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Abstract 

The aim of the current study is to examine the dose-response relationships between training load (TL) 

measures and the consequent changes in aerobic fitness. Data were collected over the 6-week pre-

season period in elite youth soccer players. Participants completed a lactate threshold test to identify 

changes in treadmill speed at 2 mmol·l-1 (S2) and 4 mmol·l-1 (S4). Internal TL was quantified with the 

following training impulse (TRIMP) methods: Banister TRIMP, Edwards TRIMP, Lucia TRIMP, individual 

TRIMP (iTRIMP) and rate of perceived exertion was also collected. External TL measures were total 

distance, PlayerLoad, high speed running (14.4-19.8 km·h-1), very high-speed running (19.8-25.2 km·h-

1) and maximal sprint distance (>25.2 km·h-1). Individual high-speed distance was derived from each 

participants treadmill speed at S4. Different Bayesian regression models were run with different 

likelihood functions. The best fitting models with both the lowest out-of-sample prediction error and 

the highest variance explained (R2) were used. iTRIMP had the strongest relationships with changes in 

S2 (r=0.93, R2=0.90) and S4 (r=0.88, R2=0.82). Explained variance ranged from 10%-69% and 11%-38% 

for all other internal TL measures and external measures respectively. In summary, the iTRIMP method 

demonstrates a dose-response relationship with changes in aerobic fitness in elite youth soccer 

players.  
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Introduction 

Soccer is characterised by high intensity, intermittent activity that yields energy from anaerobic and 

aerobic pathways1. High intensity actions have previously been defined as running above 14.4 km·h-1 

and accelerating/ decelerating above 3 m·s-2 2,3. Typically, 2-10% of the total distance (10,881 ± 885 m) 

will comprise of these high intensity actions and will also vary between positions within professional 

soccer4,5. To repeat these high intensity actions frequently, soccer players need to have adequate 

aerobic fitness6. Teams with higher aerobic fitness capabilities in soccer demonstrate an increased 

distance covered during match-play and an improved competitive ranking7,8,9. Increased V̇02max has 

also been shown to improve total distance covered (20%), involvements with the ball (23%) and the 

number of sprints (100%) during match-play10. Thus, designing and monitoring a training plan to 

improve aerobic capabilities in soccer players would be of interest to practitioners and coaches. 

Training load can be defined as an input variable that is manipulated to elicit a desired training 

response11. To monitor the effectiveness of a training program, the theoretical framework provided 

by Impellizzeri, Rampinini and Marcora can be implemented11. The model demonstrates that the 

training outcome is the consequence of the internal load experienced, whereby, the internal load is 

influenced by individual characteristics and the external training load. Given that the internal load 

response is a consequence of the external load completed, it is plausible that these load measures will 

demonstrate a range of relationships against different training outcomes12. However, the 

fundamental principle of measuring dose-response relationships is essential to establishing an 

effective training process 13. This process utilises measurements and assesses them against a desired 

outcome to determine the measurements effectiveness. Internal load measurements are typically 

collected via heart rate (HR) monitoring and rate of perceived exertion (RPE). Recent advances in 

technology allow practitioners to quantify the external load by utilising Electromechanical Systems 

(MEMS) and Global Positioning Systems (GPS)14. External load measures typically provide data of the 

activity profile completed and can include measures such as total distance covered, high-speed 

distances, accelerations, decelerations and software-derived load measures.  

 

To date, limited research has examined dose-response relationships between training load measures 

and aerobic fitness. To our knowledge, none have examined this relationship with a comprehensive 

range of internal and external TL measures in soccer. There are a few studies across a range of sports 

which provide dose-response data between internal load measures and aerobic fitness. Manzi et al.15 

utilised the individualised training impulse (iTRIMP) method to monitor the training process within 

elite premiership male soccer players. The iTRIMP method uses each player’s own individual lactate 
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profile to generate an exponential weighting factor for the TRIMP calculation (ΔHR x time x weighting 

factor). Manzi et al.15 demonstrate a large to very large relationship between iTRIMP and percentage 

changes in V̇02max, ventilatory thresholds, running speed at 4 mmol·l-1 and Yo-Yo IR1 performance. 

Akubat et al.16 employed a range of HR TRIMPs to assess the relationship between training load and 

aerobic performance in youth soccer players. Similar to Manzi et al.15 iTRIMP showed the strongest 

relationships with aerobic performance, however, Akubat et al.16 also examined the dose-response 

between other training load variables and performance. Session RPE (sRPE), Bannister’s TRIMP 

(bTRIMP) and Stagno’s TRIMP (tTRIMP) displayed a weak to moderate relationship with changes in 

aerobic fitness16. Unfortunately, no external load data was provided from either the Manzi et al. or 

Akubat et al. studies15,16. Previous data suggest that improvements aerobic fitness have been 

associated with high-speed running in amateur soccer players16 and academy rugby union17. 

Moreover, practitioners are now utilising GPS/MEMS more than HR and establishing relationships 

with desired training outcomes are imperative14.  

In the last 10 years or so, the availability of MEMS and GPS has increased descriptive research of soccer 

match play and training4,5,19,20. It has also led to the use of GPS/MEMS being the most prominent tools 

for monitoring training load in elite soccer14.This GPS/MEMS technology has provided practitioners 

with a wealth of external load data which describes training and match activity21. According to 

Akenhead and Nassis, the external load measures which practitioners deemed the most appropriate 

to monitor were: accelerations, total distance, distance covered above 19.8 km·h-1, estimated 

metabolic power and heart rate exertion22. Nevertheless, the rationale for these can be initiated by 

coaching staff and software used, but, are generally not informed by empirical evidence regarding 

dose-response relationships22. Multiple studies have also demonstrated that training and match 

exposure (duration in minutes) show associations with improved aerobic fitness23,24,25. However, no 

particular GPS/MEMS measure has provided further information (or improved explained variance) 

when examining the dose-response relationship between external load and aerobic fitness20.  

Fitzpatrick, Hicks & Hayes, provide both internal and external load data in relation to changes in 

aerobic performance26. They established that spending time above maximal aerobic speed (MAS) and 

time above 30% of anaerobic speed reserve had the strongest relationship with change MAS 

performance (1500m time trial). Distance and time spent above high-speed running velocities (17 

km·h-1 and 21 km·h-1) were also assessed against MAS performance and these explained less variance. 

Similarly, sRPE and Edwards TRIMP (eTRIMP) demonstrate weaker relationships with change in MAS 

performance22.  Whilst, Fitzpatrick, Hicks & Hayes26 report associations between partial TL measures 

and aerobic fitness, equivocal findings have been established by Rabbani et al.27. They established that 

spending time above 90% of HRmax provides 52% of the variance in changes in maximal velocity 
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achieved in the 30-15IFT in professional soccer players27. Despite these associations existing, these 

cannot be used for complete prescription and monitoring of training that uses the whole intensity 

continuum i.e. soccer. Therefore, one must consider using a TL measure which has physiological 

credence and reflects the whole intensity continuum rather than just part of the intensity continuum 

Currently, evidence suggests a range of HR-based measures demonstrates very weak to strong dose-

response relationship with changes in aerobic fitness. These differences between studies could be due 

to the different criteria used to assess aerobic fitness (i.e. laboratory and field-based measures) and 

the dose measures used.  Studies in other sports demonstrate that when a comprehensive range of 

internal and external load measures are assessed against a training outcome (i.e. change in aerobic 

fitness), the internal load measures have the strongest relationships and explain the most variance17. 

No such study currently exists within the soccer literature.  

Therefore, given the sparsity of literature focussing on both internal and external dose-response 

(aerobic fitness) relationships within soccer, the aim of this is study is to examine the dose-response 

relationships between training load measures (internal and external) and the consequent changes in 

aerobic fitness.  
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Methods 

Fourteen professional youth soccer players agreed to participate in the study (mean±SD). However, 

due to injury, playing commitments and availability for re-testing the sample was reduced to nine 

(n=9, 17±1yrs, 179±5.6cm, 71.3±5.8kg). The study was approved by the departmental ethics 

committee and conformed to the Declaration of Helsinki. Informed consent was provided by the 

players, players’ parents and the soccer club prior to the commencement of the study. All players 

compete within the category 2 format of Academy soccer provided by the English Premier League. 

Players trained 4±2 times per week with sessions ranging from 60-120 min with gym-based 

conditioning provided 3 times per week.  Light tactical-based training preceded match fixtures with 

high-intensity training on a Tuesday and Thursday. Wednesday and Sunday’s were typically recovery 

days.  

Players performed laboratory testing on two occasions; once at the start of pre-season, the other at 

the end of pre-season with players avoiding strenuous exercise 48-hr prior to testing. Testing blocks 

were separated by 6 weeks of normal training and games. Players were instructed on arrival to lie 

supine for ten minutes with the lowest 5 seconds HR recorded (Polar T34, Polar Electro, OY, Finland) 

as their resting heart rate (HRrest).  To establish maximum HR (HRmax), maximal aerobic speed and the 

blood lactate relationship; players were required to complete an incremental lactate threshold test 

on a motorised treadmill (h/p cosmos mercury 4.0; h/p Cosmos, Nussdrof-Traunstein, Germany). The 

protocol consisted of five stages at 8, 10, 12, 14 and 16 km·h-1 16. Each stage was four minutes in 

duration with a 1-minute rest period between stages. Following the 1-minute rest at 16 km·h-1, the 

protocol increased 0.5 km·h-1 every 30s until the player reached volitional exhaustion. During all rest 

periods and following the final stage, a 20 µl fingertip capillary blood sample was taken. The blood 

sample was diluted in a lactate-glucose haemolysing solution and then taken for analysis (Biosen C-

Line, EKF Diagnostics, Germany).  

HR was collected via heart rate monitors which sampled at 10Hz (TeamPro, Polar Electro, OY, Finland) 

with the raw data being export for analysis. bTRIMP was calculated based on training duration, HR, 

and a weighting factor using the following formula28:  

bTRIMP = duration training (minutes) x ΔHR x 0.64℮1.92x 

where ΔHR = (HRex – HRrest) / (HRmax – HRrest ), ℮ equals the base of the Napierian logarithms, 1.92 

equals a generic constant for males and x equals ΔHR. A modified luTRIMP was employed by 

multiplying time spent in three HR zones based around HR at fixed blood lactate accumulation at 2 

and 4 mmol·l-1 17. eTRIMP was calculated based on time spent in five HR zones and multiplied by a 
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zone specific weighting factor: duration in zone 1 (50-59% of HRmax) multiplied by 1, duration in zone 

2 (60-69% HRmax) multiplied by 2, duration in zone 3 (70-79% HRmax) multiplied by 3, duration in 

zone 4 (80-89% HRmax) multiplied by 4 and duration in zone 5 (90-100% HRmax) multiplied by 5. 

Summating the scores from each zone results in the final eTRIMP30. iTRIMP was calculated in the same 

manor is bTRIMP, but instead of the generic exponential weighting factor, each player would generate 

their own weighting factor as stated by Manzi et al.15. The RPE training load (sRPE) was calculated by 

multiplying the duration of the session by the CR-10 score31. 

External training load was measured with a GPS/MEMS device (GPS 10 Hz, Tri-axial accelerometer 

100Hz; Catapult S5, firmware 6.75, Catapult Innovations, Melbourne, Australia). Varley et al.32 has 

demonstrated the reliability for speed and distance using these GPS devices (1.9-6% CV). GPS/MEMS 

devices were worn in a tight fitted vest with the unit placed between the players scapula. Data were 

processed using Sprint 5.1 (Catapult Innovations, Melbourne, Australia). The GPS data provided 

information on total distance (TD), high speed running (HSR) and PlayerLoadTM (PL). The thresholds 

used for high-speed running were 14.4-19.8 km·h-1, very high-speed running (VHSR) was 19.8-25.2 

km·h-1 and maximal sprint distance (MS) was >25.2 km·h-1. Additionally, each player had their own 

individual high-speed threshold (iHSD) which was derived from the speed of which a fixed blood 

lactate of 4 mmol·l-1 occurred on the treadmill test. Minimum effort dwell time was set to 1s (default 

settings) with the mean horizontal dilution of precision recorded at 0.8 ± 0.4 with a mean number of 

12 ± 3 satellites recording sessions. 

To establish a fixed blood lactate accumulation at 2 (S2) and 4 (S4) mmol·l-1 the Lactate-E software 

was used33. The final treadmill velocity was deemed the maximal aerobic speed (MAS). The 

independent variables were the total mean load (internal and external) for players over the 6- week 

pre-season data collection period. Three different types of analysis were conducted, 1) Bayesian 

regression models to establish the unstandardised relationships between aerobic fitness and total 

mean load, 2) Bayesian correlations to explore standardised linear relationships between these 

variables and 3) Bayesian t-tests to estimate differences between pre and post measures for the start 

and end of the pre-season training. Bayesian analysis was used given widescale misinterpretation of 

traditional p-values and confidence intervals, along with serious issues identified with Magnitude 

Based Inference (MBI)34,35,36,,37. 

Different Bayesian regression models were run with different response distributions ranging from 

Gaussian linear to non-linear and using mildly informative priors. Model fit was evaluated using the 

leave-one-out (LOO) criterion38. A Bayesian version of R2 was also calculated as an estimate of the 

proportion of variance explained for new data39.  Graphical posterior predictive checks were used to 
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compare simulated data from the models to the observed data to check for discrepancies40. Effect size 

for differences were calculated in a similar way to standardised difference tests such as Cohen’s d with 

Bayesian posteriors as input values.  

All models were fitted using R (Core Team, 2020) regression models fitted using the brms package 

which uses Stan (Stan development team, 2018) to implement a Hamiltonian Markov Chain Monte 

Carlo with a No-U-Turn Sampler. All models were checked for convergence (rˆ=1), and graphical 

posterior predictive checks used conducted using bayesplot (Gabry, Mahr, and Buerkner; bayesplot, 

version 1.5.0, 2018). Bayesian paired t-test and associated effect sizes were fitted using the BEST 

(Bayesian Estimation Supersedes the t-Test) package41. Bayesian correlations were modelled using the 

Bayesian First Aid package (Baath, Bayesian First Aid, 2013). 
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Results 1 

During the 6-week data collection period there were a total of 257 observations for training and 2 

matches and correlations between TL measures are presented in table 2. Table 1 shows the change in 3 

running speed at the corresponding 2 and 4 mmol·l-1 lactate thresholds for individuals. The mean S2 4 

changed from 9.87 ± 2.51 km·h-1 to 11.9 ± 1.7 km·h-1 with a 98% chance of improving (ES=0.83). Mean 5 

S4 increased from 13.3 ± 2.8 km·h-1  to 15.0 ± 1.6 km·h-1 with a 94% chance of improvement (ES=0.59). 6 

Mean MAS improved from 18.6 ± 2.1 km·h-1  to 19.2 ± 2.2 km·h-1 with 95% probability of change 7 

(ES=0.63).  8 

Dose-response relationships between percent changes in aerobic fitness and internal training load 9 

measures are presented in table 3. The strongest relationships with percent changes at S2 are iTRIMP 10 

(r=0.93,R2=0.90) and luTRIMP (r=0.75,R2=0.60). Similar findings are apparent with S4 as iTRIMP 11 

(r=0.88,R2=0.82) and luTRIMP (r=0.82,R2=0.69) explained the most variance. Figure 1 demonstrates 12 

the linear relationship between iTRIMP and aerobic fitness. The weakest relationships (r=0.03 to 0.37) 13 

and lowest explained variance (R2=0.11 to 0.24) were observed when examining the dose-response 14 

relationship between training load measures and MAS.  15 

Dose-response relationships between percent changes in aerobic fitness and external training load 16 

measures are presented in table 4. PL demonstrates the strongest relationship and explains the most 17 

variance across all changes in aerobic fitness (S2, r=0.49 & R2=0.30; S4, r=0.51 & R2=0.31; MAS r=0.56 18 

& R2=0.38). All other external training load measures demonstrate weaker relationships and are highly 19 

uncertain ranging from negative to positive relationship values (table 4). 20 

  21 
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Table 1 – Individual changes of fitness following a 6-week pre-season period 22 

 S2  S4  MAS  

Participant Pre Post Change Pre Post Change Pre Post Change 

1 10.1 13 2.9 14 16 2 19.5 20.5 1 
2 10.7 11.1 0.4 12.4 11.6 -0.8 17 16 -1 
3 11.5 14 2.5 15.6 16.3 0.7 19.5 20 0.5 
4 12.4 12.5 0.1 15.9 16.3 0.4 21.5 22 0.5 
5 8.1 13 4.9 10.9 15.3 4.4 16 18 2 
6 5.6 11.5 5.9 7.8 14.2 6.4 18 19 1 
7 6.6 8.6 2 11.9 14.9 3 16 16 0 
8 12.4 13.2 0.8 16.1 16.4 0.3 22 22 0 
9 11.4 10.4 -1 14.9 14.9 -1.2 18 19 1 

Notes: All values are expressed as km·h-1, S2 = speed at 2 mmol·l-1, S4 = speed at 4 mmol·l-1, MAS= maximal aerobic speed. 
 23 

 24 

  25 
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Table 2 – Correlation matrix of training load measures.  26 

 iTRIMP bTRIMP luTRIMP eTRIMP TD HSR VHSR iHSD MS PL 

sRPE 
[95% CI] 

0.67 
[0.59-0.75] 

0.79 
[0.74-0.84] 

0.82 
[0.77-0.87] 

0.83 
[0.78-0.87] 

0.82 
[0.77-0.87] 

0.71 
[0.63-0.77] 

0.58 
[0.48-0.67] 

0.76 
[0.69-0.82 

0.31 
[0.18-0.43] 

0.84 
[0.79-0.88] 

iTRIMP 
[95% CI] 

 
 

0.78 
[0.72-0.83] 

0.84 
[0.80-0.88] 

0.76 
[0.70-0.82] 

0.65 
[0.56-0.73] 

0.50 
[0.39-0.60] 

0.44 
[0.32-0.55] 

0.50 
[0.39-0.61] 

0.26 
[0.12-0.39] 

0.69 
[0.62-0.76] 

bTRIMP 
[95% CI] 

 
 

 0.80 
[0.75-0.86] 

0.98 
[0.97-0.98] 

0.79 
[0.73-0.84] 

0.65 
[0.56-0.73] 

0.51 
[0.41-0.61] 

0.71 
[0.63-0.78] 

0.24 
[0.10-0.37] 

0.81 
[0.76-0.81] 

luTRIMP 
[95% CI] 

 
 

  0.85 
[0.80-0.88] 

0.81 
[0.75-0.86] 

0.59 
[0.49-0.68] 

0.46 
[0.34-0.56] 

0.71 
[0.64-0.78] 

0.27 
[0.13-0.39] 

0.85 
[0.81-0.89] 

eTRIMP 
[95% CI] 

 
 

   0.84 
[0.79-0.88] 

0.67 
[0.59-0.75] 

0.51 
[0.40-0.60] 

0.77 
[0.71-0.82] 

0.23 
[0.10-0.37] 

0.85 
[0.81-0.89] 

Notes: All values (r) derived from a Bayesian correlation consisting of 257 observations. 95% CI = 95% credible intervals, TD= total distance, HSR= high speed running, iHSD= individualised high-speed 
distance, VHSR= very high-speed running, MS= maximal sprinting distance, PL = PlayerLoadTM. 

  27 
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Table 3 – Dose-response relationships between internal load and changes in aerobic fitness. 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

  40 

 sRPE (AU) iTRIMP (AU) bTRIMP (AU) luTRIMP (AU) eTRIMP (AU) 

 Mean ± SD 3797 ± 346 916 ± 430 623 ± 129 1005 ± 201 1443 ± 235 

 
% Δ S2 

Bayes r [95% CI] 
 
 

-0.17 
[-0.77 to 0.50] 

0.93 
[0.74 to 1] 

0.33 
[-0.33 to 0.87] 

0.75 
[0.26 to 0.98] 

0.17 
[-0.49 to 0.77] 

Bayes R2 [95% CI] 0.12 
[0.00 to 0.40] 

0.90 
[0.76 to 0.93] 

0.23 
[0.00 to 0.54] 

0.60 
[0.12 to 0.75] 

0.13 
[0.00 to 0.42] 

 
% Δ S4 

Bayes r [95% CI] 
 
 

-0.16 
[-0.76 to 0.51] 

0.88 
[0.62 to 0.99] 

0.18 
[-0.48 to 0.81] 

0.82 
[0.44 to 0.99] 

0.00 
[-0.65 to 0.67] 

Bayes R2 [95% CI] 0.12 
[0.00 to 0.39] 

0.82 
[0.51 to 0.88] 

0.16 
[0.00 to 0.46] 

0.69 
[0.20 to 0.81] 

0.10 
[0.00 to 0.35] 

 
% Δ MAS 

Bayes r [95% CI] 
 

0.37 
[-0.27 to 0.88] 

 

0.37 
[-0.28 to 0.87] 

0.03 
[-0.59 to 0.66] 

0.26 
[-0.41 to 0.83] 

0.08 
[-0.57 to 0.69] 

Bayes R2 [95% CI] 0.24 
[0.00 to 0.55] 

0.22 
[0.00 to 0.52] 

0.11 
[0.00 to 0.38] 

0.16 
[0.00 to 0.47] 

0.11 
[0.00 to 0.38] 

Note: S2 = speed at 2 mmol·l-1, S4 = speed at 4 mmol·l-1, MAS= maximal aerobic speed, AU= Arbitrary Units, 95% CI = 95% credible intervals. 
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Table 4 - Dose-response relationships between external load and changes in aerobic fitness41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 TD (m) HSR (m) VHSR (m) iHSD(m) MS (m) PL (AU) 

 Mean ± SD 38003 ± 3559 4655± 807 1770 ± 556 30759 ± 7835 541 ± 461 3754 ± 269 

 
% Δ S2 

Bayes r [95% CI] 
 
 

-0.14 
[-0.74 to 0.51] 

-0.45 
[-0.90 to 0.17] 

-0.25 
[-0.81 to 0.41] 

-0.01 
[-0.73 to 0.56] 

-0.22 
[-0.80 to 0.43] 

0.49 
[-0.13 to 0.90] 

Bayes R2 [95% CI] 0.12 
[0.00 to 0.40] 

0.27 
[0.00 to 0.57] 

0.18 
[0.00 to 0.49] 

0.12 
[0.00 to 0.40] 

0.15 
[0.00 to 0.44] 

0.30 
[0.01 to 0.58] 

 
% Δ S4 

Bayes r [95% CI] 
 
 

-0.11 
[0.74 to 0.54] 

-0.45 
[-0.89 to 0.19] 

-0.33 
-0.86 to 0.32 

-0.12 
[-0.71 to 0.56] 

-0.15 
[-0.76 to 0.49] 

0.51 
[-0.10 to 0.92] 

Bayes R2 [95% CI] 0.11 
[0.00 to 0.37] 

0.27 
[0.00 to 0.56] 

0.22 
[0.00 to 0.54] 

0.12 
[0.00 to 0.40 

0.13 
[0.00 to 0.42] 

0.31 
[0.00 to 0.59] 

 
% Δ MAS 

Bayes r [95% CI] 
 

0.34 
[-0.30 to 0.85] 

0.11 
[-0.52 to 0.73] 

-0.06 
[-0.69 to 0.58] 

0.27 
[-0.37 to 0.82] 

-0.10 
[-0.74 to 0.54] 

0.56 
[-0.34 to 0.94] 

 
Bayes R2 [95% CI] 0.21 

[0.00 to 0.51] 
0.12 

[0.00 to 0.39] 
0.12 

[0.00 to 0.39] 
0.16 

[0.00 to 0.47] 
0.12 

[0.00 to 0.39] 
0.38 

[0.01 to 0.63] 
Note: S2 = speed at 2 mmol·l-1, S4 = speed at 4 mmol·l-1, MAS= maximal aerobic speed, TD= total distance, HSR= high speed running, VHSR= very high speed running, 
iHSD=individualised high-speed distance,  MS= maximal sprinting distance, PL = PlayerLoadTM, AU= Arbitrary Units, 95% CI = 95% credible intervals. 
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Figure 1 – Relationship between iTRIMP and changes in aerobic fitness77 

 78 

 79 
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Discussion 80 

The aim of the present study was to examine the dose-response relationship across a comprehensive 81 

range of TL measures and the consequent change in aerobic fitness during a 6-wk pre-season period. 82 

The key finding from this study was iTRIMP explained 82% and 90% of the variance of changes in S2 83 

and S4 respectively. TL measures which had the least individualised calculations (sRPE, eTRIMP and 84 

bTRIMP) showed the weaker relationships (r = 0.08 to 0.37) and explained less variance (R2 = 0.10 to 85 

0.24) between the TL measure and training outcome. Correlations between all TL measures ranged 86 

from r=0.23 to r=0.98 and demonstrate covariance. This is perhaps due to TL measures sharing similar 87 

formulae but are distinguished by how they determine intensity and/or weighting factors. 88 

Consequently, TL methods which utilised the lactate data (luTRIMP and iTRIMP) present a stronger 89 

relationship. External TL measures displayed a range from negative to positive relationships with 90 

changes in aerobic fitness. However, of the GPS/MEMS measures, PL demonstrated the strongest 91 

relationship and explained 30%, 31% and 38% of the variance of changes in S2, S4 and MAS 92 

respectively. Since the strongest dose-response relationships were observed with internal TL 93 

measures (i.e. iTRIMP), these data support the use of a TL method which incorporates individual 94 

physiological characteristics (i.e. HR–blood lactate relationship). 95 

As per the model by Impellizzeri et al., it is suggested that internal TL is influenced by individual factors 96 

such as genetics and fitness status11. Given that iTRIMP utilises the HR-blood lactate relationship, it is 97 

not surprising that incorporating these individual factors into the TL measure results in a stronger 98 

dose-response relationship. Despite similar findings in previous research, practitioners have still 99 

chosen to use sRPE as their main monitoring tools in elite soccer14. This is perhaps due to the low cost, 100 

ease of administration and the relationships with improved aerobic fitness outside of soccer19,31. sRPE 101 

has shown relationships with improved aerobic fitness in cycling42, healthy volunteers43 and during 102 

strength training44. sRPE also demonstrates a relationship with intensity (%HRmax) during continuous 103 

incremental exercise suggesting it to be a valid marker of intensity45. There is also emerging evidence 104 

that using differential RPE may provide practitioners on changes in aerobic fitness in soccer players46 105 

with similar findings across a range of tests apparent in rugby union players47. However, despite 106 

previous relationships and practical benefits our data indicates that sRPE only provides 12% to 24% of 107 

the variance explained for changes in aerobic fitness. The influence of fatigue on sRPE has previously 108 

been reported and is perhaps why there is a reduced dose-response relationship with fitness45. This is 109 

reaffirmed by the updated training process model as psychological status (i.e. perception of effort) 110 

can influence the perceived internal load, but it is not a measure of internal load11.  111 
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bTRIMP and eTRIMP have previously been reported as criterion HR based measures to validate 112 

internal and external training load measures11,27,31. However, the current investigation presents data 113 

that neither bTRIMP or eTRIMP demonstrate a credible relationship with changes in aerobic fitness 114 

(table 3). There a few explanations to why these may not relate to the training outcome. bTRIMP uses 115 

mean HR to calculate TL and does not reflect the intermittent nature of training and match play48. 116 

Whilst only 2-10% of the total distance is covered at high speed, the mean HR during soccer match 117 

play is 85% HRmax and can also reach 100% HRmax
4,49,50,51. Thus, the use of mean HR within a stochastic 118 

sport such as soccer would not be appropriate. Furthermore, eTRIMP uses arbitrary linear weighting 119 

zones which do not reflect individual physiological characteristics30. Therefore, it poses the question 120 

of validity when using these measures as a criterion of TL as previous research has done 11,27,31. 121 

Whilst GPS/MEMS may be popular to use amongst practitioners, our data questions its use for 122 

prescribing and monitoring for changes in aerobic fitness. The distances (weekly total mean) 123 

completed are presented in table 4 and represent similar values to descriptive studies52. The external 124 

TL measures ranged from 11% to 38% explained variance with changes in aerobic fitness (table 4). In 125 

attempt to individualise the high-speed running, we used the treadmill speed at S4 to create an iHSD 126 

for each player17. In spite of this, it only explained 12% for changes in S2, S4 and 16% for changes in 127 

MAS respectively, with similar findings have been observed elsewhere17. The lack of a dose-response 128 

relationship might be explained by the current studies test selection. Previous studies have found a 129 

relationship with external training load and field-based sport-specific measures of aerobic fitness. 130 

Rabbani et al.27 found relationships with ‘BodyLoad’ and changes in 30-15IFT, whereas, Fitzpatrick, 131 

Hicks and Hayes26 established relationships with time spent above MAS and >30% ASR with MAS time-132 

trial performance. Consequently, certain dose measures (internal and/or external) may relate better 133 

to different fitness tests (i.e. field or lab-based) and this remains to be explored in a comprehensive 134 

manner.  135 

The strongest relationship with the external TL measures and aerobic fitness was observed with PL. PL 136 

explained 30% (r=0.49, 95% CI = -0.13 to 0.19), 31% (r=0.51, 95% CI= -0.10 to 0.92) and 38% (r= 0.56, 137 

95% CI= -0.34 to 0.94) of variance with S2, S4 and MAS respectively. Given that PL attempts to 138 

encapsulate the whole session, quantify the range of intensities experienced and is largely influenced 139 

by duration it is not surprising this measure had the stronger relationship.  Nevertheless, PL still only 140 

explained 30-38% of variance with aerobic measures with considerably large credible intervals 141 

compared to internal TL measures. Thus, whilst there might be potential to use this measure there is 142 

still considerable uncertainty with its dose-response relationship with changes in aerobic fitness. 143 

However, potential for GPS/MEMS measures might exist for monitoring the fatigue dose-response 144 

given the associations with changes in neuromuscular performance53. If one could better understand 145 
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the fitness-fatigue paradigm by using a range of internal and external measures, this would benefit 146 

practitioners within elite soccer. 147 

There a few limitations to the current study. Unfortunately, the sample size was reduced (n=9) due to 148 

availability for rest through injury and/or illnesses. However, Bayesian analysis is better suited for 149 

making inferences on small sample sizes given informative prior information, as the MCMC methods 150 

used to produce posterior distributions do not depend on asymptotics the same way that traditional 151 

frequentist methods do54. There was also no field test conducted during the pre-season period, 152 

however, other studies have found that individualised TL methods relate to improvements in both 153 

field and laboratory measurements15. Data from Malone et al. also suggest that relationships between 154 

TL measures and training outcomes will change dependent on the type of test12. Thus, whilst this study 155 

identifies a relationship between iTRIMP and aerobic fitness, it is important to establish each 156 

measurement with appropriate outcomes11,12. The use of a lactate threshold test also provides insight 157 

into adaptation across the intensity continuum which is imperative for the pre-season period (table 158 

1).  159 

A practical application from the regression analysis revealed that for a change of zero (i.e. 160 

maintenance of fitness) to occur at S2 and S4, a mean weekly training load (iTRIMP) of 571 AU (95%CI= 161 

169-896 AU) or 643 AU (95%CI= 170-981 AU) would be required. This is slightly different to that of 162 

Manzi who established a mean iTRIMP load of 454 AU would elicit zero change at S415. One 163 

explanation could be that Manzi used senior premiership footballers who would possess a higher level 164 

of fitness compared to developing elite youth soccer players. Both regressions demonstrate the 165 

practical use of identifying dose-response relationships and how this can be implemented in training. 166 

The current data also demonstrates the considerable range at which a change of 0% would occur. 167 

Thus, it is imperative to monitor training using individualised TL measures and consider them on an 168 

individual basis.  The current data cannot be generalised beyond this stage of the season (pre-season), 169 

but it is important to recognise the practical process and certainty of establishing dose-response 170 

measures with training outcomes. Such measures would have to be recalibrated and repeated 171 

throughout the season for practitioners to maintain their understanding of the dose-response 172 

relationship. Further data are warranted over a longer period of time in order to capture both the 173 

preparative and competitive phases of the season as the dose-response relationship has the potential 174 

to change i.e. to non-linear17. Moreover, establishing a field-based lactate test would remove practical 175 

barriers for soccer clubs and further research are required in this area. 176 

This is the first study to the authors’ knowledge to comprehensively examine the dose-response 177 

relationships of internal and external TL measures with aerobic fitness in elite soccer. Similar to 178 
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previous research, iTRIMP demonstrates the strongest relationship and explains the most variance to 179 

changes in aerobic fitness.  Linear relationships were also observed between TL measures and changes 180 

in aerobic fitness. This is similar to previous research in soccer but is different to that of Rugby Union 181 

where Taylor et al. identified a curvi-linear response to TL and changes in aerobic fitness17. The authors 182 

suggest that because external TL was similar for forwards and backs, the response caused some 183 

players to improve and others to potentially overtrain to demonstrate the theorized hormesis popular 184 

in training theory. Similar data exist with Manzi et al. who have identified curvi-linear relationships 185 

with iTRIMP and autonomic nervous system responses in endurance athletes55. Therefore, when 186 

modelling TL measures with training outcomes, it is important to consider linear and non-linear 187 

approaches. Moreover, TL measures derived from GPS/MEMS provide limited explanation to the 188 

change in aerobic fitness during the pre-season period. Practitioners should be mindful of TL measures 189 

that have been previously validated against measures with no dose-response relationships with 190 

aerobic fitness. TL measures should take an individualised approach to monitoring and incorporate 191 

individualised physiological data into the TL calculation such as iTRIMP. Practitioners should also be 192 

aware that whilst this method appears to demonstrate the strongest relationship, it does require 193 

repetitive lactate testing under laboratory conditions. Practitioners must weigh up the value of the 194 

information provided against the time and resource required to obtain the information.  195 

 196 
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