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Professor of Electrical and Computer Engineering
Professor of Systems Engineering

Fourth Reader

Ioannis Ch. Paschalidis, PhD
Professor of Electrical and Computer Engineering
Professor of Biomedical Engineering
Professor of Systems Engineering
Professor of Computing and Data Sciences



To my loving wife and caring parents.

If you subdue craving, your sorrows shall fall from you like drops of water
from a lotus leaf. - Buddha, The Path of Dhamma, XXIV:3.

iv



Acknowledgments

First, I would like to express my sincere gratitude to my advisor, Professor Christos G.

Cassandras, for his continuous support, guidance, patience and trust throughout my

doctoral studies. His insights and advice on research as well as on my personal growth

have been invaluable. He has always been available, willing and prompt, whenever I

needed help or advice. I feel incredibly privileged for having had the opportunity to

learn from and do research with an excellent teacher and a well-renowned researcher

like him over the past few years. I cannot even begin to imagine having a better

advisor than him for my doctoral studies.

I would also like to thank my thesis committee members, Prof. Sean B. Andersson,
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ABSTRACT

A cooperative multi-agent system is a collection of interacting agents deployed in

a mission space where each agent is allowed to control its local state so that the fleet of

agents collectively optimizes a common global objective. While optimization problems

associated with multi-agent systems intend to determine the fixed set of globally

optimal agent states, control problems aim to obtain the set of globally optimal agent

controls. Associated non-convexities in these problems result in multiple local optima.

This dissertation explores systematic techniques that can be deployed to either escape

or avoid poor local optima while in search of provably better (still local) optima.

First, for multi-agent optimization problems with iterative gradient-based solu-

tions, a distributed approach to escape local optima is proposed based on the concept

of boosting functions. These functions temporarily transform gradient components at

a local optimum into a set of boosted non-zero gradient components in a systematic

manner so that it is more effective compared to the methods where gradient compo-
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nents are randomly perturbed. A novel variable step size adjustment scheme is also

proposed to establish the convergence of this distributed boosting process. Developed

boosting concepts are successfully applied to the class of coverage problems.

Second, as a means of avoiding convergence to poor local optima in multi-agent

optimization, the use of greedy algorithms in generating effective initial conditions

is explored. Such greedy methods are computationally cheap and can often exploit

submodularity properties of the problem to provide performance bound guarantees

to the obtained solutions. For the class of submodular maximization problems, two

new performance bounds are proposed and their effectiveness is illustrated using the

class of coverage problems.

Third, a class of multi-agent control problems termed Persistent Monitoring on

Networks (PMN) is considered where a team of agents is traversing a set of nodes

(targets) interconnected according to a network topology aiming to minimize a mea-

sure of overall node state. For this class of problems, a gradient-based parametric

control solution developed in a prior work relies heavily on the initial selection of its

‘parameters’ which often leads to poor local optima. To overcome this initialization

challenge, the PMN system’s asymptotic behavior is analyzed, and an off-line greedy

algorithm is proposed to systematically generate an effective set of initial parameters.

Finally, for the same class of PMN problems, a computationally efficient dis-

tributed on-line Event-Driven Receding Horizon Control (RHC) solution is proposed

as an alternative. This RHC solution is parameter-free as it automatically optimizes

its planning horizon length and gradient-free as it uses explicitly derived solutions for

each RHC problem invoked at each agent upon each event of interest. Hence, unlike

the gradient-based parametric control solutions, the proposed RHC solution does not

force the agents to converge to one particular behavior that is likely to be a poor local

optimum. Instead, it keeps the agents actively searching for the optimum behavior.
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In each of these four parts of the thesis, an interactive simulation platform is

developed (and made available online) to generate extensive numerical examples that

highlight the respective contributions made compared to the state of the art.
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Chapter 1

Introduction

A cooperative multi-agent system is a collection of interacting subsystems (agents)

where each agent controls its local state to collectively optimize a common global

objective subjected to various constraints. Depending on the application, the agents

of a multi-agent system may refer to sensors, vehicles, robots, service providers, or

even processors. Also, the constraints faced by the agents can be thought of as a

result of the given mission space and decision space limitations. Furthermore, the

global objective can be thought of as a reward that depends on agent interactions

with each other and with their surrounding mission space.

The optimal way to govern a multi-agent system is determined by a corresponding

optimization (static) or control (dynamic) problem depending on the form of the

seeking solution. In particular, an optimization problem aims to determine the fixed

set of globally optimal agent states while a control problem seeks to determine the set

of globally optimal agent controls (or equivalently, agent state-trajectories). Most of

the optimization and control techniques found in the literature use iterative solution

update schemes to obtain the optimal solution. Such an approach is called distributed

if these updates can be executed at each agent separately and only using locally

available information. Moreover, it is called on-line if these updates can be executed

without having any initial or intermediate stages that use global information of the

multi-agent system or the mission space.
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1.1 Background and Motivation

Obtaining the globally optimal solution to an optimization or control problem asso-

ciated with a multi-agent system is a challenging task depending on the nature of

the involved: (i) agents, (ii) constraints, (iii) mission space, (iv) inter-agent interac-

tions, and (v) global objective function. Therefore, a large number of optimization

and control methods can be found in the literature specifically developed to address

different classes of such problems.

For example, optimization and control of cooperative multi-agent systems arise

in a wide variety of applications such as in coverage control (Zhong and Cassan-

dras, 2011), resource allocation (Marden and Roughgarden, 2014), consensus (Sun

et al., 2017a), learning (Xu et al., 2015), formation control (Lin et al., 2014), mon-

itoring (Zhou et al., 2018), flocking (Ghapani et al., 2016). transportation (Dotoli

et al., 2013), smart cities (Anagnostopoulos et al., 2018) and smart grid (Molzahn

et al., 2017). In most of these applications, gradient-based iterative solution update

schemes are typically used due to their simplicity (see the survey paper (Nedić and

Liu, 2018)) to compute. However, more computationally complex schemes such as

the Alternating Direction Method of Multipliers (ADMM) (Bastianello et al., 2018),

Model Predictive Control (MPC) (Dai et al., 2017) and Control Barrier Functions

(CBF) (Lindemann and Dimarogonas, 2019) are also gaining popularity in these ap-

plication domains due to their greater generality within their respective scopes. For

example, the ADMM method is applicable to optimization problems and can handle

non-differentiable objective functions, noisy and asynchronous updates, and equality

constraints (Bastianello et al., 2018; Boyd et al., 2010). Similarly, the CBF method is

applicable to control problems and can handle non-linearities in the agent dynamics,

noise in the system and measurements, and complex objective functions while also

guaranteeing all constraints are not violated (Xiao et al., 2019).
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However, when an iterative solution update scheme is used to solve a multi-agent

optimization or control problem, achieving the global optimal solution highly depends

on the convexity of the considered objective function and the nature of the feasible

decision/control space of the problem. As an example, in multi-agent optimization,

the aforementioned Relaxed-ADMM approach in (Bastianello et al., 2018) only con-

verges to the global optimum when the objective function is convex. Further, in

multi-agent control, the Threshold Control Policy (TCP) proposed in (Zhou et al.,

2019) is unlikely to converge to the global optimum (within the class of such con-

trollers) as the objective function is non-convex. Similarly, there are a large number

of multi-agent systems where the objective function of interest is non-convex and thus

has multiple local optima. This eventually hinders the process of attaining a globally

optimal solution. The class of multi-agent coverage (optimization) problems (Zhong

and Cassandras, 2011) and persistent monitoring (control) problems (Zhou et al.,

2019) can serve as prime examples for this scenario.

In such non-convex situations, a generally applicable alternative is to use global

optimization techniques such as simulated annealing (Kirkpatrick et al., 1983; Chiu

and Lin, 2004), genetic algorithms (Holland, 1984; Davis, 1996), particle swarm al-

gorithms (Kennedy and Eberhart, 1995; Yazdani et al., 2018) or ant colony opti-

mization (Blum, 2005; Ilie and Bǎdicǎ, 2013) (see also the survey papers (Floudas

and Gounaris, 2008; Arora et al., 1995)). Note that these global optimization tech-

niques are not limited to handling multi-agent optimization problems but also can be

adopted to solve multi-agent control (i.e., dynamic) problems. For example, (Tfaili

and Siarry, 2008) adopts probabilistic and meta-heuristic ant colony optimization

concepts to solve a class of dynamic problems. Nevertheless, among these global

optimization techniques, the salient feature that enables achieving the global opti-

mality is the element of randomness introduced in the process of controlling agents.
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Therefore, such techniques can be computationally intensive and usually infeasible

for distributed and on-line optimization.

However, addressing the issue of non-convexity without compromising the compu-

tational simplicity by exploiting properties that the objective function or the multi-

agent system may possess has recently attracted renewed attention for specific classes

of multi-agent systems. Some examples are as follows. The concept of local optima

smoothing introduced in (Addis et al., 2005) assumes that the given non-convex ob-

jective can be smoothed into a uni-modal function using a log-concave kernel. The

approximate dual subgradient algorithm presented in (Zhu and Mart́ınez, 2013) as-

sumes Slater’s condition and Strong Duality. The ladybug exploration method pro-

posed in (Schwager et al., 2008) tries to hover over the probable local optima solutions

aiming to find a better optimum.

Along the same lines, the balanced detection technique introduced in (Zhong and

Cassandras, 2011) for coverage control problems focuses on changing the original ob-

jective function to encourage global exploration over local approximations to achieve

a better optimum. A more structured approach of the same strategy is proposed in

(Sun et al., 2014), which introduces the concept of boosting functions to escape local

optima and seek better ones through an exploration of the search space exploiting

the structural properties of the underlying multi-agent system. The greedy-gradient

method proposed for a class of coverage control problems in (Sun et al., 2019) uses

the submodularity property of the coverage objective to impose tight performance

bound guarantees on the initial solution (generated via a greedy algorithm) - hence

the final local optimal solution can be expected to deliver higher performance. The

persistent monitoring problem in (Zhou et al., 2019) tries to abstract the multi-agent

system representation originally used in (Lin and Cassandras, 2015) to overcome con-

verging to locally optimal agent state trajectories. However, as will be elaborated in
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the sequel, these methods lack generality and also face significant limitations.

1.2 Multi-Agent Optimization Problems

In multi-agent optimization problems, when iterative solution update schemes are

used, the two main avenues to overcome the issue of multiple local optima are by: (i)

executing local explorations and (ii) finding proper initializations. Computationally

intensive randomization based approaches for both of the above avenues have been

extensively studied in the literature (see (Hoos and Stutzle, 2005) and (Lasdon and

Plummer, 2008), respectively). In contrast, this thesis mainly focuses on approaches

where the structural properties of the underlying problem are utilized - avoiding any

form of randomization. Along these lines, the boosting functions method introduced

in (Sun et al., 2014) and the greedy initialization method introduced in (Sun et al.,

2019) respectively gives a local exploration technique and an initialization technique to

address the issue of multiple local optima for a class of multi-agent coverage problems

- exploiting its own structural properties. The objective of this class of coverage

problems is to determine the best arrangement for a set of agents (sensors) in a given

mission space to maximize the probability of detecting randomly occurring events

over this mission space (see Fig. 1·1 for an application example). Note that this

coverage problem framework is used in Chapters 2 and 3 of this thesis to highlight

and validate the respective contributions made (to a much broader class of problems).

1.2.1 Distributed Boosting

The key idea behind the centralized boosting functions approach proposed in (Sun

et al., 2014) is to temporarily alter the agent local objective functions whenever an

equilibrium (i.e., a local optimum) is reached, by defining a set of auxiliary local ob-

jective functions. This process is carried out indirectly by systematically transform-

ing each agent’s local gradient into a new boosted gradient. Therefore, a “boosting
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Figure 1·1: An application of the coverage problem: Determining the
optimal arrangement for a set of agents (sensors) in a residential area.

function” is formally a transformation of local gradients into appropriate boosted

gradients. Clearly, such transformations should always result in non-zero boosted

gradients whenever the local gradients are zero, so as to facilitate escaping the lo-

cal optima. After following the boosted gradients, when a new equilibrium point is

reached, agents switch back to using local gradients (also called normal gradients).

Subsequently, the gradient-based algorithm will converge to a new (potentially better)

equilibrium point.

Compared to methods where gradient components are randomly perturbed to es-

cape local optima (Kirkpatrick et al., 1983), the boosting function approach provides

explicitly computed boosted gradients, which ensure both escaping from the local

optima and subsequent systematic exploration of the search space. As will be shown,

such desirable qualities can be achieved by designing boosted functions taking into

account: (i) structural properties of the objective function, (ii) knowledge of feasible

space, and (iii) agent state trajectories into account.

The boosting functions approach given in (Sun et al., 2014) is a centralized solu-

tion, and it has been established specifically to address the class of coverage problems

introduced in (Zhong and Cassandras, 2011). Also, no convergence guarantees have

been provided. Moreover, it uses only the structural properties of the objective func-
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tion during its process of boosted gradient construction. These key limitations of

(Sun et al., 2014) are addressed in Chapter 2 of this thesis - among making several

other significant contributions (see also (Welikala and Cassandras, 2020a)).

1.2.2 Greedy Initialization

To overcome the issue of local optima faced in the class of coverage problems (Zhong

and Cassandras, 2011), the work in (Sun et al., 2019) proposes a greedy-gradient

algorithm. The underlying motivation is to exploit the submodularity property of the

coverage objective function to determine a favorable initial condition for a subsequent

gradient process using a computationally efficient greedy algorithm. The impact

of having a submodular objective function is that it reveals a performance bound

guarantee on the generated greedy solution with respect to the global optimal solution.

As pointed out in (Sun et al., 2019), when the gradient ascent process is initialized

with a greedy solution that preferably has a reasonable performance bound guarantee,

it can be expected to converge to a better local optimum (compared to situations

where random initialization is used).

Similar arguments have been the motivation behind incorporating a greedy ini-

tialization scheme to a variety of optimization problems across the spectrum. Some

example applications are as follows: (i) for machine learning in the seminal paper on

deep neural networks (Bengio et al., 2007), (ii) for K-means based consensus cluster-

ing in (Li and Liu, 2018), (iii) to solve Traveling Salesman Problems (TSP) in (Xie

and Liu, 2009), (iv) to solve coverage problems as will be shown in Chapter 3 of this

thesis, and (v) to solve persistent monitoring problems as will be shown in Chapter

4 of this thesis.

In particular, this thesis further improves the results established in (Sun et al.,

2019) concerning the class of coverage problems, and, most importantly, makes a

contribution to the general class of submodular maximization problems. In both



8

these objectives, the primary focus is to establish improved performance bounds, as

it allows one to put more confidence in the obtained solution regarding its closeness

to the global optimal solution.

Formally, the performance bound of an obtained (greedy) solution is a lower bound

to the ratio fG/f ∗ so that β ≤ fG/f ∗, where fG and f ∗ correspond to the objective

function values under the obtained solution and the global optimal solution, respec-

tively. It is shown to be β = (1 − 1
e
) when the objective function f is monotone

submodular and becomes β = (1− (1− 1
N
)N) when the allowable maximum number

of agents is constrained to N (Fisher et al., 1978; Nemhauser et al., 1978). Note that

having a performance bound closer to 1 is preferred as it yields that the obtained

(greedy) solution is almost globally optimal.

The recent works related to submodular maximization problems have shown an

increasing interest in improving upon the aforementioned conventional performance

bounds by exploiting structural properties of the underlying problem. Specifically,

these structural properties are defined by the nature of: (i) the objective function, (ii)

the feasible space, and (iii) the generated greedy solution, of the considered submod-

ular maximization problem. The typical approach is first to use one or a few of these

factors to define a monotonicity metric (commonly known as a curvature measure)

for the considered problem and then to develop an improved (closer to 1 compared to

conventional counterparts) performance bound as a function of this curvature mea-

sure. Note that such an improved performance bound is established considering the

same greedy solution and is preferred as it allows us to: (i) have a more accurate sense

of proximity of the greedy solution to the optimality and (ii) make more informed

decisions regarding spending extra resources to seek a better solution.

For example, the work in (Conforti and Cornuéjols, 1984) defines a curvature

measure named total curvature based on the nature of the objective function and
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the feasible space for the general class of submodular maximization problems. Then,

a provably improved performance bound is developed using the said total curvature

measure. The authors of (Conforti and Cornuéjols, 1984) also propose another cur-

vature metric named greedy curvature based on the generated greedy solution and

use it to develop another performance bound. This same procedure is followed in

(Wang et al., 2016) and (Liu et al., 2018) to propose new curvature metrics named

elemental curvature and partial curvature respectively and then to develop improved

performance bounds.

The work in (Sun et al., 2019) first proves that the coverage objective in (Zhong

and Cassandras, 2011) is submodular. Then, it proposes a centralized greedy al-

gorithm to determine an initial set of agent locations. Afterward, it exploits the

established submodularity property to compute the aforementioned total curvature

and elemental curvature metrics for the considered class of coverage problems and

shows that the use of such metrics can improve the performance bound guarantees

considerably. Finally, (Sun et al., 2019) proposes a greedy-gradient algorithm where

the obtained greedy solution is used as the initial condition in a subsequent gradi-

ent process to reach a local optimum, and shows that this combined greedy-gradient

approach is more effective compared to the centralized boosting approach proposed

in (Sun et al., 2014). Chapter 3 of this thesis improves upon the aforementioned

contributions made in (Sun et al., 2019) for the class of coverage problems and even

establishes several new theoretical results for the general class of submodular maxi-

mization problems (see also (Sun et al., 2020)).

1.3 Multi-Agent Control Problems

The optimization problems introduced in the previous section are more commonly

referred to as parametric optimization or static optimization problems as they intend
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to determine an optimal set of static parameters in a feasible space. In contrast, the

control problems introduced in this section are also referred to as non-parametric op-

timization or dynamic optimization problems as they intend to determine an optimal

set of functions (of time) in a function space.

In particular, multi-agent control problems aim to determine the optimal agent

controls (or equivalently, the optimal agent state trajectories) in a paradigm where

the objective function, the mission space, and the agents themselves behave in a

time-dependent manner. A large number of solution techniques can be found in the

literature that have been developed to address different sub-classes of such multi-

agent control problems. Some commonly used solution techniques involve optimal

control (Song et al., 2014), dynamic programming (Floudas et al., 1999), Lyapunov

control (Wang et al., 2014), control barrier functions (Lindemann and Dimarogonas,

2019), reinforcement learning (Valenti, 2007), receding horizon control (Yao et al.,

2010) and parametric control (Cassandras et al., 2010). Note that in parametric

control, the control (non-parametric optimization) problem of interest is reduced to an

optimization (parametric optimization) problem by parameterizing the agent control

policy, i.e., by forcing the agents to select their continuous controls based on a static

set of parameters.

Some related applications are as follows. Optimal dynamic formation control fo-

cusing on leader-follower networks is discussed in (Sun and Cassandras, 2016). The

work in (Lan and Schwager, 2013) considers the trajectory planning problem (focus-

ing periodic trajectories) for a sensing robot to estimate a time-changing Gaussian

random field that exists in its surrounding environment. The problem of distributed

estimation of a centralized linear system using a set of observers is considered in

(Wang et al., 2019). The work in (Pinto et al., 2019) considers the problems of dis-

tributed estimation of a decentralized network system using a team of mobile agents
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(sensors). The class of persistent monitoring problems discussed in (Lin and Cassan-

dras, 2015) attempts to control the agent motion so as to minimize an uncertainty

metric associated with the given mission space. The work in (Zhou et al., 2019) tries

to abstract some of the representations used in (Lin and Cassandras, 2015) aiming to

find a better optimum.

As mentioned earlier, the second half of this thesis tackles explicitly the class of

persistent monitoring problems formulated in (Zhou et al., 2019). In the following

subsections, the related literature leading up to the work (Zhou et al., 2019), the

proposed centralized off-line solution based on parametric control, and the proposed

distributed on-line solution based on receding horizon control are introduced, respec-

tively.

1.3.1 Persistent Monitoring on Networks (PMN) Problems

A persistent monitoring problem arises when a dynamically changing environment

needs to be monitored by a set of agents who cannot adequately cover the environ-

ment if they remained stationary. This constraint of having to have non-stationary

exploratory agents to cover the changing environment contrasts persistent monitor-

ing problems from the (static) multi-agent coverage problems (Zhong and Cassandras,

2011). An example scenario where persistent monitoring is required is shown in Fig.

1·2 (notice the differences compared to the coverage application shown in Fig. 1·1).
Persistent monitoring problems have many applications across different domains

such as in smart cities (Rezazadeh and Kia, 2019), transportation systems (Yamashita

et al., 2003) and manufacturing plants (Liaqat et al., 2019) - where a team of agents

can be used to monitor different regions of the environment for congestion, disruptions

or any other dynamic events of interest. Further, in a smart grid (Caprari et al., 2010;

Fan et al., 2018; Menendez et al., 2017), a team of agents can be used to inspect power

plants and transmission lines. Additional applications include surveillance (Aksaray
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Figure 1·2: An example persistent monitoring problem setup. The
number of agents are low and the agent sensing capabilities are lim-
ited (i.e., ‘sensing range’ values are small). Hence, mobile agents are
required to regularly monitor the environment (points of interest).

et al., 2015; Maza et al., 2011), patrolling (Huynh et al., 2010), data collecting (Smith

et al., 2011), sensing (Trevathan and Johnstone, 2018) and particle tracking (Shen

and Andersson, 2011).

In general, persistent monitoring problems can be classified based on the nature of

the environment, objective and dynamics involved. In particular, based on the nature

of the environment, a monitoring problem may have a finite set of “points of interest”

(Rezazadeh and Kia, 2019) or lack thereof (Maini et al., 2018) in the environment to

be monitored. Based on the nature of the objective, different monitoring problems

can be formulated to optimize event-counts (Yu et al., 2015), idle-times (Hari et al.,

2019), error covariances (Pinto et al., 2020a) or visibility states (Maini et al., 2018)

related to the environment. Finally, based on the nature of the environment dynamics,

a monitoring problem can be either deterministic (Yu et al., 2016; Song et al., 2014)

or stochastic (Rezazadeh and Kia, 2019; Lan and Schwager, 2013).

The persistent monitoring problem considered in this thesis (introduced in (Zhou

et al., 2019)) focuses on an n-Dimensional (n-D) environment containing a finite

number of points of interest (henceforth called “targets”). The agent team’s objective
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is to collect information from (i.e., sense) each target to reduce an “uncertainty”

metric associated with the target state. In particular, the dynamics of each target’s

uncertainty metric are such that it increases while no agent is present in the vicinity

of the target and decreases when the target is being sensed by one or more agents

in its vicinity. Therefore, the underlying global objective is to minimize an overall

measure of target uncertainties by controlling the agent trajectories.

Persistent monitoring in 1-D environments has been addressed in (Zhou et al.,

2018) by formulating an optimal control problem and showing that it can be re-

duced to a parametric optimization problem. This enables the use of Infinitesimal

Perturbation Analysis (IPA) (Cassandras et al., 2010) to determine the gradients of

the objective function with respect to the parameters and use gradient descent to

determine their optimal values.

In contrast to the 1-D case, finding the solution to the problem of persistent

monitoring in 2-D environments is much more complicated (Lin and Cassandras,

2015). However, as a remedy, the works in (Lin and Cassandras, 2015; Khazaeni and

Cassandras, 2018a) propose to constrain agents to follow certain families of parametric

trajectories (e.g., elliptical, Lissajous, Fourier) and use IPA to obtain an optimal

solution within these families. However, as pointed out in (Zhou et al., 2019), limiting

the agent trajectories to such forms can lead to poor local optima as such solutions

cannot capture the dynamic changes in target uncertainties and highly depend on

the initial target/agent conditions selected (Lin and Cassandras, 2015; Khazaeni and

Cassandras, 2018a).

To overcome the challenges mentioned above, a graph topology is adopted in

(Zhou et al., 2019) where the targets and the feasible inter-target agent trajectories

are abstracted as graph nodes and edges, respectively. This abstraction has the

added advantage of accounting for physical obstacles that might be present in the
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environment by constructing the graph accordingly (for example, see Fig. 1·3). In

this persistent monitoring on networks (PMN) paradigm, an agent trajectory is fully

characterized by a sequence of visiting-targets and the corresponding sequence of

dwell-times to be spent at each visited target. Therefore, the controller that optimizes

a given objective should yield such a (visiting-target, dwell-time) sequence for all

agents. Clearly, this optimization problem is significantly more complicated than the

NP-hard traveling salesman problem (Bektas, 2006) which only involves finding an

optimal sequence of targets to visit. Thus, searching for the optimal (visiting-target,

dwell-time) sequences for all the agents is a computationally-intensive process.

Figure 1·3: The graph abstraction of the persistent monitoring prob-
lem setup shown in Fig. 1·2.

To overcome this issue, different PMN solutions in the literature have used differ-

ent techniques. For example, (Rezazadeh and Kia, 2019) exploits the submodularity

property of the objective function and proposes a sub-optimal greedy solution with

a performance bound guarantee. The work in (Song et al., 2014) constrains agent

trajectories to a closed path and optimizes agent speeds and initial locations. The

work in (Yu et al., 2015) limits to a single-agent scenario and constrains the agent

to a known cyclic visiting-target sequence to optimize the dwell-time sequence. A

Mixed Integer Linear Program (MILP) is formulated in (Hari et al., 2019) to find

the optimal cyclic visiting-target sequence limiting to a single-agent scenario. How-
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ever, these approaches including many others (Maini et al., 2018; Hari et al., 2018)

introduce additional constraints to the original PMN problem setup and are limited

to centralized settings.

The work in (Zhou et al., 2019) overcomes these challenges by adopting a dis-

tributed threshold-based (parametric) control (TBC) approach where each agent en-

forces a set of thresholds on its neighboring target uncertainty values to decide im-

mediate trajectory decisions (in a distributed manner): the dwell-time to be spent at

the current target and the next target to visit. This parameterization enables the use

of IPA to find optimal thresholds using a gradient descent process - in a distributed

on-line manner.

1.3.2 Greedy Initialization for PMN Problems

Like all iterative solution update processes, the gradient-based threshold update pro-

cess proposed in (Zhou et al., 2019) suffers from the issue of converging to a poor

local optimum solution. This is due to the non-convexity of the persistent monitoring

objective function of interest with respect to the thresholds. It is also important to

note that such converged poor local optimum solutions are highly dependent on the

initial thresholds used, which in (Zhou et al., 2019) are generated randomly.

Motivated by the previous use of greedy initialization in preventing iterative solu-

tion update processes from converging to poor local optima, Chapter 4 of this thesis

appends a greedy initialization stage to the PMN solution proposed in (Zhou et al.,

2019). In particular, this centralized off-line greedy initialization stage exploits global

information available regarding the underlying network structure to determine a set of

high-performing initial thresholds that ensures the subsequent IPA-based distributed

on-line gradient descent process converges to an improved set of (still locally optimal)

thresholds (see also (Welikala and Cassandras, 2019a)).
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1.3.3 Event-Driven Receding Horizon Control for PMN Problems

While the developed TBC solution for PMN problems has many advantages like

being simple and computationally efficient in the on-line phase, its need to have a

centralized off-line stage can be seen as a disadvantage. Similarly, while having an

on-line threshold-tuning component in the TBC solution can be seen as an advantage

due to the offered adaptability, in certain applications, this might not be sufficient

- in particular, when the agents have to directly react to various state (or system

parameter) perturbations without having to go through a threshold-tuning process

(with a considerable amount of recovery time) upon each such perturbation.

Motivated by these limitations, Chapter 5 of this thesis departs from the developed

TBC solution and takes an entirely different approach to PMN problems. Specifically,

the event-driven nature of PMN systems is exploited to derive an Event-Driven Re-

ceding Horizon Control (RHC) solution to optimally control each of the agents in a

distributed on-line manner using only a minimal amount of computational power.

Compared to the TBC approach where agents may eventually converge to a cer-

tain stationary behavior characterized by the converged set of thresholds, in this RHC

approach, agents continually keep on searching for the optimal behavior by globally

optimizing a local version of the global objective function at each agent upon each

event of interest. In that sense, this RHC approach shares some similarities with

the earlier proposed distributed boosting approach for multi-agent optimization prob-

lems. For example, both are distributed on-line processes that intermittently motivate

agents to search for the optimal agent states/behaviors. Moreover, as will be shown

in Chapter 5, this RHC approach also has a greedy initialization component in it (see

also (Welikala and Cassandras, 2021b)).

Before discussing the contributions of this thesis, a brief introduction to event-

driven receding horizon control is provided in the following subsection.
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1.3.4 A Brief Introduction to Event-Driven Receding Horizon Control

Often multi-agent control problems are complex, high-dimensional, and computa-

tionally intractable. When solving such problems, similar to using parametric control

approaches, another feasible computationally efficient alternative is to use receding

horizon control (also known as Model Predictive Control (MPC)). The motivation is

to divide the main problem into a series of sub-problems that the agents can solve on-

line in a distributed manner. Each such sub-problem aims to determine the optimal

agent controls over a planning horizon that optimizes a local version of the interested

global objective function. Upon solving such a sub-problem, the agent executes the

determined optimal agent controls over a shorter action horizon defined either by the

next time step or by the next event of interest that the agent observes. The same

process is continued in this time-driven or event-driven manner, respectively.

In discrete-event or hybrid systems, event-driven receding horizon control (Li and

Cassandras, 2006) can exploit the underlying event-driven nature of the system to

reduce the computational complexity by orders of magnitude compared to time-driven

receding horizon control (Dai et al., 2017) - due to its flexibility in the frequency

of control updates. Typically, in RHC, an optimal control problem is solved upon

each event of interest taking the current state of the system as the initial state to

determine the subsequent optimal control actions. Hence RHC can provide an on-

line solution compared to conventional control methods that use an off-line computed

optimal control law defined over all states. In the literature, RHC has been used

to address a wide range of cooperative multi-agent control problems such as multi-

vehicle control (Li and Cassandras, 2006), multi-agent rendezvous (Yao et al., 2010),

reward collection (Khazaeni and Cassandras, 2018a), and ride-sharing (Chen and

Cassandras, 2020a).
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1.4 Thesis Outline

In this thesis, Chapters 2, 3 are dedicated to multi-agent optimization problems

while Chapters 4, 5 are dedicated to multi-agent control problems. In particular,

Chapters 2 and 3 respectively extend the generality of the methods proposed in

the aforementioned two works (Sun et al., 2014) and (Sun et al., 2019) while also

overcoming their limitations by introducing several new concepts and establishing

multiple new theoretical results. On the other hand, Chapters 4 and 5 focus primarily

on the persistent monitoring on networks problem formulated in the aforementioned

work (Zhou et al., 2019), and respectively develop (alternative) centralized off-line

and distributed on-line solutions. It is important to point out that ongoing research

has already adopted the novel techniques introduced in Chapters 4 and 5 of this thesis

to address problems like distributed estimation (Pinto et al., 2019) as well as energy-

aware multi-agent control (Bentz and Panagou, 2018) problems (see also (Welikala

and Cassandras, 2020b) and (Welikala and Cassandras, 2021c)). Finally, Chapter 6

concludes this thesis by summarizing the main contributions and discussing ongoing

and future research directions.

1.5 Contributions

The contributions of this dissertation are summarized as follows.

In Chapter 2, building upon the centralized boosting function approach intro-

duced for the class of coverage problems in (Sun et al., 2014), a distributed boosting

function approach is proposed to solve general non-convex optimization problems as-

sociated with cooperative multi-agent systems. In particular, first, a general-purpose

Distributed Boosting Scheme (DBS) is proposed where each agent is allowed to asyn-

chronously switch between a “boosting” and a “normal” mode independent of other

agents and also without any global communication. Second, a generally applicable
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optimal variable step size selection technique is proposed to ensure the convergence of

the DBS. Third, to provide more intuition about the boosting function design process

(recall that a boosting function is formally a transformation of normal gradients into

appropriate boosted gradients), for a class of multi-agent coverage problems (Zhong

and Cassandras, 2011), two new boosting function families named Arc-Boosting and

V-Boosting are developed. Finally, the effectiveness of the proposed distributed boost-

ing function approach is illustrated by applying the developed DBS, the variable step

size selection technique and the boosting function families to the said class of multi-

agent coverage problems.

Chapter 3 explores the use of greedy initialization in multi-agent optimization

problems. First, two new performance bounds are proposed for the general class

of submodular maximization problems based on two new curvature metrics. Second,

several important and useful properties related to the coverage objective function used

in (Sun et al., 2019; Zhong and Cassandras, 2011) are established. Also, it is shown

that the greedy algorithm proposed in (Sun et al., 2019) is inherently distributed.

Finally, for this class of coverage problems, two performance bounds (based on partial

curvature (Liu et al., 2018) and greedy curvature (Conforti and Cornuéjols, 1984))

taken from the literature along with the newly proposed two performance bounds

are applied to obtain much-improved performance bounds compared to the those

obtained in (Sun et al., 2019).

In Chapter 4, a greedy initialization technique is proposed for a class of parametric

controllers deployed to solve persistent monitoring on networks problems. The con-

tributions made in this chapter can be seen more broadly as a systematic approach

to select effective initial conditions for gradient-based methods that solve non-convex

optimization problems pertaining to a large class of dynamic multi-agent systems

beyond persistent monitoring. In particular, this is accomplished by analyzing the
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asymptotic behavior of such systems and using the resulting optimal control policies

to initialize a class of parametric controllers.

First, the asymptotic analysis of single-agent PMN systems is provided with the

agent constrained to follow a periodic and non-overlapping sequence of targets (also

called a “target-cycle”). Second, a graph partitioning process is proposed for multi-

agent PMN systems to enable the extension of the said asymptotic analysis to deploy

multiple agents. Third, a computationally efficient, off-line greedy technique is pro-

posed to construct a high-performing set of thresholds for PMN problems. These

thresholds are to be used as the initial thresholds in the subsequent on-line IPA-

based gradient descent process. Finally, extensive simulation results are provided to

show that these initial thresholds are often immediately optimal (still local) as well

as much improved compared to the thresholds obtained in (Zhou et al., 2019). Thus,

in such cases, the proposed greedy initialization scheme eliminates the need for any

subsequent on-line gradient descent process.

Chapter 5 proposes an event-driven receding horizon control approach for PMN

problems as an alternative to the parametric control approach developed in Chapter

4. The conventional use of RHC involves selecting a planning horizon over which

each Event-Driven Receding Horizon Control Problem (RHCP) is solved (Li and

Cassandras, 2006; Wang et al., 2017; Khazaeni and Cassandras, 2018a; Chen and

Cassandras, 2020b). A novelty in the proposed RHC approach is the ability to simul-

taneously determine the optimal value of the planning horizon to be used locally at

each agent at each RHCP. Moreover, an explicit global optimal solution is derived for

each possible RHCP form, avoiding repetitive use of computationally intensive solvers

or gradient-based methods. Therefore, the proposed RHC approach is parameter-free,

computationally efficient as well as gradient-free.

In particular, first, it is shown that each agent’s trajectory is fully characterized by
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the sequence of decisions it makes at specific discrete event times. Then, considering

an agent at any one of these event times, an RHCP is formulated to determine the

immediate optimal decisions over an optimally determined planning horizon. Second,

several structural properties of this RHCP (which takes the form of a non-convex

constrained optimization problem) are exploited to derive a unique global optimal so-

lution for it in closed form. Third, some modifications are introduced to the proposed

RHC architecture to obtain higher-performing solutions. Finally, the performance

improvement achieved compared to the TBC solution proposed in (Zhou et al., 2019)

and the controller’s ability to take into account the presence of random effects affect-

ing the system behavior are extensively studied using simulation experiments.

In each chapter of this thesis, an interactive simulation platform is developed (and

made available online as shown in Fig. 1·4) to generate extensive numerical examples

that highlight the respective contributions made compared to the state of the art.
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(a) Multi-agent coverage problem simu-
lator (solver) used in Chapters 2 and 3
(available at: http://www.bu.edu/codes/

simulations/shiran27/CoverageFinal/).

(b) Multi-agent PMN problem
simulator (solver) used in Chap-
ters 4 and 5 (available at: http:

//www.bu.edu/codes/simulations/

shiran27/PersistentMonitoring/).

Figure 1·4: Developed interactive JavaScript-based simulators used
to validate the contributions of this thesis.

http://www.bu.edu/codes/simulations/shiran27/CoverageFinal/
http://www.bu.edu/codes/simulations/shiran27/CoverageFinal/
http://www.bu.edu/codes/simulations/shiran27/PersistentMonitoring/
http://www.bu.edu/codes/simulations/shiran27/PersistentMonitoring/
http://www.bu.edu/codes/simulations/shiran27/PersistentMonitoring/
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Chapter 2

Distributed Boosting for Multi-Agent

Optimization

This chapter concentrates on the distributed boosting functions approach introduced

in Section 1.2.1 which can be used to overcome the issue of multiple local optima

arising in cooperative multi-agent optimization with non-convex objective functions.

The key idea behind the boosting functions approach is to temporarily and system-

atically transform the local gradients used by the agents at a local optimum into a

boosted gradient with a non-zero magnitude - to escape local optima. A distributed

boosting scheme is developed along with a novel optimal variable step size selection

mechanism to guarantee convergence of this DBS. Finally, simulation results are pro-

vided to demonstrate the effectiveness of the boosting function approach in attaining

improved (still generally local) optima.

The sections of this chapter are arranged as follows. Section 2.1 introduces the

general cooperative multi-agent optimization problem and the key concepts related

to boosting functions approach. Then, an optimal variable step size selection mech-

anism along with related convergence proofs are provided in Section 2.2. In Section

2.3, the application of the boosting functions approach to the class of multi-agent

coverage problems (Zhong and Cassandras, 2011) is discussed. Section 2.3.5 presents

simulation results illustrating the effectiveness of the proposed distributed boosting

framework and Section 2.4 concludes the chapter.
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2.1 Problem Formulation

This chapter considers cooperative multi-agent optimization problems of the form

s∗ = argmax
s

H(s), (2.1)

where, H : RmN → R is the global objective function and s = [s1, s2, . . . , sN ] ∈ R
mN

is the global state. Here, si ∈ R
m represents the controllable local state of an agent

i ∈ {1, 2, . . . , N}. The global objective function H(s) is not required to satisfy any

linearity or convexity-related conditions.

Inter-agent interactions are modeled by an undirected graph G = (V ,A) where

V = {1, 2, . . . , N} is the set of N agents and A is the set of available communication

links between those agents. The set of neighbors of an agent i ∈ V is denoted by

Bi = {j : j ∈ V , (i, j) ∈ A} and the closed neighborhood of an agent i is defined as

B̄i = Bi ∪ {i}. It is assumed that each agent i shares its local state information si

with its neighbors in Bi. As a result, agent i has knowledge of its neighborhood state

s̄i = {sj : j ∈ B̄i}.
Moreover, each agent (say i) is assumed to have a local objective function Hi(s̄i)

where Hi : R
m|B̄i| → R (| · | is the cardinality operator). Note that Hi(s̄i) only

depends on agent i’s neighborhood state s̄i. The relationship between local and global

objective functions is not restricted to any specific form except for the condition:

∂Hi(s̄i)

∂si
= 0, ∀i ∈ V =⇒ ∇H(s) = 0. (2.2)

This condition clearly holds for any problem with a separable form (Sun et al.,

2014) H(s) = Hi(s̄i) + Hc
i (s

c
i) where Hc

i : R
m(N−1) → R and sci =

[s1, s2, . . . , si−1, si+1, . . . , sN ]. Note that cooperative multi-agent systems which are

inherently distributed (e.g., (Zhong and Cassandras, 2011)) naturally have separa-
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ble objective functions. Moreover, many problems of interest with an additive form

(Bastianello et al., 2018) H(s) =
∑N

i=1Hi(s̄i) also satisfy this condition.

In order to solve (2.1), the distributed scheme where each agent i updates its local

state si according to

si,k+1 = si,k + βi,kdi,k, (2.3)

is considered. Here, βi,k ∈ R is a step size and di,k ,
∂Hi(s̄i,k)

∂si
∈ R

m denotes the locally

available gradient of agent i.

2.1.1 Escaping Local Optima Using Boosting Functions

The main idea behind the boosting functions approach is to temporarily replace the

local objective function Hi(s̄i) whenever an equilibrium is reached with an auxiliary

objective function Ĥi(s̄i). Note that this is equivalent to replacing the normal gradient

di by a boosted gradient d̂i =
∂Ĥi(s̄i)
∂si

in (2.3).

Boosting Functions

A boosting function fi can be thought of as a transformation of an associated normal

gradient di which results in a boosted gradient d̂i = fi(di). In particular, this trans-

formation takes place at an equilibrium point (where di = 0) and should result in a

non-zero boosted gradient d̂i = fi(0) 6= 0 which, therefore, forces agent i to move in a

direction determined by the boosting function and to explore the feasible space fur-

ther. Subsequently, when a new equilibrium point is reached (i.e., when d̂i = 0), the

agent reverts to the normal gradient di and the gradient-based algorithm converges

to a new (potentially better and never worse) equilibrium point.

The key to boosting functions is that they are selected to exploit the structure

of: (i) the objective functions H(s) and Hi(s̄i), (ii) the gradient expression di, (iii)

the feasible space and (iv) the agent state trajectory history. Therefore, unlike var-

ious forms of randomized state perturbations away from their current equilibrium
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(Kirkpatrick et al., 1983; Chiu and Lin, 2004), boosting functions provide a for-

mal rational systematic transformation process which depends heavily on the specific

problem type.

Boosting Function Example: To provide insight into boosting functions in a

generic setting, a general-purpose boosting function choice can be proposed as follows.

In many multi-agent optimization problems, local optima arise when a cluster of

agents provides a reasonably high performance by maintaining their local states in

close proximity while completely ignoring globally dispersed state configurations. In

such a case, a boosting function that enhances a separation among local states is

a natural choice, especially suited for applications like coverage control, formation

control, monitoring, consensus and transportation. Therefore, in a generic setting, a

candidate boosted gradient d̂i = fi(di) for agent i can be obtained by letting ψij =

(si − sj) and defining d̂i = ∇ψij
Hi(s̄i) where its lth component is

d̂li =
∂Hi(s̄i)

∂ψlij
=
∂Hi(s̄i)

∂sli
︸ ︷︷ ︸

= dli

∂sli
∂ψlij

+
∂Hi(s̄i)

∂slj
︸ ︷︷ ︸

, dlji

∂slj
∂ψlij

. (2.4)

Now, by replacing
∂sli
∂ψl

ij

and
∂slj

∂ψl
ij

with scalar parameters αij and ηij, an entire family of

boosting functions can be obtained as d̂i = fi(di) = αijdi + ηijdji where dji =
∂Hi(s̄i)
∂sj

(see also (2.44) and (2.45)). Note that setting αij = 1 and ηij = −1 gives an interesting

boosting function choice of the form d̂i = fi(di) = di − dji. Since dji represents the

direction towards which agent j should move to increase Hi, this is clearly an intuitive

general choice for a boosting function at i. Details on selecting boosting functions

along with some guidelines are provided in (Welikala and Cassandras, 2019b).
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Figure 2·1: A centralized boosting scheme (CBS).

Boosting Schemes

An agent i is said to be in the Boosting Mode when it is following the boosted gradient

direction d̂i where its state updates take the form

si,k+1 = si,k + βi,kd̂i,k. (2.5)

Similarly, when an agent i is following the “normal” gradient direction di,k as in (2.3),

it is said to be in the Normal Mode. When developing an optimization scheme to solve

(2.1), a proper mechanism, referred to as a Boosting Scheme is required to switch the

agents between normal and boosting modes.

A centralized boosting scheme (CBS) is outlined in Fig. 2·1, where the boosting

mode is denoted by B and the normal mode is denoted by N . In a CBS, all agents

are synchronized to operate in the same mode. In Fig. 2·1, H denotes the global

objective function value which is initially stored by all agents the first time mode B is

entered when di = 0 for all i ∈ V . After d̂i = 0 for all i ∈ V , the agents re-enter mode

N and, when a new equilibrium is reached, the new post-boosting value of the global

objective function H(s) is denoted by HB. If HB > H, an improved equilibrium

point is attained and the process repeats by re-entering mode B with the new value

HB. The process is complete when this centralized controller fails to improve H(s),

i.e., when HB ≤ H.
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Figure 2·2: A distributed boosting scheme (DBS) asynchronously
applied by each agent i = 1, . . . , N .

This CBS was used in (Sun et al., 2014) with appropriately defined boosting func-

tions in mode B to obtain improved performance for a class of multi-agent coverage

problems. However, there has been no formal proof to date that this process con-

verges. Moreover, the goal of this work is to develop a Distributed Boosting Scheme

(DBS) where each agent can independently switch between modes B and N at any

time. Such a scheme (i) improves the scalability of the system, (ii) eliminates the

requirement of a centralized controller, (iii) reduces computational and communica-

tion costs, and, (iv) can potentially improve convergence times. Furthermore, this

is a natural approach in problems such as coverage control (Zhong and Cassandras,

2011), where the original problem is inherently distributed.

A simple DBS version of Fig. 2·1 is shown in Fig. 2·2 where local use of the

global objective H is now replaced by a local estimate of H, denoted by H̄i, which

will be formally introduced later. One can see that convergence of the DBS is far

from obvious since agents may be at different modes at any time instant and, as their

states change, the interaction among agents could lead to oscillatory behavior. Note

that the notion of convergence involves not only the existence of equilibria such that

di = 0 or d̂i = 0, but also a guarantee that the condition HB ≤ H is eventually

satisfied. It will be shown that the key to guaranteeing convergence is a process for

optimally selecting a variable step size βi,k in (2.3) and (2.5).
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Convergence Criteria

When a DBS is considered, the decentralized nature of agent behavior causes agents

to switch between normal and boosting modes independently and asynchronously

from each other (unlike a CBS). As a result, at a given time instant, a subset of the

agents will be in normal mode (following (2.3)) while others are in boosting mode

(following (2.5)). This creates a partition of the complete agent set V into two agent

sets henceforth denoted by N and B respectively. Let us also define the extended

neighborhood of an agent i as B̃i , ∪j∈B̄i
B̄j. For any agent i ∈ V , the following

conditions are defined as the convergence criteria:

lim
k→∞

di,k = 0 when B̃i ⊆ N , (2.6)

lim
k→∞

di,k = 0 when i ∈ N , B̃i ∩ B 6= ∅, (2.7)

lim
k→∞

d̂i,k = 0 when i ∈ B, B̃i ∩ B 6= ∅. (2.8)

These convergence criteria enforce the capability of an agent i to escape its current

mode (normal or boosting) irrespective of the surrounding neighbor mode partitions

B̃i∩N and B̃i∩B. Since boosting will only continue as long as there is a gain from the

boosting stages (i.e., “H̄B
i > H̄i” in Fig. 2·2), it is clear how these criteria can lead

all agents to terminate their boosting stages (i.e., to reach the “End Boosting” state).

Finally, note that the criterion (2.6) applies to the convergence of any gradient-based

method where boosting is not used.

2.2 Optimal Variable Step Sizes for Convergence

This section proposes a variable step size scheme which guarantees the convergence

criteria (2.6)-(2.8) required when a general problem of the form (2.1) is solved us-

ing (2.3) and (2.5). The main results are Theorem 2.1 (which guarantees (2.6)) and
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Theorem 2.2 (which guarantees (2.7) and (2.8)). These results depend on some as-

sumptions which are presented first, starting with the nature of the local objective

functions.

Assumption 2.1. Any local objective function Hi(s̄i), i ∈ V, satisfies the following:

1. Hi(·) is continuously differentiable and its gradient ∇Hi(·) is Lipschitz contin-

uous (i.e., ∃K1i such that ∀x, y ∈ R
m|B̄i|, ‖∇Hi(x)−∇Hi(y)‖ ≤ K1i‖x− y‖).

2. Hi(·) is a non-negative function with a finite upper bound HUB, i.e., Hi(x) <

HUB <∞, x ∈ R
m|B̄i|.

2.2.1 Convergence for Agents i ∈ V Such That B̃i ⊆ N

First, an optimal variable step size scheme is developed for agents i ∈ V such that

B̃i ⊆ N , i.e., all agents in the extended neighborhood are in normal mode - following

(2.3). The respective convergence criterion for this case is (2.6). For notational

convenience, let qi = {1, 2, . . . , qi} with qi = |B̄i| representing an ordered (re-indexed)

version of the closed neighborhood set B̄i. For this situation, agent i’s neighborhood

state update equation can be expressed as s̄i,k+1 = s̄i,k+β̄i,kd̄i,k by combining (2.3) for

all j ∈ B̄i. Here, s̄i,k+1, s̄i,k and d̄i,k are mqi-dimensional column vectors; equivalently,

they may be thought of as qi × 1 block-column matrices with their jth block (of size

R
m×1, and j ∈ qi) being, sj,k+1, sj,k and dj,k respectively. Accordingly, β̄i,k is a qi× qi

block-diagonal matrix, where its jth block on the diagonal (of size m×m and j ∈ qi)

is βj,kIm; Im is the m×m identity matrix and βj,k ∈ R is the step size of agent j.

The following lemma provides a modified version of the widely used descent lemma

(Bertsekas, 2016) so that it can be applied to analyze maximization problems such

as (2.1).

Lemma 2.1. (Ascent lemma) For a function f : Rn → R, if the Lipschitz continuity

constant of ∇f is L, then, ∀x, y ∈ R
n, f(x+ y) ≥ f(x) + yT∇f(x)− L

2
‖y‖2.

Proof. See Appendix A.2.1.
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Under Assumption 2.1, Lemma 2.1 can be applied to any local objective function

Hi(s̄i,k) for the neighborhood state update s̄i,k+1 = s̄i,k + β̄i,kd̄i,k as follows:

Hi(s̄i,k+1) ≥ Hi(s̄i,k) + (β̄i,kd̄i,k)
T∇Hi(s̄i,k)−

K1i

2
‖β̄i,kd̄i,k‖2

= Hi(s̄i,k) +
∑

j∈B̄i

[

βj,kd
T
j,kdji,k −

K1i

2
β2
j,k‖dj,k‖2

]

= Hi(s̄i,k) +
∑

j∈B̄i

∆ji,k, (2.9)

with

∆ji,k , βj,kd
T
j,kdji,k −

K1i

2
β2
j,k‖dj,k‖2 ∈ R, (2.10)

dji,k , ∇jHi(s̄i,k) =
∂Hi(s̄i,k)

∂sj
∈ R

m. (2.11)

Note that the term dji,k in (2.11) is the sensitivity of agent i’s local objective Hi to

the local state sj of agent j ∈ B̄i. Also, K1i is the Lipschitz constant corresponding

to ∇Hi and the term ∆ji,k in (2.10) depends on the step size βj,k which is selected

by agent j ∈ B̄i. In (2.9), each ∆ji,k term can be thought of as a contribution

from a neighboring agent j to agent i, so as to improve (increase) Hi. The following

assumptions ensures that any agent i knows its contribution ∆ij,k to an agent j ∈ B̄i.

Assumption 2.2. Any agent i ∈ V has knowledge of the cross-gradient terms dij,k,

the local Lipschitz constants K1j, and the objective function values Hj(s̄j,k) at the k
th

update instant.

This assumption is consistent with used concept of neighborhood, where neighbors

share information through communication links.

Now a neighborhood objective function H̃i(s̃i,k) for any i ∈ V , where H̃i : R
m|B̃i| →

R and s̃i,k = {sj : j ∈ B̃i} is defined as follows:

H̃i(s̃i,k) =
∑

j∈B̄i

Hj(s̄j,k). (2.12)
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This neighborhood objective function can be viewed as agent i’s estimate of the total

contribution of agents in B̄i towards the global objective function. These functions

play an important role in the DBS because a distributed scheme comes at the cost

of each agent losing the global information H(s). Recall in a DBS, each agent i uses

a neighborhood objective function H̃i as a means of locally estimating the global

objective function value (see “H̃B
i > H̃i” block in Fig. 2·2). However, as seen in the

ensuing analysis, the form of H̃i is not limited to (2.12).

Remark 2.1. In some problems, if the global and local objective functions are not

directly related in an additive manner, then H̃i(s̃i,k) =
∑

j∈B̄i
wijHj(s̄j,k) can be used

as a candidate for the neighborhood objective function. Here, {wij ∈ R≥0 : j ∈ B̄i}
represents a set of weights (scaling factors). All results presented in this section can

be generalized to such neighborhood objective functions as well.

Enabled by the fact that B̃i ⊆ N , applying (2.9) to any agent j ∈ B̄i gives

Hj(s̄j,k+1) ≥ Hj(s̄j,k) +
∑

l∈B̄j
∆lj,k. Summing both sides of this relationship over all

j ∈ B̄i and using the definition in (2.12) yields

H̃i(s̃i,k+1) ≥ H̃i(s̃i,k) + (∆̃i,k +Qi,k), (2.13)

where ∆̃i,k and Qi,k are defined as

∆̃i,k ,
∑

j∈B̄i

∆ij,k, (2.14)

Qi,k ,
∑

j∈Bi

(∆jj,k +∆ji,k +
∑

l∈Bj−{i}

∆lj,k). (2.15)

Note that ∆̃i,k in (2.14) is a function of terms ∆ij,k (and not ∆ji,k) which are locally

available and controlled by agent i, i.e., via terms βi,k, di,k and dij,k, ∀j ∈ B̄i. However,

agent i does not have any control over Qi,k in (2.15), as this strictly depends (through

(2.10)) on the step sizes of agent i’s neighbors in its extended neighborhood B̃i (i.e.,

βj,k, ∀j ∈ B̃i − {i}).
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Nonetheless, (2.13) implies that the neighborhood objective function H̃i(s̃i,k) can

be increased by at least (∆̃i,k+Qi,k) at any update instant k. Thus, to maximize the

gain in H̃i(s̃i,k), agent i’s step size βi,k is selected according to the auxiliary problem:

β∗
i,k = argmax

βi,k

∆̃i,k

subject to ∆̃i,k > 0.

(2.16)

Lemma 2.2. The solution to the auxiliary problem (2.16) is

β∗
i,k =

1
∑

j∈B̄i
K1j

dTi,k
∑

j∈B̄i
dij,k

‖di,k‖2
. (2.17)

Proof. Using (2.10) and (2.14), ∆̃i,k can be written as

∆̃i,k = βi,kd
T
i,k

∑

j∈B̄i

dij,k − β2
i,k‖di,k‖2

∑

j∈B̄i
K1j

2
. (2.18)

Note the quadratic and concave nature of ∆̃i,k with respect to agent i’s step size βi,k.

Thus, using the KKT conditions (Bertsekas, 2016), the optimal βi,k can be directly

obtained as (2.17). Let us denote the optimal objective function value as ∆̃∗
i,k. It is

easy to show that β∗
i,k in (2.17) is feasible (i.e., ∆̃∗

i,k > 0) as long as β∗
i,k 6= 0.

Remark 2.2. The extreme situation where β∗
i,k = 0 occurs when

∑

j∈B̄i
dij,k = 0.

However, since this “pathological situation” can be detected by agent i, the agent can

consider two options: (i) Use a reduced neighborhood B̄1
i ⊂ B̄i to calculate β∗

i,k so that

β∗
i,k 6= 0, hence ∆̃∗

i,k > 0, or (ii) Use the weighted form of (2.12) (see Remark 2.1)

and manipulate the weight factors {wij : j ∈ B̄i} so as to get a step size β∗
i,k 6= 0 (e.g.,

enforcing wij = 0, ∀j ∋ dTi,kdij < 0 will give βi,k > 0, hence ∆̃∗
i,k > 0). Therefore, in

the following analysis, this pathological situation is omitted by assuming
∑

j∈B̄i
dij,k 6=

0 (which implies β∗
i,k 6= 0).

By substituting (2.17) in ∆̃i,k given in (2.18), an explicit expression for ∆̃∗
i,k can

be obtained as ∆̃∗
i,k = 1

2
β∗
i,kd

T
i,k

∑

j∈B̄i
dij,k. From this result and in view of Remark

2.2, it is clear that ∆̃∗
i,k → 0 if an only if di,k → 0.
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Next, regarding the term Qi,k in (2.15) over which agent i does not have any

control, the following lemma can be established.

Lemma 2.3. The term Qi,k can be expressed as

Qi,k =
∑

j∈Bi

(∆̃j,k +
∑

l∈Bj−{i}

[∆lj,k −∆jl,k]). (2.19)

Further, if Bi = B̄j − {i}, then under (2.17), Qi,k > 0.

Proof. See Appendix A.2.2.

Assumption 2.3. Consider the sum,

Q̃i,k =
k∑

l=k−Ti

Qi,l, (2.20)

such that 0 ≤ Ti ≤ k. Then, ∃Ti <∞ such that Q̃i,k ≥ 0.

When the graph G(V ,A) is complete, the condition Bi = B̄j − {i} in Lemma 2.3

is true for all i ∈ V . In such cases, Assumption 2.3 is immediately satisfied with

Ti = 1, ∀i ∈ V . On the other hand, when the graph G(V ,A) is sparse enough, it can

be considered as a collection of fully connected sub-graphs (exploiting the partitioned

nature of local objective functions Hi(s̄i)). Then, Assumption 2.3 also holds with

Ti = 1, ∀i ∈ V . More generally, when each agent selects its step size according to

(2.17), it ensures that ∆̃∗
i,k > 0. In addition, ∆ii,k > 0 whenever the step size βi,k

is positive. The assumption is further supported by the fact that each Qi,k in Q̃i,k

is also a summation of ∆jj,k, ∆ji,k and ∆lj,k terms (noting in particular the positive

first terms in (2.15) as well as in (2.19)). Moreover, it is locally verifiable if the agent

communicates with its neighbors. In practice, this assumption has not been violated

over extensive simulation examples (see Fig. 2·5 in Section 2.3).

Assumption 2.4. For all i ∈ V, there exists a function Ψi,k and a finite positive
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number ǫ such that Ψi,k ≥ ǫ > 0 and

{

0 ≤ Ψi,k‖di,k‖2 ≤ ∆̃∗
i,k + Q̃i,k, when Q̃i,k > 0, ∆̃∗

i,k > 0, (2.21)

0 ≤ Ψi,k‖di,k‖2 ≤ ∆̃∗
i,k, when ∆̃∗

i,k > 0. (2.22)

This assumption is trivial because whenever the optimal step size in (2.17) is used,

0 < ∆̃∗
i,k, hence, for some 1 < K2, Ψi,k = ∆̃∗

i,k/(K2‖di,k‖2) is a candidate function for

both cases (2.21) and (2.22) that satisfies the requirement Ψi,k ≥ ǫ > 0 for all k.

Now, the main convergence theorem can be established.

Theorem 2.1. For all i ∈ V such that B̄i ⊆ N , under Assumptions 2.1-2.4, the step

size selection (2.17) guarantees the convergence criterion (2.6), i.e., limk→∞ di,k = 0.

Proof. See Appendix A.2.3.

2.2.2 Convergence for Agents i ∈ V Such That B̃i ∩ B 6= ∅

In this case, at least some of the agents in B̃i are in boosting mode, following (2.5).

Using the same approach as in Section 2.2.1, an optimal variable step size selection

scheme is developed here so as to ensure the convergence criteria in (2.7) and (2.8).

Compared to (2.9), now the ascent lemma relationship for Hi(s̄i,k) takes the form:

Hi(s̄i,k+1) ≥ Hi(s̄i,k) +
∑

j∈B̄i∩N

∆ji,k +
∑

j∈B̄i∩B

∆̂ji,k, (2.23)

where ∆ji,k for j ∈ N is the same as (2.10) and

∆̂ji,k = βj,kd̂
T
j,kdji,k −

K1i

2
β2
j,k‖d̂j,k‖2 ∈ R. (2.24)

Then, the ascent lemma for neighborhood objective function H̃i(s̃i,k) takes the form:

H̃i(s̃i,k+1) ≥ H̃i(s̃i,k) + (∆̃i,k +Qi,k), (2.25)
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with (redefined) ∆̃i,k and Qi,k as

∆̃i,k , 1{i ∈ N}[
∑

j∈B̄i

∆ij(k)] + 1{i ∈ B}[
∑

j∈B̄i

∆̂ij(k)], (2.26)

Qi,k ,
∑

j∈Bi

(1{j ∈ N}[∆jj,k +∆ji,k] + 1{j ∈ B}[∆̂jj,k + ∆̂ji,k] (2.27)

+
∑

l∈{Bj−{i}}

[1{l ∈ N}∆lj,k + 1{l ∈ B}∆̂lj(k)]),

where 1{·} is the usual indicator function. Under this new ∆̃i,k in (2.26), the same

auxiliary problem as in (2.16) is used to determine the step size β∗
i,k to optimally

increase the neighborhood cost function H̃i(s̃k).

Lemma 2.4. The solution to the auxiliary problem (2.16) with ∆̃i,k given in (2.26) is

β∗
i,k =







1∑
j∈B̄i

K1j

dT
i,k

(
∑

j∈B̄i
dij,k)

‖di,k‖2
when i ∈ N ,

1∑
j∈B̄i

K1j

d̂T
i,k

(
∑

j∈B̄i
dij,k)

‖d̂i,k‖2
when i ∈ B.

(2.28)

Proof. The proof follows the same steps as that of Lemma 2.2 and is, therefore,

omitted.

Note that the step size selection criterion given in (2.28) (for an agent i) does

not depend on its neighbors’ modes. Therefore, it offers a generalization of (2.17).

However, β∗
i,k now depends on agent i’s own mode. This is due to the fact that

the selection of β∗
i,k allows agent i to maximize the increment in the neighborhood

objective function H̃i(s̃i) which is defined in (2.12) independently from the boosting

process. Therefore, the use of β∗
i,k provides a regulation mechanism for the state

update steps (especially during the boosting mode).

To establish the convergence criteria (2.7) and (2.8), Assumptions 2.1, 2.2 and 2.3

are still required. Note that Assumption 2.3 should now be considered under the new

expression for Qi,k in (2.27). A generalized version of Lemma 2.3 is given as follows.
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Lemma 2.5. The term Qi,k in (2.27) can be expressed as,

Qi,k =
∑

j∈Bi

(∆̃j,k+
∑

l∈Bj−{i}

[1{l ∈ N}∆lj,k − 1{j ∈ N}∆jl,k

+ 1{l ∈ B}∆̂lj,k − 1{j ∈ B}∆̂jl,k]).

(2.29)

Further, if Bi = B̄j − {i}, then under (2.28), Qi,k > 0.

Proof. The proof follows the same steps as that of Lemma 2.3 and is, therefore,

omitted.

Finally, Assumption 2.4 needs to be modified as follows (to incorporate i ∈ B).

Assumption 2.5. For all i ∈ V, there exists a function Ψi,k and a finite positive

number ǫ such that Ψi,k ≥ ǫ > 0 and,

if i ∈ N :







0 ≤ Ψi,k‖di,k‖2 ≤ ∆̃∗
i,k + Q̃i,k when ∆̃∗

i,k > 0, Q̃i,k > 0,

0 ≤ Ψi,k‖di,k‖2 ≤ ∆̃∗
i,k when ∆̃∗

i,k > 0,

otherwise, if i ∈ B:






0 ≤ Ψi,k‖d̂i,k‖2 ≤ ∆̃∗
i,k + Q̃i,k when ∆̃∗

i,k > 0, Q̃i,k > 0,

0 ≤ Ψi,k‖d̂i,k‖2 ≤ ∆̃∗
i,k when ∆̃∗

i,k > 0.

Here, Q̃i,k is evaluated from (2.20) using (2.27) and, ∆̃∗
i,k from (2.26) using (2.28).

The following convergence theorem can now be established.

Theorem 2.2. Under Assumptions 2.1-2.3, and 2.5, the step size selection in (2.28)

guarantees the convergence conditions stated in (2.6)-(2.8): if i ∈ N , then limk→∞ di,k =

0, and, if i ∈ B, then limk→∞ d̂i,k = 0.

Proof. See Appendix A.2.4.

2.2.3 Discussion

Feasible Space Constraint: When the main problem in (2.1) includes a feasible

space constraint s ∈ F ⊂ R
mN , the standard gradient projections (Bertsekas, 2016)
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can be used for (2.3) and (2.5). For such a situation, the following lemma presents an

additional condition which needs to be satisfied in order to guarantee the convergence

of the proposed variable step size method (2.28).

Lemma 2.6. If feasible space F is convex, and if an agent i’s local and cross gradients

satisfy the conditions,

|dTi,k
∑

j∈Bi

dij,k| < ‖di,k‖2 when i ∈ N ,

|d̂Ti,k(
∑

j∈Bi

dij,k + (di,k − d̂i,k))| < ‖d̂i,k‖2 when i ∈ B,
(2.30)

the step sizes βi,k = β∗
i,k given by (2.28) when used in (2.3) or (2.5) with standard

gradient projections (onto F), will lead the state si,k to a stationary point.

Proof. See Appendix A.2.5.

From a practical standpoint, if the conditions in Lemma 2.6 are being violated

during the gradient ascent process, the neighborhood reduction and/or weight factor

manipulation techniques mentioned in Remark 2.2 can be used to change Bi and/or

H̃i respectively so that these conditions are satisfied. Note also that the knowledge

of the feasible space constraint s ∈ F in (2.1) can play an important role in designing

boosting functions d̂i = fi(di,F), as further discussed in Section 2.3.

Variable Step Sizes Vs Fixed Step Sizes: In a centralized setting, using a

fixed step size for the gradient ascent is typically computationally inexpensive, and,

if properly executed, can deliver a higher convergence rate compared to variable step

size methods. However, in a distributed setting where agents independently and

asynchronously alter the gradient direction ((2.3) and (2.5)), using a fixed step size

(typically βi,k = 1
Ki
) might not lead to good overall convergence properties. Fur-

ther, establishing convergence in this case generally requires additional restrictive

assumptions. In contrast, the proposed variable step size method has the following
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advantages: (i) It is designed so as to account for the distributed and cooperative na-

ture of the underlying problem, (ii) Its convergence has been established by making

only a few locally verifiable assumptions, (iii) It is not computationally heavy com-

pared to line search methods, and, (iv) During different modes (boosting/normal) the

step sizes are automatically adjusted. As a result, the variable step size method in ap-

plications has shown better convergence results compared to fixed step size methods

(see Sections 2.2.4 and 2.3).

Escaping and converging to saddle points: Due to the non-convexity of the

objective function, saddle points may exist in the feasible space. However, as shown in

(Lee et al., 2017; Panageas et al., 2019), first-order methods (2.3) almost always avoid

a large class of saddle points (called strict saddle points) inherently. Nevertheless,

if boosting functions are deployed through (2.5), clearly, saddle points are easier to

escape from compared to local minima. Moreover, even if the convergence criteria

(2.6) - (2.8) lead to a saddle point, it will have a higher cost compared to initially

attained local minima (or saddle points) as a result of the comparison stage used in

boosting schemes (e.g., see “HB > H” block in Fig. 2·1).

2.2.4 An Example for the Variable Step Size Method

In this section, a simple example is provided to illustrate the operation and conver-

gence (i.e., validity) of the proposed variable step size method. In this example, the

local objective functions are restricted to take a quadratic form:

Hi(s̄i) = −
∥
∥
∥

∑

j∈B̄i

Aijsj − bi

∥
∥
∥

2

Ci

= −‖gi(s̄i)‖2Ci
, (2.31)

where Aij ∈ R
r×m, bi ∈ R

r and Ci ∈ R
r×r for any i ∈ V , j ∈ B̄i. The weight matrix

Ci is symmetric and positive definite. The weighted norm is defined as ‖v‖2C = vTCv

with v ∈ R
r and C ∈ R

r×r. The parameter r represents the dimension of the local
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cost function. Assuming the parameters Aij, bi, Ci, ∀i ∈ V , ∀j ∈ B̄i and the graph

G = (V , E) are predefined (for a given N,m and r value combination), the considered

optimization problem is

s∗ = [s∗1, s
∗
2, . . . , s

∗
N ] = argmax

s

H(s) =
N∑

i=1

Hi(s̄i). (2.32)

Due to the quadratic nature of the associated objective functions, a closed form

expression can be obtained for the global optimum s∗. Moreover, as a result of

convexity, there is no need for any boosting function to escape an equilibrium point.

Therefore, this example is used to compare the performance of the proposed variable

step size method (when used in a distributed gradient ascent) to that of a fixed step

size method (when used in a centralized gradient ascent).

For the (distributed) variable step size computation (at agent i via (2.17)), the

local gradient di, cross gradients dij, j ∈ B̄i, and Lipschitz constants K1j, j ∈ B̄i are

di =
∂Hi(s̄i)

∂si
= −2ATiiCigi(s̄i), (2.33)

dij =

[
∂Hj(s̄j)

∂si

]

i↔j

= −2ATjiCj(
∑

l∈B̄j

Ajlsl − bj), (2.34)

K1j = 2‖ATj CjAj‖∞, Aj = [{Ajl}l∈B̄j
] ∈ R

r×m|B̄j |, (2.35)

respectively. However, in centralized gradient ascent, the global gradient of agent i:

dGi =
∂H(s)

∂si
= −2

∑

j∈B̄i

ATjiCjgj(s̄j), (2.36)

is used as a replacement for di,k in (2.3). In this case, the step size is kept fixed at 1
Ki

where Ki =
∑

j∈B̄i
K1j (see (Bertsekas, 2016)).

In simulations, fixed dimensional parameters N = 10 and m = r = 2 are used.

Note that m = r is required here to guarantee the existence of a solution where

di = 0, ∀i ∈ V . It it is easy to show that the optimal global objective function value
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(a) Graph G = (V, E). (b) Local Derivatives. (c) Global Objective.

Figure 2·3: Numerical Example.

is H(s∗) = 0. To generate the inter-agent connections (i.e., the graph G) a random

geometric graph generation is used taking 0.4 as the communication range parameter

(Bastianello et al., 2018). The remaining problem parameters Aij, bi, Ci, si,0 ∀i ∈
V , ∀j ∈ B̄i are generated randomly (keeping the graph G fixed).

The experimental results shown in Fig. 2·3 confirm the established theoretical

results. The H(sk) profiles in Fig. 2·3(c) show that the proposed distributed variable

step size method provides a slightly faster convergence than the centralized fixed step

size method for k ≤ 1483 where at k = 1483, the H(sk) value is 99.95% closer to the

optimal than the initial value H(s0) = 26.1432; for k ≥ 1484, the centralized fixed

step method is slightly faster. This cross-over behavior can be understood as a result

of local gradients di,k becoming smaller as k increases and adapting step sizes βi,k in

(2.3) when di,k is very small is less effective. The general observation over extensive

similar examples is that the result of such a comparison (between distributed variable

step and centralized fixed step methods) depends on the network topology.

2.3 Application to Multi-Agent Coverage Problems

This section first introduces the class of multi-agent coverage problems considered in

(Zhong and Cassandras, 2011; Sun et al., 2014). Then, two new boosting function
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families are specifically designed for this class of problems and applied in convergence

guaranteed DBS following the theory developed in previous sections.

2.3.1 Multi-Agent Coverage Problem Formulation

The coverage problem aims to find an optimal arrangement for a given set of sensor

nodes (agents) inside a given mission space so as to maximize the probability of

detecting randomly occurring events (in the mission space).

The mission space Ω ⊂ R
2 is modeled as a non-self-intersecting polygon (Zhong

and Cassandras, 2011) and it may contain a finite set of non-self-intersecting polygonal

obstacles denoted by {M1,M2, . . . ,Mh}, where Mi ⊂ R
2 represents the interior space

of the ith obstacle. Therefore, agent motion and deployment are constrained to a non-

convex feasible space F = Ω\(∪hi=1Mi). Note that “\ ”denotes the set subtraction

operator. The spacial likelihood of random event occurrence over the mission space

is quantified by the event density function R : Ω → R, where, R(x) ≥ 0, ∀x ∈ Ω;

R(x) = 0, ∀x 6∈ F , and
∫

Ω
R(x)dx < ∞ are assumed. If no a priori information

related to R(x) is available, then R(x) = 1, ∀x ∈ Ω is used.

The mission space is considered to have N agents. At a given discrete update

instant k, the position of agent i (i.e., the controllable local state) is denoted by si,k ∈
F ⊂ R

2 and the global state of the multi-agent system is sk = [s1,k, s2,k, . . . , sN,k] ∈
R

2N . Note that “sk ∈ F” denotes the fact that si,k ∈ F ∀i. In what follows, for

notational convenience, the update instant index k is omitted unless it is important.

The sensing capabilities of agent i depend on: (i) a finite sensing radius δi ∈ R

beyond which it cannot detect any events and (ii) the presence of obstacles which

hinder its sensing capability. Considering these two factors, a visibility region for

agent i is defined as Vi = {x : ‖x − si‖ ≤ δi, ∀λ ∈ (0, 1], (λx + (1 − λ)si) ∈ F}. Fig.

2·4 is provided to identify all associated geometric parameters in this model.

A sensing function p̂i(x, si) is used to quantify the probability that “agent i de-
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Figure 2·4: Mission space with one agent.

tects an event occurring at x ∈ F .” Due to the physical limitations mentioned above,

p̂i(x, si) = 1{x ∈ Vi}pi(x, si) where 1{·} is the usual indicator function and pi(x, si)

is defined so that pi : R
2×R

2 → R and is differentiable and monotonically decreasing

in Di(x) ≡ ‖x−si‖. For example, pi(x, si) = p0ie
−λiDi(x) is a typical choice. However,

note that p̂i(x, si) is strictly discontinuous w.r.t. x, si or Di(x). Assuming indepen-

dently detecting agents, the joint detection probability P (x, s), i.e., the probability of

“detecting an event occurring at x ∈ F by at least one agent,” is given by

P (x, s) = 1−
N∏

i=1

[1− p̂i(x, si)]. (2.37)

Combining the event density and joint detection probability, the objective function

H(s) of the coverage problem given in (Zhong and Cassandras, 2011) is

H(s) =

∫

F

R(x)P (x, s)dx, (2.38)

and the multi-agent optimization problem is

s∗ = argmax
s∈F

H(s), (2.39)
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where s∗ represents the optimal agent placement. Note that the objective function

in (2.38) is non-linear and non-convex, while the feasible space F is also non-convex.

Therefore, the coverage problem posed in (2.39) has the same structure as the general

cooperative multi-agent optimization problem in (2.1). Thus, (2.39) can have multiple

locally optimal solutions (even in the simplest configurations). Therefore, the use of

the DBS with appropriate boosting functions can aid the agents to escape local optima

while solving (2.39).

2.3.2 Distributed Optimization Solution

If two agents have an overlap in their visibility regions, they are considered as neigh-

bors (Sun et al., 2014). Therefore, the neighborhood Bi and the closed neighbor-

hood B̄i of an agent i are the sets defined as Bi = {j : Vj ∩ Vi 6= ∅, i 6= j} and

B̄i = Bi ∪ {i} respectively. It is assumed that agents share their local state infor-

mation si with their neighbors, so that each agent has knowledge of its neighborhood

state s̄i ≡ {sj : j ∈ B̄i}. An undirected graph G = (V ,A) is used to model inter-agent

interactions, where V = {1, 2, . . . , N} and A = {(i, j) : i, j ∈ V , i 6= j, j ∈ Bi}.
In (Sun et al., 2014), it is shown that the coverage global objective H(s) in (2.38)

can be expressed as H(s) = Hi(s̄i) +Hc
i (s

c
i), where

Hi(s̄i) =

∫

Vi

R(x)
∏

j∈Bi

[1− p̂j(x, sj)] pi(x, si)dx, (2.40)

and Hc
i (s

c
i) =

∫

F
R(x)(1 − ∏

j∈V−{i} [1− p̂j(x, sj)])dx with sci = {sj : j ∈ V − {i}}.
Thus, the Hi(s̄i) term only depends on the neighborhood state and is called the local

objective function, while Hc
i (s

c
i) is independent of si. As a result of this property, the

local gradient of agent i, defined as di =
∂Hi(s̄i)
∂si

∈ R
2, is always equal to the global

gradient component ∂H(s)
∂si

. Therefore, each agent i can evaluate its global gradient

component using only its own local objective function Hi(·) and the neighborhood
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state s̄i and the distributed gradient ascent scheme in (2.3) (i.e., si,k+1 = si,k+βi,kdi,k)

can be used to solve the problem in (2.39) in a distributed manner.

Derivation of the Gradient di,k: Since di ∈ R
2, its components are denoted as

di = [diX , diY ]
T . Using the Leibniz rule (Flanders, 1973) in (2.38), it can be shown

that

diX =
∂Hi(s̄i)

∂siX
=

∫

Vi

R(x)Φi(x)
∂pi(x, si)

∂siX
dx+

∫

∂Vi

R(x)Φi(x)pi(x, si)Vx · nxdl, (2.41)

where,

Φi(x) =
∏

j∈Bi

[1− p̂j(x, sj)] . (2.42)

The second term in (2.41) is a line integral over the boundary of the sensing region ∂Vi.

The terms Vx and nx respectively represent the rate of change and the unit normal

vector of ∂Vi at x due to an infinitesimal change in siX , where si = [siX , siY ]
T .

From Fig. 2·4, notice that the shape of a boundary ∂Vi is formed by: (i) mission

space boundaries, (ii) obstacle edges, (iii) obstacle vertices, and, (iv) sensing range.

However, when siX (or siY ) is perturbed infinitesimally, Vx 6= 0 only when x lies on ∂Vi

components formed due to the latter two factors. Therefore, the linear segments of

∂Vi formed due to obstacle vertices and circularly shaped curves formed due to finite

sensing range are labeled as Γi = {Γi1,Γi2, . . .} and Θi = {Θi1,Θi2, . . .}, respectively.
The first term in (2.41) can be simplified using the relationship between the

pi(x, si) and Di(x). Further, the behavior of Vx ·nx on the segments in Γi and Θi can
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be used to evaluate the line integral part of (2.41). The resulting diX expression is

diX =

∫

Vi

wi1(x, s̄i)
(x− si)X
‖x− si‖

dx+
∑

Γij∈Γi

sgn(nijX)
sin θij

‖vij − si‖

Zij∫

0

wi2(ρir(r), s̄i)rdr

+
∑

Θij∈Θi

δi cos θ

θij2∫

θij1

wi3(ρiθ(θ), s̄i)dθ,

(2.43)

where, sgn(·) is the signum function and

wi1(x, s̄i) = −R(x)Φi(x)
dpi(x, si)

dDi(x)
, wi2(x, s̄i) = wi3(x, s̄i) =R(x)Φi(x)pi(x, si),

with ρir(r) =
vij−si

||vij−si||
r + vij and ρiθ(θ) = si + δi[cos θ sin θ]T .

As seen in Fig. 2·4, a line segment Γij ∈ Γi is characterized by its: end point Zij,

angle θij, obstacle vertex vij and direction nij = [nijX , nijY ]
T . Thus, each Γij is a

4-tuple (Zij, θij, vij, nij). Similarly, a circular arc segment Θij ∈ Θi is quantified by

starting angle θij1 and ending angle θij2. Therefore, each Θij term is 2-tuple (θij1, θij2).

The complete expression in (2.43) can be thought of as a sum of forces acting on

agent i, generated by different points x ∈ Vi. In (2.43), the weight function wi1(x, s̄i)

represents the magnitude of the force pulling agent i towards point x ∈ Vi. Similarly,

wi2(x, s̄i) describes the force generated by a point x ∈ Γij in the lateral direction to

the line Γij (inwards the region Vi). Finally, wi3(x, s̄i) represents the magnitude of the

attraction force generated by (and towards) a point x ∈ Θij. From this interpretation,

the gradient component diX can be viewed as a function of three weight functions:

diX = diX(wi1, wi2, wi3). This representation is instrumental for the construction of

boosting functions. The same procedure can be used to derive diY (and also K1i).
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2.3.3 Designing Boosting Functions

The identified relationship di = di(wi1, wi2, wi3) is now exploited to construct an

appropriate expression for the boosted gradient d̂i,k (to be used in (2.5)). Note that

each weight function wij = wij(x, s̄i) represents the magnitude component of each of

three infinitesimal forces, j = 1, 2, 3, acting on agent i generated at a point x ∈ Vi.

Note also that di,k = 0 only occurs when all the said infinitesimal forces add up to a

resultant force with zero magnitude. Hence, by appropriately transforming the weight

functions {wij : j = 1, 2, 3}, a valid expression for d̂i,k can be constructed which avoids

such equilibrium configurations. Specifically, the weight function transformations

ŵij(x, s̄i) = αij(x, s̄i)wij(x, s̄i) + ηij(x, s̄i), j = 1, 2, 3. (2.44)

are considered here. Both αij, ηij : R2 × R
2|B̄i| → R are known as transformation

functions. The resulting boosted gradient d̂i,k expression takes the form

d̂i,k = di,k(ŵi1, ŵi2, ŵi3). (2.45)

Compared to heuristic methods where the gradient is randomly perturbed (to es-

cape local optima), the use of boosted gradient d̂i,k in (2.45) is a far more “intelligent”

choice as long as each agent i chooses its transformation functions αij, ηij, j = 1, 2, 3,

to trigger a systematic exploration of the mission space. This is discussed next.

Boosting Function Families: A boosting function family is characterized by the

form of the transformation functions αij(x, s̄i), ηij(x, s̄i), j = 1, 2, 3, in (2.44). As a

result, different boosting function families exhibit different properties. A brief review

of three boosting function families proposed in (Sun et al., 2014) are given in Appendix

B.2.1 as opposed to the two new ones introduced here.

The underlying rationale behind constructing a boosting function family lies in
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answering the question: “Once an agent converges under the normal gradient-based

mode, how can the agent escape the current equilibrium towards a direction giving

a high priority to points likely to achieve a higher objective function value?” To-

wards this goal, to define appropriate αij(x, s̄i), ηij(x, s̄i), j = 1, 2, 3, in (2.44), the

information available to agent i consists of: (i) The neighborhood state s̄i, (ii) The

local objective function Hi(·), (iii) The neighboring mission space topological infor-

mation contained in Γi and Θi (see Fig. 2·4), (iv) Past state trajectory information

{si,l : l < k}. The three boosting function families proposed in (Sun et al., 2014)

use s̄i and Hi(·), whereas the two new ones make use of Γi,Θi and {si,k : k < k1} in

addition to the information of s̄i and Hi(·).
For notational convenience, the setting where αij(x, s̄i) = 1, ηij(x, s̄i) = 0, j =

1, 2, 3, is referred to as the default configuration in (2.44). Also, note that κ and γ

used in defining boosting function families always act as two positive gain parameters.

Note that the boosting function families proposed in (Sun et al., 2014) (reported

in Appendix B.2.1) are limited to transforming the first integral term of the gradient

expression in (2.43), i.e., only the weight wi1(x, s̄i) is transformed through selecting

αi1(x, s̄i) and ηi1(x, s̄i). The two new boosting function families are as follows.

1. V-Boosting: The V-Boosting function uses the information of obstacle vertices

vij ∈ Γij ∈ Γi which lie inside Vi so as to navigate an agent i around surrounding

obstacles. This method is inspired by the second integral term in (2.43) which rep-

resents the effect of obstacles through Γi in Vi on agent i. Therefore, in V-Boosting,

the weight function wi2(x, s̄i) is transformed via the ηi2(x, s̄i) term so that the second

integral term in (2.43) is modified. Specifically,

αi1(x, s̄i) = κ1Φi(x)
γ1(1− pi(x, si)), (2.46)

ηi2(x, s̄i) = 1{x = Zij} · κ2‖x− si‖γ2 . (2.47)
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Moreover, note that wi1(x, s̄i) is also transformed via the αi1(x, s̄i) term as in both

Φ-Boosting and P -Boosting (defined in Appendix B.2.1). In all, the transformation

in (2.46) forces agent i to move toward less covered areas while the transformation in

(2.47) acts as an attraction force directed towards Zij ∈ Γij (same as in the direction

of obstacle vertex vij). The combination of these two influences enables agent i to

navigate around obstacles aiming to expand the mission space exploration.

2. Arc-Boosting: The Arc-Boosting method uses the information in Θi to trans-

form the weight function wi3(x, s̄i). This involves the third term in (2.43) which was

not previously included in prior work (Zhong and Cassandras, 2011; Sun et al., 2014).

Note that {θij1, θij2} = Θij ∈ Θi represents a circular arc formed due to the finite

sensing range and obstacles. Based on the an agent’s location in the mission space

relative to the surrounding obstacles, it can have multiple arcs in its boundary ∂Vi.

For example, the agent in Fig. 2·4 has three such arcs. Under the Arc-Boosting

method, first, each arc segment Θij ∈ Θi is classified into one of three disjoint sets:

(i) Attractive Arcs Θ+
i , (ii) Repulsive Arcs Θ−

i and (iii) Neutral Arcs Θ0
i , based on

the metric A(Θij):

A(Θij) =
1

(θij2 − θij1)

θij2∫

θij1

(1−
∏

k∈B̄i

(1− p̂k(ρiθ(θ), sk)))dθ,

which measures the mean coverage level on the arc segment Θij by the agents in

the closed neighborhood B̄i. Specifically, the arc with the maximum A(Θij) value is

assigned to be a repulsive arc (i.e., in the set Θ+
i ), while the arc with the minimum

A(Θij) value is assigned to be an attractive arc (i.e., in the set Θ−
i ). The remaining

arcs are labeled as neutral (i.e., in the set Θ0
i ). However, it is possible that an

equilibrium occurs (i.e., A(Θij) are identical for all j), which may happen when

Bi = ∅. In this case, a recent state si,k−K , where K ≥ 1 is used as a parameter
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of the Arc-Boosting method, selected from the agent’s own past state trajectory.

Specifically, the arc which is in the direction of si,k−K (from point si) is regarded as a

repulsive arc while all other arcs are labeled as attractive. Based on the arc partition

given by Θ+
i ,Θ

−
i and Θ0

i , the Arc-Boosting function family is formally defined by the

weight function wi3(x, s̄i) transformation given by

αi3(x, s̄i) =1{Θij ∈ Θ0
i }, (2.48)

ηi3(x, s̄i) =[1{Θij ∈ Θ+
i } − 1{Θij ∈ Θ−

i }] · Fc(κ, γ). (2.49)

In (2.49), the value of the term in brackets is either 1,−1 or 0 depending on whether

Θij belongs to Θ+
i ,Θ

−
i or Θ0

i respectively. The term Fc(κ, γ) is a gain factor where a

typical choice would be of the form Fc(κ, γ) = κeγ.

The motivation behind the Arc-Boosting method is to encourage agent i to: (i)

Move away from highly covered regions (i.e., from repulsive arcs), (ii) Move towards

less covered regions (i.e., towards attractive arcs), and, (iii) Move continuously to-

wards unexplored regions (i.e., towards an opposing direction to the already visited

point si,k−K). As will be seen in Section 2.3.5, the Arc-Boosting family has been

found to be the most effective in handling the presence of multiple obstacles in Vi.

2.3.4 DBS for Coverage

The final step is to implement the DBS in Fig. 2·2 for the class of coverage problems

(complete implementation details are given in (Welikala and Cassandras, 2019b)).

Convergence is guaranteed through Theorem 2.2 by checking that Assumptions 2.1-

2.3 and 2.5 are satisfied. Assumption 2.1 holds for the coverage problem due to two

reasons: (i) The Lipshitz constant K1i of ∇Hi(s̄i) can be locally evaluated and will al-

ways be finite as shown in (Welikala and Cassandras, 2019b). (ii) HUB =
∫

Vi
R(x)dx

is a typical upper bound for Hi(s̄i) as
∫

Ω
R(x)dx < ∞ is already enforced in the
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coverage problem formulation. Assumption 2.2 holds for the coverage problem be-

cause information sharing capability is already assumed in the basic coverage problem

framework (Sun et al., 2014). However, the following lemma is useful in asserting that

no additional communication bandwidth is required to satisfy this assumption.

Lemma 2.7. For the class of coverage problems, any agent i ∈ V can locally compute

dij =
∂Hj(s̄j)

∂si
value ∀j ∈ B̄i.

Proof. See Appendix A.2.6.

Assumption 2.3 has been previously justified for the general setting in Section

2.2 using Lemmas 2.3 and 2.5. However, to ensure this assumption is satisfied in

coverage problems, the parameter Ti was observed during all simulations presented

in Section 2.3.5 for all agents. In all occasions, Ti was found to be a finite consistent

with Assumption 2.3. One such observed Ti value distribution is given in Fig. 2·5,
where 99.1% of the time Ti ≤ 10. Finally, as pointed out in Section 2.2, Assumption

2.5 is trivial and will hold for any general problem including coverage problems.

2.3.5 Simulation Results

For the class of coverage problems, the proposed DBS (with all boosting function fam-

ilies) and the methods proposed in (Zhong and Cassandras, 2011; Sun et al., 2014)
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Figure 2·5: Percentage occurrence of different Ti values (In Assump-
tion 2.3 for the simulation which produced the result in Fig. 2·6f).
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were implemented in an interactive JavaScript-based simulator which is available at

http://www.bu.edu/codes/simulations/shiran27/CoverageFinal/ and may be

used by the reader to reproduce the reported results. The boosting function param-

eters used in generating the reported results (i.e., κ, γ) are given in Table 2.1.

Based on the obstacle arrangement, four different mission space configurations

named ‘General’,‘Room’,‘Maze’, and ‘Narrow’ are considered in the simulations. In

Figs. 2·6, 2·8, and, 2·7 obstacles are shown as green-colored blocks and agent locations

are shown in red-colored dots. In all experiments, agents have been initialized at the

top left corner of the mission space. Further, light green-colored areas indicate higher

coverage levels while yellow-colored areas indicate the opposite.

As the first step, a set of experiments was conducted with N = 10 agents and

three different algorithms were tested: (i) The conventional distributed gradient as-

cent method proposed in (Zhong and Cassandras, 2011) (labelled “GA”), (ii) The

CBS proposed in (Sun et al., 2014), and, (iii) The DBS proposed in this thesis. Re-

sults obtained from the GA method are shown in Figs. 2·6a, 2·6c, 2·6e, and, 2·6g.
The corresponding objective function values are listed in Table 2.2 under the column:

‘Reference Level H(s1)’. Similarly, results obtained from the CBS and DBS methods

(under different boosting function families) are listed in the remaining columns of Ta-

ble 2.2 - as the increment achieved in the coverage objective value with respect to the

reference level H(s1). The cases with the highest coverage objective value increments

are shown in bold letters and they are illustrated in Figs. 2·6b, 2·6d, 2·6f and 2·6h.
The results in Table 2.2 show that the distributed Arc-Boosting (labeled “AB”) and

Table 2.1: Boosting function parameters used in simulations.

Boosting Method Associated Default Parameters
P -Boosting κ = 1, γ = 1
Neighbor-Boosting κ = 10000, γ = 1
Φ-Boosting κ = 4, γ = 2
V-Boosting κ1 = 10, κ2 = 5, γ1 = 1, and, γ2 = 1
Arc-Boosting κ = 1, γ = 1, K = 50, TD = 5

http://www.bu.edu/codes/simulations/shiran27/CoverageFinal/
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Table 2.2: Coverage objective value increment (+/-) achieved by
different boosting schemes (See Fig. 2·6).

Reference
Level H(s1)

Coverage objective value increment occurred with respect to the ‘Reference Level H(s1)’

Configuration Gradient
Ascent (GA)

P -Boosting Neighbor Boo. Φ-Boosting (ΦB) V-Boosting (VB) Arc-Boosting (AB)
Obstacles N Centr. Decen. Centr. Decen. Centr. Decen. Centr. Decen. Centr. Decen.
General 10 158,821 +235 +3684 +235 +3676 +243 +3674 +2453 +3621 +3553 +3739
Room 10 143,583 +1578 +2680 +2374 +968 +1578 +2626 +1739 +2455 +1578 +2768
Maze 10 120,343 +25937 +25897 +19443 +25895 +26952 +23868 +19970 +25702 +25945 +27142
Narrow 10 169,793 +9204 +8835 +15258 +9391 +15008 +9376 +14969 +15286 +15238 +15120

(a)
GA: 158, 821

(b) +2.354%
AB: 162, 560

(c)
GA: 143, 583

(d) +1.928%
AB: 146, 351

(e)
GA: 120, 343

(f) +22.55%
AB: 147, 485

(g)
GA: 169, 793

(h) +9.003%
VB: 185, 079

Figure 2·6: Maximum coverage improvement achieved due to boosting
for N = 10 (See Tab. 2.2).

distributed V-Boosting (labeled “VB”) schemes outperform all other methods for all

tested obstacle configurations when N = 10.

Moreover, to further investigate the performance of the distributed V-Boosting

and Arc-Boosting methods, simulation results were generated with moderateN values

such as N = 5, 6. The corresponding results are shown in Table 2.3 and Fig. 2·7.
Finally, extreme situations (i.e., more prone to local optima) where very few agents

are deployed (i.e., N = 1, 2) were also investigated and simulation results obtained

are shown in Table 2.4 and Fig. 2·8. Note that these additional experimental results

also highlight the impact of the distributed Arc-Boosting and V-Boosting schemes.

In summary, these simulation results show that the boosting function approach
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Table 2.3: Coverage objective value for cases with N = 5, 6 with
decentralized boosting (See Fig. 2·7).

Configuration Gradient
Ascent (GA)

Decentralized
V-Boosting

Decentralized
Arc-BoostingObstacles N

General 5 93,637 97,214 96,832
Maze 6 90,953 94,026 94,436
Room 5 86,638 89,078 89,088
Narrow 6 101,976 116,481 129,476

(a)
GA: 93, 637

(b) +3.820%
VB: 97, 214

(c)
GA: 86, 638

(d) +2.828%
AB: 89, 088

(e)
GA: 90, 953

(f) +3.829%
AB: 94, 436

(g)
GA: 101, 976

(h) +26.97%
AB: 129, 476

Figure 2·7: Maximum coverage improvement achieved due to boosting
for N = 5, 6 (See Tab. 2.3).

can successfully escape local optima which limits the conventional gradient ascent

based method. Further, the systematic gradient transformation process achieved by

the specifically designed boosting function families, along with the introduced DBS,

delivers superior objective function values compared to conventional gradient ascent

based methods.

Note that whenever the DBS was used, the variable step size method involved in

Theorem 2.2 was used to guarantee convergence. As an example, Fig. 2·9 illustrates

the observed step size sequence and the associated gradient sequence of a typical agent

(i = 4) during the simulation which leads to the result shown in 2·6h. Moreover, Table

2.5 provides a comparison of coverage objective and convergence time values observed

for the DBS when fixed and variable step sizes are used. Note that the use of variable
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Table 2.4: Coverage objective value for cases with N = 1, 2 with
decentralized boosting (See Fig. 2·8).

Configuration Gradient
Ascent (GA)

Decentralized
V-Boosting

Decentralized
Arc-BoostingObstacles N

General 1 20,494 20,404 23,193
Maze 1 14,759 14,774 17,090
Narrow 1 13,669 30,259 30,178
Narrow 2 26,258 58,693 58,681

(a)
GA: 20, 494

(b) +13.17%
AB: 23, 193

(c)
GA: 14, 759

(d) +15.79%
AB: 17, 090

(e)
GA: 13, 669

(f) +121.4%
VB: 30, 259

(g)
GA: 26, 258

(h) +123.5%
VB: 58, 693

Figure 2·8: Maximum coverage improvement achieved due to boosting
for N = 1, 2 (See Tab. 2.4).

Table 2.5: Comparison of coverage objective and convergence time
values observed for the DBS with fixed and variable steps.

Boosting
Method

(N = 8) H(s∗) Convergence Time

Configuration
Fixed
steps

Variable
steps

Fixed
steps

Variable
steps

V
-

B
o
os
ti
n
g General 140,592 140,649 550.7 91.3

Room 127,557 127,517 613.5 140.3
Maze 120,832 121,231 302.2 134.1
Narrow 163,478 155,528 415.7 161.8

A
rc
-

B
o
os
ti
n
g General 140,615 140,542 80.3 104.9

Room 127,647 127,455 390.0 158.1
Maze 119,967 121,231 151.7 125.0
Narrow 155,641 155,485 127.3 88.1

Average: 137,041 136,205 328.9 125.4

step sizes has improved (i.e., reduced) the convergence time by 61.9% (i.e., by 203.5s).

These convergence times were observed on an Intel® Core™ i7-8700 CPU @3.20 GHz

Processor with a 32 GB RAM.

To conclude this section, the effects of decentralization is addressed as these sim-
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Figure 2·9: Variation of gradient magnitude and the step size for
agent i = 4 during the simulation which yielded Fig. 2·6h.

ulation results show the DBS outperforming the CBS in every aspect. When all

simulations carried out for N = 10 were considered (given in table 2.2), on aver-

age (per simulation), the convergence time to the final optimal solution was improved

(i.e., reduced) by 39.97% (approximately 165.2 s) due to the distributed nature of the

DBS relative to a centralized approach. Further, due to decentralization, on average

(per simulation), the final coverage cost achieved was increased by 0.381% (approxi-

mately 451 units). Finally, decentralization has the inherent advantages of reducing

communication and implementation costs compared to a centralized solution.

2.4 Summary

This chapter of the thesis proposed a boosting functions approach to overcome the is-

sue of multiple local optima arising in cooperative multi-agent optimization problems

with non-convex objective functions. First, a distributed boosting scheme was pro-

posed together with an optimal variable step size selection mechanism to guarantee its

convergence. Next, providing more intuition about the boosting function design pro-

cess, for a class of multi-agent coverage problems (Zhong and Cassandras, 2011), two

new boosting function families named Arc-Boosting and V-Boosting were designed.

Finally, the same class of multi-agent coverage problems was used to illustrate the
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effectiveness of the proposed DBS, variable step size selection technique and boost-

ing function families (i.e., of the proposed boosting function approach). Numerical

results show that the proposed boosting functions approach can successfully escape

local optima that limits the conventional gradient ascent based methods and achieve

superior performance levels without significantly affecting the involved computational

cost - when addressing cooperative multi-agent optimization problems.
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Chapter 3

Greedy Initialization for Multi-Agent

Optimization

This chapter focuses on exploring how greedy initialization introduced in Section 1.2.2

can contribute to overcome the issue of converging to poor local optima faced in co-

operative multi-agent optimization problems with non-convex objective functions. In

particular, the objective function’s submodularity property is exploited to establish

performance bounds for the obtained solutions. In situations where the objective

function is non-convex, having such a performance bound is highly valued as it in-

dicates the closeness of the obtained solution to the global optimal. Therefore, this

chapter focuses explicitly on submodular function optimization, performance bounds

and their application to the class of multi-agent coverage problems (Zhong and Cas-

sandras, 2011).

The sections of this chapter are as follows. First, Section 3.1 briefly revisits the

required preliminary concepts. Second, Section 3.2 reviews all the curvature con-

cepts available in the literature for the class of submodular maximization problems.

Next, Section 3.3 introduces two new curvature concepts that can be effective com-

pared to the existing curvature concepts in providing improved performance bounds.

Then, Section 3.4 models the class of multi-agent coverage problems as a class of sub-

modular maximization problems and establishes several of its underlying structural

properties. Also, in the same section, numerical results are provided to highlight the

contributions. Finally, some concluding remarks are provided in Section 3.5.
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3.1 Preliminary Concepts

Consider a finite ground set denoted as X = {x1, x2, . . . , xn} that represents all the

possible actions/options available for an agent in a multi-agent optimization problem

(analogues to a discretized version of the feasible space F in (2.38) and (2.39)). The

set-function f : 2X → R is considered as the objective function (also called the

set-objective). Note that 2X is the power-set of X (i.e., the set of all subsets of X).

3.1.1 Basic Set-Function Properties

Some formal definitions of basic set-function properties used here are as follows.

Definition 3.1. The discrete derivative (also called the marginal gain) function of

the set-function f at A ⊂ X in the direction of element x ∈ X\A is defined as,

∆f(x|A) , f(A ∪ {x})− f(A).

This notation is also used more liberally as ∆f(B|A) , f(A∪B)−f(A), for A,B ⊆ X.

Definition 3.2. Each of the following statements is equivalent and implies the sub-

modularity of the set function f .

1. f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B), ∀A,B ⊆ X,

2. ∆f(x|A) ≤ f(x|B), ∀x,B,A, where B ⊆ A ⊆ X and x ∈ X\A,

3. ∆f(xi|A ∪ {xj}) ≤ ∆f(xi|A), ∀A, xi, xj, where A ⊆ X and xi, xj ∈ X\A with

xi 6= xj.

Note that “·\·” stands for the set subtraction operation and the second equivalent

form given above is commonly known as the “Diminishing Returns” property.

Definition 3.3. The set-function f is: (i) supermodular if its negation (−f) is

submodular, and, (ii) modular if it is both submodular and supermodular.

Definition 3.4. The set-function f is: (i) monotone if f(B) ≤ f(A), ∀B,A, where
B ⊆ A ⊆ X, and, (ii) normalized if f(∅) = 0.

Definition 3.5. The set-function f is said to be a polymatroid function if it is

submodular, monotone and normalized.
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3.1.2 Matroid Constraints

Depending on the application, the set-objective function f can have a constrained

domain smaller than the power set 2X . This can be a result of either (i) f being

not defined on the entire power set 2X , or, (ii) when evaluating f on all possible

sets in 2X is not desirable. Such a situation is modeled by introducing set-variable

constraints for the set-objective f(Y ). Formally, the concept of “matroids” is used

to characterize different forms of common set-variable constraints.

Let I be a non-empty collection of subsets of X (i.e. I ⊆ 2X). Then, a pair

M = (X, I) can have different properties as given below.

Definition 3.6. A pair M = (X, I) is hereditary if ∀A,B such that A ∈ I and

B ⊆ A =⇒ B ∈ I (this is same as calling I an independent system).

Definition 3.7. A pair M = (X, I) follows the augmentation property if for all

A,B ∈ I with |B| ≤ |A|, ∃x ∈ A\B such that B ∪ {x} ∈ I.

Definition 3.8. A pair M = (X, I) is called a matroid if it follows both the hered-

itary and augmentation properties. Also, the rank of a such matroid is the cardi-

nality of its largest set in I.

Definition 3.9. A matroid M = (X, I) is called a uniform matroid of rank N if,

I = {Y : Y ⊆ X, |Y | ≤ N}.

This is also known as a cardinality constraint of rank N (denoted by IN , I).

3.1.3 General Submodular Maximization

Given a ground set X, a pair M = (X, I) and a set-objective function f : 2X → R,

the problem of finding the set Y ∈ I that maximizes f is a widely studied problem

in the field of combinatorial optimization. This problem is formally stated as

Y ∗ = argmax
Y ∈I

f(Y ), (3.1)
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and it is NP-hard (Liu et al., 2019). However, one trivial approach to solve (3.1) is

to use a brute force search algorithm which evaluates f over each element in I. Even
though such an approach can give the exact global optimal Y ∗, in many applications

of interest, it is computationally intractable due to the involved search space size |I|.
As a remedy, greedy algorithms are widely used to generate a reasonable approx-

imate (sub-optimal) solution to (3.1). Such a solution is generally referred to as a

greedy solution and denoted by Y G. A typical greedy algorithm is given in Alg. 3.1.

Algorithm 3.1 Centralized greedy algorithm to solve (3.1)

1: Z = ∅;
2: while True do
3: z = argmax{x:Z∪{x}∈I} ∆f(x|Z);
4: if ∆f(z|Z) > 0 then
5: Z = Z ∪ {z};
6: else
7: Break;
8: end if
9: end while
10: Y G := Z; Return Y G;

3.1.4 Performance Bound Guarantees

Even though a greedy solution of (3.1) is often sub-optimal (i.e., f(Y G) ≤ f(Y ∗)), the

following concepts are used to characterize the closeness between f(Y G) and f(Y ∗).

Definition 3.10. The performance ratio LPR of a greedy solution Y G obtained

for a problem of the form (3.1) is defined as LPR ,
f(Y G)
f(Y ∗)

. A corresponding perfor-

mance bound is a theoretically established lower bound β for LPR. Therefore,

β ≤ LPR ,
f(Y G)

f(Y ∗)
.

Note that if β is closer to 1, it implies that the performance of the greedy solution is

closer to that of the global optimal solution (f(Y G) ≃ f(Y ∗)). Hence, a performance

bound β conveys the effectiveness of using a greedy method for a given problem. The
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most fundamental performance bounds established in the seminal paper (Nemhauser

et al., 1978) for a problem of the form (3.1) are compiled in the following theorem.

Theorem 3.1. (Nemhauser et al., 1978) For the set-function maximization problem

(3.1), when the greedy algorithm in Alg. 3.1 is used, if the set-objective function is

polymatroid, the following performance bounds (denoted by βf = β) can be established:

• βf =
1
2
, if the pair M = (X, I) is hereditary (i.e., I is an independent system).

• βf = 1− (1− 1
N
)N , if the pair M = (X, I) is a uniform matroid of rank N .

• βf = 1− 1
e
with uniform matroid constraints.

3.2 A Review of Different Curvature Concepts

Structural properties of the set-objective function f , the ground set X and the con-

straints Y ∈ I involved in the combinatorial optimization problem (3.1) can be ex-

ploited to establish tighter (i.e., closer to 1 compared to βf ) performance bounds for

the same greedy solution Y G given by Alg. 3.1. Note that a such tighter performance

bound is preferred (over βf ) because it allows us to: (i) have a more accurate sense

of proximity of the greedy solution (Y G) to the optimality (Y ∗) and (ii) make more

informed decisions regarding spending extra resources to seek a better solution. In

particular, different “curvature” measures that characterize such structural properties

are often used to obtain improved/tighter performance bounds. In this section, four

established curvature measures along with their respective performance bounds are

briefly reviewed, outlining their properties, strengths and weaknesses. Note also that

the following assumption is made regarding problem (3.1) unless stated otherwise.

Assumption 3.1. In the main problem (3.1), the set-objective function f is a poly-

matroid and the pair M = (X, I) is a uniform matroid of rank N (i.e., I = IN).
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3.2.1 Total Curvature (Conforti and Cornuéjols, 1984)

For the problem in (3.1), the total curvature measure αt is defined as

αt , αt(f, 2
X) = max

x:x∈X,
0<∆f(x|∅)

[

1− ∆f(x|X\{x})
∆f(x|∅)

]

. (3.2)

The corresponding performance bound βt is given by

βt ,
1

αt

[

1−
(

1− αt
N

)N
]

≤ f(Y G)

f(Y ∗)
. (3.3)

Note that 0 ≤ αt ≤ 1 and βt is a decreasing function with respect to αt. Therefore,

lower total curvature measures (αt closer to 0) deliver better performance bounds (βt

closer to 1). In contrast, if αt is closer to 1, the corresponding performance bound βt

reveals the fundamental bound βf given in Theorem 3.1.

Remarks: The αt in (3.2) can be simplified (assuming ∀x ∈ X, 0 < ∆f(x|∅)) into

αt = 1−min
x∈X

[
∆f(x|X\{x})

∆f(x|∅)

]

.

From submodularity of f , ∆f(x|X\x) ≤ f(x|∅), ∀x ∈ X. Therefore, improved per-

formance bounds can be obtained if f and X in (3.1) are such that ∆f(x|∅) ≃
∆f(x|X\x), ∀x ∈ X. Moreover, as ∆f(x|X\x) = f(X) − f(X\x), evaluating αt re-
quires evaluating f(X), which might be ill-defined. For example, consider a situation

where the domain of f is strictly constrained to IN (i.e., when f : IN → R).

3.2.2 Greedy Curvature (Conforti and Cornuéjols, 1984)

The greedy curvature measure αg is computed based on successive solution-sets that

the greedy algorithm generates (i.e., in Alg. 3.1) when solving (3.1). These solution-

sets are respectively denoted by ∅ = Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆ ZN , where ZN is the
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final greedy solution (i.e., Y G = ZN). Specifically, αg is defined as

αg , max
0≤i≤N−1

[

max
x∈Xi

(

1− ∆f(x|Zi)

∆f(x|∅)

)]

, (3.4)

where X i = {x : x ∈ X\Zi, (Zi ∪ {x}) ∈ I,∆f(x|∅) > 0} (i.e., the set of feasi-

ble options in the (i + 1)th iteration of the greedy algorithm). The corresponding

performance bound βg is given by

βg , 1− αg(1−
1

N
) ≤ f(Y G)

f(Y ∗)
. (3.5)

Note that 0 ≤ αg ≤ 1 and βg is a decreasing function in αg. Therefore, when αg → 0,

βg → 1. However, when αg → 1, unlike in the case of βt, βg → 1
N
< βf .

Remarks: The expression of αg in (3.4) can be written as

αg = 1− min
0≤i≤N−1

[

min
x∈Xi

(
∆f(x|Zi)

∆f(x|∅)

)]

.

From submodularity of f , ∆f(x|Zi) ≤ ∆f(x|∅). Therefore, to get tighter perfor-

mance bounds, f,X and Zi, i ∈ {0, 1, . . . , N} of problem (3.1) should be such that

∆f(x|Zi) ≃ ∆f(x|∅), ∀x ∈ X\Zi, i ∈ {0, 1, . . . , N − 1}. Moreover, note that βg in

(3.5) can be computed in parallel to executing the greedy algorithm without requiring

any additional numerical evaluations of f . Note also that unlike βt in (3.3), βg in

(3.5) can be computed even when the domain of f is constrained to IN .

3.2.3 Elemental Curvature (Wang et al., 2016)

For the problem in (3.1), the elemental curvature measure αe is defined as

αe , max
(Y,xi,xj):Y⊂X,

xi,xj∈X\Y, xi 6=xj .

[
∆f(xi|Y ∪ {xj})

∆f(xi|Y )

]

. (3.6)
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The corresponding performance bound βe is given by

βe , 1−
(

αe + α2
e + · · ·+ αN−1

e

1 + αe + α2
e + · · ·+ αN−1

e

)N

≤ f(Y G)

f(Y ∗)
. (3.7)

Note that 0 ≤ αe ≤ 1 and βe is a decreasing function with respect to αe. Therefore,

when αe → 0, βe → 1. Also, when αe → 1, similar to the case of βt, βe → βf .

Remarks: According to the third condition in Def. 3.2, submodularity of f directly

depends on the condition ∆f(xi|Y ∪ {xj}) ≤ ∆f(xi|Y ) for all feasible (Y, xi, xj)

choices. However, if ∆f(xi|Y ∪{xj}) = ∆f(xi|Y ) occurs for some feasible combination

of (Y, xi, xj), it means that the set-objective function f is modular (see Def. 3.3) in

that specific region. According to (3.6), such an existence of a modular region of f

overX causes αe = 1 resulting βe = βf . A trivial situation where this (βe = βf ) occurs

is when f,X in problem (3.1) is such that ∃xi, xj ∈ X with xi 6= xj where f({xi}) +
f({xj}) = f({xi, xj}). Therefore, it is clear that the elemental curvature based

performance bound βe fails (i.e., βe = βf ) unless f is strictly submodular everywhere

over its domain, i.e., ∆f(xi|Y ∪ {xj}) ≪ ∆f(xi|Y ) for all feasible (Y, xi, xj) choices.

3.2.4 Partial Curvature (Liu et al., 2018)

The partial curvature measure αp has been introduced as an alternative to the total

curvature measure αt in (3.2). This can be used when the set objective function f

has a strictly constrained domain, i.e., when f : I → R with I ⊂ 2X (where αt will

be ill-defined due to the involved f(X) term in (3.2)). In particular, αp is defined as

αp = αp(f, I) = max
(A,x):x∈A∈I
∆f(x|∅)>0

[

1− ∆f(x|A\{x})
∆f(x|∅)

]

. (3.8)

The corresponding performance bound βp is given by the following theorem.

Theorem 3.2. (Liu et al., 2019) Let f : IN → R be a polymatroid function. If there

exists a set-function g : 2X → R which is: (i) an extension of f , (ii) a polymatroid
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function, and (iii) satisfies the binding condition αp(f, IN) = αt(g, 2
X), then, for the

problem in (3.1), the greedy solution has a performance bound βp where

βp ,
1

αp

(

1−
(

1− αp
N

)N
)

≤ f(Y G)

f(Y ∗)
. (3.9)

A brief summary of the findings in (Liu et al., 2018) and explanations of the extra

conditions mentioned in Theorem 3.2 are provided in Appendix B.3.1. However,

note that βp in (3.9) is independent of the function g mentioned in Theorem 3.2 (of

which the existence needs to be proven prior to using βp). Moreover, note that βp

in (3.9) and βt in (3.3) has identical forms - enabling a direct comparison between

αt and αp. The work in (Liu et al., 2018) (see also Appendix B.3.1) has shown that

αp(f, IN) ≤ αt(f, 2
X), which implies that βp ≥ βt, i.e., βp is tighter than βt(≥ βf ).

Remarks: Note that evaluating αp in (3.8) is much difficult compared to evaluating

αt in (3.2) as αp involves an optimization over a set-variable. However, using B =

A\{x} and I = IN (also assuming ∆f(x|∅) > 0, ∀x ∈ X), αp can be simplified as

αp = 1− min
(B,x):x∈X,
B∪{x}∈IN

[
∆f(x|B)

∆f(x|∅)

]

= 1 +max
x∈X




1

f(x)
max

B:B∈IN−1

x 6∈B

[−∆f(x|B)]



 . (3.10)

Now, evaluating the inner set-optimization problem in (3.10) can be easier depend-

ing on the structural properties of the considered application. For example, when

−∆f(x|B) is submodular with respect to B ⊂ X\{x}, an upper bound to the αp

(i.e., a lower bound to βp) can be computed by executing a greedy algorithm at every

point x ∈ X. Moreover, note that βp will be closer to 1 if ∆f(x|B) ≃ ∆f(x|∅) for all
B, x where x ∈ X,B ∪ {x} ∈ IN (a less restrictive condition than that saw for βt).
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3.3 New Curvature Concepts and Performance Bounds

In this section, as opposed to the existing curvature concepts (αt, αg, αe and αp)

reviewed in the previous section, two new curvature concepts are proposed for the

class of submodular maximization problems (i.e., (3.1) under Assumption 3.1).

3.3.1 Extended Greedy Curvature

The proposed extended greedy curvature measure has three variants: αd1, αd2 and αd3,

with respective performance bounds being βd1, βd2 and βd3. Each of these curvature

measures is evaluated based on the information obtained from executing 1, N and

(N +1) additional greedy iterations (of Alg. 3.1, assuming n ≥ 2N +1), respectively.

Extended Greedy Curvature - I: Upon finishing the N th greedy iteration where

Y G was found, executing an additional greedy iteration reveals a set of marginal gains:

E1 = {∆f(xi|Y G) : xi ∈ X\Y G}. (3.11)

Taking αjd1 as the jth largest entry in E1, the curvature measure αd1 is defined as

αd1 ,

N∑

j=1

αjd1. (3.12)

Lemma 3.1. Based on αd1 in (3.12), a performance bound βd1 can be imposed as

βd1 ,

[

1 +
αd1

f(Y G)

]−1

≤ f(Y G)

f(Y ∗)
. (3.13)

Proof. See Appendix A.3.1.

Remarks: The performance bound βd1 in (3.13) is closer to 1 when αd1 ≪ f(Y G).

This can be expected to happen when N values are larger and/or submodularity

properties are stronger. Moreover, evaluating βd1 is computationally cheap. There-
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fore, βd1 seems to have key strengths of both the elemental curvature and the greedy

curvature based performance bounds (i.e., βe and βg).

Numerical Example: The following Tab. 3.1 shows marginal gain values observed

in a example problem where N = 3 and n = 10 have been used. Here, Zi represents

the set of elements chosen from the ground set at the end of the ith greedy iteration.

Note that four extra greedy iterations have been executed after the required initial

3 greedy iterations. Underlined values in the fourth row (i = 4) corresponds to the

αjd1 values (thus αd1 = 63.22) and f(Y G) = f(Z3) = 310.86. Therefore, the resulting

performance bound according to Lemma 3.1 is βd1 = 0.831. For this case, βf = 0.704

and βe = 0.788 was observed (thus βd1 is tighter).

Table 3.1: Observations from a numerical example.

∆f(xj|Zi−1)
Ground Set X (xj ∈ X)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 f(Zi)

It
er
at
io
n
(i
)

1 140.83 160.65 138.65 161.72 186.25 168.44 148.99 168.29 155.08 178.68 186.25
2 66.40 75.56 67.58 73.25 - 79.72 68.32 76.73 73.98 82.72 268.97
3 33.43 36.10 31.18 38.78 - 39.17 38.82 41.89 39.77 - 310.86
4 19.95 21.22 18.40 20.78 - 21.21 18.93 - 19.62 - 332.08
5 9.60 - 9.86 11.41 - 12.37 11.52 - 12.52 - 344.60
6 6.58 - 5.61 7.10 - 6.35 6.97 - - - 351.70
7 3.18 - 3.47 - - 3.84 3.34 - - - -

Extended Greedy Curvature - II: Consider a situation where an additional N

greedy iterations are executed. Let the obtained final (extended) greedy solution be

denoted as Y G2 (note that |Y G2| = 2N). The proposed new curvature measure αd2 is

αd2 ,
1

βf#

[
f(Y G2)− f(Y G)

]
, (3.14)

where βf# is a valid fundamental performance bound for the auxiliary problem

Y ∗
# = argmax

Y ∈I#

Ψ(Y ), (3.15)
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where Ψ(Y ) , f(Y ∪ Y G)− f(Y G) and I# , {Y : Y ⊆ X\Y G, |Y | ≤ N}. Note that

(3.15) is analogous to (3.1). The following lemma gives a candidate value for βf#.

Lemma 3.2. The set function Ψ(Y ) in the problem (3.15) is a polymatroid function,

and, if Y = Y G
# is a greedy solution to the problem (3.15), then,

βf# = 1− (1− 1

N
)N ≤

Ψ(Y G
# )

Ψ(Y ∗
#)
. (3.16)

Proof. See Appendix A.3.2.

Lemma 3.3. Based on αd2 in (3.14), a performance bound βd2 can be imposed as,

βd2 ,

[

1 +
αd2

f(Y G)

]−1

≤ f(Y G)

f(Y ∗)
. (3.17)

Proof. See Appendix A.3.3.

Remarks: Since both (3.13) and (3.17) has a similar format, the corresponding

performance bounds will follow βd1 ≤ βd2 whenever αd1 ≥ αd2.

Note that the components of αd1 (i.e., {αid1}i=1,...,N in (3.12)) are the highest

marginal gain values when one additional element is to be added. Therefore, it is

possible that these components correspond to a similar, or closely located set of

elements in the ground set X. Given the form of (A.8) and (A.9), picking such a

similar set of elements may result in less tight performance bounds.

In contrast, the components of αd2 (see (3.14)) correspond to a set of greedily

picked elements. Therefore, it ensures that those elements are more spread-out in the

ground set. As a result, it can be expected that αd1 ≥ αd2 resulting βd1 ≤ βd2 when

N is larger or when the submodularity property becomes stronger.

For the given numerical example in Tab. 3.1, f(Y G2) = 351.7 (i.e., f(Z6) as

N = 3) and βf# = 0.704. This results in αd2 = 58.04. Now, Lemma 3.3 gives

βd2 = 0.843 which is tighter than βd1(= 0.831, given by Lemma 3.1).
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Extended Greedy Curvature - III: Notice that the curvature measure αd2 given

in (3.14) can be further decreased if its βf# term can be replaced by a term (say βd#)

with a higher value (i.e., βf# ≤ βd#). Since βf# is the fundamental performance

bound of the auxiliary problem in (3.15), it is natural to think of using the bound

given in Lemma 3.1 to get an improved bound for (3.15). This is the motivation

behind the proposing a new curvature measure αd3, defined as

αd3 ,
1

βd#

[
f(Y G2)− f(Y G)

]
. (3.18)

where βd# is the performance bound given by the Lemma 3.1 for (3.15). Specifically,

βd# =

[

1 +
αd1#
Ψ(Y G

# )

]−1

≤
Ψ(Y G

# )

Ψ(Y ∗
#)
,

where Ψ(Y G
# ) = f(Y G2) − f(Y G) and αd1# is computed using the marginal gain

information from the (N +1)th additional greedy iteration for (3.15). Hence, in total,

(2N + 1)th greedy iterations for (3.1) should be executed to get to the αd1# value.

Lemma 3.4. Based on αd3 in (3.18), a performance bound βd3 can be imposed as,

βd3 ,

[

1 +
αd3

f(Y G)

]−1

≤ f(Y G)

f(Y ∗)
(3.19)

Proof. The proof follows the same steps as that of Lemma 3.3 and is, therefore,

omitted.

Remarks: The term βf# in (3.14) could have been replaced with any other per-

formance bound that was discussed in Section 3.2. However, since it was shown

that the bound given in Lemma 3.3 (and also in Lemma 3.1) works well when N is

large or submodularity property is strong, the best choice to replace βf# with is the

bound given in Lemma 3.1 (i.e., βd# defined above). Hence, it can be expected that

βd1 ≤ βd2 ≤ βd3 when N increases or when submodularity property becomes stronger.
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For the given numerical example in Tab. 3.1, Ψ(Y G
# ) = 40.84. Here, αd1# is

computed using the iteration i = 7 as αd1# = 10.66 (sum of the underlined values in

the 7th row). This respectively results in βd# = 0.793, αd3 = 51.50 and βd3 = 0.858.

Note that the bound βd3 is tighter than both bounds βd1 and βd2 computed before.

Summary: The following theorem combines the three performance bounds ob-

tained based on the three proposed extended greedy curvature measures discussed

so far.

Theorem 3.3. For the submodular maximization problem in (3.1), under assumption

3.1, the greedy solution Y G given by the Alg. 3.1 has a performance bound βd

βd , max{βd1, βd2, βd3} ≤ f(Y G)

f(Y ∗)
. (3.20)

where, βd1, βd2 and βd3 are respectively given by Lemmas 3.1, 3.3 and 3.4.

Proof. This result directly follows from Lemmas 3.1, 3.3 and 3.4.

Remarks: The proposed extended greedy curvature measure has the same advan-

tages as the elemental curvature measure (reviewed in Section 3.2.3). That is, both

methods provide better performance bounds when N is high or submodularity proper-

ties are strong. However, recall that the elemental curvature measure fails when some

region of the set-objective function is modular. In contrast, the proposed extended

greedy curvature concept does not suffer from such a limitation.

Further, in terms of the computational power and the evaluation technique, the

proposed extended greedy curvature measure has the same advantages as the greedy

curvature measure (reviewed in Section 3.2.2). That is, being computationally cheap

and having the ability to evaluate on-line.

Furthermore, having three different versions of the extended greedy curvature

based performance bounds such that βd1 ≤ βd2 ≤ βd3 (valid when N is high or
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submodularity properties are strong) which respectively requires 1, N and (N + 1)

additional greedy iterations is also an advantage. This is because, if βd1 was found

to be much lower than the fundamental bound βf in a specific application, one could

avoid executing unnecessary additional greedy iterations (that aims to get βd2, βd3).

For example, Fig. 3·1 (generated for a multi-agent coverage application) shows

that when N ≤ 6, evaluating βd2 and βd3 is of no use as βd1 is already closer or below

the fundamental bound βf . However, as N increases beyond N = 6, βd1 becomes

much better than βf . In such cases, evaluating βd2 and βd3 by running a few more

additional greedy iterations is profitable as βd1 ≤ βd2 ≤ βd3.
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Figure 3·1: Different extended greedy curvature based performance
bounds and the fundamental performance bound with respect to the
number of agents used (i.e., N), for a coverage application scenario.

3.3.2 Modularity Based Performance Bound

The proposed extended greedy curvature concept fails when the objective function’s

modular nature dominates (i.e., when N is low or submodularity properties are weak).

However, for such paradigms, the curvature concepts: total curvature, greedy curva-

ture and partial curvature (reviewed in Section 3.2.3) can be used. Nevertheless, out

of these three, only the greedy curvature method is computationally cheap (and also
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on-line). The proposing modularity based performance bound aims to outperform the

greedy curvature based performance bounds.

Note that when the first greedy iteration is executed, it reveals a set E0

E0 = {∆f(xi|∅) : xi ∈ X}. (3.21)

Taking αjm as the jth largest entry in E0, a new curvature measure αm is defined as

αm ,

N∑

j=1

αjm. (3.22)

Note α1
m corresponds to the first element of the greedy solution Y G.

Theorem 3.4. Based on the curvature measure αm in (3.22), a performance bound

βm can be imposed as

βm ,
f(Y G)

αm
≤ f(Y G)

f(Y ∗)
. (3.23)

Proof. See Appendix A.3.4.

Remarks: The intuition behind the above theorem is to create an upper bound to

the set-objective function f based on the simplest submodularity property result:

f(A) ≤
k∑

i=1

f({ai}), for any A = {a1, a2, . . . , ak} ⊆ X (3.24)

Note that in (3.24), the equality holds when f is modular. Hence, this performance

bound (i.e., βm given in (3.23)) is called the “modularity” based performance bound.

Note that, in a such modular setting, the curvature measure αm (which is an upper-

bound for f(Y ∗)) becomes low, resulting a high (tight) performance bound.

This is evident from Fig. 3·2 - an example taken from the class of coverage

problems. Note that when N is low (i.e., when f is closer to being modular), the

performance bound βm is tighter than βf or any other bounds. This example also
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shows the complementary nature of the proposed two new performance bounds: βd

and βm.
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Figure 3·2: Performance Bounds given by different curvature concepts
with respect to number of agents N , for a coverage application.

3.4 Application to Multi-Agent Coverage Control Problems

This section considers the multi-agent coverage problem introduced in Section 2.3 and

models it as a submodular maximization problem of the form (3.1). Upon establishing

a few key properties of this coverage problem, a distributed greedy algorithm is pro-

posed to find a greedy solution. The existing and new performance bounds discussed

in previous sections are applied to characterize such a greedy solution. Finally, theo-

retical results that enable the application of such performance bounds and numerical

results that illustrates the importance of such performance bounds are provided.

3.4.1 Set-Function Approach for Multi-Agent Coverage Problems

The multi-agent coverage problem (Zhong and Cassandras, 2011) introduced in Sec-

tion 2.3 aims to determine the optimal arrangement of N sensor nodes (agents) in a

given mission space Ω ⊆ R
2 so as to maximize the probability of detecting randomly
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occurring events in the mission space. Recall that each agent location is denoted by

a continuous variable si ∈ R
2 with i ∈ {1, 2, . . . , N} and the global state variable

is denoted by s = [s1, s2, . . . , sN ]
T . Taking the said coverage objective as a function

H : RN×2 → R, the coverage problem can be stated as (identical to (2.39))

s∗ = argmax
s

H(s)

subject to: si ∈ F, i = 1, 2, . . . , N,

(3.25)

where F is the feasible space such that F ⊆ Ω ⊂ R
2 (See also Section 2.3).

The following steps are now used to model this problem as a set function max-

imization problem of the form (3.1). First, the ground set X = {x1, x2, . . . , xn} is

created by discretizing the feasible space F (uniformly or randomly, such that each

xi ∈ F ). Next, the set-variable is defined as S = {s1, s2, · · · , sN} with each si ∈ X.

Finally, since the number of agents to be deployed are limited to N , a uniform ma-

troid constraint of rank N : S ∈ IN where IN = {A : A ⊆ X, |A| ≤ N} is introduced.

In all, the corresponding set function maximization problem is (similar to (3.1))

S∗ = argmax
S∈I

H(S), (3.26)

and the underlying pair M = (X, I) is a uniform matroid of rank N (i.e., I = IN).

3.4.2 Properties of Set-Coverage Objective H(S)

The exact form of the set-coverage function H(S) in (3.26) comes directly from H(s)

in (3.25) (i.e., from (2.38)) and can be written as

H(S) =

∫

F

R(x)(1−
∏

∀si∈S

(1− pi(x, si)))dx. (3.27)

Recall that pi(x, si) represents the detection probability of an event occurring at a

location x ∈ F by the agent i stationed at si ∈ F .
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Theorem 3.5. (Sun et al., 2019) The set-coverage function H(S) in (3.27) is a

polymatroid function (i.e. monotone, submodular, and normalized).

Corollary 3.1. The set-coverage function H(S) in (3.27) is such that:

(i) H(A ∪ B) ≤ H(A) +H(B), ∀A,B ⊆ X,

(ii) H(A ∪B ∪ C) +H(A) ≤ H(A ∪ B) +H(A ∪ C), ∀A,B,C ⊆ X.

Proof. See Appendix A.3.5

Notice that the first result in Corollary 3.1 takes the form of the famous triangle

inequality. This result can be used to establish a simple upper-bound for H(S) as

H(S) ≤ ∑N

i=1H({si}) (useful when imposing performance bounds and normalizing).

3.4.3 A Brief Summary of (Sun et al., 2019)

The work in (Sun et al., 2019) has proposed the greedy algorithm in Alg. 3.2 to

construct a greedy solution (denoted by SG) for the coverage problem in (3.26).

Moreover, (Sun et al., 2019) has exploited Theorem 3.5 to establish three performance

bounds: βf (Theorem 3.1), βt (3.3) and βe (3.7) for the obtained greedy solution SG.

Algorithm 3.2 The greedy algorithm proposed in (Sun et al., 2019) to solve (3.26).

1: Z := ∅; i = 0;
2: while i ≤ N do
3: zi = argmax

z:(S∪{z})∈I

H(S ∪ {z});

4: Z = Z ∪ {zi};
5: end while
6: Return SG = Z;

In contrast to (Sun et al., 2019), note that, in this chapter, two new performance

bounds are adopted from the literature: βg (3.5) and βp (3.9), while also proposing two

completely new performance bounds: βd (3.20) and βm (3.23). Furthermore, it will

be proven that Alg. 3.2 can be executed in a distributed manner. The following two

subsections provide several theoretical results required to make these contributions.
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3.4.4 Properties of the Marginal Coverage Gain Function ∆H(si|A)

From Def. 3.1, the marginal gain function of the set-coverage function (3.27) is

∆H(si|A) , H(A∪{si})−H(A) and it is called the marginal coverage gain function.

Definition 3.11. In the considered multi-agent coverage problem setting, (recall that,)

two agents i and j are considered as “neighbors” if there exists some x ∈ F such that

pi(x, si)pj(x, sj) > 0. Moreover, Bi and B̄i respectively represents the set of neighbors

and the closed neighborhood. Also, s̄i = {sj : j ∈ B̄i} is the neighborhood state.

Theorem 3.6. The marginal coverage gain function ∆H(si|A) = H(A∪{si})−H(A)

can be evaluated using only the local information (i.e., s̄i) at an agent i as

∆H(si|A) = Hi(s̄i) ,

∫

F

R(x)pi(x, si)
∏

j∈Bi

(1− pj(x, sj)))dx, (3.28)

where Bi is the set of neighbors in the agent set A.

Proof. See Appendix A.3.6.

Corollary 3.2. Algorithm 3.2 can be executed equivalently in a distributed manner

by replacing its step 3:

{

zi = argmax
z:(S∪{z})∈I

H(S ∪ {z})
}

with
{

zi = argmax
z∈X\S

∆H(z|S)
}

. (3.29)

Proof. The equivalence is clear from observing: (i) H(S ∪ {z}) = ∆H(z|S) +H(S),

(ii) H(S) is independent of z and (iii) {z : (S∪{z}) ∈ I} ≡ {z ∈ X\S}. The fact that
∆H(z|S) can be evaluated by an agent (at z) only using its neighborhood state (from

Theorem 3.6) implies the distributed nature of the resulting greedy algorithm.

Theorem 3.7. The marginal coverage gain function ∆H(si|A) is a non-increasing

supermodular set function in A ⊆ (X\{si}) for some fixed si ∈ X.

Proof. See Appendix A.3.7.

The monotonicity property established above implies that whenever a new agent

is added, all the local objective functions (i.e., marginal coverage gain functions) of

the existing agents will decrease (or remain the same). Apart from establishing such
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an underlying structural property of the coverage problem, this theorem also enables

efficient evaluation of the partial curvature metric (See (3.10) and the corresponding

discussion). Several similar theoretical results that provide intuitions about the cov-

erage problem and also enables the application of the partial curvature concept (i.e.,

Theorem 3.2) are discussed in appendix C.1.

3.4.5 Numerical Results

The proposed greedy algorithm (Alg. 3.2 with (3.29)), the two newly adopted perfor-

mance bounds: βg (3.5) and βp (3.9), the two newly proposed performance bounds:

βd (3.20) and βm (3.23) and the existing other performance bounds: βe (3.7), βt (3.3)

and βf (given in Theorem 3.1), were all implemented for the considered class of multi-

agent coverage problems in an interactive JavaScript-based simulator which is avail-

able at http://www.bu.edu/codes/simulations/shiran27/CoverageFinal/ (same

as in Chapter 2). It may be used by the reader to reproduce the reported results and

also to try different new problem configurations.

In particular, the main focus here is to study the behavior of different performance

bounds under different coverage problem configurations. In each experiment, one of

the three parameters: (i) sensing range δ, (ii) sensing decay rate λ or (iii) the number

of deployed agents N , was varied while keeping the other two fixed. More detailed

definitions of sensing parameters δ and λ can be found in Section 2.3. However,

for now, it is sufficient to know that as δ increases (or λ decreases), the sensing

capability/power of an agent also increases. For convenience, each graph has been

drawn so that along its x-axis, the sensing capability of the agents’ increases. Also,

note that whenever only a few of the said performance bounds have been drawn in a

graph, it means the other performance bounds were redundant (no better than βf ).

Across all the simulation results shown, the proposed extended greedy curvature

based performance bound βd has shown the best results when the agents have high

http://www.bu.edu/codes/simulations/shiran27/CoverageFinal/
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sensing capabilities. The proposed modularity based performance bound βm has been

effective when the agents have low sensing capabilities and when the mission space

has more obstacles (like in Fig. 3·2, 3·3, 3·4, 3·5 and 3·6). In cases where the agents

have low sensing capabilities and fewer obstacles in the mission space (like in Fig. 3·7
and 3·8), the partial curvature based performance bound βp has delivered the best

performance bounds.
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Figure 3·3: Performance Bound Vs Sensing Range; Maze environment
with N = 10 and Sensing Decay λ = 0.006.
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Figure 3·4: Performance Bound Vs Sensing Decay; Maze environment
with N = 10 and Sensing Range δ = 300.
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Figure 3·5: Performance Bound Vs Number of Agents; General envi-
ronment with Sensing decay λ = 0.006 and Sensing Range δ = 200.
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Figure 3·6: Performance Bound Vs Number of Agents; General envi-
ronment with Sensing decay λ = 0.006 and Sensing Range δ = 300.
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Figure 3·7: Performance Bound Vs Number of Agents; Room envi-
ronment with Sensing decay λ = 0.006 and Sensing Range δ = 300.
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Figure 3·8: Performance Bound Vs Number of Agents; Narrow envi-
ronment with Sensing decay λ = 0.006 and Sensing Range δ = 300.
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Figure 3·9: Performance Bound Vs Sensing Range; Blank environ-
ment with N = 10 and Sensing Decay λ = 0.006.

(a) δ = 400

00.0020.0040.0060.0080.010.0120.014

Sensing Decay

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
e

rf
o

rm
a

n
c
e

 B
o

u
n

d

d

m

e

f

(b)

Figure 3·10: Performance Bound Vs Sensing Decay; Blank environ-
ment with N = 10 and Sensing Range δ = 400.
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3.5 Summary

The use of a greedy initialization technique is a practical approach to overcome the

issue of converging to poor local optima in cooperative multi-agent optimization prob-

lems. In particular, when the objective function is submodular, such a greedy ini-

tialization technique can also provide performance bound guarantees for the obtained

solutions (initial greedy or any other subsequent solution (Sun et al., 2020)). Such a

performance bound is highly valued as it indicates the closeness to the global optimal.

For the class of submodular maximization problems, several existing performance

bounds were reviewed. For the same class of problems, computationally efficient

two new performance bounds were also proposed. A class of coverage problems was

modeled as a class of submodular maximization problems so as to study the effec-

tiveness of different performance bounds. Obtained numerical results show that the

proposed new performance bounds provide significant improvements compared to the

state-of-the-art performance bounds established for the coverage problem.
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Chapter 4

Greedy Initialization for Persistent

Monitoring in Networks

This chapter of the thesis addresses the issue of local optima arising in persistent

monitoring on networks problems as introduced in Section 1.3.2. For PMN prob-

lems introduced in Section 1.3.1, a class of distributed threshold-based (parametric)

controllers has been proposed in (Zhou et al., 2019) along with an on-line gradient

technique to determine the optimal threshold values. However, due to the problem’s

non-convexity, this approach often leads to a poor local optima highly dependent on

the initial thresholds used. To overcome this initialization challenge, a computation-

ally efficient off-line greedy technique is developed based on the asymptotic analysis

of the network system. Extensive numerical results show that such initial thresholds

are almost immediately (locally) optimal or quickly lead to optimal values.

This chapter is organized as follows. Section 4.1 provides the problem formula-

tion and reviews the threshold-based control approach proposed in (Zhou et al., 2019).

Section 4.2 includes the asymptotic analysis and a candidate threshold initialization

technique, assuming the underlying PMN problem is single-agent and the network

is sufficiently dense. Next, Section 4.3 generalizes the asymptotic analysis and the

threshold initialization technique proposed in Section 4.2 to any network (still assum-

ing a single-agent PMN scenario). Subsequently, Section 4.4 generalizes the proposed

threshold initialization technique to multi-agent systems. Finally, Section 4.5 presents

several numerical examples and performance comparisons with respect to the solution



84

in (Zhou et al., 2019) while Section 4.6 concludes the chapter.

4.1 Problem Formulation

Consider an n-dimensional mission space withM targets in the set T = {1, 2, . . . ,M}
andN agents in the setA = {1, 2, . . . , N} whereM ≥ N . Each target i ∈ T is located

at a fixed position Yi ∈ R
n and each agent a ∈ A is allowed to move in the mission

space where its trajectory is denoted by {sa(t) ∈ R
n, t ≥ 0}. As proposed in (Zhou

et al., 2019) and as shown in Fig. 4·1, a network topology G = (V , E) is embedded to

this mission space such that the graph vertices represent the targets (i.e., V = T ) and

the graph edges represent the inter-target trajectory segments available for agents to

travel (i.e., E =⊆ {(i, j) : i, j ∈ V}). The shape of each trajectory segment (i, j) ∈ E
can be considered as a result of a lower level optimal control problem that minimizes

the travel-time that an agent takes to go from target i to target j while accounting

for potential constraints in the mission space and agent dynamics. In this thesis,

each trajectory segment (i, j) ∈ E is assumed to have a fixed such optimal travel-

time value ρij ∈ R≥0. Based on E , the neighbor set Ni of target i ∈ V is defined as

Ni , {j : (i, j) ∈ E}. Note also that the target locations {Yi : i ∈ V}, initial agent
locations {sa(0) : a ∈ A} and travel-time values {ρij : (i, j) ∈ E} are prespecified.

Target Model: Each target i ∈ V has an associated uncertainty state Ri(t) ∈ R

which follows the dynamics (Zhou et al., 2019):

Ṙi(t) =







0 if Ri(t) = 0 and Ai ≤ BiNi(t),

Ai − BiNi(t) otherwise,

(4.1)

where Ri(0) is prespecified, Ai ∈ R≥0 is the uncertainty growth rate, Bi ∈ R>0 is the

uncertainty removal rate by an agent and Ni(t) =
∑N

a=1 1{sa(t) = Yi} is the number
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of agents present at target i at time t. Simply, (i) Ri(t) increases at a rate Ai when

no agent is visiting it, (ii) Ri(t) decreases at a rate BiNi(t)−Ai when Ni(t) > 0, and

(iii) Ri(t) ≥ 0, ∀t ≥ 0. As pointed out in (Zhou et al., 2019), (4.1) has an attractive

queueing system interpretation where Ai, and BiNi(t) can be thought of as an arrival

rate and a controllable service rate respectively of a node (i) in a queueing network .

Figure 4·1: The network abstraction.

Agent Model: In some persistent monitoring models (Zhou et al., 2018), each

agent a ∈ A is assumed to have a finite sensing range ra > 0 that allows it to

decrease Ri(t), i ∈ V whenever ‖sa(t) − Yi‖ ≤ ra. However, the approach used in

(Zhou et al., 2019) is followed here where ra = 0 is assumed and Ni(t) is used to

replace the role of the joint detection probability of a target i by the agents.

Objective Function: The objective of this persistent monitoring system is to con-

trol the team of agents to minimize a measure of mean system uncertainty JT where

JT ,
1

T

T∫

0

M∑

i=1

Ri(t)dt. (4.2)

Based on the target dynamics (4.1), to minimize the objective JT (4.2), it is

intuitive that each agent has to dwell (i.e., remain stationary) only at targets that it

visits in its trajectory. Moreover, based on the embedded network topology G that

constrains the agent motion, it is clear that when an agent a ∈ A leaves a target

i ∈ V its next target would be some j ∈ Ni that is only reachable by traveling on
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the edge (i, j) ∈ E for a time duration of ρij. Each time an agent a ∈ A arrives at

a target i ∈ V , it has to determine a dwell-time τai ∈ R≥0 and a next-visit target

vai ∈ Ni. Therefore, for the set of agents, the optimal control solution that minimizes

the objective JT takes the form of a set of optimal dwelling times and next-visit target

sequences. Determining such an optimal solution is a challenging task even for the

simplest PMN problem configurations due to the nature of the involved search space.

Threshold-Based Control Policy: To address this challenge, the TCP proposed

in (Zhou et al., 2019) is adopted in this chapter. Under this TCP, each agent a ∈ A
makes its decisions by adhering to a set of pre-specified parameters denoted by Θa ∈
R
M×M which serve as thresholds on target uncertainties. The (i, j)th parameter in

Θa matrix is denoted as θaij ∈ R≥0. The set of neighbors of a target i that violate

their thresholds (called active neighbors) when agent a is in i at time t is defined as

N a
i (t) , {j : Rj(t) > θaij, j ∈ Ni} ⊆ Ni. (4.3)

Assume an agent a arrives at target i at a time t = t′. Then, the dwell-time τai to be

spent at target i is determined by: (i) the diagonal element θaii based on the threshold

satisfaction condition Ri(t) < θaii and (ii) the active neighbor existence condition

|N a
i (t)| > 0 at t = t′ + τai (recall that | · | is the cardinality operator). Subsequently,

agent a’s next-visit target vai is chosen from the set of active neighbors N a
i (t) ⊆ Ni

using the off-diagonal thresholds {θaiv : v ∈ N a
i (t)} at t = t′ + τai . Formally,

τai , arginf
τ≥0

1 {[Ri(t
′ + τ) < θaii] & [|N a

i (t
′ + τ)| > 0]} ,

vai , argmax
v∈Na

i (t
′+τai )

{Rv(t
′ + τai )− θaiv} .

(4.4)

While the first condition in the τai expression in (4.4) ensures that agent a will dwell at

target i until at least its own uncertainty Ri(t) drops below θaii, the second condition
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ensures that when agent a is ready to leave target i there will be at least one neighbor

v ∈ Ni whose uncertainty Rv(t) has increased beyond the threshold θaiv. The vai

expression in (4.4) implies that vai is the neighboring target of i chosen from the set

N a
i (t

′ + τai ) ⊆ Ni with the largest threshold violation. In all, the update equations in

(4.4) define each agent’s dwell-time and next-visit decision sequence under the TCP.

A key advantage of this TCP approach is that based on (4.3) and (4.4), each agent

now only needs to use the neighboring target state information. Thus, each agent

operates in a distributed manner. An example target topology and an agent threshold

matrix are shown in Fig. 4·2. Note that when certain edges are missing in the graph,

the respective off-diagonal entries in Θa are irrelevant and hence denoted by θaij = ∞.

Figure 4·2: An example target topology with five targets and one
agent with its threshold parameters.

Discrete Event System View: Under the described TCP, the behavior of the

PMN system is fully defined by U(Θ) = {(τai(l)(Θa), vai(l)(Θ
a)) : l ∈ Z>0, a ∈ A}, i.e.,

the set of agent decision sequences, where Θ ∈ R
M×M×N is the collection of all agent

threshold matrices and i(l) is the lth target visited by agent a. Following from (4.4),

the PMN system is a discrete event system (DES) (Cassandras and Lafortune, 2010)

where the event set consists of: (i) agent arrivals and departures at/from targets, (ii)

instances where a target uncertainty reaches 0 from above, and (iii) the ‘start’ and

the ‘end’ events triggered respectively at times t = 0 and t = T . The sequence of

event times observed is denoted as {tk : k ∈ {0, 1, . . . , K}} with t0 = 0 and tK = T .

Since the behavior of the PMN system is dependent on the used TCP Θ, the
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objective JT in (4.2) is also dependent on Θ. Therefore, within this TCP class of

agent controllers, the aim is to determine an optimal TCP (OTCP) Θ∗ such that

Θ∗ = argmin
Θ≥0

JT (Θ) =
1

T

M∑

i=1

K∑

k=0

tk+1
∫

tk

Ri(t)dt. (4.5)

Differentiating JT (Θ) w.r.t. Θ gives ∇JT (Θ) = 1
T

∑M

i=1

∑K

k=0

∫ tk+1

tk
∇Ri(t)dt, where

∇ ≡ ∂
∂Θ

. As shown in (Zhou et al., 2019), it is easy to see that ∇JT (Θ) reduces to

∇JT (Θ) = 1
T

∑M

i=1

∑K

k=0 ∇Ri(t
k)(tk+1 − tk). The solution proposed in (Zhou et al.,

2019) uses IPA (Cassandras et al., 2010) to evaluate∇Ri(t
k) terms (hence∇JT (Θ)) in

an on-line distributed manner. This enables the use of a gradient descent algorithm:

Θ(l+1) =
[
Θ(l) − β(l)∇JT (Θ(l))

]+
(4.6)

to update the TCP Θ iteratively ([·]+ = max{0, ·}). The step size β(l) is selected so

that it diminishes with l following the standard conditions (Bertsekas, 2016).

Initialization Θ(0): In (Zhou et al., 2019), a randomly generated set of initial

thresholds has been used as Θ(0) for (4.6). Due to the non-convexity of the objective

function (4.5), the resulting Θ(l) when (4.6) converges is a local minimum that depends

heavily on Θ(0). Hence, a carefully selected high-performing Θ(0) can be expected to

provide significant improvements over the local minimum obtained from randomly

selected Θ(0). Motivated by this idea, first, structural properties of the underlying

PMN system are investigated. That knowledge is then used to construct a candidate

for Θ(0).

Overview of the PMN Solution: As proven in (Zhou et al., 2019), in a single-

agent PMN system, it is optimal to make the target uncertainty Ri(t) = 0 on each

visit of agent a at target i. In other words, in the OTCP, θaii = 0. Moreover,
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empirical results in (Zhou et al., 2019) provide some intuition about high-performing

agent behaviors: (i) after a brief initial transient phase, each agent converges to a

(steady-state) periodic behavior where it cycles across a fixed subset of targets, and,

(ii) in this steady state, agents do not tend to share targets with other agents.

These observations are exploited here to efficiently construct a high-performing

(favorable) set of agent trajectories so that it can be translated into a better candidate

TCP for Θ(0) in (4.6) compared to a randomly generated Θ(0). It is clear that such a

favorable set of agent trajectories takes the form of a non-overlapping set of target-

cycles on the given graph. This non-overlapping property implies that if a solution

for the single-agent PMN problem is developed, it can be extended to multi-agent

PMN problems using appropriate graph partitioning and assignment techniques.

Inspired by this discussion, the proposed PMN solution follows the steps outlined

in Alg. 4.1. Note that its Step 6 has already been discussed. A key step of Alg. 4.1 is

Step 2, as it requires a technique to find a high-performing agent trajectory (a target-

cycle) on a given partition of the graph. In fact, in single-agent PMN problems, only

Steps 2, 5 and 6 of Alg. 4.1 should be executed. Hence, in the following Sections

4.2 and 4.3, it is assumed that only one agent is available (i.e., N = 1) and a PMN

solution is developed by discussing the details of Steps 2 and 5 of Alg. 4.1. In

particular, Section 4.2 assumes the network to be sufficiently dense and Section 4.3

relaxes that assumption. The subsequent Section 4.4 extends the proposed solution

to multi-agent problems (i.e., N > 1) by discussing the details of Steps 1, 3 and 4 of

Alg. 4.1.

4.2 Single-Agent PMN Solution - Part I

This section focuses only on single-agent PMN problems on sufficiently dense graphs.

More precisely, a graph is said to be “sufficiently dense” if it is bi-triangular.
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Algorithm 4.1 The main steps of the PMN solution.

Input: (i) Target topology (graph) G = (V , E) and (ii) Set of agents A.
Output: A locally optimal TCP candidate for Θ∗ in (4.5).

1: Partition the given graph G into N sub-graphs {Ga}a∈A.
2: Find a high-performing agent trajectory in each sub-graph.
3: Refine the sub-graphs along with the agent trajectories.
4: Assign agents to the determined refined agent trajectories (on respective sub-

graphs) based on initial agent locations.
5: Obtain the corresponding TCP as Θ(0) = {Θa(0) : a ∈ A}.
6: Use Θ(0) in (4.6) and update Θ(l) using IPA gradients (Zhou et al., 2019).

Definition 4.1. A directed graph G = (V , E) with |V| > 3 is bi-triangular if for all

(i, j) ∈ E there exists k, l ∈ V such that (i, k), (k, j) ∈ E, (i, l), (l, j) ∈ E, and k 6= l.

An example and a counter example for a bi-triangular graph can be seen in Figs.

4·18(a) and 4·15(a), respectively. The conditions assumed in this section are formally

stated in the following assumption (which will be relaxed in subsequent sections).

Assumption 4.1. (i) Only one agent is available (i.e., A = {a}) and (ii) The given

target topology G = (V , E) is bi-triangular.

Due to Assumption 4.1, in this section, first, a high-performing target-cycle is

determined in the given graph G using a greedy scheme. Such a target-cycle is then

transformed to a TCP Θ(0) for the subsequent use in the gradient descent process

(4.6). Note that these steps correspond to Steps 2, 5 and 6 of Alg. 4.1, respectively.

4.2.1 Analysis of an Unconstrained Target-Cycle

A target-cycle is formally defined as a finite sequence of targets selected from V
such that the corresponding sequence of edges also exists in E . An unconstrained

target-cycle is a target-cycle with no target on it being repeated. The set of all

possible unconstrained target-cycles on the graph G is denoted by C. A generic

unconstrained target-cycle in C is denoted by Ξi = {i1, i2, . . . , im} ⊆ V , where ij ∈
V , ∀j ∈ {1, 2, . . . ,m} and m = |Ξi| ≤M . The corresponding sequence of edges (fully
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defined by Ξi) is denoted by ξi = {(im, i1), (i1, i2), . . . , (im−1, im)} ⊆ E .
Since the aim is to greedily construct a target-cycle that results in a low mean

system uncertainty value (i.e., JT in (4.2)), an assessment criterion for any given

arbitrary target-cycle (say Ξi) is required. Therefore, the metric: steady state mean

cycle uncertainty is defined as Jss(Ξi) where:

Jss(Ξi) , lim
T→∞

1

T

T∫

0

∑

j∈Ξi

Rj(t)dt. (4.7)

A computationally efficient off-line method to evaluate Jss(Ξi) for any Ξi ∈ C is

proposed next. First, for notational convenience, Ξi and its targets are relabeled as

Ξ = {1, 2, . . . , n, n + 1, . . . ,m} by omitting the subscript i (see Fig. 4·3). Then, the

following assumption is made regarding the agent’s behavior on a target-cycle.

Assumption 4.2. After visiting a target n ∈ Ξ, the agent will leave it if and only if

the target uncertainty Rn reaches zero.

This assumption is partially motivated by the aforementioned theoretical result

in (Zhou et al., 2019). Nevertheless, since the main focus here is to initialize (4.6),

this potential sub-optimality will be compensated by the eventual use of (4.6).

A tour on the target-cycle Ξ (shown in Fig. 4·3) starts/ends when the agent leaves

the last target m to reach target 1. The dwell-time spent on a target n ∈ Ξ when the

Figure 4·3: A generic single-agent unconstrained target-cycle Ξ.
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Figure 4·4: Variation of target uncertainties during agent tours.

agent is in its kth tour on Ξ is denoted as τan,k and the travel-time spent on an edge

(n− 1, n) ∈ E is ρ(n−1)n by definition. Without any ambiguity, the notation τn,k and

ρn (with ρ1 = ρm1) is used to represent these two quantities respectively. Moreover,

target n’s uncertainty level at the end of the kth tour is denoted by Rn,k. Under this

notation, the trajectory of the target uncertainty Rn(t) over k
th and (k + 1)th tours

is shown in Fig. 4·4. The geometry of the XY Z triangle shown in Fig. 4·4 can be

used to derive the dynamics of target n’s dwell-time τn,k (w.r.t. k) as

(Bn − An)τn,k+1 = An

( m∑

i=n+1

[ρi + τi,k] +
n−1∑

i=1

[ρi + τi,k+1] + ρn

)

. (4.8)

Setting αn , Bn−An

An
and ρΞ ,

∑m

i=1 ρi, the above relationship can be simplified as

−
n−1∑

i=1

τi,k+1 + αnτn,k+1 = ρΞ +
m∑

i=n+1

τi,k. (4.9)

Note that (4.9) can be written for all n ∈ Ξ in a compact form using the vectors

τ̄k = [τ1,k, τ2,k, . . . , τm,k]
T , ᾱ = [α1, α2, . . . , αm]

T and 1̄m = [1, 1, . . . , 1]T ∈ R
m, as:

∆1τ̄k+1 = ∆2τ̄k + 1̄mρΞ, (4.10)

where ∆2 ∈ R
m×m is the strictly upper triangular matrix with all non-zero elements

being 1 and ∆1 = diag(ᾱ)−∆T
2 . The affine linear system expression in (4.10) describes
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the evolution of agent dwell-times at targets on the target-cycle Ξ over the number

of tours completed k. To get an explicit expression for the steady state mean cycle

uncertainty Jss(Ξ) defined in (4.7), the following three lemmas are used.

Lemma 4.1. (Miller, 1981) Suppose A ∈ R
m×m is an invertible matrix and u, v ∈

R
m×1 are vectors. Then, det(A+ uvT ) = (1 + vTA−1u)det(A) and

(1 + vTA−1u) 6= 0 ⇐⇒ (A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Lemma 4.2. When
∑m

i=1
Ai

Bi
< 1, the dynamic system given in (4.10) has a feasible

equilibrium point τ̄eq (reached at k = keq),

τ̄eq =

(
β̄

1− 1̄Tmβ̄

)

ρΞ, i.e., τn,keq =

(
βn

1−∑m

i=1 βi

)

ρΞ, (4.11)

for all n ∈ Ξ with βn , An

Bn
and β̄ = [β1, β2, . . . , βm]

T .

Proof. See Appendix A.4.1.

The following assumption is made to establish the stability of τ̄eq in (4.11).

Assumption 4.3. The matrix ∆−1
1 ∆2 is Schur stable (Bof et al., 2018).

Based on several arguments, the work in (Welikala and Cassandras, 2019a) has

conjectured that this assumption holds under some minor conditions. Nevertheless,

since both ∆1 and ∆2 are known, this assumption’s validity can be verified easily.

Lemma 4.3. Under Assumption 4.3, the equilibrium point τ̄eq in (4.11) of the system

(4.10) is globally asymptotically stable (i.e., limk→∞ τ̄k = τ̄eq, irrespective of τ̄0).

Proof. See Appendix A.4.2.

Theorem 4.1. Under Assumptions 4.2 and 4.3 with
∑m

i=1
Ai

Bi
< 1, the generic (single-

agent) unconstrained target-cycle Ξ in Fig. 4·3 achieves a steady state mean cycle

uncertainty value (i.e., (4.7)),

Jss(Ξ) =
1

2
(B̄ − Ā)T τ̄eq, (4.12)

where B̄ = [B1, B2, . . . , Bm]
T , Ā = [A1, A2, . . . , Am]

T , and τ̄eq is given in (4.11).
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Proof. See Appendix A.4.3.

Theorem 4.1 enables assessing simple agent trajectories (e.g., Fig. 4·3) efficiently

and will be used to construct a high-performing target-cycles on the graph G.

4.2.2 Greedy Target-Cycle Construction

Theorem 4.1 can be used to identify the best performing (steady state, unconstrained)

target-cycle in C if |C| is small via exhaustive search evaluating (4.12) over all Ξ ∈ C:

Ξ∗ = argmin
Ξ∈C

Jss(Ξ). (4.13)

Since this brute-force approach becomes computationally expensive as |C| grows expo-
nentially with the number of targets or edges, an alternative computationally efficient

greedy scheme is proposed to construct a sub-optimal target-cycle (denoted as Ξ#)

as a candidate for Ξ∗ in (4.13). In this greedy scheme, each iteration search expands

a current target-cycle Ξ by adding an unvisited target i ∈ V\Ξ to Ξ. The constructed

Ξ# ∈ C is then transformed to a TCP which is used as Θ(0) in (4.6). Therefore,

determining the optimal target-cycle Ξ∗ is not essential at this stage as opposed to

the importance of keeping the overall process of obtaining Θ(0) efficient.

The finite horizon mean cycle uncertainty JT (Ξi) is now defined as

JT (Ξi) ,
1

T

T∫

0

∑

j∈Ξi

Rj(t)dt. (4.14)

Note that if V = Ξi, this JT (Ξi) metric is equivalent to main objective JT in (4.2).

Contribution of a Neglected Target: Formally, a neglected target is a target that

is not visited by any agent during the period [0, T ]. The following lemma characterizes

the contribution of such a neglected target to the main objective JT in (4.2).
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Lemma 4.4. The contribution of a neglected target i ∈ V to the mean system uncer-

tainty JT (defined in (4.2)) is
(
Ri,0 +

AiT
2

)
.

Proof. See Appendix A.4.4.

Assumption 4.4. For any target-cycle Ξ ∈ C, the difference between the steady state

mean cycle uncertainty Jss(Ξ) (4.7) and the finite horizon mean cycle uncertainty

JT (Ξ) (4.14) is bounded by some finite constant Ke ∈ R≥0, i.e., |Jss(Ξ)−JT (Ξ)| < Ke.

The greedy target-cycle construction scheme uses the Jss(·) metric defined in (4.7)

to compare the performance of different target-cycles as it can be evaluated efficiently.

However, since the original objective JT in (4.2) is evaluated over a finite horizon T ,

the JT (·) metric defined in (4.14) is more appropriate to compare different target-

cycle performances. The above assumption states that JT (·) will always lie within

Jss(·) ±Ke. It is important to note that Ke is small whenever: (i) the steady state

tour duration TΞ and the finite horizon T is such that T ≫ TΞ, and (ii) the dynamics

of the steady state error of (4.10) are fast (i.e., from Lemma 4.3, when Ai

Bi
≪ 1).

Target-Cycle Expansion Operation (TCEO): Consider the target-cycle Ξ =

{1, 2, . . . ,m} with its corresponding sequence of edges ξ = {(m, 1), (1, 2), . . . , (m −
1,m)}. As shown in Fig. 4·5, to expand Ξ so that it includes one more target i chosen

from the set of neglected targets V\Ξ, (i) one edge (n− 1, n) chosen from ξ should be

replaced with two new consecutive edges (n − 1, i), (i, n) ∈ E and (ii) the neglected

target i should be inserted into Ξ between targets n− 1 and n. Whenever |V\Ξ| > 0,

the existence of a such i and (n−1, n) is guaranteed by the bi-triangularity condition

in Assumption 4.1. Upon executing these two operations, a new (expanded) target-

cycle Ξ′ (and ξ′) is attained as shown in Fig. 4·5. The following theorem derives the

marginal gain (denoted as ∆JT (i|ξ, (n− 1, n))) in the main objective JT in (4.2) due

to such a target-cycle expansion in terms of Jss(·) metric in (4.7).



96

Figure 4·5: A basic target-cycle expanding operation (TCEO).

Theorem 4.2. Under Assumptions 4.1, 4.2 and 4.4, the marginal gain in the main

objective JT in (4.2) due to the target-cycle expansion operation shown in Fig. 4·5 is

∆JT (i|ξ, (n− 1, n)) =

(

Ri,0 +
AiT

2

)

+ Jss(Ξ)− Jss(Ξ
′), (4.15)

where Ξ′ is the expanded target-cycle and Jss(·) is given in Theorem 4.1. The associ-

ated estimation error of this term is ±2Ke.

Proof. See Appendix A.4.5.

Greedy Algorithm: Based on the discussion above and exploiting Theorem 4.2,

Alg. 4.2 provides a systematic way to construct a candidate (sub-optimal) uncon-

strained target-cycle Ξ# as a solution for (4.13). As described in (Welikala and

Cassandras, 2019a), the resulting target-cycle Ξ# can even be further refined using

2-Opt and 3-Opt local search techniques (Nilsson, 2003; Blazinskas and Misevicius,

2011).

Algorithm 4.2 Greedy target-cycle construction for (4.13).

Input: Graph topology G = (V , E).
Output: A sub-optimal target-cycle Ξ# (and ξ#) for (4.13).

1: Find the target-cycle Ξ in G such that |Ξ| = 2 that has the minimum Jss(Ξ) value.
2: while True do
3: Find the best way to expand Ξ over all possible TCEOs.
4: If its marginal gain ∆JT > 0, execute the expansion, otherwise, Break.
5: end while
6: Ξ# := Ξ; ξ# := ξ; Return;
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4.2.3 Generating an Initial TCP: Θ(0)

Take the final refined sub-optimal target-cycle as ΞR (and ξR). Now, ΞR needs to be

transformed into a set of TCP parameters to be used as Θ(0) in (4.6). Since A = {a}
under Assumption 4.1, Θ(0) = Θa(0) ∈ R

M×M . Further, note that the TCP values in

Θ(0) should be such that they guide the agent according to Assumption 4.2 on ΞR.

Algorithm 4.3 achieves this task as its Step 1 ensures that the agent remains at target

i ∈ ΞR until Ri(t) = 0 and Steps 2, 3 ensure that the agent follows the target-cycle

ΞR. An example input/output for this algorithm is shown in Fig. 4·6.

Algorithm 4.3 Generating Θa(0) from the target-cycle ΞR, ξR.

Input: Graph G = (V , E), and the target-cycle ΞR, ξR.
Output: Initial TCP Θa(0) for the use in (4.6).

1: All the diagonal entries of Θa(0) are set to 0.
2: The (i, j)th entry of Θa(0) is set to 0 for all (i, j) ∈ ξR.
3: All other (valid/finite) entries of Θa(0) are set to a large constant P ∈ R.

Figure 4·6: The generated initial threshold matrix Θa(0) (right) for
the refined sub-optimal target-cycle ΞR (left).

4.3 Single-Agent PMN Solution - Part II

In this section, the bi-triangularity assumption in Assumption 4.1(ii) is relaxed so as

to generalize the developed single-agent PMN solution for any network. In particular,

this bi-triangularity assumption does not hold when the network G = (V , E) is sparse,
due to the lack of edges in E . As a result, the iterative target-cycle expansion process

in Alg. 4.2 might halt prematurely (i.e., while |V\Ξ| > 0) due to the lack of feasible
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expansions. Two such examples are shown in Fig. 4·7. One obvious approach to

overcome this assumption violation is by inserting (artificial) edges into the network

with higher travel-time values. However, while such an approach can make Alg. 4.2

run without halting, the resulting target-cycle Ξ# will contain the edges that were

artificially introduced, compromising the target-cycle performance Jss(Ξ
#).

Figure 4·7: Two example sparse networks where Alg. 4.2 has halted
prematurely while executing target-cycle expansion iterations.

Auxiliary Targets: As opposed to introducing artificial edges, this work proposes

to introduce artificial targets (henceforth called auxiliary targets) into the network so

as to deal with the issue of premature halting. Unlike artificial edges, an auxiliary

target is always associated with a corresponding target in the original network and

its exact physical interpretation is provided in the sequel.

Note that if certain targets in the network can be visited more than once, the

target-cycle expansion process may not have to be halted due to the lack of edges

(sparseness or non-bi-triangularity) in the network. Therefore, this work proposes to

allow targets to be visited more than once during a tour on a target-cycle. Such target-

cycles are called constrained target-cycles. For example, in both networks shown in

Fig. 4·7, if target 3 is allowed to be visited more than once during a tour, the

constrained target-cycles Ξ̄ = {2, 1, 3, 4, 3} and Ξ̄ = {6, 7, 3, 2, 1, 4, 3, 5} could have

been constructed, respectively. Note that the notation “ ·̄ ” is used to indicate that

the target-cycle is constrained (i.e., some elements are being repeated).
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To analyze such constrained target-cycles (to evaluate Jss(·) in (4.7)), the said

concept of auxiliary targets is used. The idea is to replace the repeated targets in the

constrained target-cycle with a set of carefully chosen auxiliary targets to create an

equivalent unconstrained target-cycle enabling the application of Theorem 4.1.

Consider a constrained target-cycle Ξ̄ with a target i ∈ Ξ̄ being visited n times

during a tour. First, an auxiliary target pool Ti = {i1, i2, . . . , in} is introduced where

each auxiliary target ij ∈ Ti can be thought of as an artificial target located at

the same physical location of target i (i.e., at Yi), but with its own parameters:

an uncertainty rate Aji and a sensing rate Bj
i (to be defined). Next, the repeated

elements of target i in Ξ̄ are replaced with the elements taken from Ti and the process

is repeated for all i ∈ Ξ̄ with |Ti| > 1. This results in an unconstrained target-cycle

Ξ (i.e., without “ ·̄ ”, this notational convention is followed in the sequel). Figure

4·8 shows two such unconstrained target-cycles obtained from introducing auxiliary

targets to transform respective constrained target-cycles proposed for Fig. 4·7.

Figure 4·8: Converting constrained target-cycles into unconstrained
target-cycles with the use of auxiliary targets.

Equivalence Criteria: For the analysis of the constrained target-cycles, it is en-

forced that both the targets in Ξ and Ξ̄ should perform/behave in an equivalent

manner at steady state. In particular, the following equivalence criteria is enforced:

1. The dwell-time spent at ij ∈ Ξ is equal to the dwell-time spent at i ∈ Ξ̄ on its

jth visit during a tour.
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2. The physical location of ij ∈ Ξ is the same as that of i ∈ Ξ̄.

3. The total contribution to the main objective JT (4.2) by Ti ⊂ Ξ is equal to that

of target i ∈ Ξ̄, during a tour.

The first two conditions ensure that the tour duration is the same for both Ξ

and Ξ̄. The third condition implies Jss(Ξ̄) = Jss(Ξ). Hence, if the auxiliary target

parameters are known, Jss(Ξ̄) can be evaluated using Theorem 4.1.

Sub-Cycles: Each ij ∈ Ξ can be assigned a sub-cycle denoted by Ξji ⊂ Ξ where Ξji

starts with the immediate next target to ij−1 ∈ Ξ and ends with target ij. Therefore,

Ξ can be written as a concatenation of sub-cycles of a target i ∈ Ξ̄, i.e., Ξ =
⋃

ij∈Ti
Ξji .

For example, for the unconstrained target-cycle Ξ shown in Fig. 4·8(left), sub-cycles
corresponding to 31, 32 ∈ Ξ are Ξ1

3 = {2, 1, 31} and Ξ2
3 = {4, 32}, respectively.

The sub-cycle unit vector of Ξji is denoted by 1̄ji ∈ R
|Ξ| and its nth element is 1

only if the nth element of Ξ belongs to Ξji . Therefore, if 1̄|Ξ| ∈ R
|Ξ| is a vector of all

ones, with respect to target i ∈ Ξ̄, 1̄|Ξ| =
∑

ij∈Ti
1̄ji .

The sub-cycle matrix of Ξ is denoted by 1Ξ ∈ R
|Ξ|×|Ξ| and its nth column is the

sub-cycle unit vector of the nth element of Ξ. An example is shown in Fig. 4·9.

Figure 4·9: Sub-cycle unit vectors and sub-cycle matrix (right) for a
given constrained target-cycle Ξ̄ (left).

4.3.1 Analysis of Constrained Target-Cycles

A generic constrained target-cycle Ξ̄ is analyzed in this section. For illustrative pur-

poses the constrained target-cycle example shown in Fig. 4·10 is used. In there,
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note that Ξ̄ = {1, 2, . . . , n, . . . , n+m− 1, n} and target n ∈ Ξ̄ is visited twice

during a tour. Introducing auxiliary targets Tn = {n1, n2}, Ξ̄ can be converted

to its equivalent unconstrained version Ξ. The sub-cycles of n1 and n2 in Ξ are

Ξ1
n = {1, 2, . . . , n− 1, n1} and Ξ2

n = {n+ 1, n+ 2, . . . , n+m− 1, n2}, respectively. A
tour on Ξ̄ starts/ends when the agent leaves target n to reach target 1 and the agent

behavior on Ξ̄ is assumed to follow Assumption 4.2. The inter-target travel-times on Ξ̄

are labeled similar to before (see Figs. 4·3) and ρ̄Ξ = [ρ1, ρ2, . . . , ρ
1
n, . . . , ρn+m−1, ρ

2
n]
T

is used to denote the travel-time vector of Ξ̄. The transient analysis of the constrained

target-cycle Ξ̄ is omitted here by making the following assumption (see Remark 4.1).

Figure 4·10: A general constrained target-cycle with target n being
visited twice during the cycle.

Figure 4·11: Variation of the target uncertainties of the constrained
target-cycle shown in Fig. 4·10 - after achieving steady state.
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Assumption 4.5. The dwell-time dynamics of the constrained target-cycle Ξ̄ have a

feasible and globally asymptotically stable equilibrium point.

Figure 4·11 shows the steady state behavior of the target uncertainties during

a tour on the target-cycle Ξ̄. The notation τ̄Ξ = [τ1, τ2, . . . , τ
1
n, . . . , τn+m−1, τ

2
n]
T is

used to represent the steady state dwell-times of targets in Ξ. The following lemma

generalizes Lemma 4.2 to evaluate τ̄Ξ for any target-cycle Ξ̄.

Lemma 4.5. Under Assumptions 4.2 and 4.5, when a single agent traverses a generic

constrained target-cycle Ξ̄ (with Ξ being the equivalent unconstrained version of Ξ̄),

the steady state dwell-times τ̄Ξ are given by

τ̄Ξ = [diag(γ̄Ξ)− 1Ξ]
−11Ξρ̄Ξ, (4.16)

where γ̄Ξ ∈ R
|Ξ| is such that if the ith target of Ξ̄ is j, then, the ith element of γ̄Ξ is

Bj

Aj
and 1Ξ is the sub-cycle matrix and ρ̄Ξ is the travel-time vector of Ξ.

Proof. See Appendix A.4.6.

Remark 4.1. Note that (4.16) is only valid under Assumption 4.5, i.e., if the dwell-

times observed in the kth tour on Ξ̄ (say τ̄Ξ,k) converge to an equilibrium point (τ̄Ξ) as

k → ∞. However, based on the form of (4.16), it can be concluded that the conditions

for the existence and feasibility of such an equilibrium point are |diag(γ̄Ξ) − 1Ξ| 6= 0

and [diag(γ̄Ξ)− 1Ξ]
−11Ξρ̄Ξ > 0, respectively.

Using the dwell-time vector τ̄Ξ given by Lemma 4.5, the total sub-cycle time de-

noted by T jn can be determined for all nj ∈ Ξ using T jn = (1̄jn)
T (ρ̄Ξ + τ̄Ξ). Moreover,

the total cycle time denoted by TΞ can be determined using TΞ = 1̄T|Ξ|(ρ̄Ξ + τ̄Ξ).

Lemma 4.6. Under the same conditions stated in Lemma 4.5, the auxiliary target

parameters of any nj ∈ Ξ (i.e., Ajn and Bj
n) are:

Ajn =
T jn
TΞ

τ jn(Bn − An)

(TΞ − τ jn)
and Bj

n =
T jn(Bn − An)

(TΞ − τ jn)
. (4.17)

Proof. See Appendix A.4.7.



103

With the auxiliary target parameters given by Lemma 4.6, all the respective pa-

rameters of targets in Ξ can be lumped into vectors as ĀΞ and B̄Ξ. For example, for

the target-cycle shown in Fig. 4·10, ĀΞ = [A1, A2, . . . , A
1
n, . . . , An+m−1, A

2
n]
T .

Theorem 4.3. Under Assumptions 4.2 and 4.5, when a single agent traverses a

generic constrained target-cycle Ξ̄ (with Ξ being the equivalent unconstrained version

of Ξ̄), the steady state mean cycle uncertainty Jss(Ξ̄) (defined in (4.7)) is

Jss(Ξ̄) =
1

2
(B̄Ξ − ĀΞ)

T τ̄Ξ, (4.18)

where the steady state dwell-times vector τ̄Ξ is given by Lemma 4.5 and the auxiliary

target parameters included in the vectors ĀΞ and B̄Ξ are given by Lemma 4.6.

Proof. Since Ξ is an unconstrained target-cycle, Theorem 4.1 gives Jss(Ξ) =
1
2
(B̄Ξ −

ĀΞ)
T τ̄Ξ, where τ̄Ξ is given by Lemma 4.5 and unknown parameters in ĀΞ and B̄Ξ are

given by Lemma 4.6. Finally, due to the equivalence criterion 3: Jss(Ξ̄) = Jss(Ξ).

4.3.2 Greedy Target-Cycle Construction

Let D denote the set of all possible target-cycles on G. Clearly, D ⊇ C and |D| = ∞
(see also (4.13)). Thus, exhaustive search methods (that exploit Theorem 4.3) cannot

be used to determine the best performing (at steady state) target-cycle in D:

Ξ̄∗ = argmin
Ξ̄∈D

Jss(Ξ̄). (4.19)

Hence, an efficient greedy scheme (identical to Alg. 4.2) is proposed to construct a

sub-optimal target-cycle Ξ̄# ∈ D as a candidate for Ξ̄∗ in (4.19).

Notice that having the capability to make repeated visits to the targets during a

tour on a target-cycle provides flexibility in ways in which a given target-cycle can be

expanded. Hence, in this paradigm, apart from the previously used basic target-cycle

expansion operation (labeled TCEO-1 and shown in Fig. 4·12(b)), two new TCEOs

(labeled TCEO-2, TCEO-3 shown respectively in Fig. 4·12(c), (d)) are also proposed.

Details are omitted here but can be found in (Welikala and Cassandras, 2019a).
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Figure 4·12: Target-cycle expansion operations (TCEOs).

Regardless of the type of the TCEO, note that Theorems 4.3 and 4.2 can be used

to determine the corresponding marginal gain. Therefore, an identical target-cycle

construction algorithm to the one shown in Alg. 4.2 can be used for the purpose

of constructing a sub-optimal target-cycle Ξ̄# ∈ D as a candidate for Ξ̄∗ in (4.19).

However, note that in each greedy target-cycle expansion iteration (i.e., in Step 3

of Alg. 4.2), the best feasible target-cycle expansion considering all three types of

TCEOs (not limiting to TCEO-1) should be determined. These additional two greedy

search space dimensions introduced (due to TCEO-2 and TCEO-3) resolve the issue of

‘premature halting’ of the target-cycle expansion process, as there is always a feasible

target-cycle expansion (of type TCEO-2) whenever there are neglected targets (i.e.,

when |V\Ξ̄| > 0) - given the network is connected. Moreover, the TSP inspired target-

cycle refinements (based on 2-Opt and 3-Opt local search techniques (Blazinskas and

Misevicius, 2011)) are also applicable here to obtain a refined target-cycle denoted

Ξ̄R from Ξ̄#.

4.3.3 Generating an Initial TCP: Θ(0)

Recall that Ξ̄R should be transformed into a set of TCP parameters to be used as Θ(0)

in (4.6). Due to the single-agent assumption (i.e., Assumption 4.1(i)), Θ(0) = Θa(0).
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Note that even though Ξ̄R might be a constrained target-cycle, Alg. 4.3 can still be

used to get the corresponding TCP Θa(0), but under few minor conditions (provided

in (Welikala and Cassandras, 2019a)). Figure 4·13 shows an example constrained

target-cycle and its corresponding TCP Θa(0) given by Alg. 4.3.

Figure 4·13: The generated threshold matrix Θa(0) for the refined
sub-optimal target-cycle Ξ̄R shown (left).

4.4 Multi-Agent PMN Solution

The previous two sections focused on the single-agent PMN problem and developed

techniques to (i) identify a favorable agent trajectory in a given network and (ii) trans-

form the identified trajectory into a TCP Θ(0) for the subsequent use in a gradient

process (4.6). To conveniently generalize these single-agent techniques to multi-agent

PMNs, as outlined in Alg. 4.1, the network G is proposed to be partitioned into N

sub-graphs (recall N = |A|). This ‘divide and conquer’ approach enables the use of

developed single-agent techniques (behind Steps 2 and 5 of Alg. 4.1) independently in

each of the sub-graphs. Therefore, this section presents the proposed graph partition-

ing, refining and agent assigning processes that respectively correspond to Steps 1, 3

and 4 of Alg. 4.1. For these processes, several known techniques from (von Luxburg,

2007; Ng et al., 2001; Jianbo Shi and Malik, 2000; Ahuja et al., 1993) are adopted.

Thus, some technical details are omitted (but provided in (Welikala and Cassandras,

2019a)) to emphasize the contributions of this thesis to achieve such an adaptation.
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4.4.1 Graph Partitioning via Spectral Clustering

To partition the graph G = (V , E), this thesis proposes to use spectral clustering (von

Luxburg, 2007) - which is a commonly used global graph partitioning method that

also has the advantages of: (i) simple implementation, (ii) efficient evaluation and (iii)

better results compared to traditional techniques such as the k -means algorithm (von

Luxburg, 2007). In spectral clustering, the graph partitions of G are derived based

on a set of inter-target similarity values {sij : i, j ∈ V} so that the similarity value

between two targets is high if they belong to the same partition and low otherwise.

Remark 4.2. In a typical data-point clustering application, the graph representation

(also called the “similarity graph”) arises from the known similarity values between

the data-points. However, in PMN problems, while the physical graph G is known, the

similarity values between its targets (hence the similarity graph) are unknown.

Deriving Similarity Values: In this work, the knowledge of the target topology G
and target parameters are exploited to derive appropriate similarity values. Typically,

a similarity value sij ≥ 0 is obtained based on a disparity value d(i, j) as

sij = exp

(

−|d(i, j)|2
2σ2

)

, i, j ∈ V , (4.20)

where d : V × V → R and σ2 is a user defined scaling parameter that controls how

rapidly the similarity sij falls off with disparity d(i, j) (Ng et al., 2001). This function

(4.20) is known as the Gaussian similarity function.

For the considered PMN problem setup, neither of using d(i, j) as the physical

distance (i.e., ‖Yi−Yj‖) nor the shortest distance between the targets i and j provides

a good characterization to the underlying persistent monitoring aspects of the problem

as they disregard target parameters and agent behaviors when monitoring targets.

Therefore, to obtain similarity values, a novel disparity metric named minimum
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mean covering cycle uncertainty (CCU) is proposed as

d(i, j) = dCC(i, j) , min
Ξ̄: i,j∈Ξ̄

Jss(Ξ̄). (4.21)

The argmin of the above problem is named the optimal covering cycle (OCC) and

is denoted as Ξ̄∗
ij. Simply, the OCC Ξ̄∗

ij is the best way to cover targets i and j in

a single target-cycle so that the corresponding Jss(·) value is minimized. Therefore,

if the CCU value is higher for a certain target pair, it implies that it is difficult to

cover those two targets in a single target-cycle. Hence, it is clear that this disparity

metric dCC(i, j) in (4.21) provides a good characterization to the underlying persistent

monitoring aspects of the PMN problems.

To estimate dCC(i, j), ∀i, j ∈ V , a modified version of the Dijkstra’s algorithm

(Ahuja et al., 1993) coupled with cycle expanding and refining techniques discussed

in Section 4.3 is used (details can be found in (Welikala and Cassandras, 2019a)).

Subsequently, (4.20) is used to obtain the the respective similarity values sij ∀i, j ∈ V .

Spectral Clustering Algorithm: Finally, based on the obtained similarity values,

the normalized spectral clustering (Jianbo Shi and Malik, 2000) is applied to derive

the set of target partitions of V , i.e., {Va : a ∈ A} and the respective sub-graphs

{Ga : a ∈ A} where each Ga = (Va, Ea) and Ea ⊆ E is the set of intra-cluster edges.

4.4.2 Refining the Graph Partitions

Once the sub-graphs are formed (Step 1 of Alg. 4.1), the target-cycle construction

process (Step 2 of Alg. 4.1) is executed on each sub-graph. The resulting target-cycle

on a sub-graph Ga is denoted as Ξ̄a and is assumed to be assigned to an arbitrary

agent a ∈ A (in Section 4.4.3, target-cycles will be explicitly assigned to the agents).

An agent a ∈ A can remove a target i ∈ Ξ̄a from its target-cycle Ξ̄a by recon-

structing a new target-cycle over its sub-graph Ga while ignoring target i. Such a
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process is called as a target-cycle contraction. In contrast, an agent b ∈ A can ex-

pand its target-cycle Ξ̄b to include an external target i 6∈ Ξ̄b by simply carrying out

the best possible target-cycle expansion out of the three TCEOs shown in Fig. 4·12.
Using such contraction and expansion operations, two agents a, b ∈ A can trade a

target i ∈ Ξ̄a between each other (i.e., between sub-graphs Ga and Gb), if the marginal

gain ∆Jab,iss , (Jss(Ξ̄a) + Jss(Ξ̄b))− (Jss(Ξ̄
′
a) + Jss(Ξ̄

′
b)) > 0, where Ξ̄′

a and Ξ̄′
b are the

contracted and expanded target-cycles, respectively.

A set of sub-graphs is called “balanced” if there is no a, b ∈ A and i ∈ Va such

that ∆Jab,iss > 0. The spectral clustering method often provides a balanced set of

sub-graphs. Nevertheless, a distributed greedy algorithm is proposed for the agents

to balance the sub-graphs by systematically executing trades with positive marginal

gains (details are provided in (Welikala and Cassandras, 2019a)). The convergence

of a such greedy algorithm is guaranteed as each greedy step (i.e., each “trade”)

decreases the metric:
∑

a∈A Jss(Ξ̄a), which is lower bounded by 0.

4.4.3 Assigning Agents to the Target-Cycles

So far, a set of target-cycles {Ξ̄b : b ∈ B} has been identified on a respective set of

(balanced) sub-graphs of G, where B is the set of target-cycle indexes (B ≡ A). These

target-cycles {Ξ̄b : b ∈ B} are now explicitly assigned to the agents based on initial

agent locations {sa(0) : a ∈ A}. First, the assignment cost between an agent a ∈ A
and a target-cycle Ξ̄b, b ∈ B is defined as hab where hab represents the total travel-time

on the fastest available path to reach any one of the targets in Ξ̄b starting from sa(0).

Then, Dijkstra’s shortest path algorithm (Ahuja et al., 1993) is used to compute all

these assignment weights. Subsequently, the assignment problem (between a’s and

b’s) is solved using the shortest augmenting path algorithm (Ahuja et al., 1993).
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Generating an Initial TCP: Θ(0) Assume an agent a ∈ A is optimally assigned

to the target-cycle Ξ̄b and the corresponding fastest path from sa(0) to reach Ξ̄b is

Φab = {i1, i2, . . . , in} ⊂ V . Note that in ∈ Ξ̄b, Yi1 = sa(0) and take Φ′
ab = Φab\{in}.

Now, Alg. 4.3 can be used with Ξ̄b to get a corresponding TCP for agent a as Θa.

Note that this only assigns the set of rows: {j : j ∈ Ξ̄b} in Θa as it is sufficient to keep

the agent on the target-cycle Ξ̄b (this corresponds to rows 1-3 in the example TCP

Θa shown in Fig. 4·14). Therefore, to make sure that the agent a follows the path

Φab, the set of rows: {j : j ∈ Φ′
ab} in Θa are assigned as follows (this corresponds to

rows 4-5 in the example TCP Θa shown in Fig. 4·14). If j and k are two consecutive

entries in Φab, in the jth row of Θa set: θajj = 0, θajk = 0 and any other entry θajl to P

or ∞ depending on whether (j, l) ∈ E . Finally, set Θa(0) = Θa for the use in (4.6).

With this, all the steps involved in Alg. 4.1, i.e., the proposed PMN solution in

this chapter, now have been covered.

Figure 4·14: The generated initial TCP Θa(0) when the agent a is
initially at target 5 and have been assigned to the target-cycle Ξ̄b =
{3, 1, 2} with the fastest path being Φab = {5, 4, 3}.

4.5 Simulation Results

In this section, several numerical examples are provided to show how the proposed

greedy initialization process can benefit the performance of the TCP used in solving

PMN problems. First, consider the single-agent PMN problem configuration (la-

beled SASE1) shown in Fig. 4·15(a). In this figure (and similar figures used in the
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sequel), blue circles represent the targets, while black lines represent available trajec-

tory segments that agents can take to travel between targets. Red triangles and the

yellow vertical bars respectively indicate the agent locations and the target uncer-

tainty levels. Since both of those quantities are time-varying (i.e., sa(t) and Ri(t)),

their terminal state is indicated (i.e., at t = T , when the best TCP found so far is

used). In all numerical examples, the PMN problem parameters have been chosen

as follows. The target parameters are: Ai = 1, Bi = 10, Ri(0) = 0.5, ∀i ∈ V and

all the targets have been placed inside a 600× 600 mission space. The time horizon

is taken as T = 500. Each agent is assumed to have first-order dynamics (following

from (Zhou et al., 2019)) with a maximum speed of 50 units per second. The initial

locations of the agents are chosen such that they are uniformly distributed among

the targets at t = 0 (i.e., sa(0) = Yi with i = 1 + (a− 1) ∗ round(M/N)).

The proposed PMN solution in this chapter (i.e., Alg. 4.1) including the method

proposed in (Zhou et al., 2019) have been implemented in a JavaScript-based inter-

active simulation platform available at http://www.bu.edu/codes/simulations/

shiran27/PersistentMonitoring/. Readers are invited to reproduce the reported

results and also to try new problem configurations using this simulator.

Figure 4·15(b) shows the corresponding evolution of JT (Θ
(l)) when Θ(l) was up-

dated according to (4.6) starting from a randomly selected Θ(0) (Zhou et al., 2019).

Next, the PMN solution proposed in this chapter is applied to the SASE1. First,

a high-performing target-cycle was constructed using the proposed Alg. 4.2. Figures

4·16(a)→(d) show the intermediate target-cycles observed (as red traces) during this

process. The resulting target-cycle in Fig. 4·16(d) is Ξ̄R = {2, 1, 2, 5, 3, 4, 5} with

Jss(Ξ̄
R) = 121.1. Then, Ξ̄R was transformed into a TCP Θ(0) using Alg. 4.3 to

initialize the gradient descent (4.6). Figure 4·17(b) shows that the obtained TCP

Θ(0) results in a JT value of 114.9 which is not further improved from the gradient

http://www.bu.edu/codes/simulations/shiran27/PersistentMonitoring/
http://www.bu.edu/codes/simulations/shiran27/PersistentMonitoring/
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descent (4.6), as Θ(0) is directly locally optimal. Note however that this solution is

11.1% better than the solution given by (Zhou et al., 2019) (shown in Fig 4·15).

(a) Config. at t = T .

0 200 400 600

130

135

140

145

(b) Cost vs iterations plot.

Figure 4·15: Single-agent simulation example 1 (SASE1): Started
with a random Θ(0), converged to a TCP with JT = 129.2.

(a) Iter. 1 (b) Iter. 2 (c) Iter. 3 (d) Iter. 3: Ξ̄R

Figure 4·16: Greedy target-cycle construction for the SASE1.

The second simulation example shown in Fig. 4·18(a) (labeled SASE2) aims to

highlight the importance of gradient steps (4.6). As shown in Fig. 4·18(b), when
Θ(0) was selected randomly, (4.6) converges to a TCP with JT = 651.3. In contrast,

when Θ(0) was derived using the greedy method proposed in this chapter, it directly

yields JT = 607.9. Next, when (4.6) was used to further update this TCP, unlike in

SASE1, an improvement in JT was observed, finally reaching JT = 567.0 (see Fig.

4·19(b) and (c)). The main difference between the solutions in Fig. 4·19(a) and (b)

is that in the former the agent avoids visiting target 4, whereas in the latter, the

agent visits target 4. Compared to (Zhou et al., 2019), the percentage improvement

achieved from deploying the proposed PMN solution is 12.9%. A similar simulation
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(a) Config. at t = T .
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(b) Cost vs iterations plot.

Figure 4·17: SASE1: The TCP Θ(0) given by the target-cycle Ξ̄R (the
red trace in (a)) shows local optimality. At l = 100,Θ(l) is randomly
perturbed. Yet, converges back to the initial TCP. Cost JT = 114.9
(Improvement = +14.3 compared to Fig. 4·15).

example (labeled SASE3) is shown in Figs. 4·20 and 4·21.

(a) Config. at t = T .
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(b) Cost vs iterations plot.

Figure 4·18: Single-agent simulation example 2 (SASE2): Started
with a random Θ(0) and converged to a TCP with JT = 651.3.

(a) l = 0, t = T . (b) l = 100, t = T .
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(c) Cost vs iterations.

Figure 4·19: SASE2: The derived initial TCP Θ(0) has a cost JT =
607.9 and is further improved by (4.6) to reach a TCP with a cost
JT = 567.0 (Improvement = +84.3 compared to Fig. 4·18).
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(a) Config. at t = T .
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(b) Cost vs iterations plot.

Figure 4·20: Single agent simulation example 3 (SASE3): Started
with a random Θ(0) and converged to a TCP with JT = 497.9.

(a) l = 0, t = T . (b) l = 500, t = T
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(c) Cost vs iterations.

Figure 4·21: SASE3: The derived initial TCP Θ(0) has a cost JT =
468.2 and is further improved by (4.6) to reach a TCP with a cost
JT = 449.5 (Improvement = +48.4 compared to Fig. 4·20).

Next, the four multi-agent PMN problem configurations shown in Figs. 4·22(a)-
(d) (labeled MASE1-MASE4) are considered. Note that in MASE2, only two agents

were deployed, whereas in all the rest three agents were deployed. Figure 4·23 shows

the respective JT values attained from (4.6) when initialized with randomly selected

Θ(0). The sub-graphs obtained from the proposed graph partitioning technique (Step

1 of Alg. 4.1) for each of the MASEs are shown in Fig. 4·24. The constructed target-

cycles in sub-graphs and the process of sub-graph refinement (Steps 2 and 3 of Alg.

4.1) are demonstrated in Figs. 4·25(a)-(d) with regard to the MASE1. Sub-figures

in Fig. 4·26 show the determined respective graph partitions and target-cycles. It

was observed that the initial TCP given by Alg. 4.1 is directly locally optimal in
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each MASE. However, each of these TCPs performed better than the optimal TCPs

obtained with randomly initialized Θ(0) (shown in Fig. 4·23). In particular, the

percentage improvements achieved are: 66.3%, 61.7% 78.2%, and 70.3%, respectively.

All the discussed simulation results so far have been summarized in Table 4.1.

Finally, eight randomly generated MASEs are considered (with N = 3, M = 15,

see (Welikala and Cassandras, 2019a) for details). When the proposed PMN solu-

tion (i.e., Alg. 4.1) was deployed, across these eight MASEs, the average percentage

(a) MASE1 (b) MASE2 (c) MASE3 (d) MASE4

Figure 4·22: Multi-agent simulation examples (MASEs) at t = 0.

(a) MASE1
JT = 270.2

(b) MASE2
JT = 91.7

(c) MASE3
JT = 274.0

(d) MASE4
JT = 201.3

Figure 4·23: Cost JT achieved in each MASE upon convergence when
started with a random Θ(0) (Config. at t = T is shown).

(a) MASE1 (b) MASE2 (c) MASE3 (d) MASE4

Figure 4·24: Clustering results obtained for the considered MASEs.
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(a) Clusters (b) Cycles (c) Trade 1 (d) Trade 2

Figure 4·25: MASE1: (a) initial sub-graphs, (b) initial target-cycles,
(c)-(d) two ‘trading’ steps and (d) final sub-graphs/target-cycles.

(a) MASE1
JT = 90.9

Impr.= +179.3

(b) MASE2
JT = 35.1

Impr.= +56.6

(c) MASE3
JT = 59.5

Impr.= +214.5

(d) MASE4
JT = 59.8

Impr.= +141.5

Figure 4·26: Cost JT and improvement achieved in each MASE com-
pared to Fig. 4·23. Each MASE started (4.6) with the TCP Θ(0) given
by Alg. 4.1 and found that Θ(0) is directly locally optimal.

Table 4.1: A summary of obtained simulation results.

Cost of the optimal TCP Θ∗

(found using (4.6)): JT (Θ
∗)

Single-Agent
Simulation Examples

Multi-Agent
Simulation Examples

1 2 3 1 2 3 4
With randomly generated
initial TCP Θ(0) 129.2 651.3 497.9 270.2 91.7 274.0 201.3

With initial TCP Θ(0) given
by the proposed Alg. 4.1

114.6 567.0 449.5 90.9 35.1 59.5 59.8

Percentage improvement (%) 11.1 12.9 9.7 66.3 61.7 78.2 70.3

improvement achieved was 69.1%. Further, on an Intel® Core™ i7-7800 CPU 3.20

GHz Processor with a 32 GB RAM, the average execution time taken for the pro-

posed Alg. 4.1 to generate the TCP Θ(0) was 13.7s and all such generated TCPs

were immediately locally optimal. In contrast, when the TCPs Θ(0) were randomly

generated, the average execution time observed for the convergence of the gradient

descent (4.6) was 245.8s. Hence, the execution time taken for the proposed off-line
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greedy initialization process is much smaller and, at the same time, highly effective.

4.6 Summary

This chapter of the thesis addressed the issue of local optima arising in persistent

monitoring on networks problems (i,e., a class of cooperative multi-agent control

problems). First, a class of distributed threshold-based parametric controllers was

adopted where IPA can be used to determine the optimal threshold parameters in an

on-line manner using gradient descent. Due to the non-convex nature of the PMN

problem, the optimal thresholds given by the gradient descent highly depend on the

used initial thresholds. To address this issue, the asymptotic behavior of the persis-

tent monitoring system was studied, and based on the findings, a computationally

efficient and effective threshold initialization scheme was proposed. Extensive numer-

ical results were provided to show that such systematically chosen initial thresholds

while having significantly improved performance levels compared to the state of the

art, are almost immediately (locally) optimal or quickly lead to optimal values.
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Chapter 5

Event-Driven Receding Horizon Control

for Persistent Monitoring in Networks

As introduced in Section 1.3.3, this chapter of the thesis proposes an alternative

approach to the class of persistent monitoring on networks problems discussed in the

previous chapter. In particular, as opposed to taking a gradient-based parametric

control approach, a gradient-free event-driven receding horizon control solution (see

Section 1.3.4) is proposed for this class of PMN problems. This RHC approach has

many attractive features like being computationally efficient, distributed, on-line, and

parameter-free. Numerical results are provided showing improvements compared to

the distributed on-line solution proposed in (Zhou et al., 2019).

Sections of this chapter are organized as follows. Section 5.1 presents the problem

formulation, preliminary results and an overview of the RHC solution. In Section 5.2,

each receding horizon control problem form is explicitly solved and in Section 5.3 two

possible modifications to the RHCPs are discussed. The performance and robustness

of the proposed RHC method are illustrated through simulation results reported in

Section 5.4. Finally, Section 5.5 concludes the chapter.

5.1 Problem Formulation

Since this chapter considers the same PMN problem as the previous chapter (intro-

duced in its Section 4.1), in the sequel, some intricate details of this PMN problem

setup are omitted to avoid unnecessary repetition. However, all the essential infor-
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mation is provided here to make this chapter self-contained.

An n-dimensional mission space containing M targets (nodes) in the set T =

{1, 2, . . . ,M} and N agents in the set A = {1, 2, . . . , N} is considered. The location

of target i ∈ T is fixed at Yi ∈ R
n. Each agent a ∈ A is allowed to move within this

mission space, and thus its location at time t is denoted by sa(t) ∈ R
n.

Target Model: The uncertainty state Ri(t) ∈ R associated with the target i ∈ T
follows the dynamics (Zhou et al., 2019) (identical to (4.1)):

Ṙi(t) =







Ai − BiNi(t) if Ri(t) > 0 or Ai − BiNi(t) > 0

0 otherwise,

(5.1)

where Ai, Bi and Ri(0) are prespecified and Ni(t) =
∑

a∈A 1{sa(t) = Yi}. Recall that
Ai ∈ R≥0, Bi ∈ R≥0 and Ni(t) respectively represents the uncertainty growth rate,

the uncertainty removal rate and the number of agents present at target i at time t.

Graph Topology: A directed graph topology G = (T , E) is embedded into the

mission space such that the targets are represented by the graph vertices T =

{1, 2, . . . ,M} and the inter-target trajectory segments are represented by the graph

edges E ⊆ {(i, j) : i, j ∈ T }. Recall that each trajectory segment represented by an

edge (i, j) ∈ E is assigned a (predefined) value ρij ∈ R>0 representing the travel-time

an agent spends to travel from target i to j. Similar to before, based on E , the

neighbor-set and the neighborhood of a target i ∈ T are defined respectively as

Ni , {j : (i, j) ∈ E} and N̄i , Ni ∪ {i}. (5.2)

Similar to the previous chapter, the analysis presented in this chapter is indepen-

dent of the agent motion dynamic model which ultimately determines the values of ρij

for edges (i, j) ∈ E . However, note that the ongoing research extends this model by
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considering ρij as functions of controllable motion variables (e.g., speed, acceleration)

(Welikala and Cassandras, 2021d).

Objective: The objective is to minimize the mean system uncertainty JT over a

finite time interval [0, T ] (identical to (4.2)):

JT ,
1

T

T∫

0

∑

i∈T

Ri(t)dt, (5.3)

by controlling the motion of the team of agents through a suitable set of feasible

distributed controllers described next.

Control: Note that whenever an agent a ∈ A is ready to leave a target i ∈ T ,

its next-visit target j is selected from Ni. Next, the agent travels on the trajectory

segment (i, j) ∈ E to arrive at target j spending a travel-time ρij. Subsequently, it

selects a dwell-time τj ∈ R≥0 to spend at target j (which contributes to decreasing

Rj(t)), and then makes another next-visit decision.

Therefore, in a PMN problem, the control exerted on an agent consists of a se-

quence of next-visit targets j ∈ Ni and dwell-times τi ∈ R≥0. The goal is to determine

the decisions (τi, j) for any agent residing at any target i at any time t ∈ [0, T ] which

are collectively optimal in the sense of minimizing (5.3). As noted in the previous

chapter, this is a challenging task due to the nature of the feasible control space.

Receding Horizon Control: As opposed to the proposed parametric controller

in the previous chapter, this chapter proposes an Event-Driven Receding Horizon

Controller (RHC) for each agent a ∈ A. As introduced in Section 1.3.4, an event-

driven receding horizon controller solves an optimization problem of the form (5.3)

but limited to a prespecified planning horizon whenever an event is observed; the

resulting (optimal) control is then executed over a generally shorter action horizon



120

defined by the occurrence of the next event of interest to the controller. This process

is iteratively repeated in an event-driven fashion.

In the PMN problem, the aim of the RHC, when invoked at time t for an agent

residing at target i ∈ T , is to determine the immediate next-visit target j ∈ Ni

and dwell-times at targets i and j (i.e., τi and τj, respectively). These three deci-

sions jointly form a control Ui(t), and its optimal value is determined by solving an

optimization problem of the form:

U∗
i (t) = argmin

Ui(t)∈U(t)

[

JH(Xi(t), Ui(t);H) + ĴH(Xi(t+H))
]

, (5.4)

where Xi(t) is the current local state and U(t) is the feasible control set at t (whose

exact definition will be provided later). The term JH(Xi(t), Ui(t);H) is the immediate

cost over the planning horizon [t, t+H] and ĴH(Xi(t+H)) is an estimate of the future

cost evaluated at the end of the planning horizon t+H.

In prior work (Li and Cassandras, 2006; Khazaeni and Cassandras, 2018b; Chen

and Cassandras, 2020b), the value of the planning horizon length H is selected ex-

ogenously. However, in this work, it is included into the optimization problem and

the ĴH(Xi(t + H)) term is ignored. Thus, by optimizing the planning horizon, the

proposing RHC approach compensates for the complexity and intrinsic inaccuracy of

the ĴH(Xi(t+H)) term whose evaluation requires global information. It is important

to point out that the proposed RHC approach is distributed and on-line as it allows

each agent to separately solve (5.4) using only the current local state information.

5.1.1 Preliminary Results

According to (5.1), the target state Ri(t), i ∈ T , is piece-wise linear and its gradient

Ṙi(t) changes only when one of the following (strictly local to target i) events occurs:

(i) An agent arrival at i, (ii) An event [Ri → 0+], or (iii) An agent departure from i.
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Let the occurrence of such events associated with target i be indexed by k = 1, 2, . . .

and the respective event occurrence times be denoted by tki with t0i = 0. Then,

Ṙi(t) = Ṙi(t
k
i ), ∀t ∈ [tki , t

k+1
i ). (5.5)

As pointed out in the previous chapter, allowing overlapping dwell intervals at

some target (also referred to as “simultaneous target sharing”) is known to lead to

solutions with poor performance levels (clearly, this issue only applies if N > 1). This

observation motivates enforcing a constraint on the controller to ensure:

Ni(t) ∈ {0, 1}, ∀t ∈ [0, T ], ∀i ∈ T . (5.6)

If the control constraint (5.6) is enforced, it follows from (5.1) and (5.5) that

the sequence {Ṙi(t
k
i )}, k = 0, 1, 2, . . ., is a cyclic order of three elements: {−(Bi −

Ai), 0, Ai}. Next, in order to ensure that each agent is capable of enforcing the event

[Ri → 0+] at any i ∈ T , the following simple stability condition is assumed.

Assumption 5.1. Target uncertainty rate parameters Ai and Bi of each target i ∈ T
satisfy 0 ≤ Ai < Bi.

Note that this condition is less restrictive compared to the condition:
∑m

i=1
Ai

Bi
≤ 1

(where m ≥ 2) assumed in Theorem 4.1 in the previous chapter.

Decomposition of the Objective Function: Let the contribution of target i to

the objective JT in (5.3) during a time period [t0, t1) be
1
T
Ji(t0, t1) where

Ji(t0, t1) ,

t1∫

t0

Ri(t)dt.

Theorem 5.1 provides a target-wise and temporal decomposition of the main objective

function JT in (5.3) based on Ji(t0, t1).
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Theorem 5.1. The contribution to the main objective JT by target i ∈ T during a

time period [t0, t1) ⊆ [tki , t
k+1
i ) for some k ∈ Z≥0 is 1

T
Ji(t0, t1), where,

Ji(t0, t1) =
(t1 − t0)

2

[

2Ri(t0) + Ṙi(t0)(t1 − t0)
]

. (5.7)

Proof. See Appendix A.5.1.

A simple corollary of Theorem 5.1 is to extend it to any interval [t0, t1) which may

include one or more event times tki .

Corollary 5.1. Let t0 = tki be the time when an agent arrived at target i ∈ T , followed

by an [Ri → 0+] event at t = tk+1
i and a departure event at t = tk+2

i . Then, for any

t1 such that tk+2
i ≤ t1 ≤ tk+3

i ,

Ji(t0, t1) =
u0i
2

[
2Ri(t0)− (Bi − Ai)u

0
i

]
+
u1i
2

[
Aiu

1
i

]
, (5.8)

where u0i = tk+1
i − t0 and u1i = t1 − tk+2

i .

Proof: The result immediately follows by applying Theorem 5.1 to the three

inter-event intervals [t0, t
k+1
i ), [tk+1

i , tk+2
i ) and [tk+2

i , t1) and then using the Ṙi values

stated earlier and the fact that Ri(t
k+1
i ) = Ri(t

k+2
i ) = 0. �

Local Objective Function: The local objective function of target i over a time

period [t0, t1) ⊆ [0, T ] is defined as

J̄i(t0, t1) ,
∑

j∈N̄i

Jj(t0, t1). (5.9)

The value of each Jj(t0, t1) term above is obtained through Theorem 5.1 and its exten-

sion in Corollary 5.1 if [t0, t1) includes additional events (where [t0, t1) is decomposed

into a sequence of corresponding inter-event time intervals).

In developing a distributed event-driven controller for an agent residing at some

target i ∈ T , it is reasonable to assume that this agent has access to any necessary
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local information from the neighborhood N̄i. Therefore, J̄i(t0, t1) can be evaluated

by this agent at any required (event-driven) time instant.

5.1.2 RHC Problem (RHCP) Formulation

Consider a situation where agent a ∈ A resides at target i ∈ T at some t ∈ [0, T ].

In the considered distributed setting, it is assumed that agent a is made aware of

only local events occurring in the neighborhood N̄i. As defined earlier, the control

Ui(t) consists of (i) the dwell-time τi at the current target i, (ii) the next-visit target

j ∈ Ni and (iii) the dwell-time τj at the selected next-visit target j. Moreover, note

that a dwell-time decision τi (or τj) can be divided into two interdependent decisions:

(i) the active time ui (or uj) when Ri(t) > 0 (Rj(t) > 0) and (ii) the inactive (or

idle) time vi (or vj) when Ri(t) = 0 (Rj(t) = 0), as shown in Fig. 5·1. Thus,

agent a has to optimally choose five decision variables which form the control vector

Ui(t) , [ui(t), vi(t), j(t), uj(t), vj(t)]. Note that j(t) is discrete while the remaining

four components of Ui(t) are real-valued. The time argument of each component of

Ui(t) is omitted henceforth for notational convenience.

Figure 5·1: Event timeline and control decisions under RHC.

Fixed Planning Horizon: Recalling (5.4), the RHC depends on the planning

horizon H ∈ R≥0 which is normally viewed as a fixed control parameter. Intuitively,

selectingH ≥ max(i,j)∈E ρij ensures that all agents will consider traveling to all of their
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current neighboring targets. However, note that t+H is constrained by t+H ≤ T ;

hence, if this is violated, the planning horizon should be truncated to be H = T − t.

In (5.4), let the current local state be Xi(t) = {Rm(t) : m ∈ N̄i} and decompose

the control Ui(t) into its real-valued components and its discrete component (omitting

time arguments) as Uij , [ui, vi, uj, vj] ∈ U and j ∈ Ni, respectively. Now, if the

objective function JH(·) in (5.4) is chosen to reflect the contribution to the main

objective JT in (5.3) by the targets in the neighborhood N̄i over the fixed time period

[t, t+H] (which is provided by (5.9) and Theorem 5.1), then,

JH(Xi(t), Uij;H) =
1

H
J̄i(t, t+H) with

U = {U : U ∈ R
4, U ≥ 0, |U |+ ρij = H}.

(5.10)

The feasible control set U (of (5.4)) is such that ui, vi, uj, and vj are non-negative

real variables. Note that the notation | · | is used to represent the 1-norm or the

cardinality operator when the argument is respectively a vector or a set.

In this setting, the optimal controls are obtained by solving the following set of

optimization problems, henceforth called the RHC Problem (RHCP):

U∗
ij = argmin

Uij∈U
JH(Xi(t), Uij;H); ∀j ∈ Ni and (5.11)

j∗ = argmin
j∈Ni

JH(Xi(t), U
∗
ij;H). (5.12)

Observe that (5.11) involves solving |Ni| optimization problems, one for each j ∈ Ni.

Then, (5.12) determines j∗ through a simple numerical comparison (similar to a

greedy step). Therefore, the final optimal decision variables are U∗
ij∗ and j∗.

According to (5.10), the choices for the four control variables in Uij are restricted

by Uij ∈ U such that |Uij|+ ρij = H (see also Fig.5·1). Therefore, the selection of H

directly affects the RHCP’s optimal solution. For example, if H is very large (or very

small), clearly the optimal decisions U∗
ij∗ and j

∗ are not globally optimal. Attempting
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to find the optimal choice of H without compromising the on-line distributed nature

of the proposed RHC solution is a challenging task.

Variable Planning Horizon: This problem is addressed by introducing a variable

horizon w defined as:

w , |Uij|+ ρij = ui + vi + ρij + uj + vj, (5.13)

and replacing H in (5.10) by w while, at the same time, imposing the constraint w ≤
H. It is important to observe that w defined in (5.13) is a function of ui(t),vi(t),uj(t)

and vj(t). However, for notational convenience, this dependence is not shown explic-

itly. It is also important to note that now the value of H is not critical as long as it

is sufficiently large; for instance, it can be chosen to be T − t. Therefore, the solution

of the RHCP (5.11)-(5.12) can now be obtained without any tunable parameters,

making the resulting controller parameter-free. The objective function JH and the

feasible control set U in the RHCP are now chosen as

JH(Xi(t), Uij;H) =
1

w
J̄i(t, t+ w) and

U = {U : U ∈ R
4, U ≥ 0, |U |+ ρij ≤ H}.

(5.14)

Therefore, this novel RHCP formulation allows the simultaneously determination of

the optimal planning horizon size w∗ in terms of the optimal control U∗
i (t) as

w∗ = |U∗
ij∗ |+ ρij∗ . (5.15)

On the other hand, this incorporation of w in (5.14), as opposed to (5.10), makes the

denominator term of the objective function control-dependent and introduces new

technical challenges that will be addressed in the rest of this chapter. To accomplish

this, structural properties of (5.14) are exploited and it is shown that the RHCP in
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(5.11) can be solved analytically and efficiently to obtain its globally optimal solution.

Event-Driven Action Horizon: As in all receding horizon controllers, the solu-

tion of each optimization problem over a certain planning horizon is executed only

over a shorter action horizon h. In the distributed RHC setting, the value of h is de-

termined by the first event that the agent observes after t, the time instant when the

agent last solved the RHCP. Thus, in contrast to time-driven receding horizon con-

trol, the RHC solution is updated whenever asynchronous events occur; this prevents

unnecessary steps to re-solve the RHCP (5.11)-(5.12) with (5.14).

Figure 5·2 shows an example of three consecutive action horizons (labeled h1, h2

and h3) observed by an agent a after an event at t triggers the solution of the RHCP.

Note that w∗
1, w

∗
2, w

∗
3 represent the three optimal planning horizon sizes (i.e., w∗ in

(5.15)) determined at each respective local event time t, t+ h1 and t+ h1 + h2.

Figure 5·2: Event driven receding horizon control approach.

In general, the determination of the action horizon h may be controllable or un-

controlled. The latter case occurs as a result of random events in the system (if such

events are part of the setting), while the former corresponds to the occurrence of any

one event whose occurrence results from an agent solving a RHCP at some earlier

time. Next, the three controllable events associated with an agent when it resides at

target i are defined. Each of these events defines the action horizon h following the

solution of a RHCP by this agent at some time t ∈ [0, T ]:
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1. Event [h → u∗i ]: This event occurs at time t + u∗i (t). If Ri(t + u∗i (t)) = 0, this

event coincides with an [Ri → 0+] event. Otherwise, Ri(t + u∗i (t)) > 0 implies that

the solution of the associated RHCP dictates ending the active time at target i before

the [Ri → 0+] event. Hence, in that case, by definition, no inactive time may follow,

i.e., v∗i (t) = 0, and [h→ u∗i ] coincides with a departure event from target i.

2. Event [h → v∗i ]: This event occurs at time t+ v∗i (t). It is only feasible after an

event [h → u∗i ] has occurred, including the possibility that u∗i (t) = 0 in the RHCP

solution determined at t. Clearly, this event always coincides with an agent departure

event from i.

3. Event [h → ρij∗ ]: This event occurs at time t + ρij∗(t). It is only feasible after

an event [h → u∗i ] or [h → v∗i ] has occurred, including the possibility that u∗i (t) = 0

and v∗i (t) = 0 in the RHCP solution determined at t. Clearly, this coincides with an

arrival event at target j∗(t) as determined by the RHCP solution obtained at time t.

Observe that these events are mutually exclusive, i.e., only one is feasible at any

one time. In addition, there are uncontrollable events associated with neighboring

targets in Ni other than target i. In particular, two additional events are defined that

may occur at any neighbor j ∈ Ni and trigger an event at the agent residing at target

i. These events have been designed to enforce the no-simultaneous-target-sharing

policy (the control constraint (5.6)) and apply only to multi-agent PMN problems.

A target j ∈ T is said to be covered at time t if it already has a residing agent or

if an agent is en route to visit it from a neighboring target in Nj. Since neighboring

targets communicate with each other, this information can be determined at any

target in N̄j at any time t. Therefore, an agent a ∈ A residing at target i can prevent

target sharing at target j ∈ Ni by simply modifying the neighbor set Ni used in the

RHCP solved at time t to exclude all covered targets. Here, Ni(t) is used to indicate
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a time-varying neighborhood of target i. Then, if target j becomes covered at time t,

Ni(t) = Ni(t
−)\{j}, (5.16)

is set. The effect of this modification is clear if a RHCP solved by an agent at target

i at some time t leads to a next-visit solution j∗ ∈ Ni(t) and if this is followed by

an event at t′ > t causing target j∗ to become covered, then Ni(t
′) = Ni(t)\{j∗}

and the agent at target i (whether active or inactive) must re-solve the RHCP at

t′ with the new Ni(t
′). Note that as soon as an agent a is en route to j∗, then j∗

becomes covered, hence preventing any other agent from visiting j∗ prior to agent a’s

subsequent departure from j∗.

Based on this discussion, the following two additional neighbor-induced local events

are defined that are triggered at j ∈ Ni and affecting an agent a residing at target i:

4. Covering Event Cj, j ∈ Ni: This event causes Ni(t) to be modified to

Ni(t
−)\{j}.

5. Uncovering Event C̄j, j ∈ Ni: This event causes Ni(t) to be modified to

Ni(t
−) ∪ {j}.
If one of these two events takes place while an agent residing at target i is either

active or inactive, then the RHCP (5.11)-(5.12) is re-solved (replacing Ni with Ni(t))

to account for the updated Ni(t).

Three Forms of the RHCP: It is clear from this discussion that the exact form

of the RHCP to be solved at time t depends on the event that triggered the end of

the previous action horizon (i.e., the event occurring at time t) and the target state

Ri(t). In particular, there are three possible forms of the RHCP (5.11)-(5.12):
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- RHCP1: This problem is solved by an agent arriving at target i, i.e., when an

event [h → ρki] occurs at time t for any k ∈ Ni(t). The solution U∗
i (t) includes

u∗i (t) ≥ 0, representing the amount of time that the agent should be active at target

i. This problem is also solved while the agent is active at target i (i.e., while Ri(t) > 0)

if a Cj or C̄j event occurs for any j ∈ Ni(t).

- RHCP2: This problem is solved by an agent residing at target i when an event

[h→ u∗i ] occurs at time t with Ri(t) = 0. This problem is also solved while the agent

is inactive (i.e., Ri(t) = 0) at i if a Cj or C̄j event occurs for any j ∈ Ni(t). In both

cases, the solution U∗
i (t) is now constrained to include u∗i (t) = 0 by default, since the

agent can no longer be active at target i.

- RHCP3: This problem is solved by an agent departing from target i and may

be triggered by one of two events: (i) Event [h → u∗i ] at time t with Ri(t) > 0.

The solution U∗
i (t) is constrained to include u∗i (t) = 0 by default; in addition, it is

constrained to have v∗i (t) = 0 since the agent ceases being active while Ri(t) > 0,

implying that it must immediately depart from target i without becoming inactive.

(ii) Event [h→ v∗i ] at time t, implying that the agent is no longer inactive and must

depart from target i. As in case (i), the solution U∗
i (t) is constrained to have both

u∗i (t) = 0 and v∗i (t) = 0 by default.

Complexity of RHCPs: As will be shown next, all three problem forms of the

RHCP discussed above can be solved to obtain the corresponding globally optimal

solutions in closed form. Therefore, their complexity is constant and the overall RHC

complexity scales linearly with the number of events occurring in [0, T ].
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5.2 Solving Event-Driven RHCPs

This section presents the solutions to the identified three forms of RHCPs discussed

above. Due to its relative simplicity, RHCP3 is considered first.

5.2.1 Solution of RHCP3

Recall that an agent solves RHCP3 when it is ready to leave the target where it

resides. Therefore, u∗i (t) = 0 and v∗i (t) = 0 by default and Uij in (5.11) is reduced

to Uij = [uj, vj] with Ui(t) = [j, uj, vj]. The obtained j∗(t) directly defines the

next destination to visit. Clearly, RHCP3 plays a crucial role in defining agent

trajectories in terms of targets visited. The variable horizon w (5.13) for this case is

w = ρij + uj + vj and, from (5.14), w is constrained so that ρij ≤ w ≤ H. Therefore,

ρij ≤ H is assumed henceforth in this section.

Constraints: First, an upper bound for the active time control variable uj is iden-

tified. This is defined by the the maximum active time possible at target j, which is

given by Rj(t+ ρij + uj) = 0. Denoting this bound by uBj , it follows from (5.1) that

uBj (t) ,
Rj(t+ ρij)

Bj − Aj
=
Rj(t) + Ajρij
Bj − Aj

. (5.17)

Note that the dependence of uBj (t) on t captures its dependence on the initial condition

Rj(t); for notational simplicity, this time dependence is henceforth omitted. A tighter

upper-bound than uBj on uj, as well as an upper-bound on vj, denoted respectively

by ūj and v̄j are imposed by the variable horizon constraint w = uj + vj + ρij ≤ H:

ūj , min{uBj , H − ρij} and v̄j , H − (ρij + uBj ). (5.18)

Moreover, in order to have a positive inactive time vj > 0 a necessary condition is

that it first spends the maximum active time possible uj = uBj . Hence, it is clear that
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any feasible pair Uij = [uj, vj] ∈ U in (5.11) belongs to one of the two constraint sets:

U1 = {0 ≤ uj ≤ ūj, vj = 0} or U2 = {uj = uBj , 0 ≤ vj ≤ v̄j}, (5.19)

where uBj and ūj, v̄j are given in (5.17) and (5.18), respectively.

Objective: Following from (5.14), the objective function corresponding toRHCP3

is taken as JH(Uij) = JH(Xi(t), [0, 0, Uij];H) = 1
w
J̄i(t, t + w). To obtain an exact

expression for JH(Uij), first the local objective function J̄i is decomposed using (5.9):

J̄i = Jj +
∑

m∈N̄i\{j}

Jm. (5.20)

Considering the state trajectories shown in Fig. 5·3 for the case where agent a goes

from target i to target j with decisions uj and vj, both Jj and Jm terms in (5.20) are

evaluated for the period [t, t+ w) using Theorem 5.1 as

Jj =
ρij
T

[2Rj(t) + Ajρij] +
uj
T
[2(Rj(t) + Ajρij)− (Bj − Aj)uj],

Jm =
(ρij + uj + vj)

T
[2Rm(t) + Am(ρij + uj + vj)].

Combining these two results and substituting them in (5.20) gives

JH(uj, vj) =
C1u

2
j + C2v

2
j + C3ujvj + C4uj + C5vj + C6

ρij + uj + vj
, (5.21)

where C1 =
1
2

[
Ā− Bj

]
, C2 =

Āj

2
, C3 = Āj, C4 =

[
R̄(t) + Āρij

]
, C5 =

[
R̄j(t) + Ājρij

]
,

C6 =
ρij
2

[
2R̄(t) + Āρij

]
and

Āij =
∑

m∈Ni\{j}

Am, Āi = Āij + Aj, Āj = Āij + Ai, Ā = Āij + Ai + Aj,

R̄ij(t) =
∑

m∈Ni\{j}

Rm(t), R̄i = R̄ij +Rj, R̄j = R̄ij +Ri, R̄ = R̄ij +Ri +Rj.

(5.22)
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Note that Ci ≥ 0 for all i except C1 which is non-negative only when Bj ≤ Ā.

Figure 5·3: State trajectories during [t, t+ w) for the RHCP3.

Solving RHCP3 for Optimal Control (u∗j , v
∗
j ): Based on the first step of RHCP

(5.11), (u∗j , v
∗
j ) is given by

(u∗j , v
∗
j ) = argmin

(uj ,vj)

JH(uj, vj), (5.23)

where (uj, vj) ∈ U1 or (uj, vj) ∈ U2 as in (5.19).

- Case 1: (uj, vj) ∈ U1 = {0 ≤ uj ≤ ūj, vj = 0}. Clearly, v∗j = 0 and (5.23) takes

the form:

u∗j = argmin
0≤uj≤ūj

JH(uj, 0). (5.24)

Lemma 5.1. The unique optimal solution of (5.24) is

u∗j =







ūj if ūj ≥ u#j and Ā < Bj

0 otherwise,
(5.25)

where

u#j =
Āρij
Bi − Ā

. (5.26)

Proof. See Appendix A.5.2.

Note that u#j in (5.26) is known to the agent and it can be thought of as a break-

even point for uj, where if ūj allows uj to increase beyond the u#j value, it is always

optimal to do so by choosing the extreme point u∗j = ūj.



133

Remark 5.1. When H is sufficiently large, according to (5.19) and (5.17), ūj =

uBj =
Rj(t)+Ajρij
Bj−Aj

. Therefore, the condition ūj ≥ u#j used in (5.24) becomes explicitly

dependent on the target state Rj(t):

u∗j =







ūj if Rj(t) ≥ ρij

[
Bj−Aj

Bj−Ā
· Ā− Aj

]

and Ā < Bj

0 otherwise.
(5.27)

- Case 2: (uj, vj) ∈ U2 = {uj = uBj , 0 ≤ vj ≤ v̄j}. Obviously, u∗j = uBj and (5.23)

takes the form:

v∗j = argmin
0≤vj≤v̄j

JH(u
B
j , vj). (5.28)

Lemma 5.2. The unique optimal solution of (5.28) is

v∗j =







0 if Ā ≥ Bj

[

1− ρ2ij

(ρij+uBj )2

]

min{v#j , v̄j} otherwise,
(5.29)

where

v#j =

√

(Bj − Aj)(ρij + uBj )
2 − Bjρ2ij

Āj
− (ρij + uBj ). (5.30)

Proof. See Appendix A.5.3.

Similar to u#j in (5.26), v#j in (5.30) is completely known to the agent. However,

unlike u#j , v
#
j represents an optimal choice available for vj. Therefore, whenever the

constraints on vj in (5.28) (i.e., 0 ≤ vj ≤ v̄j) allow it, v∗j = v#j should be chosen.

Remark 5.2. The terms uBj and v̄j involved in (5.29) can be simplified (using (5.17)

and (5.19) respectively) to illustrate the state dependent nature of v∗j as follows:

v∗j =







0 if Ā ≥ Bj or Rj(t) ≤
[
ρij(Bj−Aj)

√
Bj√

Bj−Ā
− ρijBj

]

v#j else if Rj(t) ≤
[√

(Bj − Aj)(H2Āj + ρ2ijBj)− ρijBj

]

v̄j otherwise.

(5.31)
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Theorem 5.2. The optimal solution of (5.23) is

(u∗j , v
∗
j ) =







(0, 0) if u#j > ūj or Ā ≥ Bj

(ūj, 0) else if ūj < uBj

(uBj , 0) else if Bj > Ā ≥ Bj

[

1− ρ2ij

(ρij+uBj )2

]

(uBj , v
#
j ) else if v#j ≤ v̄j

(uBj , v̄j) otherwise,

(5.32)

where u#j is given in (5.26) and v#j is given in (5.30).

Proof. Follows by combining Lemmas 5.1 and 5.2.

The above theorem implies that whenever: (i) H is sufficiently large (ensuring

ūj = uBj in (5.18)), (ii) the sensing capabilities are high enough to ensure Ā < Bj and

(iii) target uncertainty Rj(t) exceeds a known threshold (ensuring u#j < ūj = uBj ),

it is optimal to select u∗j = uBj , hence planning ahead to drive Rj(t) to zero. This

conclusion is in line with Theorem 1 in (Zhou et al., 2019).

Solving for Optimal Next Destination j∗: Using Theorem 5.2, when agent a

is ready to leave target i at some local event time t, it can compute the optimal

trajectory costs JH(u
∗
j , v

∗
j ) for all j ∈ Ni. Based on the second step of the RHCP

(5.12), the optimal neighbor to visit next is j∗ where j∗ = argmin
j∈Ni

JH(u
∗
j , v

∗
j ).

Thus, upon solving RHCP3 agent a departs from target i at time t and follows

the path (i, j∗) ∈ E to visit target j∗. This optimal control will be updated upon the

occurrence of the next event, which, in this case, will be the arrival event of the agent

at j∗, triggering the solution of an instance of RHCP1 at j∗.

5.2.2 Solution of RHCP2

An agent a residing in target i has to solve RHCP2 only when an observed event

is: (i) [Ri → 0+] or (ii) a neighbor induced event Cj or C̄j, j ∈ Ni, while Ri(t) = 0.
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Hence, u∗i (t) = 0 by default and Ui(t) = [vi, j, uj, vj] with Uij = [vi, uj, vj] in (5.11).

The resulting v∗i defines the remaining inactive time at target i until the next local

event. The variable horizon w in (5.13) for this case is w = vi + ρij + uj + vj.

Constraints: Following the previously used notation, the maximal possible active

time at target j forms an upper-bound to the control variable uj given by

uBj (vi) =
Rj(t+ vi + ρij)

Bj − Aj
=
Rj(t) + Ajρij
Bj − Aj

+
Aj

Bj − Aj
· vi. (5.33)

Note that due to the inclusion of vi in RHCP2 (compared to RHCP3), uBj is

now dependent on vi (see (5.17)). Based on the same arguments as in the analysis of

RHCP3: (i) to spend a positive inactive time at target j, the agent has to first spend

the maximum active time possible uBj (vi), and (ii) the variable horizon is subject to

w ≤ H, it is clear that any feasible Uij = [vi, uj, vj] ∈ U in (5.11) for RHCP2 should

belong to one of the two constraint sets:

U1 = {0 ≤ vi ≤ v̄i(uj, vj), 0 ≤ uj ≤ ūj(vi), vj = 0},

U2 = {0 ≤ vi ≤ v̄i(uj, vj), uj = uBj (vi), 0 ≤ vj ≤ v̄j(vi)},
(5.34)

where, uBj (vi) is given in (5.33) and

v̄i(uj, vj) = H − (ρij + uj + vj),

ūj(vi) = min{uBj (vi), H − (vi + ρij)} and v̄j(vi) = H − (vi + ρij + uBj (vi)).

Similar to (5.18), ūj and v̄j respectively represent the limiting values of active and

inactive times at j. Also, v̄i is the upper bound to the inactive time at i. However, in

contrast to (5.18), these three quantities are control-dependent in (5.34). Note also

that in (5.34), under U1, v̄i(uj, vj) = v̄i(uj, 0) and under U2, v̄i(uj, vj) = v̄i(u
B
j (vi), vj).
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Objective: Following from (5.14), the objective function corresponding toRHCP2

is JH(Uij) = JH(Xi(t), [0, Uij];H) = 1
w
J̄i(t, t + w). To obtain an explicit expression

for JH(Uij), J̄i in (5.9) is decomposed as,

J̄i = Ji + Jj +
∑

m∈Ni\{j}

Jm. (5.35)

Considering the trajectories shown in Fig. 5·4 for this case, the three terms Ji, Jj and

Jm in (5.35) are evaluated for the period [t, t+ w) using Theorem 5.1 as

Ji =
Ai(ρij + uj + vj)

2

2

Jj =
(vi + ρij)

2
[2Rj(t) + Aj(vi + ρij)] +

uj
2
[2(Rj(t) + Aj(vi + ρij))− (Bj − Aj)uj]

Jm =
(vi + ρij + uj + vj)

2
[2Rm(t) + Am(vi + ρij + uj + vj)]

Figure 5·4: State trajectories of targets in N̄i during [t, t+ w).

Combining these results and substituting them in (5.35) gives the complete ob-

jective function JH(Uij) as

JH(vi, uj, vj) =






C1v
2
i + C2u

2
j + C3v

2
j + C4viuj + C5vivj

+ C6ujvj + C7vi + C8uj + C9vj + C10






vi + ρij + uj + vj
,

(5.36)

where (see also (5.22)) C1 = Āi

2
, C2 =

Ā−Bj

2
, C3 =

Āj

2
, C4 = Āi, C5 = Āij, C6 =

Āj, C7 =
[
R̄i(t) + Āiρij

]
, C8 =

[
R̄i(t) + Āρij

]
, C9 =

[
R̄ij(t) + Ājρij

]
and C10 =

ρij
2

[
2R̄i(t) + Āρij

]
. Note that Ci ≥ 0, ∀i except for C2, where C2 ≥ 0 ⇐⇒ Ā ≥ Bj.
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Solving the RHCP2 for Optimal Control (v∗i , u
∗
j , v

∗
j ): Based on the first step

of (5.11), the optimal controls for RHCP2 are determined by

(v∗i , u
∗
j , v

∗
j ) = argmin

(vi,uj ,vj)

JH(vi, uj, vj), (5.37)

where (vi, uj, vj) ∈ U1 or (vi, uj, vj) ∈ U2 as in (5.34).

- Case 1: (vi, uj, vj) ∈ U1 in (5.34): Then, v∗j = 0 and (5.37) takes the form:

(v∗i , u
∗
j) = argmin

(vi,uj)

JH(vi, uj, 0)

vi ≥ 0, 0 ≤ uj ≤ uBj (vi),

vi + uj ≤ H − ρij.

(5.38)

The above constraints follow from (5.34) and the relationships:

vi ≤ v̄i(uj, 0) ⇐⇒ vi ≤ H − (ρij + uj) and

uj ≤ ūj(vi) ⇐⇒ uj ≤ uBj (vi) & uj ≤ H − (vi + ρij).

Note that uBj (vi) (5.33) is linear in vi. Prior to presenting the approach for solving

(5.38), the second sub-problem of (5.37) based on U2 (5.34) is formulated next.

- Case 2: (vi, uj, vj) ∈ U2 in (5.34): Then, u∗j = uBj (v
∗
i ) and (5.37) takes the form:

(v∗i , v
∗
j ) = argmin

(vi,vj)

JH(vi, u
B
j (vi), vj)

vi ≥ 0, vj ≥ 0,

vi + uBj (vi) + vj ≤ H − ρij.

(5.39)
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The constraints in (5.39) follow from (5.34) and the relationships:

vi ≤ v̄i(u
B
j (vi), vj) ⇐⇒ vi ≤ H − (ρij + uBj (vi) + vj) and

vj ≤ v̄j(vi) ⇐⇒ vj ≤ H − (vi + ρij + uBj (vi)).

- Combined Result: The two optimization problems (5.38) and (5.39) belong to

the class of constrained bi-variate rational function optimization problems (RFOPs)

in (D.8) discussed in Appendix D.1. Specifically, Appendix D.1 presents a computa-

tionally efficient, analytical procedure for obtaining the globally optimal solution of

such RFOPs. As will be shown in the rest of this paper, all remaining problems that

need to be solved belong to this class of RFOPs.

To provide an example, note that (5.38) is a special case of (D.8) using x :=

vi, y := uj, H(x, y) := JH(vi, uj, 0), P :=
Aj

Bj−Aj
, L :=

Rj(t)+Ajρij
Bj−Aj

, Q := 1, M :=

H − ρij and N := ∞. Similarly, (5.39) is also a special case of (D.8).

The main optimization problem (5.37) is solved by individually solving (5.38) and

(5.39) and then simply comparing their optimal objective function values.

Solving for Optimal (Planned) Next Destination j∗: The second step of

RHCP2 (i.e., (5.12)) is to choose the optimal neighbor j ∈ Ni according to j∗ =

argmin
j∈Ni

JH(v
∗
i , u

∗
j , v

∗
j ). This step requires the objective value of the optimal solution

U∗
ij = [v∗i , u

∗
j , v

∗
j ] obtained for each j ∈ Ni (in (5.37)). Now, v∗i taken from U∗

ij∗ defines

the inactive time that the agent should spend at current target i starting from the

current time t until the next local event. This next event is either: (i) [h→ v∗i ] or (ii) a

neighbor-induced Cj or C̄j event for some j ∈ Ni. Depending on this event, the agent

will have to subsequently solve an instance of RHCP3 or RHCP2, respectively.
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5.2.3 Solution of RHCP1

An agent a residing at target i has to solve RHCP1 only when an observed event

is: (i) agent a’s arrival at target i, or (ii) a neighbor induced event (i.e., Cj or C̄j for

some j ∈ Ni) while Ri(t) > 0. Therefore, RHCP1 involves all the decision variables

Uij , [ui, vi, uj, vj] and j included in (5.14). Upon solving RHCP1, the obtained u∗i

gives the active time remaining to be spent at target i - until the next local event

occurs. The variable horizon w for this case is w = ui+ vi+ρij+uj+ vj, as in (5.13).

Constraints: Following the previously used notation, the maximum possible active

times at targets i and j are respectively denoted by uBi and uBj where

uBi =
Ri(t)

Bi − Ai
and uBj (ui, vi) =

Rj(t) + Ajρij
Bj − Aj

+
Aj

Bj − Aj
· (ui + vi). (5.40)

Note that uBj is now dependent on the control variables ui and vi. Based on the same

arguments as in the analysis of RHCP2: (i) to spend a positive inactive time at

any target, the agent should spend the maximum possible active time at that target,

and (ii) the variable horizon is subject to w ≤ H. Thus, any feasible (ui, vi, uj, vj) in

(5.11) belongs to one of the four constraint set pairs: (Uik,Ujl), k, l ∈ {1, 2} where

Ui1 = {0 ≤ ui ≤ ūi(uj, vj), vi = 0}, Ui2 = {ui = uBi , 0 ≤ vi ≤ v̄i(uj, vj)},

Uj1 = {0 ≤ uj ≤ ūj(ui, vi), vj = 0}, Uj2 = {uj = uBj (ui, vi), 0 ≤ vj ≤ v̄j(ui, vi)},
(5.41)

with uBi and uBj (ui, vi) given in (5.40) and

ūi(uj, vj) = min{uBi , H − (ρij + uj + vj)}, v̄i(uj, vj) = H − (uBi + ρij + uj + vj),

ūj(ui, vi) = min{uBj (ui, vi), H − (ui + vi + ρij)},

v̄j(ui, vi) = H − (ui + vi + ρij + uBj (ui, vi)).

(5.42)
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These are similar to (5.19) and (5.34), but, unlike (5.19) or (5.34), each of these four

limiting values are now dependent on two control decisions.

Objective: According to (5.14), the objective function corresponding to RHCP1

is JH(Uij) = JH(Xi(t), Uij;H) = 1
w
J̄i(t, t + w). To obtain an explicit expression for

JH(Uij), J̄i in (5.9) is decomposed as in (5.35) and the three terms Ji, Jj and Jm

are evaluated for trajectories such that the agent moves from target i to j following

decisions [ui, vi, uj, vj] during the period [t, t + w). With the aid of Fig. 5·5 and

Theorem 5.1 it can be shown that:

Ji =
ui
2
[2Ri(t)− (Bi − Ai)ui]

+
(ρij + uj + vj)

2
[2(Ri(t)− (Bi − Ai)ui) + Ai(ρij + uj + vj)],

Jj =
(ui + vi + ρij)

2
[2Rj(t) + Aj(ui + vi + ρij)]

+
uj
2
[2(Rj(t) + Aj(ui + vi + ρij))− (Bj − Aj)uj],

Jm =
(ui + vi + ρij + uj + vj)

2
[2Rm(t) + Am(ui + vi + ρij + uj + vj)].

Figure 5·5: State trajectories of targets in N̄i during [t, t+ w).

Combining the above three results and substituting them in (5.35) gives

JH(ui, vi, uj, vj) =









C1u
2
i + C2v

2
i + C3u

2
j + C4v

2
j + C5uivi

+ C6uiuj + C7uivj + C8viuj + C9vivj + C10ujvj

+ C11ui + C12vi + C13uj + C14vj + C15









ui + vi + ρij + uj + vj
,

(5.43)
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where C1 through C15 are known functions of Ā, Ai, Aj, Bi, Bj, ρij, R̄(t), Ri(t) and

Rj(t) (see also (5.22)). Their specific forms are omitted here but can be found in

(Welikala and Cassandras, 2020c).

Solving the RHCP1 for Optimal Control (u∗i , v
∗
i , u

∗
j , v

∗
j ): The first step of

RHCP1 (5.11) can be stated using (5.43) as

(u∗i , v
∗
i , u

∗
j , v

∗
j ) = argmin

(ui,vi,uj ,vj)

JH(ui, vi, uj, vj), (5.44)

where (ui, vi) ∈ Uik, (uj, vj) ∈ Ujl for k, l ∈ {1, 2} as in (5.41). There are four

different cases for this problem depending on which of the four constraint set pairs in

(5.41) is used.

- Case 1: (ui, vi) ∈ Ui1, (uj, vj) ∈ Uj1 in (5.41): Then, v∗i = 0, v∗j = 0 and (5.44)

takes the form:

(u∗i , u
∗
j) = argmin

(ui,uj)

JH(ui, 0, uj, 0)

0 ≤ ui ≤ uBi , 0 ≤ uj ≤ uBj (ui, 0),

ui + uj ≤ H − ρij.

(5.45)

The above constraints follow from (5.41) and the relationships:

ui ≤ ūi(uj, 0) ⇐⇒ ui ≤ uBi & ui ≤ H − (ρij + uj) and

uj ≤ ūj(ui, 0) ⇐⇒ uj ≤ uBj (ui, 0) & uj ≤ H − (ui + ρij).

Note that uBj (ui, 0) is linear and increasing with ui (see (5.40)). The remaining three

cases are as follows (details can be found in (Welikala and Cassandras, 2020c)):
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- Case 2: (ui, vi) ∈ Ui1, (uj, vj) ∈ Uj2 in (5.41): Then, v∗i = 0, u∗j = uBj (u
∗
i , 0) and

(5.44) takes the form:

(u∗i , v
∗
j ) = argmin

(ui,vj)

JH(ui, 0, u
B
j (ui, 0), vj)

0 ≤ ui ≤ uBi , vj ≥ 0,

ui + uBj (ui, 0) + vj ≤ H − ρij.

(5.46)

- Case 3: (ui, vi) ∈ Ui2, (uj, vj) ∈ Uj1 in (5.41): Then, u∗i = uBi , v
∗
j = 0 and (5.44)

takes the form:

(v∗i , u
∗
j) = argmin

(vi,uj)

JH(u
B
i , vi, uj, 0)

vi ≥ 0, 0 ≤ uj ≤ uBj (u
B
i , vi),

vi + uj ≤ H − (uBi + ρij).

(5.47)

Note that uBj (u
B
i , vi) is linear and increasing with vi (5.40).

- Case 4: (ui, vi) ∈ Ui2, (uj, vj) ∈ Uj2 in (5.41): Then, u∗i = uBi , u
∗
j = uBj (u

B
i , v

∗
i )

and (5.44) takes the form:

(v∗i , v
∗
j ) = argmin

(vi,vj)

JH(u
B
i , vi, u

B
j (u

B
i , vi), vj)

vi ≥ 0, vj ≥ 0,

vi + vj + uBj (u
B
i , vi) ≤ H − (uBi + ρij).

(5.48)

- Combined Result: The optimization problems (5.45), (5.46), (5.47) and (5.48)

belong to the same class of RFOPs in (D.8) discussed in Appendix D.1 (similar

to (5.38) and (5.39)). Therefore, each of these four problems are solved exploiting

the computationally efficient, analytical, and globally optimal solution presented in

Appendix D.1. To provide an example, note that (5.45) conforms to (D.8) using
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x := ui, y := uj, H(x, y) := JH(ui, 0, uj, 0), P :=
Aj

Bj−Aj
, L :=

Rj(t)+Ajρij
Bj−Aj

, Q := 1,

M := H − ρij, N := Ri(t)
Bi−Ai

.

The main optimization problem (5.44) is solved by individually solving (5.45)-

(5.48) and then simply comparing their optimal objective function values.

Solving for Optimal (Planned) Next Destination j∗: The second step of

RHCP1, same as (5.12), is to choose the optimal next neighbor j according to

j∗ = argmin
j∈Ni

JH(u
∗
i , v

∗
i , u

∗
j , v

∗
j ). This step requires the objective values corresponding

to the optimal solutions U∗
ij = [u∗i , v

∗
i , u

∗
j , v

∗
j ] for each j ∈ Ni in (5.44). Finally, recall

that u∗i within the optimal solution U∗
ij∗ defines the active time that the agent should

spend at current target i until the next local event occurs. This next event is either

(i) [h→ u∗i ] with Ri(t+ u∗i ) > 0, (ii) [h→ u∗i ] with Ri(t+ u∗i ) = 0, or (iii) a neighbor

induced Cj or C̄j event for some j ∈ Ni (while Ri > 0). Therefore, the agent will have

to subsequently solve an instance of RHCP3, RHCP2 or RHCP1 respectively.

5.3 Controller Enhancements

There are two reasons why the proposed distributed RHC approach cannot guarantee

a global minimum of (5.3). The first reason is that in order to operate in distributed

fashion, the future cost estimate term ĴH(Xi(t+H)) in (5.4) has been omitted and a

local objective function (5.9) has been defined for an agent at target i which reflects

the structure of (5.3) limited to the neighborhood of target i. In (5.9), all neighbor-

ing target states are equally weighted which does not take into account the specific

neighboring topology. In particular, an optimal next-visit target j∗ determined by

RHCP3 favors neighbors with smaller ρij and Rj(t) values. This can be alleviated

by adopting different weights in the targets j ∈ Ni included in (5.9).

The second reason also stems from the distributed nature of the RHC; the infor-

mation available to an agent located at target i has been limited to its neighborhood
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N̄i. One can expect that performance can be improved by considering an extended

neighborhood whereby additional information may become available to the agent.

In this section, these two issues are addressed. Specifically, the main focus is on

improving the formulation of RHCP3 as it involves the crucial next-visit decision

j∗, which highly affects the agent trajectories.

5.3.1 Using a Weighted Local Objective in RHCP3

The local objective function decomposition in (5.20) is generalized here by introducing

a weighted version of it as

J̄i = αJj + (1− α)
∑

m∈N̄i\{j}

Jm, (5.49)

where α ∈ [0, 1]. This approach is more effective as it can emphasize the contribution

to the global cost by the “neglected neighbor targets” m ∈ N̄i\{j} due to the choice

of target j ∈ Ni as the next-visit. The modified RHC approach that uses (5.49) is

referred to as the “RHCα method”. It should be noted that this modification has no

significant effect on the theoretical results presented in the previous sections.

Regarding desirable values of the weight α, α < 0.5 has been found to provide high

performing solutions in experiments. In order to extend the parameter-free nature of

the original RHC method to this RHCα method, α = 1
|N̄i|2

is used as a nominal choice,

so as to reduce the importance of target j based on the size of the neighborhood of

target i.

Lemma 5.3. If α = 0 is used in RHCα, the optimal next-visit target j∗ given by

RHCP3 (i.e., the solution to (5.12)) is

j∗ = argmin
j∈N̄i

[
(2R̄(t) + Āρij)− (2Rj(t) + Ajρij)

]
. (5.50)

Proof. See Appendix A.5.5.
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Note that the first and second terms in (5.50) approximate the contribution to

the main objective (5.3) during the travel-time ρij of the neighborhood and of target

j respectively. This is an important result (even if it is valid only under α = 0)

as it provides a direct, simple and intuitive approach to obtain the next-visit target

decision j∗ (skipping (5.11)) for RHCP3.

Finally, to provide some intuition regarding how the choice of α affects the PMN

problem performance, Fig 5·6 shows examples of how performance varies with α in

two specific PMN problems. It can be seen that α = 0 is sometimes directly the

optimal choice while in other cases there may be a particular α < 0.5 which provides

the optimal performance.

(a) Single-Agent Case in Fig. 5·10 (b) Multi-Agent Case in Fig. 5·13

Figure 5·6: Variation of JT in (5.3) with α in (5.49).

5.3.2 Extending RHCP3 to a Two-Target Look Ahead

In accordance with the goal of the RHC being decentralized, RHCP3 limits feasible

agent trajectories to a one-target lookahead j ∈ Ni ahead of target i. Therefore, an

obvious extension expected to provide improvements is to consider agent trajectories

two targets ahead of i, assuming such information can be provided to target i. This is

achieved by extending the associated planning horizon of RHCP3 as shown in Fig.

5·7 so that it includes an extra target visit to k ∈ Nj beyond vising target j ∈ Ni.
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Figure 5·7: Extended planning timeline for RHCP3.

In this case, the interested real-valued and discrete decision variables become

Uijk = [uj, vj, uk, vk] and {j, k} respectively. The variable horizon w defined in (5.13)

becomes w = ρij + uj + v + j + ρjk + uk + vk. To obtain the optimal values of these

decision variables, first, the concepts of neighborhood N̄i (5.2), local objective J̄i (5.9)

and local state Xi(t) are extended respectively as Ñi, J̃i, and X̃i(t) where

Ñi = ∪j∈N̄i
Nj, J̃i =

∑

m∈Ñi

Jm, X̃i(t) = {Rm(t);m ∈ Ñi}.

Now, the extended RHCP3 (by modifying (5.11), (5.12) and (5.14)), takes the form:

U∗
ijk = argmin

Uijk∈U
JH(X̃i(t), Uijk;H); ∀j ∈ Ni, ∀k ∈ Nj, (5.51)

{j∗, k∗} = argmin
j∈Ni, k∈Nj

JH(X̃i(t), U
∗
ijk;H) with (5.52)

JH(X̃i(t), Uijk;H) =
1

w
J̃i(t, t+ w) and

U = {U : U ∈ R
4, U ≥ 0, |U |+ ρij + ρjk ≤ H}.

(5.53)

This problem in (5.51) shares many similarities with RHCP1 in (5.11) and each of

its sub-problems belongs to the same class of RFOPs in (D.8) discussed in Appendix

D.1, similar to those of RHCP1 and RHCP2. Hence, the details of how (5.51) and

(5.52) are solved are omitted (but can be found in (Welikala and Cassandras, 2020c)).

This extended RHC method is referred to as the “Ex-RHC method”. Similar to

(5.49), the neighborhood objective function decomposition J̃i in (5.53) can also be
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modified from:

J̃i = Jj + Jk +
∑

m∈Ñi\{j,k}

Jm, (5.54)

to incorporate weight factors α, β ∈ [0, 1] as:

J̃i = αJj + βJk + (1− α− β)
∑

m∈Ñi\{j,k}

Jm. (5.55)

The motivation behind adopting (5.55) is to emphasize the contribution of the ne-

glected neighborhood targets m ∈ Ñi\{j, k} and by the target k to the global cost.

Therefore, α < 1
3
and β < 2

3
− α are preferred and α = 1

|N̄i|2
and β = 1

|N̄i|
are selected

as the nominal choices. By analogy to RHCα, this modified approach is referred to

as the “Ex-RHCαβ method”.

Aside from the obvious increment in computational requirements, one clear dis-

advantage of the Ex-RHC (or Ex-RHCαβ) method is that agents now require more

information to make their next-visit target j∗ decisions, thus compromises the dis-

tributed nature of the solution. Even though it is reasonable to expect that the

payoff of such a compromise is a considerable performance improvement, this is far

from evident in the numerical examples shown in Section 5.4. One reason may be the

substantial errors in estimating Rk(t) trajectories (required to evaluate Jk in (5.54) (or

(5.55))) when there are multiple agents and when target k is located far from target

i. These errors indirectly and negatively affect the crucial j∗ decision. However, from

simulation results, it was found that the Ex-RHC (or Ex-RHCαβ) method generally

performs better when (i) the number of both agents and targets are relatively low,

and (ii) travel-times in the graph are relatively short.
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5.4 Simulation Results

In this section, the performance measured through JT in (5.3) is compared over several

different PMN problem configurations using: (i) The IPA-TCP method (Zhou et al.,

2019) (ii) The RHC method proposed in Section 5.2, (iii) The RHCα method (Section

5.3.1), and (iv) The Ex-RHCαβ method (Section 5.3.2). These four methods are

distributed on-line solutions in contrast to the centralized off-line solution proposed in

the previous chapter. Similar to previous chapters, each of these control solutions has

been implemented in a JavaScript based simulator, which is made available at http://

www.bu.edu/codes/simulations/shiran27/PersistentMonitoring/. Readers are

invited to reproduce the reported results and also to try new problem configurations

using the developed interactive simulator.

In particular, this section considers three PMN problem configurations with a

single agent as shown in Figs. 5·8-5·10 and with multiple agents as shown in Figs.

5·11-5·13. Similar to the reported results in the previous chapter, blue circles represent

the targets, while black lines represent trajectory segments that agents can use to

travel between targets. Red triangles and yellow vertical bars indicate the agent

locations and the target uncertainty levels, respectively. Moreover, since both sa(t)

and Ri(t) are time-varying, the figures show only their state at time t = T .

In each problem configuration, the target parameters were chosen as Ai = 1, Bi =

10 and Ri(0) = 0.5, ∀i ∈ T and all the targets were placed inside a 600×600 mission

space. The overall time period is T = 500. Each agent is assumed to follow first-order

dynamics (similar to (Zhou et al., 2019)) with a maximum speed of Vij = 50 units per

second on each trajectory segment (i, j) ∈ E . The initial locations of the agents were
chosen such that they are uniformly distributed among the targets at time t = 0 (i.e.,

sa(0) = Yi with i = 1 + (a− 1)× round(M/N)). The (non-critical) upper-bound for

each planning horizon w was chosen as H = T/2 = 250 for the three RHC approaches

http://www.bu.edu/codes/simulations/shiran27/PersistentMonitoring/
http://www.bu.edu/codes/simulations/shiran27/PersistentMonitoring/
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and α = 1
|Ni|2

, β = 1
|Ni|

were used in the RHCα and Ex-RHCαβ methods.

Table 5.1: Summary of obtained results.

JT in (5.3)
Single-Agent

Simulation Examples
Multi-Agent

Simulation Examples
1 2 3 1 2 3

IPA-TCP 831.3 651.3 497.9 270.2 274.0 201.3
RHC 791.1 912.3 490.4 105.5 114.1 97.2
RHCα 790.1 527.7 464.8 96.6 63.7 60.1
Ex-RHCαβ 790.1 529.7 449.5 95.7 75.0 70.2

(a) IPA-TCP:
JT = 831.3

(b) RHC:
JT = 791.1

(c) RHCα:
JT = 790.1

(d) Ex-RHCαβ :
JT = 790.1

Figure 5·8: Single-agent simulation example 1 (SASE1).

(a) IPA-TCP:
JT = 651.3

(b) RHC:
JT = 912.2

(c) RHCα:
JT = 527.7

(d) Ex-RHCαβ :
JT = 529.7

Figure 5·9: Single-agent simulation example 2 (SASE2).

Each sub-figure caption in Figs. 5·8-5·13 provides the cost value JT in (5.3) ob-

served under each controller (i.e., either IPA-TCP, RHC, RHCα or Ex-RHCαβ). These

cost values are summarized in Tab. 5.1. From the observed results, note that the

proposed RHC method has performed considerably better (on average 57.0% better)

than the IPA-TCP method for multi-agent problem configurations. For single-agent

problem configurations, both methods have performed equally except for SASE3.

The proposed RHCα approach further improves these performances compared to the
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(a) IPA-TCP:
JT = 497.9

(b) RHC:
JT = 490.4

(c) RHCα:
JT = 464.8

(d) Ex-RHCαβ :
JT = 449.5

Figure 5·10: Single-agent simulation example 3 (SASE3).

(a) IPA-TCP:
JT = 270.2

(b) RHC:
JT = 105.5

(c) RHCα:
JT = 96.6

(d) Ex-RHCαβ :
JT = 95.7

Figure 5·11: Multi-agent simulation example 1 (MASE1).

(a) IPA-TCP:
JT = 274.0

(b) RHC:
JT = 114.1

(c) RHCα:
JT = 63.7

(d) Ex-RHCαβ :
JT = 75.0

Figure 5·12: Multi-agent simulation example 2 (MASE2).

(a) IPA-TCP:
JT = 201.3

(b) RHC:
JT = 97.2

(c) RHCα:
JT = 60.1

(d) Ex-RHCαβ :
JT = 70.2

Figure 5·13: Multi-agent simulation example 3 (MASE3).
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IPA-TCP method by an average of 70.4% for multi-agent situations and by 10.2% for

single-agent situations. On the other hand, the proposed Ex-RHCαβ method provides

on average 67.4% and 11.1% improvements respectively for multi-agent and single-

agent cases compared to the IPA-TCP method. In light of the fact that Ex-RHCαβ

compromises the distributed nature of the original RHC, all evidence points to the

conclusion that there is no benefit to this extension for most network topologies.

Finally, in order to determine the RHC version (out of RHCα and Ex-RHCαβ) with

superior robustness properties, an extensive empirical study has been carried out that

investigates the robustness to the randomness in different aspects of the persistent

monitoring system (e.g., system parameters, state dynamics or state information

shared with neighbors). This study has also lead to the conclusion that RHCα method

outperforms the Ex-RHCαβ method in terms of its robustness properties (details are

omitted here but can be found (Welikala and Cassandras, 2020c)).

Table 5.2: (From Tab. 4.1) A performance comparison between PMN
solutions proposed in (Zhou et al., 2019), Chapter 4 and Chapter 5. The
average percentage improvement achieved by the latter two solutions
compared to (Zhou et al., 2019) are: 44.34% and 42.57, respectively.

Persistent Monitoring
Objective JT

Single-Agent
Simulation Examples

Multi-Agent
Simulation Examples

1 2 3 1 2 3 4
TCP solution proposed in
(Zhou et al., 2019) (Distributed)

129.2 651.3 497.9 270.2 91.7 274.0 201.3

TCP solution proposed in
Chapter 4 (Centralized)

114.6 567.0 449.5 90.9 35.1 59.5 59.8

RHC solution proposed in
Chapter 5 (Distributed)

121.4 527.7 464.8 96.6 40.4 64.9 60.7

5.5 Summary

A distributed receding horizon control based solution was developed for the class of

persistent monitoring on network problems. This controller exploits the event-driven

nature of the underlying PMN system to reduce the computational complexity signif-
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icantly. Further, it automatically optimizes its planning horizon length, thus making

the controller parameter-free. Furthermore, explicit globally optimal solutions were

derived for every distributed optimization problem encountered at each event where

the receding horizon controller is invoked. As a result of these contributions, com-

pared to the centralized parametric controller proposed in the previous chapter, this

distributed receding horizon controller has several practical advantages such as being:

gradient-free, parameter-free, initialization-free, event-driven, distributed, on-line as

well as computationally efficient. Understandably, these advantages come at the cost

of a small performance loss compared to the centralized parametric control solution

proposed in the previous chapter (see Tab. 5.2). Nevertheless, as shown in the pre-

vious section (and also in Tab. 5.2), compared to the distributed parametric control

solution (Zhou et al., 2019) (which also uses a parameter learning stage), the pro-

posed distributed receding horizon control solution provides significant improvements

(without any learning stages).
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation focused on addressing the issue of local optima arising in control

and optimization of cooperative multi-agent systems with inherent non-convexities. In

particular, several systematic techniques were developed to facilitate either escaping

or avoiding poor local optima while in search of better optima.

In Chapter 2, for a large class of multi-agent optimization problems, a systematic

distributed approach to escape local optima using the concept of “boosting functions”

was proposed. First, a formal distributed boosting scheme was proposed together with

a variable step size scheme to guarantee its convergence. Then, a generic boosting

function form that can be adopted across multiple applications was proposed. Next,

to provide more intuition into the process of designing boosting functions, for a class of

coverage problems, two new boosting function families were designed while outlining

the underlying motivations behind each step of the design process. Finally, the same

class of coverage problems was used to validate the proposed boosting functions ap-

proach, i.e., to validate the effectiveness of the proposed: distributed boosting scheme,

variable step size scheme and boosting function families. Obtained theoretical and

empirical results lead to the conclusion that when addressing non-convex multi-agent

optimization problems, boosting functions can enable a systematic escape from local

optima that limits the conventional gradient-based methods so as to achieve superior

performance levels without significantly affecting the involved computational cost.
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For cooperative multi-agent optimization problems, as opposed to the distributed

on-line approach that can escape poor local optima proposed in Chapter 2, a central-

ized off-line approach that can avoid poor local optima was explored in Chapter 3.

In particular, the use of greedy algorithms in generating effective initial conditions

(possibly for subsequent gradient processes) was explored. This study was moti-

vated by the fact that such greedy methods are computationally cheap and can often

provide performance bound guarantees exploiting submodularity properties of the

problem. First, considering the class of submodular maximization problems, several

established performance bounds were reviewed. Next, for the same class of problems,

computationally efficient two new performance bounds were proposed. Then, a class

of coverage problems (the same as that used in Chapter 2) was modeled as a class of

submodular maximization problems so as to study the effectiveness of different per-

formance bounds discussed. Finally, numerical results were provided to highlight the

achieved improvements compared to state of the art in terms of performance bounds.

This study leads to the conclusion that greedy methods, when coupled with a tight

performance bound computation technique, can provide efficient, reasonable as well

as reliable solutions to difficult non-convex multi-agent optimization problems.

Inspired by the efficacy of greedy solutions obtained for multi-agent optimization

problems seen in Chapter 3, a greedy approach was proposed for a class of multi-

agent control problems in Chapter 4. In particular, the class of persistent monitoring

on networks problems was considered where a team of agents is deployed to monitor

a set of targets interconnected according to a network topology aiming to minimize

a measure of overall target state. First, to address this control problem, a class of

distributed threshold-based parametric controllers was adopted where IPA is used

to determine the optimal threshold parameters in an on-line manner using gradi-

ent descent. Next, to address the associated non-convexities, a systematic greedy
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threshold parameter initialization scheme was proposed. In this endeavor, asymp-

totic analysis of the PMN system together with graph clustering and several other

combinatorial optimization algorithms were utilized. Finally, simulation results were

provided to show that such systematically chosen initial threshold parameters while

having significantly improved performance levels compared to the state of the art, are

almost immediately (locally) optimal or quickly lead to optimal values. The findings

of this chapter lead to the conclusion that even when addressing multi-agent control

problems, a meticulously designed greedy method that exploits underlying structural

properties of the interested problem can achieve high performing solutions.

Note that in some multi-agent control problems, it might not be feasible to have

a centralized off-line initialization stage or an on-line learning stage due to various

limitations in the problem setup. Considering such a limited scenario, for the class

of PMN problems, a receding horizon control solution was proposed in Chapter 5

as an alternative to the parametric control solution proposed in Chapter 4. First,

the event-driven nature of the PMN system was exploited to formulate a receding

horizon control problem (over a planning horizon ahead) for each agent to solve upon

each event of interest observed in its trajectory. Next, the determination of optimal

planning horizon length was included in this RHCP via introducing the concept of

“variable horizon.” Then, explicit globally optimal solutions were derived for every

possible RHCP form that an agent may face in its trajectory. As a result of these

contributions, the proposed receding horizon controller has several practical advan-

tages such as being: gradient-free, parameter-free, initialization-free, event-driven,

distributed, on-line as well as computationally efficient. Finally, simulation results

were provided to highlight the improvements achieved compared to an existing dis-

tributed on-line PMN solution. It is easy to see that this receding horizon control

solution shares some similarities with the earlier proposed boosting functions ap-
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proach (in Chapter 2) as both are distributed on-line processes that intermittently

motivate agents to search for the optimal agent behaviors/states.

6.2 Ongoing and Future Research: Multi-Agent Optimiza-

tion

Applications of Boosting Functions Approach: The effectiveness of the pro-

posed boosting functions approach in Chapter 2 has mainly been validated using a

class of coverage problems. However, this class of coverage problems can be seen as a

much broader class of resource allocation problems (which also includes a particular

class of consensus problems). Nevertheless, finding other different classes of multi-

agent optimization or control problems where this boosting functions approach can

be successfully adopted to overcome the issue of local optima would be an interest-

ing future research direction. While such a study will lead to improved solutions,

it will also enrich the existing collection of boosting function design ideas. To this

end, Fig. 6·1 shows a preliminary result obtained from a study where the boosting

functions approach has been adopted to address the class of PMN problems. It shows

that a single boosting session has improved the performance by around 50% in the

considered PMN example.

Figure 6·1: The impact of a boosting session during an on-line thresh-
old parameter tuning phase in a PMN application.
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Distributed On-Line Greedy Algorithms: One of the contributions of Chapter

3 is that it shows the greedy algorithm in Alg. 3.2 can be equivalently executed in a

distributed manner (with the modification in (3.29)). However, this distributed solu-

tion requires agents to be deployed sequentially. Hence the resulting greedy algorithm

can be seen as an off-line solution. Therefore, an interesting future research direc-

tion is to develop a fully distributed on-line greedy algorithm. In such an endeavor,

the established theoretical results in Theorems 3.6, 3.7 and C.1 can be expected to

be useful - specifically when developing update laws for the agents and performance

bounds.

Greedy - Gradient Solutions: Intuitively the centralized off-line greedy solution

proposed in Chapter 3 and the distributed on-line gradient-based solution proposed in

Chapter 2 can be combined to address hard multi-agent optimization problems. For

example, similar greedy-gradient approaches have been used in (Sun et al., 2017b; Sun

et al., 2020). In such situations, one arising challenge is to impose performance bounds

on intermediate or terminal solutions (rather than on the initial greedy solutions).

This is an interesting research direction where a preliminary solution has already been

proposed in (Sun et al., 2020).

6.3 Ongoing and Future Research: Persistent Monitoring on

Networks

6.3.1 RHC with Reinforcement Learning

In the proposed RHC solution in Chapter 5, the future cost term of each RHCP

(i.e., the ĴH(Xi(t + H)) term in (5.4)) was omitted. The potential myopic agent

behaviors due to this omission were prevented by optimizing the planning horizon

length and introducing controller enhancements. Motivated by this, an interesting

future research direction would be to include this future cost term back in the RHCP
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and use policy iterations to approximate the exact form of it.

A Preliminary Example: In a preliminary example,

Ĝa
ij(t; Θ) , θ0t

−1 + θ1 + θ2t+ θ3t
2,

was used as the candidate future cost function - for an agent a at target i solving a

RHCP at time t aiming to visit a target j ∈ Ni. Upon defining an appropriate reward

function and by running several policy iterations (considering the SASE1 shown in

Fig. 6·2(a)), the set of parameters Θ = [θ0, θ1, θ2, θ3] for all i, j ∈ T , a ∈ A were

learned. As respectively shown in Figs. 6·2(d) and (b), the resulting “Reinforced”

Event-Driven Receding Horizon Control (RRHC) method provides improved results

compared to the RHCα method proposed in Chapter 5. Note also that this RRHC

method generates similar results to those of the greedy method proposed in Chapter

4 (both in terms of the performance and agent trajectory).

6.3.2 The Use of Energy-Aware Second-Order Agents

In the PMN problem setup considered in Chapters 4 and 5, each deployed agent

has been assumed to follow a first-order dynamic model. Moreover, agent energy

consumption associated with the motion has been neglected from the main objective

function (thus, energy-agnostic). Therefore, an obvious way to improve this PMN

problem setup is by allowing each agent to follow a second-order dynamic model

(governed by acceleration) and by incorporating agent energy consumption into the

main objective function. In particular, in the ongoing research (Welikala and Cassan-

dras, 2021c; Welikala and Cassandras, 2021d), an agent a ∈ A is assumed to follow
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(a) SASE1
See Fig. 4·15

(b) RHCα

JT = 40.36

(c) Greedy:
JT = 35.13

(d) RRHC:
JT = 35.50

Figure 6·2: A comparison of agent trajectories obtained for (a) SASE1
(see also Fig. 4·15), under different agent control methods: (b) RHCα,
(c) Greedy (TCP) and (d) RRHC

the second-order unicycle dynamics given by

ṡa(t) = va(t)




cos(θa(t))

sin(θa(t))



 , v̇a(t) = ua(t), θ̇a(t) = wa(t), (6.1)

where va(t), ua(t), θa(t) and wa(t) represent the agent tangential velocity, tangential

acceleration, orientation and angular velocity, respectively. Moreover, a composite

objective JT of the total energy spent and the mean system uncertainty (previously,

the main objective (4.2),(5.3)) is considered where

JT , α

T∫

0

∑

a∈A

u2a(t) dt+
1

T

T∫

0

∑

i∈T

Ri(t) dt, (6.2)
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(α is a weight factor). Under these modifications, the new challenge is to determine

the optimal agent controls (and thus optimal travel-times) over trajectory segments

when transitioning from one target to the next.

As described below, the ongoing research suggests that this advanced PMN prob-

lem can be solved in two different ways using the respective concepts developed in

Chapters 4 and 5 of this thesis.

Centralized Off-Line Greedy Solution: Considering an agent traversing a

target-cycle as shown in Fig. 6·3 and extending the asymptotic analysis presented

in Chapter 4, it can be shown that this advanced PMN problem translates into a

discrete time optimal control problem (under linear dynamics and a non-linear stage

cost):

{ρ̄∗k : k ∈ N} =argmin
{ρ̄k:k∈N}

∑

k∈N

Jk(R̄k−1, ρ̄k),

subject to : R̄k = AR̄k−1 +Bρ̄k,

(6.3)

where ρ̄∗k is the optimal set of travel-times to be used in the kth tour on the target-

cycle (definitions of the remaining symbols are omitted for brevity). Considering a

steady state scenario (as did in Chapter 4), it can be shown that:

ρ∗i =

[

36α

kΞ
∑

j∈Ξ

√
yj

] 1
5 √

yi, (6.4)

where ρ∗i is the i
th component of limk→∞ ρ̄∗k, yi is the i

th trajectory segment’s length

in the target-cycle and kΞ is a fixed constant specific to the target-cycle. This closed

form steady-state solution can now be used to create a metric (analogous to the

Jss(Ξ) metric established in Theorem 4.1) to assess and compare different target-

cycles. With such a metric, it is clear that an algorithm analogous to Alg. 4.1 can be

used to completely solve this advanced PMN problem in a centralized off-line stage.
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Figure 6·3: The target cycle Ξ

Distributed On-Line RHC Solution: As an alternative, the ongoing research

(Welikala and Cassandras, 2021c; Welikala and Cassandras, 2021d) has also shown

that the proposed distributed on-line RHC solution in Chapter 5 can be extended

to address this advanced PMN problem in a distributed on-line manner. In partic-

ular, each RHCP is modified to include an optimal control problem that determines

the optimal agent controls and the optimal travel-time over the trajectory segment

corresponding to the considered RHCP.

6.4 Ongoing and Future Research: Distributed Estimation

In this thesis, the techniques proposed to overcome the issue of local optima in multi-

agent control problems (i.e., Greedy and RHC techniques, proposed respectively in

Chapters 4 and 5) have been established purely based on the class of persistent mon-

itoring on networks problems. However, as shown in Section 6.3.2, these techniques

can still be applied to the advanced version of the PMN problem (i.e., when energy-

aware second-order agents are deployed). Therefore, a reasonable question to raise

is: What other multi-agent control applications are there in which these developed

Greedy and RHC techniques can be applied?

To answer this question, the ongoing research of this thesis considers the multi-

agent distributed estimation problem over a network system (Welikala and Cassan-
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dras, 2021a; Welikala and Cassandras, 2020b). While this particular problem shares

several structural similarities with the PMN problem, the target dynamics (that the

agents can control) and the objective function of interest take completely different

forms. In particular, here, an agent can control (by residing or not residing at target

i) the target state estimation error covariance matrix Ωi(t) according to the dynamics

Ω̇i(t) = AiΩi(t) + Ωi(t)A
′
i +Qi − ηi(t)Ωi(t)GiΩi(t), (6.5)

where ηi(t) = 1{An agent resides at the target i at time t} (analogous to Ni(t) in

(4.1) and (5.1)) and Ai, Qi, Gi are known matrices at target i (analogous to the target

parameters Ai, Bi in (4.1) and (5.1)). The interested objective function takes the form

JT =
1

T

T∫

0

∑

i∈T

tr(Ωi(t))dt. (6.6)

The ongoing research suggests that this class of distributed estimation problems can

be solved in two different ways using the respective concepts proposed in Chapters

4 and 5 of this thesis (see also (Pinto et al., 2020b) and (Welikala and Cassandras,

2021a; Welikala and Cassandras, 2020b), respectively for details).

In conclusion, these latest developments suggest that the concepts proposed in

Chapters 4 and 5 of this thesis are not limited to PMN problems but can also be

applied to address a much broader class of multi-agent control problems.
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Appendix A

Proofs

A.2 From Chapter 2

A.2.1 Proof of Lemma 2.1

Consider a function g = −f : Rn → R. Then, the Lipschitz continuity constant of

∇g will also be L. The usual descent lemma (Bertsekas, 2016) now can be applied

to the function g (to compare g(x + y) and g(x)). Then, using g = −f , ∀x, y ∈ R
n,

−g(x+ y) ≥ −g(x)− yT∇g(x)− L
2
‖y‖2, and the result follows.

A.2.2 Proof of Lemma 2.3

In (2.15), add and subtract
∑

l∈Bj−{i} ∆jl,k to the inner terms of the main summation.

Then, using the definition (2.14), the expression in (2.19) is obtained. To prove the

second part, note that the first inner term of the main summation of (2.19) (i.e., ∆̃j,k)

is always positive under the optimal step size given in (2.17). Next, consider the net

effect of the second inner term of Qi,k, denoted by Q′
i,k, where

Q′
i,k = Qi,k −

∑

j∈Bi

∆̃j,k =
∑

j∈Bi

∑

l∈Bj−{i}

[∆lj,k −∆jl,k] .

Using the fact that ∆lj,k − ∆jl,k = 0 when l = j, a dummy term can be added into

the inner summation to get

Q′
i,k =

∑

j∈Bi

∑

l∈B̄j−{i}

[∆lj,k −∆jl,k] =
∑

j∈Bi

∑

l∈Bi

[∆lj,k −∆jl,k] ,
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where the last step follows from the assumption Bi = B̄j − {i}. Q′
i,k = 0 is evi-

dent from observing that the two running variables l, j in the summations above are

interchangeable. This implies that under (2.17), Qi,k =
∑

j∈Bi
∆̃j,k > 0.

A.2.3 Proof of Theorem 2.1

By Assumption 2.3, a Ti value can be defined for Q̃i,k at each k. Consider a sequence

of consecutive discrete update instants {k1+1, . . . , k′1} (for short, the notation (k1, k
′
1]

is used), where, Ti = k′1−k1 is associated with Q̃i,k′1
and Ti > k−k1 applies to all Q̃i,k,

k ∈ (k1, k
′
1−1]. This means 0 <

∑k′1
k=k1+1Qi,k and 0 ≥ ∑l

k=k1+1Qi,k, ∀l ∈ (k1, k
′
1−1].

In addition, by Lemma 2.2, 0 < ∆̃∗
i,k ∀k ∈ (k1, k

′
1]. Thus, 0 <

∑k′1
k=k1+1(∆̃

∗
i,k + Qi,k).

By summing up both sides of (2.13) over all update steps k ∈ (k1, k
′
1] yields

H̃i(s̃i,k′1+1) ≥ H̃i(s̃i,k1+1) +

k′1∑

k=k1+1

(∆̃∗
i,k +Qi,k). (A.1)

Similarly, using Assumption 2.4 and summing both sides of (2.22) over all k ∈ (k1, k
′
1−

1] and using (2.21) for k = k′1 yields

0 ≤
k′1∑

k=k1+1

Ψi,k‖di,k‖2 ≤
k′1∑

k=k1+1

(∆̃∗
i,k +Qi,k). (A.2)

By Assumption 2.3, the length of the chosen interval (k1, k
′
1] is always finite. There-

fore, any {1, . . . , k2} with k2 < ∞ can be decomposed into a sequence of simi-

lar sub-intervals: {(k11, k′11], (k12, k′12], . . . , (k1L, k′1L]} where k11 = 0, k′1i = k1(i+1)

∀i ∈ (0, L]. If k2 is such that k′1L < k2 (which happens if 0 >
∑k2

k=k′
1L

+1Qi,k), As-

sumption 2.3 implies that there exists some k′2 such that k2 < k′2 <∞ which satisfies

0 <
∑k′2

k=k′
1L

+1Qi,k (i.e., (k′1L, k
′
2] is the new last sub-interval of (0, k′2]). Then, by

writing the respective expressions in (A.1) and (A.2) for each such sub-interval of the
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complete interval (0, k′2] and summing both sides over all k yields

H̃i(s̃i,k′2+1) ≥ H̃i(s̃i,1) +

k′2∑

k=1

(∆̃∗
i,k +Qi,k), (A.3)

0 ≤
k′2∑

k=1

Ψi,k‖di,k‖2 ≤
k′2∑

k=1

(∆̃∗
i,k +Qi,k), (A.4)

respectively. Using Assumption 2.1 in (A.3) gives |B̄i|HUB ≥ H̃i(s̃i,k′2+1)− H̃i(s̃i,1) ≥
∑k′2

k=1(∆̃
∗
i,k +Qi,k). Combining this with (A.4) yields

k′2∑

k=1

Ψi,k‖di,k‖2 ≤ |B̄i|HUB. (A.5)

By Assumption 2.1, the term |B̄i|HUB in (A.5) is a finite positive number. Also, by

Assumption 2.4, Ψi,k ≥ ǫ > 0, ∀k. Therefore, taking limits of the above expression

as k′2 → ∞ implies the convergence criterion in (2.6) as long as the optimal step sizes

given by (2.17) are used.

A.2.4 Proof of Theorem 2.2

The proof uses the same steps as in that of Theorem 2.1. The only difference lies in

the use of new terms for ∆̃i,k, ∆̃
∗
i,k and Qi,k, given by (2.26), (2.28) and (2.27). Then,

the final step of the proof is

k′2∑

k=1

Ψi,k[1{i ∈ N}‖di,k‖2 + 1{i ∈ B}‖d̂i,k‖2] ≤ |B̄i|HUB. (A.6)

By Assumption 2.1, the R.H.S. of the above expression is finite and positive. Taking

limits when k′2 → ∞ yields the convergence criteria given in (2.7) and (2.8). Further,

noting that Theorem 2.2 is a generalization of Theorem 2.1 with the step size selection

scheme (2.28) replacing (2.17), it follows that (2.6) is also satisfied.
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A.2.5 Proof of Lemma 2.6

Consider the problem where the neighborhood objective function H̃i(s̃i,k) is maxi-

mized using the projected state updates of si,k on the convex feasible space F. Fol-

lowing (Bertsekas, 2016) in this situation, the convergence condition on the step

sizes βi,k is 0 < βi,k <
2
Ki
, where Ki is the Lipschitz constant of ∇H̃i. Note that

Ki =
∑

j∈B̄i
K1j due to (2.12). Also, for i ∈ N , the expression for β∗

i,k given in (2.28)

can be modified into the form

β∗
i,k =

1

Ki

[

1 +
dTi,k

∑

j∈Bi
dij,k

‖di,k‖2

]

. (A.7)

Now, enforcing the convergence condition 0 < β∗
i,k <

2
Ki

yields the first condition in

(2.30). Similarly the second condition in (2.30) can be obtained when the expression

for β∗
i,k, i ∈ B, in (2.28) is considered.

A.2.6 Proof of Lemma 2.7

By taking the partial derivative of (2.40) (written for agent j) w.r.t. the local state

si yields

dij = −
∫

Vj

R(x)pj(x, sj)
∏

l∈Bj−{i}

(1− pl(x, sl))
dpi(x, si)

dsi
dx.

Now, note that ∀x 6∈ Vi,
−dpi(x,si)

dsi
= 0, and, ∀l 6∈ Bi ∩ Bj, ∀x ∈ Vi ∩ Vj, pl(x, sl) = 0.

By incorporating these relationships into the obtained expression for dij gives a locally

computable (at agent i) expression for dij as

dij = −
∫

Vi∩Vj

R(x)pj(x, sj)
∏

l∈Bi∩Bj

(1− pl(x, sl))
dpi(x, si)

dsi
dx.
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A.3 From Chapter 3

A.3.1 Proof of Lemma 3.1

Take the optimal solution of (3.1) as Y ∗ = {y1, y2, y3, . . . , yN}. Due to the monotonic-

ity of f , f(Y ∗) ≤ f(Y ∗ ∪ Y G). Note also that ∆f(Y ∗|Y G) = f(Y ∗ ∪ Y G) − f(Y G).

Therefore,

f(Y ∗) ≤ f(Y G) + ∆f(Y ∗|Y G). (A.8)

Now, consider the ∆f(Y ∗|Y G) term which can be written as a telescopic sum:

∆f(Y ∗|Y G) = [f({y1} ∪ Y G)− f(Y G)] + [f({y1, y2} ∪ Y G)− f(Y G ∪ {y1})] + . . .

+ [f({y1, . . . , yN} ∪ Y G)− f(Y G ∪ {y1, . . . , yN−1})].

Using the marginal gain function notation (see Def. 3.1), this can be written as,

∆f(Y ∗|Y G) =
N∑

i=1

∆f(yi|Y G ∪ {y1, y2, . . . , yi−1}). (A.9)

Next, using the formed set E1 given in (3.11), ∆f(y1|Y G) term can be upper bounded

with the largest value in E1 (i.e., α1
d1), as

∆f(y1|Y G) ≤ α1
d1. (A.10)

As a result of the submodularity property of f , ∆f(y2|Y G ∪ {y1}) ≤ ∆f(y2|Y G).

Since y1 6= y2 and (A.10), ∆f(y2|Y G) can be upper bounded using α2
d1. Therefore,

∆f(y2|Y G ∪ {y1}) ≤ ∆f(y2|Y G) ≤ α2
d1.
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Similarly, for all i ∈ {1, 2, . . . N}, ∆f(yi|Y G ∪{y1, y2, . . . , yi−1}) ≤ αid1. Applying this

result in (A.9) and using (3.12) gives

∆f(Y ∗|Y G) ≤
N∑

j=1

αjd1 = αd1. (A.11)

Finally, using (A.11) in (A.8) yields f(Y ∗) ≤ f(Y G) + αd1. Therefore,

f(Y ∗)

f(Y G)
≤ 1 +

αd1
f(Y G)

⇐⇒
[

1 +
αd1

f(Y G)

]−1

≤ f(Y G)

f(Y ∗)
.

A.3.2 Proof of Lemma 3.2

Note that the set function f is of the form f : 2X → R while the set function Ψ

is of the form Ψ : 2X\FG → R. Since Y G is a known fixed set, f(Y G) is a known

constant. Therefore, Ψ(Y ) can be thought of as a set function that follows f(Y G∪Y )

while having a constant offset of f(Y G) for all Y ∈ 2X\FG

. Therefore, Ψ inherits the

submodularity and monotonicity properties from f . Moreover, from the monotonicity

property of f , Ψ(Y ) ≥ 0 and Ψ(Y ) = 0 occurs only when Y = ∅. Therefore Ψ is

normalized. Hence Ψ(Y ) is a polymatroid function.

The set-function constraint in the problem (3.15) can be seen as a matroid (M# =

(X\Y G, I#)) constraint. In fact, here,M# is a uniform matroid of rankN . Therefore,

Theorem 3.1 is applicable to (3.15) and thus the performance bound in (3.16) fallows.

A.3.3 Proof of Lemma 3.3

Consider the inequality in (A.8): f(Y ∗) ≤ f(Y G) + ∆f(Y ∗|Y G). The motivation

behind this lemma is to provide an alternative upper bound to the ∆f(Y ∗|Y G) term

(different from (A.11)) using the information obtained from running N additional

greedy iterations (i.e. 2N greedy iterations in total, recall that |X| = n ≥ 2N + 1).
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Using the set function Ψ(Y ) in (3.15), note that ∆f(Y ∗|Y G) can be written as

∆f(Y ∗|Y G) = f(Y G ∪ Y ∗)− f(Y G) = Ψ(Y ∗). (A.12)

Note also that (3.16) in Lemma 3.2 gives

Ψ(Y ∗
#) ≤

1

βf#
Ψ(Y G

# ). (A.13)

Since Ψ(Y ∗
#) is the global maximum of the problem (3.15), Ψ(Y ∗) ≤ Ψ(Y ∗

#).

Moreover, the greedy solution to (3.15) is Y G
# = Y G2\Y G where Y G2 is the greedy

solution to (3.1) when 2N greedy iterations are executed. Therefore, using the defi-

nition of Ψ in (3.15), Ψ(Y G
# ) = f(Y G2)− f(Y G) is obtained.

Now, using these relationships, (A.13) can be developed into

Ψ(Y ∗) ≤ Ψ(Y ∗
#) ≤

1

βf#
Ψ(Y G

# ) =
1

βf#
(f(Y G2)− f(Y G)).

This result can be re-stated using (3.14) and (A.12) as

∆f(Y ∗|Y G) ≤ αd2. (A.14)

The proof is complete by noticing the similarity between (A.14) and (A.11) (also

between (3.17) and (3.13)) and thus following the last step in proof of Lemma 3.1.

A.3.4 Proof of Theorem 3.4

Since f(Y G) ≥ 0, the proof will be complete if f(Y ∗) ≤ αm is established. Take the

optimal solution of (3.1) as Y ∗ = {y1, y2, . . . , yN}. Note that f(Y ∗) can be written as
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a telescopic sum:

f(Y ∗) = f({y1, y2, . . . , yN}),

= ∆f(yN |{y1, y2, . . . , yN−1}) + f({y1, y2, . . . , yN−1}),
...

f(Y ∗) =
N∑

i=1

∆f(yi|{y1, y2, . . . , yi−1}). (A.15)

Now, the submodularity property of f can be used to write

∆f(yi|y1, y2, . . . , yi−1) ≤ ∆f(yi|∅), ∀i ∈ {1, 2, . . . , N}. (A.16)

Therefore, (A.15) can be upper bounded using (A.16) as,

f(Y ∗) ≤
N∑

i=1

∆f(yi|∅) ≤ max
B:B⊆X
|B|=N

[
∑

xi∈B

∆f(xi|∅)
]

= αm (A.17)

(the last step is a result of the definition of αm in (3.22)). This completes the proof.

A.3.5 Proof of Corollary 3.1

Since the set-coverage function H(·) is submodular, the first statement in Def. 3.2:

H(A ∪B) +H(A ∩ B) ≤ H(A) +H(B), (A.18)

applies. Using this and the simple fact H(A ∩B) ≥ 0 completes the first part of the

proof. Next, replacing A and B in (A.18) respectively with A ∪B and A ∪ C gives

H(A ∪ B) +H(A ∪ C) ≥ H((A ∪ B) ∪ (A ∪ C)) +H((A ∪ B) ∩ (A ∪ C))

= H(A ∪ B ∪ C) +H(A ∪ (B ∩ C))

≥ H(A ∪B ∪ C) +H(A),
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where H(A ∪ (B ∩ C)) ≥ H(A) (from monotonicity) has been used in the final step.

A.3.6 Proof of Theorem 3.6

First, note that H(A ∪ {si}) can be evaluated using (3.27) as

H(A ∪ {si}) =
∫

F

R(x)(1−
∏

sj∈(A∪{si})

(1− pj(x, sj)))dx

=

∫

F

R(x)(1− (1− pi(x, si))
∏

sj∈A

(1− pj(x, sj)))dx

=

∫

F

R(x)(1−
∏

sj∈A

(1− pj(x, sj)))dx

︸ ︷︷ ︸

= H(A)

+

∫

F

R(x)pi(x, si)
∏

sj∈A

(1− pj(x, sj)))dx

︸ ︷︷ ︸

=H(si|A)

Therefore,

∆H(si|A) = H(A ∪ {si})−H(A) =

∫

F

R(x)pi(x, si)
∏

sj∈A

(1− pj(x, sj)))dx.

Now, note that ∀x ∋ pi(x, si) > 0, the term (1 − pj(x, sj)) 6= 1 only when

pi(x, si)pj(x, sj) > 0 (i.e., when j is in the neighbor set Bi within the agent set

A). Therefore,

∆H(si|A) =
∫

F

R(x)pi(x, si)
∏

j∈Bi

(1− pj(x, sj)))dx

and thus, ∆H(si|A) depends only on the neighborhood state s̄i.
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A.3.7 Proof of Theorem 3.7

For some fixed si ∈ X, consider two sets A,B such that B ⊆ A ⊆ (X\{si}) and an

element sk ∈ (X\(A∪{si})) that defines Φi
k|A , ∆H(si|A∪{sk})−∆H(si|A), where

Φi
k|A =

∫

F

R(x)pi(x, si)
∏

sj∈A∪{sk}

(1− pj(x, sj)))dx

−
∫

F

R(x)pi(x, si)
∏

sj∈A

(1− pj(x, sj)))dx

=−
∫

F

R(x)pi(x, si)pk(x, sk)
∏

sj∈A

(1− pj(x, sj)))dx.

Similarly, defining Φi
k|B , ∆H(si|B ∪ {sk})−∆H(si|B), it can be shown that

Φi
k|B = −

∫

F

R(x)pi(x, si)pk(x, sk)
∏

sj∈B

(1− pj(x, sj)))dx.

Note also that ∀x ∈ F whenever B ⊆ A,

∏

sj∈A

(1− pj(x, sj)) ≤
∏

sj∈B

(1− pj(x, sj)). (A.19)

The above three results can be used to conclude Φi
k|B ≤ Φi

k|A, i.e.,

∆H(si|B ∪ {sk})−∆H(si|B) ≤ ∆H(si|A ∪ {sk})−∆H(si|A).

This implies that −∆H(si|A) is submodular (i.e., ∆H(si|A) is supermodular) in A.

Now, to establish the monotonicity related property, consider

∆H(si|A)−∆H(si|B) =

∫

F

R(x)pi(x, si)
∏

∀sj∈A

(1− pj(x, sj)))dx

−
∫

F

R(x)pi(x, si)
∏

∀sj∈B

(1− pj(x, sj)))dx

Using (A.19), it is clear that ∆H(si|A) − ∆H(si|B) ≤ 0. Therefore, −∆H(si|A) is
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monotone (i.e., ∆H(si|A) is non-increasing) in A ⊆ (X\{si}) for some fixed si ∈ X.

A.3.8 Proof of Lemma C.1

Negating and adding a constant H(A) term to the definition given in (C.1) results in

A− = argmin
B:B⊂A,

|B|=|A|−1

[H(A)−H(B)].

Now, the variable B in the above optimization problem is changed by taking B =

A\{a} and considering a ∈ A as the new variable. Thus, A− = A\{a∗} with

a∗ = argmin
a∈A

[H(A)−H(A\{a})] = argmin
a∈A

∆H(a|A\{a}).

A.3.9 Proof of Lemma C.2

Consider the R.H.S. of the given statement (also, take sAw = A\A−),

R.H.S. = H(B)−H(B\{sj}) = ∆H(sj|B\{sj})

≥ ∆H(sj|A\{sj}), (using the monotonicity of −∆(sj| · \{sj}))

≥ ∆H(sj|A\{sj})−∆H(sAw|A\sAw), (Since H(sAw|A\sAw) ≥ 0)

= H(A)−∆H(sAw|A\sAw)−H(A) + ∆H(sj|A\{sj}), (Add/remove H(A))

= H(A\sAw)−H(A\{sj})

= H(A−)−H(A\{sj})

= L.H.S.

A.3.10 Proof of Lemma C.3

Consider the L.H.S. of the given expression that can be simplified using (C.1) as

H(A)−H(A−) = H(A)− max
C:C⊂A,

|C|=|A|−1

[H(C)] = max
C:C⊂A,

|C|=|A|−1

[H(A)−H(C)] .
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Changing the variable of this optimization problem from C to sj using: C = A\{sj},

H(A)−H(A−) = max
sj∈A

[H(A)−H(A\{sj})] = max
sj∈A

∆H(sj|A\{sj}).

Since A− 6= B is given, the optimal sj is in the set B. Therefore,

H(A)−H(A−) = max
sj∈B

∆H(sj|A\{sj}). (A.20)

Similarly, the R.H.S. of the given expression can be transformed into the form:

H(B)−H(B−) = max
sj∈B

∆H(sj|B\{sj}). (A.21)

Now, from the monotonicity property of −∆H(sj|B\{sj}) w.r.t. B,

∆H(sj|A\{sj}) ≤ ∆H(sj|B\{sj}), ∀sj ∈ B.

Therefore,

max
sj∈B

∆H(sj|A\{sj}) ≤ max
sj∈B

∆H(sj|B\{sj}). (A.22)

Finally, the above three key results (i.e., (A.20), (A.21) and (A.22)) can be used to

obtain the required relationship: H(A)−H(A−) ≤ H(B)−H(B−).

A.3.11 Proof of Lemma C.4

Take the worst contributors of Ak+1 and Ak as ωk+1 and ωk, respectively. Therefore,

Ak+1 = {ωk+1} ∪ Ak and Ak = {wk} ∪ Ak−1. (A.23)

Since A−
k+1 = Ak, ∆H(ωk+1|Ak) ≤ ∆H(ω|Ak+1\ω), ∀ω ∈ Ak+1. Therefore, clearly,

∆H(ωk+1|Ak) ≤ ∆H(ω|Ak+1\ω), ∀ω ∈ Ak. Here, consider the case when ω = ωk:

∆H(ωk+1|Ak) ≤ ∆H(ωk|Ak+1\ωk). Now, using the definition of marginal-coverage
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gain ∆H(·|·), the relationship: H(Ak+1) −H(Ak) ≤ H(Ak+1) −H(Ak+1\ωk) can be

obtained that implies: H(Ak+1\ωk) ≤ H(Ak). Next, since Ak+1\ωk = {ωk+1}∪Ak−1,

H({ωk+1} ∪ Ak−1) ≤ H(Ak). (A.24)

Note that (A.23) implies Ak+1 = {ωk+1, ωk} ∪ Ak−1. Therefore,

H(Ak+1) +H(Ak−1) = H({ωk+1, ωk} ∪ Ak−1) +H(Ak−1),

≤ H({ωk+1} ∪ Ak−1) +H({ωk} ∪ Ak−1), (using Corollary 3.1)

≤ H(Ak) +H(Ak), (using (A.24) and (A.23)).

Thus, H(Ak+1)−H(Ak) ≤ H(Ak)−H(Ak−1).

A.3.12 Proof of Theorem C.1

Notice that compared to lemma C.3, both conditions A− 6= B and |B| = |A| − 1 are

omitted in this theorem.

Therefore, first, the condition |B| = |A|−1 is assumed. Then, it needs to be shown

that the given relationship holds when A− = B. For this purpose, consider the three

distinct sets A,A− = B,B−, which in this scenario, are respectively equivalent to the

three sets Ak+1, Ak, Ak−1 discussed in Lemma C.4. Therefore, Lemma C.4 yields

H(Ak+1)−H(Ak) ≤ H(Ak)−H(Ak−1) =⇒ H(A)−H(A−) ≤ H(B)−H(B−).

(A.25)

Second, the assumption |B| = |A| − 1 is relaxed, and thus, |B| is now allowed to

be smaller than |A| − 1 (as still B ⊂ A). However, in a such situation, note that the

relationship in (A.25) can be extended (i.e., iteratively applied) to prove

H(A)−H(A−) ≤ H(A1)−H(A−
1 ) ≤ H(A2)−H(A−

2 ) ≤ · · · ≤ H(B)−H(B−),
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where B ⊂ · · · ⊂ A2 ⊂ A1 ⊂ A and the difference in the cardinality of any two

consecutive sets is always 1. Therefore, irrespective of the condition |B| = |A| − 1,

H(A)−H(A−) ≤ H(B)−H(B−).
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A.4 From Chapter 4

A.4.1 Proof of Lemma 4.2

At k = keq, in (4.10), τ̄k+1 = τ̄k = τ̄eq. Therefore, τ̄eq = (∆1 − ∆2)
−11̄mρΞ. Using

∆1 = diag(ᾱ)−∆T
2 and diag(1̄m) + ∆T

2 +∆2 = 1̄m1̄
T
m, τ̄eq can be simplified as:

τ̄eq = (diag(ᾱ + 1̄m)− 1̄m1̄
T
m)

−11̄mρΞ. (A.26)

Note that αn and βn satisfy (αn+1)−1 = βn ⇐⇒ (diag(ᾱ+1̄m))
−1 = diag(β̄). Also,

diag(β̄)1̄m = β̄ and Im ∈ R
m×m is an identity matrix. Now, using Lemma 4.1,

τ̄eq = diag(β̄)

(

Im +
1̄m1̄

T
mdiag(β̄)

1− 1̄Tmβ̄

)

1̄mρΞ =

(
β̄

1− 1̄Tmβ̄

)

ρΞ.

Components of τ̄eq are non-negative only when 1−1̄Tmβ̄ > 0. Thus, using the definition

of β̄, the condition 1̄Tmβ̄ =
∑m

i=1
Ai

Bi
< 1 can be obtained.

A.4.2 Proof of Lemma 4.3

Let ēk = τ̄k − τ̄eq be the steady state error. Then, ēk+1 = τ̄k+1 − τ̄eq. Now, using

(4.10) and Lemma 4.2, ēk+1 = (∆−1
1 ∆2τ̄k + ∆−1

1 1̄mρΞ) − (∆−1
1 ∆2τ̄eq + ∆−1

1 1̄mρΞ), so

that, ēk+1 = ∆−1
1 ∆2ēk. Therefore, under Assumption 4.3 the equilibrium point τ̄eq

given in (4.11) of (4.10) is globally asymptotically stable (Bof et al., 2018).

A.4.3 Proof of Theorem 4.1

Under the given conditions, Lemmas 4.2 and 4.3 are applicable. Thus, (4.7) gives

Jss(Ξ) = lim
T→∞

1

T

T∫

0

m∑

n=1

Rn(t)dt =
1

TΞ

∫

∂TΞ

m∑

n=1

Rn(t)dt =
m∑

n=1

1

TΞ

∫

∂TΞ

Rn(t)dt,

where TΞ , ρΞ + 1̄Tmτ̄eq represents the steady state tour duration and ∂TΞ is a time

period of a tour occurring after achieving steady state. Using the Rn(t) trajectory
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shown in Fig. 4·4 note that when equilibrium is achieved (as T, k → ∞), the final

tour uncertainties will become stationary (i.e., Rn,k = Rn,k+1, ∀n ∈ Ξ). Hence the

area under the Rn(t) trajectory evaluated over a period TΞ becomes equivalent to that

of a triangle where the base is TΞ and the height is (Bn−An)τn,∞, ∀n ∈ Ξ. Therefore,

Jss(Ξ) =
m∑

n=1

1

TΞ

1

2
TΞ(Bn − An)τn,∞ =

1

2
(B̄ − Ā)T τ̄eq.

A.4.4 Proof of Lemma 4.4

The mean system uncertainty JT in (4.2) (for the original PMN problem setting with

M targets in V = {1, 2, . . . ,M}) can be decomposed as JT = 1
T

∫ T

0

∑

j∈V\{i}Rj(t)dt+

1
T

∫ T

0
Ri(t)dt, where the second term represents the contribution of target i to the

main objective JT . Since target i is not being visited by any agent during t ∈ [0, T ]

and from (4.1), Ṙi(t) = Ai, ∀t ∈ [0, T ]. Also note that the initial target uncertainty

of target i is Ri(0) = Ri,0. Therefore, the contribution of target i can be simplified as

1

T

T∫

0

Ri(t)dt =
1

T

T∫

0

(Ri,0 + Ait)dt =

(

Ri,0 +
AiT

2

)

.

A.4.5 Proof of Theorem 4.2

When target i is neglected, Lemma 4.4 gives the mean system uncertainty as (Ri,0 +

AiT
2
)+JT (Ξ). After the target-cycle expansion, the mean system uncertainty is JT (Ξ

′)

(Note that i ∈ Ξ′). Therefore, the gain in mean system uncertainty is
(
Ri,0 +

AiT
2

)
+

JT (Ξ)− JT (Ξ
′). Now, adding and subtracting a (Jss(Ξ)− Jss(Ξ

′)) term and applying

Assumption 4.4 twice (for JT (Ξ), JT (Ξ
′) terms) shows that the above “gain” can be

estimated by the marginal gain expression given in (4.15) (with a tolerance of ±2Ke).
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A.4.6 Proof of Lemma 4.5

By inspection of the Rn(t) profile in Fig. 4·11, for each target n ∈ Ξ̄ and for each

auxiliary target nj ∈ Tn, considering its corresponding sub-cycle Ξjn’s time period:

(Bn − An)τ
j
n = An(T

j
n − τ jn) ⇐⇒ Bnτ

j
n = AnT

j
n, where T

j
n is the total time taken

to complete the sub-cycle Ξjn. Now, using the sub-cycle unit vectors, T jn can be

replaced to get: Bnτ
j
n = An(1̄

j
n)
T (ρ̄Ξ + τ̄Ξ). This relationship gives |Ξ| equations

which need to be solved for τ̄Ξ ∈ R
|Ξ|. Arranging all the equations in a matrix form:

diag(γ̄Ξ)τ̄Ξ = 1Ξ(ρ̄Ξ + τ̄Ξ) gives the result in (4.16).

A.4.7 Proof of Lemma 4.6

Observing the auxiliary target uncertainty profiles R1
n(t) and R2

n(t) (of n1 and n2)

in Fig. 4·11 of the target-cycle shown in Fig. 4·10, note that the shape of these

profiles should satisfy the previously established equivalence criteria. Therefore, for

any generic target-cycle Ξ̄, the first equivalence criterion is guaranteed by:

Bj
nτ

j
n = AjnT

j
n, ∀nj ∈ Tn, ∀n ∈ Ξ̄. (A.27)

Using (4.2), the contribution from a target n ∈ Ξ̄ to the main objective JT during

a tour (over a period of length TΞ, at steady state) can be written as 1
T

∫

TΞ
Rn(t)dt.

Therefore, the condition to enforce the third equivalence criterion is: 1
T

∫

TΞ
Rn(t)dt =

1
T

∫

TΞ

∑

nj∈Tn
Rj
n(t)dt. However, since TΞ can be decomposed into sub-cycle time peri-

ods: 1
T

∫

TΞ
Rn(t)dt =

1
T

∑

nj∈Tn

∫

T
j
n
Rn(t)dt. These two relationships give a system of

equations:
∫

TΞ
Rj
n(t)dt =

∫

T
j
n
Rn(t)dt, ∀nj ∈ Tn, ∀n ∈ Ξ̄. As uncertainty profiles are

piece-wise linear, these integrals can be evaluated leading to the system of equations:

TΞ(B
j
n − Ajn) = T jn(Bn − An), ∀nj ∈ Tn, ∀n ∈ Ξ̄. (A.28)

Finally, (A.27) and (A.28) can be solved to obtain the auxiliary target parameters.
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A.5 From Chapter 5

A.5.1 Proof of Theorem 5.1

In (5.3), by taking the summation operator out of the integration and then splitting

the time interval [0, T ] into three parts gives

JT =
1

T




∑

j∈T \{i}

T∫

0

Rj(t)dt



+
1

T





t0∫

0

Ri(t)dt+

t1∫

t0

Ri(t)dt+

T∫

t1

Ri(t)dt



 .

Moreover, since [t0, t1) ⊆ [tki , t
k+1
i ), the relationship (5.5) implies that

∫ t1
t0
Ri(t)dt

represents the area of a trapezoid (whose parallel sides are Ri(t0) and Ri(t1)). There-

fore, Ji(t0, t1) = Ri(t0)+Ri(t1)
2

(t1 − t0). Also, it follows from (5.1) and (5.5) that

Ri(t1) = Ri(t0) + Ṙi(t0)(t1 − t0). Combining these two results gives (5.7).

A.5.2 Proof of Lemma 5.1

Using (5.21), first and second order derivatives J ′(uj) and J
′′(uj) of JH(uj, 0) can be

obtained respectively as

J ′(uj) =
Ā− Bj

2
+

Bjρ
2
ij

2(ρij + uj)2
and J ′′(uj) = − Bjρ

2
ij

(ρij + uj)3
.

Observe that J ′(0) = Ā/2 > 0 and J ′′(uj) < 0, ∀uj ≥ 0. This implies that J ′(uj) is

monotonically decreasing with uj ≥ 0. Also note that limuj→∞ J ′(uj) =
Ā−Bj

2
. There-

fore, for the case where Ā ≥ Bj, the objective JH(uj, 0) is monotonically increasing

with uj. Hence u
∗
j = 0 in (5.24).

For the case where Ā < Bj, the limiting value of J ′(uj) is negative. This implies

the existence of a maximum of JH(uj, 0) at some uj ≥ 0. However, such a maximizing

uj value is irrelevant to the minimization in (5.24). The existence of this maximum

and J ′′(uj) < 0 imply the existence of a point uj = u#j such that JH(0, 0) = JH(uj, 0)

occurs. Using (5.21), this can be determined as u#j =
C6−C4ρij

C1
which simplifies to u#j
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given in (5.26). According to the nature of J ′(uj) and J ′′(uj), it is then clear that

JH(uj, 0) decreases with uj ≥ u#j (below its JH(0, 0) value). Therefore, when ūj ≥ u#j

(and Ā < Bj), u
∗
j = ūj in (5.24).

A.5.3 Proof of Lemma 5.2

The first and second order derivatives of JH(u
B
j , vj) with respect to vj are

J ′(0) =
Ā

2
− Bj

2

[

1− ρ2ij
(ρij + uBj )

2

]

and J ′′(vj) =
R2
j (t) + 2BjρijRj(t) + AjBjρ

2
ij

(Bj − Aj)(ρij + uBj + vj)
,

respectively. Note that J ′′(vj) > 0, ∀vj ≥ 0. This implies that JH(u
B
j , vj) is convex

in the positive orthant of vj, and J
′(vj) is increasing with vj ≥ 0 starting from J ′(0)

given above. If J ′(0) ≥ 0, this implies that JH(u
B
j , vj) is monotonically increasing

with vj ≥ 0. Therefore, in this case v∗j = 0, which proves the first case in (5.29).

When J ′(0) < 0, there must exist a unique minimum to JH(u
B
j , vj) at some vj ≥ 0.

It is straightforward to determine the minimizing vj value which is found to be vj = v#j

given in (5.30). Based on the constraint 0 ≤ vj ≤ v̄j in (5.29) and the convexity of

JH(u
B
j , vj), it is clear that whenever v

#
j ≤ v̄j, v

∗
j = v#j in (5.29) and whenever v#j > v̄j,

v∗j = v̄j. This proves the second case given in (5.29).

A.5.4 Proof of Lemma D.1

The first and second order derivatives of h(r) are

h′ =
gf ′ − fg′

g2
and h′′ =

g[gf ′′ − fg′′]− 2g′[gf ′ − fg′]

g3
.

Note that h′′(r) = ∆h(r)
g3(r)

and g3(r) > 0 ∀r ∈ U . Therefore, convexity of h(r) will only

depend on the condition: h′′(r) > 0, ∀r ∈ U ⇐⇒ ∆h(r) > 0, ∀r ∈ U . This condition
is easily seen to be satisfied whenever

∆h(r0) > 0 for some r0 ∈ U and ∆′
h(r) = 0 for all r ∈ U .
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Finally, evaluating ∆′
h(r) yields the expression in (D.1)

∆′
h(r) = g[gf ′′′ − fg′′′]− 3g′′[gf ′ − fg′],

which completes the proof.

A.5.5 Proof of Lemma 5.3

Recall that Uij = [uj, vj] and w = ρij + uj + vj for RHCP3. Applying α = 0 in

(5.49) and using it in the RHCP3 objective JH(Uij) =
1
w
J̄i(t, t+w) gives JH(Uij) =

R̄j(t)+
1
2
Āj(ρij+uj+ vj). Therefore, clearly the minimizing Uij choice is u

∗
j = v∗j = 0

(i.e., the solution to (5.11)). Hence, the optimal next-visit target j∗ following from

(5.12) is j ∈ Ni with the minimum R̄j(t) +
1
2
Ājρij value. Using the relationships

R̄j = R̄−Rj and Āj = Ā− Aj (see (5.22)), this j∗ choice yields (5.50).
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Appendix B

Concepts Adopted From Literature

B.2 In Chapter 2

B.2.1 Boosting Function Families Proposed in (Sun et al., 2014) (used in

Section 2.3.5)

Φ-Boosting: This method uses αi1(x, s̄i) = κΦi(x)
γ and ηi1(x, s̄i) = 0, where Φi(x)

in (2.42) indicates the extent to which point x ∈ Vi is not covered by neighbors in

Bi. Thus, the effect of Φ-Boosting is to force agent i to move towards regions of Vi

which are less covered by its neighbors in Bi.

P -Boosting: In this method, αi1(x, s̄i) = κ[P (x, s)]−γ and ηi1(x, s̄i) = 0 are used,

where P (x, s) in (2.37) indicates the extent to which point x ∈ Ω is covered by all

the agents in V . However, when evaluating the boosted gradient (2.45), x ∈ Vi ⊆ Ω.

Therefore, this approach assigns higher weights to points x ∈ Vi that are less covered

by the closed neighborhood B̄i.

Neighbor-Boosting: This boosting function family uses αi1(x, s̄i) = 1 and

ηi1(x, s̄i) =
∑

j∈Bi
1{x=sj} · κ·1{sj∈Vi}

‖si−x‖γ
. As a result, agent i gets repelled from the

neighbors who are in its visibility region Vi.
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B.3 In Chapter 3

B.3.1 Partial Curvature: A Brief Summary of (Liu et al., 2019) (used in

Section 3.2.4)

The work in (Liu et al., 2018), proves that the partial curvature αp in (3.8) always

leads to a better performance bound compared to the total curvature αt in (3.9),

if the problem (3.1) satisfies a few additional conditions. Here, to understand these

additional conditions, a brief summary of the findings of (Liu et al., 2019) is provided.

First, in addition to the Assumption 3.1, regarding the set-objective function f in

the problem (3.1), it is assumed that f : IN → R (in contrast to taking f : 2X → R).

Domain Extension: Consider the following definitions.

Definition B.1. The minor of a set A ⊆ X is a set denoted by A−, where

A− , argmax
B:B⊂A,

|B|=|A|−1

f(B). (B.1)

Definition B.2. A set function f : Ik → R is extendable to the domain Ik+1 if

there exist a function g : Ik+1 → R (called the “extended” version of f) where,

g(A) =







f(A), A ∈ Ik,
f(A−) + dA,k, A 6∈ Ik,

(B.2)

for all A ∈ Ik+1 with dA,k ∈ R≥0 and A− is the minor of the set A.

Due to the flexibility of selecting dA,k, there exists an infinite number of extended

versions (i.e., g) for a given set function f between any two domains Ik to Ik+1.

Moreover, if the set-function f is normalized or monotone, a corresponding extended

set function g will also inherit such properties. However, this is not generally true for

the submodularity property unless dA,k values are chosen in the manner given below.
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Preserving the Submodularity Property: If the set-objective f is submodular,

its extended version g in (B.2) is also submodular is dA,k values are chosen such that

dA,k ≤ UA,k , min
(B,a):|B|=k
a∈B⊂A

[
f(B)− f(B\{a}) + f(A\{a})− f(A−)

]
, (B.3)

for all A ⊆ X such that |A| = k+1. This condition is a result of applying the second

submodularity condition in Def. 3.2 for the set function g in (B.2).

Another interested property that needs to be preserved during an extension is:

the existence of an extension g such that αp(f, Ik) = αt(g, Ik+1). For convenience,

henceforth, it is called as the binding property of f between two domains Ik and Ik+1.

Preserving the Binding Property: The extended version g given in (B.2) pre-

serves the aforementioned binding property if dA,k values are chosen such that

dA,k ≥ LA,k , max
a:a∈A

[
(1− αp(f, Ik))f({a}) + f(A\{a})− f(A−)

]
, (B.4)

for all A ⊆ X such that |A| = k + 1.

Extending the Concept of Extension: Note that (B.2), (B.3) and (B.4) are

focused on extending the domain of a set-function f from Ik to Ik+1. Therefore,

starting with k = N , one can repeatedly apply these steps to extend the domain of

the set-objective function f in (3.1) from IN to In = 2X (recall that |X| = n).

Application of the Partial Curvature: As stated in Theorem 3.2, to apply the

partial curvature concept in an application, first, the existence of an extended version

g : In → R of the set-objective function f : IN → R (with preserved submodularity

and binding properties), should be proven. For this purpose, the conditions given in

(B.3) and (B.4) can be exploited. In particular, proving that UA,k−LA,k ≥ 0, ∀A ⊆ X

such that |A| = k + 1 for some generic k ∈ Z where N ≤ k ≤ n is sufficient.
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Appendix C

Appendices for Chapter 3

C.1 Properties of the “Minor” of an Agent Set in Coverage

According to Def. B.1, the minor of a set A ⊆ X with respect to the set-coverage

function H is a set denoted by A−, where

A− , argmax
B:B⊂A,

|B|=|A|−1

H(B). (C.1)

Lemma C.1. The minor of a set of agents A (i.e., A−) can be obtained by removing

the agent in A with the lowest local objective function value, i.e., A− = A\{a∗} with

a∗ = argmin
a∈A

∆H(a|A\{a}).

Proof. See Appendix A.3.8.

Thus, A− can be thought of as the remaining set of agents when the least con-

tributing agent to set-coverage H(A) is removed from the agent set A. The following

three lemmas can now be established using basic properties of the coverage problem.

Lemma C.2. For all B,A such that B ⊂ A ⊆ X and |B| = |A| − 1, for any sj ∈ B,

H(A−)−H(A\{sj}) ≤ H(B)−H(B\{sj}).

Proof. See Appendix A.3.9.

This result is used to prove the extendability (introduced in Section B.3.1) of the

set-coverage function H(S), which enables the application of Theorem 3.2.
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Lemma C.3. For all B,A such that B ⊂ A ⊆ X, |B| = |A| − 1 and A− 6= B,

H(A)−H(A−) ≤ H(B)−H(B−).

Proof. See Appendix A.3.10.

This lemma implies that the set-coverage function loss incurred when removing

the worst contributing agent of a set A ⊆ X is always smaller than that of a set

B ⊂ A such that |B| = |A| − 1, whenever A− 6= B.

Lemma C.4. If three sets Ak+1, Ak, Ak−1 are such that A−
k+1 = Ak, A

−
k = Ak−1, then

H(Ak+1)−H(Ak) ≤ H(Ak)−H(Ak−1)

Proof. See Appendix A.3.11.

This result indicates that if started with some set Ak+1 and iteratively removed

the worst contributing agent, the loss in the set-coverage function would increase over

such iterations. Next, lemmas C.3, C.4 are used to establish the following theorem.

Theorem C.1. For all B,A such that B ⊂ A ⊆ X,

H(A)−H(A−) ≤ H(B)−H(B−).

Proof. See Appendix A.3.12.

This theorem generalizes the Lemma C.3 and shows that the coverage loss due to

the removal of the worst contributing agent of any subset will be larger than that of

any super-set. This result is also used to prove the applicability of Theorem 3.2 for

the class of multi-agent coverage problems.
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Appendix D

Appendices for Chapter 5

D.1 Constrained Bivariate Rational Function Optimization

Convexity of Rational Functions: Consider a rational function h : R → R of

the form h(r) = f(r)
g(r)

and assume g(r) > 0 ∀r ∈ U ⊆ R where U is a closed interval. In

the following, the argument of f(r), g(r) or h(r) is omitted for notational convenience.

Also, the notation “ ′ ” is used to denote the derivative (with respect to r).

Lemma D.1. Whenever polynomials g(r) and f(r) satisfy

g[gf ′′′ − fg′′′]− 3g′′[gf ′ − fg′] = 0, ∀r ∈ U , (D.1)

h(r) is convex (or concave) on U if ∆h(r0) > 0 (or ∆h(r0) < 0) where r0 ∈ U and

∆h(r) , g[gf ′′ − fg′′]− 2g′[gf ′ − fg′]. (D.2)

Proof. See Appendix A.5.4.

Remark D.1. According to Lemma D.1, the condition in (D.1) along with ∆h(r0) > 0

(or ∆h(r0) < 0) for some r0 ∈ U is sufficient to determine the convexity (or concavity)

of h(r) on U . As an example, (D.1) is satisfied whenever the rational function h(r)

has a denominator polynomial g(r) of first degree and a numerator polynomial f(r) of

second degree. In such a case, the convexity/concavity of h(r) over U can be identified

by simply evaluating the sign of ∆h(r) at a convenient r = r0 ∈ U point.

Constrained Minimization of h(r): Assume h(r) = f(r)
g(r)

to be a rational function

which satisfies the conditions discussed above: g(r) > 0, ∆′
h(r) = 0 ∀r ∈ U ⊆ R.

Further, assume the signs of ∆h(r0) and h′(r0) are known at some point of interest
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r = r0 ∈ U (recall that the sign of ∆h(r0) mimics the sign of h′′(r), r ∈ U). According
to Lemma D.1, the latter assumption fully determines the convexity (or concavity)

of h(r) on U and its gradient direction at r = r0, respectively. Now, consider the

following optimization problem:

r∗ = argmin
r0 ≤ r≤ r1

h(r), (D.3)

where [r0, r1] ⊆ U . A critical r value r = r# (important to the analysis) is defined as

r# ,







{r : h′(r) = 0, r > r0} if ∆h(r0) > 0 & h′(r0) < 0

{r : h(r) = h(r0), r > r0} if ∆h(r0) < 0 & h′(r0) > 0.

Note that the two cases considered above are the only ones where a stationary point

of h(r) could occur for some r > r0, r ∈ U (see also Fig. D·1).

Lemma D.2. The optimal solution to (D.3) is as follows:

If ∆h(r0) < 0, h′(r0) > 0, r∗ =







r1 if r1 > r#

r0 otherwise,

If ∆h(r0) > 0, h′(r0) < 0, r∗ =







r# if r1 > r#

r1 otherwise,

Otherwise, r∗ =







r0 if ∆h(r0) ≥ 0

and h′(r0) ≥ 0

r1 otherwise.

Proof. The proof easily follows by inspection of all cases shown in Fig. D·1.

In essence, an optimization problem of the form (D.3) can be solved based exclu-

sively on the values of h′(r0), ∆h(r0) and r
#. Note that r# is only required in two

special cases and for the application example mentioned in Remark D.1, it can be

obtained simply by solving for the roots of a quadratic expression (single variable).
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Figure D·1: Graphs of possible {h(r) : r ≥ r0, r ∈ U} profiles for
different cases of h′(r0) and ∆h(r0) (recall sgn(∆h(r0)) = sgn(h′′(r))
determines the convexity or concavity).

Bivariate Rational Functions: Next, consider the class of bivariate rational func-

tions that can be represented by a function H : R2
+ → R of the form

H(x, y) =
F (x, y)

G(x, y)
=
C1x

2 + C2y
2 + C3xy + C4x+ C5y + C6

C7x+ C8y + C9

, (D.4)

where the coefficients C1, . . . , C9 are known scalar constants with C7 ≥ 0, C8 ≥ 0

and C9 > 0. Also R
2
+ denotes the non-negative orthant of R2.

Developing conditions for the convexity of H(x, y) is a complicated task. Even

if such conditions were derived, interpreting them and exploiting them to solve a

two-dimensional constrained optimization problem that involves minimizing H(x, y)

(analogous to (D.3)) is challenging. To address this, the behavior of H(x, y) is next

studied along a generic line segment of the form y = mx + b starting at some point

(x0, y0) ∈ R
2
+ as shown in Fig. D·2a. A parameter r is used to represent a generic

location (xr, yr) on this line as (xr, yr) = (x0 + r, y0 + mr) where r is introduced
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exploiting the gradient m of the line segment:

yr − y0
xr − x0

= m =⇒ yr − y0
m

=
xr − x0

1
= r. (D.5)

A rational function h(r) can now be defined as

h(r) , H(x0 + r, y0 +mr) =
F (x0 + r, y0 +mr)

G(x0 + r, y0 +mr)
=
f(r)

g(r)
, (D.6)

to represent H(x, y) along the line segment of interest.

The parameter r is constrained such that r ∈ U , [−x0, −y0m ] to limit the line

segment to R
2
+. This allows h(r) to fall directly into the category of rational functions

discussed in Lemma D.1 and in Remark D.1.

(a) (b)

Figure D·2: (a) H(x, y) along the line y = mx+ b, (b) Feasible space
for H(x, y) in (D.8).

Theorem D.1. The rational function h(r), r ∈ U defined in (D.6) is convex (or

concave) if ∆h(r0) > 0 (or ∆h(r0) < 0), where r0 ∈ U and ∆h(r) is defined in (D.2).

Proof. According to (D.6) and U defined above, the denominator polynomial g(r) =

G(x0 + r, y0 +mr) > 0 for all r ∈ U as C7 ≥ 0, C8 ≥ 0 and C9 > 0 in (D.4).

Since g(r) and f(r) are polynomials of degree 1 and 2 respectively, they satisfy

condition (D.1). Thus, Lemma D.1 is applicable for h(r) in (D.6) and its convexity

will depend on the condition ∆h(r0) > 0.
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It is worth pointing out that ∆h(r) is in fact independent of r as ∆′
h(r) = 0, ∀r ∈ U

(see the last step of the proof of Lemma D.1 and (D.1)). However, it will depend

on other parameters contained in (D.4) including x0, y0 and m. For example, when

the line segment defined by x0 = 0, y0 = 0,m = 0 (i.e., the x-axis) is used, ∆h(r) =

2C6C
2
7 − 2C4C7C9 + 2C1C

2
9 , ∀r ∈ R≥0.

In the introduced parameterization scheme, the parameter r represents the dis-

tance along the x axis from x0 (projected from the line segment y = mx+b). However,

if H(x, y) needs to be studied along the y axis (from y0 projected from a line segment

x = ny + c), then using

yr − y0
xr − x0

=
1

n
=⇒ yr − y0

1
=
xr − x0
n

= r, (D.7)

is more appropriate as it gives (xr, yr) = (x0 + nr, y0 + r).

Theorem D.1 enables determining the optimal H(x, y) value along a known line

segment (on R
2
+) using Lemma D.2 for a problem of the form (D.3). This capability

is exploited next.

Constrained Minimization of H(x, y): The main objective of this discussion is

to obtain a closed form solution to a constrained optimization problem of the form

(x∗, y∗) = argmin
(x,y)

H(x, y)

0 ≤ x ≤ N,

0 ≤ y ≤ min{Px+ L, −Qx+M},

(D.8)

where H(x, y) is a known bivariate rational function of the form (D.4) and P,Q,L,M

are known positive (scalar) constants. These constraints define a convex 2-Polytope

as shown in Fig. D·2b. The steps to solve the above problem are discussed next.
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- Step 1: The unconstrained version of (D.8) is considered first. This is solved

using the KKT necessary conditions (Bertsekas, 2016), which reveal two equations

of generic conics (Rosenberg, 2010). Therefore, the stationary points of H(x, y) lie

at the (four) intersection points of those two conics. The problem of determining

the intersection of two conics boils down to solving a quartic equation, which has a

well-known closed-form solution (Auckly, 2007). These (four) solutions are computed

and stored in a solution pool if they satisfy the problem constraints.

- Step 2: Next, the constrained version of (D.8) is considered. In such a case, it

is possible for (x∗, y∗) to lie on a constraint boundary. To capture such situations,

H(x, y) is optimized along each of the boundary line segments of the feasible space

(there are five of them as shown in Fig. D·2b).
On a selected boundary line segment, the first step is to parameterize H(x, y) to

obtain a single variable rational function h(r) (following either (D.5) or (D.7)). Then,

the next step is to solve the resulting convex (or concave) optimization problem (of

the form (D.3)) using Lemma D.2. Note that this is enabled by Theorem D.1. Finally,

the obtained optimal solution is added to the solution pool from Step 1.

- Step 3: The final step is to pick the best solution out of the solution pool (which

only contains at most nine candidates solutions). Therefore, this is achieved by

directly evaluating H(x, y) and comparing all candidate solutions to each other.

This approach is computationally cheap, accurate and provides the global optimal

solution compared to gradient-based methods which are susceptible to local optima.

This concludes the discussion on how to solve a generic problem of the form (D.8).
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Ilie, S. and Bǎdicǎ, C. (2013). Multi-Agent Approach to Distributed Ant Colony
Optimization. In Proceedings of Science of Computer Programming, volume 78,
pages 762–774.

Jianbo Shi and Malik, J. (2000). Normalized Cuts and Image Segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905.

Kennedy, J. and Eberhart, R. (1995). Particle Swarm Optimization. In Proceedings
of IEEE International Conference on Neural Networks, volume 4, pages 1942–1948.

Khazaeni, Y. and Cassandras, C. G. (2018a). Event-Driven Cooperative Reced-
ing Horizon Control for Multi-Agent Systems in Uncertain Environments. IEEE
Transactions on Control of Network Systems, 5(1):409–422.

Khazaeni, Y. and Cassandras, C. G. (2018b). Event-Driven Trajectory Optimization
for Data Harvesting in Multi-Agent Systems. IEEE Transactions on Control of
Network Systems, 5(3):1335–1348.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by Simulated
Annealing. Science, 220(4598):671–680.

Lan, X. and Schwager, M. (2013). Planning Periodic Persistent Monitoring Trajec-
tories for Sensing Robots in Gaussian Random Fields. In In Proceedings of IEEE
International Conference on Robotics and Automation, pages 2415–2420.

Lasdon, L. and Plummer, J. C. (2008). Multistart algorithms for seeking feasibility.
Computers and Operations Research, 35(5):1379–1393.

Lee, J. D., Panageas, I., Piliouras, G., Simchowitz, M., Jordan, M. I., and Recht, B.
(2017). First-Order Methods Almost Always Avoid Saddle Points. Mathematical
Programming, 176(1-2):311–337.

Li, W. and Cassandras, C. G. (2006). A Cooperative Receding Horizon Controller for
Multi-Vehicle Uncertain Environments. IEEE Transactions on Automatic Control,
51(2):242–257.

Li, X. and Liu, H. (2018). Greedy Optimization for K-Means-Based Consensus
Clustering. Tsinghua Science and Technology, 23(2):184–194.

Liaqat, A., Hutabarat, W., Tiwari, D., Tinkler, L., Harra, D., Morgan, B., Taylor,
A., Lu, T., and Tiwari, A. (2019). Autonomous Mobile Robots in Manufacturing:
Highway Code Development, Simulation and Testing. International Journal of
Advanced Manufacturing Technology, 104(9-12):4617–4628.



198

Lin, X. and Cassandras, C. G. (2015). An Optimal Control Approach to The Multi-
Agent Persistent Monitoring Problem in Two-Dimensional Spaces. IEEE Trans-
actions on Automatic Control, 60(6):1659–1664.

Lin, Z., Wang, L., Han, Z., and Fu, M. (2014). Distributed Formation Control of
Multi-Agent Systems Using Complex Laplacian. IEEE Transactions on Automatic
Control, 59(7):1765–1777.

Lindemann, L. and Dimarogonas, D. V. (2019). Control Barrier Functions for Multi-
Agent Systems Under Conflicting Local Signal Temporal Logic Tasks. IEEE Con-
trol Systems Letters, 3(3):757–762.

Liu, Y., Chong, E. K. P., and Pezeshki, A. (2018). Improved Bounds for The Greedy
Strategy in Optimization Problems with Curvature. Journal of Combinatorial
Optimization, 37(4):1126–1149.

Liu, Y., Chong, E. K. P., Pezeshki, A., and Zhang, Z. (2019). Submodular Optimiza-
tion Problems and Greedy Strategies: A Survey. arXiv e-prints, page 1905.03308.

Maini, P., Yu, K., Sujit, P. B., and Tokekar, P. (2018). Persistent Monitoring with
Refueling on a Terrain Using a Team of Aerial and Ground Robots. In Proceedings
of IEEE International Conference on Intelligent Robots and Systems, pages 8493–
8498.

Marden, J. R. and Roughgarden, T. (2014). Generalized Efficiency Bounds in Dis-
tributed Resource Allocation. IEEE Transactions on Automatic Control, 59(3):571–
584.

Maza, I., Caballero, F., Capitán, J., Mart́ınez-De-Dios, J. R., and Ollero, A. (2011).
Experimental Results in Multi-UAV Coordination for Disaster Management and
Civil Security Applications. Journal of Intelligent and Robotic Systems: Theory
and Applications, 61(1-4):563–585.

Menendez, O., Auat Cheein, F. A., Perez, M., and Kouro, S. (2017). Robotics
in Power Systems: Enabling a More Reliable and Safe Grid. IEEE Industrial
Electronics Magazine, 11(2):22–34.

Miller, K. S. (1981). On the Inverse of the Sum of Matrices. Mathematics Magazine,
54(2):67.

Molzahn, D. K., Dorfler, F., Sandberg, H., Low, S. H., Chakrabarti, S., Baldick, R.,
and Lavaei, J. (2017). A Survey of Distributed Optimization and Control Algo-
rithms for Electric Power Systems. IEEE Transactions on Smart Grid, 8(6):2941–
2962.



199
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