
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2021

Enabling secure multi-party
computation with FPGAs in the
datacenter

https://hdl.handle.net/2144/42608
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Thesis

ENABLING SECURE MULTI-PARTY COMPUTATION

WITH FPGAS IN THE DATACENTER

by

PIERRE-FRANÇOIS W. WOLFE

B.A., Skidmore College, 2015
B.E., Dartmouth College, 2016

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science

2021

© 2021 by
PIERRE-FRANÇOIS W. WOLFE
All rights reserved

Approved by

First Reader

Martin C. Herbordt, PhD
Professor of Electrical and Computer Engineering

Second Reader

Mayank Varia, PhD
Research Associate Professor of Computer Science

Third Reader

Wenchao Li, PhD
Assistant Professor of Electrical and Computer Engineering
Assistant Professor of Systems Engineering

Pitchote a migote. Petit à petit, l’oiseau fait son nid.

iv

Acknowledgments

I wish to first thank my advisor, Prof. Martin Herbordt, for all of the guidance and

insights he has provided me throughout my master’s program. I recall his enthusiasm

in our first conversation over the phone when I was considering various programs to

apply to, and I have felt that carry through all our work together on accelerators

these past two years. I must express my gratitude to Prof. Mayank Varia for his pa-

tience and precision in expanding my knowledge of cryptography. It was particularly

important for me to quickly get up to speed with MPC in order to undertake this

work. I appreciate Prof. Wenchao Li agreeing to join my committee and providing a

fresh perspective with insightful recommendations as I finalized my thesis.

I must acknowledge Rushi Patel who has worked closely with me throughout and

whose efforts were critical to successful implementation and testing. I welcomed all of

the honest feedback and suggestions Robert Munafo provided as I was planning each

step of my work. To all the other members of the CAAD lab, current and graduated,

thank you. You made me feel welcome and were happy to discuss any topic with me

and answered questions I had.

I wouldn’t have been able to undertake this course of study without the support

of Dr. Jeffrey Herd, Dr. Bradley Perry, and Dr. Charles Coldwell at MIT Lincoln

Laboratory and the opportunity afforded by the Lincoln Scholar Program. Thank

you, I look forward to resuming my work with you this summer.

To my family and friends, I appreciate your support and hope to see you all again

soon. To my fiancée, Erica Heinz, thank you for all the support through this journey

as you are also undertaking the challenges of law school. I am rooting for you as you

finish your studies this next year, just as you have for me!

—Pierre-François Wolfe

v

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is un-

limited. This material is based upon work supported by the United States Air Force

under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions

or recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the United States Air Force.

vi

ENABLING SECURE MULTI-PARTY COMPUTATION

WITH FPGAS IN THE DATACENTER

PIERRE-FRANÇOIS W. WOLFE

ABSTRACT

Big data utilizes large amounts of processing resources requiring either greater

efficiency or more selectivity. The collection and managing of such large pools of data

also introduces more opportunities for compromised security and privacy, necessitat-

ing more attentive planning and mitigations. Multi-Party Computation (MPC) is a

technique enabling confidential data from multiple sources to be processed securely,

only revealing agreed-upon results. Currently, adoption is limited by the challenge

of basing a complete system on available software libraries. Many libraries require

expertise in cryptography, do not efficiently address the computation overhead of

employing MPC, and leave deployment considerations to the user.

In this work we consider the available MPC protocols, changes in computer hard-

ware, and growth of cloud computing. We propose a cloud-deployed MPC as a Service

(MPCaaS) to help eliminate the barriers to adoption and enable more organizations

and individuals to handle their shared data processing securely. The growing presence

of Field Programmable Gate Array (FPGA) hardware in datacenters enables acceler-

ated computing as well as low latency, high bandwidth communication that bolsters

the performance of MPC. Developing an abstract service that employs this hardware

will democratize access to MPC, rather than restricting it to the small overlapping

pools of users knowledgeable about both cryptography and hardware accelerators. A

hardware proof of concept we have implemented at BU supports this idea. We de-

ployed an efficient three-party Secret Sharing (SS) protocol supporting both Boolean

vii

and arithmetic shares on FPGA hardware. We compare our hardware design to the

original authors’ software implementations of Secret Sharing and to research results

accelerating MPC protocols based on Garbled Circuits with FPGAs. Our conclusion

is that Secret Sharing in the datacenter is competitive and, when implemented on

FPGA hardware, is able to use at least 10× fewer computer resources than the orig-

inal work using CPUs. Finally, we describe the ongoing work and envision research

stages that will help us to build a complete MPCaaS system.

viii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Example Scenarios . 2

1.3 Motivation & Goals . 4

1.4 What’s wrong with MPC? . 5

1.5 Proposed Solution . 6

1.6 Results & Contributions . 6

1.7 Organization . 9

2 Background 10

2.1 MPC & Secure Computing Algorithms 10

2.1.1 History . 10

2.1.2 Taxonomy & Features . 11

2.2 Processing & Communication Hardware 15

2.2.1 History . 16

2.2.2 Processing Technology . 18

2.2.3 Communication Technology 21

2.3 MPC with Special Hardware . 23

2.4 Big Data & the Cloud . 26

2.4.1 Data Collection . 26

2.4.2 Data Processing . 27

2.4.3 Security & Efficiency . 29

ix

2.4.4 Data centers & the Cloud . 30

2.4.5 Deployment Models . 32

2.5 Takeaways . 33

3 Design & Implementation 35

3.1 Design Goals . 35

3.2 Design Choices . 36

3.3 Protocol & Algorithm Details . 37

3.3.1 Secret Sharing . 38

3.3.2 Compute Phase . 39

3.3.3 Data reconstruction . 44

3.3.4 Extensions . 44

3.4 Implementation Details . 45

3.4.1 Platform Choices . 45

3.4.2 Hardware Implementation . 46

4 Testing & Results 50

4.1 FPGA Testing . 50

4.1.1 Test with Arria 10 . 51

4.1.2 Initial Test with AWS . 52

4.1.3 Secondary Work with AWS 53

4.2 Reference Results . 54

4.3 Analysis . 57

5 Cloud Deployment & Platform Analysis 60

5.1 Cloud Computing Course . 60

5.2 Platform Comparison . 62

5.2.1 Bare Metal, Virtual Machines, Containers 63

5.2.2 Scalability & Automated Provisioning 64

x

5.3 Key Ideas . 65

6 Remaining Work & Conclusion 66

6.1 Steps to MPCaaS . 66

6.1.1 MPC in the Cloud . 67

6.1.2 Transparent Hardware . 67

6.1.3 Transparent MPC Functions & Program Conversion 68

6.2 Current & Future Work . 69

6.3 Conclusions . 70

References 71

Curriculum Vitae 86

xi

List of Tables

4.1 AWS Implementation Result Analysis 53

4.2 Araki et al. Result Analysis . 55

xii

List of Figures

3·1 Initial Secret Sharing . 39

3·2 Party i’s contribution toward computing an XOR gate 40

3·3 Party i’s contribution toward computing an AND gate 43

4·1 AWS FPGA fabric total utilization 54

4·2 Roofline model comparing Secret Sharing performance against data

center bandwidth. We denote limitations in the Araki et al. design

and our FPGA Secret Sharing implementation, and FPGA implemen-

tations based on Garbled Circuits. 56

xiii

List of Abbreviations

2PC Two Party Computation
3PC Three Party Computation
ACID Atomicity, Consistency, Isolation, and Durability
AES Advanced Encryption Standard
AI Arithmetic Intensity
AMBA Advanced Microcontroller Bus Architecture
AMD Advanced Micro Devices, Inc
API Application Programming Interface
ARM Advanced RISC Machines
ASIC Application-Specific Integrated Circuit
AWS Amazon Web Services
AXI Advanced eXtensible Interface
BASE Basically Available, Soft state, Eventually consistent
BU Boston University
BW Bandwidth
CAAD Computer Architecture and Automated Design (Lab)
CaaS Container as a Service
CAP Consistency, Availability, and Partition tolerance
CCPA California Consumer Privacy Act
Ceph Cephalopod (Software Storage Platform)
CPU Central Processing Unit
CUDA Compute Unified Device Architecture (Nvidia

trademark, no longer used as an acronym)
DMA Direct Memory Access
DRAM Dynamic RAM
DSP Digital Signal Processor
EC2 (Amazon) Elastic Compute Cloud
FaaS Function as a Service
FedRAMP Federal Risk and Authorization Management Program
FPGA Field-Programmable Gate Array
FPL International Conference on Field-Programmable Logic

and Applications
GC Garbled Circuit
GDPR General Data Protection Regulation
GFS Google File System

xiv

GPGPU General-Purpose computing on Graphics Processing
Unit

GPU Graphics Processing Unit
HDD Hard Disk Drive
HDL Hardware Description Language
HIL Hardware Isolation Layer
HIPAA Health Insurance Portability and Accountability Act of

1996
HLS High-Level Synthesis
HPC High-Performance Computing
HPEC High Performance Extreme Computing conference
IaaS Infrastructure as a Service
IBM International Business Machines Corporation
IC Integrated Circuit
IoT Internet of Things
IP Intellectual Property
IT Information-Theoretic
LAN Local Area Network
MAC Multiply ACcumulate
MGHPCC The Massachusetts Green High Performance Computing

Center
MIPS Microprocessor without Interlocked Pipelined Stages
MIT Massachusetts Institute of Technology
ML Machine Learning
MLC Multi-Level Cell
MM Matrix Multiply
MOC Mass (Massachusetts) Open Cloud
MOP MPC OPeration
MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor
MPC Multi-Party Computation
MPCaaS MPC as a Service
MPI Message Passing Interface
NIST National Institute of Standards and Technology
NIC Network Interface Card
NVRAM Non-Volatile RAM
OCT Open Cloud Testbed
OCX Open Cloud eXchange
OpenCL Open Computing Language
OS Operating System
PaaS Platform as a Service
PCI Peripheral Component Interconnect
PCIe PCI Express

xv

PHI Protected Health Information
PII Personally Identifiable Information
POWER Performance Optimization With Enhanced RISC
PRF Pseudo-Random Function
PUF Physical Unclonable Function
QLC Quad-Level Cell
RAM Random-Access Memory
RapidIO An interconnect architecture
RDMA Remote DMA
RISC Reduced Instruction Set Computer
RNG Random Number Generator
R&D Research and Development
SaaS Software as a Service
SDK Software Development Kit
SDN Software Defined Networking
SFE Secure Function Evaluation
SHA Secure Hash Algorithms
SLC Single-Level Cell
SQL Structured Query Language
SRAM Static RAM
SSH Secure Shell Protocol
SS Secret Sharing
SSD Solid State Drive
TCP/IP Transmission Control Protocol / Internet Protocol
TLC Triple-Level Cell
VLAN Virtual LAN
VM Virtual Machine

xvi

Chapter 1

Introduction

1.1 Overview

Many rapid changes are taking place at all levels of computing. This includes a

continuous growth in the quantity of data that is collected from the environment,

systems, and individuals. The ideal of fungible computing resources, greater effi-

ciency, and convenience offered by Cloud Computing has resulted in the growth of

data centers which cluster compute. Hardware progress has moved beyond the pre-

dictable performance gains achieved while Moore’s Law and Dennard Scaling held

true. Subsequently, there has been a greater focus on parallelization with multiple

processors as well as using specialized silicon in heterogeneous architectures. All the

while, strides have been made in improving the capabilities of communication be-

tween systems. New analytic techniques continue to be developed, and existing ones

are refined and optimized to make better use of the evolving hardware. With all of the

opportunities that come from having more information, connectivity, and processing

innovations, there are also risks. More sensitive information is captured and must

be kept safe at all times. Keeping attackers at bay requires more careful planning

as the highly connected systems that exist present a larger attack surface and more

opportunities for errors to have a severe impact. Security must also provide nuanced

control of valid user access to data, including both processing and viewing it. Only

blocking malicious actors is insufficient and doesn’t provide user need-to-know or data

privacy guarantees which are critical on everything from company IP to individuals’

1

2

PII. Thankfully a wide range of cryptographic tools can be used as part of careful

system design to address these challenges.

1.2 Example Scenarios

Sensitive data is everywhere around us: personal, financial, medical, government, and

more. However, we regularly hear about costly cybersecurity compromises with some

estimates indicating a worldly cost in the trillions (Morgan, 2021). Both companies

and individuals lack confidence when it comes to maintaining the privacy and security

of their data (Brooks, 2021). Industry, governments, and individuals can all greatly

benefit from sharing data and performing joint computations but face risks doing so.

Here are a few illustrative scenarios:

HIPAA compliance in the healthcare industry is a good example. Under certain

circumstances, data held by a “Covered Entity", a healthcare provider, plan, or clear-

inghouse, may be shared without explicit written authorization by patients. These

scenarios include exchanges between entities for specific goals, such as assessing and

improving the effectiveness of treatment protocols, and combating fraud. However,

shareable Protected Health Information (PHI) is strictly limited to only information

that is immediately relevant to the insight sought and that belongs to patients shared

by the entities. Even when permitted under HIPAA, only the minimum amount of

PHI needed to complete a task may be shared. The use of tools that can allow for

operations on encrypted data, revealing only final outputs, would make it easier to

employ data while meeting these directives without fear of over-sharing.

Aside from healthcare, another example is government organizations. These all

have strong data confidentiality requirements and have in many cases been limited to

using private in-house clusters for processing. Alternately, special accommodations

where cloud offerings are separated from the public can sometimes be used but require

3

extra effort and overhead. This “walled garden” approach can cause fragmentation

in hardware, slow update cycles, and high costs when compared to more open cloud

offerings. Securing public clouds such that they are acceptable for government use

would ease hardware and software system upgrades, include access to new cloud

services, and provide better performance. There is recognition of the benefits that

the public cloud could offer governments, and some efforts are underway to offer a

streamlined but security-conscious path for adoption. The US Federal Government’s

FedRAMP is one such approach (VanRoekel, 2011). Nonetheless, additional tools

and techniques are always needed.

Unfortunately, the choice that is often made is to either not use or share data

in the interest of keeping it safe or, alternately, to distribute, compute with, or oth-

erwise employ data even though it is at greater risk of compromise. In some cases,

organizations may choose to share data broadly because individuals bear most of the

risk. Consumers are becoming more aware of the collection and dissemination of their

data and are pushing for more control and accountability as seen in the GDPR and

CCPA (Anant et al., 2020). Furthermore, insights about demographics, salaries, or

other sensitive information may also pose a risk to companies, particularly if they

seem to be lagging competitors.

Beyond what has already been mentioned, there are additional risks associated

with data sharing, storage, and processing in the cloud. Potential cloud tenants may

not trust certain providers, data partners, co-located peers, or the network being used

while still desiring to gain the benefits of a curated, highly available, and scalable

environment. We are then left to consider what algorithms and approaches can help

to decouple what appears to be a forced trade-off between processing data and keeping

it safe while also making it possible to use cloud resources with confidence.

4

1.3 Motivation & Goals

Thankfully, many options exist for systems to address varying levels of trust and

risk while enabling the safe use of shared data. We propose steps toward a complete

solution for secure cloud environments which maintains data confidentiality while

allowing for joint computation over that protected private data with other co-located

parties in the same data center.

The critical cryptography that enables this is Multi-Party Computation (MPC)

(also known as SFE) which allows parties to securely share confidential data and

compute collective information without ever releasing one’s own personal data. As

defined in pending legislation within the United States Senate, “the term ‘secure multi-

party computation’ means a computerized system that enables different participating

entities in possession of private sets of data to link and aggregate their data sets for

the exclusive purpose of performing a finite number of pre-approved computations

without transferring or otherwise revealing any private data to each other or anyone

else” (Wyden, 2019) In this manner, MPC makes it possible to glean insights from

large, private data repositories. These might otherwise be missed when limited to

smaller pools of publicly-shareable data or could require parties to duplicate efforts

to collect or generate more information.

Cloud usage for confidential data has been a difficult proposition as potential

clients can’t accept the exposure to other denizens or the controlling parties. Public

providers can offer isolated versions of their typical offerings, or organizations can

deploy their own clouds. However, such specialized setups may not compete with the

scale of computational power available in a public system and cost more by limiting

the economies of scales possible in large installations shared between tenants.

5

1.4 What’s wrong with MPC?

Given the features of MPC that can address many of the challenges with comput-

ing on data while keeping it secure and private, one is left to question why it is not

currently in wider use. There are several difficulties facing MPC. These include the

inherent computational overhead necessary when protecting information. More re-

silient protocols require more resources though they offer stronger guarantees against

more advanced adversaries. Though algorithmic improvements have made it possi-

ble to conceive of practical implementations of MPC there is still a performance gap

that needs to be narrowed. Beyond computation, communication is another limiting

factor. Generally speaking, MPC approaches that make efficient use of communica-

tion bandwidth experience communication latency in an amplified fashion while those

that don’t suffer from the latency as much are less efficient in their use of bandwidth.

Somewhat cyclically, the systems that require low-latency are discounted because

they suffer from latency when implemented on software and run on CPUs resulting

in more attention going to the less bandwidth efficient approaches. Those have seen

some acceleration efforts but they are still hampered by inefficient use of commu-

nication bandwidth. However, the focus on them continues since acceleration work

already exists. This circular rut needs to be escaped. If a fast, hardware accelerated

MPC implementation, that is relatively easy to use exists, it could bootstrap a posi-

tive cycle of improvements and be more accessible to users. MPC currently requires

at least some level of experience with cryptography. Providing hardware acceleration

can help to make it more viable to use algorithms but if it requires both cryptography

and hardware knowledge, the pool of potential users remains very small.

6

1.5 Proposed Solution

This thesis proposes that Secret Sharing algorithms are best suited for Multi-Party

Computation systems built in data center environments. Low-latency communication

available to systems within a data center allows Secret Sharing to be selected instead of

Garbled Circuits. Given the same communication bandwidth between parties, Secret

Sharing maximizes throughput as less data is required for each logical gate processed.

FPGAs are the ideal architecture for MPC parties in this scenario because they avoid

introducing unnecessary latency, support high communication bandwidth, and can

execute custom MPC primitives. Furthermore, they are more efficient than CPUs

or GPUs and more flexible than ASICs. By maximizing throughput, cloud providers

can build practical systems that offer access to MPC to their clients which will ease

and increase adoption.

1.6 Results & Contributions

This thesis demonstrates the performance improvement that can be obtained by op-

erating Secret Sharing protocols by FPGAs in a data center. This research aims

to encourage further work towards making this system a reality, improving access

to MPC by all types of users. The resulting contributions can be distilled into the

following two items:

• Demonstrating the high performance of SS MPC on FPGAs in the data center.

• Providing clear steps to achieve a viable system offering easily usable MPC.

Initial work focused on better understanding the landscape of MPC research and

technologies. This led to an interest in Secret Sharing based algorithms which ap-

peared to offer the best overall throughput among protocols when employed in an

ideal environment. With the main limiting factor being latency, networked devices in

7

close proximity appeared optimal. As FPGAs offer great connectivity, low latency,

and can be tuned to efficiently perform specific computations, they seemed well suited

for the task. In sum, we theorized that we would obtain compelling performance from

linked data center FPGAs running SS MPC and set out to verify this hypothesis.

Next, a particular SS MPC algorithm with a simple design that offered high per-

formance was selected (Araki, Furukawa, et al., 2016). An FPGA proof of concept

was implemented, tested, and the results compared to the software implementation

results from the authors of the original algorithm. We concluded that Secret Sharing

MPC in this type of scenario was competitive with Garbled Circuit MPC implementa-

tions on FPGA and furthermore, that at least an order of magnitude fewer resources

could be used relative to the software on CPU tests performed by the original authors

(Patel et al., 2020; Wolfe et al., 2020).

Subsequent work focused on some of the elements necessary to bringing MPC to

the data center. This primarily took place under the umbrella of a BU Cloud Comput-

ing project course using resources available through the Massachusetts Open Cloud

(MOC) and through CloudLab. Prior to the course, the project mentors had created a

clean MPC implementation in C, which helped to avoid the performance penalties suf-

fered by some other implementations when relying on many dependencies (Liagouris

et al., 2021). Student team members focused on automating deployment to different

cloud platforms and performing a preliminary assessment of the differences between

environments by improving benchmarking and profiling instrumentation (Rehman et

al., 2021). Several Ansible playbooks and detailed documentation were delivered and

are currently being used by the mentors in their research. Greater familiarity with

cloud resources gained through this experience helped when crafting a detailed vision

of the steps necessary to complete a full MPCaaS system.

Work on extending the existing FPGA implementation is ongoing. The long-term

8

project plan we developed is composed of three main thrusts. The first is enabling

MPC in a cloud environment such that the hardware and software used properly

provision the resources, isolate the tenants, and make it possible to execute secure

MPC operations. This system should seek to account for vulnerabilities and not

make assumptions suitable only for experiments. The second is to enable transpar-

ent use of FPGAs when MPC operations are called assuming a securely provisioned

environment. This will require the selection and modification of some API so that it

interfaces with the implemented hardware primitives. The third is to make it possible

for an arbitrary application of interest to make transparent use of MPC. While the

second thrust should make it possible for a user without FPGA expertise to employ

the hardware in MPC, the third one seeks to address a wider pool of possible users

and allow someone with little to no knowledge of MPC to solve their problem securely.

While a fully general system would be ideal, a wide-open scope is challenging. Pick-

ing a focus makes it more manageable. Machine learning (ML) is one field actively

being explored with MPC (Du & Atallah, 2001; Knott et al., 2020; Ohrimenko et al.,

2016; Zhao et al., 2019). Using MPC primitives deployed on FPGAs to construct

operations that serve ML appears to be a fruitful domain for work. With that in

mind, current work is focusing on implementing and demonstrating the effectiveness

of such hardware designs. Additionally, work seeking to automatically convert ML

problems into an MPC format and efforts to adapt existing secure environment provi-

sioning (Mosayyebzadeh et al., 2019) will enable the creation of a production system

accessible to a broad range of users.

In summary, we have theorized and then demonstrated the performance potential

of Secret Sharing MPC on FPGA hardware on a low-latency network. We developed

a Cloud Computing vision for MPCaaS with specific milestones. This architecture

would enable easier use of MPC, spurring adoption as a means of addressing some of

9

the persistent secure data processing needs driven by the growth in big data. While

these thrusts notionally build upon each other, some exploratory work is progressing

on them in parallel.

1.7 Organization

Following this introduction (Chapter 1), the rest of this thesis is organized as follows:

Chapter 2 provides the reader with insights about the development and current status

of MPC, processing hardware, network communication, and cloud computing. This

information establishes the evolution and current features of the data center context.

Big data is shown to be a driver for more efficient processing and greater security.

Chapter 3 considers design motivations and details hardware testing including design

choices made when implementing MPC primitives on FPGAs. Chapter 4 covers hard-

ware testing. The data is analyzed and compared to results obtained by the original

authors of the protocol as well as to other related research. Chapter 5 steps away from

the low-level hardware and instead considers system level design for MPCaaS. This

includes the efforts related to provisioning and configuring an environment in a data

center. Finally, Chapter 6 offers some specific steps towards achieving a complete

MPCaaS and provides a final commentary on the research work accomplished.

Chapter 2

Background

2.1 MPC & Secure Computing Algorithms

2.1.1 History

Though MPC has recently gained sufficient attention to be defined in the United

States Senate in 2019, the field has been actively researched over the past 40 years

(Evans et al., 2018; Shamir, 1979; Yao, 1986; Yao, 1982) with more practical imple-

mentations explored since the early 2000s. Research deployments of MPC have been

used to protect data in different fields including healthcare (D. W. Archer et al., 2018;

Giannopoulos & Mouris, 2018), education (Bogdanov et al., 2016; Feigenbaum et al.,

2004), finance (Abidin et al., 2016; Bogetoft et al., 2009; Damgård et al., 2017), and

technology (Bonawitz et al., 2017; Ion et al., 2019). Several companies have brought

commercial MPC offerings to the market, but many are customized for each client and

require expert knowledge to deploy and support (D. W. Archer et al., 2018; Hastings

et al., 2019).

In order to preserve data privacy, MPC fundamentally requires additional commu-

nication and computation overhead beyond that which the base computation requires.

Consequently, to create a truly general-purpose MPC system which is easy to adopt,

it is necessary to continue to improve the performance and ease of use while sup-

porting more types of problems. Specialized MPC systems will remain important

for performance critical applications and may offer a reasonable and focused start-

ing point for research in the short term. General MPC with reasonable performance

10

11

will be needed to increase adoption by being easier to use and less costly to deploy.

Furthermore, if a particular task doesn’t need cutting edge speed, a general MPC

offering may be selected even by users already familiar with MPC simply because

of the relative ease to deploy vs. a more sophisticated solution. Existing work has

shown that acceleration of general-purpose MPC can translate into viable systems

(Y. Huang et al., 2012), which is encouraging for this vision.

To date, most MPC implementations are in software, and thus rely on general-

purpose processing hardware and commodity networking equipment. In such cases,

Secret Sharing tends to be network latency-bound whereas Garbled Circuits are often

compute-bound. Consequently, most of the prior focus in hardware acceleration has

been directed toward Garbled Circuits as they appear a more obvious target for

acceleration. We’ll discuss prior research further later on. First, we’ll consider some

of the frameworks that currently exist and what they each offer.

2.1.2 Taxonomy & Features

MPC protocols can be designed to accommodate an arbitrary number of compute

parties N (where N > 2) while tolerating some selected threshold T of those parties

being adversarial. A coalition of “bad” parties may be working together in an attempt

to break confidentiality in order to learn about other entities’ data or in an attempt

to tamper with the computation being performed.

While it has been known for 30 years that general-purpose MPC algorithms existed

and could be used to securely solve arbitrary problems, most of that work remained

theoretical until recently (early 2000s) as inefficiencies in the design of the protocols

prevented practical use (Hastings et al., 2019). Specialized protocols that could be

feasibly implemented were also researched during this time. While some of those have

more reasonable computing hardware requirements, the restricted scope of problems

they served still limited adoption. Lately, work on compilers that can automate the

12

application of MPC to arbitrary problems has made general-purpose MPC feasible to

implement and opened an avenue for the development of systems that could see wider

adoption. Fairplay was the first notable implementation to show this was possible

(Malkhi et al., 2004).

MPC designs generally represent problems as either arithmetic or Boolean circuits

using some form of Garbled Circuit or Secret Sharing to secure the data which will

be used in a computation. Garbled Circuit protocols are two party compute (2PC)

systems. They rely on one party generating an encoded circuit representing the entire

problem of interest. This is transmitted to the second party along with any encoded

inputs held by the first party. The second party can then evaluate this circuit using

both parties encoded inputs and eventually obtain the solution. On the other hand,

Secret Sharing-based MPC systems have the compute parties evaluate each gate of

the circuit in parallel on their own pieces or shares of the data. A small amount of

network communication between parties is required for each multiplication or AND

gate (none is required for addition or XOR gates). It should be noted that the number

of parties only describes the systems being used to evaluate the protocol. While GC

designs are essentially 2-party and SS designs can be n-party (commonly 3 or 4 party),

there can be any number of clients contributing data and outsourcing the computation

to some set of compute parties running the MPC protocol. The client data must just

be encrypted and partitioned among the compute parties.

The computation and communication overhead of MPC manifests itself differently

for Garbled Circuits and Secret Sharing. The size of the encrypted representation

when using GC is such that each gate is a multiple of the number of bits of the chosen

security parameter. For example, a single two-input gate would be 4×κ bits because

each input could either be 0 or 1 requiring four possible inputs to be generated. If

AES-128 were being used where κ = 128, the amount of data for a single gate of

13

this sort would be 4× 128 = 512 bits. Even with optimizations (Beaver et al., 1990;

Kolesnikov & Schneider, 2008; Naor et al., 1999; Yakoubov, 2017; Zahur et al., 2015),

Garbled Circuits have a large communication size (80-128× the size of the original

data); however, they benefit from a small constant number of communication rounds.

Consequently, the theoretical max throughput of GC designs over some network is

constrained by the bandwidth overhead. The fixed number of communication rounds

does give GC the edge in high-latency scenarios despite the overhead, but in an ideal

network with low latency, having fewer communication rounds doesn’t compensate

for the bandwidth cost.

Conversely, Secret Sharing approaches require a low-latency environment because

they involve many more rounds of communication, but they consume substantially less

bandwidth per computational step. This approach offers a higher potential maximum

throughput by avoiding the bandwidth overhead of Garbled Circuits. However, Secret

Sharing schemes have a number of communication rounds that increases in proportion

to the depth of the circuit being evaluated. This results in the latency also growing

with circuit depth. On a high latency network, the time cost is amplified. However,

the amount of data that needs to be exchanged per round of communication is small,

resulting in low bandwidth requirements. In comparison to GCs, this means that

Secret Sharing can achieve a higher throughput and make better use of the resources

available when used on a more ideal, lower latency, network.

Beyond the basic choice of protocol, there are numerous other considerations to

make before selecting a specific algorithm variant or implementation. Some are as

follows:

Different cryptographic schemes offer varying security guaranties. Approaches

that promise information-theoretic (IT) security indicate that even with an infinite

amount of computational power at their disposal, an adversary would not be able

14

to compromise the design without certain information. Alternately, computationally

secure designs rely on how difficult certain calculations are to perform in order to

provide a guarantee about a system being secure from compromise. While some

ciphers have a “best by” date based on anticipated computational performance, others

have such a high threshold as to be practically secure forever (barring advancements

such as quantum computing).

As MPC protocols are concerned with protecting honest parties from adversarial

parties, it is important to consider how many possible adversaries of the total N

parties it is able to handle. In 2PC cases such as GC, it is necessary to consider the

worst case where n − 1 parties are corrupt and there is only a single honest entity.

However, when there are additional parties, a typical choice is to select supporting an

honest majority such that only fewer than n
2
of n parties may be adversarial. With an

honest majority assumption, all functions can be performed in an IT secure fashion,

which is not necessarily the case otherwise (Ben-Or et al., 1988; Chaum et al., 1988;

Evans et al., 2018).

Selecting the number of parties for a particular protocol can be influenced by

several considerations. While there is no theoretical limit to the number of compute

parties that can be supported, in practice, the more parties that exist, the greater

potential there is for one or more of them to experience some sort of failure. This

is exacerbated when there are large geographic distances or high latencies between

parties such as in systems operating over the internet. There is also additional com-

plexity in handling the large number of entities. It is relatively common to see three-

and four-party constructions because they avoid excess complexity and, in the three-

party case, map very neatly to an honest majority assumption where 2
3
parties at

least are expected to be honest.

The types of adversaries can also vary, and different protocols have varying as-

15

sumptions about which might be encountered and can be handled. Semi-honest ad-

versaries will follow the rules of a given protocol correctly but may be attempting to

uncover information by performing other work on the side based on observations they

make. Malicious adversaries can actively be modifying data or diverging from ex-

pected steps in a protocol in an effort to prevent the computation, gain information,

or influence the result. While it might seem easy to say that a maliciously secure

protocol is preferable, there are many scenarios where parties may be sufficiently

trusted to follow a protocol or may be obliged to do so. Maliciously secure systems

generally require additional computational overhead to provide such guarantees over

semi-honest ones, and some situations may tip in favor of the additional performance

of a semi-honest approach.

As noted above with regards to selecting the number of parties, the environment

of operation (Global internet, single data center, or somewhere in between) will affect

the performance of various protocols. Many parties will generally increase failure

rate, distance will increase latency, and location of different parties may determine

the amount of computational power or network bandwidth available. Some problems

will require selecting a protocol that is most suitable; in other cases, crafting an ideal

environment for a particular protocol is an option.

Having discussed some of the considerations of MPC algorithms, we will next look

at some of the frameworks and tools that implement them.

2.2 Processing & Communication Hardware

As established earlier, MPC necessitates some overhead compared to operations per-

formed in the clear. This manifests itself both in terms of communication and com-

putation. In our proposed solution, we use hardware to improve the performance

of MPC in the hope that a reduced overhead will be more attractive to potential

16

adopters. As we will cover later, changes in hardware and the way information sys-

tems are developed and deployed offer some new paths towards more accessible MPC.

2.2.1 History

For many years, using a generic CPU was sufficient for most applications because of

the regular performance increases between each generation of chips. This progression

is characterized by several trends that are reasonably well known. “Moore’s Law,” as

it became known, came from the 1965 observation by Gordon Moore (Moore, 2006),

then Director of Research and Development (R&D) at Fairchild Semiconductor, that

the transistor count appeared to be doubling on a roughly yearly basis. He later

updated this projection in 1975 to add that he expected that after 1980, the transis-

tor count would double approximately every two years. “Dennard Scaling” describes

another important observation alongside “Moore’s Law” and is named after Robert

Dennard who wrote about it in 1974 while working at IBM (Dennard et al., 1974).

Also known as MOSFET scaling, it notes that as transistors grow smaller the power

density remains constant (it relates to how much area the transistors are occupy-

ing). This essentially means that as transistors grow smaller, they can use less power.

Additionally, the clock speed can be increased for those transistors, increasing per-

formance. Taken together, “Moore’s Law” and “Dennard Scaling” meant that, for a

while, more transistors could fit in the same space year after year, and the individual

transistor had greater performance. An estimate of this performance boost is sum-

marized by “Koomey’s law” which considers the number of computations that can be

performed per joule of energy (Koomey et al., 2011).

While these trends fairly closely described the progress observed over many years,

Dennard Scaling came to an end around the early 2000s with Moore’s Law further

slowing beyond his modified prediction by 2010. When working at small chip scales,

the leakage current of transistors increased and resulted in greater heat generation

17

(Kumar, 2015). Consequently, the substantial frequency increases that were previ-

ously expected between generations were no longer possible. While transistor size has

continued to decrease (allowing density to increase), the rate has slowed and Moore’s

law is expected to entirely end around 2025 as transistors reach their physical, atomic

limits.

With a limited ability to increase clock speeds, adding more processing cores

has been a primary strategy used to keep increasing performance in a post Dennard

Scaling world. IBM was the first company to develop a multi-core processor, the

POWER 4 (“Power 4 – The First Multi-Core, 1GHz Processor,” n.d.), which was

revealed in 2001. AMD released the first native dual-core processor in 2005 with Intel

releasing their first dual-core in 2006 (where native refers to the cores being located on

the same piece of silicon). Since then, core count has continued to increase such that

in 2021 AMD now offers several 64 core processors while Intel has a 56-core offering.

These are both architectures that make use of multiple chiplets (2 × 28 cores and

8 × 8 cores respectively). Though slightly beside the point, the single-die multicore

record from Intel is 40 (Xeon Platinum 8380) or 72 (if Xeon Phi is considered).

Additionally, Ampere is a company that focuses on ARM based processors and has

an 80-core processor available with a 128-core release seemingly planned for later in

2021 (both single-die) (Robinson, 2021).

Crafting architectures with increasing core counts and careful tuning such as dy-

namically adjusting the speed of certain cores has continued to extend performance.

However, fully leveraging the potential of a general architecture has become more chal-

lenging because of these many subtleties requiring additional thought to tune software

for specific hardware. As a result, there has been an increase in exploring process-

ing architectures tailored for specific tasks which make better use of the available

transistor budget. The most specialized are Application-Specific Integrated Circuits

18

(ASICs) while Field-Programmable Gate Arrays (FPGAs) and Graphics Processing

Units (GPUs) are some of the other, more popular, types of architecture. We’ll look

at each of these in the following section.

2.2.2 Processing Technology

Originally, GPUs were focused on providing specialized, highly parallelized silicon

that would be dedicated to managing display output for a computer leaving the cen-

tral processing unit (CPU) free to perform operations of interest. Researchers found

that the highly parallel architecture of GPUs was a good fit for other types of com-

putations. During the 1980s and 1990s some made use of these capabilities though

additional effort was required as these devices were not designed with general compu-

tations in mind. However, the usefulness of GPUs for other work was noted, and the

CUDA language and first GPU architecture designed specifically for general purpose

computations were released by Nvidia in 2006 (Harris, 2015). The primary competitor

to CUDA, OpenCL, which can be used to target heterogeneous platforms including

GPUs, first appeared in 2009. Since then, GPUs have gained wide acceptance and

use with machine learning (ML) being a large driver of interest and greatly benefiting

from GPUs performance (Raina et al., 2009).

ASICs have existed since the inception of integrated circuits and are designed to

serve a particular purpose. With specialization, it is possible to implement the most

efficient and greatest performance solution to a problem. The drawbacks to using

an ASIC include the time and effort needed to progress from an initial design to a

physical chip and the difficulty of fixing or modifying an existing design. For problems

whose solutions are mature and unlikely to change or where performance is required

at all costs, ASICs are a reasonable choice. Other approaches do offer more flexibility

and potentially lower cost from a greater production scale.

First introduced by Xilinx in 1984, FPGAs were touted as a viable alternative

19

to ASICs for either small production volumes or where the absolute best perfor-

mance possible wasn’t required. Increasing transistor densities and performance per

transistor has meant that FPGAs, ASICs, and other technologies can offer greater

performance. However, developing devices on smaller and more advanced scales is

more complex and costly. The point at which ASICs are worth the additional cost

over FPGAs has shifted ever higher, increasingly leading FPGAs to appear in final

products. Taking a look at the epochs of FPGA technology, we can trace their shift-

ing role. From their creation until the early 1990s, FPGAs were fairly small, and

design automation techniques were not widespread. In more demanding applications,

multi-FPGA designs were used. During the 1990s, FPGAs benefited from semicon-

ductor process advancement increasing the number of gates that could be supported

in a given area and in connectivity, which made it possible for parts of a design that

are physically separated to be linked and logically in closer proximity. Design au-

tomation became crucial in effectively working with the larger quantity of resources

available on an FPGA. Designs were often able to fit on a single FPGA, and ASICs

faced further competition. During the early 2000s (until around 2007) FPGAs expe-

rienced the same types of challenges posed to other technologies reliant on the regular

improvement to transistor performance and size. As customers more commonly had

excess capacity on FPGAs at this time, producers addressed the mismatch in several

ways. Smaller, less powerful, but more efficient FPGAs targeted small applications.

As the largest FPGAs already had more capacity than most customers needed for

individual functions and no longer benefited as much by simply growing larger, ven-

dors started to add more dedicated functions instead. Specialized hardware blocks

included integrated CPUs, DSPs, memory, high-speed serial communication, and the

tools to use them. IP offerings also made it easier for customers to deploy functions

to FPGAs (and to fill up the free fabric – internal resources – that they had). Current

20

FPGAs often consist of heterogeneous silicon designed to offer a cohesive application

platform that can be targeted from the ground-up (Trimberger, 2015).

As will be seen in the remainder of this thesis, three aspects of FPGA technology

are particularly relevant to this work: their use as accelerators, their use as commu-

nication devices, and their programmability. We discuss these in turn.

First, successful use of FPGAs as accelerators has been demonstrated in general

(Gokhale & Graham, 2005; Hauck & DeHon, 2008; M. C. Herbordt et al., 2007;

M. Herbordt et al., 2008; Khan et al., 2013) and in many specific applications such

as Molecular Dynamics where GPU-like performance has been achieved (Wu et al.,

2021; Yang, Geng, Wang, Patel, et al., 2019; Yang, Geng, Wang, Sheng, et al.,

2019). There are also several special advantages unique to FPGAs (among off-the-

shelf ICs). For example, they can be configured with arbitrary precision (Belanović &

Leeser, 2002; de Dinechin & Pasca, 2011; Sun et al., 2008). This has been especially

useful in cryptography (Agrawal et al., 2019; Sayilar & Chiou, 2014) and enables

efficient hardware implementation as will be seen in Section 3.4.2. One of the likely

applications of this work is in ML as both training and inference can be protected

using MPC. Ongoing efforts seek to support important operations for ML such as MM

and MAC (primarily discussed in Chapter 6). FPGAs have already proven crucial to

ML, especially in handling inference with non-uniform models (Geng, Li, et al., 2020;

Geng et al., 2021; Geng, Wu, et al., 2020), but also large-scale training (Geng et al.,

2018; Wang et al., 2020). As ML is a field of great interest, and both ML and MPC

benefit from FPGA deployment, their overlap seems like fruitful avenue for further

research.

The second aspect is that, among off-the-shelf ICs, FPGAs uniquely combine ac-

celerator capability with hardware support for communication. This has for decades

made them central to high-end communication switches (Bolaria & Byrne, 2009).

21

Also, and critically to this thesis, in the last five years FPGAs have become widespread

in the data center. Of particular relevance is their use in smart NICs and in bump-

in-the-wire configurations (Caulfield et al., 2016). General purpose FPGA commu-

nication stacks have been developed both for clouds (Putnam, 2014) and clusters

(Boku et al., 2019; George et al., 2016; Plessl, 2018; Sheng et al., 2015), e.g., (Sheng,

Xiong, et al., 2017; Sheng, Yang, Caulfield, et al., 2017; Sheng et al., 2018). Recently

this work has been extended to support using FPGAs for support of MPI (Xiong,

Bangalore, et al., 2018; Xiong, Skjellum, et al., 2018) and compute-in-the-network

(Haghi, Geng, et al., 2020; Haghi, Guo, et al., 2020; Stern et al., 2018). We discuss

communication aspect further next in section 2.2.3.

Finally, much work has been done on FPGA programmability. When using FP-

GAs for low-level functions, as we do here in this thesis, precise implementation is

essential. While this is possible with standard HDLs and allows for fine control, it

limits portability. The standard method used to make the device more accessible

to non-FPGA programmers is HLS, e.g., using the Xilinx Vitis environment or the

Intel Quartus Prime environment built around OpenCL. The difficulty with such an

approach is that too much performance can be lost when using such abstraction,

although recent work has given direction in solving that problem (Sanaullah & Her-

bordt, 2018; Sanaullah et al., 2018; Yang et al., 2017).

Moving on from FPGAs and considering future processing developments, quantum

computing may eventually mature and become usable commercially. Such a change

promises to fundamentally alter how all systems are designed. Until that occurs

though, the use of heterogeneous architectures seems to be here to stay.

2.2.3 Communication Technology

Processing capabilities are not alone in seeing progress over time; continued improve-

ments in communication bandwidth have also been important both in serving clients

22

over long distances as well as maximizing the utilization of networked systems in data

centers and particularly in high-performance computing (HPC) scenarios.

Edholm’s law was publicly attributed to Phil Edholm of Nortel Networks by John

H. Yoakum in 2004 (Cherry, 2004). The bandwidth of communication networks has

been increasing at an exponential rate, doubling every 18 months, just as Moore’s law

dictated for transistor count. This has been attributed to three primary innovations:

the advent of MOSFETs and the constant decrease in their size, lasers and their use

in communication systems, and information theory (Jindal, 2009).

We can see the increasing capacity of the Ethernet over time when we consider

the standards released by the IEEE 802.3 working group (Hajduczenia et al., 2016).

In 1998 and 1999 1 Gb Ethernet standards were released for fiber optic and twisted

pair respectively. 2002 and 2006 brought 10 Gb Ethernet to fiber and twisted pair.

The standards for 40 Gb and 100 Gb Ethernet over a backplane were released in 2010

and for optical fiber in 2015. 2017 brought 300 Gb and 400 Gb Ethernet over fiber.

The 2020 Ethernet Alliance roadmap (“2020 Roadmap: Ethernet Alliance,” 2020)

projects 800 Gb and 1.6 Tb Ethernet standards to be released in the next few years,

potentially between 2023 and 2025.

In the data center, these bandwidth increases are one factor that has allowed for

a growth in networked systems. The other element at play is the radix of switches.

Together, the connectivity and bandwidth determine how many devices can be di-

rectly linked and what type of switch hierarchy is necessary as the system scales

upwards. Higher bandwidth and radix switches make it possible to keep a flatter

network topology and reduce the number of hops necessary between systems. Im-

provements to switch ASICs, like other silicon, have tracked Moore’s law and offered

a steady improvement over time. Depending on the types of tasks being executed in

a particular data center, different clever network topologies can balance the distance

23

between nodes, bandwidth, physical cabling constraints, and more.

While the bandwidth per link has been increasing regularly, what is available to

a home user when connecting to the internet lags behind. Nielsen’s Law is a rule of

thumb and that observes that generally a user will see their internet bandwidth grow

by 50% each year. Starting from a 300 bps modem in 1983 or thereabouts, the most

recent update in 2019 notes 325 Mbps (Nielsen, 2019).

Furthermore, even with the increase in bandwidth over time, latency is constrained

by the physics of the speed of light travelling across fiber optics. The relative locations

of networked systems will be the main determining factor for latency. Finally, in the

MPC cases we are considering, there is a small (single-digit) number of connected

systems. This makes it possible to avoid complex network designs, which can be

critical to consider in other data center applications with larger numbers of nodes.

Instead, as long as a system has sufficiently low latency (data center), the hardware

implementation of MPC can perform sufficient operations to fully utilize the available

bandwidth.

2.3 MPC with Special Hardware

As noted previously, GC approaches to MPC consume lots of network bandwidth

but don’t introduce much communication latency because they have a fixed number

of communication rounds. Consequently, such approaches can work well even when

parties can only communicate over a high-latency network (though bandwidth itself

will influence how long the communication will take). While effort has been made to

make GC representations more compact and bandwidth efficient, increasing network

bandwidth has likely also contributed to reducing the urgency of the network limi-

tations of such protocols. Indeed, prior hardware research has frequently focused on

improving the performance of garbling and evaluating, including a fair bit of work on

24

FPGAs (Fang et al., 2017, 2019; Frederiksen et al., 2014; K. Huang et al., 2019; Hus-

sain & Koushanfar, 2019; Hussain et al., 2018; Järvinen et al., 2010a, 2010b; Leeser

et al., 2019; Songhori et al., 2019; Songhori et al., 2016).

With SS, while the network bandwidth is used sparingly, the communication la-

tency is critical to overall performance. As latency increases with the depth of the

circuit being evaluated, bigger problems will be more severely impacted. While net-

work bandwidth has increased over time, network latency is dependent on physical

distance between parties and avoiding the introduction of any delay in communica-

tion. To speed up a problem, the best strategy is to generate and process the flattest

circuit possible and parallelize processing. In that manner, more data can be sent in

the same communication round. The greater bandwidth efficiency does mean that

given the same network a SS approach saturating the connection will have a higher

throughput than a GC approach saturating the same connection.

GC and SS can both benefit from the increase in compute offered by accelera-

tors, improved network bandwidth, and the consolidation of these resources into data

centers. However, SS can better the utilization of those resources at the risk of addi-

tional latency, a trade which is likely to be appealing to data center providers seeking

to extract the most work from their resources. For problems that have large circuit

depth and that require the lowest latency, GC will still be preferable to SS, but this

seems like a minor drawback in the data center for an MPCaaS architecture.

When considering FPGAs for MPC, there are a number of ways in which they

might be deployed. As an isolated co-processor each party with an accelerator could

offload work to the FPGA, potentially freeing resources for other work although, as

a co-processor, performance may still be limited by the speed at which the main

processor or system can handle the necessary transactions with other parties. As

a bump-in-the-wire, an FPGA can potentially provide the same improvements as

25

a co-processor but cut out the main processor or system from communication. In a

single-node cluster, multiple FPGAs may be located in the same system but belong to

different parties and communicate either directly through PCIe or other interconnects

like RapidIO. The main question would be with regards to whether such an approach

with a shared host can provide sufficient isolation between the parties. Finally, an

enclave or silo on a FPGA where multiple parties are placed on the same hardware

has the best potential performance by allowing for direct communication between

the parties. We see the most open questions about such an approach, however, as

guaranteeing sufficient isolation between entities present on the same hardware is very

challenging.

The earliest work in accelerating MPC appears to date back to 2010 with an

FPGA implementation of GC (Järvinen et al., 2010a, 2010b). The authors used

this to assess the potential for implementing GC on a smart-card as well as using

the FPGA as a stand-alone GC accelerator. Other work explored garbling entire

processors including MIPS (Songhori et al., 2016) and ARM (Songhori et al., 2019)

architectures (implemented on FPGAs for testing). Specialized problem acceleration

under MPC, including work on ML (Hussain et al., 2018), has also seen some interest.

Some MPC acceleration research has also explored employing GPUs (Frederiksen

et al., 2014; Husted et al., 2013; Pu & Liu, 2013; Pu et al., 2011), but that hasn’t

seen as much attention in the last few years with most efforts focusing on FPGAs,

particularly for GC (Fang et al., 2017, 2019; K. Huang et al., 2019; Leeser et al.,

2019). These and other efforts (Hussain & Koushanfar, 2019) identify cloud-based

FPGAs as desirable for GC evaluation with some performing testing on AWS.

The studies from researchers at Northeastern University are most relevant to the

efforts in this work. Their overlay architecture (Fang et al., 2017) and choice of data

centers (K. Huang et al., 2019) are similar to our own. Logical blocks which accelerate

26

the garbling of AND and XOR operations were implemented so that data can be

passed to them without requiring the FPGA image to be recreated and reprogrammed.

This approach makes it possible for one design to process different MPC circuits.

2.4 Big Data & the Cloud

The term “big data” has been in use since at least the 1990s when it gained popu-

larity. The use of this term has most often been attributed to John Mashey in his

presentations while working at Silicon Graphics (Lohr, 2013; Mashey, John R., 1999).

Generally, it describes the type of datasets that defy conventional techniques of cap-

ture and analysis as a result of their scale. As hardware, software, and algorithmic

improvements continue to be made, handling the growing and changing “big data” is

a moving target that is never entirely solved.

2.4.1 Data Collection

One of the most obvious challenges in handling “big data” is the question of storage

capacity, which can be considered from both data density and marginal cost perspec-

tives. The storage medium influences cost, density, volatility, and read/write speed.

All of these factors play into determining which type of storage is best suited to dif-

ferent roles, including long-term storage, short-term storage, and working space in

different parts of a system architecture, such as cache, memory, or the file-system.

With density increasing and cost per unit falling, more data can be stored each

year. This is the result of both some major new technologies being introduced and

refinements to existing ones. The growth of solid-state storage (SSD), typically made

with non-volatile NAND Flash memory, has brought huge increases in read/write

performance and at a cost that has rapidly approached hard-drive (HDD) prices.

While the invention of Flash memory dates back to 1980 (patented shortly after

27

(Masuoka & Iizuka, 1985)) and has been used over the years, its use alongside or

instead of HDDs really took off around 2010.

Additionally, in the last few years persistent memory (NVRAM) has become avail-

able (Clarke, 2015). Also known under the 3D XPoint or Optane names, persistent

memory is sufficiently rapid to be used as RAM. Though it is not quite as rapid as

volatile DRAM, it offers better performance than standard SSDs. In summary, there

is a more granular selection of storage technologies allowing for more nuanced trade-

offs to be made in system architectures. Going from high to low performance (and

low to high capacity) the hierarchy looks something like this: SRAM (CPU Cache),

DRAM (Memory), NVRAM (Persistent Memory), SSD (existing different cell counts

offering varying performance: SLC, MLC, TLC, QLC), HDD (varying platter counts

and more influence performance), and tape. All of these media play a role in making

it possible to more efficiently store and process “big data” by balancing capacity, cost,

and performance.

2.4.2 Data Processing

Beyond the capacity challenges discussed, information must be organized in some

manner when it is stored, ideally in a way that is most suitable to the types of

processing tasks it will see. Some important considerations for data management

systems include scalability, consistency, and efficiency. Scalability concerns how well a

particular database system can be spread across differently sized hardware resources;

for enormous amounts of data this can include systems networked across different

geographic regions and treated as one entity. Consistency becomes more challenging

with the size of a system and relates to whether data that is updated or added in

one location will appear the same or different elsewhere in the system. In some cases

eventual consistency, where the system guarantees that data will be the same after

some amount of time, is adequate. While we won’t spend much time on it here, the

28

trade-off space has been explored with different design philosophies such as ACID and

BASE and some guiding concepts such as the CAP theorem (Brewer, 2012). Finally,

efficiency concerns the ability of a system to handle different quantities and types of

operations. Systems that have real-time requirements need to be sufficiently efficient

to handle operations with an output rate that at least matches the input rate.

One type of approach employed for structured data was to move away from SQL-

style relational databases to “NoSQL” designs (Kalid et al., 2017). Some examples

of development in this field include Google BigTable (F. Chang et al., 2006), Apache

Cassandra (Lakshman & Malik, 2010), and Amazon Dynamo (DeCandia et al., 2007).

Broadly speaking, some data consistency properties are traded in such systems for

greater performance. Alternately, a system like Google Spanner (Corbett et al., 2012)

is a distributed SQL database and uses a special consensus algorithm to achieve

consistency.

The use of computational frameworks improves the ability of users to work with

various data storage architectures. Some of these include Google Pregel (Malewicz

et al., 2010), Apache Hive (Thusoo et al., 2009), Google MapReduce (Dean & Ghe-

mawat, 2004), Apache Hadoop (Shvachko et al., 2010), Apache Spark (Zaharia et

al., 2010), PowerGraph (now owned by Apple) (Gonzalez et al., 2012), and Apache

Storm (Marz, 2014). Frameworks such as these offer support for varying sets of op-

erations, manners of decomposing (e.g., batch, streaming), and ways of organizing

and distributing them across resources within individual systems and entire clusters.

For example, the MapReduce concept, popularized in big data by Google and used

in “MapReduce” and Hadoop, consists of breaking tasks into filtering/sorting steps

(mapping) that select relevant data and then applying processing steps on that data

(reduction).

An additional layer includes file-system options for storage such as GFS (Ghe-

29

mawat et al., 2003) and Ceph (Weil et al., 2006). Higher-level scheduling can be

managed with systems like Borg (Verma et al., 2015), Mesos (Hindman et al., 2011),

and Kubernetes (Burns et al., 2016). Tasks and processes can use Xen (Barham et

al., 2003) or containers for virtualization. The use of SDNs and other programmable

network management, such as Google’s B4 (Jain et al., 2013), have helped make it

possible to maximize the utilization of network resources, improve security, simplify

management, and gain more insights.

2.4.3 Security & Efficiency

The use of big data raises varied security and privacy questions. Addressing these

while maintaining efficiency is critical to obtaining value from the data collected. The

taxonomy of big data security and privacy considerations are nicely summarized by

NIST (W. Chang et al., 2019). Some of the important ideas to note are that big

data sets may not be able to be managed with a single security scheme and may

instead need different policies and mechanisms for various subsets. Additionally, the

provenance and state of data may differ. Classic approaches to dis-identifying PII

may no longer be sufficient, especially when multiple data sources are used together

in ways that were not planned for. There are opportunities in different data collection

mechanisms for errors or failures that can compromise the information collected, for

example from many IoT devices, some of which may not be online at a given moment.

Certain types of data that historically were too large for big data analysis, such as

high-resolution geospatial data, can now be processed and have perhaps not been

prepared or protected appropriately with the cloud in mind. While it’s easy to con-

ceptualize the cloud as something omnipresent but amorphous, the physical location

of the component data centers has political and regulatory significance. Navigating

various countries’ laws and norms for hosts, clients, and any data conduits can be

complex for both privacy and security because of the large number of stakeholders.

30

While there are many strategies and tools for managing these different types of

risks, it is difficult for many organizations to adequately prepare and adopt safeguards.

Doing so requires additional time, effort, and cost upfront and it can be difficult to

convince those unfamiliar with the risks to prepare in this fashion, especially if there

is no regulatory requirement that must be met or if they exist but lack teeth. Despite

the work that is needed on this front, working to make secure tools easier to use (such

as MPC) will help simplify addressing these challenges.

2.4.4 Data centers & the Cloud

Simply put, the concept of cloud computing is that instead of using local resources

for running a service, an entity can pay to use resources that someone else owns and

maintains. One reason for using a cloud provider is that it allows an organization

that doesn’t specialize in computer hardware, software, or services to gain access to

business-critical resources without having to take on the overhead of owning their own

equipment or hiring employees to handle it. With well implemented cloud systems,

there is also less lead-time in getting up and running. While existing companies can

benefit from cloud, allowing them to focus on their core objectives, cloud can also

make it far easier for startups to get up and running. They can start with some small

number of resources but scale up rapidly if business grows (or down if the model

doesn’t work out).

Additionally, there is at least the notion that cloud computing is, or at least should

be, a fungible commodity. A consumer doesn’t necessarily care who is providing the

computation and storage they consume, and it should be possible to move their

tasks to a different provider if there is a lower cost. However, this isn’t necessarily

the case with some of the large commercial providers. There are frequently low or

no costs for importing data into or moving it around within a particular provider’s

infrastructure but higher costs to export that data to a local system or to migrate

31

it to some other cloud provider. Additionally, different cloud providers seek to offer

specialized services rather than simply hosting standard tools. While some special

tools might have unique features, users that employ them will find it much harder to

leave a specific cloud provider when it is easier to just use other tools the provider

has designed to be compatible. Furthermore, the additional cost to move data to

another provider on top of potentially having to retool is a disincentive. There are

some efforts to at least offer ways for more fungible systems to exist such as through

the Open Cloud Exchange (OCX) model (Demchenko et al., 2013; Desnoyers et al.,

2015).

Data centers can be located near inexpensive power sources such as hydroelectric

facilities. Operating at a huge scale, it is possible to have a few workers dedicated to

keeping everything running while minimizing the human cost per system. Accepting

that systems are “cattle not pets” is also critical. It is easier to make the most cost-

effective choice, such as running systems at a warmer temperature and accepting

some additional failures because the cost of replacing a system is less than the cost of

additional cooling. Keeping to that same idea, using a limited and consistent set of

hardware, OSs, and other software helps to reduce the headache of managing different

systems and for developers, targeting different platforms. While cloud providers can

reduce operational costs, they charge users a huge markup. The capital expenses for

a user to run their own system are substantial, and as humans are not fractional, a

system must be large enough to justify the workers to operate it. Running a variety

of different tasks can also help to ensure there is sufficient utilization as various

operations go through different ebbs and surges. At a certain scale, it still makes

sense to “roll-your-own.”

Centralizing different tasks into a single data center also allows for surges and

ebbs in compute demand to be better balanced keeping the overall utilization of the

32

resources higher and more efficiently serving customer needs. Distributed hardware

run by individual companies is likelier to be run at a fraction of capacity and be sized

to handle the peak need anticipated. This approach means that there is more idle

hardware and less efficient use of resources. For large enough companies, centralizing

and running their own cloud can help to achieve the same benefits that dedicated

cloud providers see.

2.4.5 Deployment Models

There exists a range of deployment and use models as a result of cloud computing

services (“IaaS vs PaaS vs SaaS,” n.d.; Wagoner, 2019). Below some of the most

common ones are summarized from the lowest level where users have control that

most closely resembles managing their own hardware, to the highest level where there

is the most abstraction of the underlying hardware and software.

• IaaS: Infrastructure offerings like OpenStack provide mechanisms or abstrac-

tions to allocate low-level resources such as cores, memory, and storage space.

Clients can then typically run their operating system of choice on the resources

they choose and can even create their own network topologies between different

hardware allocated. This is the closest offering to owning and operating your

own hardware.

• CaaS: Container offerings move up a layer of abstraction and allow for users

to run their software in discrete virtualized environments where resources are

managed by the provider. Unlike virtual machines which are entirely separate,

containers can share a common OS kernel and libraries.

• PaaS: Platform offerings are mostly still beneficial for developers and are sce-

narios where the provider manages hardware and software and provides some

33

abstraction upon which code and applications can still be developed. The ben-

efit for the user is that they can focus on their application development without

being caught up in managing more details of the systems they are running on.

• FaaS: Function offerings allow users to create or use discrete widgets that are

not full featured applications. These can be employed individually or plugged

together to obtain the desired functionality without needing to deal with any

lower-level management of the system. Additionally, discrete functions can be

updated individually and still used in combination together.

• SaaS: Software offerings are the most abstract and are managed and licensed by

a third party to the end user such that the details of operating and maintaining

the software are hidden. In principle, updates and distribution can be managed

by the provider without requiring effort on the part of the user.

2.5 Takeaways

Here are a few takeaways after having considered the history and current status of

MPC techniques, computer hardware, advent of big data, and the growth of cloud

computing. MPC is a field that has seen a great amount of theoretical work and

that has more recently reached a point where it is feasible to implement for more

than just research efforts. Hardware has seen some large changes with the paradigm

for computing moving in the direction of heterogeneous processing (including accel-

erators), communication bandwidth increasing, and storage technology diversifying

and offering a larger trade-off space between capacity and performance. The in-

creased sources for data collection, capacity for storage, and desire for more insights

related to “big data” have resulted in the need for new technological and algorith-

mic approaches to better use and to better protect the information gathered. The

efficiency improvement and client ease of use offered by cloud computing has accel-

34

erated the clustering of compute power into specific, tightly knit data centers. With

more data and greater interconnection between systems, there are many security and

privacy risks, but also many opportunities to gain greater knowledge. Research such

as the work by Schneider and Zohner (Schneider & Zohner, 2013) demonstrated the

performance possibilities for Secret Sharing to compete with Garbled Circuits in a

low-latency environment such as a data center. Our work, using FPGAs to accelerate

SS MPC in the data center and developing an MPCaaS vision, shows that there is

still more that can be done to address the performance overhead and knowledge cur-

rently required to use such a system. Moving forward, finding ways to make it easier

to use techniques such as MPC will help users and companies to address risks while

still reaping the benefits of all the technical innovation that has occurred.

Chapter 3

Design & Implementation

3.1 Design Goals

The primary motivation of this work is to demonstrate the viability of MPCaaS

and provide a plan that can achieve that goal. It should be high performance and

easy for the average user to employ. Most existing MPC implementations require

substantial manual effort and expertise to configure, and they are often network

bounded, particularly when executed over long distances. We want users to be able to

make use of cloud resources while transparently running their applications of interest

on an MPC system.

Because MPC requires multiple computing parties for security and low latency

networking for performance, we consider processing hardware owned by different par-

ties and housed within a single data center. Compute parties will each receive input

data shares and then communicate throughout evaluation of problems. Other ser-

vices offered by cloud providers require data input by users. Consequently, clients

may already keep some of their data silos in the same data center. If the MPC ser-

vice is hosted in the same location, it can also benefit from faster access to inputs.

Concretely, we imagine a scenario where a small number of FPGAs are connected

over high-speed interconnects and have the benefit of drawing data from servers all

co-located within the data center. FPGA hardware acceleration has seen increas-

ing adoption in data centers. This includes Machine Learning training and evalua-

tion, image and video processing, network management, and packet analysis. FPGA

35

36

hardware properties, as described in Section 2.2.2, and co-location should yield high

throughput for MPC protocols based on Secret Sharing, as such designs make the

most effective use of available bandwidth. Cloud providers care about throughput

because maximizing it means they are able to serve more clients using the same hard-

ware over time. The security and reliability of the system is an important factor when

relying on data center resources and needs to be considered before a MPC solution is

fully adopted. We will show how our work confirms our ideas for SS MPC on FPGAs

in the following sections.

3.2 Design Choices

In this work, the decision was made to focus on a simple and efficient protocol that

could be used in a broad number of scenarios and that might be conducive to hard-

ware acceleration in the data center. Hypothesizing that a Secret Sharing solution

would best be able to take advantage of the low-latency communication in a data

center, we focused on such candidates with the goal of verifying that concept. Even-

tually, a 3-party protocol tolerating 1 adversarial party who “semi-honestly” follows

the protocol was chosen. The small number of computing parties simplifies commu-

nication between each other while semi-honest behavior is acceptable in many types

of computation. Furthermore, additional existing algorithm work (Araki et al., 2017)

addresses how such a system can be extended to provide security against malicious

adversaries. Finally, having a small number of compute parties makes it much easier

to imagine mapping such an algorithm to several discrete FPGAs owned by different

entities and co-located in the same data center. We ruled out GPUs for this selected

context because their communication capabilities are constrained relative to FPGAs.

37

3.3 Protocol & Algorithm Details

Within the category of MPC protocols based on Secret Sharing, we selected a protocol

(Araki, Barak, Furukawa, Lindell, et al., 2016; Araki, Furukawa, et al., 2016) for

FPGA acceleration due to its simplicity and algorithmic efficiency. The base Araki

et al. protocol employs exactly 3 parties, and tolerates 1 adversarial party that is

presumed to follow the protocol. Communication occurs in a ring topology, with all

parties sending data in the same direction (clockwise or counter-clockwise). MPC

schemes based on an honest-majority such as Araki et al. are straightforward to

define with three parties, the minimum quantity required. Small numbers of parties

are not typically limiting for most MPC applications. It should be noted that the

more parties that are added and the greater the separation between them, the more

likely it is that an MPC operation will experience greater latency or will fail from

connectivity issues. This reinforces the practical benefits of performing MPC in a

data center with a limited number of parties.

The workflow involves 3 distinct steps. First, data holders split their data into

secure shares that are distributed among the 3 compute parties. The shares are con-

structed such that any two of the compute parties can decide to reveal data and

have sufficient information in a pair of shares to do so. Then, the parties iteratively

compute over these shares without revealing any secrets. Finally, the compute parties

reveal their shares to the output party who can reconstruct the final answer. Al-

ternately, they could reconstruct the answer among themselves by exchanging their

shares with each other.

We implemented both Boolean and arithmetic types of Secret Sharing circuit rep-

resentations as described by the authors. The distinction between these two categories

is based around the usage of an algebraic ring modulo 2n. Operations where n > 1

bits are used as a single value employ arithmetic gates such as addition or multipli-

38

cation. We opted to use n = 128 for our arithmetic implementation. For the case

where n == 1, each bit is an independent Boolean value. When considering these,

we used 128 independent Boolean gates to match the quantity of data in our n = 128

arithmetic gates. In the Boolean case, XOR is equivalent to addition and AND to

multiplication. We explore the details of each step below.

3.3.1 Secret Sharing

When following the protocol of Araki et al. input data must be prepared in a partic-

ular fashion to be distributed among the three compute parties. The initial value v

is processed such that each party i ∈ 1, 2, 3 obtains a share tuple (xi, ai). As we will

see in the following steps, this will ensure that any two parties have sufficient data

to reconstruct the original value using one of the values in their tuple share and the

opposite value from the tuple of one of the other parties.

The entity holding the secret value v, either a client or one of the compute parties,

selects random values following Eq. 3.1, essentially, values that fit in a binary domain

n bits long (e.g., for an n = 8-bit field each random value must be 8 bits).

x1, x2, x3 ∈ Z2n (3.1)

These shares must obey Eq. 3.2 if the shares being generated are arithmetic; oth-

erwise, they are Boolean and must obey Eq. 3.3. It should be noted that the ai

component of the share tuple belonging to party i derives from xi−1 which is from

the neighboring party. This is essentially a one-time pad and the reason that the xi

from the neighboring party can be used to reveal the original value.

Arithmetic:

x1 + x2 + x3 = 0 then ai = xi−1 − v (3.2)

39

Start Secret Share

RandomValue Random

⊕,−

X3X1 X2

⊕,− ⊕,−⊕,−

A1A2 A3

X3A3X1A1X2A2

Finish Secret Share

Figure 3·1: Initial Secret Sharing

Boolean:

x1 ⊕ x2 ⊕ x3 = 0 then ai = xi−1 ⊕ v (3.3)

Refer to Figure 3·1 to visualize how a value holder can generate the three shares

to be distributed to the compute parties.

3.3.2 Compute Phase

In the compute phase, the parties work together to solve a problem in a privacy-

preserving manner and generate a result that is also in the secure share format.

When solving a circuit in Boolean form, XOR or AND operations are used whereas

when an arithmetic circuit is solved, addition and multiplication operations are used.

It is easiest to imagine fan-in 2 operations proceeding sequentially with inputs (xi, ai)

and (yi, bi), though we stress that this process is embarrassingly parallel. The shares

are respectively for data values “v1, v2”. Each party i will have a share for each value.

40

Start Local Computation

XiAi YiBi

YiXi Ai Bi

⊕,+ ⊕,+

Zi Ci

ZiCi

Finish Local Computation

Figure 3·2: Party i’s contribution toward computing an XOR gate

Addition/XOR operation

The addition/XOR operations can be performed locally by each party using the shares

that they already hold. Communication is not required. Figure 3·2 provides a visual

representation of these operations with two example shares (xi, ai) and (yi, bi).

XOR: Each party can compute the XOR of their individual shares simply by

performing a local xor of the individual parts in the pair because a one-time pad is

homomorphic under the ⊕ operation (see 3.4).

z = x⊕ y and c = a⊕ b (3.4)

Addition: Similar to XOR, individual parties can perform a simple addition of

arithmetic shares using their local information without the need for communication

(see 3.5).

z = x+ y and c = a+ b (3.5)

Multiplication/AND operation

The multiplication/AND operations require each party to perform a number of com-

putations and to exchange information with the other parties for the process to

41

complete. Because communication is required, the depth or serial number of mul-

tiplication/AND operations is what determines the latency for solving a particular

problem.

AND operation: The first step a party takes is to produce a correlated random

value α ∈ {0, 1} which follows Eq. 3.6. That is to say, the random numbers produced

by all three parties must XOR to 0; more on that later. The second step requires

each party to calculate ri by combining the halves of the two input share tuples as

shown in Eq. 3.7. At this point each party passes their ri value to one other party

member (clockwise as shown here) so that each party now holds ri and ri−1. Araki et

al. show that the values ri have the property that r1⊕ r2⊕ r3 equals the result of the

AND gate. Hence, the 3 parties collectively know the (sensitive) result of the AND

gate, but any 2 parties do not because the remaining ri value acts as a one-time pad.

Finally, each party can compute the output share (z, c); only one half requires the

data from a neighbor as shown in Eq. 3.8. The shares built in this fashion maintain

the invariant that any 2 of the parties can reconstruct secret values, but any 1 party

cannot.

α1 ⊕ α2 ⊕ α3 = 0 (3.6)

ri = (xi ∧ yi)⊕ (ai ∧ bi)⊕ αi (3.7)

z = ri ⊕ ri−1 and c = ri (3.8)

Multiplication operation: Performing multiplication for arithmetic shares is very

similar to performing AND for Boolean shares as described above. The first step

is also to have each party generate correlated random values. Given the nature of

arithmetic shares, these must be chosen such that α ∈ Z2n , following Eq. 3.9. The

second step requires each party obtain ri by combining the halves of the two input

share tuples as shown in Eq. 3.10. Due to the unique nature of the shares and their

42

set associativity, we take advantage of the modular multiplicative inverse for our q

value. As with the AND gate, communication between parties is necessary at this

point with ri being passed along. Finally, each party can finish calculating their

individual share (z, c) as shown in Eq. 3.11.

α1 + α2 + α3 = 0 (3.9)

ri = (ai · bi − xi · yi + αi) · q where q · 3 ≡ 1 (mod 2n) (3.10)

z = ri−1 − ri and c = −2ri−1 − ri (3.11)

Having now considered how AND and multiplication operations can be executed,

let’s revisit the correlated random values. These values have nothing to do with

the sensitive data, but they make it possible to perform operations on the secret

shares while keeping them protected. Now, it is possible for the parties to pick

random values, exchange them, and generate a new correlated random number on

the fly. However, doing so would require an additional communication step. As

a correlated random number is consumed for each AND/multiplication, this would

mean that instead of a single communication for exchanging ri there would be a

second communication. SS already is most bottlenecked by communication latency,

so avoiding this additional communication is preferable. Instead, each compute party

selects their own cryptographic key at random such that ki ∈ {0, 1}κ where κ is the

security parameter (i.e., the number of bits). Once chosen, each party shares their

key with one other party (to the left) and receives the key selected by the other party.

The party can use their key and the other party key along with a publicly known

ID “message” as inputs to a PRF to generate correlated randomness. This avoids

communication at the cost of some additional computation by each party. We use

AES in counter mode as our PRF. By incrementing the counter that is local to each

party in lockstep and using the same keys, the same pseudo-random value can be

43

Start Corr. Rand. for Pi

Random

ID++Ki Ki+1

PRF PRF

f(Ki,Ki+1)

αi

End Corr. Rand. for Pi

(a) correlated random value

Start AND,mulitply for Pi

YiBi

Xi Yi

αi

Bi

XiAi

Ai

∧, · ∧, ·

f(Ai, Bi, Xi, Yi, αi)Ri

Transmit Ri to party Pi+1

(b) initial computation and exchange

Receive Ri−1 from party Pi−1

Ri Ri−1

=,− f(ri, ri−1)

Ci Zi

ZiCi

Finish AND, MULTIPLY for Pi

(c) final computation

Figure 3·3: Party i’s contribution toward computing an AND gate

44

found independently. Furthermore, since using the PRF doesn’t require knowing the

shares that will be used, it can be computed ahead of time so that a correlated random

value is ready to use as soon as the inputs are determined. Figure 3·3a) illustrates

this process for one party. Subsequently, Figure 3·3b details the calculation of ri, and

Figure 3·3c shows how to obtain the final share after ri values are exchanged.

3.3.3 Data reconstruction

In the reconstruction phase, we presume that the compute parties have calculated

shares (x′i, a′i) corresponding to the output value v′. Then, the parties can obtain v′

in the clear by revealing their shares (each party needs the share from one of the other

parties) and combining them as shown in Eq. 3.13 for Boolean shares or Eq. 3.12 for

arithmetic shares.

Arithmetic:

v′ = zi−1 − ci (3.12)

Boolean:

v′ = zi−1 ⊕ ci. (3.13)

3.3.4 Extensions

We focus on the Araki et al. Secret Sharing using 3 parties as our starting point.

Extensions of this protocol exist to provide more security over malicious individuals

or allow for more party members (Araki et al., 2017; Furukawa & Lindell, 2019;

Furukawa et al., 2017). As our initial goal was to provide evidence toward the benefits

of accelerating MPC in the data center, we focused on the semi-honest case while

leaving the option to extend our implementation to support the maliciously secure

version of the protocol. Our FPGA implementation of the semi-honest protocol could

also be extended with other features such as dynamically switching between share

types or MPC protocols in the pursuit of greater performance (Demmler et al., 2015;

45

Mohassel & Rindal, 2018). Since these initial efforts, there have also been a number

of four-party SS MPC protocols (Dalskov et al., 2020; Gordon et al., 2018; Koti et al.,

2020) that provide malicious security and may be more interesting to implement than

a three-party maliciously secure protocol.

3.4 Implementation Details

3.4.1 Platform Choices

The hardware employed for different tests changed throughout the course of this work.

The very initial work in implementing MPC primitives targeted an Intel Arria 10 GX

development kit installed in a CAAD research group desktop. This hardware was

primarily chosen because of its availability. The design used a softcore, specifically

the Nios II, on the FPGA to manage data I/O and provide the external triggering

logic to operate the MPC AND primitive implemented in HDL. A custom instruction

for the Nios enabled simple software control of the hardware MPC AND operation.

Some initial information and insights were gathered from this testing, which will be

discussed in the results section. Some limitations led to a change of hardware for

subsequent research.

The second implementation makes use of Amazon Web Service (AWS) Elastic

Compute Cloud (EC2) FPGAs available through “F1” type instances. This platform

offered Xilinx Virtex UltraScale+ VU9P FPGAs accessible via a virtual machine

in the EC2 F1 instances. The environment also included a hardware shell for soft-

ware/hardware co-design between the node CPU (Intel Xeon E5-2686 v4) and FPGA.

Software to control the FPGA uses provided DMA functions and PCIe function tem-

plates. This furnishes the mechanism for loading data, controlling operations, and

retrieving results. The design deployed here is able to generate PCIe packets to pass

in data and commands which are translated through the Amazon shell and then

46

passed to the hardware functions using the AXI bus. We use the general purpose

AXI bus supporting a 512-bit data packet to provide a single message containing

two secret share vectors (4×128-bits) prior to starting the hardware operations. The

HDL design takes each AXI bus message, parses the information, and relays data to

a specific implemented module.

One of the motivations for selecting to use AWS was to gain some familiarity

and insight with using cloud deployed accelerators. Additionally, several choices of

F1 instance exist and seemed attractive. The Amazon AWS F1 instances include

options for 1, 2, or 8 FPGAs under the F1.2xlarge, F1.4xlarge, or F1.16xlarge names.

Documentation describes two different inter-board communication approaches. Com-

munication between FPGAs in the F1.4xlarge and F1.16xlarge instances is possible

at 12 Gbps over PCIe by routing through the host system. Alternatively, using

FPGA Direct to enable FPGA access to each other’s DRAM over PCIe is possible

for lower latency but requires developer implementation of the protocol and trans-

fer engine (Services, 2016) (See FAQs.md). Additionally, FPGAs should have the

ability to communicate directly over a 400 Gbps serial ring link (Services, 2016) (see

AWS_Shell_ERRATA.md), but, unfortunately, we discovered that support is only

tentatively planned in a future release. It might be possible to make use of the hard-

ware in this fashion but would currently require implementing a custom system to

handle this communication. In testing the proposed Secret Sharing block, we made

use of an AWS F1.2xlarge instance as our initial verification, and proof of concept

tests only required a single FPGA. The option remains to rent a larger instance,

deploy parties to dedicated FPGAs, and employ PCIe for communication.

3.4.2 Hardware Implementation

Our HDL design work for the MPC primitives started with a focus on the AND

operation for Boolean shares while targeting the Arria 10. While the platform was

47

subsequently shifted to AWS necessitating control logic changes, the existing work on

the primitives was retained and further developed. Later work included XOR prim-

itives and supported arithmetic shares in addition to Boolean ones. The arithmetic

and Boolean designs share many common elements, as is seen in the similar logic de-

scribed in section 3.3. With individual primitives, a hardware design can be used to

selectively partition resources between XOR/addition gates and AND/multiplication

gates. Since all gates are routed individually, connecting gates to form a specific

circuit or equation can be done either through the software host process or with an

agreed upon hardware change between all party members. If a reasonable mix of

gates is programmed onto the FPGA, the need to create and program a new bit-

stream with a different design can be avoided, saving time. The implemented gates

can be arranged in software to process any sequence of MPC operations.

Additionally, multiple gates could be chained together to support higher level

functions such as matrix multiply or multiply accumulate (MAC). Previous work

done with matrix multiply shows efficient methods of using Garbled Circuits to ac-

celerate the generation of MPC circuitry before passing the garble tables over to the

participating party member (K. Huang et al., 2019; Hussain et al., 2018; Leeser et

al., 2019). Our approach to matrix multiply using SS would perform all computa-

tion jointly across the parties during run-time. One optimization is to perform all

of the multiplication on shares locally prior to performing the necessary communica-

tion, avoiding multiple latency penalties for each element in an MM operation. An

additional option is to take advantage of the fact that the correlated random bits

produced by the PRF don’t all have to remain together. In the Boolean case they

are all independent while in the arithmetic case different quantities can be combined

together arbitrarily. This may become more critical when seeking to most efficiently

perform operations with data of a fixed precision type.

48

Within the MPC primitives, we make use of two different OpenCores projects

(Castillo, 2004; Hsing, 2012) for Random Number Generator (RNG) and for AES

operations (our choice for PRF). These cores provided a convenient, working starting

point. In a production design, we would plan to utilize vendor specific RNG hard

cores, perhaps dependent on a physically unclonable function (PUF), or alternately

make use of a different HDL design if it can be better optimized for the targeted

hardware. Considering the security of the OpenCores RNG module was not within

the scope of this work but would be necessary in the future when making a selection

between different vendor specific tools and designs. The MPC primitives make use of

the RNG core during initial key generation, share splitting phase, and the correlated

random requirements in both AND and multiply gates. The AES core is used as the

PRF that is needed during correlated random value generation.

In our design, prior to performing any MPC computations, each party generates

an initial random key using the RNG block. As the RNG block we use produces a

32-bit output, we concatenate four values to obtain a 128-bit long key (as required for

AES-128). This key is both stored locally and shared with one other party (such that

all keys are passed in the same direction around the ring). A public ID value visible

to all the parties is set to 0; in the actual implementation, each party holds its own

local copy. This ID ensures the correlation of the random numbers being generated

and is incremented for each new value keeping the parties in lockstep. Each party

then holds two keys, the ID is consistently set, and the PRF can be used.

When initializing the AES-128 core, 21 clock cycles are needed to obtain the first

output. As long as new desired values are fed in on each clock cycle, the system is

fully pipelined, and each additional clock cycle after initialization will produce another

output. When initially implementing the MPC AND/multiplication operation, the

two keys held by a party are alternated every cycle and the ID is incremented every

49

other cycle. Consequently, after initialization, the single AES core will take two

cycles and output the pseudo-random values for both keys associated with the first

ID value. The next two cycles will produce the values associated with the next ID,

etc. This construction allows for one less AES core to be used, but does come at the

cost of an additional clock cycle. In our results, we will see that this does not prevent

very impressive results but for a system that is fully pipelined, using two AES cores

allows for a new value every cycle. The function f(Ki, Ki+1) (see Figure 3·3a) used

to combine the two PRF outputs into a correlated random value is pre-determined

when the party selects to use Boolean (Eq. 3.15) or arithmetic operations (Eq. 3.14).

Arithmetic:

α1 + α2 + α3 = 0 and αi = PRF (Ki)− PRF (Ki+1) (3.14)

Boolean:

α1 ⊕ α2 ⊕ α3 = 0 and αi = PRF (Ki)⊕ PRF (Ki+1) (3.15)

The MPC AND module itself consists of a few bitwise operations that produce

the intermediate ri values (Figure 3·3b). Most latency occurs in the transmission of

the Ri values since the final step (Figure 3·3c) depends on them.

Based on the minimal data dependencies for the AND/multiply operation, in

principle, a fully pipelined HDL implementation could consume and produce a new

pair of input shares each cycle. Using AES block size as we are, that would allow each

module to output 128 Boolean gates (or some combination of arithmetic gates adding

to 128) each clock cycle. Such a design could saturate a 10 Gbps network connection

if operated at 78.13 MHz or greater. While the implementation tested does not quite

reach one output per clock cycle, this thought experiment does give an idea of the

ability of a SS MPC design to maximize the utilization of available bandwidth. As we

will see as we consider test results, this is also achievable while leaving FPGA fabric

free for other purposes.

Chapter 4

Testing & Results

4.1 FPGA Testing

The following sections will describe various stages of development and testing MPC

SS primitives on an FPGA. This includes the following: a first test considering a

single party and Boolean AND module to verify function and resource utilization,

another which tested multiple parties and AND modules and which duplicated these

sets of three to again consider resource utilization, a final set of tests again using three

parties but which improved the MPC primitive performance and extended support

to both arithmetic and Boolean shares.

Given our focus on maximizing throughput, our multi-party design seeks to obtain

an idea of the upper bound for maximum utilization of a single FPGA exclusively

performing MPC. While we eventually plan to deploy parties across multiple FPGAs

connected in a ring, our test environment currently consists of placing three parties

on a single FPGA as this avoids limiting our communication bandwidth, allowing us

to find the maximum possible performance. We do note that while multiple compute

parties sharing a single FPGA is attractive for offering the best possible real-world

performance, we only use such a configuration for the performance testing as previ-

ously stated. There are many more security challenges that require research to verify

that the parties can be adequately isolated in such a configuration. More practically,

our tests can help to determine how best to allocate resources and size the network

for a multi-FPGA MPC deployment.

50

51

The design includes the necessary routing and control logic to perform calculations

between all parties from start to end without software intervention. Again, because

this was performed as a test on a single FPGA, there is also a single host computer that

is used to load the data and operations onto three parties. In a final implementation,

each FPGA would have its own host system which would handle data and operation

loading.

With regards to the data we collect and present, a de facto metric of performance

of MPC within the cryptography community is the rate of computing the Advanced

Encryption Standard (AES). This exists as a Boolean circuit comprising thousands

of AND and XOR gates. Because the performance of MPC depends largely on the

number of AND and XOR gates and only minimally on its topology, knowing MPC’s

performance on AES provides some insight into performance on other computations.

We consider our tests in the context of this and other metrics; more on that in Section

4.3.

4.1.1 Test with Arria 10

As mentioned in Section 3.4.1, initial testing targeted an Intel Arria 10 FPGA and

used the Nios II softcore to operate test software for loading data and triggering the

MPC AND hardware. Using a basic implementation of the Nios II Custom Instruction

required a multi-cycle approach because of the limited data width that could be passed

with each individual command. There are circumstances where a softcore is viable.

In our case, to avoid the multi-cycle latency penalties, we would perhaps have used

local storage, which could be accessed with a wider data bus, or other techniques to

avoid having to load individual data values and an operation command in sequence.

Regardless, we did decide to eventually move to a different platform, but our

work with the Arria 10 did provide some initial insights. With a single MPC AND

design synthesized in Quartus, targeting the Arria 10 (10AX115S2F45I1SG) on our

52

development board, we found the following: The most constrained resource for a single

AND was the 704.5 Kb of M20K block memory consumed post-synthesis, making it

possible to estimate the utilization to be ∼1.32% based on the total 53.260 Mb of

M20K available on the Arria 10. Maximizing use of the fabric, this would permit ∼76

instances, or perhaps more realistically using 70% of the fabric might allow for ∼54

instances of the MPC AND. At this point in development, the MPC AND required

6 clock cycles between operations, which meant that when employing 6 groups of 8

MPC AND instances (48 total), it was possible for 8 transactions to begin each cycle.

Even with this imperfect arrangement, a quick calculation shows that 8 of our AND

operations (128 bits wide) per cycle at 200 MHz are sufficient to saturate a ∼205

Gbps connection, far more than the 10 Gbps link tested by Araki et al. with their

software implementation of the protocol. While only a single party with one core was

actually implemented and tested on the development board, the resource results and

our calculations encouraged us to continue this work.

4.1.2 Initial Test with AWS

With these synthesis results from Quartus, but also seeking to avoid some of the

challenges of the Nios II and to find a more fitting cloud target, we looked to Amazon

Web Services (AWS). On AWS, our evaluation of the implemented MPC SS modules

considers total FPGA resource utilization and total throughput with all gates running

in parallel. Our implementation on this platform still requires an initial 21 cycles

of pre-computation to prepare party keys and the first correlated random values.

Repeating the same configuration as on the Arria 10, for a single 1-party block post-

routing, the Virtex Ultrascale+ in the F1 instance utilizes ∼3.20% of its resources.

It should be noted that while the Intel Quartus implementation only appeared to

use ∼1.32%, that was a post-synthesis value rather than post-routing as prepared

in Xilinx Vivado. Subsequently, for verification of multi-party operation, a 3×party

53

Table 4.1: AWS Implementation Result Analysis

AND Cores Bits Gbps AES (millions op.)/sec
1 128 2.67 0.490
3 384 8.00 1.47
12 1536 32.0 5.89
24 3072 64.0 11.8
48 6144 128 23.5
60 7680 160 29.4

design with 1 AND per party was placed on the F1 instance FPGA. As mentioned

earlier in the chapter, this was simpler to test than a three-FPGA design, avoided

communication limitations, and provided useful information.

As each 1 party block contains more control logic than just a single MPC AND,

estimates about the maximum amount of AND blocks that can fit will be conservative.

Duplicating these groups of the 3×partis produced the results summarized in Table

4.1. As with the Arria, the number of AND modules and the 6-cycle delay were used

to determine the number of bits per clock cycle that can be processed with the FPGA.

The default AWS F1 clock rate of 125 MHz was used. Additionally, the equivalent

number of AES/sec is reported for easier comparison with the results from Araki et

al. and was estimated by dividing the number of AND/sec by the 5440 AND/AES

in the reference AES circuit model as mentioned in Section 4.1. A plot of the FPGA

utilization in Figure 4·1 shows a fairly linear relationship between number of AND

modules and utilization. Both the initial Arria and AWS results were presented in

the first publication covering this research (Wolfe et al., 2020).

4.1.3 Secondary Work with AWS

While the initial work demonstrated the potential of SS on FPGA hardware, the im-

plementation only addressed Boolean shares and not arithmetic. The next research

step focused on supporting arithmetic shares and verifying that they could be imple-

mented with the same performance as the existing Boolean ones (Patel et al., 2020).

54

0 10 20 30 40 50 60
0

20

40

60

80

100

AND Cores

P
er

ce
nt

U
ti

liz
at

io
n

Utilization

Figure 4·1: AWS FPGA fabric total utilization

In summary, with modification, the AND and XOR primitives were able to selectively

handle multiplication and addition operations with essentially the same resource con-

sumption and performance as the Boolean only implementation shown in Table 4.1

and Figure 4·1, that is to say, with testing on the same AWS F1 instance clocked at

125 MHz with the AND/multiplication gate taking a new input every 6 cycles and

the XOR/addition gate accepting one on every cycle.

Some additional work was able to reduce the AND/multiplication gate from 6

cycles to 4 cycles. This design was able to operate at 125 MHz but couldn’t be

pushed much further. As the eventual goal was to create a fully-pipelined primitive

that could accept a new input on each clock cycle, this wasn’t tested further, and

more effort went into reworking the design to achieve this goal. This fully-pipelined

system has since been implemented and is currently being tested with the higher-level

goal of implementing a MAC operation that could be useful for tasks like ML.

4.2 Reference Results

Briefly, we consider the secure operation metric used by the original authors (Araki,

Barak, Furukawa, Lindell, et al., 2016; Araki, Furukawa, et al., 2016) when present-

ing their test results. The use the software implementation of their Secret Sharing

55

Table 4.2: Araki et al. Result Analysis

Araki et al. Results Verification
Cores AES/sec Gbps/serv. Gbps/serv. w/over. Error
1 100103± 1632 0.572 0.559 2.19%
5 530408± 7219 2.99 2.96 0.85%
10 975237± 3049 5.47 5.45 0.35%
16 1242310± 4154 6.95 6.94 0.10%
20 1324117± 3721 7.38 7.40 0.28%

protocol to perform MPC protected AES operations (Araki et al., 2017). To be clear,

the authors used the logic of the AES-128 operation as mapped to a Boolean circuit

representation in Bristol Fashion Key Expanded AES (D. Archer et al., n.d.), which

requires 5440 secure AND operations. This AES is the problem of interest and is

distinct from the PRF that is used as part of the secure MPC primitive implemented

in HDL (AES-128 is used for the hardware primitive because of the good performance

it offers).

The test described by Araki et al. is embarrassingly parallel, simultaneously

running 12800 independent secure AES computations per core in each node. The

total AES operations Araki et al. performed can be used to verify the number of

bits communicated. Runtime is obtained from the AES/sec rate and total number

of AES operations reported. When we include a reasonable overhead for TCP/IP

communication between the nodes of 2.74% (Iveson, 2013), the verified network rates

we calculate closely match the reported results with less than 2.5% error (Table 4.2).

Having confirmed the operations they used while testing, our FPGA design can be

more closely compared to the original software system by dividing the number of

AND operations possible by the 5440 AND/AES conversion factor.

56

10
-2

10
0

10
2

Arithmetic Intensity (MOPs/bit)

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

M
P

C
 O

p
er

at
io

n
s

p
er

 S
ec

o
n
d
 (

M
O

P
s)

 Araki et al. w/

 optimal network

Secret Sharing

using FPGA-Link

 Garbled Circuits using PCIe 5.0

Peak Perf. (Xeon E5 2650 v3)

Peak Perf. (AWS Virtex UltraScale+)

Araki et al. Limit

AWS FPGA Limit

10GbE

PCIe 5.0 64GbE

FPGA-Link 200GbE

Figure 4·2: Roofline model comparing Secret Sharing performance
against data center bandwidth. We denote limitations in the Araki et
al. design and our FPGA Secret Sharing implementation, and FPGA
implementations based on Garbled Circuits.

57

4.3 Analysis

The original authors (Araki, Barak, Furukawa, Lindell, et al., 2016; Araki, Furukawa,

et al., 2016) tested their SS protocol implemented in software and deployed across

three nodes with general purpose processors. In their configuration, each node had

two Xeon E5-2686 v4 processors, each offering a total of 20 cores per party. The

systems were linked in a ring with 10 Gbps network connections. Nearly saturating

the connection (7.38 Gbps of 10 Gbps) required roughly 50% of each node’s processor

time. As noted in their analysis, one of the main limitations preventing full network

saturation was due to the multiple cores causing queuing congestion at the shared

NIC. If we imagine that this queuing issue were solved, we can try to estimate what

the theoretical best output the processors are capable of. Using their reported number

of MPC AES/sec and network communication for a single core, we can scale from the

73.3% CPU usage to 100% and estimate that 1 core might be approximately capable

of about ∼130 thousand MPC AES/sec. If this were achieved, one core could saturate

a ∼0.780 Gbps network connection. Multiplying for 20 cores on each node, we can

find an estimated ideal maximum of ∼2.7 million MPC AES/sec resulting in traffic

of about ∼15.6 Gbps. This is also slightly more generous than the approximation

obtained by multiplying 7.38 Gbps obtained at ∼50% to get 14.76 Gbps.

If we consider the test results described in Section 4.1.2 and Section 4.1.3, we can

see that, even with a 6-cycle delay, the AND/multiply block as tested on AWS F1

only required 3 AND cores per party to exceed the 7.38 Gbps reported by the protocol

authors in their test. Three MPC AND modules per party also only consume ∼5%

of the fabric available on each party’s FPGA, a 10× improvement vs the 50% CPU

utilization reported. This extends further if we consider attempting to fully employ all

of the FPGA fabric. If we do so, each board (and party) could implement a maximum

of 60 AND cores, which could saturate 160 Gbps links while performing 29.4 million

58

MPC AES/sec. While impressive, it is also important to recall that, as described

in Section 3.4.2, an optimized, fully-pipelined MPC AND/multiply gate (processing

128 bits at a time as ours does) can saturate 10 Gbps at just 78.13 MHz or greater.

There still remains more performance to be coaxed from the hardware design. With a

fully-pipelined module operating at the same 125 MHz frequency used for the current

tests, 200 Gbps links between parties could be saturated while consuming less than

24% of the FPGA fabric. With a slightly higher clock speed, this could be lowered

further. All of the remaining fabric leaves room for additional functions, perhaps

tying MPC primitives together in hardware.

To help visualize the peak performance that can be obtained with different plat-

forms and networks when using MPC, we created a roofline plot Figure 4·2. Rather

than continuing to use the MPC AES/sec unit that was necessary to compare to the

original work, the roofline’s Y-axis is measured in number of MPC operations per

second (MOPs). The X-axis, arithmetic intensity (AI), is designated as MOPs/bit

of data transferred over the network. We only use the AND/multiply gate for this

plot as XOR/addition doesn’t require communication. Furthermore, we assume a

fully-pipelined design where one MOP per cycle is processed. Conveniently, as each

SS gate requires one bit of communication (when correlated random numbers are

generated locally to each party), an AI of 1 is possible.

With this in mind we can consider the horizontal lines. Looking at the Xeon, we

can see that the Araki et al. design as tested on the CPU nodes should be able to

reach a theoretical maximum of 1010 MOPs as long as there is no network bound (or

overhead). If we instead consider an FPGA fully populated with MPC AND/multiply

gates, we can see that, when unbounded, it should be possible to outperform the CPU

by ∼2 orders of magnitude.

Having considered these compute capabilities, we can see that the Araki et al. test

59

system should provide an almost perfect balance between network and MOPs when

utilizing their 10 Gbps interface (again, assuming that overhead can be avoided or

eliminated). However, if a larger bandwidth network is available, then their applica-

tion will be limited by computational performance and thus will not be able to fully

utilize the bandwidth available. Switching our focus back to the FPGA, we can see

that at an AI of 1, the 10 GbE, 64 GbE, and even 200 GbE network connections are

still not sufficient to keep up with the compute available. Consequently, with those

network speeds, the theoretical peak of 1012 MOPs can’t be reached.

This isn’t a cause for alarm however as there are many faster links arriving to

the data center and to FPGA hardware. Additionally, there are likely to be other

functions of interest that would be placed on an FPGA used for MPC rather than

purely AND/multiplication gates. It is quite possible to imagine a case where enough

of an FPGA is used to make full use of direct network links for MPC while other

functions deployed would communicate with the host nodes via PCIe.

To provide context with respect to GC MPC, we imagine that each garbling table

can be created in a single clock cycle. In a traditional GC MPC gate a table contains

4× hashes (SHA-1 is commonly used though not all the bits are necessarily utilized).

For our roofline, we consider the AI of Garbled Circuits to be 1/(4 × 128) = 0.002,

which, when plotted, shows that Garbled Circuits are heavily network limited due to

the low arithmetic intensity and high bandwidth requirements. In summary, there are

preferable scaling properties when using SS as opposed to GC in an ideal environment.

Between the results of our FPGA tests and of our analysis, we find that SS MPC

is competitive with GC approaches. There is also strong support for the benefits of

deploying SS MPC on FPGAs when low-latency, high-bandwidth communication is

available, such as in the data center.

Chapter 5

Cloud Deployment & Platform Analysis

5.1 Cloud Computing Course

This chapter takes a step away from the low-level implementation details. Instead,

observations derive primarily from research conducted as part of the project-based

Cloud Computing course taught by Prof. Oran Krieger and Prof. Ata Turk. While

efforts described previously focused on exploring the types of MPC protocol and the

scenarios in which they could best benefit from different types of hardware accelera-

tion, the system level design and mechanism for deployments are equally important

to eventually creating a complete MPCaaS system. The mentors for the project

group, Prof. John Liagouris and Prof. Vasiliki Kalavri, had recently cleanly imple-

mented an MPC framework they called Secrecy (Liagouris et al., 2021). By creating

a fresh implementation, they were able to keep the number of outside dependencies

to a minimum, and the underlying data transactions could be grouped into tables

of values, both of which help boost performance. The only dependencies included

using Libsodium for random value generation and MPI (specifically OpenMPI) for

communication between parties.

The goals for the student group were to prepare tools to more easily deploy the

code-base into different cloud environments on the MOC and on CloudLab and to

make improve the ability to run tests and collect data. With the ability to test

in various environments, the focus on collected data was in examining the primary

bottleneck of the selected MPC protocol in the time available. With Secrecy making

60

61

use of a 3PC SS protocol, the inter-party MPC communication primitive was the

focus of most initial testing.

While the main objective of automation was to improve the ability to rapidly test

in different environments during the course, the tools explored and developed were

also meant to be used in ongoing work. Furthermore, automation would help to better

understand the nuances of configuring and deploying MPC in different fashions in a

data center, something which is critical to understand when developing production

MPCaaS.

The three main environments considered consisted of VMs deployed using Open-

Stack on the MOC, bare-metal nodes provisioned on CloudLab (Duplyakin et al.,

2019), and containers deployed using OpenShift on the MOC. The MOC is hosted at

the MGHPCC in Massachusetts while CloudLab consists of resources across several

data centers with some primary ones located in Utah, Wisconsin, and South Carolina.

The MPC communication primitive in Secrecy was tested using several different ap-

proaches with MPI, specifically both blocking and non-blocking (sync and async) as

well as batched data in various quantities and serialized element-by-element trans-

actions. Instrumentation of tests for the communication primitive was improved in

several fashions. Instead of relying on the original “gettimeofday()” call, the new in-

strumentation employs “clock_gettime()” using the “CLOCK_MONOTONIC” source

(absolute elapsed wall-clock time from an arbitrary point in time). This change makes

it possible to more accurately measure each portion of the operation. Additionally,

the test was parameterized to allow for automatic iteration over a range of values with

a specific step size. The results were all placed in a single CSV file for convenient

analysis. Finally, some experimentation with the Score-P utilities resulted in initial

documentation on some simple benchmarking and profiling that can be enabled when

compiling with OpenMPI. Some simple tests produced reasonable results, and this

62

offers another avenue for students and researchers who are working on this in the

future. It may particularly come in useful for collecting lower-level information about

inter-party communication.

5.2 Platform Comparison

The bare-metal systems tested through CloudLab were provisioned by means of a web

interface for Emulabs (White et al., 2003). Python and geni-lib (from GENI (Berman

et al., 2014)) were used to describe the bare-metal system nodes and links desired

for various tests. These descriptions automatically generate RSpec files used by the

system to provision the hardware for the experiment as the RSpec files themselves

are more challenging to edit by hand. Using this approach, existing OS images could

also be pre-selected and loaded onto each of the systems, leaving only final package

configuration before testing.

To prepare the VMs on the MOC OpenStack instance, the web interface was

used for selecting an OS image, resources, and defining the network connections. No

configuration scripts or files were needed to reach the point of a loaded OS on each

VM, leaving final package installation and configuration.

On both CloudLab and MOC OpenStack, the first few tests were prepared by

means of manual package installation and commands. This was replaced by a series

of shell scripts. Eventually, in order to better automate all of those steps and achieve a

consistent result, Ansible playbooks were developed to ensure full system preparation

of running tests. Playbooks were also used to initiate the MPC transaction tests and

retrieve data for examination.

Ansible is an agentless tool that only requires the configuring/managing system

and client systems to have Python installed. Connections between managing and

client systems are temporary and typically conducted over SSH. With few dependen-

63

cies, this approach is lightweight and is consequently relatively easy to use. When

carefully crafted, the automation actions described in a playbook make it possible

to reach a consistent system state. Not only does Ansible make it possible to write

playbooks that reach specific states, but it is also possible to craft them so that a

playbook is idempotent. Then, a playbook can be utilized to verify that the desired

state is reached as multiple executions will not cause any already correct state to be

modified. The containers deployed on MOC OpenShift are also possible to automate

using Ansible but differed sufficiently from the bare-metal systems and VMs that

extended testing and development of a playbook for them was not possible during

the group project timeline.

5.2.1 Bare Metal, Virtual Machines, Containers

Ideally, the team sought to deploy bare-metal, VMs, and containers onto CloudLab

in order to make a direct comparison of the relative overhead cost of the approaches

when run with the same underlying resources. This was overly ambitious given the

limited time but remains a direction for ongoing research. Instead, some preliminary

results were captured when running the same tests across the MOC and CloudLab.

The results that the project mentors found when testing on the MOC (Liagouris et

al., 2021) were closely matched by the VMs configured by the student team, which

provided some assurance that there were not any major unexpected changes or vari-

ations. Essentially, batching inter-party data and allowing OpenMPI to determine if

and how to fragment that into multiple packets produced a faster transaction time

than serializing the operations into a sequence of individual MPI transactions (forcing

small, immediate packets).

Additionally, the tests performed on the bare-metal nodes on CloudLab were faster

than the same tests conducted on VMs on the MOC OpenStack. This result isn’t

surprising given some amount of additional overhead expected for the VMs, but with-

64

out a test on the same hardware, it isn’t possible to indicate exactly how much was

lost as a result of the virtualization. Additionally, the bare-metal nodes using an x86

architecture had slightly better performance than the equivalent ARM nodes avail-

able, but it isn’t possible to attribute this to either architecture and would require

additional testing to properly examine.

While full testing was not possible, the automation efforts were eye opening and

did provide some insight and ideas for what might work best when designing a com-

plete MPCaaS.

5.2.2 Scalability & Automated Provisioning

Moving forward, a set of bare-metal nodes seems ideal for an initial deployment of

MPC parties. Using such an approach makes it much easier to logically separate

entities and makes it possible for each compute party to establish trusted control

over the system they would use to evaluate an MPC problem. This does not address

all risks; there must still be careful consideration of how to manage system firmware

and provide the necessary integrity guarantees between users. There are, however,

existing researchers working on this problem (Mosayyebzadeh et al., 2019).

Additionally, there are performance advantages in reducing the number of layers

of abstraction layered on top of hardware. While this does mean that a server could

not be shared between multiple different compute parties, this may not be too much

of a draw-back. If FPGAs are used for accelerated MPC, then the host system is

critical for each of the compute parties to configure and operate a connected FPGA

in a trusted fashion. While there would be less of a demand for the host processor to

perform MPC, there are still a number of essential steps that require it including to

coordinate with users to ingest data shares, coordinate execution of the desired MPC

operations, distribute the final result, and perform eventual system cleanup. Careful

sizing of the processor may help to complete all of these tasks while cutting idle time.

65

Beyond the tools available through CloudLab, there are a number of other ways

(Ellis, 2020) to provision bare-metal clouds including OpenStack Ironic. It is possible

to envision one of these bare-metal systems being used by a data center to provision

hardware for several different compute parties with one host processor and one FPGA

each. A common set of Ansible or other setup scripts can enable each party to

inspect the operations on their own to establish trust and then to execute them

on the hardware they have been provisioned. This allows them to reach the same

configuration state as their peers. Using such an approach will also make deployment

and setup more natural for system administrators.

5.3 Key Ideas

While a cloud deployment was already envisioned while working on the low-level

hardware implementation, the vision lacked some clarity prior to the hands-on work

experience from the cloud project. Having worked with multiple different deployment

environments has made bare-metal nodes appear a better choice for MPCaaS, at least

initially. In addition to offering at least some additional performance by avoiding the

overhead of virtualization, the tools and infrastructure for provisioning and configur-

ing such systems were relatively easy to use. It was also relatively easy to configure

access for different users for each of the nodes and to imagine how one might isolate

the nodes and hand off control to independent parties. Working with Ansible also

showed that it and similar tools could provide an easy mechanism for having multiple

different MPC parties operate the same protocol while still having the freedom to

inspect all the configuration steps on their own based on their level of trust. It is also

encouraging to have had several conversations with students who are continuing the

work on Secrecy and are at the very least referring to the tools and documentation

from this work and potentially modifying and using them.

Chapter 6

Remaining Work & Conclusion

6.1 Steps to MPCaaS

At this point we have considered the goals of MPC and the different types of protocols

that exist under that name. The history of technological advances highlights the vast

improvement and specialization in processing architectures, increases in communica-

tion performance, and greater capacity of storage. The opportunity and ability to

collect, process, and benefit from “big data” both resulted from, and further spurred,

some of these innovations. In particular, the clustering of compute into larger data

centers and the cloud model of providing access to different resources goes hand-in-

hand with “big data.”

With all of these changes have come greater challenges to security and privacy.

While the problem has been recognized, it remains challenging to handle adequately.

Luckily, at this point MPC is feasible to implement and promises to be another

innovation that could help to address the issue. By making use of the algorithmic,

architectural, and operational opportunities in computing, MPCaaS can become an

easy-to-use reality for many users who are not experts in cryptography or computer

hardware. We have a plan consisting of three steps, described in the following sub-

sections, that can be followed to achieve this vision.

66

67

6.1.1 MPC in the Cloud

In order to enable MPC in the cloud, we need to select which kind of protocol to use.

Performing well across geographically separated parties is an important consideration,

especially with high-latency connections, but is not our main focus. As shown earlier,

we seek to support cases where hardware is co-located and can be assigned to different

users in order to support multiple computations one after the other. Determining

what protocol best fits this scenario is crucial, and our work leads us to believe that

SS fits this model best. Also critical is choosing an appropriate cloud deployment

model that can provide the necessary security guarantees. While actually getting

a working MPC system into the cloud does not require the greatest performance

initially, keeping acceleration in mind when planning is important as a production

system will need to minimize the gap between MPC and non-MPC services.

Bare metal clouds may provide the system isolation needed between parties. Users

will likely need some mechanism to gain a trusted foothold in a shared data center.

Incorporating existing work, e.g., on elements such as Hardware Isolation Layer (HIL)

(Mosayyebzadeh et al., 2019) and isolated networks through VLANs, will be crucial to

deliver a system that does not require a user to handle all those considerations on their

own. Offering the deployment and management tools and selection of appropriate

MPC protocol would help system architects and administrators adopt such a system.

An administrative portal for easy configuration would be ideal.

6.1.2 Transparent Hardware

The next stage of work focuses on the interface between an MPC software library

and the FPGA hardware implementation of MPC primitives. The end goal is for

users, such as data scientists, with sufficient MPC knowledge to use the API offered

by an MPC library to benefit from hardware accelerations without needing to also

68

be knowledgeable about hardware design or HDLs. In order to deliver this vision,

an MPC library that offers both sufficient features and a relatively simple interface

needs to be identified. Alternately, a new library could be developed. In the interest

of being able to offer some working system, it may also make sense to reduce the

scope of supported applications to focus more development effort on a limited set of

operations to map to hardware. One idea is to concentrate on ML applications rather

than being fully general. There has already been research seeking to support ML on

MPC (Du & Atallah, 2001; Knott et al., 2020; Ohrimenko et al., 2016; Zhao et al.,

2019). One good parallel for this vision is the manner in which PyTorch (Paszke et

al., 2019) and other tools are able to make the use of GPUs transparent to their users

while still accelerating training and inference. Researchers at Facebook also appear

to be moving in this direction as evidenced by the work on CrypTen, which seeks

to provide a software tool that enables PyTorch-style use of MPC with ML (Knott

et al., 2020).

6.1.3 Transparent MPC Functions & Program Conversion

The final stage is at the highest notional level. Here the goal is to take a working

MPC platform that employs hardware acceleration and make it usable even to those

who do not have experience with MPC. This tool should offer a mechanism to convert

programs into an MPC format automatically, which can then be mapped and deployed

on cloud-based FPGA hardware. If the choice is made to support a limited set

of applications, such as ML, then it might be possible to select an input format,

such as a PyTorch model, familiar to the end-user. This would limit the types of

MPC interactions that need to be supported and would make it possible to map key

communication stages from a clear protocol to an encrypted one. As ML use has been

growing, providing the ability to train and infer under MPC could open up more pools

of data for use by scientists.

69

6.2 Current & Future Work

Ongoing work has resulted in improving the AND/multiplication hardware imple-

mentation such that it is fully pipelined. This has included doubling the number of

internal AES cores that are used as PRF increasing resource use. The ability to start

a new operation on each cycle is worth this extra cost. Furthermore, there remains a

number of additional optimizations that can be used to reduce the size of this block.

The most interesting use of this fully pipelined operation is in seeking to enable the

efficient execution of MM and MAC operations, which are critical for ML and other

applications. We plan to perform additional testing with the improved MPC prim-

itives and refine them. Additionally, ever since work started on implementing the

Araki et al. protocol, we have had the goal of eventually supporting a maliciously

secure version of the protocol. While simply using the extension of the semi-honest

protocol (Araki et al., 2017) originally seemed like the best course of action, several

four-party maliciously secure protocols have been discussed in recent literature and

may offer more efficient approaches to achieve this security objective.

We are also currently working with a few testbeds that offer multiple, directly-

linked FPGA resources. As AWS F1 does not appear likely to support serial ring

communication in the near future, we hope some of these other efforts will allow us

to test a design that is closer to a production MPCaaS. Depending on the rate of

progress, there may also be a chance to start considering some of the automation

techniques used when testing Secrecy.

More broadly, we aim to follow the steps described for achieving MPCaaS. This

may include further work on the MOC if the hardware versions for MPC on indepen-

dent nodes with FPGAs do not progress rapidly enough. Then, those lessons learned

and hardware implementation (potentially deployed to the OCT) could directly lead

to the second step. The final stage could likely be explored at a high level, perhaps

70

looking at conversions of ML to MPC problem descriptions. CrypTen is a potentially

useful project from which we can draw inspiration.

6.3 Conclusions

In conclusion, in this thesis we describe, implement, and analyze the MPC protocol

described by Araki et al. (Araki et al., 2017) in hardware. We demonstrate the

viability of Secret Sharing MPC in a low latency environment and test the design on an

FPGA in the cloud, highlighting greater potential scalability of the design compared

to alternatives (both algorithmic and architectural). With these insights, we are

actively improving our design to increase the performance further while targeting the

steps we have laid out for achieving a complete MPC cloud service. This is an exciting

time for MPC techniques, hardware acceleration, and the cloud. Hopefully this work

can encourage further efforts accelerating MPC and can lead to some new widespread

and easy-to-use security and privacy tools.

References

Abidin, A., Aly, A., Cleemput, S., & Mustafa, M. A. (2016). An MPC-Based Privacy-
Preserving Protocol for a Local Electricity Trading Market. 15th International
Conference on Cryptology and Network Security (CANS), 10052, 615–625. https:
//doi.org/10.1007/978-3-319-48965-0_40

Agrawal, R., Bu, L., Ehret, A., & Kinsy, M. (2019). Open-source FPGA implementa-
tion of post-quantum cryptographic hardware primitives. 2019 29th International
Conference on Field Programmable Logic and Applications (FPL), 211–217. https:
//doi.org/10.1109/FPL.2019.00040

Anant, V., Donchak, L., Kaplan, J., & Soller, H. (2020). The consumer-data oppor-
tunity and the privacy imperative. https://www.mckinsey.com/business-functions/
risk/our-insights/the-consumer-data-opportunity-and-the-privacy-imperative

Araki, T., Barak, A., Furukawa, J., Lindell, Y., Nof, A., & Ohara, K. (2016). DEMO:
High-Throughput Secure Three-Party Computation of Kerberos Ticket Generation.
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, 1841–1843. https://doi.org/10.1145/2976749.2989035

Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K., Watz-
man, A., & Weinstein, O. (2017). Optimized Honest-Majority MPC for Malicious
Adversaries - Breaking the 1 Billion-Gate per Second Barrier. Proceedings - IEEE
Symposium on Security and Privacy, 843–862. https://doi.org/10.1109/SP.2017.15

Araki, T., Furukawa, J., Lindell, Y., Nof, A., & Ohara, K. (2016). High-Throughput
Semi-Honest Secure Three-Party Computation with an Honest Majority. Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 805–817. https://doi.org/10.1145/2976749.2978331

Archer, D., Abril, V. A., Lu, S., Maene, P., Mertens, N., Sijacic, D., & Nigel, S. (n.d.).
‘Bristol Fashion’ MPC Circuits. https://homes.esat.kuleuven.be/~nsmart/MPC/

Archer, D. W., Bogdanov, D., Lindell, Y., Kamm, L., Nielsen, K., Pagter, J. I., Smart,
N. P., & Wright, R. N. (2018). From Keys to Databases - Real-World Applications
of Secure Multi-Party Computation. The Computer Journal, 61 (12), 1749–1771.
https://doi.org/10.1093/comjnl/bxy090

71

https://doi.org/10.1007/978-3-319-48965-0_40
https://doi.org/10.1007/978-3-319-48965-0_40
https://doi.org/10.1109/FPL.2019.00040
https://doi.org/10.1109/FPL.2019.00040
https://www.mckinsey.com/business-functions/risk/our-insights/the-consumer-data-opportunity-and-the-privacy-imperative
https://www.mckinsey.com/business-functions/risk/our-insights/the-consumer-data-opportunity-and-the-privacy-imperative
https://doi.org/10.1145/2976749.2989035
https://doi.org/10.1109/SP.2017.15
https://doi.org/10.1145/2976749.2978331
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://doi.org/10.1093/comjnl/bxy090

72

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., & Warfield, A. (2003). Xen and the Art of Virtualization. SIGOPS Op-
erating Systems Review, 37 (5), 164–177. https://doi.org/10.1145/1165389.945462

Beaver, D., Micali, S., & Rogaway, P. (1990). The round complexity of secure pro-
tocols. Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, 503–513. https://doi.org/10.1145/100216.100287

Belanović, P., & Leeser, M. (2002). A library of parameterized floating-point modules
and their use. In M. Glesner, P. Zipf, & M. Renovell (Eds.), Field-programmable
logic and applications (pp. 657–666). Springer Berlin Heidelberg. https://doi.org/
10.1007/3-540-46117-5_68

Ben-Or, M., Goldwasser, S., & Wigderson, A. (1988). Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation. Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, 1–10. https://doi.
org/10.1145/62212.62213

Berman, M., Chase, J. S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D.,
Ricci, R., & Seskar, I. (2014). GENI: A federated testbed for innovative network
experiments. Computer Networks, 61, 5–23. https://doi.org/10.1016/j.bjp.2013.12.
037

Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., & Talviste, R. (2016).
Students and taxes: A privacy-preserving study using secure computation. Pro-
ceedings on Privacy Enhancing Technology (PoPETs), 2016 (3), 117–135. https :
//doi.org/10.1515/popets-2016-0019

Bogetoft, P., Christensen, D. L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J. D., Nielsen, J. B., Nielsen, K., Pagter, J., Schwartzbach, M., & Toft,
T. (2009). Secure multiparty computation goes live. In R. Dingledine & P. Golle
(Eds.), Financial cryptography and data security (pp. 325–343). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-03549-4_20

Boku, T., Kobayashi, R., Fujita, N., Amano, H., Sano, K., Hanawa, T., & Yamaguchi,
Y. (2019). Cygnus: GPU meets FPGA for HPC. International Conference on Super-
computing. https://www.r-ccs.riken.jp/labs/lpnctrt/assets/img/lspanc2020jan_
boku_light.pdf

Bolaria, J., & Byrne, J. (2009). A Guide to FPGAs for Communications. The Linley
Group.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S.,
Ramage, D., Segal, A., & Seth, K. (2017). Practical secure aggregation for privacy-
preserving machine learning. Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 1175–1191. https://doi .org/10.1145/
3133956.3133982

https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/100216.100287
https://doi.org/10.1007/3-540-46117-5_68
https://doi.org/10.1007/3-540-46117-5_68
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1016/j.bjp.2013.12.037
https://doi.org/10.1016/j.bjp.2013.12.037
https://doi.org/10.1515/popets-2016-0019
https://doi.org/10.1515/popets-2016-0019
https://doi.org/10.1007/978-3-642-03549-4_20
https://www.r-ccs.riken.jp/labs/lpnctrt/assets/img/lspanc2020jan_boku_light.pdf
https://www.r-ccs.riken.jp/labs/lpnctrt/assets/img/lspanc2020jan_boku_light.pdf
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982

73

Brewer, E. (2012). CAP twelve years later: How the “rules” have changed. Computer,
45 (2), 23–29. https://doi.org/10.1109/MC.2012.37

Brooks, C. (2021, March 2). Alarming Cybersecurity Stats: What You Need To Know
For 2021. https://www.forbes.com/sites/chuckbrooks/2021/03/02/alarming-
cybersecurity-stats-------what-you-need-to-know-for-2021/?sh=35cd237858d3

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., &Wilkes, J. (2016). Borg, Omega,
and Kubernetes: Lessons learned from three container-management systems over a
decade. Queue, 14 (1), 70–93. https://doi.org/10.1145/2898442.2898444

Castillo, J. (2004). systemc_rng. https://opencores.org/projects/systemc_rng

Caulfield, A. M., Chung, E. S., Putnam, A., Angepat, H., Fowers, J., Haselman, M.,
Heil, S., Humphrey, M., Kaur, P., Kim, J. .-Y., Lo, D., Massengill, T., Ovtcharov,
K., Papamichael, M., Woods, L., Lanka, S., Chiou, D., & Burger, D. (2016). A
cloud-scale acceleration architecture. 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 1–13. https : / / doi . org / 10 . 1109 /
MICRO.2016.7783710

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M.,
Chandra, T., Fikes, A., & Gruber, R. E. (2006). Bigtable: A distributed storage
system for structured data. 7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 06), 205–218. https://www.usenix.org/conference/
osdi-06/bigtable-distributed-storage-system-structured-data

Chang, W., Roy, A., & Underwood, M. (2019, October 21). NIST Big Data Interop-
erability Framework: Volume 4, Security and Privacy. https://doi.org/10.6028/
NIST.SP.1500-4r2

Chaum, D., Crépeau, C., & Damgard, I. (1988). Multiparty Unconditionally Secure
Protocols. Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, 11–19. https://doi.org/10.1145/62212.62214

Cherry, S. (2004). Edholm’s law of bandwidth. IEEE Spectrum, 41 (7), 58–60. https:
//doi.org/10.1109/MSPEC.2004.1309810

Clarke, P. (2015). Intel, Micron Launch “Bulk-Switching” ReRAM. https ://www.
eetimes.com/intel-micron-launch-bulk-switching-reram/

Corbett, J. C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J., Ghemawat, S.,
Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li, H.,
Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S., . . . Wang, R. (2012).
Spanner: Google’s Globally-Distributed Database. 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12), 261–264. https://www.
usenix.org/conference/osdi12/technical-sessions/presentation/corbett

https://doi.org/10.1109/MC.2012.37
https://www.forbes.com/sites/chuckbrooks/2021/03/02/alarming-cybersecurity-stats-------what-you-need-to-know-for-2021/?sh=35cd237858d3
https://www.forbes.com/sites/chuckbrooks/2021/03/02/alarming-cybersecurity-stats-------what-you-need-to-know-for-2021/?sh=35cd237858d3
https://doi.org/10.1145/2898442.2898444
https://opencores.org/projects/systemc_rng
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/MICRO.2016.7783710
https://www.usenix.org/conference/osdi-06/bigtable-distributed-storage-system-structured-data
https://www.usenix.org/conference/osdi-06/bigtable-distributed-storage-system-structured-data
https://doi.org/10.6028/NIST.SP.1500-4r2
https://doi.org/10.6028/NIST.SP.1500-4r2
https://doi.org/10.1145/62212.62214
https://doi.org/10.1109/MSPEC.2004.1309810
https://doi.org/10.1109/MSPEC.2004.1309810
https://www.eetimes.com/intel-micron-launch-bulk-switching-reram/
https://www.eetimes.com/intel-micron-launch-bulk-switching-reram/
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/corbett

74

Dalskov, A., Escudero, D., & Keller, M. (2020). Fantastic Four: Honest-Majority
Four-Party Secure Computation With Malicious Security. https://eprint.iacr.org/
2020/1330

Damgård, I., Damgård, K., Nielsen, K., Nordholt, P. S., & Toft, T. (2017). Con-
fidential benchmarking based on multiparty computation. In J. Grossklags & B.
Preneel (Eds.), Financial cryptography and data security (pp. 169–187). Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54970-4_10

de Dinechin, F., & Pasca, B. (2011). Designing custom arithmetic data paths with
FloPoCo. IEEE Design Test of Computers, 28 (4), 18–27. https://doi.org/10.1109/
MDT.2011.44

Dean, J., & Ghemawat, S. (2004). Mapreduce: Simplified data processing on large
clusters. 6th Symposium on Operating Systems Design & Implementation (OSDI
04), 137–150. https://www.usenix.org/conference/osdi-04/mapreduce-simplified-
data-processing-large-clusters

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., & Vogels, W. (2007). Dynamo: Amazon’s Highly
Available Key-Value Store. SIGOPS Operating Systems Review, 41 (6), 205–220.
https://doi.org/10.1145/1323293.1294281

Demchenko, Y., v. d. Ham, J., Ngo, C., Matselyukh, T., Filiposka, S., d. Laat, C., &
Escalona, E. (2013). Open Cloud eXchange (OCX): Architecture and Functional
Components. 2013 IEEE 5th International Conference on Cloud Computing Tech-
nology and Science, 2, 81–87. https://doi.org/10.1109/CloudCom.2013.108

Demmler, D., Schneider, T., & Zohner, M. (2015). ABY - A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation. 2015 Network and Distributed
System Society (NDSS) Symposium. The Internet Society. https ://doi .org/10.
14722/ndss.2015.23113

Dennard, R. H., Gaensslen, F. H., Yu, H., Rideout, V. L., Bassous, E., & LeBlanc,
A. R. (1974). Design of ion-implanted MOSFET’s with very small physical dimen-
sions. IEEE Journal of Solid-State Circuits, 9 (5), 256–268. https://doi.org/10.
1109/JSSC.1974.1050511

Desnoyers, P., Hennessey, J., Holden, B., Krieger, O., Rudolph, L., & Young, A.
(2015). Using Open Stack for an Open Cloud Exchange(OCX). 2015 IEEE Inter-
national Conference on Cloud Engineering, 48–53. https://doi.org/10.1109/IC2E.
2015.40

Du, W., & Atallah, M. J. (2001). Secure multi-party computation problems and their
applications: A review and open problems. Proceedings of the 2001 Workshop on
New Security Paradigms, 13–22. https://doi.org/10.1145/508171.508174

https://eprint.iacr.org/2020/1330
https://eprint.iacr.org/2020/1330
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1109/MDT.2011.44
https://doi.org/10.1109/MDT.2011.44
https://www.usenix.org/conference/osdi-04/mapreduce-simplified-data-processing-large-clusters
https://www.usenix.org/conference/osdi-04/mapreduce-simplified-data-processing-large-clusters
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1109/CloudCom.2013.108
https://doi.org/10.14722/ndss.2015.23113
https://doi.org/10.14722/ndss.2015.23113
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/IC2E.2015.40
https://doi.org/10.1109/IC2E.2015.40
https://doi.org/10.1145/508171.508174

75

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L.,
Hibler, M., Johnson, D., Webb, K., Akella, A., Wang, K., Ricart, G., Landweber,
L., Elliott, C., Zink, M., Cecchet, E., Kar, S., & Mishra, P. (2019). The Design and
Operation of CloudLab. Proceedings of the USENIX Annual Technical Conference
(ATC), 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19

Ellis, A. (2020). awesome-baremetal. https : / / github . com / alexellis / awesome -
baremetal.git

2020 Roadmap: Ethernet Alliance. (2020). https://ethernetalliance.org/technology/
2020-roadmap/

Evans, D., Kolesnikov, V., & Rosulek, M. (2018). A pragmatic introduction to secure
multi-party computation. NOW Publishers. https://doi.org/10.1561/3300000019

Fang, X., Ioannidis, S., & Leeser, M. (2017). Secure function evaluation using an
FPGA overlay architecture. FPGA 2017 - Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 257–266. https://
doi.org/10.1145/3020078.3021746

Fang, X., Ioannidis, S., & Leeser, M. (2019). SIFO: Secure computational infras-
tructure using FPGA overlays. International Journal of Reconfigurable Computing,
2019. https://doi.org/10.1155/2019/1439763

Feigenbaum, J., Pinkas, B., Ryger, R., & Saint-Jean, F. (2004). Secure computation
of surveys. EU Workshop on Secure Multiparty Protocols, 2–14. https://www.cs.
yale.edu/homes/jf/SMP2004.pdf

Frederiksen, T. K., Jakobsen, T. P., & Nielsen, J. B. (2014). Faster maliciously se-
cure two-party computation using the GPU. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8642 (grant 61061130540), 358–379. https://doi.org/10.1007/978-
3-319-10879-7_21

Furukawa, J., & Lindell, Y. (2019). Two-thirds honest-majority MPC for malicious
adversaries at almost the cost of semi-honest. Proceedings of the ACM Conference
on Computer and Communications Security, 1557–1571. https://doi.org/10.1145/
3319535.3339811

Furukawa, J., Lindell, Y., Nof, A., & Weinstein, O. (2017). High-throughput secure
three-party computation for malicious adversaries and an honest majority. In J.-S.
Coron & J. B. Nielsen (Eds.), Advances in cryptology – eurocrypt 2017 (pp. 225–
255). Springer International Publishing. https://doi.org/10.1007/978-3-319-56614-
6_8

Geng, T., Li, A., Shi, R., Wu, C., Wang, T., Li, Y., Haghi, P., Tumeo, A., Che, S.,
Reinhardt, S., & Herbordt, M. (2020). AWB-GCN: A Graph Convolutional Network

https://www.flux.utah.edu/paper/duplyakin-atc19
https://github.com/alexellis/awesome-baremetal.git
https://github.com/alexellis/awesome-baremetal.git
https://ethernetalliance.org/technology/2020-roadmap/
https://ethernetalliance.org/technology/2020-roadmap/
https://doi.org/10.1561/3300000019
https://doi.org/10.1145/3020078.3021746
https://doi.org/10.1145/3020078.3021746
https://doi.org/10.1155/2019/1439763
https://www.cs.yale.edu/homes/jf/SMP2004.pdf
https://www.cs.yale.edu/homes/jf/SMP2004.pdf
https://doi.org/10.1007/978-3-319-10879-7_21
https://doi.org/10.1007/978-3-319-10879-7_21
https://doi.org/10.1145/3319535.3339811
https://doi.org/10.1145/3319535.3339811
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-56614-6_8

76

Accelerator with Runtime Workload Rebalancing. 53rd IEEE/ACM International
Symposium on Microarchitecture (MICRO). https://arxiv.org/pdf/1908.10834.pdf

Geng, T., Wang, T., Sanaullah, A., Yang, C., Xuy, R., Patel, R., & Herbordt, M.
(2018). A framework for acceleration of CNN training on deeply-pipelined FPGA
clusters with work and weight load balancing. 2018 28th International Conference
on Field Programmable Logic and Applications (FPL 2018): 394–402. https://doi.
org/10.1109/FPL.2018.00074

Geng, T., Wang, T., Wu, C., Li, Y., Yang, C., Wu, W., Li, A., & Herbordt, M. (2021).
O3BNN-R: An Out-Of-Order Architecture for High-Performance and Regularized
BNN Inference. TPDS, 32 (1), 199–213. https ://doi .org/10.1109/TPDS.2020.
3013637

Geng, T., Wu, C., Tan, C., Fang, B., Li, A., & Herbordt, M. (2020). CQNN: a CGRA-
based QNN Framework. HPExC. https : //doi . org/10 .1109/HPEC43674 .2020 .
9286194

George, A. D., Herbordt, M. C., Lam, H., Lawande, A. G., Sheng, J., & Yang,
C. (2016). Novo-G#: large-scale reconfigurable computing with direct and pro-
grammable interconnects. 2016 IEEE High Performance Extreme Computing Con-
ference (HPEC), 1–7. https://doi.org/10.1109/HPEC.2016.7761639

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google File System. Proceed-
ings of the Nineteenth ACM Symposium on Operating Systems Principles, 29–43.
https://doi.org/10.1145/945445.945450

Giannopoulos, T., & Mouris, D. (2018). Privacy Preserving Medical Data Analytics
using Secure Multi Party Computation. An End-To-End Use Case. (Doctoral dis-
sertation). National and Kapodistrian University of Athens. https://doi.org/10.
13140/RG.2.2.19303.70562

Gokhale, M. B., & Graham, P. S. (2005). Reconfigurable computing: Accelerating
computation with field-programmable gate arrays. Springer. https://doi .org/10.
1007/b136834

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., & Guestrin, C. (2012). PowerGraph:
Distributed Graph-Parallel Computation on Natural Graphs. 10th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 12), 17–30. https:
//www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

Gordon, S. D., Ranellucci, S., & Wang, X. (2018). Secure computation with low
communication from cross-checking. In T. Peyrin & S. Galbraith (Eds.), Advances
in cryptology – ASIACRYPT 2018 (pp. 59–85). Springer International Publishing.
https://doi.org/10.1007/978-3-030-03332-3_3

https://arxiv.org/pdf/1908.10834.pdf
https://doi.org/10.1109/FPL.2018.00074
https://doi.org/10.1109/FPL.2018.00074
https://doi.org/10.1109/TPDS.2020.3013637
https://doi.org/10.1109/TPDS.2020.3013637
https://doi.org/10.1109/HPEC43674.2020.9286194
https://doi.org/10.1109/HPEC43674.2020.9286194
https://doi.org/10.1109/HPEC.2016.7761639
https://doi.org/10.1145/945445.945450
https://doi.org/10.13140/RG.2.2.19303.70562
https://doi.org/10.13140/RG.2.2.19303.70562
https://doi.org/10.1007/b136834
https://doi.org/10.1007/b136834
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://doi.org/10.1007/978-3-030-03332-3_3

77

Haghi, P., Geng, T., Guo, A., Wang, T., & Herbordt, M. (2020). A Reconfigurable
Compute-in-the-Network FPGA Assistant for High-Level Collective Support with
Distributed Matrix Multiply Case Study. 2020 International Conference on Field-
Programmable Technology (FPT).

Haghi, P., Guo, A., Xiong, Q., Patel, R., Yang, C., Geng, T., Broaddus, J. T., Mar-
shall, R., Skjellum, A., & Herbordt, M. C. (2020). FPGAs in the network and
novel communicator support accelerate MPI collectives. 2020 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), 1–10. https://doi.org/10.1109/
HPEC43674.2020.9286200

Hajduczenia, M., Carlson, S. B., Dove, D., Laubach, M., Law, D., & Zimmerman,
G. A. (2016). Evolution of Ethernet Standards in IEEE 802.3 Working Group. https:
//www.standardsuniversity.org/e-magazine/august- 2016-volume-6/evolution-
ethernet-standards-ieee-802-3-working-group/

Harris, M. (2015). A Brief History of General-Purpose Computation on GPUs. https:
//cs.unc.edu/50th/celebration/symposium/

Hastings, M., Hemenway, B., Noble, D., & Zdancewic, S. (2019). SoK: General purpose
compilers for secure multi-party computation. Proceedings - IEEE Symposium on
Security and Privacy, 2019-May, 1220–1237. https://doi.org/10.1109/SP.2019.
00028

Hauck, S., & DeHon, A. (2008). Reconfigurable computing: The theory and practice
of fpga-based computing. Morgan Kaufmann.

Herbordt, M. C., VanCourt, T., Gu, Y., Sukhwani, B., Conti, A., Model, J., & DiS-
abello, D. (2007). Achieving high performance with FPGA-based computing. IEEE
Computer, 40 (3), 50–57. https://doi.org/10.1109/MC.2007.79

Herbordt, M., Gu, Y., VanCourt, T., Model, J., Sukhwani, B., & Chiu, M. (2008).
Computing models for FPGA-based accelerators with case studies in molecular
modeling. Computing in Science and Engineering, 10 (6), 35–45. https://doi.org/
10.1109/MCSE.2008.143

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R.,
Shenker, S., & Stoica, I. (2011). Mesos: A Platform for Fine-Grained Resource Shar-
ing in the Data Center. 8th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 11). https://www.usenix.org/conference/nsdi11/mesos-
platform-fine-grained-resource-sharing-data-center

Hsing, H. (2012). tiny_aes. https://opencores.org/projects/tiny_aes

Huang, K., Gungor, M., Fang, X., Ioannidis, S., & Leeser, M. (2019). Garbled circuits
in the cloud using FPGA enabled nodes. 2019 IEEE High Performance Extreme

https://doi.org/10.1109/HPEC43674.2020.9286200
https://doi.org/10.1109/HPEC43674.2020.9286200
https://www.standardsuniversity.org/e-magazine/august-2016-volume-6/evolution-ethernet-standards-ieee-802-3-working-group/
https://www.standardsuniversity.org/e-magazine/august-2016-volume-6/evolution-ethernet-standards-ieee-802-3-working-group/
https://www.standardsuniversity.org/e-magazine/august-2016-volume-6/evolution-ethernet-standards-ieee-802-3-working-group/
https://cs.unc.edu/50th/celebration/symposium/
https://cs.unc.edu/50th/celebration/symposium/
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/MC.2007.79
https://doi.org/10.1109/MCSE.2008.143
https://doi.org/10.1109/MCSE.2008.143
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://opencores.org/projects/tiny_aes

78

Computing Conference, HPEC 2019, 1–6. https://doi.org/10.1109/HPEC.2019.
8916407

Huang, Y., Evans, D., & Katz, J. (2012). Private Set Intersection: Are Garbled Cir-
cuits Better than Custom Protocols? In 19th Network and Distributed Security
Symposium (NDSS 2012). The Internet Society. https://www.ndss- symposium.
org/ndss2012/ndss-2012-programme/private-set-intersection-are-garbled-circuits-
better-custom-protocols/

Hussain, S. U., & Koushanfar, F. (2019). FASE: FPGA acceleration of secure
function evaluation. Proceedings - 27th IEEE International Symposium on Field-
Programmable Custom Computing Machines, FCCM 2019, 280–288. https://doi.
org/10.1109/FCCM.2019.00045

Hussain, S. U., Rouhani, B. D., Ghasemzadeh, M., & Koushanfar, F. (2018). MAX-
elerator: FPGA Accelerator for Privacy Preserving Multiply-Accumulate (MAC)
on Cloud Servers. 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), 1–6. https://doi.org/10.1109/dac.2018.8465770

Husted, N., Myers, S., Shelat, A., & Grubbs, P. (2013). GPU and CPU parallelization
of honest-but-curious secure two-party computation. ACM International Confer-
ence Proceeding Series, 169–178. https://doi.org/10.1145/2523649.2523681

Power 4 – The First Multi-Core, 1GHz Processor. (n.d.). https://www.ibm.com/
ibm/history/ibm100/us/en/icons/power4/

Ion, M., Kreuter, B., Nergiz, A. E., Patel, S., Raykova, M., Saxena, S., Seth, K.,
Shanahan, D., & Yung, M. (2019). On Deploying Secure Computing Commercially:
Private Intersection-Sum Protocols and their Business Applications. IACR Cryptol-
ogy ePrint Archive, 2019, 723. https://eprint.iacr.org/2019/723/20190618:153102

Iveson, S. (2013). TCP Over IP Bandwidth Overhead. https://packetpushers.net/tcp-
over-ip-bandwidth-overhead/

Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., & Vahdat, A.
(2013). B4: Experience with a globally-deployed software defined WAN. Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM, 3–14. https://doi.org/
10.1145/2486001.2486019

Järvinen, K., Kolesnikov, V., Sadeghi, A. R., & Schneider, T. (2010a). Embedded SFE:
Offloading server and network using hardware tokens. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 6052 LNCS, 207–221. https://doi.org/10.1007/978-3-
642-14577-3_17

https://doi.org/10.1109/HPEC.2019.8916407
https://doi.org/10.1109/HPEC.2019.8916407
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/private-set-intersection-are-garbled-circuits-better-custom-protocols/
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/private-set-intersection-are-garbled-circuits-better-custom-protocols/
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/private-set-intersection-are-garbled-circuits-better-custom-protocols/
https://doi.org/10.1109/FCCM.2019.00045
https://doi.org/10.1109/FCCM.2019.00045
https://doi.org/10.1109/dac.2018.8465770
https://doi.org/10.1145/2523649.2523681
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/
https://eprint.iacr.org/2019/723/20190618:153102
https://packetpushers.net/tcp-over-ip-bandwidth-overhead/
https://packetpushers.net/tcp-over-ip-bandwidth-overhead/
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1007/978-3-642-14577-3_17
https://doi.org/10.1007/978-3-642-14577-3_17

79

Järvinen, K., Kolesnikov, V., Sadeghi, A. R., & Schneider, T. (2010b). Garbled cir-
cuits for leakage-resilience: Hardware implementation and evaluation of one-time
programs. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 6225 LNCS, 383–397.
https://doi.org/10.1007/978-3-642-15031-9_26

Jindal, R. P. (2009). From millibits to terabits per second and beyond - Over 60
years of innovation. 2009 2nd International Workshop on Electron Devices and
Semiconductor Technology, 1–6. https://doi.org/10.1109/EDST.2009.5166093

Kalid, S., Syed, A., Mohammad, A., & Halgamuge, M. N. (2017). Big-data NoSQL
databases: A comparison and analysis of “Big-Table”, “DynamoDB”,and “Cassan-
dra”. 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA),
89–93. https://doi.org/10.1109/ICBDA.2017.8078782

Khan, M. A., Chiu, M., & Herbordt, M. C. (2013). FPGA-accelerated molecular dy-
namics. In W. Vanderbauwhede & K. Benkrid (Eds.), High-performance computing
using FPGAs (pp. 105–135). Springer New York. https://doi.org/10.1007/978-1-
4614-1791-0_4

Knott, B., Venkataraman, S., Hannun, A., Sengupta, S., Ibrahim, M., & van der
Maaten, L. (2020). CrypTen: Secure Multi-Party Computation Meets Machine
Learning. Proceedings of the NeurIPS Workshop on Privacy-Preserving Machine
Learning. https://lvdmaaten.github.io/publications/papers/crypten.pdf

Kolesnikov, V., & Schneider, T. (2008). Improved garbled circuit: Free XOR gates and
applications. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 5126 LNCS (PART
2), 486–498. https://doi.org/10.1007/978-3-540-70583-3_40

Koomey, J., Berard, S., Sanchez, M., & Wong, H. (2011). Implications of Historical
Trends in the Electrical Efficiency of Computing. IEEE Annals of the History of
Computing, 33 (3), 46–54. https://doi.org/10.1109/MAHC.2010.28

Koti, N., Pancholi, M., Patra, A., & Suresh, A. (2020). SWIFT: Super-fast and Robust
Privacy-Preserving Machine Learning. https://eprint.iacr.org/2020/592

Kumar, S. (2015). Fundamental Limits to Moore’s Law. https://arxiv.org/pdf/1511.
05956

Lakshman, A., & Malik, P. (2010). Cassandra: A Decentralized Structured Storage
System. SIGOPS Operating Systems Review, 44 (2), 35–40. https://doi.org/10.
1145/1773912.1773922

Leeser, M., Gungor, M., Huang, K., & Ioannidis, S. (2019). Accelerating large garbled
circuits on an FPGA-enabled cloud. Proceedings of H2RC 2019: 5th International
Workshop on Heterogeneous High-Performance Reconfigurable Computing - Held

https://doi.org/10.1007/978-3-642-15031-9_26
https://doi.org/10.1109/EDST.2009.5166093
https://doi.org/10.1109/ICBDA.2017.8078782
https://doi.org/10.1007/978-1-4614-1791-0_4
https://doi.org/10.1007/978-1-4614-1791-0_4
https://lvdmaaten.github.io/publications/papers/crypten.pdf
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1109/MAHC.2010.28
https://eprint.iacr.org/2020/592
https://arxiv.org/pdf/1511.05956
https://arxiv.org/pdf/1511.05956
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922

80

in conjunction with SC 2019: The International Conference for High Performance
Computing, Networking, Storage and Analysis, 19–25. https://doi.org/10.1109/
H2RC49586.2019.00008

Liagouris, J., Kalavri, V., Faisal, M., & Varia, M. (2021). Secrecy: Secure collaborative
analytics on secret-shared data [Technical report BUCS-TR-2021-001]. https ://
open.bu.edu/handle/2144/41958

Lohr, S. (2013, February 1). The Origins of ‘Big Data’: An Etymological Detective
Story. https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-
etymological-detective-story/

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., &
Czajkowski, G. (2010). Pregel: a system for large-scale graph processing. Proceed-
ings of the 2010 international conference on Management of data, 135–146. https:
//doi.org/10.1145/1807167.1807184

Malkhi, D., Nisan, N., Pinkas, B., & Sella, Y. (2004). Fairplay—A Secure Two-Party
Computation System. 13th USENIX Security Symposium (USENIX Security 04).
https://www.usenix.org/conference/13th-usenix-security-symposium/fairplay%
E2%80%94-secure-two-party-computation-system

Marz, N. (2014). History of Apache Storm and lessons learned. http://nathanmarz.
com/blog/history-of-apache-storm-and-lessons-learned.html

Mashey, John R. (1999). Big Data ... and the Next Wave of InfraStress. Retrieved
March 15, 2021, from https://static.usenix.org/event/usenix99/invited_talks/
mashey.pdf

Masuoka, F., & Iizuka, H. (1985). Semiconductor memory device and method for
manufacturing the same (US4531203A). https : / / patents . google . com/patent /
US4531203A/en

Mohassel, P., & Rindal, P. (2018). ABY 3: A mixed protocol framework for machine
learning. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, 35–52. https://doi.org/10.1145/3243734.3243760

Moore, G. E. (2006). Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-
State Circuits Society Newsletter, 11 (3), 33–35. https : / / doi . org / 10 . 1109 /N -
SSC.2006.4785860

Morgan, S. (2021). Cybercrime To Cost The World $10.5 Trillion Annually By 2025.
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/

Mosayyebzadeh, A., Mohan, A., Tikale, S., Abdi, M., Schear, N., Hudson, T., Munson,
C., Rudolph, L., Cooperman, G., Desnoyers, P., & Krieger, O. (2019). Supporting

https://doi.org/10.1109/H2RC49586.2019.00008
https://doi.org/10.1109/H2RC49586.2019.00008
https://open.bu.edu/handle/2144/41958
https://open.bu.edu/handle/2144/41958
https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/
https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://www.usenix.org/conference/13th-usenix-security-symposium/fairplay%E2%80%94-secure-two-party-computation-system
https://www.usenix.org/conference/13th-usenix-security-symposium/fairplay%E2%80%94-secure-two-party-computation-system
http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html
http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html
https://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
https://static.usenix.org/event/usenix99/invited_talks/mashey.pdf
https://patents.google.com/patent/US4531203A/en
https://patents.google.com/patent/US4531203A/en
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4785860
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/

81

Security Sensitive Tenants in a Bare-Metal Cloud. 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 587–602. https://www.usenix.org/conference/
atc19/presentation/mosayyebzadeh

Naor, M., Pinkas, B., & Sumner, R. (1999). Privacy preserving auctions and mech-
anism design. ACM International Conference Proceeding Series, 129–139. https :
//doi.org/10.1145/336992.337028

Nielsen, J. (2019). Nielsen’s Law of Internet Bandwidth. https://www.nngroup.com/
articles/law-of-bandwidth/

Ohrimenko, O., Schuster, F., Fournet, C., Mehta, A., Nowozin, S., Vaswani, K.,
& Costa, M. (2016). Oblivious multi-party machine learning on trusted proces-
sors. 25th USENIX Security Symposium (USENIX Security 16), 619–636. https:
//www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/
ohrimenko

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chin-
tala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, & R. Garnett (Eds.), Advances in neural information processing systems.
Curran Associates, Inc. https : / / proceedings . neurips . cc / paper / 2019 / file /
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Patel, R., Wolfe, P. .-F., Munafo, R., Varia, M., & Herbordt, M. (2020). Arithmetic
and Boolean Secret Sharing MPC on FPGAs in the Data Center. 2020 IEEE High
Performance Extreme Computing Conference (HPEC), 1–8. https://doi.org/10.
1109/HPEC43674.2020.9286159

Plessl, C. (2018). Bringing FPGAs to HPC Production Systems and Codes. H2RC’18
workshop at Supercomputing (SC’18). https://doi.org/10.13140/RG.2.2.34327.
42407

Pu, S., & Liu, J. (2013). Computing Privacy-Preserving Edit Distance and Smith-
Waterman Problems on the GPU Architecture. IACR Cryptology ePrint Archive.
http://eprint.iacr.org/2013/204.pdf

Pu, S., Duan, P., & Liu, J.-C. (2011). Fastplay-A Parallelization Model and Imple-
mentation of SMC on CUDA based GPU Cluster Architecture. IACR Cryptology
ePrint Archive, 2011, 97. https://eprint.iacr.org/2011/097.pdf

Putnam, A. (2014). A Reconfigurable Fabric for Accelerating Large-Scale Datacenter
Services. ISCA, 13–24. https://doi.org/10.1109/ISCA.2014.6853195

https://www.usenix.org/conference/atc19/presentation/mosayyebzadeh
https://www.usenix.org/conference/atc19/presentation/mosayyebzadeh
https://doi.org/10.1145/336992.337028
https://doi.org/10.1145/336992.337028
https://www.nngroup.com/articles/law-of-bandwidth/
https://www.nngroup.com/articles/law-of-bandwidth/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/ohrimenko
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1109/HPEC43674.2020.9286159
https://doi.org/10.1109/HPEC43674.2020.9286159
https://doi.org/10.13140/RG.2.2.34327.42407
https://doi.org/10.13140/RG.2.2.34327.42407
http://eprint.iacr.org/2013/204.pdf
https://eprint.iacr.org/2011/097.pdf
https://doi.org/10.1109/ISCA.2014.6853195

82

Raina, R., Madhavan, A., & Ng, A. Y. (2009). Large-Scale Deep Unsupervised Learn-
ing Using Graphics Processors. Proceedings of the 26th Annual International Con-
ference on Machine Learning, 873–880. https://doi.org/10.1145/1553374.1553486

IaaS vs PaaS vs SaaS. (n.d.). https://www.redhat.com/en/topics/cloud-computing/
iaas-vs-paas-vs-saas

Rehman, H. A., Wolfe, P.-F., Jain, S., Hu, S., & Lin, Y. (2021). MS Poster Presen-
tations Awards. Retrieved March 14, 2021, from https://www.bu.edu/eng/files/
2021/03/MPC-in-Cloud.pdf

Robinson, C. (2021). Ampere Altra Max M128-30 128 Core Arm Server Update. https:
//www.servethehome.com/ampere- altra-max-m128- 30- 128- core- arm- server-
update/

Sanaullah, A., & Herbordt, M. (2018). FPGA HPC using OpenCL: Case Study in 3D
FFT. 9th International Symposium on Highly-Efficient Accelerators and Reconfig-
urable Technologies, 1–6. https://doi.org/10.1145/3241793.3241800

Sanaullah, A., Yang, C., Alexeev, Y., Yoshii, K., & Herbordt, M. (2018). Real-Time
Data Analysis for Medical Diagnosis using FPGA Accelerated Neural Networks.
BMC Bioinformatics, 19 Supplement 18. https://doi.org/10.1186/s12859-018-
2505-7

Sayilar, G., & Chiou, D. (2014). Cryptoraptor: High throughput reconfigurable cryp-
tographic processor. 2014 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 155–161. https://doi.org/10.1109/ICCAD.2014.7001346

Schneider, T., & Zohner, M. (2013). GMW vs. Yao? Efficient secure two-party com-
putation with low depth circuits. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), 7859 LNCS, 275–292. https://doi.org/10.1007/978-3-642-39884-1_23

Services, A. W. (2016). aws_fpga. https://github.com/aws/aws-fpga.git

Shamir, A. (1979). How to share a secret. Communications of the ACM, 22 (11), 612–
613. https://doi.org/10.1145/359168.359176

Sheng, J., Xiong, Q., Yang, C., & Herbordt, M. (2017). Collective Communication on
FPGA Clusters with Static Scheduling. ACM SIGARCH Computer Architecture
News, 44 (4). https://doi.org/10.1145/3039902.3039904

Sheng, J., Yang, C., Caulfield, A., Papamichael, M., & Herbordt, M. (2017). HPC on
FPGA Clouds: 3D FFTs and Implications for Molecular Dynamics. 27th Interna-
tional Conference on Field Programmable Logic and Applications. https://doi.org/
10.23919/FPL.2017.8056853

https://doi.org/10.1145/1553374.1553486
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas
https://www.bu.edu/eng/files/2021/03/MPC-in-Cloud.pdf
https://www.bu.edu/eng/files/2021/03/MPC-in-Cloud.pdf
https://www.servethehome.com/ampere-altra-max-m128-30-128-core-arm-server-update/
https://www.servethehome.com/ampere-altra-max-m128-30-128-core-arm-server-update/
https://www.servethehome.com/ampere-altra-max-m128-30-128-core-arm-server-update/
https://doi.org/10.1145/3241793.3241800
https://doi.org/10.1186/s12859-018-2505-7
https://doi.org/10.1186/s12859-018-2505-7
https://doi.org/10.1109/ICCAD.2014.7001346
https://doi.org/10.1007/978-3-642-39884-1_23
https://github.com/aws/aws-fpga.git
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/3039902.3039904
https://doi.org/10.23919/FPL.2017.8056853
https://doi.org/10.23919/FPL.2017.8056853

83

Sheng, J., Yang, C., & Herbordt, M. (2015). Towards Low-Latency Communication
on FPGA Clusters with 3D FFT Case Study. HEART. https ://www.bu.edu/
caadlab/HEART15.pdf

Sheng, J., Yang, C., & Herbordt, M. (2018). High Performance Dynamic Commu-
nication on Reconfigurable Clusters. 28th International Conference on Field Pro-
grammable Logic and Applications. https://doi.org/10.1109/FPL.2018.00044

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop Distributed
File System. 2010 IEEE 26th Symposium on Mass Storage Systems and Technolo-
gies (MSST), 1–10. https://doi.org/10.1109/MSST.2010.5496972

Songhori, E. M., Riazi, M. S., Hussain, S. U., Sadeghi, A. R., & Koushanfar, F. (2019).
ARM2GC: Succinct garbled processor for secure computation. Proceedings - Design
Automation Conference. https://doi.org/10.1145/3316781.3317777

Songhori, E. M., Zeitouni, S., Dessouky, G., Schneider, T., Sadeghi, A. R., & Koushan-
far, F. (2016). GarbledCPU: A MIPS processor for secure computation in hardware.
Proceedings - Design Automation Conference, 05-09-June. https://doi.org/10.1145/
2897937.2898027

Stern, J., Xiong, Q., Skjellum, A., & Herbordt, M. (2018). A Novel Approach to
Supporting Communicators for In-Switch Processing of MPI Collectives. Workshop
on Exascale MPI. https://www.bu.edu/caadlab/ExaMPI18a.pdf

Sun, J., Peterson, G. D., & Storaasli, O. O. (2008). High-performance mixed-precision
linear solver for FPGAs. IEEE Transactions on Computers, 57 (12), 1614–1623.
https://doi.org/10.1109/TC.2008.89

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyck-
off, P., & Murthy, R. (2009). Hive: A Warehousing Solution over a Map-Reduce
Framework. Proceedings of the VLDB Endowment, 2 (2), 1626–1629. https://doi.
org/10.14778/1687553.1687609

Trimberger, S. M. (2015). Three Ages of FPGAs: A Retrospective on the First Thirty
Years of FPGA Technology. Proceedings of the IEEE, 103 (3), 318–331. https://
doi.org/10.1109/JPROC.2015.2392104

VanRoekel, S. (2011). FedRAMP Policy Memo. https : / / cic . gsa . gov/ references /
policy#FedRAMP

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., & Wilkes, J.
(2015). Large-Scale Cluster Management at Google with Borg. Proceedings of the
Tenth European Conference on Computer Systems. https : / /doi . org / 10 . 1145 /
2741948.2741964

Wagoner, O. (2019). When to use IaaS, FaaS, PaaS, and CaaS. https://developer.
ibm.com/depmodels/cloud/articles/when-to-use-iaas-faas-paas-and-caas/

https://www.bu.edu/caadlab/HEART15.pdf
https://www.bu.edu/caadlab/HEART15.pdf
https://doi.org/10.1109/FPL.2018.00044
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/3316781.3317777
https://doi.org/10.1145/2897937.2898027
https://doi.org/10.1145/2897937.2898027
https://www.bu.edu/caadlab/ExaMPI18a.pdf
https://doi.org/10.1109/TC.2008.89
https://doi.org/10.14778/1687553.1687609
https://doi.org/10.14778/1687553.1687609
https://doi.org/10.1109/JPROC.2015.2392104
https://doi.org/10.1109/JPROC.2015.2392104
https://cic.gsa.gov/references/policy#FedRAMP
https://cic.gsa.gov/references/policy#FedRAMP
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2741948.2741964
https://developer.ibm.com/depmodels/cloud/articles/when-to-use-iaas-faas-paas-and-caas/
https://developer.ibm.com/depmodels/cloud/articles/when-to-use-iaas-faas-paas-and-caas/

84

Wang, T., Geng, T., Li, A., Jin, X., & Herbordt, M. (2020). FPDeep: Scalable Accel-
eration of CNN Training on Deeply-Pipelined FPGA Clusters. TC, C-69 (8), 1143–
1158. https://doi.org/10.1109/TC.2020.3000118

Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., & Maltzahn, C. (2006). Ceph:
A Scalable, High-Performance Distributed File System. 7th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 06). https://www.usenix.
org/conference/osdi-06/ceph-scalable-high-performance-distributed-file-system

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., & Joglekar, A. (2003). An Integrated Experimental Environment for
Distributed Systems and Networks. SIGOPS Operating Systems Review, 36 (SI),
255–270. https://doi.org/10.1145/844128.844152

Wolfe, P. .-F., Patel, R., Munafo, R., Varia, M., & Herbordt, M. (2020). Secret Sharing
MPC on FPGAs in the Datacenter. 2020 30th International Conference on Field-
Programmable Logic and Applications (FPL), 236–242. https://doi.org/10.1109/
FPL50879.2020.00047

Wu, C., Geng, T., Bandara, S., Yang, C., Sachdeva, V., Sherman, W., & Herbordt,
M. (2021). Upgrade of FPGA Range-Limited Molecular Dynamics to Handle Hun-
dreds of Processors. 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM).

Wyden, R. (2019). Student Right to Know Before You Go Act of 2019. https://www.
congress.gov/bill/116th-congress/senate-bill/681/all-info

Xiong, Q., Bangalore, P., Skjellum, A., & Herbordt, M. (2018). MPI Derived
Datatypes: Performance and Portability Issues. 25th European MPI Users’ Group
Meeting. https://doi.org/10.1145/3236367.3236378

Xiong, Q., Skjellum, A., & Herbordt, M. (2018). Accelerating MPI Message Match-
ing Through FPGA Offload. 2018 28th International Conference on Field Pro-
grammable Logic and Applications (FPL), 191–1914. https ://doi .org/10.1109/
FPL.2018.00039

Yakoubov, S. (2017). A Gentle Introduction to Yao’s Garbled Circuits. http://web.
mit.edu/sonka89/www/papers/2017ygc.pdf

Yang, C., Geng, T., Wang, T., Patel, R., Xiong, Q., Sanaullah, A., Lin, C., Sachdeva,
V., Sherman, W., & Herbordt, M. (2019). Fully Integrated FPGA Molecular Dy-
namics Simulations. International Conference for High Performance Computing,
Networking, Storage and Analysis, 1–31. https://doi.org/10.1145/3295500.3356179

Yang, C., Geng, T., Wang, T., Sheng, J., Lin, C., Sachdeva, V., Sherman, W., &
Herbordt, M. (2019). Molecular Dynamics Range-Limited Force Evaluation Opti-
mized for FPGA. 2019 IEEE 30th International Conference on Application-specific

https://doi.org/10.1109/TC.2020.3000118
https://www.usenix.org/conference/osdi-06/ceph-scalable-high-performance-distributed-file-system
https://www.usenix.org/conference/osdi-06/ceph-scalable-high-performance-distributed-file-system
https://doi.org/10.1145/844128.844152
https://doi.org/10.1109/FPL50879.2020.00047
https://doi.org/10.1109/FPL50879.2020.00047
https://www.congress.gov/bill/116th-congress/senate-bill/681/all-info
https://www.congress.gov/bill/116th-congress/senate-bill/681/all-info
https://doi.org/10.1145/3236367.3236378
https://doi.org/10.1109/FPL.2018.00039
https://doi.org/10.1109/FPL.2018.00039
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf
http://web.mit.edu/sonka89/www/papers/2017ygc.pdf
https://doi.org/10.1145/3295500.3356179

85

Systems, Architectures and Processors (ASAP), 263–271. https://doi.org/10.1109/
ASAP.2019.00016

Yang, C., Sheng, J., Patel, R., Sanaullah, A., Sachdeva, V., & Herbordt, M. (2017).
OpenCL for HPC with FPGAs: Case Study in Molecular Electrostatics. 2017 IEEE
High Performance Extreme Computing Conference (HPEC), 1–8. https://doi.org/
10.1109/HPEC.2017.8091078

Yao, A. C. (1986). How to generate and exchange secrets. 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), 162–167. https://doi.org/10.1109/
SFCS.1986.25

Yao, A. C. (1982). Protocols for Secure Computations. Annual Symposium on Foun-
dations of Computer Science - Proceedings, 160–164. https://doi.org/10.1109/sfcs.
1982.38

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark:
Cluster computing with working sets. 2nd USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 10). https://www.usenix.org/conference/hotcloud-
10/spark-cluster-computing-working-sets

Zahur, S., Rosulek, M., & Evans, D. (2015). Two halves make a whole. In E. Oswald &
M. Fischlin (Eds.), Advances in cryptology - eurocrypt 2015 (pp. 220–250). Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-662-46803-6_8

Zhao, C., Zhao, S., Zhao, M., Chen, Z., Gao, C.-Z., Li, H., & Tan, Y.-a. (2019). Secure
multi-party computation: Theory, practice and applications. Information Sciences,
476, 357–372. https://doi.org/https://doi.org/10.1016/j.ins.2018.10.024

https://doi.org/10.1109/ASAP.2019.00016
https://doi.org/10.1109/ASAP.2019.00016
https://doi.org/10.1109/HPEC.2017.8091078
https://doi.org/10.1109/HPEC.2017.8091078
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/sfcs.1982.38
https://doi.org/10.1109/sfcs.1982.38
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/https://doi.org/10.1016/j.ins.2018.10.024

CURRICULUM VITAE

87

88

89

	Introduction
	Overview
	Example Scenarios
	Motivation & Goals
	What's wrong with MPC?
	Proposed Solution
	Results & Contributions
	Organization

	Background
	MPC & Secure Computing Algorithms
	History
	Taxonomy & Features

	Processing & Communication Hardware
	History
	Processing Technology
	Communication Technology

	MPC with Special Hardware
	Big Data & the Cloud
	Data Collection
	Data Processing
	Security & Efficiency
	Data centers & the Cloud
	Deployment Models

	Takeaways

	Design & Implementation
	Design Goals
	Design Choices
	Protocol & Algorithm Details
	Secret Sharing
	Compute Phase
	Data reconstruction
	Extensions

	Implementation Details
	Platform Choices
	Hardware Implementation

	Testing & Results
	FPGA Testing
	Test with Arria 10
	Initial Test with AWS
	Secondary Work with AWS

	Reference Results
	Analysis

	Cloud Deployment & Platform Analysis
	Cloud Computing Course
	Platform Comparison
	Bare Metal, Virtual Machines, Containers
	Scalability & Automated Provisioning

	Key Ideas

	Remaining Work & Conclusion
	Steps to MPCaaS
	MPC in the Cloud
	Transparent Hardware
	Transparent MPC Functions & Program Conversion

	Current & Future Work
	Conclusions

	References
	Curriculum Vitae

