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Abstract

We consider deformations of sequences of cluster mutations in finite type cluster
algebras, which destroy the Laurent property but preserve the presymplectic struc-
ture defined by the exchange matrix. The simplest example is the Lyness 5-cycle,
arising from the cluster algebra of type A2: this deforms to the Lyness family of inte-
grable symplectic maps in the plane. For types A3 and A4 we find suitable conditions
such that the deformation produces a two-parameter family of Liouville integrable
maps (in dimensions two and four, respectively). We also perform Laurentification
for these maps, by lifting them to a higher-dimensional space of tau functions with a
cluster algebra structure, where the Laurent property is restored. More general types
of deformed mutations associated with affine Dynkin quivers are shown to correspond
to four-dimensional symplectic maps arising as reductions of the discrete sine-Gordon
equation.

1 Lyness maps and Zamolodchikov periodicity

It was observed by Lyness in 1942 [28] that the recurrence

xn+2xn = xn+1 + 1 (1.1)

generates the sequence

x0, x1,
x1 + 1

x0
,
x0 + x1 + 1

x0x1
,
x0 + 1

x1
, x0, x1, . . . , (1.2)
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which repeats with period five. The Lyness 5-cycle also arises in Coxeter’s frieze patterns
[3], or as a simple example of Zamolodchikov periodicity in integrable quantum field theories
[37], which can be understood in terms of the associahedron K4 and the cluster algebra
defined by the A2 Dynkin quiver [10], and this leads to a connection with Abel’s pentagon
identity for the dilogarithm [29]. The birational map of the plane corresponding to the
recurrence (1.1), that is

(x, y) 7→
(
y,
y + 1

x

)
, (1.3)

also appears in the theory of the Cremona group: as conjectured by Usnich and proved by
Blanc [1], the birational transformations of the plane that preserve the symplectic form

ω =
1

xy
dx ∧ dy, (1.4)

are generated by SL(2,Z), the torus and transformation (1.3).
More generally, the birational map

ϕ : (x, y) 7→
(
y,
ay + b

x

)
, (1.5)

with two parameters a, b is also referred to as the Lyness map. By rescaling (x, y) →
(ax, ay), the parameter a 6= 0 can be removed, so that this is really a one-parameter
family, which is described in [6] as “the simplest singular map of the plane.” There are
also analogous recurrences in higher dimensions, given by the family

xn+Nxn =
N−1∑
j=1

xn+j + b,

which have been shown to admit
⌊
N
2

⌋
independent first integrals for each order N [34].

Unlike the special case b = a2, which can be rescaled to (1.3), in general the orbits of
(1.5) do not all have the same period, and generic orbits are not periodic over an infinite
field (e.g. Q,R or C). Moreover, while the iterates in (1.2) are Laurent polynomials in the
initial values x0, x1 with integer coefficients, which is one of the characteristic features of
the cluster variables in a cluster algebra, the iterates of (1.5) are not Laurent polynomials
unless b = a2. However, the general map does preserve the same symplectic form (1.4),
and there is a conserved quantity K = K(x, y) given by

K =
xy(x+ y) + a(x2 + y2) + (a2 + b)(x+ y) + ab

xy
. (1.6)

Thus the Lyness map (1.5) is integrable in the Liouville sense, and can be considered
as a deformation of the periodic map (1.3) which arises from mutations in a finite type
cluster algebra. The purpose of this work is to consider how other integrable maps can
be obtained from deformations of cluster mutations. The Zamolodchikov periodicity of
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Y-systems or T-systems associated with finite type root systems has been extended and
generalized in various ways (see [14, 26, 30] and references), but as far as we are aware the
deformations we consider are new.

Following the framework of cluster algebras, we start from a quiver Q (without 1- or
2-cycles) associated with a skew-symmetric exchange matrix B = (bij) ∈ MatN(Z) and an
N -tuple of cluster variables x = (x1, x2, . . . , xN). Here we consider the cluster variables xi
taking values in a field F; the main cases of interest are F = R or C, but for some of our
later analysis it will be convenient to consider xi ∈ Q ⊂ Qp. The initial seed is denoted
(B,x). Now, for each integer k ∈ [1, N ] we define a mutation µk which produces a new
seed (B′,x′) = µk(B,x), where B′ = (b′ij) with

b′ij =

{
−bij if i = k or j = k,

bij + sgn(bik)[bikbkj]+ otherwise,
(1.7)

and x′ = (x′j) with

x′j =

{
x−1k fk(M

+
k ,M

−
k ) for j = k

xj for j 6= k.
(1.8)

Here, [a]+ = max(a, 0), fk : F× F→ F is a differentiable function and

M+
k :=

N∏
i=1

x
[bki]+
i , M−

k :=
N∏
i=1

x
[−bki]+
i .

For fk(M
+
k ,M

−
k ) = M+

k + M−
k , the first relation in (1.8) becomes the usual exchange

relation x′kxk = M+
k + M−

k for cluster mutations in a coefficient-free cluster algebra. In
this case, we know that there is a log-canonical presymplectic form compatible with cluster
mutations [9, 15, 22]. We extend this result to include more general types of mutations.

Lemma 1.1. Let Q be a quiver associated with the exchange matrix B = (bij) and
(B′,x′) = µk(B,x), as defined by (1.7) and (1.8). Then∑

i<j

b′ij
x′ix
′
j

dx′i ∧ dx′j =
∑
i<j

bij
xixj

dxi ∧ dxj (1.9)

if and only if

fk(M
+
k ,M

−
k ) = M+

k gk

(
M−

k

M+
k

)
, (1.10)

for an arbitrary differentiable function gk : F→ F.

Remark 1.2. Equivalently, the function fk can be written in the form

fk(M
+
k ,M

−
k ) = M−

k g̃k

(
M+

k

M−
k

)
,

for g̃k arbitrary.
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Proof: Using
∑′ to denote a sum over indices with index k omitted, we have

ω =
∑
i<j

bij
xixj

dxi ∧ dxj

= 1
2

(
Σ
′
i,jbijd log xi ∧ d log xj + Σ

′
ibikd log xi ∧ d log xk + Σ

′
jbkjd log xk ∧ d log xj

)
= 1

2
Σ
′
i,jbijd log xi ∧ d log xj + Σ

′
ibikd log xi ∧ d log xk,

and similarly

ω′ =
∑
i<j

b′ij
x′ix
′
j

dx′i ∧ dx′j

= 1
2
Σ
′
i,jb
′
ijd log x′i ∧ d log x′j + Σ

′
ib
′
ikd log x′i ∧ d log x′k

= 1
2
Σ
′
i,j(bij + sgn(bik)[bikbkj]+)d log xi ∧ d log xj −Σ

′
ibikd log xi ∧ (−d log xk + d log fk).

Hence if we consider the sets

β+
k = {i ∈ {1, . . . N} : bki > 0}, β−k = {i ∈ {1, . . . N} : bki < 0},

then noting that [bikbkj]+ = 0 unless either i ∈ β+
k , j ∈ β−k or vice versa, and defining

dS±k := ±d logM±
k =

∑
i∈β±k

bkid log xi,

we have

ω′ − ω = 1
2
Σ
′
i,jsgn(bik)[bikbkj]+d log xi ∧ d log xj −Σ

′
ibikd log xi ∧ d log fk

= 1
2

∑
i∈β−k
j∈β+

k

bikbkjd log xi ∧ d log xj −
∑
i∈β+

k

j∈β−k

bikbkjd log xi ∧ d log xj


+ Σ

′
ibkid log xi ∧

(
M+

k

fk

∂fk
∂M+

k

d logM+
k +

M−
k

fk

∂fk
∂M−

k

d logM−
k

)
= −

∑
i∈β−k
j∈β+

k

bkibkjd log xi ∧ d log xj

+ (dS+
k + dS−k ) ∧

(
M+

k

fk

∂fk
∂M+

k

dS+
k −

M−
k

fk

∂fk
∂M−

k

dS−k

)
=

(
M+

k

fk

∂fk
∂M+

k

+
M−

k

fk

∂fk
∂M−

k

− 1

)
dS−k ∧ dS+

k .
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Hence ω′ = ω iff fk = fk(M
+
k ,M

−
k ) satisfies the linear partial differential equation

M+
k

∂fk
∂M+

k

+M−
k

∂fk
∂M−

k

= fk,

of which the general solution is given by (1.10) with gk arbitrary.

According to Lemma 1.1, if the exchange matrix B remains invariant under a sequence
of mutations of the form (1.10) then the map that is generated by the same sequence of
cluster mutations will preserve a presymplectic form, i.e. the following theorem holds.

Theorem 1.3. Let µi1 , µi2 , . . . , µi`, for ij ∈ {1, . . . , N}, j ∈ N, be a sequence of mutations
defined from (1.7) and (1.8), with each function fij being of the form (1.10), such that

µi` · · ·µi2µi1(B,x) = (B, x̃).

Then the map ϕ : x 7→ x̃ preserves the two-form

ω =
N∑
i<j

bij
xixj

dxi ∧ dxj. (1.11)

Remark 1.4. The preceding result admits a slight generalization to the case of cluster
algebras (or quivers Q) with periodicity under mutations. In the most general setting, as
described by Nakanishi [29], these are defined by an exchange matrix with the property that
µi` · · ·µi2µi1(B) = ρ̂(B), where ρ̂ is some permutation of (1, 2, . . . , N) acting on the indices
(equivalently, on the nodes of the quiver Q). The particular case µm · · ·µ2µ1(B) = ρm(B),
for the cyclic permutation ρ : (1, 2, . . . , N) 7→ (N, 1, 2, . . . , N − 1) was called cluster
mutation-periodicity with period m by Fordy and Marsh [13], who gave a complete clas-
sification of the case m = 1. A straightforward adaptation of the above argument shows
that if B is periodic, then the map ϕ = ρ̂−1µi` · · ·µi2µi1 leaves B invariant and preserves
the corresponding log-canonical presymplectic form (1.11), in the sense that ϕ∗(ω) = ω.
Lemma 2.3 in [12] covers the special case of this result for ordinary cluster mutations when
B is cluster mutation-periodic with period 1, so ϕ = ρ−1µ1 and the map can be written as
a single recurrence relation. We shall consider an example of this with a generalized muta-
tion in section 3. The slightly different (but closely related) problem of when an ordinary
difference equation preserves a log-canonical Poisson bracket was considered in [7].

In the next section our aim is to generalize the example of the Lyness map (1.5),
corresponding to the root system A2, to other finite type root systems of type A, by
taking mutations defined by affine functions fk with additional parameters that destroy
the Laurent property but preserve the two-form (1.11). Section 3 contains more general
choices of mutations, starting from affine Dynkin diagrams, where the factors gk in (1.10)
involve Möbius transformations, which lead to travelling wave reductions of the discrete
sine-Gordon equation. We end with a few final remarks.
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2 Deformations of type A periodic maps

In this section, extra parameters are included in the regular exchange relation by taking
gk(x) = bkx+ ak, since

fk(M
+
k ,M

−
k ) = M+

k gk

(
M−

k

M+
k

)
= akM

+
k + bkM

−
k . (2.1)

Hence, according to Theorem 1.3, quivers which are periodic under a particular sequence
of mutations (or more generally, are periodic up to a permutation) give rise to parametric
cluster maps that preserve the presymplectic form (1.11). If the corresponding exchange
matrix is non-singular the parametric cluster maps are symplectic. We begin by examining
the case of A2 in more detail, and then apply this approach to study the integrability of
parametric cluster maps associated with the A3 and A4 quivers.

2.1 Deformed mutations for A2 quiver

The exchange matrix of type A2 is

B =

(
0 1
−1 0

)
.

In this case, B corresponds to a cluster mutation-periodic quiver with period 1 and M+
1 =

x2, M
−
1 = 1. So, by the modification of Theorem 1.3 as in Remark 1.4, taking ρ : (1, 2) 7→

(2, 1), for any differentiable function g̃ : F→ F the map ϕ = ρ−1µ1 given by

ϕ : (x1, x2) 7→
(
x2,

1

x1
g̃(x2)

)
, (2.2)

is symplectic with respect to ω = 1
x1x2

dx1∧dx2. (Compared with (1.10) we have f1(x, 1) =
xg1(1/x) = g̃(x): in general, replacing gk(x)→ xgk(1/x) corresponds to sending B → −B,
which is equivalent to replacing the corresponding quiver Q→ Qopp, the same quiver with
all arrows reversed; see also Remark 1.2.)

With (x, y) = (x1, x2) and g̃(x) = ax+ b, we reproduce the Lyness map (1.5). Starting
from the periodic map (1.3), and relabelling the initial data as (x0, x1), any cyclic symmetric
function of the iterates x0, x1, x2, x3, x4 in the periodic orbit (1.2) gives a first integral. So
in the periodic case there are two independent integrals, namely

K1 =
4∑
j=0

xj = −3 +
4∏
j=0

xj =
x20x1 + x0x

2
1 + x20 + x21 + 2(x0 + x1) + 1

x0x1
,

K2 =
4∑
j=0

xjxj+1

=
x0x1(x

2
0x

2
1 + x30 + x31 + x20 + x21 + x0 + x1 + 2) + x30 + x31 + 2(x20 + x21) + x0 + x1

x20x
2
1

.
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Both of the latter are sums of Laurent monomials, so in the case of the map with pa-
rameters, first integrals can be sought by taking arbitrary linear combinations of the same
monomials and solving the resulting conditions on the coefficients. Thus in the case of
(1.5), the first integral (1.6) can be considered as a deformation of K1 above; but a first
integral composed of the Laurent monomials in K2 only exists when b = a2 and the map
is periodic, corresponding to the undeformed situation.

Although the Laurent phenomenon does not persist for the iterates of the Lyness re-
currence

xn+2xn = axn+1 + b (2.3)

when b 6= a2, it was pointed out in [12] that there is a connection to a cluster algebra via
a lift to a space of higher dimension, defined by the substitution

xn =
τn+5τn
τn+3τn+2

,

which leads to the Somos-7 recurrence

τn+7τn = a τn+6τn+1 + b τn+4τn+3. (2.4)

As explained in [13], Somos-type recurrences such as the above, with a sum of two mono-
mials on the right-hand side, can be generated by mutations in a cluster algebra. In the
case of (2.4), it is a cluster algebra of rank 7, extended by the addition of the parameters
a, b as frozen variables.

The rest of this section is devoted to the analogous constructions for A3 and A4.

2.2 A3 quiver with parameters

For the A3 quiver with exchange matrix

B =

 0 1 0
−1 0 1
0 −1 0

 ,

as in Figure 1, we take fk(M
+
k ,M

−
k ) = akM

+
k + bkM

−
k . In this case,

ϕ(B,x) := µ3µ2µ1(B,x) =
(
B,ϕ(x)

)
,

where the composition ϕ = µ3µ2µ1 acts on the cluster variables x = (x1, x2, x3) according
to

µ1 : (x1, x2, x3) 7→ (x′1, x2, x3), x′1x1 = b1 + a1x2,
µ2 : (x′1, x2, x3) 7→ (x′1, x

′
2, x3), x′2x2 = b2 + a2x

′
1x3,

µ3 : (x′1, x
′
2, x3) 7→ (x′1, x

′
2, x
′
3), x′3x3 = b3 + a3x

′
2.

(2.5)

Since ϕ(B) = B, so the exchange matrix B remains invariant under this sequence of
mutations, by Theorem 1.3 the map ϕ preserves the corresponding log-canonical two-form,
that is

ϕ∗(ω) = ω,

7



Figure 1: The A3 quiver.

where

ω =
1

x1x2
dx1 ∧ dx2 +

1

x2x3
dx2 ∧ dx3 .

The original coefficient-free cluster algebra is given by setting ai = 1 = bi for i = 1, 2, 3,
and in that case the map ϕ is periodic with period 6, that is ϕ6(x) = x. Moreover, one can
write down three independent first integrals for the periodic map, by taking appropriate
symmetric functions along each orbit, such as

∑5
i=0(ϕ

∗)i(xj),
∏5

i=0(ϕ
∗)i(xj), etc.

However, before considering the deformed case (2.5), there are two ways to simplify
the calculations. First of all, assuming the case of generic parameter values aibi 6= 0 for
all i, we apply the scaling action of the three-dimensional algebraic torus (F∗)3, given by
xi → λi xi, λi 6= 0, and use this to remove three parameters, so that we obtain

a1 → 1, b1 → 1, a2 → d, b2 → c, a3 → 1, b3 → e,

where c, d, e are arbitrary. Having simplified the space of parameters, the map ϕ is equiv-
alent to iteration of the system of recurrences

x1,n+1x1,n = x2,n + 1,
x2,n+1x2,n = dx1,n+1x3,n + c,
x3,n+1x3,n = x2,n+1 + e.

(2.6)

Secondly, because we are in an odd-dimensional situation where B necessarily has deter-
minant zero, so that ω is degenerate, so following [12] (cf. Theorem 2.6 therein) we can
use

kerB =< (1, 0, 1)T >, imB = (kerB)⊥ =< (0, 1, 0)T , (−1, 0, 1)T >

to generate the one-parameter scaling group (x1, x2, x3)→ (λx1, x2, λx3) and the projection
π onto its monomial invariants,

π : y = x2, w =
x3
x1
.

On the y, w-plane, ϕ induces the reduced map

ϕ̂ :

(
y
w

)
7→
( (

d(y + 1)w + c
)
/y

(dw + c)/(yw) + (e− c)/
(
w(y + 1)

) ) , (2.7)
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which is symplectic, preserving the nondegenerate two-form

ω̂ = d log y ∧ d logw, π∗ω̂ = ω. (2.8)

In the original case where all parameters are 1, the reduced map (2.7) with c = d = e = 1
has period 3, because x2,n+3 = x2,n and x3,n+3/x1,n+3 = x3,n/x1,n for all n. Thus in that
case there are two functionally independent first integrals in the plane, which can be taken
as

K1 =
∏2

i=0(ϕ̂
∗)i(y) = (yw+w+1)(y+w+1)

yw
= −2 +

∑2
i=0(ϕ̂

∗)i(y),

K2 =
∑2

i=0(ϕ̂
∗)i(w) = yw3+yw2+y2w+w2+2w+1

yw(w+1)

(2.9)

(while the product
∏2

i=0(ϕ̂
∗)i(w) = 1, so does not give a nontrivial integral).

Next, we modify K1 and K2 by inserting constant coefficients in front of each of their
terms, which are all Laurent monomials in K1, while for K2 we can replace the term w+ 1
in the denominator by an arbitrary linear function of w. If we require that (at least) one of
these modified integrals should be preserved by the map ϕ̂, then this puts a finite number
of constraints on the coefficients and parameters c, d, e, which are necessary and sufficient
for the deformed symplectic map to be Liouville integrable. Thus we obtain the following
result.

Theorem 2.1. The condition
c = e

is necessary and sufficient for the symplectic map (2.7) to admit a deformation of the first
integral K1, given by

K1 =
(yw + w + d)(y + dw + c)

yw
, (2.10)

hence ϕ̂ is integrable whenever this condition holds. Requiring that a deformation of K2

should be preserved imposes the stronger conditions

c = d2 = e,

in which case both

K2 =
w3y + d(y + 1)w2 + (y2 + 2d2)w + d3

yw(w + d)
(2.11)

and K1 given by (2.10) with c = d2 are preserved, and all the orbits of ϕ̂ are periodic with
period 3.

Proof: Starting from a general sum of monomials

K1 = y + αw + β
w

y
+
γ

y
+
δ

w
+

ε

yw
+ const

(where we have fixed the scale by assuming that the first term has coefficient 1, and
there is the freedom to add an arbitrary constant), we apply the map (2.7) and require

9



that ϕ̂∗(K1) = K1. Comparing the rational functions one each side of the latter equation
imposes the requirement c = e and fixes α = β = d, γ = c+d2, δ = d, ε = cd; then choosing
to add the constant c+ 1 means that K1 can be factored as in (2.10). Applying the same
approach to K2 requires the additional constraint c = d2, restricting to the one-parameter
family of period 3 maps

ϕ̂ :

(
y
w

)
7→
( (

d(y + 1)w + d2
)
/y

d(w + d)/(yw)
) )

,

which have two independent first integrals given by (2.10) with c = d2 and (2.11).

Remark 2.2. When c = e, the integrable symplectic map

ϕ̂ :

(
y
w

)
7→
( (

d(y + 1)w + c
)
/y

(dw + c)/(yw)

)
, (2.12)

preserves the pencil of biquadratic curves defined by (2.10), which means that there is
a map of QRT type [5, 31] preserving the same pencil, given by the composition of the
horizontal and vertical switch on each curve in the pencil, namely

ψ̂ :

(
y
w

)
7→
(
ȳ
w̄

)
, ȳy =

(dw + c)(w + d)

w
, w̄w =

ȳ + c

ȳ + 1
. (2.13)

From general considerations about automorphisms of elliptic curves, since they each cor-
respond to translation by a point, these two maps should commute with one another, and
indeed it is straightforward to verify that

ψ̂ ◦ ϕ̂ = ϕ̂ ◦ ψ̂.

However, it appears that generically the two maps correspond to translation by two inde-
pendent points of infinite order, so (over Q, say) this should generate a family of curves
with Mordell-Weil group of rank at least 2. (As a special case, when c = d = 1 the
map ψ̂ has period 2 for any initial data, corresponding to translation by a 2-torsion point,
whereas the period 3 map ϕ̂ corresponds to addition of a 3-torsion point; so the points are
independent, albeit not of infinite order in this case.)

We now treat the singularity pattern of the iterates of (2.12), in order to obtain its
Laurentification in the sense of [17], i.e. a lift to a map with the Laurent property in a
space of higher dimension, in which the new variables can be regarded as tau functions.
Rather than a standard singularity confinement analysis, we study orbits defined over Q,
and consider a p-adic analogue of confinement, as in [24]. The possible singularity patterns
can then be obtained using the empirical approach introduced in [20], simply by inspecting
the prime factorization of a few terms along a particular orbit.

Thus we choose some particular values for the coefficients and initial data: taking c = 2,
d = 3 and (y0, w0) = (1, 1), we find the first few iterates are

(8, 5), (137
8
, 17
40

), (1607
1096

, 1048
2329

), (800200
220159

, 1068874
210517

), (3210496223
160740175

, 728705399
780395050

), (7129742296469
2344013756975

, 2735651842025
10626437852503

),
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so that the values of yn for n = 1, 2, 3, . . . factorize as

23, 137
23
, 1607
23·137 ,

23·52·4001
137·1607 ,

11·17·113·137·1109
52·1607·4001 , 13·19·43·1607·417727

52·11·17·113·1109·4001 , . . . ,

while the factorizations of the corresponding values of wn are

5, 17
23·5 ,

23·131
17·137 ,

2·47·83·137
131·1607 ,

467·971·1607
2·52·47·83·4001 ,

52·4001·27349681
11·17·113·467·971·1109 , . . . ,

and so on. For the primes p = 113, 137, 1607, 4001, the values of the p-adic norm |yn|p follow
the pattern 1, p−1, p, p, p−1, 1, with the corresponding values of |wn|p being 1, 1, p, p−1, 1, 1,
while for the primes p = 2 and 5 there are instances of the same patterns but with p→ p3

and p→ p2, respectively. (For some of these primes, the whole pattern is not visible above,
but it can easily be verified by computing the next few terms, which are omitted here.) In
wn there are also other primes that do not appear in yn, e.g. p = 17, 47, 83, 131, 467, 971,
and for these the pattern of |wn|p is 1, p−1, p, 1. This immediately suggests that yn, wn can
be written using two different tau functions σn, τn, as

π̃ : yn =
τn−2τn+1

τn−1τn
, wn =

σn+1τn−1
σnτn

, (2.14)

so that the first type of p-adic singularity corresponds to τn ≡ 0 mod p for some n, and
the second occurs when σn ≡ 0 mod p.

Our next goal is to show that the tau functions in (2.14) satisfy a system of bilinear
equations, namely

σn+2τn−2 = d σn+1τn−1 + c σnτn,
σnτn+2 = σn+2τn + d σn+1τn+1

(2.15)

(we expect that these could be viewed as a reduction of coupled discrete Hirota equations [4,
36]), and to prove that this system has the Laurent property. The first equation in (2.15) is
straightforward to obtain, as it arises directly from substituting the tau function expressions
(2.14) into the second component of (2.12), rewritten in the form of a recurrence, but the
second bilinear equation requires more work. If we look at the singularity pattern in the
original three-dimensional system (2.6) with e = c, then we see that

x1,n = ρn
σn+1

τn
, x3,n = ρn

σn
τn−1

,

with a new prefactor ρn appearing, while x2,n = yn is already accounted for. Substituting
in these formulae to rewrite the system (2.6) in terms of ρn, σn, τn yields

ρnρn+1 σn+1σn = τn+1τn−2 + τnτn−1,
τn+2τn−2 = ρnρn+1 d σ

2
n+1 + c τ 2n,

ρnρn+1 σn+2σn+1 = τn+2τn−1 + c τn+1τn.
(2.16)

For the above system, the initial values are ρ0, σ0, σ1, τ−2, τ−1, τ0, τ1, and in principle one
could use this to give a direct proof that the sequences (σn) and (τn) are Laurent polyno-
mials in the initial data, although the sequence ρn is not. However, note that the product

11



Figure 2: The initial quiver Q associated with the exchange matrix (2.18).

ρnρn+1 can be eliminated from any two of the equations in (2.16), so doing this for each
pair gives a set of three equations of degree 3, and then eliminating τn+2 from any two of
the latter results in the first equation in (2.15), while eliminating τn+2 instead produces
the relation

σnτn+2τn−2 = d σn+1(τn+1τn−2 + τnτn−1) + c σnτ
2
n.

Finally, the second relation in (2.15) follows by combining the first relation with the above
to eliminate τn−2.

Immediate evidence for the Laurent property can be seen by iterating the system (2.15)
for c = 2, d = 3 with all initial values τ−2 = τ−1 = τ0 = τ1 = σ0 = σ1 = 1, corresponding
to the initial values y0 = w0 = 1 in the orbit considered above. The first few terms are the
integers

(τn)n≥1 : 1, 8, 137, 1607, 100025, 23434279, 4436678467, 1750170148834,
(σn)n≥1 : 1, 5, 17, 131, 7802, 453457, 27349681, 18332191183,

and so on. It is also easy to verify directly that the first few terms τ2, σ1, etc. obtained by
iteration of (2.15) are Laurent polynomials in the initial data with coefficients belonging
to Z[c, d].

To make further progress, it is helpful to consider the initial data for (2.15) as a set of
cluster variables (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6) = (τ−2, τ−1, τ0, τ1, σ0, σ1), and calculate the pullback
of the symplectic form (2.8) by the map π̃ defined by the tau function expressions (2.14),
that is

ω̃ = π̃∗ω̂ =
∑
i<j

b∗ijd log x̃i ∧ d log x̃j, (2.17)
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(a) The quiver µ̃1(Q). (b) The quiver µ̃5µ̃1(Q).

Figure 3: The effect of two mutations on the quiver corresponding to (2.18).

where B∗ = (b∗ij) is the skew-symmetric matrix

B∗ =


0 1 −1 0 −1 1
−1 0 2 −1 1 −1
1 −2 0 1 1 −1
0 1 −1 0 −1 1
1 −1 −1 1 0 0
−1 1 1 −1 0 0

 . (2.18)

The quiver corresponding to this matrix is shown in Figure 2. It is not hard to see that,
when c = 1 = d, the bilinear equations (2.15) for n = 0 are generated by applying a
mutation at node 1, denoted by µ̃1 (to distinguish it from mutations in the original A3

quiver), followed by mutation µ̃5: see Figure 3. To prove the Laurent property for the case
of arbitrary coefficients, it is necessary to extend the quiver with two extra frozen nodes.

Theorem 2.3. The sequences of tau functions (σn) and (τn) for the integrable map (2.12)
consist of elements of the Laurent polynomial ring Z>0[c, d, τ

±1
−2 , τ

±1
−1 , τ

±1
0 , τ±11 , σ±10 , σ±11 ],

being generated by a sequence of mutations in a cluster algebra defined by the quiver in
Figure 2 with the addition of two frozen nodes.

Proof: In order to include the coefficients, we define an extended cluster x̃ = (x̃1, . . . , x̃8) =
(τ−2, . . . , τ1, σ0, σ1, c, d), where x̃7 = c and x̃8 = d are frozen variables, and take an extended
exchange matrix

B̃∗ =



0 1 −1 0 −1 1
−1 0 2 −1 1 −1
1 −2 0 1 1 −1
0 1 −1 0 −1 1
1 −1 −1 1 0 0
−1 1 1 −1 0 0
1 0 0 0 0 −1
−1 −1 1 1 0 0


, (2.19)
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where two more rows have been appended to (2.18). (The diagram of the quiver with the
additional arrows to/from the frozen nodes does not look quite so clear compared with
Figure 2, so it has been omitted.) Applying the mutation µ̃1 gives the exchange relation

σ2τ−2 = d σ1τ−1 + c σ0τ0,

and produces a new cluster (σ2, τ−1, τ0, τ1, σ0, σ1, c, d) and a new matrix µ̃1(B̃
∗) correspond-

ing to the quiver in Figure 3(a) with appropriate arrows to/from the frozen nodes 7 and
8. Next, by applying the mutation µ̃5, the exchange relation is

τ2σ0 = d σ1τ1 + σ2τ0,

with the new cluster being (σ2, τ−1, τ0, τ1, τ2, σ1, c, d), and the new exchange matrix µ̃5µ̃1(B̃
∗)

corresponding to the quiver in Figure 3(b) with suitable extra arrows added to take the
coefficients into account. Continuing in a similar way, we find a sequence of mutations to
successively generate σ3, τ3, σ4, τ4, and so on, such that overall after applying the composi-
tion of 12 mutations given by

µ̃463524136251 := µ̃4µ̃6µ̃3µ̃5µ̃2µ̃4µ̃1µ̃3µ̃6µ̃2µ̃5µ̃1 (2.20)

(in order from right to left), the quiver returns to its starting position; so we have

µ̃463524136251(B̃
∗) = B̃∗, µ̃463524136251(x̃) = (τ4, τ5, τ6, τ7, σ6, σ7, c, d),

with the index of each of the tau functions increased by 6. Hence by induction both
sequences (σn), (τn) are generated by repeatedly applying this composition of mutations,
and the Laurent property follows from the fact that the tau functions are all elements of
the cluster algebra, for which it is also known that the Laurent polynomials in the initial
data have positive integer coefficients [16, 27].

Remark 2.4. Preliminary calculations suggest that the iterates of the QRT map (2.13),
which commutes with ϕ̂, have a different singularity structure, corresponding to a tau
function substitution of the form

yn =
ηn

σnτn−1
, wn =

σn+1τn−1
σnτn

,

where ηn has weight two. It would be interesting to see whether this has a cluster algebra
interpretation.

2.3 A4 quiver with parameters

For the exchange matrix

B =


0 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 0

 ,
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corresponding to the quiver of type A4, once again we start from functions of the form
fk(M

+
k ,M

−
k ) = akM

+
k + bkM

−
k , with arbitrary coefficients such that akbk 6= 0. By rescaling

xj → λj xj with λj ∈ F∗, we can set four of the parameters to 1, so that it is sufficient to
consider a four-parameter family of mutations, given by

µ1 : (x1, x2, x3, x4) 7→ (x′1, x2, x3, x4), x′1x1 = b1 + a1x2,
µ2 : (x′1, x2, x3, x4) 7→ (x′1, x

′
2, x3, x4), x′2x2 = 1 + x′1x3,

µ3 : (x′1, x
′
2, x3, x4) 7→ (x′1, x

′
2, x
′
3, x4), x′3x3 = 1 + x′2x4,

µ4 : (x′1, x
′
2, x
′
3, x4) 7→ (x′1, x

′
2, x
′
3, x
′
4), x′4x4 = b4 + a4x

′
3.

(2.21)

Then, defining the action of ϕ = µ4µ3µ2µ1 on the cluster x = (x1, x2, x3, x4) as above,

ϕ(B,x) := µ4µ3µ2µ1(B,x) =
(
B,ϕ(x)

)
,

so the nondegenerate exchange matrix B remains invariant under this sequence of muta-
tions, and according to Theorem 1.3 the map

x 7→ ϕ(x)

is symplectic with respect to

ω =
1

x1x2
dx1 ∧ dx2 +

1

x2x3
dx2 ∧ dx3 +

1

x3x4
dx3 ∧ dx4 . (2.22)

Equivalently, by computing the inverse matrix P = B−1 = (pij), the map ϕ preserves the
nondegenerate Poisson bracket given by {xi, xj } = pij xixj, which has the explicit form

{x2, x1 } = x2x1, {x4, x1 } = x4x1, {x4, x3 } = x4x3, (2.23)

with all other brackets being zero.
In the original case of the undeformed quiver, corresponding to a1 = a4 = b1 = b4 = 1

in (2.21), the map ϕ is completely periodic with period 7, and admits four independent
integrals in dimension four. Here we focus on

I1 =
6∑
j=0

(ϕ∗)j(x1), I2 =
6∏
j=0

(ϕ∗)j(x1), (2.24)

since in the undeformed case these Poisson commute with respect to the bracket (2.23),
that is

{ I1, I2 } = 0. (2.25)

Being a sum/product of cluster variables in the (finite) A4 cluster algebra, both of these
integrals are Laurent polynomials in terms of the initial cluster x, so to deform them we
can just take arbitrary linear combinations of the Laurent monomials that appear.
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Theorem 2.5. The conditions
b1 = 1 = b4 (2.26)

on the parameters ai, bi (for i = 1, 4) in (2.21) are necessary and sufficient for the first
integrals defined by (2.24) in the periodic case to deform to a pair of rational conserved
quantities for the symplectic map ϕ = µ4µ3µ2µ1 that are in involution, i.e. they satisfy
(2.25) with respect to the Poisson bracket (2.23). Hence the resulting two-parameter family
of maps ϕ is Liouville integrable, with the two functionally independent commuting integrals

I1 =
1

x1x2x3x4

(
a1a4x1x2 + a1a4

2x1x2x3 + a1x1x2x3 + a1a4x1x2x3
2 + a1a4x1x4

+ a1a4x1x2
2x4 + a1a4x3x4 + a1a4x1

2x3x4 + a4x2x3x4 + a1
2a4x2x3x4 + a4x1

2x2x3x4

+ a1a4x2
2x3x4 + a1a4x1x3

2x4 + a1a4x1x2x4
2 + a1x1x2x3x4

2
)
,

I2 =
(a1 + x2)(x1 + x3) (a4 + x3) (x2 + x4) (x1x2 + a4x1x2x3 + x1x4 + x3x4 + a1x2x3x4)

x1x22x32x4
.

Proof: The calculation of the conditions on the coefficients of the monomials appearing in
the deformed versions of the integrals (2.24) is direct, and leads to the above forms of I1, I2
together with the requirement that b1 and b4 should both equal 1. An explicit calculation
of their Poisson bracket then shows that the deformed integrals are also in involution, as
required for Liouville integrability.

Table 1: Prime factors in an orbit of the integrable deformed A4 map with a1 = 2, a4 = 3.

n 0 1 2 3 4 5 6 7 8 9 10 11

x1 1 3 3 3 7 22

7
151
22·5

5·11·61
7·151

7·251
11·61

3·11·571
52·251

3·52·7·5653
11·19·23·571

3·19·23·54403
7·137·5653

x2 1 22 22 2 · 5 3
2

2·29
5·7

643
23·7

23·3·23
151

5233
52·61

2·61613
19·23·251

1031·5519
11·137·571

2·11·569·42043
52·353·5653

x3 1 5 13 2 13
5

32·13
72

2·71
11

11·17·89
52·151

79·3529
11·19·23·61

1431173
7·137·251

7·73·51539
52·353·571

13·17·43·237379
7·5653·7507

x4 1 24 5
2

2·7
5

2·11
7

23·52
7·11

7·19·23
23·52

26·7·137
19·23·151

2·52·151·353
7·11·61·137

2·11·61·7507
52·251·353

19·101·251·359
11·571·7507

28·11·571·109943
7·19·101·359·5653

To determine the singularity structure of the integrable map ϕ we consider a particular
rational orbit with parameters a1 = 2, a4 = 3 and all initial xj equal to 1 (see Table
1). Applying the empirical p-adic method from [20] once more, we observe that in the
numerators of x2 and x3 there are certain primes that do not appear elsewhere, e.g. there
are isolated values of n where |x2,n|p = p−1 for p = 29, 643, 5233, 61613, and similarly there
are isolated n where |x3,n|p = p−1 for p = 17, 71, 79, 89, 3529, 1431173. On the other hand,
for p = 61, 151, 251, 571 there are particular values of n where |x1,n|p = |x2,n|p = |x3,n|p =
|x4,n|p = p and also |x1,n−1|p = p−1, |x4,n+1|p = p−1. Also for p = 137, 353, 7507 there is a
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pattern where p first appears in the numerator of x4, then in its denominator at the next
step, then successively in the denominators of x3, x2, x1, before appearing in the numerator
of x1, then disappearing at the 7th step (some of the factorizations required to see this are
omitted from Table 1 for reasons of space); the product of primes 19 · 23 exhibits the same
pattern, although these primes also appear separately elsewhere. These four singularity
patterns in the iterates of ϕ suggest introducing four tau functions ηn, θn, σn, τn, where the
first two have weight two and the last two have weight one, such that

π̃ : x1,n =
σnτn+1

σn+1τn
, x2,n =

ηn
σn+2τn

, x3,n =
θn

σn+3τn
, x4,n =

σn+5τn−1
σn+4τn

, (2.27)

and direct substitution into the recurrence versions of (2.21) with b1 = 1 = b4, replacing
xj → xj,n, x′j → xj,n+1, gives the system

τn+2σn = τnσn+2 + a1 ηn,
ηn+1ηn = σn+1τn+2θn + σn+2σn+3τnτn+1,
θn+1θn = σn+5τn−1ηn+1 + σn+3σn+4τnτn+1,

σn+6τn−1 = σn+4τn+1 + a4 θn+1.

(2.28)

Initial evidence that this system has the Laurent property is provided by setting σ0 = · · · =
σ5 = η0 = θ0 = τ−1 = τ0 = τ1 = 1, corresponding to all initial xj,0 = 1, j = 1, 2, 3, 4 as in
Table 1, and iterating the above with a1 = 2, a4 = 3, which produces integer-valued tau
functions as in Table 2.

Table 2: Tau functions for the same orbit of the deformed A4 map as in Table 1.

n 0 1 2 3 4 5 6 7 8 9

τn+1 1 3 9 27 189 1728 97848 2608848 64408608 3516556032

ηn 1 4 12 90 648 37584 19999872 3399542784 1546939772928 1748502507552768

θn 1 5 39 288 8424 454896 212004864 74543597568 59937513504768 487379529497051136

σn+5 1 16 120 1008 9504 172800 24164352 1272692736 140540313600 15780710449152

If the initial data for (2.28) is regarded as a cluster, that is

(x̃1, . . . , x̃11) = (σ0, . . . , σ5, η0, θ0, τ−1, τ0, τ1),

then the pullback of the symplectic form (2.22) under the map π̃ defined by (2.27) is

ω̃ = π̃∗ω =
∑
i<j

b∗ij d log x̃i ∧ d log x̃j,
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Figure 4: The initial quiver associated with the extended exchange matrix (2.30).

where B∗ = (b∗ij) is the exchange matrix

B∗ =



0 0 −1 0 0 0 1 0 0 −1 0
0 1 0 0 0 −1 0 0 1 0

0 1 0 0 0 −1 0 0 1
0 1 −1 1 0 −1 0 0

0 0 0 1 0 −1 0
0 0 −1 0 1 0

0 1 0 0 −1
* 0 1 0 0

0 1 0
0 1

0


(2.29)

(since the matrix is skew-symmetric, for brevity we put an asterisk to represent the terms
below the diagonal). As in the A3 case, this is sufficient to generate a sequence of muta-
tions for the tau functions in the original undeformed system, but in order to include the
parameters a1, a4 it it necessary to add these as frozen variables.

Theorem 2.6. The sequences of tau functions (τn), (ηn), (θn), (σn) for the integrable map
ϕ = µ4µ3µ2µ1 defined by (2.21) with b1 = b4 = 1 consist of elements of the Laurent poly-
nomial ring Z>0[a1, a4, σ

±1
0 , σ±11 , σ±12 , σ±13 , σ±14 , σ±15 , η±10 , θ±10 , τ±1−1 , τ

±1
0 , τ±11 ], being generated

by a sequence of mutations in a cluster algebra defined by the exchange matrix (2.29) with
the addition of two frozen variables, corresponding to the quiver shown in Figure 4.

Proof: We take an extended cluster

x̃ = (x̃1, . . . , x̃13) = (σ0, . . . , σ5, η0, θ0, τ−1, τ0, τ1, a1, a4),
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with the coefficients a1, a4 corresponding to additional frozen nodes in the quiver associated
with B̃∗ = (b∗ij), the extended exchange matrix given by

B̃∗ =



0 0 −1 0 0 0 1 0 0 −1 0
0 0 1 0 0 0 −1 0 0 1 0
1 −1 0 1 0 0 0 −1 0 0 1
0 0 −1 0 1 −1 1 0 −1 0 0
0 0 0 −1 0 0 0 1 0 −1 0
0 0 0 1 0 0 0 −1 0 1 0
−1 1 0 −1 0 0 0 1 0 0 −1
0 0 1 0 −1 1 −1 0 1 0 0
0 0 0 1 0 0 0 −1 0 1 0
1 −1 0 0 1 −1 0 0 −1 0 1
0 0 −1 0 0 0 1 0 0 −1 0
−1 −1 0 0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0 −1 −1 0



(2.30)

(here we have shown the full matrix so that the exponents of all the exchange relations are
visible in each column). The initial quiver is shown in Figure 4. Mutating at node 1 gives
the exchange relation

µ̃1 : τ2σ0 = τ0σ2 + a1 η0,

producing the new cluster µ̃1(x̃) = (τ2, σ1, . . . , σ5, η0, θ0, τ−1, τ0, τ1, a1, a4), and subsequently
applying mutations µ̃7, µ̃8, µ̃9 successively generates exchange relations corresponding to
the other three equations in (2.28) for n = 0, with the result being the cluster µ̃9µ̃8µ̃7µ̃1(x̃) =
(τ2, σ1, . . . , σ5, η1, θ1, σ6, τ0, τ1, a1, a4). To generate each new instance of the four equations
in (2.28) with the index n increased by 1, it is necessary to apply a similar block of four
mutations. Let us define the following composition of four mutations by

µ̂ij := µ̃iµ̃8µ̃7µ̃j,

and to index mutations we use 10, 11 to distinguish nodes 10 and 11 from nodes with
single-digit labels. Then if we take a particular composition of 36 mutations given by 9 of
these blocks of four, namely

ˆ̂µ := µ̂611 µ̂510 µ̂49 µ̂36 µ̂25 µ̂14 µ̂113 µ̂102 µ̂91 = µ̃6871158710487938762875187411873108729871

(where in the second expression the notation from (2.20) has been reused), then the quiver
returns to its starting position; so we have

ˆ̂µ(B̃∗) = B̃∗, ˆ̂µ(x̃) = (σ9, σ10, σ11, σ12, σ13, σ14, η9, θ9, τ8, τ9, τ10, a1, a4),

with the index of each of the tau functions increased by 9. Thus by repeatedly applying
these 9 blocks of four mutations, all of the tau functions for the integrable map are produced
from clusters in the cluster algebra defined by (2.30).
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(a) The quiver Ã2,2. (b) The quiver Ã3,1.

Figure 5: Two orientations of the A
(1)
3 Dynkin diagram.

3 Reductions of the discrete sine-Gordon equation

In this section we consider two examples of four-dimensional maps that arise as reductions
of the lattice sine-Gordon equation introduced in [18], that is

a1(xn,mxn+1,m+1 − xn+1,mxn,m+1) + a2xn,mxn+1,mxn,m+1xn+1,m+1 = a3 , (3.1)

where aj, j = 1, 2, 3 are arbitrary parameters. Travelling waves of (3.1) are obtained by
imposing periodicity under shifts by N steps in one lattice direction together with M steps
in the other direction, so that

un+N,m+M = un,m =⇒ un,m = xk, k = Mn−Nm;

this is called the (N,M) reduction.
The two examples we consider below each correspond to particular orientations of the

affine A
(1)
3 Dynkin diagram, as in Figure 5 (where the notation Ãp,q means there are p

clockwise arrows and q anticlockwise arrows).

3.1 (2,2) periodic reduction of the lattice sine-Gordon equation

Let us consider the quiver with exchange matrix

B =


0 1 0 1
−1 0 −1 0
0 1 0 1
−1 0 −1 0

 ;

this is mutation equivalent to Ã2,2 as in Figure 5(a), which corresponds to the exchange
matrix µ3(B). Then for k = 1, 2, 3, 4 we take the function

gk(x) =
a1x+ a3
a2x+ a1

,
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for arbitrary parameters a1, a2, a3, so that the exchange relation (1.8) contains the function

fk(M
+
k ,M

−
k ) = M+

k gk

(
M−

k

M+
k

)
= M+

k

a1M
−
k + a3M

+
k

a2M
−
k + a1M

+
k

.

Next, we consider a sequence of mutations which leaves matrix B invariant, specifically

ϕ(B,x) := µ3µ1µ4µ2(B,x) = (B, x̃), where x̃ = (x̃1, x̃2, x̃3, x̃4)

and

x̃2 =
1

x2

(
a1x1x3 + a3
a2x1x3 + a1

)
, x̃4 =

1

x4

(
a1x1x3 + a3
a2x1x3 + a1

)
,

x̃1 =
1

x1

(
a1x̃2x̃4 + a3
a2x̃2x̃4 + a1

)
, x̃3 =

1

x3

(
a1x̃2x̃4 + a3
a2x̃2x̃4 + a1

)
.

So, according to Theorem 1.3, the map ϕ : x 7→ x̃ preserves the two form

ω =
1

x1x2
dx1 ∧ dx2 +

1

x1x4
dx1 ∧ dx4 −

1

x2x3
dx2 ∧ dx3 +

1

x3x4
dx3 ∧ dx4 .

In this case, the map ϕ corresponds to the (2, 2) periodic reduction of the lattice sine-
Gordon equation (3.1) (see Figure 6).

x1

x2

x3

x4

x1

x2

x
′
2 x

′
4

x3

x
′
2

x
′
3 x

′
1

Figure 6: The (2, 2) staircase periodic reduction of the quadrilateral equation (3.1)

The matrix B (and hence ω) is degenerate, of rank two. To obtain a symplectic map,
we take a pair of monomials corresponding to an integer basis for

imB =< (1, 0, 1, 0)T , (0, 1, 0, 1)T >,

namely
π : y1 = x1x3, y2 = x2x4.
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Under the projection π defined above, ω is the pullback of the symplectic form

ω̂ =
1

y1y2
dy1 ∧ dy2,

which is preserved by the induced map

ϕ̂ :

(
y1
y2

)
7→
(
ỹ1
ỹ2

)
, ỹ2 =

1

y2

(
a1y1 + a3
a2y1 + a1

)2

, ỹ1 =
1

y1

(
a1ỹ2 + a3
a2ỹ2 + a1

)2

. (3.2)

The above map has the first integral

K =
a22y

2
1y

2
2 + 2a1a2(y

2
1y2 + y1y

2
2) + a21(y

2
1 + y22) + 2a1a3(y1 + y2) + a23

y1y2
,

so it is Liouville integrable. In fact it is of QRT type: the level sets K = const are symmetric
biquadratic curves, and ϕ̂ = ιh ◦ ιv = (ι ◦ ιv)2 where the involutions ιh, ιv correspond to the
horizontal and vertical switches on each level set, and ι : y1 ↔ y2. For Laurentification of
symmetric QRT maps, see [17].

In four dimensions, the other degrees of freedom in the original map ϕ have essentially
trivial dynamics, since

x̃1
x̃3

=

(
x1
x3

)−1
,

x̃2
x̃4

=

(
x2
x4

)−1
.

3.2 (4,-1) periodic reduction of the lattice sine-Gordon equation

We consider the quiver with exchange matrix

B =


0 1 0 1
−1 0 1 0

0 −1 0 1
−1 0 −1 0

 .

The matrix B is non-degenerate and satisfies µ1(B) = ρ(B) for the cyclic permutation
ρ : (1, 2, 3, 4) 7→ (4, 1, 2, 3), so it defines a cluster mutation-periodic quiver with period 1
[13]. Following the example in subsection 3.1, we consider

g1(x) = x

(
a1 + a3x

a2 + a1x

)
.

Here, M+
1 = x2x4, M

−
1 = 1 and

f1(M
+
1 ,M

−
1 ) = M+

1 g1

(
M−

1

M+
1

)
=
a1x2x4 + a3
a2x2x4 + a1

.
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Hence, the appropriate analogue of Theorem 1.3 (see Remark 1.4) implies that the map
ϕ = ρ−1µ1 given by

ϕ : (x1, x2, x3, x4) 7→
(
x2, x3, x4,

1

x1

(a1x2x4 + a3
a2x2x4 + a1

))
(3.3)

preserves the symplectic form

ω =
1

x1x2
dx1 ∧ dx2 +

1

x1x4
dx1 ∧ dx4 +

1

x2x3
dx2 ∧ dx3 +

1

x3x4
dx3 ∧ dx4 .

The map (3.3) is associated with the (4,−1) periodic reduction of the lattice sine-Gordon
equation (3.1), and can be rewritten in recurrence form as

a1(xnxn+4 − xn+1xn+3) + a2xnxn+1xn+3xn+4 = a3 .

Closed-form expressions for integrals of periodic reductions of the sine-Gordon equation
were presented in [23] and their involutivity was proved in [35].

4 Concluding remarks

We have considered autonomous recurrences or maps obtained by including additional
constant parameters in sequences of cluster mutations that generate completely periodic
dynamics, and have shown that it is possible to preserve the presymplectic structure defined
by the exchange matrix, and also (by imposing suitable constraints on the parameters)
obtain Liouville integrable maps. Our starting point for showing Liouville integrability
has been the fact that the original periodic maps admit first integrals defined by cyclic
symmetric functions of variables along a period of the orbit. Only the examples of A2, A3

and A4 have been dealt with here, but it would be instructive to make a more systematic
study of such functions from the viewpoint of the associated Poisson algebra in order to
extend these results to cluster algebras defined by other finite type Dynkin diagrams. We
have also treated more general types of mutations, involving Möbius transformations, and
shown that for some particular affine type exchange matrices these lead to reductions of
the discrete sine-Gordon equation.

The parameters ak, bk appearing in our deformed mutations have been assumed con-
stant, but Theorem 1.3 applies equally well to non-autonomous recurrences/maps. In
particular, taking

ak =
yk

1 + yk
, bk =

1

1 + yk

in (2.1) leads to the expression for a mutation µk in a cluster algebra with coefficients [11],
which themselves mutate according to

y′j =

y
−1
k if j = k,

yj

(
1 + y

−sgn(bjk)
k

)−bjk
otherwise.
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The dynamics of the coefficients generates the associated Y-system [26]. In [21], it is
shown that non-autonomous dynamics also arises from autonomous Y-systems in the case
where the exchange matrix is degenerate: one of the simplest examples is provided by the
Y-system

yn+7yn =
(1 + yn+6)(1 + yn+1)

(1 + y−1n+4)(1 + y−1n+3)

corresponding to the Somos-7 recurrence (2.4), solved in terms of the q-Painlevé V equation

xn+2xn = xn+1 + αn q
n, αn+6 = αn, (4.1)

which is a non-autonomous version of the Lyness recurrence. The fact that the period of
αn is 6 is important, since if q = 1 and αn is periodic with a period that is not a divisor of
6, then (4.1) appears to exhibit chaotic dynamics [2].

As another example based on the A2 exchange matrix, taking g1(x) = ax+b
cx+d

and letting
the coefficients a, b, c, d depend on the index n gives the sequence of symplectic maps

ϕn(x, y) =

(
y,

any + bn
x(cny + dn)

)
that corresponds to the non-autonomous nonlinear recurrence

xn+2 =
anxn+1 + bn

xn(cnxn+1 + dn)
.

Invariants of this recurrence when the coefficients are periodic were presented in [8] and
have also been studied in the framework of QRT (and non-QRT) maps with periodic
coefficients [32, 33].
Acknowledgments: This research was supported by Fellowship EP/M004333/1 from the
Engineering & Physical Sciences Research Council, UK, and grant IEC\R3\193024 from
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