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Summary

Background

Anticholinergic medications have been associated with accelerated memory and language
deterioration with increased risk of Mild Cognitive Impairment (MCI), particularly in older people.
Accurate quantification of total anticholinergic burden (ACB) is a critical first step to prevent cognitive
decline in the geriatric population. Whilst there are at least 16 different anticholinergic burden scales
available, inconsistency exists between these scales due to the methods employed in their development
and the different interests and expertise of developers with regard to outcomes. We aimed to develop
a universal ACB scoring system using machine learning techniques for a fully automated model
accessible through a web-based portal.

Methods

A novel machine learning system was developed using textual samples from published sources
describing medications scored on previously established anticholinergic burden scales which were
well validated against several health outcomes. Our semi-supervised approach ensures that maximal
information from these scales is utilized. The algorithm provides the ability to rapidly classify existing
medications and maintain surveillance of new emerging medications. In order to validate the approach,
a chemical structure based analysis was performed to explore homogeneity between innate chemical
structure and the new ACB scoring system.

Findings

Usage of the newly created International Anticholinergic Burden Scale (IACB) significantly
improves the ACB scale accuracy compared to previous scales (AUC 0 · 91). An analysis of chemical
structure found a stronger correlation between the IACB and the underlying chemical structure of
medications when compared to 6 currently used scoring systems. To increase accessibility to this newly
created scale, a web portal was developed to provide clinicians and patients with accurate information
on their current total anticholinergic burden.
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Interpretation

Usage of Machine Learning can potentially build upon previous attempts at anticholinergic
burden quantification, overcoming language barriers and aligning closely with innate medication
structure allowing for a more accurate, up-to-date scoring system.

Funding

UEA impact fund 192008.

Introduction

The quantification of the anticholinergic activity of medications is of increasing interest due
to recent understanding that anticholinergic activity significantly contributes to the harms of
polypharmacy in the ageing population.1, 2 Polypharmacy in older adults has been associated
with an increased risk of falls and co-morbidities, and this association is stronger as the number
of anticholinergic medications consumed increases.3 In more recent years, there have been
growing concerns over anticholinergic medications exacerbating mental decline through cognitive
impairment,2, 4 where anticholinergics have been associated with accelerated memory and language
deficiencies as well as increased risk of Mild Cognitive Impairment (MCI), particularly in individuals
with genetic risk factors.5 Due to the growing number of ageing populations across the world, it is
expected that there will be a significant rise in the incidence and prevalence of cognitive impairment
over time, resulting in increased medical, social and financial costs. Current dementia treatments
are primarily focused on prevention with a limited group of medications available to delay the
development of symptoms. Anticholinergic use has been identified as a potentially modifiable
risk factor to aid this prevention5. Subsequently, numerous anticholinergic drugs are known to
be inappropriate medications for older adults6. Despite this, anticholinergic use is sharply increasing;
in England alone, potent anticholinergic usage in older adults has nearly doubled from 5·7% in 1990-93
to 9·9% in 2008-11.7 Furthermore, the usage of any anticholinergic medication (medications scoring
1, 2 or 3 on the Anticholinergic Cognitive Burden scale)8 increased from 49·6% to 64·3% in the same
period.7

Currently, at least 16 anticholinergic burden related scales have been developed.9 A number of
these scales are based on traditional methods, such as expert consensus, literature reviews and serum
anticholinergic activity (SSA) - a radioreceptor assay used to quantify anticholinergic burden by the
cumulative effect of medications and their metabolites. Since the production of these scales, the flaws of
expert consensus have been raised, the limitations of literature reviews undertaken, and the use of SAA
has since been rendered as having questionable use in relation to polypharmacy and anticholinergic
burden due to mixed results over its efficacy in terms of adverse outcomes.10 The number of drugs
used in these scales varies from 27-520, and scales are required to be regularly updated or face the risk
of becoming out-of-date with reduced utility.9 Furthermore, homogeneity between the scales remains
inconsistent and leads to uncertainty for clinicians when deciding which scale is the most appropriate
to use in practice.11, 9

A separate systematic review and meta-analysis conducted by Graves-Morris et al. 11 found it
was not possible to confirm any superior anticholinergic burden measure due to a high risk of bias in
the scales examined.11 This indicates a level of turbidity in the literature concerning optimal selection
and reliability of anticholinergic burden scales.

The use of machine learning has been suggested to improve drug safety methods having been
used in several studies examining adverse drug reactions.12, 13 Machine learning has long been used in
extracting medication information from text. One model was used to extract useful information such
as name, dose and indication of medications from patient’s electronic health records.14, 15 Advancing
this further, another model has been able to identify adverse effects of medications and its relations to
other drug attributes such as dose and route.16 The success and the applicability of machine learning
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in patients’ health records to carry out a specific task from unstructured narrative text validates its
use within healthcare.17 Consequently, we propose a data-driven approach to anticholinergic burden
quantification. Using a machine learning algorithm trained on biomedical text, we are able to quantify
the anticholinergic burden of medications based on their descriptive textual features found in medical
literature. To our knowledge, no other scoring system using machine learning on textual documents
for anticholinergic burden quantification currently exists.

We aimed to develop a new anticholinergic burden scale, the International Anticholinergic
Cognitive Burden (IACB) scale, using machine learning to combine previous information from seven
of the most effective anticholinergic burden scales previously identified by Lozano-Ortega et al. 9 using
textual data from 3 medication information sources. This new scale aims to succinctly inform clinicians
of the anticholinergic burden of medications and assist in more accurate prescription. We also aimed
to develop a web-based system that regularly allows for automatic classification of new medications
upon their release to the market, and will be easily accessible to clinicians at time of prescription. Our
further aim was to validate the system by examining the correlation between underlying chemical
structure and the newly created IACB.

Research in context

Evidence before this study

We established the current state of anticholinergic burden quantification by first exploring
published literature via PubMed and Google Scholar up to August 2020, with the search terms
"Anticholinergic", "Anticholinergic burden" and "Natural Language Processing". We found a
number of reviews exploring the topic and used them as the foundation for the current state of
the field. Next, we investigated the application of machine-learning methods to anticholinergic
medication descriptions and found that it is yet to be performed.

Added value of this study

This study serves as the first usage of machine-learning methods for an end-to-end system of
anticholinergic burden quantification. The IACB normalizes previously conflicting anticholinergic
scales into a homogeneous single point of reference whilst improving micro-averaged AUROC by
0·13. An unbiased analysis of the chemical structure of the included medications also found that the
IACB aligns closer to the natural clustering. Furthermore, the creation of the online web portal will
increase the ease of access to not only the IACB, but information about anticholinergics as a whole.

Implications of all the available evidence

The results of our study suggest that that there are avenues for improvement over the currently
available anticholinergic burden scale. The IACB also strongly indicates that a number of previously
low scoring medications should be subject to re-review due to their potentially misclassified
anticholinergic potency.
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Methods

Figure 1. The International Anticholinergic Burden scale is based on a robust machine learning
algorithm, allowing for inclusion of further processing stages, external data, and further validation
stages to be implemented.

Dataset

The initial list of medications included in this study are those collated by Lozano-Ortega et al. 9 .
In their review, they identified 6 scales from the 16 reviewed as being suitable for database analysis. In
addition to the 6 identified in their review, we also included the Clinician-Rated Anticholinergic Scale
(CrAS), which met all of our review requirements, however was not included in their final analysis.

Scale Author

Anticholinergic Cognitive Burden Scale (ACB) Boustani et al. 8

Anticholinergic Risk Scale (ARS) Rudolph et al. 18

Anticholinergic Drug Scale (ADS) Carnahan et al. 19

Anticholinergic Burden Classification (ABC) Ancelin et al. 20

Anticholinergic Activity Scale (AAS) Ehrt et al. 21

Anticholinergic Load Scale (ALS) Sittironnarit et al. 22

Clinician-Rated Anticholinergic Scale (CrAS) Han et al. 23

Table 1. All 7 included scales in this investigation, from a wide variety of geographic locations and
patient populations in order to ensure that the IACB is applicable in a wide variety of clinical settings.
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In order to determine the general consensus about each medication, the scores were accumulated
and averaged (e.g Atropine scored 3, 3, 3, -, -, 3, 3 in ACB, ARS, ADS, ABC, AAS, ALS, CrAS (-
signifying Atropine not being present in the respective scale) respectively and thus a total score
of 15 with an average score of |15 / 5| = 3). The Anticholinergic Drug Scale19 includes different
application methods, such as ophthalmic, topical or inhaled preparations. Due to the textual references
being composed of information at a general medication level and containing descriptions of effects
for a number of different application methods, we omitted different application methods from the
dataset. Upon the removal of different application methods, 654 medications remained, with a score
distribution shown in Figure 2.

Figure 2. Number of medications in each score category, with legend colourized to differentiate score.
The corresponding scales are detailed in Table 1.

As evidenced by Figure 2, there is a heavy imbalance in the dataset towards medications scored
at 0 and 1, with the imbalance originating primarily from the Anticholinergic Drug Scale (ADS)19 and
the Anticholinergic Load Scale (ALS).22 In order to alleviate the imbalance, a subset of medications
were selected to include in the final review. To obtain this subset, firstly we grouped the medications
from score 3 and 4 from the Anticholinergic Activity Scale (AAS) such that all 7 scales spanned the
same range. Next, we selected all medications from scores 2 (25) and 3 (37) and a subset of 80 for both
scores 0 and 1. The selection process and filtering is detailed in Figure 3.

Data Source Programmatic Access Author

Drugbank.ca YES Wishart et al. 24

PubChem YES Kim et al. 25

Wikipedia YES

Table 2. Collation of the different data sources used in the investigation.

To maximise accessibility to the data and ensure our findings are reproducible, we obtained data
from publicly available sources. We collected textual descriptions from the data sources shown in
Table 2. By selecting from a number of different sources, we ensure that the data is varied and whilst
being invariant to factors such as location and data collection protocols.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3777231
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Figure 3. Flowchart of the data collection process.

Textual Processing

Once the textual sources had been collected and the subset selected, we employed the usage of an
industry standard biomedical text preprocessor, SciSpacy. SciSpacy is a machine learning based text
preprocessor designed for processing biomedical, scientific or clinical text. This was particularly suited
to our corpus and was selected as the most appropriate technology. A detailed description of SciSpacy
has been previously documented and should be referred to for more detail.26 The large variant of
the preprocessor was chosen in order to maximise the available vocabulary, which is diverse in our
corpus due to the variety of medications included. Upon obtaining the processed text from each of
the data sources, the text was collated into a single descriptive document for each of the medications
and proceeded to the vectorization stage. This study employs the usage of term frequency–inverse
document frequency vectorization,27 a process that allows for a numerical representation of each
medications’ compiled document to be obtained.
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Utilization of existing information

Previous scales included in this study provide us with interesting insights into the general
consensus on a medications anticholinergic effects in the literature. In order to make maximal use
of the available information, we introduce the concept of "Consensus Medications", medications
which have a unanimous score consensus across 2 or more of the included scoring systems. We treat
these "Consensus Medications" or CMs as labelled samples in this investigation due to the agreement
on the medications anticholinergic effect despite different practitioners, patient populations and
methodologies. To utilize these CMs, we make use of methods suited to a semi-supervised approach,
allowing the CMs to act as labelled samples, and treating medications for which there are discrepancies
in scoring between scales as unlabelled samples. For dimensionality reduction to allow for reasonable
clustering computation time, we employed Semi-Supervised Linear Discriminant Analysis.28 For
clustering, we employed COP-KMeans,29 a clustering algorithm that allows for the specification of
data points that must be clustered together and data points that cannot be clustered together.

Cluster Validity Analysis

Whilst 6/7 of the scales included in this study use a 0-3 (4 point) scaling approach, in order to
evaluate the optimal scale range for the data collected, a cluster validity analysis was performed.
In addition, one of the scales, the Anticholinergic Activity Scale,21 used a 0-4 point (5 point) scale,
meaning that there is some confusion in the current literature over the optimal approach. To determine
the optimal number of clusters, we performed a cluster validity analysis using Cluster Validity Indices
(CVIs). In their extensive review of available CVIs, Arbelaitz et al. 30 found that Silhouette Coefficient,31

Normalized Davies-Bouldin32 and the Calinski-Harabasz Index33 consistently outperformed the other
CVIs tested. Due to the lack of widely reviewed implementations of Normalized Davies-Bouldin, we
opted for the usage of the standard Davies-Bouldin Index. We ran the clustering algorithm for each
number of clusters and compared the CVIs in order to choose the optimal number of clusters.

Chemical Validation

To obtain quantitative metrics of the scales performance, a chemical structure analysis was
performed to determine the correlation between the scoring systems and the innate chemical structure
of the medications. To achieve this, molecular structures openly available from Drugbank24 were used
to compute Extended Connectivity Fingerprints (Morgan Fingerprints)34 for each of the molecules,
with the connectivity fingerprints enabling medication to medication comparison. We repeated this for
each of the individual scales so as to perform a pairwise comparison, using the overlapping subset of
medications available in both the IACB and the scale in question. We omitted the ABC20 as it did not
score enough medications to construct the desired clusters. Next, we computed pairwise Dice Similarity
coefficients in order to quantify how similar 2 different molecules are. This then allowed for us to
cluster together medications based on their similarity coefficients, using Hierarchical Ward Clustering,
an agglomerative clustering technique allowing groups of samples to collect together with each
iteration. The core hypothesis behind this validation method being that drugs with a similar structure
should exhibit similar central and peripheral anticholinergic effects due to medications of a similar
structure having similar affinity to the muscarinic receptors. We clustered the medications across a
range of clustering values. This is due to the many different medication families (e.g antipsychotics,
anticonvulsants, bladder muscarinics) capable of causing similar anticholinergic effects within each
scoring category. We selected a range of values from 10 to 25 in an attempt to capture these families.
Once the hierarchical clustering had been performed, we computed the mean score value for each of
the clusters. Using this mean, we computed the mean absolute error between the scoring system in
question and the mean score value, with a better scoring system demonstrating minimal variation
between it’s assigned labels and the mean score. In order to have a direct comparison, we scaled the
IACB’s 5 point scale into the range of the scale that it was being compared against. Analysing the
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correlation between the scores assigned and the mean score allows for the identification of the labelling
system more closely correlated with underlying chemical structure.

Role of the funding source

UEA Impact fund had no role in the study design, data collection, analysis or interpretation. All
authors had full access to all the data used in the study and had final responsibility for the decision to
submit for publication.

Results

Classification

In order to compare the different labelling systems performance, we used trained a linear
model with stochastic gradient descent and performed 10-fold cross validation to obtain a strong
understanding of the classifiers performance. We then computed the AUROC for all classes when the
classifier is trained using the IACB or the average of 7 scales as the ground truth. 95% Confidence
intervals for the AUC were computed with the DeLong method. Figure 4 clearly demonstrates the
improvement in classification result using the IACB scale when compared to the average of the 7 scales.
Training a classifier also provides the advantage of being able to classify previously unseen medications
without the need to perform clustering. More information regarding classifier hyperparameters and
tuning is available in the Supplementary Material.

A) Receiver operator characteristic curve IACB B) Receiver operator characteristic curve AVG7

Figure 4. Receiver operating characteristic curves
Figure 4A) Receiver operating characteristic curves for the 5 point (0-4) classification averaged across
10 fold stratified cross validation using the IACB as the ground truth. Figure 4B) Receiver operating
characteristic curves for the 4 point (0-3) classification averaged across 10 fold stratified cross validation
using the AVG7 as the ground truth. 95% CI shown in brackets. AUC = area under the curve.

Figure 4B) demonstrates that the average of 7 scales provides good classification performance
for medications of high anticholinergic potency, but struggles to classify scores 1 and 2. In contrast,
the IACB performs well across 2, 3 and 4. The IACB scale highlighted outliers which scored high,
potentially very strong anticholinergic medications, previously assigned lower ACB scores in the 7
prior scales. Particular candidates of interest are Haloperidol and Prochlorperazine, being assigned
high scores despite low scores in other scales. These candidates should be subject to re-review of their
anticholinergic potency.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3777231
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Chemical Validation

The IACB labelling system matches closer to the innate chemical structure of the medications
despite having no prior knowledge of chemical structure. Interestingly, members in the same cluster
often belong to the same medication groups (i.e. antidepressants or antipsychotics) and tend to
have the same score assigned independently by the IACB. This is particularly true for clusters
which contained drugs with IACB scores 3 and 4, thus showing agreement between the Extended
Connectivity Fingerprints and textual methods. Our analysis found that medications assigned a
higher IACB score typically featured a benzene ring, or secondary/tertiary amine groups. Our
observations also show that Nitrogen substitutions within benzene rings and the addition of “aldehyde
oxygen= double bonded oxygen” to the benzene ring can reduce the cholinergic effect. Tri-cyclic
structure of some medications such as antidepressants (amitriptyline, imipramine) and antipsychotics
(doxepin, chlorpromazine) and di-cyclic structure of antihistamines (chlorpheniramine, doxylamine)
and bladder antimuscarinics (tolterodine, oxybutynin) were shown to be related to these medications’
high anticholinergic potency and could be the subject of further investigation. In contrast, medications
with longer chains show less anticholinergic potency; such as cimetidine. Unlike human observation
of chemical structures of molecules, Extended Connectivity Fingerprints analyses the relationship each
atom has to a neighbouring atom, assigning unique codes to a structure. In this manner, the algorithm
is more systematic and precise.

As drugs with similar chemical structure should exhibit similar central and peripheral
anticholinergic effects, we should expect that when medications are clustered together based on
chemical similarity, that there is minimal variation in scores in the same cluster. Mean absolute error
values for each pairwise normalized comparison are demonstrated in Figure 5.

Figure 5. Pairwise comparison of mean absolute error averaged across 10-25 clusters between the IACB
and 6 other scales. Mean absolute error is bounded between 0·0 and ∞, with lower being better. The
groups having significant difference between them are denoted by * (* refers to p ≤ 0.05, ** refers to
p ≤ 0.005, and *** refers to p ≤ 0.0005).

Discussion

Our new system proposes a novel and agile approach in scoring anticholinergic burden of
medications. Using textual information, we were able to rapidly assign ACB scores for previously
unseen medications providing significant improvement over current widespread scoring systems. The
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use of machine learning techniques ensures our database is constantly evolving and new medications
can be scored with ease via a web-based scoring system, allowing for universal access. Newly licensed
medications with adequate textual descriptions can be quickly added after release and be scored using
our approach, provided they have a minimum of 2500 words of description for the system to assess a
drug accurately. One suggested approach to deal with new samples with sparse medical literature is
to perform chemical validation through comparison of its chemical structure to the existing clustered
medications and assigned a "prospective chemical score", similar to the score of the members of the
cluster it belongs to.

Our study improves upon previous work in several ways. Firstly, we remove the implications
of variations in expert opinion from the data and provide qualitative and quantitative metrics for
determining an accurate picture of a medications anticholinergic impact. Secondly, we draw data
from all currently available high-quality anticholinergic scales and normalize their scoring, factoring
both their provided information and the textual information. The IACB also provides a spotlight
on certain medications with which the system strongly disagrees with previous consensus. There
have been numerous attempts at accurately quantifying total anticholinergic burden, with each
using different metrics in order to measure the anticholinergic effects of medications. There are
at least 16 anticholinergic burden scales reported in the literature.9 The Anticholinergic Burden
Classification (ABC) is the oldest of the scales we have used in our comparison and included 372
elderly participants.20 Using a combination of both serum radioreceptor assay and average estimated
effects of drugs, they found continuous users of anticholinergic medications to be at a significantly
higher risk of developing mild cognitive impairment.20 The Anticholinergic Cognitive Burden Scale
(ACB) was a literature review which showed acute and possibly chronic cognitive impairment in the
elderly population who take anticholinergics.8 This three-tiered scoring system considered serum
radioreceptor anticholinergic assay, drug affinity to muscarinic receptors using in vitro measurements
and an expert list of medications.8 ACB remains the most validated tool based on citation analysis.35

The Anticholinergic Risk Scale (ARS) utilised medical records of 117 elderly patients and showed a
statistically significant association between ARS and adverse effects of anticholinergic medications.18

They also developed a three-tiered scoring system based on expert opinion and information available
in the literature.18 The Clinician-Rated Anticholinergic Scale (CrAS) was another three-tiered scoring
system based on expert opinion which was shown to be statistically significantly associated with
short-term memory and executive function.23 The Anticholinergic Drug Scale (ADS) carried out
multiple linear regressions on serum anticholinergic activity (SAA) and a four-tiered scale whilst also
adjusting for the dose.19 The Anticholinergic Activity Scale (AAS) is a five-tiered scale combining both
in vivo radioreceptor assay and available information in the literature.21 They found a statistically
significant association between a decline in cognition and anticholinergic use in a group of 235 elderly
Parkinson’s disease patients.21 The Anticholinergic Load Scale (ALS) is another scale using both SAA
and expert opinion which showed a statistically significant association with mental function decline.22.
Each individual scale has been developed using a different approach; these are labour intensive and
time consuming, requiring expert opinion and manual search of the literature. This static approach
means that scales must be updated or risk becoming out-dated as more literature and medications
become available.

The algorithm produces 20 outliers (medications with a score difference greater than +/- 1 on any
previous scale) from the 222 medications scored. Of particular interest of these outliers are the 2nd
generation antihistamines (Levocetirizine, Cetirizine, Desloratadine, Loratadine and Fexofenadine).
All 5 of these medications have been classified as scoring 4 on the IACB by the algorithm, despite
previously scoring of a maximum of 2 (on 0-3 scales). Whilst this may be too severe, evidence has shown
that second-generation antihistamines can affect movement control and cause other anticholinergic
side effects36. We believe that with more diverse datasets and enhanced document vectorization
techniques our semi-supervised approach could further improve.
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There are a number of avenues that could be utilized in order to further enhance the performance
and validity of the IACB. Due to the decreases in cost for high performance matrix computation, the
usage of deep learning in natural language has enabled impressive capabilities in domain specific
lexical understanding. However, this approach is currently unsuited for this task due to the extremely
restricted dataset size, of which deep learning methods particularly struggle with. It is due to this
limited dataset size that we also employed cross validation, in contrast to an out of sample holdout
dataset which would be preferred if not for the data sparsity. There are a number of factors that we
were unable to factor into the algorithm that may contribute to improved patient outcomes, particularly
the inclusion of different scores for the same medications based on dosage. Factoring average daily
dose or cumulative dose would enable more accurate quantification at prescription time. Another
further avenue worthy of pursuit is the inclusion of subject specific factors such as age, gender and
other known covariates. This would allow for the construction of a "personalized" anticholinergic
burden calculation leading to improved patient outcomes.

In summary, our results suggest that machine learning based systems could be developed to
more accurately quantify anticholinergic burden and improve patient outcomes. Further work should
be done to accumulate more high-quality data in order to further improve scoring. Inclusion of
factors such as dosage and utilization of information about medication combinations could lead to a
personalized anticholinergic burden calculation.

Author Contributions: CIF & SS designed the algorithm. All authors were involved in writing and revising the
work to ensure important intellectual content, or in the final approval of the version submitted for publication.

Funding: UEA impact fund 192008.

Conflicts of Interest: These author declare no conflict of interest.

Data Sharing: All data used in this investigation is part of the public domain and the protocols provided in this
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Figure 1: The International Anticholinergic Burden scale is based on a robust machine learning algorithm, allow-
ing for inclusion of further processing stages, external data, and further validation stages to be implemented.

Figure 2: Number of medications in each score category, with legend colourized to differentiate score.
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Figure 3: Flowchart of the data collection
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A) Receiver operator characteristic curve IACB B) Receiver operator characteristic curve AVG7

Figure 4: Receiver operating characteristic curves
Figure 4A) Receiver operating characteristic curves for the 5 point (0-4) classification averaged across 10 fold
stratified cross validation using the IACB as the ground truth. Figure 4B) Receiver operating characteristic
curves for the 4 point (0-3) classification averaged across 10 fold stratified cross validation using the AVG7 as
the ground truth. 95% CI shown in brackets. AUC = area under the curve.

Figure 5: Pairwise comparison of mean absolute error averaged across 10-25 clusters between the IACB and 6
other scales. Mean absolute error is bounded between 0·0 and ∞, with lower being better. The groups having
significant difference between them are denoted by * (* refers to p ≤ 0.05, ** refers to p ≤ 0.005, and *** refers to
p ≤ 0.0005).

3

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3777231

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Article

A novel machine learning approach to anticholinergic
burden quantification - Supplementary

Christopher Fleetwood 1, Mahan Salehi1, Rachel Ward 1, Hulkar Mamayusupova1, Agostina
Secchi 2, Simon Coulton 3, Ian D. Maidment4, Phyo K Myint 5, Chris Fox 1, Saber Sami 1

1 Norwich Medical School, University of East Anglia, UK;
2 Kent and Medway NHS & Social Care Partners;
3 Centre for Health Services Studies, University of Kent, Canterbury, UK;
4 School of Life and Health Sciences, Aston University, Birmingham, UK;
5 Ageing Clinical & Experimental Research Team, Institute of Applied Health Sciences, University of

Aberdeen, Aberdeen, UK;
* Correspondence: s.sami@uea.ac.uk;

Keywords: Anticholinergic; Polypharmacy; Aging;

Additional dataset information

The dataset consists of 3 different independent data sources. All 3 data sources were kept up to
date up to the 24th January 2021. In order to ensure that the algorithm generalizes to data that could be
provided by patients and clinicians in the future, we endeavoured to gather information from different
types of sources. The 3 selected are detailed in Table 1.

Data Source Programmatic Access Author

Drugbank.ca YES Wishart et al. 1

PubChem YES Kim et al. 2

Wikipedia YES

Table 1. Collation of the different data sources used in the investigation.

For all data sources, programmatic access is provided. DrugBank provides a full XML
representation of their database and this was parsed using a custom XML parser in Python. The
following fields were extracted from each medications entry to make up the Drugbank medication
document:

• Description
• Indication
• Pharmacodynamics
• Mechanism of Action

PubChem provides programmatic access via 2 REST APIs. Due to our requirements for textual
information, we opted to use the PUG VIEW API in order to extract the required data. To interface
with the API using Python we used a convenient wrapper, PubChemPy to make requests. From the
API we extracted only the most relevant information with the fields being listed below.

• Summary
• Livertox Summary
• Pharmacology
• FDA Pharmacological Classification
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Wikipedia provides programmatic access via the WikiMedia API. To ensure the data contained
only relevant information, we removed the following sections across all queried pages:

• History
• Society and culture
• Names
• Crime
• See also
• References
• External links
• Further reading
• Brand names
• Generic names
• Synthesis
• Trade names
• Regulatory status

Additional Algorithm Details

Each text source was processed through SciSpacy individually and then concatenated to form a
single document for each medication. Once the text was processed, we removed any samples with
less than 2500 words in order to provide the algorithm sufficient data to create a representative vector.
Next we used TFIDF vectorization in order to vectorize these newly created documents. We employed
the use of SciKit Learns TFIDFVectorizer with the following hyperparameters:

• Minimum Document Frequency: 7
• Maximum Document Frequency: 0.7
• Ngram Range: (1,2)
• SMARTIRS: LTC

Classification

In order to determine the optimal classifier, we tested 5 commonly used classifiers on both
labelling sets with the following hyperparameters:

• Logistic Regression: 10 C values between 1e−4 and 1e4 evaluated via Grid Search
• Stochastic Gradient Descent (SGD) Classifier: Normalized 0-1, Huber loss, Iterations: 10000
• Naïve Bayes: 8 α values between 1e−4 and 1e3

• Complement Naïve Bayes: 8 α values between 1e−4 and 1e3

• Ridge Classifier: 3 α values between 1e−1 and 1e1

Dimensionality Reduction

In very high-dimensional spaces, Euclidean distances become inflated and therefore
computationally intensive to compute. In order to reduce the number of dimensions of the data,
we opted to use Semi Supervised Linear Discriminant Analysis (SDA).3 showed that SDA outperforms
Principal Component Analysis, another popular method of dimensionality reduction. This method
allowed us to utilize the information provided by the prior scoring systems, by treating medications
with unanimous score assignment as labelled samples whilst still making use of the structural
information provided by the unlabelled samples. We used SDA with the following hyperparameters:

• NeighborMode = KNN
• k = 2
• WeightMode = Binary
• ReguBeta = 0.1
• ReguAlpha = 0.1

These hyperparameters were chosen as3 found they achieved maximal performance in their
investigations.
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Metrics Diagnosis
Classifier

LR SGD Ridge NB CNB

Accuracy AVG. 7 0.64 0.64 0.62 0.60 0.62
IACB 0.87 0.86 0.87 0.84 0.79

p-value <0.0001 0.0005 0.0001 0.0010 0.0008

Sensitivity
AVG. 7 0.54 0.55 0.53 0.51 0.53
IACB 0.90 0.88 0.90 0.85 0.81

p-value 0.0002 0.0004 0.0005 0.0091 0.0004

Specificity
AVG. 7 0.87 0.87 0.87 0.86 0.87
IACB 0.96 0.96 0.96 0.96 0.95

p-value <0.0001 0.0006 <0.0001 0.0003 0.0009

F1-score
AVG. 7 0.54 0.54 0.52 0.51 0.52
IACB 0.88 0.86 0.87 0.81 0.75

p-value <0.0001 <0.0001 <0.0001 0.0043 0.0235

Table 2. Comparing the classification results for both the average of the 7 previous scales and the IACB.

Selecting n Clusters

When using K-Means or any of it’s derivatives, typically the hardest part is the selection of the
optimal value of n for the clusters. In order to do this, we used a number of different cluster validity
indices as detailed in the main paper, testing the outcomes across a 3, 4 and 5 point scale.

Figure 1. This figure shows the normalized values of each cluster validity index, demonstrating the
reasoning behind our selection of a 5 point scale when compared to a 3 or 4 point.

Clustering Algorithm

In order to further utilize the information available from medications with unanimous consensus,
we chose to employ the use of COP-KMeans4. COP-KMeans allows for known samples to be forced
together into the same cluster, allowing medications that have confident score assignment to be used
as the centroids of the desired clusters. KMeans is an inherently random algorithm, due to the random
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assignment of cluster centers during initialization. We employed the usage of the kmeans++ algorithm5

in order to improve the speed of convergence. To avoid the randomness in the clustering outcome,
we followed the recommended strategies from6, running the K-Means for 100 repetitions and taking
the labels for which the sum of squared errors was minimized. This avoids a lack of reproducability
introduced by the randomness of the K-Means algorithm, and improves the clustering results.

Chemical Validation

By chemically validating our scoring system, we aimed to provide some quantitative metrics to
the performance of our scale, based on the innate chemical structure of the medications included. First,
we used the provided provided .sdf file from DrugBank which catalogs the molecular representation
of medications in their database. Next, we utilized RdKit to parse these molecular representations and
compute Morgan Fingerprints. From these we then computed pairwise Dice Similarity coefficients.
This allowed us to convert Similarity into a distance metric (i.e 0 distance would be 1 similarity). From
this, we then performed Agglomerative Hierarchical Clustering using Ward’s minimum variance
method. We then used Scipys fcluster to flatten the clusters and we selected a range of values from
10 to 25. The reasoning behind not using 5 clusters as the criteria is due to the varied chemical families
within each score in both the prior 7 scales and the IACB. Figure 2 demonstrates the results of the
clustering.
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Figure 2. Dendrogram constructed with the different colours demonstrating the potency of
anticholinergic effect. The figure demonstrates the strong correlation between the underlying chemical
structure of the medications and the labelling performed by the algorithm, despite the algorithm having
no direct chemical structure information provided.

Once we had computed the clustering, we then attempted to validate the scoring systems using
the chemical structure. We took the overlapping subset of medications between the IACB and each
other scale (ABC7 was omitted due to scoring too few candidates to perform accurate clustering). The
mean absolute error was chosen in order to penalize predictions further from their desired result. In
order to provide a fair comparison, we normalized the IACB into the same scoring range as the scale
to which it was being compared. This was done by modelling the IACB as a univariate variable and
rescaling it to the desired range using the following formula:

maxnew − minnew

maxold − minold
· (v − maxold) + maxnew
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Topic Modelling

A further validation method identified as suitable for this investigation is Topic Modelling. Topic
modelling allows for the identification of underlying themes in a corpus of documents. This enables
the identification of key themes in the collection of documents pertaining to each score cluster. By
performing Latent Dirichlet Allocation,8 underlying topics present in each of the clusters could be
identified. Comparison of these topics with previous assumptions to known strong anticholinergic
antagonists allows for further validation of the algorithms understanding. Table 3 shows the
stratification of different medication classes based on the topics extracted for the documents of the
medications in each score category. The results of these keywords matches with previously held beliefs
about which classes of medications belong in different score categories.

Keywords Extracted
Score 0 Score 1 Score 2 Score 3 Score 4

Level Drug Pain Valproate Antidepressant
Patient Treatment Diazepam Seizure TCAs

Hormone Receptor Withdrawl Risk Serotonin
Calcium Form Glucocorticoid Antagonist Antihistamine

Blood Blood Corticosteroid Antipsychotic Allergic

Table 3. The most salient terms for each of the topics extracted from the clusters of literature in each
score.

Web Portal

As stated in the main paper, we have constructed a web portal to increase accessibility to the
IACB, which can be found here: https://iact-app.herokuapp.com/

Score 0 Score 1 Score 2 Score 3 Score 4

probenecid sulfasalazine flunitrazepam olanzapine thioridazine
pravastatin fluoxetine triazolam topiramate chlorpromazine
salbutamol celecoxib tizanidine haloperidol oxybutynin
tolcapone disopyramide pancuronium paliperidone imipramine
rabeprazole triamcinolone cyclobenzaprine iloperidone hyoscyamine
doxycycline bupropion dexamethasone ziprasidone tolterodine
testosterone domperidone tramadol loxapine clomipramine
thyroxin chlorthalidone temazepam aripiprazole amoxapine
indomethacin bromocriptine morphine carbamazepine scopolamine
fluvastatin cyclosporine clonazepam valproic diphenhydramine
carbimazole venlafaxine clorazepate risperidone dimenhydrinate
rosiglitazone sumatriptan carisoprodol quetiapine orphenadrine
propranolol citalopram alprazolam clozapine cyproheptadine
dydogesterone azathioprine meperidine pimozide dicyclomine
prazosin valsartan flurazepam oxcarbazepine meclizine
felodipine lactase methocarbamol divalproex maprotiline
nisoldipine polyvinyl oxycodone darifenacin
trimethoprim choral methadone desipramine
moxifloxacin potassium methylprednisolone opipramol
bisoprolol methylcellulose prednisone acepromazine
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diphenoxylate olmesartan propoxyphene protriptyline
diltiazem caritine chloral hydrate propiverine
progesterone pramipexole hydromorphone benztropine
ginkgo betahistine naloxone amitriptyline
cefoxitin glucagon prednisolone brompheniramine
entacapone coumadin oxazepam chlorpheniramine
carbidopa montelukast midazolam clemastine
allopurinol nefazodone hydrocortisone nortriptyline
gentamicin metformin lorazepam trihexyphenidyl
cefadroxil amantadine fentanyl trospium
piperacillin ipratropium estazolam flavoxate
metoprolol nefopam levocetirizine
spironolactone theophylline hydroxyzine
levodopa ranitidine desloratadine
nitroglycerin paroxetine atropine
furosemide cimetidine loratadine
estradiol dipyridamole prochlorperazine
amoxicillin lithium carbonate cetirizine
ezetimibe captopril chlorprothixene
vancomycin quinidine fexofenadine
methyltestosterone dextromethorphan promethazine
estriol phenelzine trifluoperazine
duloxetine trazodone doxylamine

metoclopramide doxepin
nifedipine solifenacin
sertraline alverine
pseudoephedrine trimipramine
benazepril methotrimeprazine
cycloserine dothiepin
zolmitriptan perphenazine
mirtazapine
guaifenesin
escitalopram
famotidine
brahmi
cortisone
caffeine
tadalafil
chlorpropamide
dextran
choline
reserpine
inositol
sucralfate
lysine
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etodolac
intestinal flora
vardenafil
trandolapril
reboxetine
pyridostigmine
bimatoprost
zafirlukast
herb
sterculia
cascara sagrada
pirbuterol
ginseng
filgrastim
telmisartan
pioglitazone
doxazosin

Table 4. Table detailing the medications in each scoring category of the IACB
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