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Euler diagrams drawn with ellipses 
area‑proportionally (Edeap)
Michael Wybrow1*  , Peter Rodgers2 and Fadi K. Dib3 

Background
The motivation behind this work is the demand for area-proportional Euler diagrams 
to visualize data in areas such as biosciences, social networks and numerous other dis-
ciplines [1]. In particular, such diagrams are frequently used to visualize Microarray 
experiments [2], where diagrams can show what flagged genes are shared by different 
categories, perhaps revealing insights such as unexpected similarities between different 
categories.

Set cardinality visualization using Euler diagrams attempts to draw set intersections, 
represented by interlinking closed curves, area-proportionally, so that the areas of over-
lapping regions are directly proportional to the cardinality in the input data. Hence, the 

Abstract 

Background:  Area-proportional Euler diagrams are frequently used to visualize data 
from Microarray experiments, but are also applied to a wide variety of other data from 
biosciences, social networks and other domains.

Results:  This paper details Edeap, a new simple, scalable method for drawing area-
proportional Euler diagrams with ellipses. We use a search-based technique optimiz-
ing a multi-criteria objective function that includes measures for both area accuracy 
and usability, and which can be extended to further user-defined criteria. The Edeap 
software is available for use on the web, and the code is open source. In addition to 
describing our system, we present the first extensive evaluation of software for produc-
ing area-proportional Euler diagrams, comparing Edeap to the current state-of-the-art; 
circle-based method, venneuler, and an alternative ellipse-based method, eulerr.

Conclusions:  Our evaluation—using data from the Gene Ontology database via 
GoMiner, Twitter data from the SNAP database, and randomly generated data sets—
shows an ordering for accuracy (from best to worst) of eulerr, followed by Edeap and 
then venneuler. In terms of runtime, the results are reversed with venneuler being the 
fastest, followed by Edeap and finally eulerr. Regarding scalability, eulerr cannot draw 
non-trivial diagrams beyond 11 sets, whereas no such limitation is present in Edeap or 
venneuler, both of which draw diagrams up to the tested limit of 20 sets.
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regions formed from curve overlaps should have area proportions based on the input 
data, or area specification. The area specification gives the required set intersections and 
their cardinality information.

Until recently, users had a choice between reasonably accurate ellipse-based diagrams 
limited to three sets [3], or the typically inaccurate diagrams drawn with circle-based 
methods [4], which allow a larger number of sets.

Tools that use 3 circles forming Venn-3 are known to be inaccurate [5]. Inaccuracies 
worsen as the number of sets increases. Fortunately, it is known that far more accurate 
diagrams can be drawn when ellipses are used in place of circles, with accuracy rates 
well over 90% achievable for Venn-3 diagrams [3]. Prior to the systems discussed in this 
paper, no method has been developed to draw diagrams beyond three sets with ellipses.

The earliest area-proportional work considered Venn-2 drawn as two circles [6], which 
can always be drawn exactly no matter the cardinality of the set intersections. However 
the subsequent work on circle-based Venn-3 diagrams [7, 8], demonstrated the inaccu-
racy inherent in this more complex type of diagram. This is because three circles do not 
have enough degrees of freedom. For example, although it is possible to obtain the exact 
overlapping areas of the paired circles, this means that the shape and size of the middle 
region overlapping three circles is fixed and therefore probably does not correspond to 
the required cardinality for this region.

Systems drawing an arbitrary number of sets with circles began with VennMaster [2], 
followed by venneuler [4]. Whilst it is acknowledged that, in general, as scale increases, 
visualizing cardinality information with circles becomes highly inaccurate [9], venneuler 
was shown to be more accurate, at least in terms of the stress measure that venneuler 
uses in its optimizer. Stress measures normalized loss using sums of squared residuals 
(i.e., the sum of squared differences between the desired area of each disjoint region 
and the actual count of elements in that region) divided by the total sums of squares 
(i.e., sums of actual count of elements in each disjoint region). In an attempt to improve 
accuracy beyond what is possible with circles, the EulerApe system was developed which 
draws Venn-3 diagrams with ellipses [3]. EulerApe achieved a 98% success rate in accu-
rately drawing randomly generated area specifications against a 0% success for circle-
based Venn-3 diagrams.

Preliminary work using rectilinear shapes, that is polygons formed of line segments 
intersecting at right angles, have been explored [10]. However, rectangles and squares 
have been shown to be poor choices for Euler diagram comprehension [11], and so 
we believe diagrams using more complex rectilinear shapes would be even worse for 
usability.

Hence, the low comprehension associated with rectilinear diagrams and the high levels 
of inaccuracy present in circle visualizations call for an ellipse solution to the general case. 
VennDiagram [15], and later VennDiagramWeb [12] is a diagrammatic package that uses 
ellipses for up to 5 set diagrams. However, this software is restricted to a few predefined 
diagram layouts. BioVenn [8] and GeneVenn [13] have similar restrictions. VennMaster 
[2] has no limit on the number of circles it can visualize, but a study provided evidence 
that venneuler had improved performance [4]. Table 1 presents a comparison of features of 
Edeap to other popular tools used to generate Venn/Euler diagrams. The comparison crite-
ria include: the shapes drawn by the tools; the maximum number of sets that can be drawn; 
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fixed or movable shapes (fixed means the shape position is not moved automatically); and 
area proportionality (whether the diagrams are drawn with an attempt at matching region 
areas to input data).

The eulerr system [14, 16], is a method developed simultaneously, but entirely indepen-
dently of our Edeap system. It shares the same approach of drawing arbitrary sets with ellip-
ses. This work relies on the stress measure from venneuler as a target function. The initial 
layout uses only circles and applies multidimensional scaling on the pairwise comparison of 
circle overlap areas. The optimizer first attempts the use of the nlm (non-linear minimiza-
tion) optimizer from the R stats package to minimize stress, using 5 variables from each 
ellipse: x,y coordinates, rotation and relationship between the semiaxes. If the diagram is 
not accurate after this first search, a last-ditch optimizer is applied, using generalized simu-
lated annealing from the R package GenSA, with the same variables and target function. 
This last method is considerably more computationally expensive than nlm.

Non-Euler approaches to visualizing set cardinality information have been proposed, 
including: Fan Diagrams [17]; network diagrams [18]; and the hybrid technique UpSet 
which claims to be able to visualize up to 20–30 sets [19]. However, none of these use the 
intuitive intersecting smooth curves that are familiar to users. Using any of these methods 
requires training, whereas a user can apply area-proportional Euler diagrams to visualize 
their data without needing to explain the visualization technique.

Our research goals were to increase the number of sets that can be drawn with Euler 
diagrams that use ellipses, and to compare the capabilities of existing systems. As a result, 
we developed Edeap, a web-based software system that can accurately draw diagrams rep-
resenting a larger number of sets compared to previous techniques, matching the scale of 
data that UpSet can visualize.

As venneuler is considered the most accurate circle-based method, and eulerr takes a 
similar approach as Edeap, we chose to compare these three methods for accuracy, scal-
ability and time performance. Figure 1 shows an example of the same data set drawn with 
the three systems.

Implementation
Edeap is a web-based system for drawing area-proportional Euler diagrams using ellip-
ses. It is open source and available to use at [20]. We designed Edeap to achieve a com-
bination of scalabilty and accuracy. The system is implemented as a web page allowing 

Table 1  A comparison of features of Edeap with other popular tools used to generate Venn 
Diagrams

Category VennDiagram 
Web [12]

BioVenn 
[8]

GeneVenn 
[13]

vennMaster 
[2]

venneuler 
[4]

eulerr 
[14]

Edeap

Shapes Ellipses Circles Circles Circles Circles Ellipses Ellipses

Max no. of 
sets

5 3 3 > 11 > 11 11 > 11

Move/change 
shapes

No No No Yes Yes Yes Yes

Area propor-
tional

No Yes No Yes Yes Yes Yes
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Fig. 1  The same GO Miner data visualized with: our approach (Edeap), top; eulerr, middle; and venneuler, 
bottom. Edeap label placement and drawing is used in all cases. GO Miner filters, p-value: 0.05, minimum: 35, 
maximum 160
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it to be easily used by a wide audience. Since it uses multi-criteria optimisation, Edeap 
is readily extensible with further user-defined criteria for aesthetic and domain specific 
requirements.

We measure a number of criteria in the diagram. This includes the statistical accu-
racy of the diagram, but also includes features such as the closeness of ellipses to each 
other, missing regions and extra (unwanted) regions. These are then placed in a weighted 
sum. The appropriate weights for each criteria were derived through experimentation. 
We then compared a hill climbing search against a simulated annealing method. After 
experimentation we chose the hill climbing method, as it was much faster without any 
noticeable reduction in accuracy. The weights for Edeap were then tuned on a randomly 
generated data set.

The Edeap tool allows a user to enter a textual area specification, click a button and 
get back the resulting diagram. The input to Edeap is a text description of the desired 
set intersections and the cardinality of each intersection. In the drawn diagram, each set 
will be drawn with an ellipse, and we will attempt to represent each intersection with a 
region bounded by only the ellipses corresponding to the sets given in the intersection. 
Moreover, to achieve area-proportionality we aim to make each region area proportional 
to the intersection cardinality.

Figure 2 shows an example area specification and resultant diagram. The labels iden-
tify the intended sets (e.g., “cell_adhesion” or “sugar_binding”). In the result-
ant diagram, an ellipse will appear for each distinct set label. We can describe the set 
intersections, and so the number of ellipses that should overlap in a region by the num-
ber of labels in the specification. E.g., the line, “cell_adhesion extracellular_
matrix 3” should result in a two-label region of size 3.

Edeap produces images in SVG format, which can be converted to common for-
mats like GIF, TIFF and PNG using freely available SVG editors such as Inkscape [21]. 
Whilst our intention is to provide a basic layout tool with output that can be custom-
ized by third party editors, Edeap has options allowing the user to control the diagram 
size, colour palette and label sizes for set labels and specified region area values (includ-
ing hiding them completely). Edeap is implemented in JavaScript and has no external 
dependencies.

The Edeap diagram generation tool (shown in Fig. 3) is available to use on the web at 
[20]. The source code is available from [22]. The open source implementation of Edeap 
allows users to integrate the software into their own systems, change parameters and 
modify the optimizer to their own preferences. The Edeap architecture and search 
mechanisms have been designed to be relatively simple, in part to allow for such modifi-
cations. As Edeap is a multi-criteria optimization system, users can add their own meas-
ures into the optimizer (for example to emphasize aesthetics they regard as important). 
This further differentiates Edeap from eulerr and venneuler, which only optimize a single 
criteria, stress, and so lack potential for such additions.

Edeap optimiser

Edeap uses a hill climbing method to optimise a multi-criteria weighted sum objective 
function. Edeap currently uses the following criteria (described in the “Objective Func-
tion” section below), though more could be added.
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•	 RegionAreaDifference ( C1 ) A measure of the difference between the actual and 
desired area for each region.

•	 missingOneLabelRegion ( C2 ) A measure of the amount that ellipses need to be 
moved to produce each missing (i.e., desired but not present) one-label region.

•	 missingTwoOrMoreLabelRegion ( C3 ) A measure of the distance that pairs of 
ellipses need to be moved to produce components of any missing regions.

•	 unwantedRegion ( C4 ) A measure of how far pairs of ellipses need to be moved 
apart to get rid of present but unwanted regions.

•	 unwantedExpandedOverlap ( C5 ) A measure of how far each pair of ellipses that 
should not overlap need to be moved to produce a small separation between their 
boundaries.

All these criteria contribute in the objective function which is computed as follows:

where Wi and Ci are the weight and the measure for criterion i respectively. Note that the 
value of each criterion is normalized so that it is between 0 and 1.

5∑

i=1

WiCi

Fig. 2  An Edeap diagram (top) accurately representing the given area specification (bottom)
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Neighbourhood search procedure

The Edeap optimiser begins with the necessary number of ellipses with the appropri-
ate area and equal radius values (to initially configure them as circles), all positioned 
at (0,  0). For each ellipse, we apply systematic moves for exploring a neighbourhood 
solution: 

1.	 Move the centre point of the ellipse in four directions (up, down, left, right) using a 
predefined distance (centerShift);

2.	 Increase/decrease the length of the major/minor axis of the ellipse using a predefined 
value (radiusLength);

3.	 Rotate the ellipse in both directions (clockwise/anticlockwise) using a predefined 
rotation angle (angle).

The hill climbing approach is described below in Algorithm  1. The objective function 
calculation is described in a dedicated section below. 

Fig. 3  Screenshot of the Edeap web-based diagram generation tool, available at https://​www.​euler​diagr​ams.​
com/​edeap/. The generated diagram is shown in the main part of the view. The right-hand section shows 
information on the accuracy of the generated diagram and allows the user to download the diagram as an 
SVG file. The bottom section allows entry or upload of a custom area specification, as well as offering controls 
to set the diagram size, colour palette and label sizes

https://www.eulerdiagrams.com/edeap/
https://www.eulerdiagrams.com/edeap/
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Algorithm 1 Hill Climbing Algorithm
1: procedure HillClimbing
2: Compute the current objective function value of the initial layout
3: repeat
4: for each ellipse e in Ellipses do
5: Apply the neighbourhood exploration moves on e
6: Record the move of e with the smallest objective function value
7: end for
8: Select the ellipse and move that result in the smallest objective function value
9: if new objective function value <current objective function value then
10: current objective function value ←new objective function value
11: Apply best move to appropriate ellipse
12: end if
13: until new objective function value >current objective function value
14: end procedure

Equivalent ellipses

In the special case where the area specification contains multiple labels that are part of 
the exact same set of desired regions, we know that there are two (or more) ellipses that 
should precisely overlap. In this situation we treat these ellipses as having a single shared 
set of parameters, e.g., if we change the x value of one such ellipse we change it for all 
other equivalent ellipses. They are treated as individual ellipses for the purpose of objec-
tive function criteria calculations.

Weights and parameters tuning

We performed exploratory tests on a wide range of values for selecting proper initial 
values for each criterion’s weight and for the hill climbing algorithm’s parameters. Then 
we performed a systematic incremental procedure for tuning those values. This process 
for parameter tuning has been used in prior work [23, 24]. The process was divided into 
phases as follows: 

1.	 In Phase I, we initially gave the same weight to all the criteria. Then, we picked a 
certain criterion, and we changed its weight to search for the value that gave the best 
result for the objective function. As the weight changed, we adjusted the other cri-
teria weights to produce the same total sum of weights. Once the weight of the cri-
terion was fixed, we moved to the next, until we had tuned the weights of all of the 
criteria.

2.	 In Phase II, we applied the same process performed in Phase I, starting with the 
weights from Phase I, but we chose the values that gave the minimum total area dif-
ference.

The tuning process was applied on diagrams with the properties listed in Table 2 (11 dia-
grams were generated from each group of diagrams):1

The random dataset generator we developed was used in the tuning process, as well 
as for comparing hill climbing and simulated annealing (see Hill Climbing vs. Simulated 
Annealing). It randomly produces intersections between 1 set and up to the “max inter-
section size” by picking a number between the limits and then selecting the required 

1  Experimentation of the tuning process showed that the order of tuning the values of weights and criteria in Phase II 
had an impact on the final results and so we used an order that produced, on average, the best results.
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number of labels at random. It then assigns each set intersection a cardinality between 1 
and 10. This is a relatively simple generator, and other models are possible. We note the 
analogy with random graph generation, which has been studied extensively [25]. How-
ever no such literature exists for Euler diagrams and an extensive investigation into ran-
dom data generators for Euler diagram layout is beyond the scope of this paper.

After tuning the weights, the final selected values for the weights of the criteria in the 
objective function are listed below. The criteria weightings are those used in the online 
software and were used in all experiments and examples in this paper:

regionAreaDifference weight (W1) = 16.35

missingOneLabelRegion weight (W2) = 23.6

missingTwoOrMoreLabelRegion weight (W3) = 6.35

unwantedRegion weight (W4) = 0.01

unwantedExpandedOverlap weight (W5) = 3.6

and the values of the parameters of our optimiser are:

centerShift = 0.13
radiusLength = 0.03
angle = 0.1

Hill climbing versus simulated annealing

Hill Climbing (HC) is a fast neighbourhood search method. However, since it only takes 
steps in the direction of an optimal value, it can suffer from getting trapped in local 
optima within the search space. Simulated Annealing (SA), on the other hand, is a sto-
chastic method that adds an element of non-determinism in order to escape from local 
optima. Simulated annealing is generally slower than hill climbing, but can lead to better 
results [26].

In order to test the effectiveness of our hill climbing algorithm, we compared it against 
simulated annealing. Before conducting the comparison, we had to tune the parameters 
of simulated annealing. The basic parameters include: initial temperature, cooling down 
rate, maximum number of iterations for running the algorithm, and number of iterations 
performed at each temperature.

We ran a similar tuning process to that for weights and hill climbing parameter 
tuning, see the Weights and Parameters Tuning Section, above. However, since 

Table 2  Description of data used in weights and parameters tuning

Group Ellipses Intersections Max intersection size

a 3 4 2

b 3 6 3

c 5 7 3

d 5 11 5

e 7 10 4

f 7 15 7
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simulated annealing is a stochastic method, we ran the simulated annealing proce-
dure 10 times for each test case and took the mean of the results.

After determining the best values for simulated annealing parameters, we con-
ducted a quick comparison against hill climbing by running both methods on new 
randomly generated datasets (described in Table 3).

From each group of diagrams listed in Table 3, we generated 10 test cases (60 dia-
grams total). We ran hill climbing once on all the test cases (since it is a determin-
istic method), then we computed the summation for each set of values of the four 
measures—area difference, objective function value, number of evaluated solutions, 
and execution time—for all the test cases in the same group. We then ran simulated 
annealing 10 times on each test case (stochastic method), we calculated the average 
of the 10 runs, then we computed the summation of averages for each set of values 
of the four measures for all the test cases that belong to the same group.

Four bar charts are presented in Fig. 4 which describe the area difference (a box 
plot is also provided in Fig. 5), the objective function values, the number of evalu-
ated solutions, and the execution time for both methods. We performed the non-
parametric Wilcoxon rank sum test on area difference, objective function, number 
of evaluated solutions, and execution time with a confidence interval of 95% on the 
results of the 60 test cases (see Table 4). Also, in Table 4, we report the effect size 
to show how big the statistically significant differences are, using Cohen d measure 
[27]. This measures the sizes of differences between groups’ means in standard devi-
ation units.

There was no significant difference between simulated annealing and hill climbing 
for area differences and objective function values according to the results of Wil-
coxon’s test, therefore, the effect size was not reported. On the other hand, with ref-
erence to Table 4 and Fig. 4, there is a statistically significant difference with large 
effect size in number of evaluated solutions and execution time attained by simu-
lated annealing in comparison to hill climbing, which means that simulated anneal-
ing is slower (most of the cost of Edeap is in computing the objective function which 
is common to both techniques). Also, with simulated annealing, optimal solutions 
require the temperature to be decreased slowly. Otherwise, the resulting diagram is 
likely to be suboptimal. For these reasons, hill climbing was chosen as the preferred 
option to use in Edeap for the neighbourhood search algorithm.

Table 3  Description of data used in the comparison between hill climbing and simulated annealing

Group Ellipses Intersections Max intersection size

a 3 3 2

b 3 7 3

c 5 6 4

d 5 12 6

e 7 9 4

f 7 14 6
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Edeap objective function

The objective function in Edeap consists of a number of weighted criteria, each 
described below.

Region area difference criterion

The region area difference criterion is calculated as the sum of differences between the 
desired proportion of total area for each region and the actual proportion of total area. 
This criterion represents the measure of how similar a generated diagram is to the given 
area specification. We use this measure for comparison of our results with other sys-
tems. It is analogous to the stress value used by venneuler and eulerr.
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Fig. 4  Hill Climbing (HC) versus Simulated Annealing (SA)
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To compute the region area difference we first calculate the actual area for each region 
for the current ellipse parameters. We do this via point sampling because there is no 
current analytic solution to calculating areas of arbitrary numbers of overlapping ellipses 
(current methods for 3 ellipses rely on enumerating all possible overlap configurations 
[3], which is not feasible in the general case). We overlay a fixed-sized point grid over the 
diagram with a grid size of 0.026. To decide on this value, we tested a large range of grid 
sizes from 0.001 to 0.1 at 0.0002 increments, comparing them to the “accurate” refer-
ence grid size of 0.0002. A coarser discretisation will result in faster sampling but is less 
accurate, though the specific choice between grid steps makes only a small difference to 
the accuracy. We chose the largest grid size such that the difference from the reference 
grid size was less than 0.5% for all tested diagrams, and typically less than this. To ensure 
that the size of regions in the area specification do not affect accuracy when using the 
sampling approach, the initial parameters of all ellipses are scaled so that their area in 
the correct diagram would be 1.

In order to count the area of each region, we consider each intersection point in the 
overlaid grid. For each point we call a function for each ellipse to check whether the 
point lies inside that ellipse. As we do this, we keep the list of labels for the ellipses which 
that point lies within. We turn this list into a string which is used as the index into a 
dictionary that stores a count of pixels in each region. We also keep a count of the total 
number of pixels that lie inside at least one ellipse. From this info we can easily gener-
ate the proportion of the total area in each region. Since this criterion is generated using 
proportions of the total area, the absolute sizes of the areas given in the area specifica-
tion do not matter, only their relative sizes.

Fig. 5  Area difference boxplot for Hill Climbing (HC) versus Simulated Annealing (SA)

Table 4  p-values for Wilcoxon sum test with Bonferroni correction in NEJM format and Cohen’s d 
effect size interpretation for hill climbing versus simulated annealing run on Table 3 dataset

Following the New England Journal of Medicine (NEJM) practice [28], we regard p-values of less than 0.05 as statistically 
significant with one asterisk, p-values of less than 0.01 with two asterisks, and p-values less than 0.001 with three asterisks

Area difference Objective 
function

Evaluated solutions Time

p-values 0.71 0.63 < .001 (***) < .001 (***)

Cohen d effect size – – 1 (large) 1.03 (large)
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While evaluating the many candidates at each iteration, only a single parameter of a 
single ellipse is modified for each candidate, while all other ellipses are left unchanged. 
In order to speed up our implementation, rather than call the function that determines 
if a point lies inside that ellipse, we keep a bitmap of each ellipse. For each point on the 
grid covered by the bounding-box of a given ellipse, this contains a boolean denoting 
whether the grid point is within the ellipse or not. During the frequent objective func-
tion calculations, this acts as a cache for the costly area calculations for the unchanged 
ellipses to save us from needlessly recomputing containment tests.

To calculate the value of our criterion we get the set of desired regions as well as the 
set of actual regions based on drawing a diagram with the current ellipse parameters. We 
iterate through each of the combined set of these regions. For each region that is both 
a desired (i.e., the set intersection is given in the area specification) and corresponding 
actual region (i.e., present given the combination of ellipses), we take the difference in 
their area proportions and add it to the criterion value. For each actual region without a 
corresponding desired region, we take the actual area proportion and add it to the cri-
terion value. We subsequently refer to this as an unwanted region. Where a region is 
desired but there is no corresponding actual region, we take the desired area and add it 
to the criterion value. We refer to this as a missing region.

Unwanted region criterion

To compute this criterion, for each unwanted region runwanted , we check whether there is 
a desired region rdesired that contains all the labels from region runwanted.

There are two cases. The first is where there is a desired region rdesired that contains all 
the labels from runwanted , and runwanted has a single label. In this case, we add to the cri-
terion the area of runwanted . The aim of this is to draw together an ellipse that should be 
positioned inside another ellipse, as with ea in Fig. 6a.

The second case is where there is no desired region that contains all the labels from 
runwanted . In this case, we attempt to separate pairs of ellipses in runwanted that are not 
contained together in any desired region. To do this we consider each pair of labels in 
runwanted . If there is no desired region containing both those two labels, then we add to 
the criterion the ideal separation between the centre of the two corresponding ellip-
ses minus the actual distance between their centres (as shown in Fig.  6b), where the 
ideal distance is the sum of the larger of each ellipses’ semi-minor and semi-major axis 

a b
Fig. 6  The unwanted region criterion. a Case 1 aims to remove unwanted region “a”, where there is a desired 
region “a b”. Ellipse ea should be moved to be positioned inside ellipse eb by penalising the area of region “a”. b 
Case 2 aims to remove unwanted region “a b” by inversely penalising the distance between of ellipses ea and 
eb while they overlap
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parameters. In order to break ties, for each matching pair beyond the first, we increase 
a factor applied to this distance by 0.1 (beginning with 1). The purpose of this is to push 
apart ellipses that form an unwanted region where there is no other desired region that 
includes the same pair of ellipses.

Missing one‑label region criterion

The purpose of the missing one-label region criterion is to push ellipses away from all 
others where the ellipse corresponds to desired, but not present, one-label region, i.e., an 
ellipse that should not overlap any other ellipses.

To compute this criterion for each missing one-label region rmissing , we consider 
the same measure as for the unwanted region criterion, i.e., how much overlap there 
is between the corresponding ellipse emissing and other ellipses (see Fig. 6b). Hence, for 
each ellipse eoverlap that overlaps with emissing we add to the criterion the ideal separa-
tion between the centres of emissing and eoverlap minus the actual distance between their 
centres, where the ideal distance is the sum of the larger of each ellipses’ semi-minor and 
semi-major axis parameters.

Missing two‑or‑more‑label region criterion

The purpose of the missing two-or-more-label region criterion is to pull individual ellip-
ses towards groups of overlapping ellipses when all these ellipses have the labels in a 
desired but not present region.

To compute this criterion, for each missing region rmissing containing two-or-more 
labels we select the actual region rcommon that shares the most labels with rmissing . In the 
case of a tie for regions that share the most labels, we pick the region with the over-
all fewest number of labels. Once we have selected region rcommon there are two pos-
sible cases. The region rcommon might not contain all the desired labels from the missing 
region rmissing . It is also possible that the region rcommon contains all the labels of rmissing 
and some other labels too. We treat these cases differently.

If the region rcommon does not contain all the desired labels from the rmissing , we find 
the set of labels in rmissing that are not in rcommon . Ellipses with these labels are ones we 
wish to move towards rcommon to to produce our desired region. For each of these labels 
we add to the criterion the difference between the centre of the ellipse and a reference 
point known to be inside rcommon (as shown in Fig. 7a).

If the region rcommon contains all the labels of rmissing and other (undesired) labels too, 
we wish to push “extraneous” ellipses with these unwanted labels away from region 
rcommon . We aim to separate each extraneous ellipse from each of the ellipses with a label 
in region rmissing by adding to the criterion the ideal separation between the centre of 
each pair of these ellipses minus the actual distance between their centres, where the 
ideal distance is the sum of the larger of each ellipses’ semi-minor and semi-major axis 
parameters (as shown in Fig. 7b).

Unwanted expanded overlap criterion

The region area difference criterion already penalises overlap between pairs of ellip-
ses which are known not to exist together in any desired region, but does nothing to 
move such ellipses when they no longer overlap, even if their boundaries touch. Ideally, 
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such ellipses would be positioned slightly apart, rather than touching each other. The 
unwanted expanded overlap criterion penalises such closeness by simply expanding the 
boundaries of these ellipse pairs and adding to the criterion value the sum of all over-
lap between these expanded ellipses. The semi-minor and semi-major axis parameters of 
each of these ellipses are expanded by 15% of the larger of that ellipse’s axis parameters. 
This criterion does nothing to change the correctness of the diagram (which is equally 
correct if such ellipses touch or don’t), but does improve the readability and thus usabil-
ity of the generated diagrams.

Edeap label placement

We want ellipse labels (coloured labels) to be positioned as unambiguously as possi-
ble. To compute label positions in Edeap, we check 36 boundary points (at 10 degree 
angles) around the periphery of each ellipse. We assign each a depth value equal to the 
number of other ellipses it lies within and a distance value equal to the closest bound-
ary point from any other ellipse. This depth is indicated by the darkness of each point in 
Fig. 8 (white points lie outside all other ellipses). We partition these points into ranges of 

a b
Fig. 7  Missing two-or-more-label region criterion. a Case 1 draws the ellipse eb towards the region “a c” by 
penalising the distance between the centre of eb and a known point in region “a c”. b Case 2 aims to push 
the ellipse eb away from both ellipses ea and ec to create the missing region “a c”. Once region “a c” exists the 
region area difference criterion will work to adjust to the appropriate region proportions, but can’t do this 
until the region “a c” is created (outside of “a b c”)

Fig. 8  Dots showing positions considered when determining candidate ranges (lighter consecutive dots) for 
final ellipse label positions (red dots) that are away from ambiguous locations (orange dots)
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consecutive points with the same depth, further partitioning these at “ambiguous” points 
whose distance value is within a certain threshold (points marked orange in Fig. 8). The 
label for each ellipse is positioned on that ellipse’s longest range with the lowest depth, at 
that range’s point with the highest distance value (i.e., as far from other ellipse boundary 
points as possible).

To determine positions for each region label (black labels showing numbers), Edeap 
keeps track of the first point pfirst encountered in any region for each unique combina-
tion of labels. It also keeps track of an average position paverage for all points found to be 
in this region. It determines a potential viable label position pviable by checking if paverage 
is inside the same region (it may not be; such as in the case of a split region). If it is, we 
choose a viable point pviable = paverage , or if not, pviable = pfirst . Edeap then scans verti-
cally from that x position of pviable to find the vertical bounds of that region, then scans 
horizontally from the y position of pviable to find the horizontal bounds. The position of 
pviable is updated to be the centre of the horizontal and vertical bounds. This scanning 
and centering process is repeated several times.

Other optimisation methods

The current method explored only hill climbing and simulated annealing. It might be 
possible to get better results using improved optimization methods that have shown 
good results with multi-criteria graph layout, such as Tabu Search and Path Relinking 
[26]. Tabu search uses a memory list to speed up the searching process by avoiding pre-
viously visited solutions while path relinking generates new solutions by exploring paths 
that connect high quality solutions selected from an elite set of solutions. Other neigh-
bourhood search-based methods can be considered such as Variable Neighbourhood 
Search and Extremal Optimization. Population-based optimization methods including 
Genetic Algorithms, Particle Swarm Optimization, Social Cognitive Optimization, and 
Ant Colony Optimization are also potential candidates for experimentation [29], pos-
sibly improving the final result, though at the cost of increased run time. It would also 
be possible to explore different starting diagrams, including using the output of the fast 
venneuler system, although this would require a re-implementation of the venneuler 
code to work with our client-side JavaScript implementation.

Results
We conducted a performance and quality comparison of the three area-proportional 
Euler diagram drawing methods, Edeap, eulerr and venneuler, by running them on real 
world data from two sources. Firstly, we accessed Twitter data from the SNAP data set 
[30] in the form of a number of Twitter circles, or interest groups. This gave us an unbi-
ased test set that represented data that users might wish to visualize. Secondly, we uti-
lised data from the Gene Ontology (GO) database [31] accessed through VennMaster 
[2]. We also tested all three systems for scalability on a randomly generated dataset. This 
work is the only comparison that we are aware of for general area-proportional Euler 
diagram generation with different shapes.

Given the variation in ways of measuring accuracy (Edeap uses area difference whereas 
venneuler and eulerr use stress as a target function), we report results for both meas-
ures. We also evaluated the time to reach a solution on the same hardware. As venneuler 
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and eulerr are stochastic methods, we ran the tests 10 times. We used the default param-
eters for all three software systems. The experiments were conducted on a 2.9 GHz Intel 
Core i7 MacBook Pro with 16GB RAM running macOS Catalina version 10.15.6. We 
used venneuler version 1.1-1 and eulerr version 6.1.0. Edeap was run in Electron 2.0.3. 
No other applications were running during the tests. We set a time-out of 30 minutes for 
each system on each test.

All test data, a summary of the characteristics of the data, and results including dia-
grams generated by each system for all tests are available to browse [32] or download 
[33].

To ensure a fair comparison, we took the ellipse parameters output by venneuler and 
eulerr and used the Edeap code to position labels, render the final image, and to calcu-
late both stress and area difference values for all three systems.

In each experiment, we applied the Wilcoxon signed-rank test with Bonferroni cor-
rection (pairwise comparison) with a confidence level of 95% to see how significant the 
difference was between pairs of methods. We chose Wilcoxon signed-rank test [34] after 
applying Shapiro-Wilk’s normality test [35] on the data with a 95% confidence level. 
The p-value of Shapiro-Wilk’s test was below 0.05. Thus, the null hypothesis of Shapiro-
Wilk’s test that the population is normally distributed was rejected. We also followed 
the guidelines suggested by Cohen [27] and Sawilowsky [36] for interpretation of the 
effect size using Cohen’s d measure that indicates the standardised difference between 
two means.

Twitter SNAP dataset

This data set included 774 area specifications derived from the SNAP data set [30], in 
particular the Twitter social circles data, which gives user interests. Each social circle file 
consists of information about which users have which interests. Each file formed an area 
specification. The interests were the sets, users sharing collections of interests were the 
set intersections, and the number of users sharing the collections of interests were the 
cardinalities of the intersections. All data was relabelled.

An example area specification from the SNAP data set is given below. Figure 9 shows 
the resultant diagrams from the first run.

Programming News 26         News 1

Programming News Music 6    Music 1

Programming Music 10        Camping 9
Camping News 12             Programming 16

Figures 10, 11, and 12 show boxplots for the measures of area difference, stress, and 
time respectively on SNAP dataset. Whereas Tables  5 and 6 show the p-values for 
Wilcoxon signed-rank test with Bonferroni correction, and Cohen’s d measure for 
effect size respectively. As we mentioned earlier, with respect to NEJM practice [28], 
we regard p-values of less than 0.05 as statistically significant with one asterisk, p-val-
ues of less than 0.01 with two asterisks, and p-values less than 0.001 with three aster-
isks. Note that, 12 diagrams from the SNAP dataset, that contain at least 12 ellipses, 
were excluded as eulerr timed-out and failed to generate layouts. Furthermore, in the 
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boxplots, outliers were far away from the median and the 3rd quartile. Therefore, we 
removed the maximum outliers to get a clear distribution of the data in the boxplot.

We can see from Fig. 10 and area difference column in Tables 5 and 6 that, regarding 
area difference, there are significant differences between all methods with large effect 
size in favour of Edeap over venneuler, moderate effect size for eulerr over Edeap, and 
large effect size for eulerr over venneuler. Note that the maximum area difference val-
ues were 125.75 for Edeap, 200.00 for venneuler, and 91.24 for eulerr.

We can see from Fig. 11 and stress column in Tables 5 and 6 that, regarding stress, 
there are again significant differences between all methods but with very small effect 
size which means that the difference is trivial. Note that the maximum stress values 
were 0.76 for Edeap, 1.00 for venneuler, and 0.40 for eulerr.

Fig. 9  Example output of an area specification produced from the SNAP data set
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We can see from Fig. 12 and time column in Tables 5 and 6 that, regarding time, there 
are significant differences between all methods with small effect size in favour of ven-
neuler over Edeap, but huge effect size for both over eulerr. Note that the maximum 
values of time in seconds were 19.12 for Edeap, 4.47 for venneuler, and 1220.0 for eulerr.

Gene ontology dataset

The Gene Ontology dataset was derived from the GO database [31]. As in the Ven-
nMaster paper [2] the overlap of genes in different GO categories results from the 
association of genes with multiple GO categories. Two filtering mechanisms are used, 

Edeap venneuler eulerr

0
5

10
15

Fig. 10  Boxplot (excluding maximum outliers) for area difference on SNAP dataset

Fig. 11  Boxplot (excluding maximum outliers) for stress on SNAP dataset
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a p-value limit and a range of interest for the number of genes in a particular cat-
egory. To produce a suitable variety of data sets, we produced data sets for all combi-
nations where the p-value went from 0.01 to 0.09 in increments of 0.01, the minimum 
interest range went from 10 to 90 in increments of 5, the maximum interest range 
went from 100 to 180 in increments of 10. This resulted in 124 area specifications. It 
is worth noting that 24 diagrams, that contain at least 12 ellipses, were excluded as 
eulerr timed-out and failed to generate layouts.

We can see from Fig. 13 and area difference column in Tables 7 and 8 that, regard-
ing area difference, there are significant differences between all methods with mod-
erate effect size in favour of Edeap over venneuler, small effect size for eulerr over 
Edeap, and moderate effect size for eulerr over venneuler.

Fig. 12  Boxplot (excluding maximum outliers) for time (in seconds) on SNAP dataset

Table 5  p-values for Wilcoxon signed-rank test with Bonferroni correction on SNAP dataset

Following the New England Journal of Medicine (NEJM) practice [28], we regard p-values of less than 0.05 as statistically 
significant with one asterisk, p-values of less than 0.01 with two asterisks, and p-values less than 0.001 with three asterisks

Area difference Stress Time

Edeap versus venneuler < .001 (***) 0.031 (*) < .001 (***)

Edeap versus eulerr 0.024 (*) 0.033 (*) < .001 (***)

venneuler versus eulerr < .001 (***) <.001 (***) < .001 (***)

Table 6  Cohen’s d effect size interpretations for SNAP dataset

Area difference Stress Time

Edeap versus venneuler 0.8 (large) 0.01 (very small) 0.1 (small)

Edeap versus eulerr 0.33 (moderate) 0.01 (very small) 14.5 (very large)

venneuler versus eulerr 0.85 (large) 0.01 (very small) 14.3 (very large)
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Regarding the stress, we see from Fig. 14 and stress column in Tables 7 and 8 that there 
are also significant differences between all methods with small effect size for eulerr over 
Edeap, and moderate effect size in favour of both over venneuler.

As for execution time, clear differences between the three methods can be recognized 
in Fig. 15 and time column in Tables 7 and 8 with large effect size in favour of venneuler 
over Edeap, but with very large effect size for both over eulerr. Note, outliers were far 
away from the median and the 3rd quartile in eulerr boxplot and were thus removed in 
the boxplots to see a clearer distribution of the data.

Scalability experiment

To investigate the scalability of the methods, we ran each method on 90 randomly gener-
ated diagrams produced by the following method: 

Table 7  p-values for Wilcoxon signed-rank test with Bonferroni correction on Gene Ontology 
dataset

Following the New England Journal of Medicine (NEJM) practice [28], we regard p-values of less than 0.05 as statistically 
significant with one asterisk, p-values of less than 0.01 with two asterisks, and p-values less than 0.001 with three asterisks

Area difference Stress Time

Edeap versus venneuler < .001 (***) < .001 (***) < .001 (***)

Edeap versus eulerr < .001 (***)  < .001 (***) 0.002 (**)

venneuler versus eulerr < .001 (***) < .001 (***) 0.004 (**)

Table 8  Cohen’s d effect size interpretations for Gene Ontology dataset

Area difference Stress Time

Edeap versus venneuler 0.4 (moderate) 0.4 (moderate) 1 (large)

Edeap versus eulerr 0.16 (small) 0.18 (small) 2.6 (very large)

venneuler versus eulerr 0.59 (moderate) 0.56 (moderate) 3.6 (very large)

Edeap venneuler eulerr

0
50

10
0

15
0

Fig. 13  Boxplot for area difference on Gene Ontology dataset
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1.	 first, we randomly generated a number of sets, s, between 3 and 20;
2.	 For each s we randomly generated a set of 5 diagrams such that number of intersec-

tions was each of {s*1, s*1.5, s*2, s*2.5, s*3};
3.	 for each intersection in each diagram, the number of sets was randomly generated to 

be between 1 and 4;
4.	 for each intersection, we randomly generated the cardinality to be an integer between 

1 and 10.

Fig. 14  Boxplot for stress on Gene Ontology dataset

Edeap venneuler eulerr
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Fig. 15  Boxplot (excluding maximum outliers) for time (in seconds) on Gene Ontology dataset
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Fig. 16  The effect of increasing number of sets in the area specification on area difference, stress, and 
execution time, for the three systems
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Figure 16 shows the effect of increasing the size of the diagram on area difference, stress, 
and execution time. The eulerr data is not complete because, except for trivial cases 
(such as diagrams drawable with disconnected circles), the system timed-out for data 
beyond 11 sets.

Discussion
When evaluating systems, we take the standard approach of ordering by importance, 
(1) production of a visualization (2) accuracy of the representation and (3) time taken to 
generate the visualization.

On these measures, beyond 11 sets, eulerr fails due to inability to generate a visual 
representation. Edeap is more accurate than venneuler, hence we regard Edeap as the 
most scalable method for drawing area-proportional Euler diagrams with ellipses. An 
example of a 12 set diagram is shown in Fig. 17, drawn with Edeap and venneuler, but 
which is not drawable with eulerr. Its area specification is given by the file figure17ar-
eaSpecification.txt in [33]. We conjecture that the problems that eulerr has with 
drawability at this scale is due the large inaccuracies in diagrams at this size. Hence its 
slow last-ditch method is applied for nearly all data sets of this size.

At set sizes between 2 and 11, eulerr is significantly more accurate in representing area 
specifications than Edeap, which in turn is significantly more accurate than venneuler. 

Fig. 17  Scalability example, drawable with Edeap and VennMaster, not drawable with eulerr. GO Miner filters, 
p-value: 0.03, minimum: 20, maximum 160



Page 25 of 27Wybrow et al. BMC Bioinformatics          (2021) 22:214 	

There was significance in both area difference and stress. We note that eulerr and ven-
neuler had better results when measuring stress, however, this is to be expected as these 
two systems aim to minimize stress, whereas Edeap does not. We conclude that at 
smaller set sizes, for highest accuracy, eulerr is the preferred technique.

The timing is reversed, with venneuler being the fastest, followed by Edeap, with 
eulerr being the slowest. Effect sizes are particularly large for time, and if time perfor-
mance is critical then venneuler would be the preferred choice.

Conclusions
We have developed a web-based open source software system, Edeap, for the auto-
matic drawing of any area-proportional Euler diagrams with ellipses.

We compared Edeap with two competing methods, venneuler and eulerr. eulerr 
produces more accurate results at smaller diagram size, but in our required time-
frame it is unable to generate results at larger diagram size, where the most accurate 
results are produced by Edeap. venneuler is far faster than the other two methods, but 
less accurate. Hence we have the following advice when selecting a system:

•	 for data with more than 11 sets, Edeap is the preferred method
•	 for data with 11 sets or fewer, eulerr is the preferred method
•	 if time is the critical constraint, venneuler is the preferred method

Edeap’s multi-criteria approach means it is possible to add additional criteria to increase 
accuracy, as well as optimizing on other features of the layout that improve readability 
(possibly at the cost of accuracy, as these may complete). For example, the unwanted 
expanded overlap criterion does not help separate ellipse boundaries where one ellipse 
is inside another, i.e., the inner ellipse bumping into the boundary of the outer ellipse. It 
would be possible to penalize this by reducing the size of the outer ellipse and penalizing 
any area of the inner ellipse that is outside of the reduced-size outer ellipse. Another 
possible addition is to add a circle-distortion criterion that adds a slight penalty each 
ellipse based on the difference between each ellipse’s semi-minor and semi-major axis 
parameters, i.e., how far it is away from being a circle. Our current region area difference 
penalises a region area that is 49 instead of 50 as much as a region that is 1 instead of 2 
(when they are in the same instance). The difference to the larger region may matter less 
to the reader, hence it could be worth investigating how to consider the difference to the 
smaller region as more important in our objective function.

Current research has restricted the use of shapes to circles, ellipses and rectilinear 
curves. Future work might consider more generalised ovaloid shapes in place of ellipses, 
which might potentially making many more area specifications drawable. However, as 
the shapes become more complex, it may be that the diagrams are made less usable.

Availability and requirements

Project name: Edeap
Project home page: https://​www.​euler​diagr​ams.​com/​edeap/
Archived version: https://​doi.​org/​10.​26180/​13168​154

https://www.eulerdiagrams.com/edeap/
https://doi.org/10.26180/13168154
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Operating system(s): Platform independent
Programming language: JavaScript
Other requirements: Google Chrome web browser
License: GNU General Public License v3.0
Any restrictions to use by non-academics: None
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