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Abstract. Cross-section curves play an important role in many fields. Analyti-

cally representing cross-section curves can greatly reduce design variables and 

related storage costs and facilitate other applications. In this paper, we propose 

composite generalized elliptic curves to approximate open and closed cross-sec-

tion curves, present their mathematical expressions, and derive the mathematical 

equations of surface reconstruction from composite generalized elliptic curves. 

The examples given in this paper demonstrate the effectiveness and high accu-

racy of the proposed method. Due to the analytical nature of composite general-

ized elliptic curves and the surfaces reconstructed from them, the proposed 

method can reduce design variables and storage requirements and facilitate other 

applications such as level of detail.        

Keywords: Curve modelling, composite generalized elliptic curves, surface 

modelling, composite generalized elliptic curve-based surface reconstruction, an-

alytical mathematical expressions. 

1 Introduction 

Cross-section curves define two-dimensional contours of 3D objects. They have a lot 

of applications in many fields. Especially, they are used in medical imaging to recon-

struct 3D models from cross sections for visualization.  

Cross-sections obtained from imaging techniques or 3D polygon models are defined 

by discrete points, which involve many design variables, require high storage costs, 

cause slow network transmission, and do not meet the requirements of many applica-

tions such as level of detail where different resolutions are used in different situations.  

In order to tackle the above problems, this paper will propose composite generalized 

elliptic curves, present their analytical mathematical expressions, and investigate sur-

face reconstruction from composite generalized elliptic curves. Examples will be given 

to demonstrate the effectiveness and accuracy of the proposed method.     

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/475601627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

2 Related Work 

Various methods have been developed to reconstruct 3D models from cross sections 

called cross-section curves in this paper. Here, we briefly review some of them.  

Early work on surface reconstruction from cross sections given in [1] found mini-

mum cost cycles in a directed toroidal graph and presented a fast triangular tiling algo-

rithm to reconstruct 3D surfaces consisting of triangular tiles from a set of cross-section 

curves. Using the contour information obtained from computed tomography, ultrasound 

examinations, and nuclear medicine examinations, the comparison among several tri-

angular tiling algorithms are made in [2]. Through pruning the Delaunay triangulations 

obtained between two adjacent cross sections, a 3D polyhedron model was constructed 

whose triangular faces intersects with the planes along the given cross-sections [3]. 

Assuming that cross sections are perpendicular to the z-axis and reconstructed surfaces 

can be represented in cylindrical coordinates, fitting tensor product splines to the given 

cross sections with the least squares method was used to reconstruct open and closed 

3D surfaces in [4]. A method was proposed in [5] to obtain a triangulated mesh from 

cross sections and a piecewise parametric surface was fitted to the triangulated mesh to 

produce a reconstructed surface. 3D reconstruction was achieved by decomposing one 

branching problem into several single-branching problems and using the closest local 

polar angle method to connect single branch contours [6]. A reconstructed surface was 

obtained in [7] by imposing three constraints on it, deriving precise correspondence and 

tiling rules from the constraints, and making the reconstructed surface produce the orig-

inal contours. In order to avoid the problems caused by correspondence, tiling, and 

branching, surface reconstruction was formulated in terms of a partial differential equa-

tion and its solution was derived from the distance transform for dense contours and by 

adding a regulation term to ensure smoothness in surface recovery for sparse contours 

[8, 9]. The Bernstein basis function (BBF) network, which is a two-layer basis function 

network, was used to fit closed parametric curves or contours to the edge points of 

planar images through the network training and reconstruct 3D surfaces from fitted 

parametric curves [10]. Using cross-section ellipses plus a displacement map for mod-

elling and deformations of human arms and legs was given in [11]. The work in [11] 

was further extended to human deformations in [12]. Based on a stratification of poly-

gons and anisotropic distance functions, an implicit surface was used to reconstruct a 

3D model from cross sections, which avoid correspondence and branching problems 

[13]. A 𝐺1 continuous composite surface consisting of skinned, branched, and capped 

surfaces was used in [14] to reconstruct 3D models where each of skinned surfaces was 

represented by a B-spline surface approximating cross sections and transformed into a 

mesh of rectangular Bezier patches and triangular 𝐺1   surfaces were constructed in 

branched and capped regions. A new algorithm was proposed in [15] to deal with curve 

networks of arbitrary shape and topology on non-parallel cross-section planes with ar-

bitrary orientations. How to provide topological control during surface reconstruction 

from an input set of planar cross-sections was investigated in [16]. A template model 

was used to better capture geometric features and deformed to fit a set of cross section 

curves in [17]. A globally consistent signed distance function was used in [18] to con-

struct closed and smooth 3D surfaces from unorganized planar cross sections. Based on 
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the idea of incremental sampling and potential field iterative correction, radial basis 

function and signed distance field based surface reconstruction is used in orebody mod-

elling [19]. 

Different from the above work, in this paper, we will first propose analytical  math-

ematical representations of cross-section curves called composite generalized elliptic 

curves including generalized ellipses, generalized elliptic curves, and composite gener-

alized elliptic segments. Then we give analytical mathematical formulae for surface 

reconstruction from composite generalized elliptic curves.     

3 Generalized ellipses (GEs) and generalized elliptic curves 

(GECs) 

Elliptic cross sections have been used in sweeping surfaces to describe human arms, 

legs, torso and neck and their shape changes in [12] by Hyun et al. The elliptic cross 

section-based sweeping surfaces are mathematically formulated as [12] 

𝑺(𝑢, 𝑣) = 𝑹(𝑢)𝑬𝑢(𝑣) + 𝑪(𝑢) 

            = [

𝑟11(𝑢) 𝑟12(𝑢) 𝑟13(𝑢)
𝑟21(𝑢) 𝑟22(𝑢) 𝑟23(𝑢)

𝑟31(𝑢) 𝑟32(𝑢) 𝑟33(𝑢)
] [

𝑎(𝑡) 𝑐𝑜𝑠( 𝑣)

𝑏(𝑡) 𝑠𝑖𝑛( 𝑣)
0

] + [

𝑥(𝑢)
𝑦(𝑢)

𝑧(𝑢)
]            (1) 

where 𝑺(𝑢, 𝑣) represents a sweep surface, 𝑹(𝑢) and 𝑪(𝑢) are rotation and translation, 

respectively, and  𝑬𝑢(𝑣) defines a standard ellipse of variable size. 

Human bodies have irregular cross-section shapes. They cannot be well approxi-

mated with standard ellipses, which lead to unrealistic human body modelling as shown 

in Fig. 1. In the figure, we give groundtruth cross-section curves of human left leg, right 

arm and torso in (a), (b) and (c), respectively, which are taken from a human body 

model created with polygon modelling and highlighted in red. Using standard ellipses 

to approximate these cross-section curves, we obtain those highlighted in blue in the 

figure. Comparing the red and blue curves in Fig. 1, we can conclude that very large 

errors are introduced by standard ellipses.      

To tackle the above problem, we propose composite generalized elliptic curves to 

approximate cross-section curves accurately. Composite generalized elliptic curves 

contain generalized ellipses, generalized elliptic curves, and composite generalized el-

liptic segments. Generalized ellipses and generalized elliptic curves will be investigated 

in this section. Composite generalized elliptic segments will be developed in the fol-

lowing section.  

Generalized ellipses are applicable to closed curves. Since open curves are also 

widely applied in geometric modeling and computer-aided design, generalized elliptic 

curves are proposed to approximate open curves.   

Through rotation operations, cross-section curves can be changed to lie in one of 

𝑥˗𝑦, 𝑦˗𝑧, and 𝑥˗𝑧 planes. Taking closed cross-section curves in the 𝑥˗𝑦 plane as an ex-

ample, their generalized ellipses can be mathematically formulated as   

𝑥(𝑣) = 𝑎0 + ∑(𝑎2𝑗−1

𝐽

𝑗=1

𝑐𝑜𝑠2 𝑗 𝜋𝑣 + 𝑎2𝑗 𝑠𝑖𝑛2 𝑗 𝜋𝑣) 
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𝑦(𝑣) = 𝑏0 + ∑(𝑏2𝑗−1

𝐽

𝑗=1

𝑠𝑖𝑛 2𝑗𝜋 𝑣 + 𝑏2𝑗 𝑐𝑜𝑠2 𝑗𝜋 𝑣) 

𝑧(𝑣) − 𝑧𝑐 = 0                                      (2) 

where 0 ≤ 𝑣 ≤ 1, 𝑎𝑗  and 𝑏𝑗  (𝑗 = 0, 1, 2, 3, ⋯ , 2𝐽) are unknown constants, which can 

be determined by fitting the generalized ellipse to the discrete points defining a closed 

cross-section curve. 

 

   
(a) Cross section curves of left leg 

 
(b) Cross section curves of right arm 

 
(c) Various cross section curves of torso 

Fig. 1.  Comparison between groundtruth cross-section curves of human body and ap-

proximated ellipses. 

 

For a given closed curve defined by 𝑛 + 1 discrete points 𝑿𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖]𝑇(𝑖 =
0, 1, 2, ⋯ , 𝑛), we first determine the total length 𝐿 of the closed curve and the length 𝐿𝑖 

from the starting point 𝑿0 to the point 𝑿𝑖 . Then, we use 𝑣𝑖 = 𝐿𝑖 𝐿⁄  to obtain the values 

of the parametric variable 𝑣 at these points. Finally, we obtain all the unknown con-

stants by using Eq. (2) to fit these 𝑛 + 1 points.  

For the groundtruth cross-section curves highlighted in red in Fig. 2, which are taken 

from a human bode model, we use standard ellipses and generalized ellipses to approx-

imate them. The obtained results are shown in the same figure where the blue colour 
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shows the curves obtained from standard ellipses, the green colour shows the curves 

obtained from generalized ellipses, and 𝐽 indicates the terms used in Eq. (2).  

 

 
(a) 𝐽 = 2               (b)  𝐽 = 3                (c)  𝐽 = 4 

 
                        (d)  𝐽 = 3                    (e)   𝐽 = 7                       (f)  𝐽 = 10 

Fig. 2. Comparison of curves created by standard and generalized ellipses. 

 

Comparing the curves shown in Fig. 2, we can conclude: (1) there are very big dif-

ferences between the standard ellipses and the groundtruth curves, (2) generalized el-

lipses approximate the groundtruth curves very well, (3) the groundtruth curves can be 

approximated accurately as the terms in Eq. (3) increase.      

For closed curves approximated by Eq. (2), the starting point is same as the ending 

point. For open curves, the starting point is different from the ending point and Eq. (2) 

is not applicable. Therefore, we define the following generalized elliptic curves to ap-

proximate open curves in the 𝑥˗𝑦 plane. 

𝑥(𝑣) = 𝑎0 + ∑(𝑎2𝑗−1

𝐽

𝑗=1

𝑐𝑜𝑠 𝑗 𝜋𝑣 + 𝑎2𝑗 𝑠𝑖𝑛 𝑗 𝜋𝑣) 

𝑦(𝑣) = 𝑏0 + ∑(𝑏2𝑗−1

𝐽

𝑗=1

𝑠𝑖𝑛 𝑗𝜋 𝑣 + 𝑏2𝑗 𝑐𝑜𝑠 𝑗𝜋 𝑣) 

𝑧(𝑣) − 𝑧𝑐 = 0                                      (3) 

where 0 ≤ 𝑣 ≤ 1, 𝑎𝑗 and 𝑏𝑗 (𝑗 = 0, 1, 2, 3, ⋯ , 2𝐽) are unknown constants. 

The unknown constants in Eq. (3) can be determined as follows. For discrete points 

𝑿𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖]𝑇(𝑖 = 0, 1, 2, ⋯ , 𝑛) of a curve, we calculate the total length 𝐿 of the 

curve and the length 𝐿𝑖 from the starting point 𝑿0 to the point 𝑿𝑖 , and obtain 𝑣𝑖 = 𝐿𝑖 𝐿⁄ . 

Then, we use 𝑥0 = 𝑥(𝑣0) and 𝑥𝑛 = 𝑥(𝑣𝑛) to determine two of the unknown constants 

𝑎𝑗  (𝑗 = 0, 1, 2, ⋯ ,2 𝐽)  and 𝑦0 = 𝑦(𝑣0)  and 𝑦𝑛 = 𝑦(𝑣𝑛)  to determine two of the un-

known constants 𝑏𝑗  (𝑗 = 0, 1, 2, ⋯ ,2 𝐽) in Eq. (3). All the remaining unknown con-

stants in Eq. (3) are determined by using it to fit the remaining 𝑛 − 1 points 𝑿𝑖  (𝑖 =
1, 2, ⋯ , 𝑛 − 1). If tangential continuity is required, two more conditions of the first 

derivatives at the starting and ending points are used to determine two more unknown 

constants for each of the 𝑥 and 𝑦 components. Then, the remaining unknown constants 

are determined by curve fitting. 

In Fig. 3, we use the generalized elliptic curve highlighted in red to approximate the 

original open curve highlighted in blue. The figure shows that when the total terms are 



6 

not many, large errors are introduced as shown in Fig. 3(a). When more terms are used, 

the errors are reduced as shown by Fig. 3(d).  

 

Table 1. Errors between the original open curve and open GEC. 

𝐽 3 5 7 11 21 31 

ErM 2.2492 1.8117 1.2384 0.6711 0.3047 0.2197 

ErA 0.7459 0.4587 0.2519 0.1163 0.0460 0.0233 

𝐽 41 51 61 71 81 91 

ErM 0.1417 0.0900 0.0608 0.0369 0.0101 1.34 × 10−4 

ErA 0.0138 0.0091 0.0072 0.0058 7.45 × 10−4 4.35 × 10−6 

 

 

   
(𝑎)  𝐽 = 3                                                    (b)  𝐽 = 5        

   
                        (c)  𝐽 = 7               (d)  𝐽 = 11   

Fig. 3. Comparison between the original curve and generalized elliptic curve.   

 

In Table 1, we give a quantity comparison of the errors between the original open 

curve and the generalized elliptic curve. In the table, ErM and ErA indicate the maxi-

mum error and average error, respectively. For the original open curve shown in Fig. 3, 

the maximum error reduces more slowly than the average error. Only when many terms, 

i. e., 𝐽 = 91, are use used, small errors are obtained. It indicates the necessity of using 

composite generalized elliptic segments to reduce design variables and improve the 

accuracy of curve fitting, which will be investigated in the following section.   

4 Composite generalized elliptic segments (CGESs) 

For an open or closed curve with a complicated shape, using a single generalized elliptic 

curve or a single generalized ellipse to approximate it may require many terms in Eq. 

(2) or (3). In order to reduce design variables, raise computational efficiency, and im-

prove interactive modelling performance, it is worthy of developing a more efficient 

algorithm to cope with open and closed curves with complicated shapes and the corre-

sponding surface reconstruction. 

A complicated open and closed curve can be decomposed into several simpler ones. 

In order to approximate these decomposed curve segments, we use Eq. (3) to approxi-

mate each of them and name each segment as a composite generalized elliptic segment.  
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As an example, we consider how to use two composite generalized elliptic segments 

to approximate an open curve with a complicated shape highlighted in blue shown in 

Fig. 4(a). For the curves consisting of more than two composite generalized elliptic 

segments, the treatment is the same. 

Firstly, we segment the blue open curve in Fig. 4(a) into two separate curves ABC 

and CDE shown in Figs. 4(b) and 4(c), respectively. With Eq. (3) and the method of 

determining its unknown constants given in Section 3, we can determine the two com-

posite generalized elliptic segments highlighted in red in Figs. 4(d), 4(e), and 4(f).  

Then, we use one single generalized elliptic curve to approximate the open curve and 

depict the obtained curve highlighted in pink in Figs. 4(g), 4(h) and 4(i). In the figure, 

𝐽 indicates the terms defined in Eq. (3).   

 

 
Fig. 4.  Comparison of curve approximation between two CGESs and one GEC. 

 

First, we investigate the accuracy of using two composite generalized elliptic seg-

ments and one single generalized elliptic curve when using almost the same number of 

unknown constants. The unknown constants used by two composite generalized elliptic 

segments and one single generalized elliptic curve shown in second and third rows of 

Fig. 4 are almost the same. For example, the total unknown constants for two composite 

generalized elliptic segments shown in Fig. 3(d) are (2 × 2 + 1) × 4 = 20, and the to-

tal unknown constants for the generalized elliptic curve shown in Fig. 4(g) are (5 × 2 +

(𝑑) 𝐽 = 2 (𝑒) 𝐽 = 4 

(𝑔)  𝐽 = 5 (ℎ)  𝐽 = 9 (𝑖)   𝐽 = 13 

(𝑎) (𝑏) (𝑐) 
𝐴 𝐴  

(𝑓) 𝐽 = 6 

𝐵 𝐵 

𝐶 
𝐶 𝐶 

𝐷 

𝐸 

𝐷 

𝐸 
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1) × 2 = 22. In spite of almost the same number of unknown constants, the two com-

posite generalized elliptic segments shown in Fig. 4(d) approximate the open curve 

accurately. In contrast, very large errors are caused by the generalized elliptic curve 

shown in Fig. 4(g), indicating that composite generalized elliptic segments are much 

more accurate than generalized elliptic curves.    

Next, we set the errors of the two composite generalized elliptic segments to be 

roughly same as the errors of the generalized elliptic curve, and compare the number of 

the unknown constants in Table 2 where ErM and ErA indicate the maximum and av-

erage errors between the groundtruth curve and the approximated ones. The total un-

known constants for 𝐽 = 5  of the two composite generalized elliptic segments are 

(5 × 2 + 1) × 4 = 44. In contrast, the total unknown constants for 𝐽 = 25 of the gen-

eralized elliptic curve are (25 × 2 + 1) × 2 = 102. In order to achieve roughly same 

maximum and average errors, the total unknow constants of the generalized elliptic 

curve are 2.32 times of the two composite generalized elliptic segments. It indicates 

that using multiple composite generalized elliptic segments to approximate a compli-

cate curve can noticeably reduce the design variables in comparison with using a single 

generalized elliptic curve.      

 

Table 2. Comparison of errors between two CGESs and one GEC. 
 Composite generalized elliptic segments Generalized elliptic curve 

 𝐽 = 5 𝐽 = 7 𝐽 = 15 𝐽 = 39 𝐽 = 25 𝐽 = 40 𝐽 = 59 𝐽 = 79 

ErM 0.13 0.09 0.04 1.00× 10−5 0.49 0.23 0.08 5.30× 10−5 

ErA 0.04 0.03 0.01 3.08× 10−6 0.06 0.03 0.01 3.57× 10−6 

5 Composite generalized elliptic curve-based surface 

reconstruction  

Since open and closed curves are described with generalized ellipses, generalized ellip-

tic curves, and composite generalized elliptic segments, surface reconstruction is di-

vided into generalized ellipse-based, generalized elliptic curve-based, and composite 

generalized elliptic segment-based, accordingly.  

5.1 Generalized ellipse or generalized elliptic curve-based surface 

reconstruction 

If a surface is reconstructed from 𝑀 generalized ellipses or generalized elliptic curves 

𝑿𝑚(𝑣) = [𝑥𝑚(𝑣) 𝑦𝑚(𝑣) 𝑧𝑚(𝑣)]𝑇 (𝑚 = 0, 1, 2, ⋯ , 𝑀), the surface can be mathe-

matically formulated as 

     𝑺(𝑢, 𝑣) = ∑ 𝑢𝑚𝑀
𝑚=0 𝑮𝑚(𝑣)                      (4) 
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where 𝑮𝑚(𝑣)  (𝑚 = 0, 1, 2, ⋯ , 𝑀) are unknown vector-valued functions, which can be 

determined by interpolating the 𝑀 + 1 generalized ellipses or generalized elliptic 

curves.  

When two surfaces are to be connected together with up to the tangential continuity, 

we can obtain the position function and first partial derivative function on the shared 

boundary curve from the surface, which has already been reconstructed. Then we can 

use the position function and first partial derivative function together with generalized 

ellipses or generalized elliptic curves to be interpolated to reconstruct a new surface. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Surfaces reconstructed from generalized ellipses. 

 

With the above method, we reconstruct some surfaces from generalized ellipses and 

depict the reconstructed surfaces in Fig. 5. In the figure, (a) shows the surfaces totally 

determined by generalized ellipses, (b) shows the surface interpolating generalized el-

lipses and smoothly connecting to an adjacent surface, and (c) shows the surface  inter-

polating generalized ellipses and smoothly connecting to two adjacent surfaces.  
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5.2 Composite generalized elliptic segment-based surface reconstruction  

Whether the curves are converted into generalized ellipses, generalized elliptic curves 

or composite generalized elliptic segments, they must be divided into the same number 

of curve segments if a surface is to be constructed from them. Therefore, when a gen-

eralized ellipse or a generalized elliptic curve is to be combined with other composite 

generalized elliptic segments to reconstruct a surface, the generalized ellipse or gener-

alized elliptic curve should be firstly divided into the same segments as those of com-

posite generalized elliptic segments. For example, if we are required to reconstruct a 

surface from three composite generalized elliptic segments and a single closed gener-

alized ellipse, we divide the generalized ellipse into three curve segments  . 
The continuity between different surface patches along the 𝑣 parametric direction 

can be achieved by taking the mathematical expressions for 𝑢 parametric variable of 

the adjacent two surface patches to be the same form. In the following, we indicate that 

the surface patches reconstructed in this way can maintain the required continuity. 

For 𝐼 + 1 curves each of which consists of  𝐽 + 1 segments, we use vector-valued 

position functions 𝑿𝑖𝑗  (𝑖 = 0, 1, 2, ⋯ , 𝐼; 𝑗 = 0, 1, 2, ⋯ , 𝐽) to represent the 𝑗𝑡ℎ segment 

of the 𝑖𝑡ℎ curve. Here 𝑿𝑖𝑗  has the three components 𝑥𝑖𝑗 , 𝑦𝑖𝑗  and 𝑧𝑖𝑗 . Since 𝑧𝑖𝑗  takes an 

identical value for all segments of a same curve, the continuity for this component is 

always ensured. Therefore, the following treatment is for 𝑥 and 𝑦 components. Here we 

only consider positional and tangential continuities. Of course, the treatment discussed 

here is also suitable for higher order continuities.  

If up to tangential continuity is considered, both positional and tangential continui-

ties at the joint between the 𝑗𝑡ℎ  segment 𝑿𝑖𝑗  and (𝑗 + 1)𝑡ℎ  segment 𝑿𝑖𝑗+1  should be 

achieved when constructing these curve segments. That is 

𝑿𝑖𝑗(𝑣 = 𝑣𝑖𝑗) = 𝑿𝑖𝑗+1(𝑣 = 𝑣𝑖𝑗) 

{
𝜕𝑿𝑖𝑗

𝜕𝑣
}

𝑣=𝑣𝑖𝑗

= {
𝜕𝑿𝑖𝑗+1

𝜕𝑣
}

𝑣=𝑣𝑖𝑗

 

(𝑖 = 0, 1, 2, 3, ⋯ , 𝐼;  𝑗 =  1, 2, 3, ⋯ , 𝐽 − 1)                       (5) 

If the curves are closed, the positional and tangential continuities at the closure 

should also be introduced which lead to the additional equations below 

𝑿𝑖𝐽(𝑣 = 2𝜋) = 𝑿𝑖0(𝑣 = 0) 

{
𝜕𝑿𝑖𝐽

𝜕𝑣
}

𝑣=2𝜋
= {

𝜕𝑿𝑖0

𝜕𝑣
}

𝑣=0
 

(𝑖 = 0, 1, 2, 3. . . , 𝐼)        (6) 

If 𝐽 + 1 surface patches are constructed from the above 𝐼 + 1 curves, we take their 

surface functions to be 

    𝑺𝑗(𝑢, 𝑣) = ∑ 𝑢𝑚𝐼
𝑚=0 �̅�𝑚𝑗(𝑣) 

(𝑗 = 0, 1, 2, 3, ⋯ , 𝐽)                                          (7) 

where �̅�𝑚𝑗(𝑣) (𝑚 = 0, 1, 2, 3, . . . , 𝐼;  𝑗 = 0, 1, 2, 3, . . . , 𝐽) are unknown functions. 

At the position 𝑢𝑖  of the 𝑖𝑡ℎ  curve segment, the 𝑗𝑡ℎ  surface patch 𝑺𝑗(𝑢, 𝑣) =

∑ 𝑢𝑚𝐼
𝑚=0 �̅�𝑚𝑗(𝑣)  and the (𝑗 + 1)𝑡ℎ  surface patch 𝑺𝑗+1(𝑢, 𝑣) = ∑ 𝑢𝑚𝐼

𝑚=0 �̅�𝑚𝑗+1(𝑣) 

should pass through the 𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ curve segments, respectively, i. e.,  
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∑ 𝑢𝑖
𝑚

𝐼

𝑚=0

�̄�𝑚𝑗(𝑣) = 𝑿𝑖𝑗(𝑣) 

∑ 𝑢𝑖
𝑚

𝐼

𝑚=0

�̄�𝑚𝑗+1(𝑣) = 𝑿𝑖𝑗+1(𝑣) 

(𝑖 = 1,2,3, . . . , 𝐼)                                             (8) 

Expanding Eqs. (6), (7) and (8) and rewriting them into the form of matrix, we obtain 

the following mathematical expressions from Eqs. (6) and (8) for open curves and from 

Eqs. (6), (7) and (8) for closed curves 

[𝑅𝑗(𝑢𝑖𝑚)]{�̄�𝑗(𝑣)} = {𝑿𝑗(𝑣)} 

[𝑅𝑗+1(𝑢𝑖𝑚)]{�̄�𝑗+1(𝑣)} = {𝑿𝑗+1(𝑣)}                                   (9)                               

where [𝑅𝑗(𝑢𝑘𝑚)]  and [𝑅𝑗+1(𝑢𝑘𝑚)]  are 𝐾 × 𝐾  square matrices with the elements 

𝑢𝑘𝑚 = 𝑢𝑘
𝑚 , {�̄�𝑗(𝑣)} = [�̄�0𝑗(𝑣) �̄�1𝑗(𝑣) �̄�2𝑗(𝑣) ⋯ �̄�𝐼𝑗(𝑣)]

𝑇
, {�̄�𝑗+1(𝑣)} =

[�̄�0𝑗+1(𝑣) �̄�1𝑗+1(𝑣) �̄�2𝑗+1(𝑣) ⋯ �̄�𝐼𝑗+1(𝑣)]
𝑇

, {𝑿𝑗(𝑣)} =

[𝑿0𝑗(𝑣) 𝑿1𝑗(𝑣) 𝑿2𝑗(𝑣) ⋯ 𝑿𝐼𝑗(𝑣)]𝑇  and {𝑿𝑗+1(𝑣)} =

[𝑿0𝑗+1(𝑣) 𝑿1𝑗+1(𝑣) 𝑿2𝑗+1(𝑣) ⋯ 𝑿𝐼𝑗+1(𝑣)]𝑇 are the vectors with 𝐾 elements.  

Using [𝑅𝑗(𝑢𝑖𝑚)]
−1

 and [𝑅𝑗+1(𝑢𝑖𝑚)]
−1

 to indicate the inverse matrices of [𝑅𝑗(𝑢𝑖𝑚)] 

and [𝑅𝑗+1(𝑢𝑖𝑚)] , respectively, left multiplying both sides of the first equation of Eq. 

(9) by [𝑅𝑗(𝑢𝑖𝑚)]
−1

 and left multiplying both sides of the second equation of Eq. (9) by 

[𝑅𝑗+1(𝑢𝑖𝑚)]
−1

, we obtain the unknown functions with the following equations 

{�̄�𝑗(𝑣)} = [𝑹𝑗(𝑢𝑖𝑚)]
−1

{𝑿𝑗(𝑣)} 

{�̄�𝑗+1(𝑣)} = [𝑹𝑗+1(𝑢𝑖𝑚)]
−1

{𝑿𝑗+1(𝑣)} 

(𝑗 = 0, 1, 2, 3, . . . , 𝐽)                                            (10) 

From Eq. (8), we know that [𝑅𝑗(𝑢𝑖𝑚)]
−1

 and [𝑅𝑗+1(𝑢𝑖𝑚)]
−1

 are identical which can 

be written as  

𝑹 =  [𝑅𝑗(𝑢𝑖𝑚)]
−1

= [𝑅𝑗+1(𝑢𝑖𝑚)]
−1

= [𝑅𝑖𝑗]          (11) 

where 𝑅𝑖𝑗 (𝑖 = 0, 1, 2, 3, ⋯ , 𝐼;  𝑗 = 0, 1, 2, 3, ⋯ , 𝐼) are the elements of the square ma-

trix 𝑹. 

With Eq. (11), we can obtain the mathematical expressions of the elements in vectors 

�̄�𝑗(𝑣) and �̄�𝑗+1(𝑣)  

�̄�𝑙𝑗(𝑣) = ∑ 𝑅𝑙𝑖

𝐼

𝑖=0

𝑿𝑖𝑗(𝑣) 

�̄�𝑙𝑗+1(𝑣) = ∑ 𝑅𝑙𝑖

𝐼

𝑖=0

𝑿𝑖𝑗+1(𝑣) 

(𝑙 = 0, 1, 2, 3, . . . , 𝐼)    (12) 

Substituting the first of Eq. (12) into 𝑺𝑗(𝑢, 𝑣) = ∑ 𝑢𝑚𝐼
𝑚=0 �̅�𝑚𝑗(𝑣) and the second of 

Eq. (12) into 𝑺𝑗+1(𝑢, 𝑣) = ∑ 𝑢𝑚𝐼
𝑚=0 �̅�𝑚𝑗+1(𝑣), the position functions of the 𝑗𝑡ℎ  and 

(𝑗 + 1)𝑡ℎ surface patches are found to be 
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𝑺𝑗(𝑢, 𝑣) = ∑ 𝑢𝑚

𝐼

𝑚=0

∑ 𝑅𝑚𝑖

𝐼

𝑖=0

𝑿𝑖𝑗(𝑣) 

𝑺𝑗+1(𝑢, 𝑣) = ∑ 𝑢𝑚𝐼
𝑚=0 ∑ 𝑅𝑚𝑖

𝐼
𝑖=0 𝑿𝑖𝑗+1(𝑣)                           (13) 

From Eq. (13), we can calculate the first partial derivatives of the  𝑗𝑡ℎ and (𝑗 + 1)𝑡ℎ 

surface patches with respect to the parametric variable 𝑣. Considering the positional 

and tangential continuity conditions  (5) and (6) of 𝑿𝑖𝑗(𝑣) and 𝑿𝑖𝑗+1(𝑣) at their joints 

𝑣𝑖𝑗 , we find  

𝑺𝑗(𝑢, 𝑣𝑖𝑗) = 𝑺𝑗+1(𝑢, 𝑣𝑖𝑗) 

{
𝜕𝑺𝑗(𝑢,𝑣)

𝜕𝑣
}

𝑣=𝑣𝑖𝑗

= {
𝜕𝑺𝑗+1(𝑢,𝑣)

𝜕𝑣
}

𝑣=𝑣𝑖𝑗

                (14) 

Equation (14) indicates that along the shared boundary curve between the 𝑗𝑡ℎ and 

(𝑗 + 1)𝑡ℎ surface patches, both positional and tangential continuities are guaranteed. 

In Fig. 6, we use the above method to reconstruct a surface from three composite 

generalized elliptic segments. It demonstrates the effectiveness of the above method. 

 

 
Fig. 6.  A surface reconstructed from three composite generalized elliptic segments. 

5.3 Human body model reconstruction with composite generalized elliptic 

curves  

With the method developed above, the reconstruction of a human body model starts 

from obtaining cross-section curves shown in Fig. 7(a). These cross-section curves are 

converted into composite generalized elliptic curves. Then, the corresponding part 

models of the human body are reconstructed from the composite generalized elliptic 

curves and shown in Fig. 7(b).  

 

        
                                           (a)                                     (b) 

Fig. 7. Cross-section curves and part models of a human body. 
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For this example of human body model reconstruction, all the part models share the 

same boundary curves. When these part models are reconstructed, they are naturally 

connected together as shown in Fig. 8 where Fig. 8(a) shows the reconstructed 3D 

model with cross section curves, and Fig. 8(b) shows the rendered 3D model. 

 

         
               (a)                                         (b) 

Fig. 8. Surface reconstruction of a human body model from composite generalized el-

liptic curves. 

6 Conclusions  

In this paper, we have proposed generalized ellipses, generalized elliptic curves, com-

posite generalized elliptic segments to approximate open and closed curves, demon-

strate their effectiveness and accuracy, and present mathematical expressions of surface 

reconstruction from composite generalized elliptic curves.     

Compared to the sweep-based human deformation approach proposed in [12], the 

method proposed in this paper approximates cross-section curves accurately and avoids 

the use of a displacement map, leading to accurate and detailed reconstruction of 3D 

models.    

Unlike polygon models, which involve a lot of design variables (vertices), the pro-

posed method representing 3D models with analytical mathematical expressions in-

volves much fewer design variables. It brings in the advantages of low storage costs, 

fast network transmissions, and easy generation of 3D models with arbitrary resolu-

tions, which is suitable for many applications such as level of detail in online games.     
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