golden mantellas outside 245 

protected areas. 246 

Increased temperatures and reduced rainfall will change forest habitat by restricting the 247 

availability of moisture to vegetation, soil and substrate (Bartelt et al., 2010). As microhabitat 248 

becomes warmer and drier the opportunity for thermoregulation and hydroregulation become 249 

more challenging. Frogs lose water quickly from the skin by evaporation, and to mitigate this 250 

loss they need to find moist habitat in which to take up water at least as quickly as it is being 251 

lost (Duellman & Trueb, 1994).  Several studies have found that montane amphibians may shift 252 

range upslope to cooler areas when exposed to prolonged ambient temperature rises 253 

(Raxworthy et al., 2008). However, this is not an option for golden mantellas as they already 254 

live at, or close to, the crests of the slopes they inhabit.  Further, although golden mantellas are 255 

known to migrate a few hundred metres between the crest and breeding ponds (Piludu et al., 256 

2015), rather less is known regarding their long-range dispersal ability. Current mantella forest 257 

habitat is also highly fragmented and usually bordered by agricultural land or deforested areas. 258 

Consequently, land use other than forest may well prevent range expansion or shift to track 259 

preferred environmental variables. Indeed, Harrison et al. (2006) state that where a species is 260 

in decline they may not automatically shift or expand their current range to track preferred 261 

climatic variables. Willis et al. (2015) advise that if climate suitability changes markedly within 262 

a species’ current distribution and there is no suitable climate/habitat within realistic 263 

colonisation range, then translocation to suitable areas should be considered. Indeed, rigorous 264 

habitat assessment should be an essential precursor for any translocation. Equally, any 265 

translocation strategy should assess the risks, benefits and cost-effectiveness of alternative 266 

approaches, such as whether stock should be sourced from captive breeding populations or 267 

non-threatened wild populations (Harding et al., 2016). 268 
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SDM results identify several locations considered climatically stable and relatively close 269 

(within the Moramanga area) to current golden mantella distributions (Fig. 4). However, most 270 

of the predicted stable areas are thought to contain degraded forest or agricultural fields (Pers. 271 

Comm. J.Razafimanahaka, 2021).  Ideally, we would hope to survey those new sites and other 272 

areas in between current and potential distributions to ascertain if there is a realistic opportunity 273 

to develop wildlife corridors, which may facilitate golden mantella range shift.   274 

There is already a programme of survey and research which seeks new areas in which to create, 275 

restore or protect breeding ponds and habitat (Piludu et al., 2015); however, in light of our 276 

current findings, it may be prudent to consider searching further afield for new potential sites. 277 

Our results suggest these new sites should be sought a further 10-15 km south-east from current 278 

golden mantella distributions. 279 

The complexity of biological interactions between species, environment and anthropogenic 280 

influence over time means there are constraints on the accuracy of any prediction we may make 281 

(Harrison et al., 2006).  However, climate change is already impacting heavily on species and 282 

ecosystems (Hannah et al., 2008; Raxworthy et al., 2008; Tadross et al., 2008), and as such 283 

conservation actions should be planned and carried out without delay using the knowledge and 284 

techniques we do have, rather than wait until more advanced methods become available 285 

(Rowland et al., 2011). 286 

We therefore recommend carrying out surveys to test whether newly highlighted areas 287 

identified as climatically stable or within projected distribution under climate change have the 288 

potential for translocation of golden mantellas. Where appropriate, this may involve habitat 289 

restoration to ensure water bodies for breeding and appropriate associated microhabitat 290 

(Edwards et al., 2019). Further research should be conducted into the feasibility of placing 291 

wildlife corridors between current and potential golden mantella distribution to facilitate range 292 
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shift to safer areas. Expanding protection and status to potential climate stable areas and 293 

projected population distribution ranges should also be a priority. 294 
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Fig.1 481 

 482 

 483 

 484 

Figure 1. Habitat suitability in relation to (a) landcover categories and (b) water deficit. 485 

Broadleaved evergreen forest and the length and severity of the dry season are the main drivers 486 

for the distribution of golden mantellas. Habitat suitability is given as between 0 (unsuitable) 487 

and 1 (highly suitable) and is based on variables initially entered in to MaxEnt. Water deficit 488 

(Wd) is the amount of water by which potential evapotranspiration exceeds actual 489 

evapotranspiration (derived from remote sensed satellite data) and is indicative of the severity 490 

of the dry season. The red line is the response curve (fit of the data), the blue line is the standard 491 

deviation. Our model suggests habitat suitability is high where water deficit remains low at 492 

around 400 mm i.e., associated with a short dry season. 493 
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Fig.2 498 

 499 

 500 

 501 

 502 

Figure 2. Study area. Data points for golden mantella are shown, from which a Minimum 503 

Convex Polygon (MCP) was developed. A 10 km buffer (buffered MCP) was used to account 504 

for potential maximum dispersal of frogs when assessing future climate scenarios after Species 505 

Distribution Modelling.  506 
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Fig.3 510 

 511 
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 513 

 514 

Figure 3. Species Distribution Modelling for the golden mantella showing (a) political divisions 515 

with Moramanga highlighted in grey with a black border; (b) potential distribution under 516 

current climate; potential distributions under (c) RCP 4.5, 2085 and (d) RCP 8.5, 2085, showing 517 

decrease in range and shift in a south-easterly direction.  518 
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Fig 4 523 
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 526 

 527 

Figure 4. Climate stable spaces predicted within the range of projected distributions for RCP 528 

4.5 and RCP 8.5. Protected areas are shown as light grey, with Mangabe (protected area that 529 

covers most of the current distribution of M. aurantiaca) highlighted in light green. 530 
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