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Abstract—Objective: Monitoring athlete internal workload exposure, including prevention of 

catastrophic noncontact knee injuries, relies on the existence of a custom early-warning detection 

system. This system must be able to estimate accurate, reliable, and valid musculoskeletal joint loads, 

for sporting maneuvers in near realtime and during match play. However, current methods are 

constrained to laboratory instrumentation, are labor and cost intensive, and require highly trained 

specialist knowledge, thereby limiting their ecological validity and wider deployment. An informative 

next step towards this goal would be a new method to obtain ground kinetics in the field. Methods: Here 

we show that kinematic data obtained from wearable sensor accelerometers, in lieu of embedded force 

platforms, can leverage recent supervised learning techniques to predict near real-time 

multidimensional ground reaction forces and moments (GRF/M). Competing convolutional neural 

network (CNN) deep learning models were trained using laboratory-derived stance phase GRF/M data 

and simulated sensor accelerations for running and sidestepping maneuvers derived from nearly half a 

million legacy motion trials. Then, predictions were made from each model driven by five sensor 

accelerations recorded during independent inter-laboratory data capture sessions. Results: The proposed 

deep learning workbench achieved correlations to ground truth, by maximum discrete GRF component, 

of vertical Fz 0.97, anterior Fy 0.96 (both running), and lateral Fx 0.87 (sidestepping), with the strongest 

mean recorded across GRF components 0.89, and for GRM 0.65 (both sidestepping). Conclusion: These 

best-case correlations indicate the plausibility of the approach although the range of results was 

disappointing. The goal to accurately estimate near real-time on-field GRF/M will be improved by the 

lessons learned in this study. Significance: Coaching, medical, and allied health staff could ultimately 

use this technology to monitor a range of joint loading indicators during game play, with the aim to 

minimize the occurrence of non-contact injuries in elite and community level sports. 
 

Index Terms—Biomechanics, wearable sensors, simulated accelerations, workload exposure, sports analytics, deep learning. 

  



I. INTRODUCTION 

 

One of the perpetual problems facing sports biomechanists is the difficulty translating the 

accuracy and multidimensional fidelity of laboratory-based measurements and downstream 

analysis into the sporting arena [1], [2]. In pursuit of the monitoring of the multiple contributors 

to player welfare, of acute and chronic injury risk plus external and internal workload exposure 

[3], [4], coaches today are forced to make local interpretations of surrogate measures [5]–[7]. 

Traditional outputs of biomechanical analyses, ground reaction forces and moments from 

embedded force plates and for example knee joint moments (KJM) from calculations of inverse 

dynamics, which could be considered candidate variables of interest to the monitoring 

ensemble, have so far been captive to the laboratory [3], [4], [8]–[10]. Using catastrophic non-

contact knee injuries as an example, there is a gap between the understanding of the 

mechanisms of anterior cruciate ligament injury, and the ability to monitor the collection of 

associated risk parameters during a game [11]–[14].  

 

The traditional approach to biomechanical analysis begins with laboratory retro-

reflective optical motion capture recorded in synchronization with analog force plate output 

[1], [15]. The University of Western Australia holds a legacy archive of movement data, and 

this was considered an advantage and enabler for the current data science investigation. The 

major advantage of inertial measurement units (IMU) over optical motion capture is the relative 

ease of on-field application away from the laboratory, however, there are several limitations to 

the currently accepted linear processing of their telemetry output. An IMU typically contains 

three discrete devices: an accelerometer (linear acceleration); gyroscope (angular velocity); are 

often used alongside global positioning system (GPS) trackers in a combined unit which allows 

positional information (facilitating game strategy and tactical analysis) to be included in 

workload exposure estimations [3], [4], [17], [18]. In processing IMU outputs, linear statistics 

tend to be based on gross assumptions, which for example can mistake overfitting for 

personalization [5], [6], [19]–[21]. Scientific investigation to employ IMU for movement 

classification and load estimation has so far shown more success with basic movements and/or 

unidimensional GRF analysis [22]–[25]. The IMU hardware also has inherent physical 

characteristics and design features which need to be carefully controlled. The three sensors 

have relative or independent coordinate systems, and vendors use proprietary algorithms based 

on Kalman filters [16], [26], [27] and custom orientation calibration [28]–[30] to determine the 

device position with respect to the laboratory global origin. Both the accelerometer and 

gyroscope are susceptible to linear (or quadratic) drift depending on the application of 

integration calculations [16]. The magnetometer is affected particularly by the proximity of 

ferromagnetic materialswhich can be a problem with laboratory and field equipment [16], [31]. 

One common error is the misinterpretation of IMU results during treadmill activities where 

anteroposterior acceleration is naturally minimized [24], [32]–[34]. Wearable devices are also 

prone to taskdependent fixation and skin artefacts, in other words powerful movement types 

necessitate a more stable attachment to the body, for example throwing or explosive change of 

direction activities, or any movement where the IMU is at the distal end of the moment arm 

[16], [26]. All these issues are compounded when multiple devices are deployed per participant, 

each of which must be synchronized, and where bandwidth to a Bluetooth or Wi-Fi bridge is 



shared. In a team situation, one of the most challenging problems is the logistics of managing 

the consistency of device hardware and software versions [18], [35]. In short, IMU devices are 

often preferred over optical motion capture for ease of setup and preservation of ecological 

validity, however, their use comes with a set of constraints and limitations, some of which have 

remained difficult to solve [1], [2], [4]. 

An emerging alternative method of processing IMU data output is deep learning (or 

deep neural network, DNN), which is a type of an artificial intelligence system based on a 

learning model rather than a task-specific algorithm [36]. The successful deployment of DNN 

machine learning for practical biomechanical applications benefits from a multidisciplinary 

sport science and computer science approach and early researchers have applied this 

technology with IMU to classify gait, predict vertical GRF (Fz); or segment orientation [31], 

[32], [34], [37]–[39]. Recent CNN models, e.g. AlexNet and ResNet, are highly successful at 

classifying image contents [40], [41], and it is possible using fine-tuning (transfer learning) to 

leverage these existing CNNs for related applications and from fewer training samples (i.e. 

thousands instead of millions) with concomitant reductions in CPU and GPU processing cost.  

A major step towards model deployment and acceptance in the field is proving its 

accuracy and validity in sub-optimal or adversarial conditions. Previous work has tested CNN 

models using a conventional 80:20 split of homogeneous archive movement data to predict 

three dimensional (3D) GRF/M and KJM from marker trajectories. This was achieved by 

building a “deep learning workbench” which (a) flattened 3D marker trajectories to 2D images 

in order to allow fine-tuning of image classification deep models; (b) transplanted Euclidean 

loss into the final CNN layer to facilitate multivariate regression; and (c) realized 

improvements in downstream KJM model accuracy by leveraging earlier GRF/M success [14], 

[42] (Figure 1). The current investigation began by investigating model performance using a 

training-set of simulated accelerations, against a test-set of recorded sensor accelerations, both 

with corresponding GRF/M. This required the workbench to be extended to (d) synthesize 

accelerations from marker trajectories, and (e) to automatically re-orient independent 

acceleration coordinate systems so that they are aligned with the global coordinates. 

 

 
 

Fig. 1. Deep learning workbench for biomechanics. The sequence of data science techniques 

used by the study. The practical application of these steps, and ultimate prediction of GRF/M 

waveforms, is described in the Data representation & model training subsection of the 

Methods. 

 

The contribution of this study is to investigate the resilience of theworkbench when 

faced with a test-set of sensor accelerations recorded independently of the primary researcher 



(and interlaboratory), thus providing a real-world scenario and reducing the possibility of 

home-game advantage or bias. Because the telemetry was provided by another laboratory, 

calibration parameters such as coordinate system, direction of travel, number, type and location 

of sensor accelerometers, even the make and model of the force plate systems, required 

subsequent data preparation and representation to be more generalized. Prediction analysiswas 

carried out using the Caffe deep learning framework [43] on two different CNN models, 

CaffeNet (a derivative of AlexNet) and ResNet, both via double-cascade learning, using 

weights from earlier marker trajectories to GRF/M models, themselves fine-tuned from 

ImageNet source big data [40], [41]. The CNN models were trained using accelerations 

simulated from an archive of marker trajectory data captured at The University of Western 

Australia (UWA, Perth, Western Australia), and tested with sensor accelerations recorded at 

Liverpool John Moores University (LJMU, Liverpool, UK). The accuracy and validity of the 

approach was tested by reporting correlations between CNN predicted and ground truth 

GRF/M over 100 % of time-normalized stance for two sports-related movement patterns, 

running and sidestepping. The hypothesis was that CNN models can establish the location of 

sensor accelerometers via the signature pattern of 3D accelerations, and that this would be 

demonstrated by mean GRF and GRM correlations > 0.80 across all movement types and 

stance limb combinations. It was anticipated that the results of this study would add to the 

understanding of the performance of CNN models driven by 3D accelerations, and contribute 

to future practitioners’ placement of sensor accelerometers for optimum results. 

 

II. METHODS 

 

A. Design & Setup 

 The overall design of the study is shown in Figure 2. For the current investigation, the training 

and test data were from different sources. A UWA archive of marker trajectories and GRF/M 

data from a 17–year period from 2001–2017 was used to train the CNN models. Gathered from 

multiple biomechanics laboratories, the training data files selected from the total of 458,372 

shared common optical motion capture setup (12–20 Vicon camera models MCam2, MX13 

and T40S; Oxford Metrics, Oxford, UK), analog force plate configuration (Advanced 

Mechanical Technology Inc, Watertown, MA), data capture software (Vicon Workstation v4.6 

to Nexus v2.5), and young adult athletic participant cohort (male 59.9%, female 40.1%, height 

1.770 +/- 0.101 m, and mass 74.9 +/- 34.1 kg). The UWA optical marker set has varied over 

this period from 24–67 passive retro-reflective markers. However, for this investigation a 

subset of five markers were used (sacrum SACR; bilateral thigh xTH2, and tibia xTB2, UWA 

naming convention), selected for their proximity to the sensor locations in the test-set (Figure 

3), and which made the selection of samples different to earlier studies [14], [42], [44]. The 

test-set was derived from multi data capture sessions conducted between November 2017 to 

February 2018 at LJMU using Visual3D v6.01 (C-Motion Inc, Germantown, MD). Five 

Noraxon DTS-3D 518 accelerometers (Noraxon Inc, Scottsdale, AZ) were attached to each of 

five team-sport athletes (male 80.0%, female 20.0%, height 1.829 +/- 0.080 m, and mass 75.6 

+/- 11.1 kg) at locations selected for their relevance to an independent study on body segment 

accelerations (pelvis Pelv; bilateral thigh x_Th, and shank x_Sh, LJMU naming convention) 

[23] (Figure 3).  



 

 
Fig. 2. Study overall design. 

 

 

 
Fig. 3. Location of five sensor accelerometers. Each sensor is shown artificially colored and 

labeled (LJMU naming convention). Inset, for the thigh and shank locations, the accelerometer 

was attached to a rigid plate. 

 

 

B. Data Preparation 

 Use of the existing data archive was permitted under UWA ethics exemption RA/4/1/8415 

(training), and the new data capture was carried out under LJMU ethics approval 17/SPS/043 

(test). Data processing was conducted with MATLAB R2017b (MathWorks, Natick, MA) and 

Python 2.7 (Python Software Foundation, Beaverton, OR), both selected for availability of 



function libraries. In the case of MATLAB, for access to the Biomechanical ToolKit 0.3 (Barre 

and Armand, 2014), and for Python, to conduct low-level image processing using the OpenCV 

environment, and native HDF5 file handling (opencv.org, hdfgroup.org). The operating system 

was Ubuntu v16.04 (Canonical, London, UK), running on a desktop PC, Core i7 4 GHz CPU, 

with 32 GB RAM and NVIDIA multi-GPU configuration (TITAN X & TITAN Xp; NVIDIA 

Corporation, Santa Clara, CA). The data preparation phase was designed to maximize the 

integrity of the source marker trajectories, sensor accelerations, and force plate data ahead of 

model training and prediction. The intention was to minimize capture errors (original and new), 

duplicate files, and select high-quality data rows with labeled marker trajectories (training), 

sensor accelerations (test), and associated GRF/M. Each trial was normalized to stance phase, 

and trimmed according to custom lead-in periods to best inform the model as defined by earlier 

prototypes [14], [44]–[46]. Basic kinematic templates (based on movement at the sacrum) were 

used to identify running and sidestepping/cutting in the training and test data (running >= 2.16 

m/s [47]). The sidestepping movement type in particular was selected for its relevance to 

sporting movements, and knee injury risk, but also for its greater complexity compared with 

the literature. The majority of trials exhibited right stance limb, with the movement towards 

the left (a small proportion of sidestepping with crossover technique were removed). The 

running movement in the test data capture was also sub-categorized into slow (2–3 m/s), 

moderate (4–5 m/s), and fast (> 6 m/s) trials. Registration of a successful foot-strike (FS) onto 

the force plate, and subsequent toe-off (TO), were both automatically detected using accepted 

vertical force and stance limb parameters [48]–[50], which were then translated to the test 

accelerations by virtue of synchronized force plate and accelerometer telemetry. The lack of a 

foot-mounted sensor meant the determination of FS from minimum vertical acceleration at this 

location was unavailable [51], and accelerations from the shank sensor were found to be 

unreliable for this purpose. Identification of the TO gait event from IMU data was considered 

out of scope for this study, being the primary research objective of other investigations [52]–

[54]. Virtual IMUs were placed on the mocap skeletons by converting the training-set of marker 

trajectories into accelerations via double-differentiation, thereby simulating sensor 

accelerometer data. Since an accelerometer is a free body with an independent coordinate 

system [30], in order to model the relationship between 3D accelerations and GRF/M, the 

accelerations (both those synthesized and recorded) were required to be aligned. Two 

mathematical methods for automatically re-orienting the accelerations were tested and 

reported. The first, was to combine the three directional components into one acceleration 

magnitude via Euclidean Norm (Figure 4, left). The second, employed Principal Component 

Analysis (PCA) via Singular Value Decomposition (SVD), whereby a custom rotation matrix 

was assembled with the ability to re-orient 3D accelerations in the direction of the greatest PCA 

energy (i.e. forward, for all movement types being investigated). For the training data, a one-

off re-orientation was applied by calculating the PCA rotation matrix according to the 

3Dacceleration at the sacrum location and applying this to all five virtual accelerations. Only 

one rotation matrix was necessary for the simulated accelerations because their source marker 

trajectories were aligned with the laboratory global coordinate system. For the test-set of 

recorded sensor accelerations, these were all independent and hence an individual rotation 

matrix was calculated and applied to each. With this test cohort, the effect of PCA can be seen 



in the sweep of acceleration energy towards the forward (anteroposterior) direction (Figure 4, 

right).  

 
Fig. 4. Visualization of NORM- (left), and PCA-aligned 3D accelerations (right), sample 

sidestep right stance limb. Greater signal energy is evident in the stance limb sensors R_Th 

and R_Sh. NORM-aligned accelerations sacrifice dimensionality information and hence the 

three vectors are identical. PCA-aligned accelerations demonstrate a sweep of information 

towards Anterior Accx (forward, red). 

 

 

C. Data Representation & Model Training 

Model training and prediction was carried out using the Caffe deep learning framework [43]. 

Fine-tuning CNN models allows for new investigations with smaller sample sizes to improve 

their performance by leverage weighting relationships built on earlier training at scale. In deep 

learning terms, the number of training samples in this study (minimum 1,176, maximum 5,378) 

was small, and therefore the problem was a candidate for fine-tuning [40]. A derivative of the 

2012 IVSLRC (imagenet. org) challenge winner AlexNet called CaffeNet had been selected as 

the strongest model in a similar investigation, and the double-cascade approach (CaffeNet 

through GRF/M to KJM) had also demonstrated a significant improvement in correlations of 

+4.2% [14], [42]. For comparison, and to test a deeper more general model, this investigation 

also reports a second CNN, ResNet-50, the 2015 IVSLRC challenge winner [41]. Both AlexNet 

and ResNet-50 CNN are image classifiers which did not match the required four dimensional 

input (3D accelerations plus time) and six vectorGRF/Mwaveform output. In order to fine-tune 

(double-cascade) from these CNN and leverage their existing training, the aligned 4D 

acceleration inputs were flattened into 2D images by representing the five sensor locations on 

the horizontal axis, stance-normalized time frames upwards on the vertical axis, and by use of 

the Python SciPy imsave function to map the 3D accelerations onto the RGB colorspace [55], 

[56] (Figure 5). Then, so that they would generate GRF/M waveforms (not simply label 

classifications), the output layer of each CNN was modified from a SoftMax binary to a 



Euclidean loss layer, which turned the CNN into a multivariate regression network. Most CNNs 

are classifiers which means the number of features in their output layer is naturally small 

because it only contains weighting predictions for a discrete set of labels. The high capture 

frequency of the force plate analog data now being output by the modified network resulted in 

a non-standard CNN profile (output features >>input features) which was addressed by 

reducing the number of output features via PCA [42]. The accuracy and validity of the approach 

was measured by comparing the correlation of values predicted by the CNN models with the 

ground truth GRF/M over 100 % of time normalized stance. For further comparison, relative 

root mean squared error rRMSE was reported for individual use cases [57]. CNN model 

predictions were conducted using a single fold of each movement type and stance limb 

iteration, including an overlaid combination which flipped the left stance limb onto the right, 

to test the effectiveness of this data augmentation and whether the increase in training samples 

improved performance. Using the simulated accelerations as the training sets, and the recorded 

accelerations as the test sets generated variable ratios of training to test samples, however 

always in favor of the training-set as per convention. For time brevity, single fold experiments 

were conducted, earlier investigations having demonstrated similarity between single and k-

fold analysis [42]. All CNN models and related digital material supporting this study have been 

made available (digitalathlete.org).   

 

 



 

Fig. 5. Contact sheets of test accelerations flattened into 2D images.Sidestepping movement 

combined left and right stance, 43 samples, NORM-aligned accelerations (left) loss of 

directional information causes monochrome images, PCA-aligned (right) retains color. 
 

 

III. RESULTS 

Compared with ground truth GRF/M, sets of correlations were compared for the two CNN 

models CaffeNet (see Supplementary Materials, Table I) and ResNet-50 (see Supplementary 

Materials, Table II), both modes of acceleration re-orientation Euclidean Norm (accNORM) 

and alignment by PCA rotation matrix (accPCA), for discrete GRF/M channels Fx, Fy, Fz, Mx, 

My, Mz, and their overall means Fmean and Mmean. Experiments 1.1 and 2.1 list the 

correlations for the marker to GRF/M models used as seeds for the double-cascade, and are 

included as reference information. The strongest individual GRF channel correlation was 

considered first. Across the three GRF channels Fx, Fy, Fz, the highest correlation was found 

for vertical Fz 0.97 (rRMSE 13.92%) using CaffeNet (accNORM, experiment 1.8) for moderate 

speed running off the left stance limb. By channel, anterior Fy was predicted with a correlation 

up to 0.96 (rRMSE 17.06%), and lateral Fx 0.87 (rRMSE 21.56%) both with ResNet-50 off the 

left stance limb, the former for slow running (accPCA, experiment 2.21), the latter sidestepping 

(accNORM, experiment 2.24). Results are shown bolded in their respective tables. The mean 

of the three GRF, r(Fmean) achieved 0.89 for CaffeNet (accNORM, experiment 1.24), by 

comparison, ResNet-50 managed 0.87 (accNORM, experiment 2.24), both for the same 

corresponding experiment with a sidestep off the left stance limb (Figures 6 & 8). The mean of 

the three GRM, r(Mmean) proved less than satisfactory, CaffeNet making 0.65 (accPCA, 

experiment 1.29), and ResNet-50 0.65 (accPCA, experiment 2.29), again both for the same 

sidestep off the right stance limb (Figures 7 & 8).  

 

 
Fig. 6. Ground truth GRF versus predicted response. Test-set ground truth mean GRF (blue, 

ticks), and predicted response (red), CaffeNet shown left r(Fmean) 0.89, ResNet-50 right 

r(Fmean) 0.87, both double-cascade, interlaced output, correlations over 100 % stance phase, 

25 samples. Cohort selected for strongest r(Fmean) by CNN (sidestep off the left stance 

limb), min/max range (shaded areas) and mean (solid lines) depicted. 



 

 
Fig. 7. Ground truth GRM versus predicted response. Test-set ground truth mean GRM (blue, 

ticks), and predicted response (red), CaffeNet shown left r(Mmean) 0.65, ResNet-50 right 

r(Mmean) 0.65, both double-cascade, interlaced output, correlations over 100 % stance phase, 

18 samples. Cohort selected for strongest r(Mmean) by CNN (sidestep off the right stance 

limb), min/max range (shaded areas) and mean (solid lines) depicted. 

 

 
 

Fig. 8. Ground truth GRF/M versus predicted response. Bland-Altman representations of 

Figures 6 & 7. The marker color from dark to light illustrates time from FS. 

 

IV. DISCUSSION 

Convention dictates that research in the biomechanical sciences is strictly controlled by the 

primary researcher. The use of broad data sets to train (or fine-tune) deep learning models 

already breaks this paradigm, but this study went further by inviting a test-set of experiments 

conducted independently at LJMU, where much of the study design and instrumentation was 

different to that used for the historical UWA data capture used to train the CNN models. 



Performance under these conditions would address the most common criticism that somehow 

the deep learning model had prior knowledge of test samples (or home-game advantage). 

As demonstrated by this study, the use of strategies to automatically re-orient 3D 

accelerations freed the operator from the typical requirements of an initialization posture or 

sensor calibration. Both the Euclidean Norm and PCA rotation matrix methods solve a major 

hurdle for adoption in the field while being more elegant than previous solutions [27]–[30], 

[32], [39]. The only drawback being the look-ahead processing requirement which makes either 

solution ‘near’real-time, but this is outweighed by the advantages including being agnostic to 

the direction of participant travel. With no clear separation of performance characteristics, the 

two re-orientation methods warrant further investigation, particularly when mathematically the 

Euclidean Norm solution is more straightforward to implement whereas the PCA approach is 

a richer source of vector information. 

In the competition between the classic CaffeNet model [40] and the more recent 

ResNet-50 [41], CaffeNet seemed to perform more strongly where there was greater signal 

strength, e.g. Fz, r(Fmean). ResNet-50, on the other hand, outperformed CaffeNet in conditions 

of greater noise, e.g. Fx, which reflects the suitability of the models to each particular use-case, 

due to either CNN architecture or initial model training. It was theorized that coarse networks 

like CaffeNet will perform better than deeper networks when the raw source has been blown 

up to meet the image input requirements, in this case five sensors interpolated to 227 pixels. 

The LJMU test running data capture was carried out at a number of different speeds 

and acceleration/deceleration profiles. In experiments, these were initially grouped by stance 

limb, and subsequently by a custom L & R combination overlay technique. Time-normalizing 

the input data according to stance, was expected to reduce the effect of different running speeds, 

however, variance remained in the results: CaffeNet being the strongest performer, accNORM, 

running subtypes r(Fmean) 0.72 •} 0.10 (accNORM, experiments 1.2–1.11), r(Fmean) 0.74 

•} 0.09 (accPCA, experiments 1.12–1.21); and some of the highest correlations were seen with 

the samples of running at moderate speed, perhaps due to conformity with the source UWA 

training data.  

Mean GRF Fmean for ResNet-50 combined stance limb variants outperformed the 

weakest single limb versions (e.g. experiments 2.30 vs 2.22 and 2.23). This is an important 

finding because a stance-independent model would be far more applicable to game scenarios 

where the landing limb is unpredictable, and would remove a layer of movement classification 

hierarchy from the system. The strength of ResNet over CaffeNet in this use-case reflects the 

preference of deeper CNN architectures to reward greater raw detail with higher learning 

capacity. This is because these more recent models retain the original size and granularity of 

the input image through a much longer sequence of convolutions. In other words, ResNet 

combined L&Rmodels performed better than a rudimentary mean, and highlights the 

generalization of the proposed method. 

The major limitation of this study is the selection of sensor locations. Whereas the shank 

sensor accelerations were able to successfully identify stance limb (Figure 4), the vertical 

acceleration profile at the shank was found to be insufficient to identify the FS event. The lack 

of mediolateral acceleration energy for running trials was cited for the lowFx and associated 

mean GRF correlations, due to the CNN model being unable to distinguish signal from noise 

for these movements. The same symptom of the model misinterpreting noise was considered a 



contributor to lower GRM correlations. This finding demonstrated the importance of sensors 

being located as distal as possible in each plane from the center of mass, in order to maximize 

acceleration profiles, moreover the improvement in correlation performance for sidestepping 

illustrated the ability of CNN models to distinguish sensor locations by establishing unique 

internal 3D acceleration signatures. This location awareness is despite a combined acceleration 

lag and smoothing effect most notable in the response from FS [58], contributed to by the 

evolution of the workbench code-base from marker-based motion capture input, which down-

sampled input accelerations to 250 Hz, and the proprietary on-board telemetry filtering. The 

models showed agreement between the two methods (p < 0.05) apart from the difficulty with 

predicting Fx and Mx, Fz and Mz, particularly at the FS ramp (Figure 8, [59]). 

Overall, the performance of the deep learning workbench for GRF correlations was 

impressive when compared with the literature (traditional linear and data science methods) 

against a hypothesis more demanding than the unidirectional vGRF (Fz), movement 

classification, or counting of steps most commonly investigated [22]–[25], [31], [32], [34], 

[37]–[39], [60]–[62]. While the unidirectional two-mass model approach of Clark et al. [63], 

for example, reported encouraging agreement of R2 = 0.95 +/- 0.04, this was for the vertical 

force component of running only. In contrast, the multidimensional mass-spring damper model 

investigation by Verheul et al. [62], reported errors in resultant GRF loading rate of 31%during 

accelerations and 34 % of RMSE during decelerations. This suggests that the use of physical 

models has limitations for more dynamic multidimensional team-sport specific tasks, providing 

further support for the use of a deep learning approach as presented in this paper. This study’s 

hypothesis of mean GRF and GRM correlations > 0.80 was supported for sidestepping 

r(Fmean) regardless of re-orientation methods, CNN models, and stance limb, including the 

combined experiment 1.31 (CaffeNet, acc- NORM) which achieved 0.88. It was noted that the 

definition of LJMU sidestepping execution at 90◦ was more aggressive than that of UWA at 

45–60◦, but that suspected homogeneity in FS pattern inherent to sidestepping with respect to 

running outweighed any protocol disadvantage. 

The deep learning workbench employed by this study has demonstrated applicability to 

biomechanics 4D input and multivariate waveform output. The success of this approach was 

partly due to the custom nature of the code development, rather than the use of off-the-shelf 

functions. Plus, these results would not have been possible without headless background batch 

operation, and on-the-fly generation of CNN architecture and hyperparameter optimization 

instructions (‘prototxt’ files) allowing for the dropin of different models as required.  

Future investigations should focus on expanding the number of test participants. To 

improve acceleration signature identification and subsequent model performance, it is strongly 

recommended to include sensors located at C7 (as typical for team sport) and on each foot. The 

addition of gyroscope and magnetometer sensor telemetry is expected to increase correlations 

(the Noraxon sensors used in this study provided 3D linear accelerations only), but would 

require synthesizing or gathering such information for model training.  

 

V. CONCLUSION 

A biomechanically relevant system of on-field workload exposure monitoring and acute injury 

prediction could be a revolutionary contribution to player game preparedness and career 

longevity. Through a unique “deep learning workbench for biomechanics,” using legacy 



marker trajectory trials against new (and independent) accelerometer-driven data capture, the 

results from this study improve on the literature, but under more challenging sport-related tasks 

and systematic conditions that make it more relevant for on-field use. Model performance was 

dependent on gross movement pattern (running or sidestepping) which will be improved by 

more sophisticated type classification. Both CaffeNet and ResNet-50 demonstrated the ability 

to profile sensor body location from acceleration signatures. Efforts to address the limitations 

of no distal sensor location (including C7 and both feet), number of test participants and 

training samples, and downstream smoothing effects are expected to strengthen the accuracy 

for all movement types, and particularly the moments of ground kinetics, which could open up 

this technology for practical application and potentially the prediction of joint kinetics and 

tissue loading. These results would not have been possible without the multidisciplinary 

collaboration between sport science and computer science, but the dogma of the invested linear 

approach and perceived data ownership remain a barrier to adoption. The harvesting of existing 

team IMU telemetry archives using a deep learning workbench as presented here has the 

potential to trigger a revolution in the accuracy and validity of wearable sensors from 

community fitness to professional sport.  
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