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ABSTRACT

The progress in modern quantum information processing (QIP) strongly depends on new

algorithms and on the development of novel quantum entanglement processing elements

enabling to perform quantum computation and quantum simulation effectively. Several

examples of quantum information processing applications based on freshly designed linear-

optics devices are presented.

A beam splitter (BS) is a central device in linear-optical quantum information processing

because it can split the incoming photon amplitudes into spatially distinct modes to establish

conditions for quantum superposition. The BS naturally possesses directional-bias in a sense

that incoming photons can only propagate in a forward manner. When the execution of

certain quantum information tasks would require multiple operations, this directionality con-

dition becomes a serious obstacle by creating significant overhead in the number of needed

elements and other supporting devices. We introduce a family of amplitude-controllable

fully-reversible linear-optical quantum information processors, called directionally-unbiased

linear-optical multiports, in order to achieve significant reduction in the number of required
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hardware. The theoretical analysis of the device design as well as the experimental re-

alization of three-port unit using bulk linear optics is demonstrated. These devices offer

several fresh approaches in quantum-walk-based applications such as quantum simulation

of solid-state Hamiltonians, topological protection of polarization qubits against errors,

and quantum communication. Topological photonics is an emerging and actively devel-

oping field because of its capability to stabilize and protect some quantum states from

perturbation errors by ensuring the environment carries a distinct topological signature.

Topology-dependent quantum information processing is globally stable due to the entire

system being engaged in the information manipulation. We demonstrate suppression of

quantum amplitude transfer between two distinct bulk regions of a system. This results in

error avoidance for a two-photon polarization-entangled state under specific conditions.

The goal of modern quantum communication is a reliable distribution of quantum entan-

glement between multiple nodes performing quantum operations such as quantum memories

and quantum computers. We demonstrated that local quantum information processing using

new fully-reversible four-port linear-optical structures could find an immediate application

in quantum communication. A quantum information routing device is introduced based on

the use of four-dimensional Grover matrices and beam splitters. Several multiport-based

units are developed to demonstrate new higher-dimensional Hong-Ou-Mandel (HOM) effect

and directionally-controllable entangled state distribution while changing only phases in a

waveguided unit. Several such operational elements could be linked to form a reconfigurable

network of quantum users without losing control of quantum amplitudes. This allows

controllable routing of entangled photons and sharing entanglement between any designated

users in the future quantum computational networks.
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Chapter 1

Introduction

1.1 Motivation

A tremendous amount of effort has been devoted to quantum information processing with

the ultimate goal of making a quantum computer (Nielsen and Chuang, 2002). Quantum

information science is diverse. In fact, multidisciplinary efforts have been incorporated

into this area, ranging from physics, computer science, mathematics, and chemistry, among

others. Classical systems are simulated through classical computers. Similarly, quantum sys-

tems should be simulated through quantum computers rather than classical ones (Feynman,

1982). Though it may seem straightforward to achieve this implementation of a quantum

computer task, it faces many hurdles to be overcome.

1. Quantum systems are fragile. Quantum systems do not survive for an extended amount

of time. This is because a quantum state couples to an environment and the information

becomes inaccessible. This is known as decoherence.

2. Cloning of a state is not allowed. The no-cloning theorem prohibits cloning of an arbitrary

quantum state (Wootters and Zurek, 1982). This implies that arbitrary manipulation and

amplification of quantum states are difficult to achieve.

3. Entangled state generation. Significant amount of entangled qubits are necessary to

achieve computation in a quantum computer. However, this generation of photonic qubits

turned out to be a very arduous task. Low number entanglements are readily available

nowadays (Kim et al., 2006; Kwiat et al., 1995), yet its robust scaling is an important task to

be solved.



2

To actually implement such a computer, there are several architectures to be selected such

as photonics, cold atoms, and superconducting systems, in which quantum information

processing can be performed. Both photonics and quantum systems are an exceptional match

for performing quantum information processing. This is due to the fact that photons do not

suffer from thermal noise, therefore there is no need for extreme cooling for experiments.

Even so, photonic systems face difficulties in the stable production of entangled photons,

particularly with high photon numbers. This is a result of photons not interacting under

linear operations. This indicates that the production of entangled photonic states relies

on quadratic effects coming from nonlinear optical devices (Boyd, 2020). Spontaneous

parametric down-conversion (SPDC) is often used for two- and three-entangled photonic

state generation (Klyshko et al., 1970; Kwiat et al., 1995; Bouwmeester et al., 1999b).

However, the generation of entangled photons is probabilistic, meaning one needs to wait

for the event to occur. The wait time becomes astronomically longer as the number of

entangled photons scales. To circumvent this, linear optical quantum computation has been

introduced and measurement-based feed-forward systems attract attention as a result of the

shorter waiting period for a desirable event to occur (Knill et al., 2001). The price to pay for

needing nonlinear operations is rapidly escalating apparatus size.

This dissertation will focus on quantum information processing using only linear optical

devices for state manipulation such as beam splitters, phase shifters, and mirrors. By com-

bining these basic devices, higher-dimensional linear optical multiports can be formed to

access higher dimensional quantum states (Reck et al., 1994). Unlike previously introduced

multiports, we introduce a new reversible linear optical system by re-using optical elements.

This device offers a variety of applications in photonics-based quantum information process-

ing. By combining multiple copies of them, we can form a quantum walk and a state transfer

system which is essential for quantum communication (Ekert, 1991; Briegel et al., 1998).

In quantum information processing, a quantum state needs to be prepared, propagated, and
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then measured. This dissertation tackles the problem of state preparation and distribution

utilizing linear optical devices based on quantum walk approaches.

1.2 Structure of This Dissertation

The rest of chapter 1 introduces background knowledge on quantum state manipulation.

Chapter 2 introduces basic building blocks used in optics such as interferometers as a

quantum information processing tool. Chapter 3 introduces a new type of interferometer

based quantum information processor called directionally-unbiased linear-optical multiports

by introducing propagation reversibility in the system. The experimental demonstration of

the device is originally reported in (Osawa et al., 2018). Theoretical description (Simon et al.,

2016) and bulk optics based experimental results are provided to demonstrate its operation.

A review of multiple directional and directionally-unbiased devices designs is originally

provided in (Osawa et al., 2019). Chapter 4 introduces quantum walks in optics by utilizing

both basic linear-optical devices and reversible multiport devices introduced in chapter 3.

Chapter 5 introduces topological photonic information processing using reversible devices.

Application of directionally-unbiased linear-optical multiports in topological photonics

is originally reported in (Simon et al., 2017a; Simon et al., 2017b; Simon et al., 2018a;

Simon et al., 2018b). Topological photonics manipulates information in a global manner.

Chapter 6 introduces multiphoton quantum state processing based on the combination of

multiple multiport devices. This application is originally demonstrated in (Simon et al.,

2020; Osawa et al., 2020). In addition to the previous chapter, we also explore a local

information processing. Clustering of two photons in quantum walks and transportation of a

quantum state is introduced. Chapter 7 summarizes the dissertation and formulates potential

future works based on the new effects introduced in previous chapters.
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1.3 Quantum Information Processing

To perform computation with the help of quantum mechanics, the classical bits, |0〉 and |1〉,

are modified to quantum bits known as “Qubit”. Qubits are described using unit ket vectors

|0〉 and |1〉. For a two-mode system, this is analogous to a classical “bit” representation.

|0〉=
(

1
0

)
, |1〉=

(
0
1

)
. (1.1)

This matrix is not the only choice of basis. Another basis can be used as long as |0〉 and

|1〉 are orthogonal.

|0〉= 1√
2

(
1
1

)
, |1〉= 1√

2

(
1
−1

)
(1.2)

can be another choice of a basis.

An obvious qubit is a single qubit state defined as

|ψ〉= α |0〉+β |1〉 , (1.3)

where α and β are complex numbers satisfying |α|2+ |β|2 = 1. This state is in a superposition

of 0 and 1. The information is revealed when a measurement is performed. The qubit takes

the value |0〉 with probability equal to |α|2 and |1〉 with probability equal to |β|2. Unlike

classical bits, we can add a relative phase between the two orthogonal basis of qubits, and this

plays an important role in quantum interference. The qubit can be understood geometrically

by parametrizing the quantum state using spherical coordinates. Most commonly used

parametrized representation of a qubit is,

|ψ〉= cos
θ

2
|0〉+ eiφsin

θ

2
|1〉 . (1.4)

This state resides on a sphere and an arbitrary state can be obtained by applying pauli

matrices introduced in the next subsection.
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1.3.1 Single Qubit Gates

Pauli matrices are defined by

σX =

(
0 1
1 0

)
,σY =

(
0 −i
i 0

)
,σZ =

(
1 0
0 −1

)
. (1.5)

Bloch sphere enables graphical representation of qubits. Single qubit gates work as rotation

of a state on the Bloch sphere shown in Fig. 1·1. We can take an arbitrary qubit state

|ψ〉= α |0〉+β |1〉. Rotation with respect to each axes can be performed by applying pauli

matrices. Rotation around x-axis is performed by applying pauli-X gate on |ψ〉. The

graphical representation is provided in Fig. 1·1 (a).

σX |ψ〉 →
(

0 1
1 0

)
(α |0〉+β |1〉) = α |1〉+β |0〉 . (1.6)

Pauli-X flips the qubit value from |0〉 to |1〉 and |1〉 to |0〉. Rotation around z-axis is

performed in the following manner. The graphical representation is provided in Fig. 1·1 (b).

σZ |ψ〉 →
(

1 0
0 −1

)
(α |0〉+β |1〉) = α |0〉−β |1〉 . (1.7)

This pauli-Z gate flips the phase between two orthogonal basis from +1 to -1.
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x

y

z
|ψ〉 = α |0〉 + β |1〉

σx |ψ〉 = α |1〉 + β |0〉

|0〉

|1〉
(a)

x

y

z
|ψ〉 = α |0〉 + β |1〉σz |ψ〉 = α |0〉 − β |1〉

|0〉

|1〉
(b)

Figure 1·1: (a) Rotation around x-axis (b) Rotation around z-axiz When
pauli-X is applied to the qubit, it flips the qubit value from |0〉 to |1〉 and |1〉
to |0〉. When pauli-Z is applied, relative phase between qubit |0〉 and |1〉 is
fliped from +1 to −1.

There are some other important single qubit gates and they are the Hadamard gate H,

phase rotation and π

8 rotations respectively.

H =
1√
2

(
1 1
1 −1

)
, phase =

(
1 0
0 eiφ

)
,R π

8
=

(
1 0
0 ei π

4

)
. (1.8)

1.3.2 Density Matrix

Density matrices are another way of representing a quantum state. A full picture of a

quantum state is given through density matrices. The density matrix allows to describe

states on both the surface (pure state) and inside of the Bloch sphere (mixed state). A

mixed state shows a statistical mixture of two or more states which describes a classical

coin-toss type of phenomenon and such state resides in a sphere not just on the surface. The

significant difference appears when we explicitly compare a mixture of |0〉 and |1〉, and the
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superposition of these two.

ρmix =
1
2
|0〉〈0|+ 1

2
|1〉〈1|=

(1
2 0
0 1

2

)
, (1.9)

ρsuperposition =
1
2
|0〉〈0|+ 1

2
|0〉〈1|+ 1

2
|1〉〈0|+ 1

2
|1〉〈1|=

(1
2

1
2

1
2

1
2

)
. (1.10)

A pure state has off-diagonal terms in the matrix and ρ2 = ρ holds. This is not true for a

mixed state and cannot be described using only ket vectors. Define

|ψ〉=
(

α

β

)
,〈ψ|=

(
α∗ β∗

)
, |ψ〉〈ψ|=

(
α

β

)(
α∗ β∗

)
=

(
αα∗ αβ∗

βα∗ ββ∗

)
. (1.11)

This density matrix approach is useful when decoherence comes into play. Qubits can

be extended to a multi-mode system and they are often called “qudits”.

|ψ〉= a0 |0〉+a1 |1〉+ · · ·+ad |d〉 , (1.12)

where |a0|2 + |a1|2 + · · ·+ |ad|2 = 1. A transformation done by the multiport devices on a

single photon is introduced in later chapters and it follows this qudit representation.

1.3.3 Two Qubit Gate

Controlled-not (CNOT) gate is a two-qubit gate and it acts on a two-qubit state. Pick a basis

for the two qubit state as {|0〉⊗ |0〉 , |0〉⊗ |1〉 , |1〉⊗ |0〉 , |1〉⊗ |1〉}. The tensor product of

the two qubits are given in a matrix form,

|00〉= |0〉⊗ |0〉=
(

1
0

)
⊗
(

1
0

)
=


1
0
0
0

 . (1.13)

The rest of the states in the basis follow the same rule.
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The CNOT gate changes the state of a second qubit depending on the first qubit.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.14)

The CNOT gate acts on two qubit state (|00〉 , |01〉 , |10〉 , |11〉)T and if the first qubit is |1〉

then, the CNOT gate flips the second qubit.

The set of single qubit gates, as well as the CNOT gate, are essential sets to perform

universal quantum computation because an appropriate combination of these gates can sim-

ulate any other quantum gates with arbitrary accuracy (Gottesman, 1998). The generalized

two-qubit state is written as

|ψ〉= 1√
2
(a00 |00〉+a01 |01〉+a10 |10〉+a11 |11〉), (1.15)

and CNOT transforms the state into

UCNOT |ψ〉=
1√
2
(a00 |00〉+a01 |01〉+a10 |11〉+a11 |10〉). (1.16)

1.4 Qubit Encoding in Optics

A single qubit can be defined physically by giving two distinct levels. The traditional

encoding methods are path and polarization degrees of freedom. A photon has a polarization,

and it is stable when a photon is propagated through the system. We can give two orthogonal

logical bits for them.

|0〉L = |H〉= aH |0〉 , |1〉L = |V 〉= aV |0〉 . (1.17)
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Similarly, we can introduce other basis,

|0〉L = |D〉= 1√
2
(|H〉+ |V 〉), |1〉L = |A〉= 1√

2
(|H〉− |V 〉), (1.18)

|0〉L = |R〉= 1√
2
(|H〉+ i |V 〉), |1〉L = |L〉= 1√

2
(|H〉− i |V 〉). (1.19)

The rotation of quantum states in optics can be done using waveplates. For example,

a half-wave plate can introduce rotation of polarization (|H〉 → |D〉) without destroying

photons, while a quarter-wave plate can introduce π

2 phase shift between the two orthogonal

polarizations (|H〉 → |R〉). A polarizer acts as a projection device meaning if the input state

is |D〉= 1√
2
(|H〉+ |V 〉), then a polarizer angled to only pass |H〉 picks up horizontal part

of the state with 50% intensity reduction. The final detection of a photon is performed

by a photodetector. Detection of a photon is not reversible, hence the operation destroys

the photon. Representing the same logical qubit representation in different ways has some

advantages. We have three basis for a two-level system, and they are called mutually

unbiased basis. This is particularly useful in quantum key distribution type of applications

(Bennett and Brassard, 1984; Ekert, 1991) because projective measurement on one basis

does not reveal information of a state on any other basis.

1.5 Photon Number State

We introduce a photon number state derived from the quantization of the single mode

electromagnetic field. The single mode photon number state formalism can be extended

to a multimode photon number state since the state is a product of all the modes (Gerry

et al., 2005). A single mode electromagnetic field can be quantized by introducing canonical

position and momentum making classical electromagnetic Hamiltonian equivalent to a

harmonic oscillator. Traditionally, the Hamiltonian using creation â† and annihilation â
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operator take the following form.

Ĥ = ~ω

(
â†â+

1
2

)
. (1.20)

A product of creation and annihilation operator n̂ = â†â is called number operator and the

associated eigenstate |n〉 for the Hamiltonian is

Ĥ |n〉= ~ω
(
â†â+ 1

2

)
|n〉

= En |n〉 . (1.21)

Following equations are obtained by applying a creation operator from the left on Eq. 1.21.

â†Ĥ |n〉= â†En |n〉 , (1.22)

~ω
(
â†â+ 1

2

)
(â† |n〉) = (En +~ω)(â† |n〉). (1.23)

This implies that the creation operator increases the energy eigenvalue by ~ω. Loosely

speaking, a photon of energy ~ω is created by â†. Similarly, â lowers the energy eigenvalue

by ~ω. We obtain the following for the number operator

n̂ |n〉= n |n〉 . (1.24)

The number state representation is convenient to describe the manipulation of photon

numbers.

â |n〉=
√

n−1 |n−1〉 , (1.25)

â† |n〉=
√

n+1 |n+1〉 . (1.26)

The creation and annihilation operators have some other properties.

[â, â†] = 1. (1.27)
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Operator representation of having n photons in a single mode is given by,

|n〉= (â†)n
√

n!
|0〉 . (1.28)

1.6 Entangled States

One of the most interesting states in a two-qubit system is entangled states. Entanglement

is often associated with Einstein’s “Spooky-action at a distance” to the general public, and

Einstein-Podolsky-Rosen’s paper (Einstein et al., 1935) became a centerpiece of quantum

theory on entanglement. The two qubit system is relatively simple because the character-

ization of two-qubit entangled state does not require extensive measurements. Entangled

states can be realized using optical polarization. Polarization does not need to be the only

degree of freedom. Other degrees of freedom such as energy-time (Franson, 1989), orbital

angular momentum (Mair et al., 2001) and so forth, can also realize quantum entanglement.

All the distinct degrees of freedom can be applied at once to generate hyper-entangled pho-

tonic states as well (Barreiro et al., 2005). In principle, single photons and a beam splitter

with some measurements can produce an entangled state. This procedure is called a post-

selection (Zeilinger et al., 1997; Ou and Mandel, 1988; Kiess et al., 1993). Post-selection

free entanglement generation (Kwiat et al., 1995) is introduced by spontaneous-parametric

down-conversion (SPDC) (Klyshko et al., 1970) via non-linear crystal.

1.6.1 Bell States

|ψ±〉= 1√
2
(|H〉1 |V 〉2±|V 〉1 |H〉2), (1.29)

|φ±〉= 1√
2
(|H〉1 |H〉2±|V 〉1 |V 〉2). (1.30)

Bell states are two-qubit maximally entangled states. They are entangled because they

cannot be factored out using two independent single-qubit states. In photonics, SPDC is a
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common technique to generate such states. The observation of Bell states is often performed

by Bell’s inequality (Bell, 1964) and witness operators (Horodecki, 1997). Quantum state

tomography provides a full picture of a generated state by reconstructing the quantum state

through a sufficient amount of different projective measurements (Chuang and Nielsen,

1997; Poyatos et al., 1997; Altepeter et al., 2003). The procedure for state tomography

becomes expensive rapidly as the number of photons increases.

1.6.2 GHZ and W States

Greenberger–Horne–Zeilinger (GHZ) and W states are often mentioned when maximally

entangled three-photon states are considered (Greenberger et al., 1989; Dür et al., 2000).

|GHZ〉= 1√
2
(|HHH〉± |VVV 〉), (1.31)

|W 〉= 1√
3
(|HVV 〉+ |HV H〉+ |VV H〉). (1.32)

The difficulty of a high number entangled state generation increases significantly because

high number entangled states require multiple low number entangled states with some

operations (Zhong et al., 2018; Lu et al., 2007). Direct generation of a multi-photon

entangled state is possible in principle; however this requires very low-probability higher-

order non-linear effects in order to execute the state generation (Armstrong et al., 1962;

Hamel et al., 2014). Multiple low-loss error-free quantum operations are needed to achieve

the desired task.
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Chapter 2

Linear Optics

2.1 Linear Optical Devices for Information Processing

Two-dimensional devices including interferometers are the main building blocks for any

applications in classical and quantum optics. Unitary transformations on spatial modes are

often used to employ quantum information processing. The dimensionality of information

processing needs to be increased and it has been shown that high-dimensional unitary

matrices can be decomposed using U(2) matrices (Murnaghan, 1962). This indicates that a

sequence of two-dimensional devices can implement higher dimensional devices. Flexibility

is important due to the necessity of amplitude manipulation between the input and output

fields. In principle, this could be achieved in two ways in optics:

1. by some kind of dynamic change in the input/output splitting ratio of a single beam

splitter (BS).

2. by forming an interferometer with several beam splitters, thus offering tunability between

output ports.

In this section, we start with the basic properties of a beam splitter implementing the U(2)

operation and discuss its features as a directionally-biased coupler. It will be followed by

the consideration of integrated waveguided couplers and some well-known interferometers

for implementing 2 × 2 transformations. Several higher dimensional unitary matrices are

implemented and large unitary matrices decomposition methods are introduced as well.
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2.1.1 Lossless Optical Beam Splitter

A lossless BS introduced in Fig. 2·1 redirects incoming photons into two outgoing ports

while maintaining energy conservation (Loudon, 2000; Saleh et al., 1991). A BS can be

represented using a 2 × 2 matrix, acting on two input and two output ports, denoted as

E1,E2 and E3,E4, as indicated in Fig. 2·1. The transformation of the fields E1,E2 is given

by: (
E3
E4

)
=

(
T13 R23
R14 T24

)(
E1
E2

)
, (2.1)

where T13,T24 are the transmission from port 1 to 3 and 2 to 4 and R23,R14 are reflection for

port 2 to 3 and port 1 to 4, respectively. The probability conservation relation between the

input and output is:

|E3|2 + |E4|2 = |E1|2 + |E2|2. (2.2)

Figure 2·1: Description of a beam splitter. A beam splitter is a device with
two input and two output ports. A photon can enter port E1 and/or E2 and
will leave the port E3 and/or E4.
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By substituting Eq. 2.1 in Eq. 2.2,

|E3|2 + |E4|2 = (|T13|2 + |R14|2)|E1|2 +(|T24|2 + |R23|2)|E2|2

+ T13R∗23E1E∗2 +R23T ∗13E2E∗1 +T24R∗14E2E∗1 +R14T ∗24E1E∗2 , (2.3)

and by comparing the result with Eq. 2.2:

|T13|2 + |R14|2 = |T24|2 + |R23|2 = 1,

T13R∗23 +R14T ∗24 = R23T ∗13 +T24R∗14 = 0.
(2.4)

Transmission and reflection coefficients T and R can be rewritten using amplitude and

phase. Define T13 = |T13|eiφ13 , and so on, for all the transmission and reflection coefficients.

Then, Eq. 2.4 is reduced to:

|R23|
|T24|

=−|R14|
|T13|

ei(φ14+φ23−φ24−φ13). (2.5)

In order to satisfy Eq. 2.5, the phase values must be: φ14 +φ23−φ24−φ13 =±π. This

phase relation offers some flexibility in choosing the phase settings. Two different phase

settings often appear in the literature for a BS with a 50/50 power splitting ratio. When

|R23| = |R14| = |R| = 1√
2
, |T13| = |T24| = |T | = 1√

2
, one could choose φ14 = φ13 = φ23 =

0,φ24 = π as an example. Other splitting ratios can be chosen as long as |T |2 + |R|2 = 1 is

satisfied. Some different forms of BS show up in literature. Two such examples are given

below. Example 1 is often pointed to a model with plate based beam splitters and example 2

is often used when cube beam splitters are used.

Example 1:

BS1 =
1√
2

(
1 1
1 −1

)
. (2.6)

Other phase settings could be φ23 = φ14 = φR,φ13 = φ24 = φT with |R23| = |R14| =

|R|, |T13|= |T24|= |T | and substituting these in Eq. 2.5.
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|R|
|T |

=−|R|
|T |

e2i(φT−φR), (2.7)

where φR−φT = π

2 .

By choosing the phase settings φT = 0,φR = π

2 , another example of the BS matrix can

be produced.

Example 2:

BS2 =
1√
2

(
1 i
i 1

)
. (2.8)

Both examples are equivalent when appropriate phase shifters have been introduced

before and after the beam splitter:

1√
2

(
1 1
1 −1

)
=

(
1 0
0 e−i π

2

)
1√
2

(
1 i
i 1

)(
1 0
0 e−i π

2

)
. (2.9)

A transformation from example 2 to example 1 is shown above.

2.1.2 The Directionality of a Beam Splitter

A beam splitter is a symmetric device, meaning that any one of four ports can be used

as an input, and its action is invariant under time reversal. At the same time, there is

another sense in which the device is not symmetric; the incoming photon cannot leave

through the input port. We call this feature “directional-bias”; the choice of an input port

biases the output to be in only two of the four possible output directions. This directional

bias increases the required number of beam splitters when one enters the realm of higher

dimensionality. In principle, this directional bias could be circumvented by placing external

mirrors after the beam splitters so that they reverse the light propagation direction. This

would allow the photon to leave through the input ports, and the system now becomes

“directionally-unbiased”; all four output possibilities can still be realized, regardless of an

input direction.
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2.2 Interferometers as Two-Dimensional Devices

Interferometers are essential tools in quantum information processing and usually involve

multiple beam splitters. The amplitude of each of the two outgoing modes can be modified

by changing the relative phase between two paths. There are several major interferometer

designs that offer 2 × 2 mode transformation. The Mach–Zehnder interferometer is a

directionally-biased device that could be useful in realizing the Reck decomposition model,

while the Michelson interferometer does not suffer from directional bias.

2.2.1 Mach–Zehnder Interferometer

The Mach–Zehnder interferometer shown in Fig.2·2 is a directionally-biased interferometer.

Assume that each BS has a 50:50 power splitting ratio between the two outgoing fields and

the device is symmetric because the path length between two arms can be made identical.

The BS matrix UBS is applied twice, and the relative phase shift φ between the two modes

by applying the matrix Uphase is introduced before the photon encounters the second BS.

UMZ =UBSUphaseUBS. (2.10)
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Figure 2·2: The Mach–Zehnder interferometer. A photon can enter either the
port E1 or E2 and will be transformed by the first beam splitter. The photon
can leave either through a superposition of E3 and E4 and be transformed
by the second beam splitter. A phase plate φ is inserted between two beam
splitters. The relative phase introduced between the upper and lower path
changes the splitting ratio at the second BS. Finally, the photon leaves the
device either through E5 and/or E6 modes.

By introducing expressions for the above matrices, one would obtain a specific formula-

tion of the Mach–Zehnder transformation:

UMZ =
1√
2

(
1 i
i 1

)(
eiφ 0
0 1

)
1√
2

(
1 i
i 1

)
=

1
2

(
eiφ−1 i(eiφ +1)

i(eiφ +1) 1− eiφ

)
=

1
2

(
ei φ

2 (ei φ

2 − e−i φ

2 ) iei φ

2 (ei φ

2 + e−i φ

2 )

iei φ

2 (ei φ

2 + e−i φ

2 ) −iei φ

2 (ei φ

2 − e−i φ

2 )

)
= ei( φ

2+
π

2 )

(
sin(φ

2) cos(φ

2)

cos(φ

2) −sin(φ

2)

)
.

(2.11)

The element-wise multiplication leads to the following input-output probability distribu-

tion:

PMZ =UMZU∗MZ =
1
2

(
1− cosφ 1+ cosφ

1+ cosφ 1− cosφ

)
, (2.12)

where U∗ is a complex conjugate of U .

One can easily see that the Mach–Zehnder interferometer effectively serves as a tunable
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directionally-biased variable beam splitter, and this tunability plays a key role in higher-

dimensional interferometer-based optical networks.

2.2.2 Michelson Interferometer

The Michelson interferometer in Fig.2·3 is one example of the directionally-unbiased 2 × 2

device. Its layout could be used as an illustration of a general optical design principle that

the directional bias within a 2 × 2 device could be circumvented by placing mirrors after

the first beam splitter encounter and reversing directions of the optical flux.

Figure 2·3: The Michelson interferometer. A photon can enter either port
E1 and/or E2. The photon interacts with a beam splitter, mirrors, and again
with a beamsplitter. The photon leaves through either E1 and/or E2, which
are the same as the input ports. The phase can be controlled by translating
mirrors in the system.

A state of the input photon will be transformed by the first interaction with a BS.(
E3
E4

)
=UBS

(
E1
E2

)
, (2.13)

where UBS represents a linear transformation same as the previous subsection between the
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input fields and output fields of a beam splitter. In order to consider the transformation

of fields from E3 and E4 to E1 and E2, one must multiply the outcome with the inverse of

matrix UBS from the left.

U−1
BS

(
E3
E4

)
=U−1

BS UBS

(
E1
E2

)
. (2.14)

Since UBS is a unitary matrix U−1
BS =U†

BS, then:

(
E1
E2

)
=U†

BS

(
E3
E4

)
. (2.15)

This describes the transformation from E3 and E4 to E1 and E2. This still represents a

forward propagation; therefore, we must take a complex conjugate to reverse the propagation

direction. (
E∗1
E∗2

)
=UT

BS

(
E∗3
E∗4

)
. (2.16)

This equation is read as a reverse propagation from E3 and E4 to E1 and E2. Now, the 2

× 2 transformation of optical modes by the Michelson interferometer is described as:

UMichelson =UT
BSUPhaseUBS. (2.17)

The first transformation UBS describes the propagation from E1 and E2 to E3 and E4,

and then, phase shift Uphase introduces phase shifts between the two fields. The phases

can be controlled by translating mirrors in the system as indicated in Fig. 2·3. Finally,

the reversed propagation and transformation from E3 and E4 to E1 and E2 is given by UT
BS.

These transformations complete the transformation of input fields by the Michelson interfer-

ometer. Such 2 × 2 directionally-unbiased devices based on the Michelson interferometer

configuration could be used as elements for building higher dimensional interferometric

systems. The Michelson interferometer is essentially the two-port version of the unbiased

multiports introduced below, with Uphase providing the tunability.
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2.3 Hong-Ou-Mandel Effect

The Hong-Ou-Mandel effect is a two-photon intensity interference effect. The effect is

observed when two identical photons impinge on a BS. In an experiment, this effect can

be observed through coincidence measurements with temporal delay in one arm. The

coincidence count disappears when a temporal delay between two photons is compensated.

A temporal delay between two photons distinguishes the photons resulting in well known

HOM dip (Agarwal, 2012; Loudon, 2000; Knight et al., 2003a).
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Figure 2·4: Hong-Ou-Mandel dip. The joint probability approaches to zero
as the wevepackets overlap perfectly.

The coincidence probability distribution is given by

P ∝ 1− e−∆ω2τ2
, (2.18)

where τ is the time difference between the two photons and ∆ω is the bandwidth of a photon

wave packet. Joint probability becomes zero when τ = 0.

The coincidence term cancellation can be described mathematically in a simple manner

using identical photons. A BS transforms a photon coming from spatial mode â→ 1√
2
(ĉ+ d̂)
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and b̂→ 1√
2
(ĉ− d̂). Consider feeding two single photons at each BS input port. Each photon

state evolves as follows,

âb̂→ 1
2(c+d)(c−d) = 1

2(c
2 + cd−dc+d2)

= 1
2(c

2 +d2) = 1√
2
(|2,0〉+ |0,2〉), (2.19)

where we have used the commutation property cd = dc. When two photons are distinguish-

able by giving polarization degrees of freedom then,

aHbV →
1
2
(cH +dH)(cV −dV ) =

1
2
(cHcV + cHdV −dHcV +dHdV ). (2.20)

Notice that the cross-terms are now not canceled out. Therefore, photodetectors click when

joint measurements are performed between spatial modes c and d. Distinguishable photons

do not exhibit HOM dip when joint measurements are performed.

2.3.1 2 × 2 Integrated Directional Waveguide Coupler

A directional coupler is an integrated optics analog of a beam splitter. When two waveguides

are brought close together, evanescent waves overlap and start coupling in the neighboring

waveguide. Fig. 2·5 illustrates a 2 × 2 integrated directional coupler and its cross-section.

The coupling strength κ can be controlled by changing the distance between two waveguides.

The BS and a directional coupler are both directionally-biased devices. The propagation

of a photon through these devices can be described using a transfer matrix U. Eout =UEin,

where Ein and Eout are the input and output fields.

The transfer matrix of the directional coupler can be derived using coupled-mode

equations based on the Heisenberg equation (Bromberg et al., 2009; Spagnolo et al., 2013a).
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Cross Sectionk1

k2

k1

k2
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Figure 2·5: (a) A 2 × 2 directional coupler. k1 and k2 represent input and
output spatial modes. A photon can enter either k1 or k2, and a coupler
transforms the input state. Two waveguides are closely located to allow
evanescent coupling at the cross-section in the figure. (b) The cross-section
area in the directional coupler illustrated in (a). The coupling strength be-
tween two waveguides is κ, and the propagation constant in each waveguide
is β.

The evolution in the z direction is given by:

i
dA†

1
dz

= βA†
1 +κA†

2,

i
dA†

2
dz

= κA†
1 +βA†

2,

(2.21)

where A†
j { j = 1,2} are creation operators for a photon in the jth waveguide. β is a waveguide

propagation constant, and κ is a coupling coefficient between the two waveguides.

Eq. 2.21 can be rewritten in a matrix form:dA†
1

dz
dA†

2
dz

=−i
(

β κ

κ β

)(
A1
A2

)
. (2.22)

We can solve for A1 and A2 by Eq. 2.21 using differential equation solutions in the form

of Eq. 2.22 and finding eigenvalues and eigenvectors.

Eigenvalues with corresponding eigenvectors are given by:

λ1 =−βi−κi :
(

1
1

)
,λ2 =−βi+κi :

(
−1
1

)
,
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(
A1
A2

)
= c1e−(βz+κz)i

(
1
1

)
+ c2e−(βz−κz)i

(
−1
1

)
, (2.23)

Initial conditions are given by: A1(0) = 1,A2(0) = 0, and c1 = 1
2 ,c2 = −1

2 . The full

transfer matrix can be reconstructed after solving also for the alternative initial condition:

A1(0) = 0,A2(0) = 1.

UCoupler =
e−βzi

2

(
e−κzi + eκzi e−κzi− eκzi

e−κzi− eκzi e−κzi + eκzi

)
= e−βzi

(
cos(κz) −isin(κz)
−isin(κz) cos(κz)

)
. (2.24)

2.4 Integrated Optical Tritter and Quarter

Three- and four-dimensional directional linear optical devices are introduced in this section.

Integrated waveguide couplers (Spagnolo et al., 2013a; Spagnolo et al., 2013b; Spagnolo

et al., 2012; Meany et al., 2012) can be used to implement an optical tritter illustrated in Fig.

2·6a and its cross-section shown in Fig. 2·6b. The propagation dynamics of such a system

can be described using the same formalism as in the previous case of the directional 2 × 2

coupler:

Cross Sectionk1
k2
k3

k1
k2

k3
(a)

𝟏 𝟐

𝟑

𝛽

𝛽

𝛽

𝜅

𝜅

𝜅

(b)

Figure 2·6: (a) Integrated optical tritter. ki {i = 1,2,3} represent input and
output spatial modes. (b) Coupling region of the integrated tritter. β is a
waveguide propagation coefficient, and κ is a coupling coefficient between
the couplers.
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i
dA†

1
dz

= βA†
1 +κA†

2 +κA†
3,

i
dA†

2
dz

= κA†
1 +βA†

2 +κA†
3,

i
dA†

3
dz

= κA†
1 +κA†

2 +βA†
3,

(2.25)

where A†
j { j = 1,2,3} are creation operators for a photon in the jth waveguide; β is a

propagation constant in each waveguide; and κ is a coupling coefficient. It is assumed that

all waveguides are identical and the distances between them are the same.

One could solve these equations using a matrix formalism in a similar way as the

two-dimensional case: 
dA1
dz

dA2
dz

dA3
dz

=−i

β κ κ

κ β κ

κ κ β

A1
A2
A3

 . (2.26)

One could find eigenvalues and corresponding eigenvectors:

λ1 =−βi+κi :

−1
1
0

 ,

−1
0
1

 ,λ2 =−βi−2κi :

1
1
1

 ,

A1
A2
A3

= c1e−βzi+κzi

−1
1
0

+ c2e−βzi+κzi

−1
0
1

+ c3e−βzi−2κzi

1
1
1

 . (2.27)

When the initial conditions are given by: A1(0) = 1,A2(0) = 0,A3(0) = 0, then c1 =

c2 = −1
3 ,c3 =

1
3 , where z is the propagation length. Other initial conditions are given as

A1(0) = 0,A2(0) = 1,A3(0) = 0, and A1(0) = 0,A2(0) = 0,A3(0) = 1. After solving for

all initial conditions, we can obtain a total transfer matrix for the system.

UIntTritter =
e−βzi

3

2eκzi + e−2κzi −eκzi + e−2κzi −eκzi + e−2κzi

−eκzi + e−2κzi 2eκzi + e−2κzi −eκzi + e−2κzi

−eκzi + e−2κzi −eκzi + e−2κzi 2eκzi + e−2κzi

 . (2.28)
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Unlike two- and three-dimensional couplers where the distances between each pair of

couplers are the same, for the four-dimensional coupler with its cross-section in Fig. 2·7b,

the coupling coefficients between diagonal coupling regions are different from those on the

edges of the square. We again assume the coupling strength can be controlled.

i
dA†

1
dz

= βA†
1 +κ1A†

2 +κ2A†
3 +κ1A†

4,

i
dA†

2
dz

= κ1A†
1 +βA†

2 +κ1A†
3 +κ2A†

4,

i
dA†

3
dz

= κ2A†
1 +κ1A†

2 +βA†
3 +κ1A†

4,

i
dA†

4
dz

= κ1A†
1 +κ2A†

2 +κ1A†
3 +βA†

4,

(2.29)

where A†
j { j = 1,2,3,4} are creation operators for a photon in the jth waveguide, β is a

propagation constant, κ1 is a coupling coefficient between two non-diagonal couplers, and

κ2 is a coupling coefficient for two diagonal couplers.

Cross Sectionk1
k2

k3
k4

k1
k2

k3
k4

(a)

𝟏 𝟐

𝟑𝟒
𝛽

𝛽

𝛽

𝛽

𝜅1

𝜅1

𝜅1

𝜅1

𝜅2

𝜅2

(b)

Figure 2·7: (a) Integrated quarter. ki {i = 1,2,3,4} represent input and
output spatial modes. (b) Cross-section area of the integrated quarter. A
waveguide propagation constant is β, and coupling coefficients are κ1 for the
neighboring couplers and κ2 for the diagonal couplers.
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One could solve this combination of equations using matrix formalism
dA1
dz

dA2
dz

dA3
dz

dA4
dz

=−i


β κ1 κ2 κ1
κ1 β κ1 κ2
κ2 κ1 β κ1
κ1 κ2 κ1 β




A1
A2
A3
A4

 . (2.30)

and by finding its eigenvalues and eigenvectors:

λ1 = βi−κ2i :


−1
0
1
0

 ,


0
−1
0
1

 ,

λ2 = βi−2κ1i+κ2i :


−1
1
−1
1

 ,λ3 = βi+2κ1i+κ2i :


1
1
1
1

 , (2.31)


A1
A2
A3
A4

= c1eβzi−κ2zi


−1
0
1
0

+ c2eβzi−κ2zi


0
−1
0
1



+c3eβzi−2κ1zi+κ2zi


−1
1
−1
1

+ c4eβzi+2κ1zi+κ2zi


1
1
1
1

 . (2.32)

When the initial conditions are given by: A1(0) = 1,A2(0) = 0,A3(0) = 0,A4(0) = 0,

then c1 =−1
2 ,c2 = 0,c3 =−1

4 ,c4 =
1
4 where z is the propagation length. After imposing

the initial conditions and solving, we obtain a total transfer matrix for the system:

UIntQuarter =
eβzi

4


A B C B
B C B A
C B A B
B A B C

 , (2.33)
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where:

A = 2e−κ2zi + e(−2κ1+κ2)zi + e(2κ1+κ2)zi,

B =−e(−2κ1+κ2)zi + e(2κ1+κ2)zi,

C =−2e−κ2zi + e(−2κ1+κ2)zi + e(2κ1+κ2)zi.

(2.34)

2.5 Three- and Four-Dimensional Linear Optical Devices

The dimensionality of the 2 × 2 linear-optical devices investigated in the previous section

can be expanded to a more general situation covering a greater number of spatial modes.

It has been demonstrated in the past that one has to rely on using multiple 2 × 2 beam

splitters in order to execute a high-dimensional transformation. This relationship is often

called a Reck decomposition model (Reck model) (Reck et al., 1994). The Reck model

has been demonstrated experimentally (Carolan et al., 2015). There is also a symmetric

directional alternative to Reck’s approach that is called Clements’ design (Sansoni et al.,

2012; Clements et al., 2016). This design can realize any unitary matrices and will be

discussed in the 4 × 4 device section. In addition to Reck’s and Clements’ decomposition

via multiple lower dimensional devices, a 3 × 3 directional transformation could be realized

directly by exploiting a 3D optical integrated device in a waveguide configuration that is

called an optical tritter (Kowalevicz et al., 2005; Suzuki et al., 2006; Meany et al., 2012).

Another decomposition model has been proposed as well (de Guise et al., 2018). This section

examines these possible designs for 3 × 3 and 4 × 4 devices in detail. Four-dimensional

devices are not just a simple extension of the three-dimensional devices. When the number

of ports exceeds three, the distances between couplers are not identical. This suggests

coupling strength would not be the same between couplers; therefore, it can change the final

transfer matrix between the input fields and the output fields.
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2.5.1 Reck Decomposition Design

It has been determined theoretically (Reck et al., 1994) that an arbitrary single N × N

unitary matrix, U(N), can be decomposed into a succession of N(N−1)
2 numbers of 2 × 2

mode mixing matrices. In order to understand the decomposition procedure, it is useful to

understand the decomposition procedure for the 2 × 2 unitary matrix. Higher dimensional

decomposition examples will be provided after the 2 × 2 example. An arbitrary unitary 2 ×

2 matrix U(2) is defined as:

U(2) =
(

A B
C D

)
, (2.35)

where A,B,C,D ∈ C. C is a set of complex numbers. It is always possible to find a unitary

matrix T such that U(2) becomes diagonal after it is multiplied by the matrix T.

U(2)T =

(
A′ 0
0 D′

)
, (2.36)

where A′,D′ ∈ C.

The resulting diagonalized matrix is turned into an identity matrix by multiplying it with

an additional diagonal matrix P.

U(2)T P =

(
1 0
0 1

)
. (2.37)

This procedure shows that any U(2) matrix can be transformed into an identity matrix.

This result indicates that the inverse matrix (T P)−1 is the original U(2) we wanted. T and P

are both unitary matrices; therefore, T−1 = T † and P−1 = P† where † is complex conjugate

and transpose.

U(2)T P = I(2)→U(2) = (T P)−1 = P†T †. (2.38)

This procedure shows that a matrix U(2) is decomposed into matrices P† and T †. Such

a diagonalization process can be applied in higher dimensions as well. In the 3 × 3 case,
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arbitrary U(3) matrices can be diagonalized using multiple 3 × 3 matrices with each matrix

containing U(2) inside. T3,1, T2,1, and T3,2 are the matrices containing U(2) inside. T3,1

mixes spatial Modes 3 and 1; T2,1 mixes spatial Modes 2 and 1; and T3,2 mixes spatial Modes

3 and 2.

T3,1 =

U(2)1,1 0 U(2)1,2
0 1 0

U(2)2,1 0 U(2)2,2

 ,T3,2 =

(
1 0
0 U(2)

)
,T2,1 =

(
U(2) 0

0 1

)
, (2.39)

where U(2)1,1 is the element of U(2) from the first row and the first column. The rest of three

elements U(2)1,2,U(2)2,1,U(2)2,2 follow the same rule. Our goal is to find a decomposition

for an arbitrary matrix U(3). Assume that the U(3) matrix has the form of:

U(3) =

A1 B1 C1
D1 E1 F1
G1 H1 I1

 . (2.40)

As a first step, elements from the first row and the third column U(3)1,3 and the third

row and the first column U(3)3,1 can be eliminated by multiplying a matrix T3,2.

U(3)T3,2 =

A2 B2 0
D2 E2 F2
0 H2 I2

 . (2.41)

Repeat the elimination procedure for all the non-diagonal elements of U(3).

U(3)T3,2T3,1 =

A3 B3 0
D3 E3 0
0 0 I3

 , (2.42)

U(3)T3,2T3,1T2,1 =

A4 0 0
0 E4 0
0 0 I4

 . (2.43)

U(3) is transformed into an identity matrix after multiplying by a diagonal matrix P. U(3)
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can be obtained by taking the inverse of (T3,2T3,1T2,1P).

U(3)T3,2T3,1T2,1P = I(3)→U(3) = (T3,2T3,1T2,1P)−1 = P†T †
2,1T †

3,1T †
3,2. (2.44)

Matrix elements Ai through Ii, i ∈ Z belong to C. Z is a set of integers. The U(3)

matrix is decomposed into matrices P†, T †
2,1, T †

3,1, and T †
3,2. This leads to the conclusion

that the knowledge of each individual beam splitter (or interferometer) in the system allows

reconstructing a transfer matrix of the whole system. The same reconstruction process can

be applied in the 4 × 4 case of U(4) decomposition.

U(4)T4,3T4,2T4,1T3,2T3,1T2,1P = I(4)

→U(4) = (T4,3T4,2T4,1T3,2T3,1T2,1P)−1 = P†T †
2,1T †

3,1T †
3,2T †

4,1T †
4,2T †

4,3.
(2.45)

The matrices Ti, j, i, j ∈ Z are 4 × 4 matrices, which contain U(2) matrices inside. The

experimental setup in the case of 3 × 3 transformation is illustrated in Fig. 2·8. The order

of embedded U(2) matrices’ multiplication and their action is equivalent to the physical

diagram outlined. The 4 × 4 case is given in Fig. 2·9.

2.5.2 Clements Decomposition Design

The unitary matrix decomposition can also be realized in a slightly different configuration.

The Clements design transforms the originally non-symmetric Reck configuration into

a symmetric form (Clements et al., 2016), by which we mean that the situation is non-

symmetric when photons in different input ports experience different numbers of beam

splitters during their propagation and before exiting the unit. It would be helpful for any

future consideration to introduce a simplified mesh representation for the systems outlined

in Fig. 2·10. For example, in the case of 4 × 4 transformation, its mesh decomposition via

U(2) embedded matrices could be represented either by the original decomposition proposed

by Reck. The crossing parts in the mesh designs mix spatial modes and consist of integrated

couplers. The tunability of the power splitting ratio can be obtained either through the
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Figure 2·8: (a) The 3 × 3 Reck model realization using three beam splitters.
A photon can enter either Port 1, 2, or 3 and the photon leaves either Port 1’,
2’, and/or 3’. A beam splitter in the system can be substituted by a Mach–
Zehnder interferometer if one wants to give amplitude tuning at each beam
splitter encounter. The beam splitter requirement will be increased to six
when amplitude tuning by interferometers is imposed. (b) The information
flow decomposition of the bulk 3 × 3 setup using a set of 2 × 2 unitary
matrices. This is equivalent to the physical setup in (a).
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Figure 2·9: (a) The 4 × 4 Reck model using six beam splitters (12 with
tunability). A photon can enter either one of four input ports and can leave
through any of the four output ports. (b) The information flow representation
in the case of decomposing a bulk 4 × 4 setup using 2 × 2 unitary matrices
illustrated in (a).
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dynamical change of the coupling ratio between two waveguides in an integrated coupler or

by forming an interferometer using two integrated couplers executed the same task. The

graphical detail of the crossing parts in mesh design is indicated in Fig. 2·11.

(a) (b)

Figure 2·10: (a) 4 × 4 mesh of the Reck design. Input photons flow from
the left to the right. Each line cross-section consists of the two-dimensional
two-mode mixer illustrated in Figure 2·11. This is identical to the setup in
Figure 2·9a. (b) 4 × 4 mesh of symmetric Clements design.

θ 2φ

Figure 2·11: An integrated coupler requires tunability to change a transfer
matrix of the system. The tunability is acquired through an interferometer
with phase shifters. θ is an external phase shift, and φ is an internal phase
shift.

The mesh designs are illustrated in Fig. 2·10. They are equivalent to the 4 × 4 Reck

model and 4 × 4 Clements model. It is clear that a photon in the first path of the 4 × 4 Reck

design illustrated in Fig. 2·10a could encounter only one beam splitter, while the photon

in the lowest path encounters at least three beam splitters prior to exiting the device. In

the Clements symmetric design illustrated in Fig. 2·10b, a photon in the first path and a

photon in the last path encounter the same number of beam splitters. The loss tolerance of a

quantum state becomes higher when a photon experiences the same number of beam splitter

interactions (Clements et al., 2016). The Clements designs are widely used instead of Reck

decomposition, precisely because of its loss tolerance in quantum information processing.
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In a similar manner to the Reck model, a unitary matrix can be decomposed using

multiple U(2)-based matrices. Unitary matrices’ realization based on the Reck model is

decomposed by multiplying matrices from one side in succession. It is not necessary to

multiply matrices from only one side to decompose the unitary matrix. The decomposition

can be done by multiplying matrices from both sides. The U(3) case and U(4) case are given

as an example.

U(3) case:

T2,3T1,2U(3)T−1
1,2 = P→U(3) = T−1

1,2 T−1
2,3 PT1,2. (2.46)

U(4) case:

T3,4T2,3U(4)T−1
1,2 T−1

3,4 T−1
2,3 T−1

1,2 = P→U(4) = T−1
2,3 T−1

3,4 PT1,2T2,3T3,4T1,2. (2.47)

The unitary matrix decomposition is possible, and this has been experimentally realized

and demonstrated (Clements et al., 2016; Metcalf et al., 2013).

Any unitary matrices can be generated using the models above. Among all the higher

dimensional unitary matrices, we will focus on the the Grover matrix and the Fourier matrix.

The Grover matrix is particularly interesting because of its symmetry under cyclic exchange

of labels.

Grover =


−1+ 2

N
1
N . . . 1

N
1
N −1+ 2

N . . . 1
N

...
... . . . ...

1
N

1
N . . . −1+ 2

N

 , (2.48)
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Fourier =
1√
N


1 1 1 . . . 1
1 ω ω2 . . . ω(N−1)

1 ω2 ω4 . . . ω2(N−1)

...
...

... . . . ...
1 ω(N−1) ω2(N−1) . . . ω(N−1)(N−1)

 . (2.49)
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Chapter 3

Directionally-Unbiased Linear-Optical
Multiports

3.1 Introduction

Over the past several decades, quantum computers have sparked significant interest, based

on their potential advantages over conventional computing devices in certain tasks. Several

quantum algorithms have been proposed for quantum computers (Shor, 1994; Grover, 1996),

but it is clear that a substantial amount of time and resources are still required in order

for general-purpose quantum computing to become a reality. Therefore, it is beneficial to

revisit Feynman’s original approach of creating special-purpose quantum computing devices

that are capable of efficiently simulating specific features of a complex physical system

by utilizing another simple and controllable quantum device (i.e. a quantum simulator or

“analog” quantum computer ) (Feynman, 1982). Quantum walks (Aharonov et al., 1993;

Portugal, 2013; Feldman and Hillery, 2004) on complex graphs are good candidates for

executing this approach, given the statistical nature of quantum mechanical phenomena.

Furthermore, quantum walks on graphs have been shown to possess the capability of

performing a universal computation (Childs, 2009). Linear optics is one plausible physical

architecture for implementing quantum walks due to its stability to decoherence, room

temperature operation, and scalability through on-chip integration.

A beam splitter (BS) (Saleh et al., 1991) is a device of central importance in realizing any

discrete quantum unitary operation (Reck et al., 1994; Carolan et al., 2015), Hadamard-coin-
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based quantum walks (Kempe, 2003), and other quantum interferometer-based experiments

(Spring et al., 2013; Clements et al., 2016; Crespi et al., 2013a; De Nicola et al., 2014; Wang

et al., 2018; Peruzzo et al., 2011). It is of interest to look at BS properties from the point of

their symmetries. The BS has reflection and time-reversal invariance allowing the two input

and two output ports to be interchanged. However, the BS is asymmetric and directionally-

biased in the sense that an input photon cannot leave the same port through which it entered.

This property of directional bias forces standard implementations of linear-optical quantum

walks to form a unidirectional, expanding tree of possible optical paths, leading to a rapid

increase in the hardware requirement needed to cover all possible probability amplitudes

that are present in the Hamiltonian of the physical system under investigation (Crespi et al.,

2013a; Metcalf et al., 2013; Broome et al., 2013). Similarly, all the optical multiports

currently in use, such as tritters, share the same directionally-biased behavior (Spagnolo

et al., 2013a; Weihs et al., 1996a). The multiports considered here have some similarities

with a previously-introduced type of non-directional coupler known as a reflective star

coupler (Zhang et al., 2000; Saleh and Kogelnik, 1988). Nonetheless, unlike star couplers,

the directionally unbiased multiports discussed here have relative output amplitudes at each

port that can be readily tuned to desired values without dynamically changing splitting ratios

of beam splitters. This additional flexibility opens up a broad range of new applications. It is

possible to construct a directionally-unbiased multiport by combining several linear-optical

elements such as beam splitters and mirrors to form a single compound device (Simon

et al., 2016).This multiport can be seen as the physical implementation of a scattering vertex

for quantum walks in undirected graph systems, with the added benefit of easy control of

the unitary transformation between input and output amplitudes. By connecting multiple

copies of such devices one could carry out a variety of different experiments, such as 1D and

higher-dimensional discrete quantum walks, realizing group transformation with Bell states

(Simon et al., 2016), simulation of physical system Hamiltonians (Simon et al., 2017a), and
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experimental exploration of topological phases (Simon et al., 2017b) using linear optics. In

particular, in quantum walk applications, because of direction reversibility, the walk can

occur along a single line, rather than engaging additional spatial modes perpendicular to the

overall direction of motion imposed by the beam splitter.

In this chapter, we report on the first experimental demonstration of a directionally-

unbiased linear-optical three-port and explore its properties. The three-ports are then

extended to four-ports. We introduce potential bulk optics-based implementation and

coupler based schemes.

3.2 Directionally Unbiased Three-Ports

P
M

P M

M

P

BS

BS BS

Port A

Port C

Port B

Figure 3·1: Theoretical implementation of three-ports. Each port is labeled
as port A, port B and port C. Each port is adjacent to a unit containing a
non-polarizing beam splitter (BS), a phase plate (P) and a mirror (M). A
photon can enter and leave through any of the three ports.

We focus on the simplest case, where the number of ports is m = 3. It has three

inputs/outputs labeled as port A, B, and C. The multiport internal structure consists of

three beam splitters with a 50/50 transmission reflection ratio and three mirror units with

control over the phases of reflected photons. When the photon enters from port A, it is either
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transmitted or reflected upon hitting the first, as well as subsequent, beam splitters. The

reflected photon acquires π

2 phase shift at each beam splitter, with additional controllable

phase shifts from phase plates. The photon then accumulates different phases for each

potential path through the system; this phase depends on the number of encounters with

beam splitters and mirror units, equivalently, on the number of edges traversed.

In Fig. 3·1, each mirror unit consists of a phase plate (P) and a mirror (M), which

together impart some controllable total phase shift φ at each encounter. The multiport

input/output properties are defined by a coherent summation of amplitudes of all possible

paths having the same input and output. In order to avoid turning this into a classical,

decoherent sum over probabilities, information on which internal path each photon took

must remain inaccessible. Therefore, the detection of the photon output probability at ports

A, B, and C must be performed over a time much longer than the transit time between beam

splitters in order to avoid paths to be distinguished by exit time. After a sufficiently long

time, the output probability amplitudes for the photon to exit at the three ports after entering

the multiport at port A are given by:

A→ A =
1
4

eiφC +
1
4

eiφB− i
1
8

ei(φB+φC)− i
1
8

ei(φB+φC)+
1

16
ei(φA+φB+φC)+

1
16

ei(φA+φB+φC)

− 1
16

ei(φB+φC+φB)− 1
16

ei(φC+φB+φC)− 1
16

ei(φB+φA+φB)− 1
16

ei(φC+φA+φC)+ . . .

(3.1)

A→ B = i
1
2
− 1

4
eiφC − i

1
8

ei(φA+φB)+ i
1
8

ei(φA+φC)+ i
1
8

ei(φB+φC)+
1

16
ei(φA+φB+φC)

− 1
16

ei(φA+φB+φC)− 1
16

ei(φA+φB+φC)+
1

16
ei(φC+φB+φC)+

1
16

ei(φC+φA+φC)+ . . .

(3.2)
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A→C = i
1
2
− 1

4
eiφB + i

1
8

ei(φA+φB)− i
1
8

ei(φA+φC)+ i
1
8

ei(φB+φC)+
1

16
ei(φA+φB+φC)

− 1
16

ei(φA+φB+φC)− 1
16

ei(φA+φB+φC)+
1

16
ei(φB+φC+φB)+

1
16

ei(φB+φA+φB)+ . . . ,

(3.3)

where φA,φB,φC are the total phases acquired by the photon from mirror units A, B, C,

respectively, and a π

2 phase is acquired from each beam splitter reflection. Small additional

terms of the order
(1

2

)5
or higher have been left out from consideration. Similar equations

can be obtained for inputs B and C. Here, we have also assumed that phase shifts gained

from propagation between mirror units are integer multiples of 2π so that they play no role.

After a sufficient number of beamsplitter encounters, the output amplitudes converge to

fixed values (Simon et al., 2016). Let N be the number of beamsplitter encounters for the

photon before exiting the multiport or, equivalently, the number of time steps, where the

unit of time is the travel time between consecutive beamsplitter encounters. The cumulative

probability to exit a multiport as a function of N is given in Table. 3.1. One could observe

that after N = 8 in over 99 percent of trials of the photons have left the system, as indicated

in Table. 3.1.

A transfer matrix expression for the multiport can be obtained by substituting specific

phase settings in Eq. 3.1, 3.2, and 3.3. We set φA = φB = φC = π

6 in this paper to explore the

most symmetric case that would make this unit suitable for quantum walks on unstructured

graphs. Carrying out an exact summation of the series in Eqs. 3.1-3.3, the resulting expected

transfer matrix is:

U =

UA→A UB→A UC→A
UA→B UB→B UC→B
UA→C UB→C UC→C

=
1√
3

e
2πi
3

e
−2πi

3 1 1
1 e

−2πi
3 1

1 1 e
−2πi

3

 (3.4)

We can choose different phases to implement different matrices. If the phase value φA =

φB = φC = 3π

2 is chosen then, the resulting matrix becomes Grover matrix.
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N A exit B exit C exit Exit Probability Cumulative Exit Probability

2 0 i
2

i
2

1
2 0.5

4 −i
2

i
4

i
4

3
8 0.875

6 i
4

−i
8

−i
8

3
32 0.96875

8 −i
8

i
16

i
16

3
128 0.99219

10 i
16

−i
32

−i
32

3
512 0.99805

Table 3.1: Probability amplitudes for the port A, B, and C, exit probability
in respect to a specific number of BS encounters, and the cumulative exit
probability are shown. Columns A exit, B exit, and C exit represent exit
probability amplitude at each port with the initial photon entering at port A.
Exit Probability shows the exit probability for each possible number of beam
splitter hits. The cumulative exit probability is obtained from summing all
the exit probabilities. As N increases, the cumulative exit probability quickly
approaches 1 and a photon leaves the unit.

U =

UA→A UA→B UA→C
UB→A UB→B UB→C
UC→A UC→B UC→C

=
1
3

−2 1 1
1 −2 1
1 1 −2

 (3.5)

The transfer matrix acts on an input state via the transformation: |ψout put〉=U |ψinput〉.

Squaring the modulus of each matrix element gives the final transition probability distribu-

tion that should be observed in an experiment.

P =

|UA→A|2 |UA→B|2 |UA→C|2
|UB→A|2 |UB→B|2 |UB→C|2
|UC→A|2 |UC→B|2 |UC→C|2

=
1
3

1 1 1
1 1 1
1 1 1

 (3.6)
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3.2.1 Directionally-Unbiased Linear-Optical Four-Port Devices

P M
BS

Port B
PM

P
M

M

PPort A
Port D

Port C

BS

BS

BS

Figure 3·2: Directionally-unbiased linear-optical four-port operation. It has
the same configuration as Fig. 3·1 with one extra input/output port.

The dimensionality and the number of optical elements are increased in the case of a four-

port device as illustrated in Fig. 3·2. It needs to be noted that four ports are slightly different

from the three ports because of the number of beam splitter encounters before the input

photon leaves the system. For instance, the shortest path for Port A to Port B would be

A→ B with one beam splitter encounter. likewise, the shortest path for Port A to Port C

would be A→ B→C or A→ D→C with two beam splitter encounters. The probability

amplitude is lower for the path A to C because the photon encounters one extra beam splitter.

This path-dependent amplitude difference needs to be considered for higher-dimensional

multiport implementation.

A→ A = 1
4eiφB + 1

4eiφD− 1
16ei(φB+φC+φB)+ 1

16ei(φB+φC+φD)− 1
16ei(φD+φC+φD)

+ 1
16ei(φD+φC+φB)− 1

16ei(φB+φA+φB)− 1
16ei(φD+φA+φD)+ . . . , (3.7)

A→ B = i1
2 − i1

8ei(φD+φC)− i1
8ei(φB+φA)+ i1

8ei(φB+φC)+ i1
8ei(φD+φA)+ . . . , (3.8)
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A→C =−1
4eiφB− 1

4eiφD− 1
16ei(φB+φC+φD)+ 1

16ei(φB+φA+φB)+ 1
16ei(φD+φC+φD)

− 1
16ei(φD+φC+φB)+ 1

16ei(φB+φA+φB)+ 1
16ei(φD+φA+φD)+ . . . , (3.9)

A→ D = i
1
2
− i

1
8

ei(φB+φC)− i
1
8

ei(φD+φC)− i
1
8

ei(φD+φA)+ i
1
8

ei(φB+φA)+ . . . . (3.10)

The final transfer matrix consists of 16 (input→ output) transition amplitudes:

Umultiport =


UA→A UB→A UC→A UD→A
UA→B UB→B UC→B UD→B
UA→C UB→C UC→C UD→C
UA→D UB→D UC→D UD→D

 . (3.11)

The probability distribution is obtained in the same way as the three-ports by multiplying

its complex conjugates for each matrix entry.

3.3 Experimental Demonstration of Directionally-Unbiased Three-
Ports

We introduced theoretical designs of three- and four-ports in previous subsections. The

operation of a directionally-unbiased symmetric three-edge vertex device has been demon-

strated by characterizing probability distribution matrix elements responsible for all possible

photon input/output transitions. The actual experimental setup is shown in Fig. 3·3. A

continuous-wave 10 mW laser operating at 633 nm (NECSEL single longitudinal mode)

with a very long coherence length (> 1 km) was used. This condition ensures the coherent

superposition requirement for all possible photon paths inside the unit. The beam splitters

have a 50/50 transmission/reflection ratio at 633 nm. The phase shifts imparted by the mirror

units are controlled by piezo actuators on translation stages. The input beam was attenuated

to a single-photon level with polarizers. The multiport arrangement indicated in Fig. 3·3 is

for the input at port A and outputs from A, B, and C.
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633 nm Laser

Attenuator

Input
Isolation

Multiport

APD

APD

APD

Mirror

Mirror

Mirror

Mirror

BS

BS

BS
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Figure 3·3: Experimental setup for detecting probabilistic single-photon distribution in a
three-port with a photon entering at the port A. A laser with a long coherence length (>1 km)
operates at 633 nm. The input beam is attenuated to a single-photon level prior to entering
the multiport. The input isolation allows decoupling the input photon from the one exiting
through the same port A. This multiport consists of three beam splitters, three mirrors with
piezo actuators to control internal phases, and an extra mirror in one arm. The number of
exiting photons is counted by a single-photon avalanche diode modules (APD). Phases in
each branch of the multiport are set to π

6 using mirror units.

This corresponds to the first matrix row in Eq. 3.2. The beam splitter at port A serves as

a 50% isolation device separating half of the output photons statistically into a different path

for detection. An optical circulator would be a better device to use in the future in order

to separate all of the outgoing photons from the incoming ones. A similar setup is used to

measure transitions with input at port B and port C. This would correspond to rows 2 and 3

in Eq. 3.2, respectively. The outgoing photons at each port were counted using fiber-coupled

single-photon avalanche diodes (PerkinElmer SPCM-AQR-15-FC), as indicated in Fig. 3·3.

The real experimental configuration is equivalent to the theoretical schematic depicted in

Fig. 3·1, despite the slightly different shape; this more complex experimental arrangement

is necessary in the current case because the equidistant triangular setup described in section
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3.2 cannot be easily realized with cube beam splitters. The distance between beam splitters

A-B and A-C is set to be identical, while B-C is set to be twice as long as A-B and has one

additional mirror. This does not affect the overall probability distribution in the matrix Eq.

3.4 when the photon coherence is sufficiently long. What is important is the phase balance

in all possible paths inside the multiport. The mirror units are translated for an additional

phase π to recover the balance due to one extra mirror presence. Alternatively, this extra π

phase can be compensated by arranging the structure so that all three paths have the same

number of mirrors. The same result could be achieved by inserting a phase plate in the path

with an extra mirror.

The weak photon source statistics follow a Poisson distribution, and the input coherent

laser beam is attenuated to the single-photon level, meaning its average photon number

during the detection interval must be smaller than 1. Our single-photon avalanche photode-

tector integration time is 35 ns. The average photon number within the detector integration

window is below 0.1 when the input beam is attenuated to 1 nW average power. The detector

quantum efficiency is 0.6 at the 633 nm wavelength of the source.

The system under consideration could be considered as a coherent superposition of

several interferometers with three independent phase controls. The detected outcome at each

port forms an interference pattern of intensity as a function of those phases. The quality of

the multiport alignment is verified by determining the visibility of such interference patterns:

V =
nmax−nmin

nmax +nmin
, (3.12)

where nmax is the maximum number of detected photons, nmin is the minimum number of

detected photons.

The problem of setting all three phases to the same value is not very straightforward,

since the phases are relative parameters. Interference contour maps were generated to cover

all possible phases from 0 to 2π in order to find a position when all three of them have the
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Figure 3·4: Theoretical simulation (left) and experimental results (right) at φA = π

6 .The
contour graphs represent probability distribution for the input-output combinations A-A,
A-B, and A-C where the minimum is close to 0 and maximum is close to 1. Light color
coding (yellow) corresponds to a high probability and dark color (blue) indicates low
probability. The phase at the mirror unit A is set to φA = π

6 for all three plots. The left
contour graphs are the theoretical simulation. Dashed lines are drawn at φB = π

6 and
φC = π

6 . The cross section indicates the point when all three phases (φA,φB,φC) = ( π

6 , π

6 , π

6 ).
The contour graphs in the right column present the results of experimental observation.
The dashed lines are drawn to indicate phase settings at π

6 . The phase step in the contour
graph is π

15 .

same π

6 value (see Fig. 3·3).

The distance between consecutive beam splitter hits in the multiport is marginally less

than 30 cm. Any incident photon will exit the system with a probability of 0.998 after N

= 10 interactions (Simon et al., 2016), so one has to ensure a coherent (indistinguishable)

travel of the photon over about 300 cm in this case. This is significantly shorter than the

coherence length of the source used in our experiment (> 1 km). One should point out that
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dividing this number by the speed of light we obtain an estimate for a maximum time any

photon would stay inside the multiport (about 10 ns).

The optical table was passively stabilized with active mechanical vibration isolation. By

this means, the required interferometric stability of operation was achieved over a 5 hour

period, which was sufficient for automatic scans of all required high-visibility interference

patterns illustrated in Fig. 3·4. In future free-space experiments requiring greater data

acquisition times, active stabilization loops may be needed. The eventual transfer of

this configuration into a waveguided on-chip design will help significantly to enhance

performance stability and transverse alignment and to reduce the long-term longitudinal

phase drift. This offers extensive opportunities for miniaturizing the device on a chip-scale,

allowing greater compactness and stability, as well as reducing the coherence requirements.

Multiple contour maps were obtained by translating two mirror units B and C (one

at a time) when the phase from a mirror unit φA is fixed at a certain value. Then the

procedure was repeated multiple times for new values of φA. A subset of such contour maps

corresponding to the situation when the photon is inserted at port A is illustrated in Fig.

3·4. The situation when the photon enters at ports B or C generates a similar set of contour

plots. The comparison of such experimental contour maps with those obtained in theoretical

simulation enables one to identify a point corresponding to π

6 phase shift value in all three

phases (indicated by a dashed line). The final probability distribution for single photons to

enter and exit any of the ports has been performed at these particular phase settings from all

three mirror units A, B, and C.

In order to compare to the real experimental situation, Eqs. 3.1 - 3.3 must be modified

to account for the additional mirror present (see Fig. 3·3). This is done by shifting each

phase acquired from the mirror units by π. The resulting equations will have the following

modifications: φA→ φA+π, φB→ φB+π, and φC→ φC +π. Under these conditions, A→ A

changes sign, A→ B and A→ C remain the same, with similar changes for other input
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ports. The theoretical unitary transfer matrix corresponding to the current experimental

configuration is now:

U =
1√
3

e
2πi
3

−e
−2πi

3 1 1
1 −e−

2πi
3 −1

1 −1 −e−
2πi
3

 (3.13)

This insignificant phase modification in the unitary transfer matrix Eq. 3.13 is a reflection

of the need to use several bulk optical elements (such as beam splitters and mirrors) during

the first experimental implementation. (Currently, available technology would allow the

original theoretically-formulated unitary transfer matrix indicated in Eq. 3.4 to be realized

using a waveguided platform in an integrated configuration that executes all features of

the multiport in Fig.3·1. Such an on-chip configuration would be highly desirable due to

improved compactness and stability.) This phase modification leaves the final probability

distribution for the transfer matrix unchanged from that of Sec. 3.2:

P =
1
3

1 1 1
1 1 1
1 1 1

 (3.14)

3.4 Experimental Results

The quality of the overall multiport alignment has been verified by observing a single-photon

interference at each port by sequentially feeding a single-photon input state into each of

ports A, B, and C. The experimentally observed visibility is calculated for all 9 possible

outcomes corresponding to a photon state inserted in port A, port B, and port C. Three

plots corresponding to insertion at Port A case are illustrated in Fig. 3·4 (right column).

An average observed visibility of 0.97±0.01 was achieved. A phase step of π

15 was taken

between each point on the plots. All presented data are based on direct observation, with

no background subtraction performed. A small reduction in the visibility came from the

detector dark counts, slight reflection on the beam splitter surfaces, and from the minor
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imperfection of beam splitter surface alignment that results in the imperfect overlap of the

beams. All experimental probability detection maps for each port in Fig. 3·4 are normalized

by their maxima to obtain a probability distribution. The contour map in the right column

of Fig. 3·4 represents the photon count distribution for the fixed φA = π

6 and phase sweeps

from 0 to 2π for φB and φC by changing the voltages on piezo actuators responsible for the

position of corresponding metal mirrors in space. Each map is compared with its theoretical

simulations in the left column in Fig. 3·4. The same method and similar contour maps were

used for detecting outcome probabilities when a single photon has been inserted in B and C.

The probability distribution for the photon to transition between any pair of ports has been

reconstructed by statistically averaging the raw data over 1.8 s.

The final reconstructed probability matrix at (φA,φB,φC) = (π

6 ,π

6 ,π

6 ) is given by:

Pexp =

0.332±0.007 0.343±0.007 0.340±0.004
0.340±0.005 0.339±0.006 0.328±0.008
0.332±0.005 0.340±0.012 0.338±0.007

 (3.15)

Losses generally play a negative role in quantum optics experiments. However, the

role of losses in the case considered here is not significant. The device is probabilistic and

operates with one photon at a time in the system. The loss of a photon simply results in

discarding this particular trial from detection and recording of all possible outcomes. This

does not affect the quality of the next trial and does not degrade the overall visibility of

the detected outcome. The effect of losses shows up simply as an increase in the required

accumulation time needed to get sufficient statistics when characterizing the multiport. The

probability distribution (input-output) matrix elements were characterized one by one and

are independent of one another. These are obtained from a contour map using visibility as

the major quality parameter. The loss does not affect the visibility normalization process

since we have the same loss across the contour map.

The interference patterns observed at each port depend on the fact that all of the possible

paths within the multiport remain coherent with one another. The high visibility observed in
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each output port, therefore, indicates a high level of mutual coherence of the output at the

different ports, a requirement for multi-photon (and especially entangled-photon) quantum

information processing applications.

3.4.1 Constructing Reversible Optical Tritter and Quarter

We can suggest an alternative approach to these directionally-unbiased devices. It has been

shown earlier that traditional integrated optical 3 × 3 and 4 × 4 couplers are directionally-

biased devices. However, placing mirrors at each of the output ports of the device helps to

eliminate this directional bias and return the optical signal back to any of the input ports.

This type of reversible design has been also introduced in the area of linear interferometric

networks and has been sometimes called a generalized Michelson interferometer (Vance and

Barrow, 1995; Schwelb, 1998). The reversibility is introduced by mirrors, while additional

phase shifters can be introduced before the mirrors. Both 3 × 3 and 4 × 4 implementations

are illustrated in Fig. 3·5. The reversed tritter can be realized using the same design

formalism as a generalized Michelson interferometer. The input photon state is transformed

by a tritter matrix, phase shifters, and a transposed tritter matrix.

Cross Sectionk1
k2
k3

(a)

Cross Sectionk1
k2
k3
k4

Mirrors

(b)

Figure 3·5: (a) Reversible integrated tritter. The photon propagation direc-
tion is reversed by placing mirrors at the end of the coupling region. (b)
Reversible integrated quarter. It has the same configuration as (a) with extra
input and output port.

A reversible tritter device can be constructed using the same approach as a michelson

interferometer where an incoming forward propagation state gets transformed by the direc-
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tional tritter and the propagation direction is flipped by the mirror. The flipped amplitude is

transformed by the tritter device again. This is described using a matrix method.

URevTritter =UT
IntTritterUphaseUIntTritter, (3.16)

Uphase =

eiφA 0 0
0 eiφB 0
0 0 eiφC

 , (3.17)

UIntTritter = e−βzi

3

2eκzi + e−2κzi −eκzi + e−2κzi −eκzi + e−2κzi

−eκzi + e−2κzi 2eκzi + e−2κzi −eκzi + e−2κzi

−eκzi + e−2κzi −eκzi + e−2κzi 2eκzi + e−2κzi


= e−βzi

3

A B B
B A B
B B A

 , (3.18)

where A = 2eκzi + e−2κzi and B = −eκzi + e−2κzi. Putting all the pieces together, the final

expression is:

URevTritter =
e−2βzi

9

eiφAAA+ ei(φB+φC)BB ei(φA+φB)AB+ eiφCBB ei(φA+φC)ABeiφBBB
ei(φA+φB)AB+ eiφCBB ei(φA+φC)BB+ eiφBAA eiφABB+ ei(φB+φC)AB
ei(φA+φC)AB+ eiφBBB eiφABB+ ei(φB+φC)AB ei(φA+φB)BB+ eiφCAA

 .

(3.19)

Uphase =


eiφA 0 0 0
0 eiφB 0 0
0 0 eiφC 0
0 0 0 eiφD

 , (3.20)

where φA,φB,φC and φD are phase shifts introduced before the second device encounter.

UIntQuarter =
eβzi

4


A B C B
B C B A
C B A B
B A B C

 , (3.21)
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where A = 2e−κ2zi + e−2κ1zi+κ2zi + e2κ1zi+κ2zi, B = −e−2κ1zi+κ2zi + e2κ1zi+κ2zi, and C =

−2e−κ2zi + e−2κ1zi+κ2zi + e2κ1zi+κ2zi. The reversible quarter matrix is then derived from

the equation below.

URevQuarter =UT
IntQuarterUphaseUIntQuarter. (3.22)

3.5 Specific Transfer Matrix Examples Using Reversible Linear-
Optical Devices

We consider several specific experimental configurations for an efficient realization of

quantum walks in higher dimensions using linear optical devices and exploiting the very

important feature of optical reversibility. We look into specific phase values and corre-

sponding transfer matrices using formalisms covered in previous sections. The focus here

is on realization of the Fourier matrix and the Grover matrix using directionally-unbiased

linear-optical multiports, and reversible optical tritter and quarter configurations.

3.5.1 The Fourier Matrix Realization

A three-dimensional Fourier matrix has the form:

UFourier =
1√
3

1 1 1
1 ω3 ω2

3
1 ω2

3 ω3

 , (3.23)

where ω3 = e−
2πi
3 .

This matrix can be generated with a reversible tritter containing phase shifters at all three

ports, and directionally-unbiased linear-optical three-ports can perform the same job as well.

For a reversible system, an input photon experiences the same phase shifts twice from the

same phase shifters. Uphasein and Uphaseout would take care of such phase shifts. Fig. 3·6 is

a reversible tritter with phase shifters. Multiport designs are introduced in Section 3.2.1.
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Cross Sectionk1
k2
k3

MirrorsPhase Plates

Figure 3·6: Reversible tritter with phase shifters. The yellow squares are
phase shifters, and the green squares are mirrors.

The matrix generation is performed by multiplying Uphasein, Udevice, and Uphaseout in

sequence. Udevice can be any reversible optical device. The Fourier coin using the optical

tritter is realized by the following procedure.

UFourier =UphaseoutUTritterUphasein. (3.24)

Uphasein =Uphaseout =

eiφa 0 0
0 eiφb 0
0 0 eiφc

 , (3.25)

UFourier =

e−i π

3 0 0
0 ei π

3 0
0 0 ei π

3

 i√
3

ei 2π

3 1 1
1 ei 2π

3 1
1 1 ei 2π

3


e−i π

3 0 0
0 ei π

3 0
0 0 ei π

3



=
i√
3

1 1 1
1 e−i 4π

3 e−i 2π

3

1 e−i 2π

3 e−i 4π

3

 ,

(3.26)

where φa,φb,φc are the phase shifts from phase shifters at the entrance ports. The reversible

optical tritter and quarter can realize the Fourier coin when phases are set at specific values:

(φA,φB,φC,κz,φa,φb,φc) = (
10π

9
,
10π

9
,
10π

9
,
10π

9
,−π

3
,
π

3
,
π

3
), (3.27)

where φA,φB,φC, and κz are phase values from mirror units of the reversible tritter and

propagation distance of the coupling region.
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Similarly, the unbiased three-port operation can realize the same matrix with the settings:

UFourier =UphaseoutUT hree−portUphasein. (3.28)

UFourier =

ei π

3 0 0
0 e−i π

3 0
0 0 e−i π

3

 1√
3

ei 2π

3

e−i 2π

3 1 1
1 e−i 2π

3 1
1 1 e−i 2π

3


ei π

3 0 0
0 e−i π

3 0
0 0 e−i π

3



=
1√
3

ei 2π

3

1 1 1
1 e−i 4π

3 e−i 2π

3

1 e−i 2π

3 e−i 4π

3

 ,

(3.29)

when:

(φA,φB,φC,φa,φb,φc) = (
π

6
,
π

6
,
π

6
,
π

3
,−π

3
,−π

3
), (3.30)

where φA,φB, and φC are the phase values for the directionally-unbiased three-port operation.

Four-dimensional matrices are generated using the same methods. The reversible quarter

with phase shifters is given in Figure 3·7. Multiport designs are introduced in Section 3.2.1.

Cross Sectionk1
k2
k3
k4

MirrorsPhase Plates

Figure 3·7: Reversible quarter with phase shifters. The yellow squares are
phase shifters, and the green squares are mirrors.
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The four-dimensional Fourier coin has the form of:

UFourier =
1
2


1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω
9
4

 , (3.31)

where ω4 = e−
2πi
4 .

UFourier =UphaseoutUQuarterUphasein, (3.32)

Uphasein =Uphaseout =


eiφa 0 0 0
0 eiφb 0 0
0 0 eiφc 0
0 0 0 eiφd

 . (3.33)

The reversible quarter can realize the Fourier coin as well with the phase settings equal

to:

(φA,φB,φC,φD,κz1,κz2,φa,φb,φc,φd) = (π,
π

4
,π,

5π

4
,
7π

4
,
7π

8
,−π

4
,−π

2
,−π

4
,
π

2
), (3.34)

where φA,φB,φC,φD, and κz1,κz2 are phase values from the mirror units of the reversible

tritter and propagation distance of the coupling region.

Four ports:

UFourier =UphaseoutU f ourportUphasein, (3.35)

when:

(φA,φB,φC,φD,φa,φb,φc,φd) = (0,
π

2
,0,

π

2
,−π

4
,−π

4
,
3π

4
,−π

4
), (3.36)

where φA,φB,φC,φD are the phase settings of the four-port operation.
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3.5.2 The Grover Matrix Realization

The Grover matrix is realized using reversible designs as well. The procedure is identical to

the Fourier matrix case. The three-dimensional Grover matrix takes the form of:

C3 =
1
3

−1 2 2
2 −1 2
2 2 −1

 . (3.37)

This can be realized using a reversible tritter with phase settings equal to:

(φA,φB,φC,κz) = (
11π

6
,
11π

6
,
11π

6
,
11π

6
), (3.38)

or using an unbiased three-port with settings:

(φA,φB,φC) = (
3π

2
,
3π

2
,
3π

2
). (3.39)

The four-dimensional Grover matrix operator is given by:

C4 =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 , (3.40)

which can be realized with a reversible quarter,

UGrover =UphaseoutUQuarterUphasein. (3.41)

The phase settings for this Grover matrix realization is done by:

(φA,φB,φC,φD,κz1,κz2) = (0,0,0,0,
π

8
,
π

8
). (3.42)

Similarly for the four ports:

UGrover =UphaseoutUFour−portsUphasein, (3.43)
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(φA,φB,φC,φD) = (
3π

2
,
3π

2
,
3π

2
,
3π

2
). (3.44)

3.6 Comparison between Directional- and Directionally-Unbiased De-
vices

Directional devices (the Reck and Clements decomposition model) can produce any unitary

matrices U(N). However, when reversibility is introduced in the system (reversible tritters and

directionally-unbiased linear-optical multiports), it imposes symmetry or the self-transpose

property Ui, j =U j,i, where i,j are matrix indices. Hence, reversible designs only produce

the subset of symmetric unitary matrices. As an example, Eq. 3.45 is a unitary matrix, but it

is not a self-transpose matrix.

U =

0 1 0
0 0 1
1 0 0

 . (3.45)

Regardless, this reversible design can produce important matrices, such as Grover and

Fourier matrices, for quantum walks. The properties of each directional- and directionally-

unbiased design are compared in Table 3.2. In this table, directionally-unbiased three-port

and four-port operations are denoted as 3-port and 4-port; Reversible tritters and quarters

are denoted as Rev Tritter and Rev Quarter; 3-port Reck, 4-port Reck, and 4-port Clements

represent the directional three-port Reck model, the directional four-port Reck model, and

the directional four-port Clements model, respectively. We also consider several different

conditions for comparing different optical devices: the numbers of beam splitters used

to form a device, the coherence length requirement to generate the final unitary matrix,

and dense unitary matrix generation. The Grover and the Fourier matrix generation are

considered as indicated in the Conditions column in Table 3.2. The number of beam splitters

varies depending on the design. Directionally-unbiased linear-optical multiports require the

fewest beam splitters among all the devices in the table. A directionally-unbiased N-port

requires N beam splitters, while other devices with N input and N output ports would require
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N(N + 1) beam splitters. The multiport device demands a long coherence length because

different photons traveling paths with different travel lengths need to be coherently summed.

In the reversible designs, Reck decomposition, and the Clements decomposition model, the

input photon does not need long coherence lengths because the devices consist of balanced

interferometers. All the devices listed in the table can realize both the Grover and the Fourier

matrices.

Conditions 3-port 4-port Rev T Rev Q 3-R 4-R 4-C
# of BS 3 4 - - 12 20 20

Coherence Length Long Long Short Short Short Short Short
U Generation 7 7 7 7 3 3 3
Grover Mat 3 3 3 3 3 3 3
Fourier Mat 3 3 3 3 3 3 3

Table 3.2: Comparison between reversible and non-reversible designs. In
the table, 3-port and 4-port represent directionally-unbiased linear-optical
multiports; Rev T and Rev Q represent reversible tritter and reversible quarter;
3-R, 4-R and 4-C represent the three-port and four-port Reck decomposition
models and the four-port Clements decomposition model. Short coherence
length means there is no coherent addition of paths with significant length
difference. U generetion describes the capability of realizing any unitary
matrices by decomposition method. Grover Mat and Fourier Mat show the
possibility for realizing Grover matrix and Fourier matrix. The check mark
implies that the condition can be satisfied while crossed ones cannot satisfy
the condition.

3.7 Discussion

The experimentally observed probability distribution for the directionally-unbiased linear-

optical multiport illustrates the validity of the original theoretical concept (Simon et al.,

2016) offering to construct coherent multi-edged vertices that are suitable for experimentally

executing universal quantum walks on arbitrary graphs. The natural reversibility of the

photon flow in such multiports offers a dramatic reduction in the amount of required

hardware resources when compared with currently exploited systems based on beamsplitter

trees. The encounter of such multiport during a quantum walk procedure could be considered

as a quantum coin application. The greater number of edges (N > 2) at every application
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of such quantum coin speeds up significantly the coverage of higher dimensions in Hilbert

spaces. This opens new possibilities when simulating dynamic Hamiltonians of complex

physical systems.

Figure 3·8: Directionally-unbiased linear optical three-edge vertex device demonstrated
in this paper could be used for building complex quantum graphs. The efficiency of
approaches based on quantum walks on graphs holds the promise of addressing some
complex scientific and technical problems more efficiently than conventional numerical
computational methods.

This multiport could find a number of applications in the areas of quantum information

processing and quantum simulation of dynamic Hamiltonians. The quantum walk on a

specially designed network of such three-edge multiports offers configuration flexibility

enabling to simulate Hamiltonians of complex polymer chains, energy band structure of

semiconductor materials including topological insulators (Simon et al., 2017a). Although

an unbiased three-port was examined here, m-ports with m > 3 can be constructed in a

similar manner. However, it needs to be clarified that if 50:50 beam splitters are used to

construct higher dimensional multiports by simply connecting the beam splitters to form

a ring structure then the amplitude does not propagate as the number of ports increase.

Therefore, it is necessary to introduce some changes in the splitting ratio to scale the device
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using our method.

The main result is shown for a totally symmetric three-edge vertex multiport. This

multiport design allows to realize a multitude of different unitary transformation matrices

(see (Simon et al., 2016)) without ever changing beam splitter splitting ratios. A simple

modification in phase shifts at each of the mirror units can modify the transfer matrix

amplitudes, allowing output distributions to be controllably tailored for different purposes

and opening additional possibilities for simulating physical systems with a range of output

probability distributions.

Connecting multiple copies of a three-edge multiports could result in the practical real-

ization of a quantum walk on several complex graphs with different topological properties,

using only linear optics. A 1D quantum particle walk on a lattice of such multiport structures

corresponding to an SSH-type system has been proposed, offering conditions to demonstrate

topological structures and distinguishable winding numbers (Simon et al., 2017b). 1D

quantum walk implementation based on beam splitters would scale quadratically due to

the feed-forward nature of the setup while the multiport devices scale linearly. Multiport

based setup requires as little as two detectors. Feed-forward systems would require at least

N detectors; therefore, the multiport setup can reduce both beam splitters and detector re-

quirements. A 2D distribution of three-edge vertices (see Fig. 3·8) has even more interesting

applications in the area of designing novel types of topological insulators, quantum walk

over fractal states such as the Sierpinski gasket (Crownover, 1995), and serve as natural

elements in constructing tensor networks (Werner et al., 2016). The quantum character of

signal processing in tensor networks promises significant speed up in the problem solving

large systems of differential equations (Bachmayr et al., 2016). It would be practically

impossible to execute quantum walks on complex graph structures of reasonable size us-

ing conventional binary coins realized with optical beam splitters; directionally unbiased

m-ports provide a much more feasible route to implementing such structures while offering
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significant savings in resources.

Multi-photon states can also be inserted instead of single-photon inputs. The use of

multi-photon input states more easily allows one to fully reconstruct a transfer matrix by

explicitly recovering the phase information as well. In addition, such a three-port device

with two-photon Bell-state inputs could be used to navigate a group structure when a pair of

correlated Bell-states are injected into a non-overlapping set of ports (Simon et al., 2016).

In conclusion, we have demonstrated experimentally the operation of a directionally-

unbiased linear-optical three-port unitary device at a particular phase setting of π

6 by recon-

structing a probability distribution of all possible propagation patterns with an interferometric

method. The effective operation of the device as a symmetric three-edge vertex suitable for

quantum walks on graphs has been demonstrated. This provides one more step towards the

intention of using such directionally-unbiased multiports to implement complex quantum

walks on graphs and in ultimately demonstrating their practical use in achieving quantum

speedup for the solution of specific physical simulations.
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Chapter 4

Quantum Walks

4.1 Introduction

Quantum walks are a suitable venue for linear optics based applications to explore. The

quantum approach to computing attracts public attention mainly because of its capability to

execute some computational tasks faster when compared to classical computational devices

(Shor, 1999; Grover, 1996). Several physical platforms exist to realize quantum computation

procedures. Linear optics has been one of the candidates because of its robustness against

noise and the ease of quantum state manipulation at room temperature. The design of

quantum computing gates with single photons has been proposed and is known as the Knill,

Laflamme and Milburn (KLM) model (Knill et al., 2001). This design makes use of linear-

optical devices such as beam splitters and phase shifters. The quantum gate performance is

executed probabilistically by the process of measuring auxiliary photons. While the KLM

model has been used for gate-based quantum computation, other quantum-optical approaches

to execute computational tasks have been developed. For example, quantum walks (QW)

over optical networks of scattering centers have been considered as another promising tool

in executing certain computational tasks (Kempe, 2003; Venegas-Andraca, 2012; Aharonov

et al., 1993; Portugal, 2013; Childs, 2009). The construction of such optical networks for

quantum walks relies on the use of multiple beam splitters and phase shifters connected in a

particular spatial graph pattern. A beam splitter is used as an elementary scattering center

during the propagation, and many of them must be cascaded by connecting consecutively

in order to form an extensive tree-like network (Carolan et al., 2015; Wang et al., 2018).
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Quantum mechanical information processing requires unitarity at every operation. The beam

splitter in optics implements two-dimensional unitary transformations and can be seen as a

probabilistic mixer of two spatial field modes.

The increase in dimensionality enables employing and manipulating more information.

This needs to be achieved in a coherent way. Optical networks are constructed to perform

this task by constructing higher-dimensional unitary matrices. It is known that higher-

dimensional unitary matrices can be decomposed using lower-dimensional unitary matrices.

By repeating this procedure, any complex unitary matrix can be eventually decomposed

using only two-dimensional ones. The Reck decomposition model (see Sec. 2.5.1) has

been introduced to describe this procedure (Reck et al., 1994). A symmetric version of the

Reck model is often called the Clements model (see Sec. 2.5.2) (Clements et al., 2016).

For example, these two models have been used by researchers in designing and building

experimental linear-optical networks for boson sampling purposes (Spring et al., 2013;

Broome et al., 2013; Tillmann et al., 2013; Crespi et al., 2013a). During the boson sampling

process, photons propagate from one side of a complex nodal structure to the other side

of the optical network, thus performing a computational task. Direct implementation of a

multimode optical device has been experimentally verified in integrated platforms (Weihs

et al., 1996a; Peruzzo et al., 2011; Spagnolo et al., 2013a; Meany et al., 2012). Quantum

walks over the network of quantum nodes represent another form of quantum information

processing, as an alternative to the quantum gate model. QW can also perform certain

computations more efficiently than classical algorithms (Aharonov et al., 1993; Moore and

Russell, 2002; Krovi and Brun, 2006; Childs et al., 2002; Childs et al., 2003; Ambainis,

2007; Magniez et al., 2007; Buhrman and Špalek, 2006; Magniez and Nayak, 2007).

Quantum walks in 1D and 2D systems have been experimentally demonstrated in optical

systems (Bouwmeester et al., 1999a; Knight et al., 2003b; Knight et al., 2003a; Schreiber

et al., 2010; Pandey et al., 2011; Zhao et al., 2002; Broome et al., 2010; Goyal et al., 2013;
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Zhang et al., 2007; Cardano et al., 2015; Tang et al., 0018; Schreiber et al., 2012).

The traditional quantum walk approach uses a coin operator and a shift operator to exe-

cute each elementary step. An alternative description of a quantum walk can be implemented

using the scattering quantum walk, also known as the edge walk (Feldman and Hillery,

2004; Feldman and Hillery, 2007), which has been introduced to describe the quantum

walk based on scattering at the nodes or vertices of a lattice on which the walk occurs.

There is no need for a coin operator in this model. In order to execute some specific type

of quantum walk, we first need to identify a network of scattering centers (a graph) on

which the walk is performed. Many different special-purpose graphs can be formed using

linear-optical devices in order to execute a particular computational procedure. Thanks to

the Reck and Clements decomposition models, the majority of experimental demonstrations

in this field, even some complex ones, could be realized using multiple directionally-biased

two-dimensional optical devices such as beam splitters. However, the execution of such

quantum walks calls for a considerable amount of optical devices when the complexity and

the required number of steps in the system increase. This is why quantum walks based on

the use of directional devices demand a great deal of costly hardware real estate, which

limits their scalability in the long run.

A directionally-unbiased linear-optical multiport is a unitary coherent optical quantum

information processing device that addresses two issues simultaneously: (i) it executes

a higher dimensional unitary scattering process at every node of the network with fewer

numbers of two-dimensional units for the device construction, and (ii) it scales down

significantly the required amount of hardware resources by offering the possibility of

reusing scattering units of the graph again and again. An array of such multiports can then

form a graph upon which a photon can execute a quantum walk. In principle, the feature

of full reversibility can be realized using special designs by incorporating commonly-used

optical elements. This is referred to as “directional” or “directionally-biased” when a photon
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propagates only in one direction, meaning the input port and the output ports are never

the same. This directionality could be circumvented in optics by placing mirrors so that a

photon can leave the input port as well. This chapter is dedicated for reviewing quantum

walk systems and is used as a building block for topological photonics and multiphoton

quantum walk systems discussed in the next two chapters.

4.2 Discrete-Time Quantum Walks

Quantum and Classical Walks
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Figure 4·1: Quantum and classical walks with 100 time steps. Quantum walk
(orange) spreads faster than the classical case (blue). (a) Skewed quantum
walk. The initial internal state is |0〉. (b) Symmetric quantum walk. The
initial internal state is 1√

2
(|0〉+ i |1〉).

A major motivation for focusing on the directionally-unbiased versions is in their potential

for implementing quantum walk applications. Quantum walks can support superposition

states and interference in the system where interference is absent in classical random walks.

There are two types of quantum walks, discrete-time quantum walks, and continuous-time

quantum walks. During the discrete-time quantum walk, the evolution operator is applied in

a discrete-time fashion while the operator application timing is irrelevant in the continuous

case. We focus on the discrete case in this review. The simplest classical and quantum walk
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design would be a walk performed on a line. In the case of a classical random walk on a

line with an unbiased two-dimensional coin, a walker can hop one step to the right or to

the left with an equal probability depending on the result of a coin-toss event. The walker

walks on a line for certain steps, and the probability at a specific position can be obtained

by repeating the process. By recording all the probability at each location on the line, a

probability distribution associated with that coin is constructed. Classical random walks

involve intermediate measurement, meaning the position of the walker is measured right

after a coin-toss event. In contrast, the quantum approach to random walks preserves the

coherence of all possible paths by not measuring an intermediate state of the walker and,

as a consequence, enables the quantum interference of available probability amplitudes.

It is known that the probability distribution spreads faster in quantum walks compared to

classical random walks. Classical random walks are useful for many randomized algorithm

implementations (Motwani and Raghavan, 1996). It is natural to consider that quantum

walks could achieve better outcomes than classical random walk-based algorithms, and

it is indeed possible to gain algorithmic speedup using the fact that quantum walks can

spread faster than classical random walks. Several different algorithms have been developed

through quantum walks, and some are faster than classical algorithms. Hitting time, graph

traversal speed from a point to another point in a graph, on a hypercube (Moore and Russell,

2002; Krovi and Brun, 2006), and a glued tree are known to be exponentially faster in the

quantum case (Childs et al., 2002; Childs et al., 2003). Element distinctness (Ambainis,

2007), triangle finding (Magniez et al., 2007), matrix product verification (Buhrman and

Špalek, 2006), and group commutativity testing (Magniez and Nayak, 2007) has been also

investigated. Flexible graph construction is necessary to perform quantum walk-based

algorithms. Any graphs consist of vertices and edges, and these need to be prepared in an

experimentally realizable way. This task can be achieved through linear-optical devices,

which have several input and output ports as discussed in previous sections. An experimental
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quantum walk implementation has been demonstrated in optical systems using optical

cavities (Bouwmeester et al., 1999a; Knight et al., 2003b), optical rings (Knight et al.,

2003a), time-bins (Schreiber et al., 2010), Michelson interferometers (Pandey et al., 2011),

optical network (Zhao et al., 2002), beam displacers (Broome et al., 2010), orbital angular

momentum manipulation (Goyal et al., 2013; Zhang et al., 2007; Cardano et al., 2015),

and optical refraction (Francisco et al., 2006). The majority of these implementations are

based on directional-optical devices; therefore, their implementation costs would rapidly

increase as the dimensionality of the quantum walk system becomes higher. This applies

to spatially-multiplexed quantum walk systems as they need to use beam splitters in a

feed-forward manner. Time-multiplexed quantum walks are also commonly used since they

can be compact. Still, it would be challenging to perform node-by-node amplitude tuning.

Integrated waveguide-based systems can be made directionally-unbiased and have been

experimentally demonstrated (Peruzzo et al., 2010; Tang et al., 0018; Tang et al., 2018).

Directionally-unbiased linear-optical multiport-based quantum walk configurations, which

can realize amplitude tunability while offering an implementation resource reduction, will

be introduced in the following several subsections.

4.2.1 Coin Walk: Quantum Walk on Vertices

The traditional quantum walk is illustrated using a position Hilbert space HP and a “coin”

Hilbert space HC. A quantum walker’s position is described by the amplitudes in a position

space spanned by {|m〉 ,m ∈ Z}, and a coin space is spanned by a two-dimensional com-

putational basis {|R〉 ≡ (1,0)T , |L〉 ≡ (0,1)T}. The Hilbert space of the system is given by

H = HP⊗HC. We define a coin operator Ĉ and a shift operator Ŝ acting on each Hilbert

space. The shift operator translates a walker’s position from |m〉 to |m−1〉 or |m+1〉

depending on the result of the coin operation.

Ŝ |m〉 |R〉= |m+1〉 |R〉 and Ŝ |m〉 |L〉= |m−1〉 |L〉 . (4.1)
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Figure 4·2: Coin based quantum walk. The initinal state is rotated by the
coin operator C and depending on the rotated state is translated by the shift
operator S. The single step of the quantum walk would be described bu
U = SC. The color opacity of the green arrows corresponds to the probability.

We can deduce a linear operator Ŝ.

Ŝ =
∞

∑
n=−∞

|m+1〉〈m|⊗ |R〉〈R|+
∞

∑
n=−∞

|m−1〉〈m|⊗ |L〉〈L| . (4.2)

The walker’s direction of the walk is decided by the result of the coin operator. The walk

consists of applying, at each step, the coin operator, then the shift operator. The combined

operation is given by:

V̂ = Ŝ · (Î⊗Ĉ). (4.3)

This V̂ is applied on an initial state multiple times to perform walks with multiple steps.

|ψ(t = N)〉= V̂ N |ψ(t = 0)〉 . (4.4)

The Hadamard coin operator Ĥ2 can be used to demonstrate the quantum walk. The coin

operator Ĉ in Eq. (4.3) is substituted by Ĥ2.

Ĥ2 =
1√
2

(
1 1
1 −1

)
. (4.5)
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One cycle of the quantum walk is completed by applying Ĥ⊗ Î followed by Ŝ. This

process is performed multiple times without making intermediate measurements. Final

measurements are made after a certain number of time steps. The probability distribution

generated using a quantum walk behaves differently than a classical random walk. The

standard deviation of the classical random walk on a line with N step is known to have a

size of
√

N (Kempe, 2003); on the other hand, a quantum walk on a line has a standard

deviation of the order of N. This indicates that the quantum walk spreads faster than the

classical random walk and can result in large speed increases in searching applications.

4.2.2 Scattering Quantum Walk: Quantum Walk on Edges

V

V

V

V

V

Figure 4·3: Quantum walk on edges. The initial state is in one of the edges
propagating to the right. The amplitude gets transmitted and reflected by
some amount defined by an operator V. We would observe some amplitude
cancellation. The color opacity of the green arrows corresponds to the
probability.

A different picture of the quantum walk is provided by the scattering model introduced

(Feldman and Hillery, 2004; Feldman and Hillery, 2007). This discrete-time scattering-

based quantum walk is also called an edge walk. Unlike the coin model, the interference

occurs on edges instead of performing the walk only on vertices. Each vertex works as a
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scattering center in this model. An input photon amplitude and phase will be controlled by

a transmission and reflection coefficient at the scattering center. This model starts with a

photon in a state |m−1,m〉, representing a photon propagating from a vertex location m−1

to m, hence describing a state on an edge.

In this scattering model, a Michelson interferometer can serve as a vertex with two edges.

One-step propagation starting at a specific edge is given by:

ÛMichelson |m−1,m〉 → 1√
2
(|m,m+1〉+ i |m,m−1〉).

ÛMichelson |m+1,m〉 → 1√
2
(|m,m−1〉+ i |m,m+1〉).

(4.6)

We will introduce a simplified description for a single scattering center, but we present the

full description first. The unitary transformation represented by the Michelson interferometer

in Eq. (4.6) and illustrated in Fig. 4·4b can be rewritten using the matrix below:

UFull =


AR→ AR AL→ AR BR→ AR BL→ AR
AR→ AL AL→ AL BR→ AL BL→ AL
AR→ BR AL→ BR BR→ BR BL→ BR
AR→ BL AL→ BL BR→ BL BL→ BL

=
1√
2


0 i 1 0
i 0 0 1
1 0 0 i
0 1 i 0

 . (4.7)

ÛFull |AR〉 →
1√
2
(|BR〉+ i |AL〉),

ÛFull |BL〉 →
1√
2
(|AL〉+ i |BR〉).

(4.8)

|AR〉, |AL〉, |BR〉, and |BL〉 correspond to |m−1,m〉, |m,m−1〉, |m,m+1〉, and

|m+1,m〉, respectively. The propagation direction needs to be distinguished when multiple

scattering centers are connected, but a simplified version can be used for a single scattering

center. We will use the simplified matrix for a single scattering element in the upcoming

sections so that we can directly make a comparison to the coin operators:

ÛSimpli f ied =

(
A→ A B→ A
A→ B B→ B

)
=

1√
2

(
i 1
1 i

)
(4.9)
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BA

(a)

AR BR

BLAL
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Figure 4·4: (a) Directionally-insensitive description for a scattering center.
A photon can enter port A and then leave either port A or B. (b) Directionally-
sensitive description for a scattering center. If the photon is initially in the
state AR, then the photon will have an amplitude in the AL direction and the
BR direction. Photon in states AR and AL do not interact, so they need to be
distinguished when a graph is formed based on scattering centers.

By repeating this unitary matrix transformation process from an initial state, a walk can

be implemented on a line. This scattering model is unitarily equivalent to the coin walk

(Venancio et al., 2013; Hillery et al., 2003). To see the unitary equivalence between the two

models, we define a unitary operator Ê.

Ê |m−1,m〉= |m〉⊗ |R〉 ,

Ê |m+1,m〉= |m〉⊗ |L〉 ,
(4.10)

where |R〉 and |L〉 are defined in the coin model section. Consider a state evolution by

operators ÊÛ with an initial condition |m−1,m〉 .

Û |m−1,m〉= 1√
2
(|m,m+1〉+ i |m,m−1〉),

ÊÛ |m−1,m〉= 1√
2
(|m+1〉⊗ |R〉+ i |m−1〉⊗ |L〉).

(4.11)

V̂ Ê |m−1,m〉= V̂ |m〉⊗ |R〉= Ŝ |m〉⊗ 1√
2
(|R〉+ i |L〉)

=
1√
2
(|m+1〉⊗ |R〉+ i |m−1〉⊗ |L〉).

(4.12)
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The former represents the edge walk, and the latter represents the coin walk. The

outcomes are the same when the evolution operators Û and V̂ are multiplied by the operator

Ê; therefore, these two formalisms are unitarily equivalent. This unitary equivalence

ÊÛ = V̂ Ê can be also seen as Û = Ê†V̂ Ê. Ûn = Ê†V̂ nÊ because of unitarity of the operator

Ê where n is an integer. For example, the operators below would satisfy the equivalence

between the two works.

E = ∑
m
|m−1〉〈m|⊗ |R〉〈R|+ |m〉〈m|⊗ |L〉〈L| (4.13)

E−1 = ∑
m
|m+1〉〈m|⊗ |R〉〈R|+ |m〉〈m|⊗ |L〉〈L| (4.14)

This result can be extended to higher dimensional walks. We can find the same equivalence

for an initial state |m+1,m〉.

4.2.3 Higher Dimensional Coin Operators and Scattering Vertices

Quantum walks can be extended to higher dimensions by changing the dimension of the

operators in the system and attaching additional edges to each vertex. It is possible to

introduce scattering centers with different scattering amplitude ratios between output modes

using directionally-unbiased devices. We will introduce several different coin operators and

corresponding scattering centers in this section. The relationship between the coin model

and the scattering model is deduced using an additional unitary operator as discussed in the

previous subsection. There are several quantum coin operators with specific characteristics.

The Hadamard coin, an unbiased coin, is one example.

The four-dimensional real-valued Hadamard coin H4 is given as an example. This matrix
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is obtained by taking the tensor product of two by two real Hadamard matrices H2.

H4 = H2⊗H2 =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . (4.15)

In addition to the Hadamard coin, there are two other major specific coins used in quan-

tum information processing. The first coin is motivated by Grover’s search algorithm (Grover,

1996).

Cd =


2
d −1 2

d . . . 2
d

2
d

2
d −1 . . . 2

d
...

... . . . ...
2
d

2
d . . . 2

d −1

 , (4.16)

where d is the size of the matrix.

Matrices for d = 3 and 4 are given.

C3 =
1
3

−1 2 2
2 −1 2
2 2 −1

 and C4 =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (4.17)

This coin is biased in amplitudes (except for d = 4), yet symmetric under permutations of

matrix labels. Another coin is a discrete Fourier transform (DFT) coin; this coin is unbiased;

however, it is not symmetric under permutations. The Fourier transform matrix is given by:

UFourier =
1√
d


1 1 1 . . . 1
1 ω ω2 . . . ωd−1

1 ω2 ω4 . . . ω2(d−1)

...
...

... . . . ...
1 ω(d−1) ω2(d−1) . . . ω(d−1)(d−1)

 , (4.18)

where ω = e−
2πi
d .
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Three-dimensional and four-dimensional Fourier coins are given by:

UFourier =
1√
3

1 1 1
1 ω3 ω2

3
1 ω2

3 ω3

 , (4.19)

where ω3 = e−
2πi
3 .

UFourier =
1
2


1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω
9
4

=
1
2


1 1 1 1
1 i 1 −i
1 −1 1 −1
1 −i −1 i

 , (4.20)

where ω4 = e−
2πi
4 .

4.2.4 Equivalence between Higher Dimensional Coin Walk and Scattering Quantum
Walk

The coin walk and the scattering walk were introduced in the previous subsections, as

well as higher-dimensional coin operators. It is possible to give a unitary equivalence

relation between the two walks in higher dimensions as well. Consider a quantum walk

on a 2D rectangular lattice. The center of the grid is given by coordinate (m,n). A photon

on one of the edges around that grid is defined as |m,m,n−1,n〉. This state is read as a

photon propagation from a vertex location (m,n−1) to (m,n). The unitary operator for one
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propagation step of an edge is defined as:

Û |m−1,m,n,n〉 → 1
2(|m,m−1,n,n〉+ |m,m,n,n+1〉

−|m,m+1,n,n〉+ |m,m,n,n−1〉),

Û |m,m,n+1,n〉 → 1
2(|m,m−1,n,n〉+ |m,m,n,n+1〉

+ |m,m+1,n,n〉− |m,m,n,n−1〉),

Û |m+1,m,n,n〉 → 1
2(−|m,m−1,n,n〉+ |m,m,n,n+1〉

+ |m,m+1,n,n〉+ |m,m,n,n−1〉),

Û |m,m,n−1,n〉 → 1
2(|m,m−1,n,n〉− |m,m,n,n+1〉

+ |m,m+1,n,n〉+ |m,m,n,n−1〉). (4.21)

The corresponding coin operator of the coin walk is given by:

Ĉ =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (4.22)

The matrix is essentially the Grover matrix.

The operator transforms an initial coin state into a superposition state:

Ĉ |L〉= 1
2
(−|L〉+ |U〉+ |R〉+ |D〉), (4.23)

where |L〉 = (1,0,0,0)T , |U〉 = (0,1,0,0)T , |R〉 = (0,0,1,0)T , |D〉 = (0,0,0,1)T . A new

shift operator is defined as follows:

Ŝ = ∑
m

∑
n
(|m,n+1〉〈m,n|⊗ |U〉〈U |+ |m,n−1〉〈m,n|⊗ |D〉〈D|

+ |m+1,n〉〈m,n|⊗ |R〉〈R|+ |m−1,n〉〈m,n|⊗ |L〉〈L|).
(4.24)
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One step of the coin walk is given by:

V̂ = Ŝ(Î⊗Ĉ). (4.25)

We wish to find equivalence between the edge walk and the coin walk by finding a

unitary operator Ê. Define an operator Ê transforming edge states into vertex states.

Ê |m−1,m,n,n〉= |m,n〉⊗ |R〉

Ê |m,m,n+1,n〉= |m,n〉⊗ |D〉

Ê |m+1,m,n,n〉= |m,n〉⊗ |L〉

Ê |m,m,n−1,n〉= |m,n〉⊗ |U〉 .

(4.26)

Consider two cases for the coin-based walk and edge walk starting with an initial state

|m,m,n−1,n〉.

Unitary transformation of the coin-based walk:

Ê |m,m,n−1,n〉= |m,n〉⊗ |U〉 . (4.27)

V̂ Ê |m,m,n−1,n〉 = S |m,n〉⊗ (1
2(|L〉− |U〉+ |R〉+ |D〉)

= S1
2(|m,n〉⊗ |L〉− |m,n〉⊗ |U〉+ |m,n〉⊗ |R〉+ |m,n〉⊗ |D〉)

= 1
2(|m−1,n〉⊗ |L〉− |m,n+1〉⊗ |U〉

+ |m+1,n〉⊗ |R〉+ |m,n−1〉⊗ |D〉). (4.28)

Unitary transformation of the edge-based walk:

Û |m,m,n−1,n〉 =
1
2
(|m,m−1,n,n〉− |m,m,n,n+1〉

+ |m,m+1,n,n〉+ |m,m,n,n−1〉). (4.29)
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ÊÛ |m,m,n−1,n〉 =
1
2
(|m−1,n〉⊗ |L〉− |m,n+1〉⊗ |U〉

+ |m+1,n〉⊗ |R〉+ |m,n−1〉⊗ |D〉). (4.30)

V̂ Ê and ÊÛ both transform the initial state into the same state. Therefore, the outcomes

are equivalent, and the coin walk and the scattering walk are unitarily equivalent. We went

through a specific equivalence, which is the quantum walk generalized equivalence between

two models, as found elsewhere (Venancio et al., 2013; Feldman and Hillery, 2004).

4.2.5 Examples of Multi-Dimensional Quantum Walks on Graphs

The two types of quantum walks, the coin quantum walk, and the scattering (edge) quantum

walk, are both performed on graphs. Graphs with nodes implemented by higher dimensional

coins are applicable to algorithm development. For example, the Grover search algorithm,

when implemented via quantum walks on certain graphs with a superposition initial state,

demonstrates significant speedup over classical algorithms. Many quantum walk applications

are based on undirected graphs, meaning a walker can travel forward and backward in the

system. Directionally-unbiased linear-optical devices possess reversibility and therefore can

implement such undirected graphs. It has been established that a spatial search performed

on a 2D lattice is faster than similar classical algorithms (Benioff, 2000; Aaronson and

Ambainis, 2003; Childs and Goldstone, 2004; Tulsi, 2008; Abal et al., 2010; Abal et al.,

2012). To observe the spatial search on a 2D lattice, the scattering centers have transmission

and reflection coefficients equal to the Grover coin setting. One node in a graph is “marked”

by introducing a different matrix on one specific scattering center in the lattice. Localization

occurs on edges around the marked scattering center when the superposition state is sent in

the system as an initial state. The graph geometry can be configured using directionally-

unbiased devices. The rectangular lattice illustrated in Fig. 4·5a would require four-port
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devices. Similarly, the hexagonal lattice illustrated in Fig. 4·5b would require three-port

devices. These optical quantum walk implementations through these optical devices are

advantageous because of their amplitude tunability. The graphs can be implemented with

the same Grover coin matrix setting throughout the graph vertices initially, then a marked

coin can be introduced by tuning one of the vertices into a different coin. A quantum walk

search can find the marked point faster than any classical search algorithms.

(a) (b)

Figure 4·5: (a) Rectangular lattice. This structure has four edges for every
vertex. (b) Hexagonal lattice. This structure has three edges for every vertex.

Other graph structures can be considered using directionally-unbiased devices. Quantum

walks on a glued tree have been investigated theoretically and experimentally (Kempe, 2005;

Tang et al., 0018). Hitting time, the time required to reach one point to another point on

a graph is commonly used to evaluate propagation speed on a specific graph. A quantum

walk on a glued tree with three nodes gives exponential speedup when the three-dimensional

Grover coin is used at the nodes (Tregenna et al., 2003). We can form hypercubes using

unbiased multiports, and it has been shown that the quantum walk hitting time is shorter

than the classical walk case (Krovi and Brun, 2006). A walker starts on the left side of the

graph, and the walker tries to reach the other end in a short amount of time. As indicated in

Fig. 4·6a, the randomly-connected middle part in the glued tree complicates the pathfinding

procedure to reach the other end. The speedup applies in the case of the hypercube as
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well. A four-dimensional hypercube is illustrated in Fig. 4·6b as an example. Classical

algorithms cannot perform this search efficiently. On the other hand, quantum walks can

perform exponentially faster than any classical algorithms to find the other end of the path

(Shi et al., 2020).

(a) (b)

Figure 4·6: (a) Glued tree. Two trees are glued in a random manner in the
middle part of the graph. A photon’s hitting time from one red circle to the
other red circle is shorter than the classical walk on this graph. (b) Four-
dimensional hypercube. Every vertex has four edges. A photon’s hitting time
from one red circle to the other red circle is shorter than the classical walk
on this graph.

4.3 Summary

We reviewed discrete-time quantum walk systems and the use of directionally-unbiased

linear-optical designs in quantum walk applications. This directionally-unbiased system

allowed us to generate reversible graphs with vertices having multiple edges. This flexibility

in graph generation can be useful in quantum walk-based algorithmic speedup as briefly

mentioned in the introduction part of Sec. 4.2.

Previously introduced directionally-unbiased designs (Simon et al., 2016; Osawa et al.,

2018), reversible optical tritter and quarter, can work as scattering centers having three and

four edges for quantum walk applications. These designs are advantageous because of the

implementation cost reduction by removing directional bias in the system. We focused

on Grover and Fourier coin implementations, which are important matrices in quantum



80

information processing. Grover and Fourier matrices can be realized when all the phases are

at proper settings. Any unitary matrices can be realized using directional devices; however,

this is not the case for the directionally-unbiased design. Directionally-unbiased designs

cannot realize non-self-transpose unitary matrices. We have focused on quantum walk and

search applications in this chapter. This chapter is a building block for the next two chapters

by reviewing the key components in quantum walk systems.
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Chapter 5

Topology Assisted Quantum Information
Processing

5.1 Introduction

States with integer-valued topological invariants, such as winding and Chern numbers,

exhibit a variety of physically interesting effects in solid-state systems (Hasan and Kane,

2010; Kitagawa, 2012; Asbóth et al., 2016; Bernevig and Hughes, 2013; Stanescu, 2016),

including integer and fractional quantum Hall effects (Thouless, 1983; Laughlin, 1983;

Tsui et al., 1982; Laughlin, 1981; Klitzing et al., 1980). Such topological invariants can

be simulated in a simple model often known as the Su-Schreiffer-Heeger (SSH) model (Su

et al., 1979; Su et al., 1980). Originally, the SSH model describes the behavior of an electron

in polymers by introducing staggered hopping amplitudes between lattice sites. The SSH

system has two parameters and depending on the relationship between the two parameters,

the system can be classified based on some topologically distinct properties. To show the

topological distinction, discrete symmetries are useful when combined with band structures

of the system. There are three main symmetries used for topological phase classification

such as time-reversal, particle-hole, and chiral symmetries in a Hermitian system (Kitaev,

2009).

When band gapped systems with different values of topological invariants are brought

into contact, states arise that are highly localized at the boundaries. These edge or boundary

states have unusual properties; for example, in two dimensional materials they lead to
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unidirectional conduction at the edges, while the interior bulk remains insulating. Because of

the inability to continuously interpolate between discrete values of the topological invariant,

these surface states are protected from scattering and are highly robust against degradation.

This makes them prime candidates for use in error-protected quantum information processing.

Optical states with similar topological properties can be produced by means of photonic

quantum walks in linear-optical systems(Kitagawa et al., 2012; Kitagawa et al., 2010b;

Kitagawa et al., 2010a; Simon, 2018; Bouwmeester et al., 1999a; Zhang et al., 2007; Ribeiro

et al., 2008; Perets et al., 2008; Schreiber et al., 2010; Broome et al., 2010; Lu et al.,

2014; Lu et al., 2016; Cardano et al., 2017). Photonic walks have demonstrated topological

protection of polarization entanglement (Moulieras et al., 2013) and of path entanglement in

photonic crystals (Rechtsman et al., 2016).

In a periodically driven system, we are interested in a time periodic Hamiltonian H(t) =

H(t +T ) where T being the period of the drive. We can establish Floquet formalism through

the Schrodinger equation (Holthaus, 2015).

i~
d
dt
|ψ(t)〉= H(t) |ψ(t)〉 . (5.1)

The solution to this equation is given by

U(t, t0) = Texp

−i
t∫

t0

H(t
′
)dt

′

 , (5.2)

where T is the time-ordering operator. This is in general not an easy task to evaluate without

the temporal periodicity of H. In a quantum walk system, the time evolution of the state can

be written as |ψ(t +1)〉=U |t〉 for some unitary operator U. We can associate the quantum

walk unitary transformation such as the simple Hadamard walk and the split-step quantum

walk to the periodically driven Hamiltonians through Floquet formalism. With the temporal

quasienergy, we can define an effective Hamiltonian He f f ∝ ilnU(t, t0). Because of this

relationship, we can study the effective band structure through unitary operators.
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Optical systems are useful laboratories to study topologically-nontrivial states, due to

the high level of control: system properties can be varied over a wide range of parameters,

in ways not easy to replicate in condensed matter systems. In the quest to carry out practical

quantum information processing tasks, it is of great interest to examine more closely the

types of topologically-protected states that can be optically engineered. Those that are

also entangled are of particular interest for quantum information applications. The goal

is to entangle states that are associated with distinct topological sectors, and to do so in a

way that allows this entangled topology to be readily available for information processing.

Specifically, linear optics will be used to produce: (i) entangled topologically-protected

boundary states, (ii) winding-number-entangled bulk states, and (iii) an entangled pair

of error-protected memory registers. To create the states, a source of initial polarization

entangled light is necessary, specifically type-II spontaneous parametric down conversion

(SPDC) in a χ(2) nonlinear crystal. Taking this initial state as given, all further processing

requires only linear optical elements. Topological invariants characterize global properties

of systems and cannot be easily distinguished by localized measurements. This difficulty in

measurement limits their use in many applications. That problem is solved here by linking

topology to a more easily-measured variable, polarization. Polarizations and winding

numbers will be tightly correlated (and in fact, jointly entangled with each other), but will

serve distinct purposes: winding number provides stability against perturbations, while

polarization allows easy access and measurement. We confine ourselves to one-dimensional

systems.

It is shown that arrays of directionally-unbiased linear-optical multiports can produce

entangled pairs of bulk states associated with an effective Hamiltonians of different winding

number through a quantum walk approach. A variation of the same idea then allows single

qubits or entangled qubit pairs to be stored in a linear optical network as winding numbers.

Topological protection of boundary states is well-known, but less widely recognized is the
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Figure 5·1: The SSH model. A unit cell consists of sublattice A and B. The
intracell hopping is given by v and the intercell hopping is given by w.

fact that bulk wavefunctions also have a degree of resistance to changes in winding numbers

(Simon et al., 2018b). This transition suppression of bulk wavefunction effect is used to

reduce polarization-flip errors of qubits stored in the optical register, greatly reducing the

need for additional error correction. It needs to be noted that some amount of transmission

from a topological bulk to a trivial bulk is allowed due to the fact that the suppression

amount relies on both amplitude hopping parameters and a topological distinction. We start

with reviewing the SSH Hamiltonian model to understand topological properties of the bulk

structure.

5.2 The SSH model

The SSH model is a simple toy model yet has some rich topological features (Su et al., 1979;

Su et al., 1980). The system consists of two repeating sublattices A, B forming a unit cell as

indicated in Fig. 5·1, and the hopping amplitude between the sublattices are the controllable

parameters of the system. Having a unit cell with two sublattices allows introducing internal

degrees of freedom, which is useful to evaluate SSH Hamiltonian by evaluating only internal

degrees of freedom.

We can write its Hamiltonian by

HSSH = v
N

∑
m
(|m,B〉〈m,A|+ |m,A〉〈m,B|)

+ w
N−1

∑
m

(|m+1,A〉〈m,B|+ |m,B〉〈m+1,A|), (5.3)
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where v,w≥ 0 and N is the total number of unit cells. The chain has boundaries at the two

ends of the chain and bulk portion of the chain. The presence of the boundary should not

affect the bulk part when the chain is long enough. To evaluate the bulk part of the physics,

we connect the ends of boundaries to form a loop so that we can apply periodic boundary

conditions. By applying Fourier transform |k〉= 1√
N ∑

N
m=1 eimk |m〉 to the unit cell index, we

can obtain bulk momentum-space Hamiltonian of internal degrees of freedom (Asbóth et al.,

2016).

H(k) =
(

0 v+we−ik

v+weik 0

)
, (5.4)

H(k)
(

a(k)
b(k)

)
= E(k)

(
a(k)
b(k)

)
. (5.5)

From the equation above, we can examine the dispersion relation of the Hamiltonian by

varying k.

E =±
√

v2 +w2 +2vwcos(k). (5.6)

The band gap closes at v = w.

The SSH model has a Z2 invariant obtained from the Berry phase in 1D model. The

Berry phase for sweeping Brillouin zone in one-dimensional systems is called the Zak phase

(Zak, 1989). In general, the Zak phase is not quantized, however the quantization occurs

under the existence of chiral symmetry (Ryu et al., 2010). The Zak phase and the winding

number can be used interchangeably since they both calculate the Berry curvature of the

same system.

Winding numbers are defined as

ν =
1

2πi

2π∫
0

〈ψ| d
dk
|ψ〉dk. (5.7)
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We can obtain bulk winding number of the SSH model from

|ψ±〉=
(
±e−iφ(k)

1

)
,where φ(k) = tan−1

(
wsin(k)

v+wcos(k)

)
. (5.8)

ν =


1 v < w

0 v > w

Unde f ined v = w

(5.9)

Each bulk having winding numbers 0 and 1 are gapped, and a phase transition from a bulk

with winding number 1 to a bulk with winding number 0 cannot occur without closing a gap

or breaking chiral symmetry.

5.3 Chiral Symmetry

1D chiral symmetric systems support integer-valued winding numbers, and topological

distinction can be observed when a system has two different winding numbers. Quantum

walk systems can be chiral symmetric, therefore we can dictate topological invariance

through bulk properties. Discrete symmetries play an important role to see topological

invariance in the system. There are three discrete symmetries used in topological condensed

matter systems, time-reversal, particle-hole, and chiral symmetry. Time-reversal symmetry

certifies the existence of paired energies due to Kramer’s degeneracy. Particle-hole symmetry

is commonly used in a superconducting system where the symmetry exchanges electrons

with holes. Time-reversal symmetry operator is an anti-unitary operator T satisfying T 2 =

−1. We obtain the following relation T HT−1 = H when applied to a Hamiltonian H.

Similarly, particle-hole symmetry operator P satisfies P2 =+1 with PHP−1 =−H. Chiral

symmetry operator is introduced by combining time-reversal and particle-hole symmetry

Γ = PT . Having time-reversal and particle-hole symmetries automatically certifies the

presence of chiral symmetry in the system, however the converse is not true. Chiral
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symmetry is also called sublattice symmetry because a chiral symmetry operator alters the

sign of the wavefunction from one sublattice to another. Such chiral symmetric operator for

the SSH Hamiltonian can be defined by

Γ = PA−PB (5.10)

where PA = ∑
N
m=1 |m,A〉〈m,A| and PB = ∑

N
m=1 |m,B〉〈m,B| are projecton operators for each

sublattice.

The SSH Hamiltonian has chiral symmetry,

ΓH(k)Γ =−H(k), (5.11)

where the operator Γ must obey Hermiticity (Γ† = Γ) and Unitarity (Γ† = Γ−1). Chiral

symmetry guarantees that energy eigenvalues come into pairs meaning the existence of

eigenenergy E certifies the existence of −E. This can be shown by defining an eigenstate

|ψn〉 of an arbitrary Hamiltonian with eigenvalue En. Now, we can form two equations using

the Hamiltonian,

H |ψn〉= En |ψn〉 (5.12)

HΓ |ψn〉=−EnΓ |ψn〉 . (5.13)

We used ΓH(k)Γ = −H(k) here, and the result shows that the chiral symmetric system

supports eigenenergies with opposite sign ±En. En = 0 is a special case because this

automatically tells us that −En = 0. This zero-energy is protected against perturbation

which does not close the band gap (Ryu and Hatsugai, 2002). The zero-energy state is the

only state that can support single energy. The rest of states are paired with opposite energy

states due to the chiral symmetry, and this prohibits from generating a state having only a

single energy near the zero-energy. Any deformation that moves the state away from E=0

has to split this state into two opposite-energy states in order to preserve the chiral symmetry,
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so that the difference of the number of edge modes on the two sublattices (NA−NB) remains

topologically invariant. This protected energy state appears in a 1D quantum walk system

because of chiral symmetry and periodicity in the system. The quantum walk systems are

described using unitary matrices, we can take effective Hamiltonian approach to demonstrate

the topological protection.

We take the approach introduced by (Kitagawa et al., 2010b) and (Obuse et al., 2015)

for introducing topological invariants in a quantum walk system. The 1D quantum walks are

introduced in Chap. 4 therefore we briefly mention the relevant quantum walk construction.

The quantum walk model uses a coin operator and a shift operator. Shift operator in real

and momentum space is given by

S = ∑
x
|x+1〉〈x|⊗ |↑〉〈↑|+ |x−1〉〈x|⊗ |↓〉〈↓|

=

π∫
−π

eikσz⊗|k〉〈k| . (5.14)

Similarly, the coin operator is given by

C = ∑
x
|x〉〈x|⊗R(θ(x)) =

π∫
−π

e−iθσy⊗|k〉〈k| (5.15)

where

R =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
= e−iθσy. (5.16)

We can obtain band structures of the system by only looking at the 2x2 matrix part of the

equation since its a block diagonal matrix filled with identical 2x2 matrices. The quantum

walk system is periodic, we can use Floquet formalism to obtain the energy eigenvalue E(k)

of the effective Hamiltonian He f f using U = e−iHe f f .

U = SC = eikσze−iθσy = e−iE(k) (5.17)
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This equality gives

cos(E(k)) = cos(k)cos(θ). (5.18)

From the equation above, the band diagram of Hadamard quantum walk can be drawn

and the band gap closes at θ = 0,π.

The effective Hamiltonian for this QW can be written as

He f f =

π∫
−π

dk[E(k)n(k) ·σ]⊗|k〉〈k| . (5.19)

The unit vectors are n(k) for this specific quantum walk structure.

n(k) =
(sin(θ

2)sin(k),sin(θ

2)cos(k),−cos(θ

2)sin(k))
sin(E(k))

. (5.20)

σ = (σx,σy,σz) are pauli matrices. The quantum walk is performed using unitary operators.

To show that the system has chiral symmetry, we can translate the Hamiltonian chiral

symmetry to unitary matrix based chiral symmetry ΓUΓ−1 =U−1. Periodicity is present in

the system and it implies that E =−E would occur at E = π in addition to E = 0. E = 0

stems from chiral symmetry without periodicity and E = π is unique to periodically driven

systems. Any periodically driven systems can support this π-energy.

An example chiral symmetry operator (Kitagawa et al., 2010b) is given by

Γ
−1He f f Γ =−He f f Γ = e−πA·σ2 (5.21)

where A = (cos(θ

2),0,sin(θ

2)). The chiral symmetry operator is θ dependent and θ is

location dependent variable, therefore this operator makes it difficult to keep track of the

symmetry of the entire system when some θ values are varied independently.

There is another method for identifying a chiral symmetry operator by shifting time of

origin within the quantum walk (Obuse et al., 2015; Asbóth and Obuse, 2013; Rakovszky
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and Asboth, 2015). The quantum walk repeats the procedure to show the propagation of

the amplitudes meaning we need to apply the unitary operator U multiple times (e.g. Un =

SCSCSC · · · ). We can find two chiral symmetric time frames which satisfy the condition of

θ being independent.

U ′ =C
(

θ

2

)
SC
(

θ

2

)
and U ′′ = SC(θ)S. (5.22)

In this model, Γ = σx, θ independent operator satisfies the chiral symmetry condition.

Winding number for zero energy state and π energy is derived by looking at the two time

frames U
′
and U

′′
. In a simple Hadamard quantum walk, there are only two topologically

distinct winding numbers.

5.4 Numerical Analysis of Topological Protection of Bulk States

The existence of localized, topologically protected states under the condition of having a

distinct winding number at each bulk has been extensively studied. It has been demonstrated

that under certain conditions, bulk wave-functions can also be made to be “suppressed”

(Simon et al., 2018b). Here, suppression implies the amplitude propagation from one bulk

to another bulk. The suppression amount depends on the hopping parameter as well as

the discrete change of topology. We examine the amount of transmission by considering

a simple quantum walk system U = SC(θ) under the influence of topological difference

in winding number. We have introduced an edge based quantum walk in the previous

chapters. Because one quantum walk model can be transformed into another quantum walk

model by a unitary matrix and they both have the same set of eigenvalues. For this reason,

we use the two quantum walk models interchangeably. The system consists of two bulk

regions by setting coin operator differently at each bulk. This model is called a single

step quantum walk or two-phase quantum walk (Endo et al., 2015). The right side of the

region is governed by θR and the left side has θL. We show the existence of protection from
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propagating into another region having a different winding number numerically. Distinct

winding numbers can be obtained in the following coin phase relationship. Technically

speaking, we have winding numbers for both zero energy and π energy, however, the system

only has two distinct topological states or phases, therefore we use the equation below to

introduce winding number difference between two bulks.

∆ν =


0 (0 < θR < π) ∩ (0 < θL < π) or (π < θR < 2π) ∩ (π < θL < 2π)

1 (π < θR < 2π) ∩ (0 < θL < π) or (0 < θR < π) ∩ (π < θL < 2π)

(5.23)

Consider a quantum walk system consisting of 100 sites. The two ends of a chain is

connected to form a loop. We provide numerical simulation of the topological protection,

eigenvalue distribution of the unitary matrix, bulk state transition, and probability distribution

for all possible phase values. All the simulations in this chapter are performed using

MATLAB (see Appendix C). To perform the simulation, a 200 by 200 unitary matrix

U = SC for a single step is constructed. The unitary matrix U is U(θL) for spatial location

−50 ≤ m ≤ 0, and U(θR) for spatial location 0 < m < 50. An amplitude with spin up

and spin down are distributed through out the system by the 200 by 200 unitary matrix.

Amplitudes with spin up and spin down are independently summed at each site, therefore

the final probability distribution has 100 sites. When a spin up photon is inserted at the

boundary (lattice site = 0) of two topologically distinct bulks, highly localized amplitude

appears at the boundary as shown in Fig. 5·2 (a). In this simulation, the number of walk

steps is 50. Topological distinction is provided by setting phase values θR = 9π

8 and θL = π

8

since ∆ν = 1. If θR = π

8 , θL = π

8 are chosen, the winding numbers of the two bulks are

identical, therefore edge state disappears as indicated in Fig. 5·2 (b). We also provided

eigenvalue distribution for both unitary matrices. Eigenvalues correspond to edge states are

isolated from the clustered regions. The eigenvalues are rotated by applying ei π

2 globally.

Global operation does not change the winding number (Obuse et al., 2015).
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Figure 5·2: Quantum walk with topological boundaries. The chain length
is 100 with quantum walk steps equal to 50. Site 50 and -50 are connected
because of the ring structure. We set topological boundaries between -1 and
0, and between site 50 and -50 in x-axis. (c) Topologically protected edge
state. Right side phase is set to 9π

8 and left side phase is set to π

8 . (d) Edge
state does not appear when ∆ν = 0. Right side phase is set to π

8 and left side
phase is set to π

8 .
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Figure 5·3: Its corresponding eigenvalue distributions to the previous quan-
tum walk plot. The plots show the eigenvalue of the quantum walk unitary
matrix. The distribution is rotated by multiplying ei π

2 globally. (a) Topologi-
cally protected edge state appears at 1 and -1. Right side phase is set to 9π

8
and left side phase is set to π

8 . (b) Edge state does not appear at 1 and -1.
Right side phase is set to π

8 and left side phase is set to π

8 .

The origin of the quantum walk is shifted away from the boundary to demonstrate

the suppression of amplitude transition from one bulk to another bulk when topological

distinction is present. This numerical simulation is shown in Fig. 5·4. Here, the input photon

is inserted at site 25 and the system forms a loop, therefore the system has two boundaries.

In Fig. 5·4 (a), the input photon meets the boundary enough times by performing 1000

steps, yet the leakage of probability is small when two bulks are topologically distinct.

Topologically distinct system has (θR,θL) = (13π

8π
, 5π

8 ). In Fig. 5·4 (b), the phases are set to

(θR,θL) = (5π

8 , 5π

8 ) and topological suppression no longer exists.
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Figure 5·4: Shifted quantum walk with 1000 steps. A photon is inserted at
lattice site 25. We set a topological boundary at 0 in x-axis. Site 50 and -50
are connected because of the ring structure. (a) Topological region. The input
photon does not leak into left side of the bulk. The probability distribution
between left side bulk and the right side bulk is 3.5% and 96.5% respectively.
(b) Topological region. When the two bulks are topologically not distinct,
the input photon penetrates the boundary therefore the photon propagates the
entire system without reflection. The probability distribution between left
side bulk and the right side bulk is 49% and 51% respectively.

We show the topologically protected regions in Fig. 5·5 by searching through the entire

coin phase angle space. The topological boundary is shown in red line. The phase resolution

is π

100 with the chain length equal to 100. The initial quantum walk point is at +25 and the

total walk steps at each phase setting is 2000. When θ = π

2 or 3π

2 , cos(π

2 ) = 0 and sin(π

2 ) = 1,

therefore the photon stays at the original location and never reaches the boundary. This

explains the zero leakage when such phase settings are employed. We can look further into

the difference between topological and non-topological probability distributions in Fig. 5·6.
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Figure 5·5: Probability distribution of a quantum walk system. The phase
values on the right side and the left side are translated to cover the entire
phase space. Topologically distinct region (∆ν = 1) is on the right top and
left bottom side of the diagram while topologically equivalent regions are on
the right bottom and left top side. As indicated, for example, left top side
has significantly more leakage of probability compared to the topological
regions.
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Topological region remaining probability distribution

3.5 4 4.5 5 5.5 6

R

0

0.5

1

1.5

2

2.5

3

L

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 5·6: (a) Non-topological region. (b) Topological region. The red box
shows strongly suppressed region compared to the non-topological bulks.
The side length of the box is π

4
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θ θ=

Two Three-port Devices

Figure 5·7: Two multiports and a phase shifter are used to construct a
diamond-shaped structure. The multiports are viewed as scattering centers at
edges of an optical graph. Detailed properties of this structure may be found
in (Feldman and Hillery, 2004; Feldman and Hillery, 2007).

θH , θV = θH , θV

Polarization dependent phase shift 

Figure 5·8: The unit cell for the proposed systems is the diamond graph
with polarization dependent phase shifts θH and θV , as shown on the left.
Each such cell contains four three-ports. This basic unit will be drawn in the
schematic form shown on the right.

5.5 Jointly-Entangled Topologically Error Suppressed Bulk States

We have demonstrated the propagation suppression of amplitudes between topologically

distinct bulks in the previous section. We can apply this suppression to an error suppressed

quantum information processing scheme by engaging in polarization degrees of freedom.

The system we are using is based on chiral symmetry protected system based on quantum

walk. Start with a polarization-entangled photon source, type-II SPDC in a nonlinear crystal.

We define a maximally polarization entangled two photon state,

|ψ±〉= 1√
2
(|H〉1 |V 〉2±|V 〉1 |H〉2) , (5.24)

where 1 and 2 refer to two spatial modes. Our goal is to produce a winding number

entangled state. Polarization entanglement needs to remain intact, to use for control and

measurement purposes. It should be noted that we are making a slight abuse of terminology
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here: the winding number is associated with the Hamiltonian, not strictly speaking with

the state. Transitions of bulk states between spatial regions or parameter values with

Hamiltonians of different winding numbers can be arranged to be suppressed. Therefore,

as a practical matter, under appropriate conditions one may to a high degree of accuracy

think of the winding number as being associated with the state as well. We introduce an

abstract unit cell using two directionally-unbiased three-port devices. Strictly speaking,

the change in θ in the diamond unit is not identical to the coin operator in the quantum

walk model. However, the amplitudes produced from the diamond unit spans the same

spectrum generated by the coin operator, therefore we treat them the same. If we look

at the probability distribution of coin based quantum walk and edge based quantum walk

independently without performing the additional unitary transformation, some details on

probability distribution would be different, but the overall structure is the same. Consider

two chains of unit cells introduced in Fig. , distinguishing the upper (u) and lower (l) chains

(Fig. 5·9). Using the states |ψ±〉 as input, each down conversion photon is directed into

one of the two chains, so that the labels 1 and 2 in Eq. 5.24 are replaced to u and l. A

set of optical circulators and switches, as described in (Simon et al., 2017a) is one way of

introducing photon pairs into the system. The circulators are used only to couple photons

into the system initially, and to couple them out for measurement at the end; they play no

role in the actual operation of the system in between. We take polarization-dependent phase

θH and θV . The polarization-dependent phase shifts are easily implemented with thin slices

of birefringent material or, if real-time control of the phase shifts is desired, with Pockels

cells. In the visible and near infrared, it is easy to find crystals with low absorption and

strong birefringence; calcite is one example. Other materials with similar properties can be

found for other spectral ranges. It should be relatively easy to produce the necessary phase

shifts with negligible effect on performance. The use of electro-optical effects can enable

fine adjustment of the phase shift in each cell if necessary. If θH is chosen correctly, then
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θH , θV θH , θV θH , θV θH , θV θH , θV θH , θV

θH , θV θH , θV θH , θV θH , θV θH , θV θH , θV

u

l

Polarization-entangled 
photon source 

Figure 5·9: Producing winding-number-entangled two-photon states. Each
unit cell consists of a diamond graph unit, and so contains a total of two
three-ports and a polarization dependent phase shifter. The photons are
inserted using optical isolators.

the H part is put into a state with winding number ν = 0 and the V part into a state with ν =

1. Then the vertically- and horizontally-polarized states will be eigenstates of Hamiltonians

with respective winding numbers νV = 1 and νH = 0. The final state is therefore of the form

1√
2
(|0H〉u |1V 〉l±|1V 〉u |0H〉l), (5.25)

where the 0 and 1 represent winding number values of the Hamiltonians that govern

their time evolution, while u and l denote the spatial modes in the upper and lower chains.

The state is written in condensed form here; a more explicit expression, including the

spatial dependence of the wavefunction is provided in (Simon et al., 2018b). The photons

now form winding number-entangled qubit pairs. All that matters is that the polarization-

dependent combination (θH ,θV ) leads to each polarization state seeing a Hamiltonian of

different winding number. Usually, the global property of winding number is difficult to

determine by local measurements. This is especially true for single-photon states which are

usually destroyed by the measurement process, so that multiple measurements cannot be

carried out to determine the global state. Polarization and winding numbers remain coupled

in this case. This jointly-entangled structure allows the variables to play disparate roles: the

discrete winding number leads to topologically-enforced stability, while polarization, being

defined locally, makes the photon state easy to measure. Polarization can be determined by a
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single local measurement, allowing the global winding number to be inferred from its value.

Suppose that a perturbation occurs to the system. Normally, this might cause the photon’s

polarization to change (a polarization-flip error). For example, a horizontally-polarized state

of winding number ν might try to flip into a vertical state: |ψν〉H → |ψν
′ 〉V , where ν

′
is

the final winding number. However, as discussed in more detail, unless the perturbation is

strong enough to severely and globally alter the entire system, transitions from eigenstates of

one bulk Hamiltonian to those of a Hamiltonian of different winding number are suppressed.

If the hopping parameters are chosen appropriately as indicated in Sec. 5.4, the amplitudes

for these transitions can be made arbitrarily small. This means that, to a high level of

certainty, the initial and final winding numbers can be assumed to be equal: ν
′
= ν. Due to

the way the system was constructed, there are no allowed states that have V polarization and

which propagate according to a Hamiltonian of winding number ν, so the polarization flip

is suppressed. Thus, barring extreme alterations of the system, polarization-flip errors are

greatly reduced. The suppression of polarization errors occurs without loss of photons, and

so there is no damage to any coherence or entanglement present in the system.

5.6 Topologically-Protected Quantum Memory Registers and Entan-
glement

A basic ingredient needed for quantum computing is a quantum memory unit capable of

storing a logical qubit α |0〉+β |1〉. Such units need to have read, and or write capability and

should be resistant to bit-flip errors. This can be achieved by a variation on the strategy above.

Once again, topological stability suppresses errors, with polarization used for reading and

writing stored values. A schematic depiction of the memory register is shown in Fig. 5·10.

When a horizontally-polarized photon enters the ring it is associated with winding number

ν = 0, but for appropriate values of θV a vertically polarized photon will have ν = 1. The

winding number then serves as the logical bit being stored. Readout of bit values requires
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Figure 5·10: Schematic diagram of a quantum memory register. Logical bits
are stored in the winding number of the state and retrieved via polarization
measurement.

only simple polarization measurements. Since the input photon may be in any arbitrary

superposition of polarization states, the ring can be used to store any possible qubit value. In

general, an input polarization qubit α |H〉+β |V 〉 is stored in a winding-number/polarization

qubit, α |0H〉+β |1V 〉, where 0 and 1 are winding number. Since photons at normal energies

do not mutually interact to a significant degree, multiplexing is possible. Multiple qubits can

be stored on a single ring by using photons of different frequency; addressing the desired

qubit then simply requires opening an exit channel from the ring and using a filter or dichroic

mirror with the appropriate frequency-transmission range. Reading out a qubit value consists

of measuring the polarization.

Notice that the register of Fig. 5·10 consists of one strand of the structure of Fig. 5·9

wrapped into a circle; the compactification to a circle makes its use in a larger system more

practical, but is not necessary for operation. Each strand of Fig. 5·9 is already capable

of serving as a quantum memory. One could use both strands of Fig. 5·9 (either in the

original linear configuration or compactified to a double-circle structure); for the polarization

entangled input of equation (2) the result would be two entangled quantum memory registers,
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θaH , θaV θcH , θcV
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Polarization-entangled 
photon source 
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B Boundary Plane

θbH , θbV θdH , θdV
θdH , θdV

θcH , θcVθaH , θaV θaH , θaV
θaH , θaV

θbH , θbV θbH , θbV θbH , θbV

Figure 5·11: Entangled edge states. The points A and B form a boundary
between bulk regions of different winding number. Polarization-entangled
input states lead to winding-number entangled states at A and B.

with error suppression provided by the winding number entanglement.

5.7 Topologically-Protected Entangled Boundary States

The setup of Fig. 5·9 can be generalized to produce one further effect related to an entan-

glement. First, the polarization-dependent phase can be made different in the upper and

lower branches (θaH ,θaV in upper branch and θbH ,θbV in lower). Then, a boundary plane

can be introduced perpendicular to the chains, such that the polarization-dependent phase

will change suddenly when the plane is crossed (θaV → θcV in upper branch and θbV → θdV

in lower), as shown in Fig. 5·11. As discussed in (Simon et al., 2017b), if the phase values

on the two sides of the boundary are chosen correctly, then topologically protected states

appear that are tightly localized on the boundary point. Unlike the approximate winding

number preservation in the bulk, the topological protection of the boundary state is exact

and has been demonstrated in a number of different solid state and optical systems. Taking

the simplest case, suppose θaH = θbH and θcH = θdH (same relationship holds for V), so

that the upper and lower chains are identical. Then for polarization-entangled input (Eq.

5.24), the boundary state will be in a superposition of two positions (points A and B). These

entangled boundary states will be vertically polarized and would be topologically protected.
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Considering just the state at the boundary, let |e〉 and |〉 represent, respectively, the presence

or absence of a localized edge state. Then the state on the boundary plane will be of the

form

1√
2
(|eV 〉u |H〉l±|H〉l |eV 〉u). (5.26)

where we assume as before that vertical polarizations see different winding numbers on

the two sides of the boundary and horizontal polarizations do not. Here, as before, u and l

label whether the spatial mode is in the upper and lower branch. Note that this entanglement

is distinct from path entanglement; photons exist simultaneously in both branches, even

if edge states are absent from a given branch. Another possibility is to take θaV 6= θcV for

the vertical polarization in the upper chain, but in contrast to take θbH 6= θdH for horizontal

polarization in the lower chain; in this case, there would be an entangled state which is a

superposition of having either localized boundary states at both A and B or at neither:

1√
2
(|eV 〉u |eH〉l±|H〉l |V 〉u). (5.27)

The states of Eq. 5.26 and 5.27 are maximally entangled, with entropy of entanglement

equal to 1, and may be thought of as topologically-stable implementations of Bell states;

these states can also be used to store entangled qubits. Edge states appear due to interference

between various amplitudes for quantum walks through each chain; they should survive as

long as the photons remain contained inside the system, coherent and unmeasured. Small

perturbations in the refractive index or in path lengths along the photon trajectories should

not disturb the results. For example, numerical results are displayed in Sec. 5.4 that show

the boundary state persists over some range of quantum walk phase parameters, as long as

the winding numbers do not change.
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5.8 Conclusion

We have proposed a hybrid strategy for quantum information processing, in which local and

global properties (polarization and winding number) are jointly-entangled, allowing one to

simultaneously exploit the benefits of both: discreteness of global, topological properties

affords stability and error suppression, while local properties are easy to manipulate and

measure. This has applications in producing entangled topological states and in designing

quantum registers (possibly in entangled pairs) with topologically-assisted reduction of

bit-flip errors.

Besides reducing bit-flip errors, the use of discrete topological quantities also helps

maintain loss of entanglement through the same mechanism: if there are no non-entangled

joint states that a photon pair can scatter into, then the entanglement will remain robust. This

can help avoid some of the problems that occur in many approaches to quantum computing

as a result of the fragility of entangled states. Efficient measurement of topological quantum

numbers has been a longstanding problem. Although other methods of measuring topological

variables in photonic systems have been proposed or carried out (Longhi, 2013; Ozawa and

Carusotto, 2014; Hafezi, 2014; Tarasinski et al., 2014; Barkhofen et al., 2017), they require

determination of probability amplitudes by measurements on multiple photons. The method

given here has the advantage of being able to operate at the single photon level.
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Chapter 6

Multiphoton State Manipulation

6.1 Introduction

Global properties of a photonic system were used to perform quantum information process-

ing in the previous chapter. In this chapter, we present information processing using local

photonic state manipulation by utilizing the clustering effect of photons. The Hong-Ou-

Mandel (HOM) effect (Hong et al., 1987) shown in Sec. 2.3 is arguably the best known

two-photon interference effect. Two identical photons are simultaneously incident on dif-

ferent inputs of a 50/50 beam splitter (BS) as in Fig. 6·1. Each photon could exit either

output port, so naively one expects nonzero amplitudes for three possible outcomes: both

exiting at port 3, both exiting at port 4, or one photon each at ports 3 and 4. But in fact,

no coincidences are seen between 3 and 4; the two photons always leave at the same port.

Which port the pair exits is entirely random. Coincidences between the two output ports are

absent because of cancellations between the two indistinguishable processes. As a result,

the two photons always remain clustered together in the same output spatial mode. This

gives a method for measuring time intervals to sub-picosecond level accuracy: as a delay

between the photons varies, the coincidence rate exhibits a sharp dip (the HOM dip) when

the wavefunctions briefly overlap on the BS.

Similarly, various types of studies on quantum state transformations in multiport devices

have been performed such as two photon propagation in a multimode system (Weihs et al.,

1996b; Żukowski et al., 1997), quantum interference effects using a few photons (Meany

et al., 2012; de Guise et al., 2014; Tichy et al., 2011; Campos, 2000), and propagation of
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multi-photons (Lim and Beige, 2005; Tillmann et al., 2015; Menssen et al., 2017). Internal

degrees of freedom are also incorporated to enhance communication capacity (Walborn et al.,

2003; Poem et al., 2012; Zhang et al., 2016). Systems and procedures using multi-photon

states, such as boson sampling, have been analyzed using multiport beam splitters both

theoretically and experimentally (Aaronson and Arkhipov, 2011; Tillmann et al., 2013;

Spring et al., 2013; Bentivegna et al., 2015; He et al., 2017; Wang et al., 2019). The

HOM effect plays an important role in the field of quantum metrology when two-photon

|2002〉-type states are extended to N-photon N00N state (Dowling, 2008; Motes et al.,

2015).

Additionally, coherent transport of quantum states has been attracting attention, where

single- and two-photon discrete-time quantum walk schemes are employed to transfer and

process quantum states (Bose, 2003; Perez-Leija et al., 2013; Lovett et al., 2010; Chapman

et al., 2016; Nitsche et al., 2016). A quantum routing approach has been proposed to transfer

unknown states in 1D and 2D structures to assist quantum communication protocols (Zhan

et al., 2014; Štefaňák and Skoupỳ, 2016; Bartkiewicz et al., 2018). Photon propagation

control is especially crucial in a large optical network to distribute quantum states between

+ -

+
1

2

4
3

Figure 6·1: Two photons entering a beam splitter at different ports. Although
exiting at a random output port, both photons are always found to cluster
together in the same port.
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two parties. The network can be formed by combining multiple copies of four-port devices.

Here, we look at an arrangement in which two indistinguishable bosons undergo a

discrete-time quantum walk along a dual rail or ladder type system (Fig. 6·2), with a

four-dimensional Grover matrix at each vertex. Such a chain could be considered as a pair of

quantum wires (representing a pair of states), with the Grover matrix serving as directional

couplers (Fan et al., 1998; Nikolopoulos, 2008) between them; more pertinently to our

purposes here, we may also think of the system as a single double-stranded quantum wire

in which we care only about the horizontal location of the particle, not whether it is on the

upper or lower strand.

The Grover matrix can be implemented using a linear-optical four-port, which is a special

case of the directionally-unbiased multiports studied in Chap. 3. We use the reversible

four-ports in this specific setup which can be implemented using any of the four-port device

in Chap. 3. The system is based entirely on linear optics, with no interactions between the

photons. In particular, if the photons are distinguishable, then each exhibits an independent

quantum walk and can later be detected in widely separated spatial regions. However, once

the photons become indistinguishable, the two-photon interference alters the picture: it

displayed below that for a particular input state the two photons remain spatially clustered

and are always found at the same horizontal location at each moment. Moreover, the

two-photon amplitude shows no sign of the randomness normally associated with random

walks: it splits into a quantum superposition of two localized packets that each move

deterministically over time with the two photons always remaining clustered in one packet

or the other.

These effects depend only on indistinguishable photons being inserted into the same

Grover matrix vertex simultaneously; entanglement is not required. Experimentally, the

most practical realization of the structures described here are on integrated optical chips.

Losses, decoherence, and chip imperfections will of course limit the possible walk lengths
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(a) Single unit.

m=0
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(b) A chain of four-ports.

Figure 6·2: (a) A chain of four-ports connected by pairs of edges. Each
edge pair is thought of as a single double-stranded connection line, and
vertex positions are labeled by integers. (b) The initial state consists of two
indistinguishable, right-moving photons injected into two ports from the left
side of m = 0 multiport, in the middle of the chain.

of experimental implementations. Up to this point, quantum walks of both single photons

and of entangled photon pairs have typically been implemented using integrated optics for

walks of lengths on the order of five to ten time steps (for example, (Peruzzo et al., 2010;

Sansoni et al., 2012; Crespi et al., 2013b; Su et al., 2019)), although proposals have been

made for arrangements that may allow longer walks (Geraldi et al., 2019). In what follows,

we assume an idealized system, neglecting losses and other imperfections.

6.2 System Setup

Consider a directionally-unbiased four-port acting as the Grover matrix (Moore and Russell,

2002; Carneiro et al., 2005) indicated in Fig. 6·2 (b). The action of the four-port is given by

the unitary matrix

M =
1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 , (6.1)

where rows and columns represent the four-ports. Regardless of which port a photon enters,

exit amplitudes at all outputs are real and equal in magnitude. Importantly, the amplitude

to reflect back to the input port has an extra minus sign relative to all other transitions. In
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general, photons in modes a and b are transformed in the following manner,

a M−→ 1
2
(−a+b+ c+d) and b M−→ 1

2
(a−b+ c+d). (6.2)

We simplify creation operator by dropping the hat and dagger notations.

Consider two photons entering the linear chain of Fig. 6·2 simultaneously. Assume one

enters port a and the other enters port b of the same multiport, somewhere in the middle of

the chain, far enough from the ends that we do not need to worry about the photons leaving

the system during the time duration of the experiment. Experimentally, two photons can

be produced simultaneously using spontaneous parametric down conversion (Boyd, 2020)

and then coupled into the chain by means of an electro-optical or magneto-optical switch.

Horizontal positions are specified by an integer m corresponding to the multiport label, and

discrete time t = nT by integer n, where T is the photon travel time between multiports. At

time n = 0, the photons are moving rightward, entering the m = 0 multiport.

Then, if the locations of the two photons at any later time n > 0 are measured, two

striking things are found. First, the photons cluster spatially: if the two parallel input/output

edges between adjacent multiports are treated as a single double-stranded connecting line,

then the photons are always found on the same double line. Assuming no loss and ideal

measuring devices, measurement at any horizontal location always finds either two photons

or none. This can be seen as a quantum walk analog of the HOM effect: amplitudes

for indistinguishable outcomes in which the photons move apart always cancel among

themselves. However, the HOM quantum interference effect occurs just once, whereas

clustering of the walk persists indefinitely, over an arbitrarily long sequence of steps.

Second, this clustered two-photon amplitude behaves in an unusual manner. It breaks

after the first step into a sustainable superposition of two distinct localized states. One

two-photon cluster in the superposition moves away from the starting point ballistically,

exhibiting no randomness. The other cluster stays near m = 0, bouncing back and forth
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between two adjacent locations (a phenomenon dubbed oscillatory localization (Ambainis

et al., 2016) ).

For comparison, imagine a single photon entering the present system, initially localized

on one input port. This can be seen as the sum of two states: one symmetric over the upper

and lower lines and one antisymmetric,

|1〉 = a |0〉= 1
2
(a+b) |0〉+ 1

2
(a−b) |0〉

=
1
2
(|1〉+ |2〉)+ 1

2
(|1〉− |2〉)

= |ψs〉+ |ψa〉 . (6.3)

The symmetric part will always continue rightward at each step, while the antisymmetric

portion reflects at each step, leading to oscillations. These single-particle behaviors have

been previously discussed in (Ambainis et al., 2016) for the Grover matrix systems. What is

remarkable in the two-particle case is that measurement of the two particles will always find

them in the same part of the superposition; one will never be found in the oscillating portion

and the other in the ballistic portion. Which part of the superposition the two photons are

found to be clustered in is completely random, just as the output port in which the two

photons are clustered in the HOM effect is purely random.

The two halves of the clustered amplitude do not spread as they propagate, exhibiting

soliton-like behavior. Note that the wavepacket spread in quantum walks is of statistical

origin, not a result of dispersive material properties. Therefore, cancellation of spreading

occurs in the current system from linear interference processes, with no need for nonlinear

interactions.
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6.3 Time Evolution

6.3.1 First Time Step

We sketch the time evolution of the system in this subsection. Momentarily treating the

photons as distinguishable, there are 16 possible exit outcomes from the four-ports for the

input state ab.

Applying tensor product U⊗U to the two-photon input, each of these real exit amplitudes

has absolute value (1
2)

2 = 1
4 if the photons exit at different ports, or

√
2

4 = 1
2
√

2
if they exit at

the same port. (The extra
√

2 appears when the indistinguishability is restored, due to the

normalization of two-boson Fock states, |2〉= 1√
2
a†2 |0〉.) Amplitudes gain one minus sign

for each photon that exits back out the port through which it entered.

The initial state is |ψ0〉in = ambm |0〉RR; the notation ambm |0〉RR (or ambm |0〉LL) means

one right-moving (left-moving) photon in port a and one in port b at lattice site m. The

resulting output state is

|ψ1〉 =
1
4
(cmcm |0〉RR +dmdm |0〉RR−amam |0〉LL−bmbm |0〉LL)

+
1
2
(cmdm |0〉RR +ambm |0〉LL), (6.4)

or simply

a0b0 |0〉
M−→−1

4
(a0−b0)

2 |0〉+ 1
4
(c0 +d0)

2 |0〉 . (6.5)

Assume we only want to know the exit direction of the photons (left or right), and do not

care if the photon is in the upper or lower channel. Then, clustering can already be seen in

the transition probabilities for the first step of the walk:

One possible outcome is for both photons entering the left side of the multiport to

exit back on the left side (LL→ LL). The probability of this is the sum of three terms

corresponding respectively to the amplitudes of both photons exiting at port 1, one photon
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at each port, and both at port 2:

P(LL→ LL) = P(ab→ aa)+P(ab→ ab)+P(ab→ bb)

=

(
− 1

2
√

2

)2

+

(
1
2

)2

+

(
− 1

2
√

2

)2

=
1
2
. (6.6)

Similarly, both photons can exit right (ports 3 and 4):

P(LL→ RR) = P(ab→ cc)+P(ab→ cd)+P(ab→ dd)

=

(
1

2
√

2

)2

+

(
1
2

)2

+

(
1

2
√

2

)2

=
1
2
. (6.7)

Finally, one photon can exit left and one right. The appearance of extra minus signs in half

the amplitudes leads to complete cancelation:

P(LL→ LR) = P(ab→ ac)+P(ab→ ad)+P(ab→ bc)+P(ab→ bd)

= 0. (6.8)

The result is that even though the photons do not interact and should walk independently,

they in fact always step in the same direction: both go right or both go left. Destructive

interference between indistinguishable amplitudes conspires to eliminate outcomes in which

they step in opposite directions.

6.3.2 Subsequent Steps

The paragraphs above describe the first step. Transition amplitudes can again be tabulated

to find the outcomes of subsequent steps. Summing over unmeasured intermediate states

in previous steps, one finds the amplitude splitting into an equal superposition of two

two-photon states.

The output of the first step (Eq. 6.4) can be written as

|ψ1〉out = |ψt ;0,RR〉+ |ψr;0,LL〉 , (6.9)
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where

|ψt ;m,RR〉 =
1
4
(cmcm |0〉RR +dmdm |0〉RR)+

1
2

cmdm |0〉RR

=
1
4
(cm +dm)

2 |0〉RR , (6.10)

|ψr;m,LL〉 = −1
4
(amam |0〉LL +bmbm |0〉LL)+

1
2

ambm |0〉LL

= −1
4
(am−bm)

2 |0〉LL . (6.11)

Here, we used the fact that states leaving ports c and d enter the adjacent vertex at ports a

and b, respectively.

Suppressing some labels for brevity, one finds that applying U⊗U again gives

1
2
√

2
(a2 +b2)→ 1

4
√

2
(c2 +d2 +a2 +b2)+

1
2
√

2
(cd−ab)

1√
2
(ab)→ 1

4
√

2
(c2 +d2−a2−b2)+

1
2
√

2
(cd +ab) (6.12)

Taking the sum of these as in Eq. 6.10, one finds that the amplitudes a2 |0〉 , b2 |0〉, and ab |0〉

cancel out at each step, so that |ψt〉 simply reproduces itself, but shifted one step to the right:

|ψt ;m,RR〉 → |ψt ;m+1,RR〉 → |ψt ;m+2,RR〉 → . . . . (6.13)

This is the ballistic state: it is totally transmitting at each step. If the initiating state of

the walk had been moving left (cmdm |0〉LL instead of ambm |0〉RR), similar ballistic motion

occurs to the left.

The multiport action on |ψr〉 of Eq. 6.11 is found by taking the difference of Eqs. 6.12,

leading to cancellation of c2 |0〉, d2 |0〉, and cd |0〉 terms. |ψr;m,RR〉 simply reflects at each

multiport encounter, causing it to bounce back and forth indefinitely:

|ψr;m,RR〉 → |ψr;m−1,LL〉 → |ψr;m,RR〉 → . . . . (6.14)
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The state is totally reflecting at each step, and the amplitude acts as if it is confined in a

virtual cavity, oscillating between lattice sites m = 0 and m = 1.

Up to a spatial shift of one step per unit time, the states |ψt〉 and |ψr〉 are both eigenstates

of (U⊗U)2, with eigenvalue +1, so evolution on subsequent steps is simply a repetition

of what happened in the first two steps: one two-photon amplitude repeatedly reflects, the

other repeatedly transmits.

Therefore, the photons remain spatially clustered as they walk along the line. This

quantum walk-based analog of the HOM effect might be referred to as a quantum-clustered

two-photon walk. In addition, the two-photon state at each moment localizes onto a quantum

superposition of just two nondispersive spatial amplitudes: one moves ballistically at

constant speed, while the other flips direction at each step and never moves more than one

unit from its starting point. This is analogous to the single-particle Grover walk behavior,

but with the unexpected feature that the two photons are always found clustered in the same

localized part of the distribution and never separate from each other.

The behavior of the system is shown in Fig. 6·3 (a), where the amplitude for the position

of each photon is shown. It is clearly seen that the amplitude splits into two localized

portions, with one portion staying near the origin and the other moving away at constant

speed. Moreover, it can be seen that the two indistinguishable photons remain together: there

is no amplitude away from the diagonal. In contrast, if the two photons are distinguishable

(Fig. 6·3 (b)), the lack of destructive interference leads to the appearance of nonzero

off-diagonal amplitudes, indicating that the photons may become spatially separated.

We have been only considering the Grover matrix propagation. We provide four di-

mensional Fourier matrix propagation to demonstrate the difference in behavior (Fig. 6·4).

The Grover matrix system completely localizes the photons and perfectly propagates its

amplitude, however this is not the case because of the absence of the amplitude cancellation

at each four-port site.



114

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Photon 1 location

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

P
h
o
to

n
 2

 l
o
c
a
ti
o
n

with number of iterations = 1

0

0.05

0.1

0.15

0.2

0.25

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Photon 1 location

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

P
h
o
to

n
 2

 l
o
c
a
ti
o
n

with number of iterations = 3

0

0.05

0.1

0.15

0.2

0.25

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Photon 1 location

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

P
h
o
to

n
 2

 l
o
c
a
ti
o
n

with number of iterations = 5

0

0.05

0.1

0.15

0.2

0.25

Coincidence probability distribution for two indistinguishable photons

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Photon 1 location

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

P
h
o
to

n
 2

 l
o
c
a
ti
o
n

with number of iterations = 7

0

0.05

0.1

0.15

0.2

0.25

(a) Distinguishable input state

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Photon 1 location

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

P
h
o
to

n
 2

 l
o
c
a
ti
o
n

with number of iterations = 1

0

0.01

0.02

0.03

0.04

0.05

0.06

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Photon 1 location

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

P
h
o
to

n
 2

 l
o
c
a
ti
o
n

with number of iterations = 3

0

0.01

0.02

0.03

0.04

0.05

0.06

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Photon 1 location

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

P
h
o
to

n
 2

 l
o
c
a
ti
o
n

with number of iterations = 5

0

0.01

0.02

0.03

0.04

0.05

0.06

Coincidence probability distribution for two distinguishable photons

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Photon 1 location

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

P
h
o
to

n
 2

 l
o
c
a
ti
o
n

with number of iterations = 7

0

0.01

0.02

0.03

0.04

0.05

0.06

(b) Indistinguishable input state

Figure 6·3: Coincidence distribution with Grover matrix. (a) The spatial
distribution of the photon amplitudes for two photons at four different times,
given an initial state with two indistinguishable photons entering ports one
and two of the four-port at position m = 0. The two axes give the locations
of the two photons, labelled by the integer-valued four-port index. It can be
observed that the amplitude splits into two localized components, but the
two photons are always found clustered together within the same component,
as indicated by the absence of amplitude away from the descending diagonal.
(b) The spatial distribution of the photon amplitudes for two distinguishable
photons. In contrast to the indistinguishable case, off-diagonal terms appear,
indicating that the two photons no longer remain clustered together
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Figure 6·4: Coincidence distribution with Fourier matrix. (a) The spatial
distribution of the photon amplitudes for two photons at four different times,
given an initial state with two indistinguishable photons entering ports one
and two of the four-port at position m = 0. The two axes give the locations
of the two photons, labelled by the integer-valued four-port index. Unlike the
Grover matrix case, the amplitudes do not remain clustered. (b) The spatial
distribution of the photon amplitudes for two distinguishable photons. The
result is basically the same as (a). The amplitude spreads across the chain.
The photons are indistinguishable, therefore, we cannot distinguish a pair of
photon at m =−5,5 and m = 5,−5. This indistinguishability allows to add
amplitudes coherently.
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6.4 State Manipulation Using Clustered Two-Photon Effect

We have investigated localized ballistic clustered two-photon effect itself in the previous

section. This effect can be extended to employ state manipulation. For a photon in spatial

mode a with horizontally polarized photon is denoted as aH and horizontally polarized

photon in mode b is denoted as bH . We omit polarization degrees of freedom when identical

photons are used through out the system. Consider an analogous setup as Sec. 6.2. Two

indistinguishable photons are sent into a four-dimensional multiport device realization of

the Grover matrix. The photons are sent from the left side of the system through out this

section. The first BS multiport composite system is denoted as subscript 0 and the other

half is denoted as subscript 1. The result differs depending on the input location of photons.

Consider a system consisting of two multiports and two beam splitters. There are several

ways to insert photons in the system, however we choose two specific ones. To be able to

send a photon into the middle of the system, the setup needs to be supplied with circulators,

is shown in Fig. 6·5. Another setup requires no circulators to propagate input photons. The

photons experience an extra transformation by a beam splitter upon photon entrance. The

system is graphically supplied in Fig. 6·6. It needs to be noted that the number of multiports

in the system does not change the final outcome. We are using two multiports as an example,

however, the result is identical when the system has a single multiport or more than two

multiports as long as the devices are assumed to be lossless during the propagation.
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Multiport Multiport

BS BS

Circulator

a0

b0e0

f0

e1

f1
c0

d0

a1

b1

c1

d1

Figure 6·5: A system setup with input photons supplied by circulators. The
system consists of two beam splitters, two multiport devices, and two circu-
lators. These circulators allow us to send photons from the left side of the
multiport device without experiencing a beam splitter transformation before
entering the multiport device. The input state split into right moving and left
moving amplitudes (shown as dotted arrows) upon multiport transformation.

6.4.1 Photon Propagation Using Circulators

This method is used to distribute HOM pair between the right and the left side of the system.

Recall the transformation from Sec. 6.3.2. The original input state a0b0 transforms to:

a0b0
M−→ 1

2(−a0 +b0 + c0 +d0)
1
2(a0−b0 + c0 +d0)

=−1
4(a

2
0 +b2

0)+
1
2a0b0 +

1
4(c

2
0 +d2

0)+
1
2c0d0

=−1
4(a0−b0)

2 + 1
4(c0 +d0)

2, (6.15)

where we have used the commutation relation ab = ba since the photons are identical and

in different spatial locations. Eq. 6.15 shows that correlated photons are split into right

moving 1
4(c0 +d0)

2 and left moving −1
4(a0−b0)

2 amplitudes, with no cross terms. This

absolute separation of propagation direction without mixing of right moving and left moving

amplitudes is important because the photon pairs remain distinctly localized and clustered at

each step. The right moving amplitude is translated to 1
4(a1 +b1)

2 and propagates without

changing its form. 1
4(a1 +b1)

2 M−→ 1
4(c1 +d1)

2. The left moving amplitude −1
4(a0−b0)

2
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stays the same until BS transformation. We use a beam splitter matrix given by,

BS f orward =
1√
2

(
1 1
−1 1

)
. (6.16)

The matrix transforms the photons coming from mode e0 and f0. The photons are trans-

formed in the following way.

e0→
1√
2
(a0−b0), f0→

1√
2
(a0 +b0). (6.17)

Backward propagation follows transpose of the BS matrix,

BSbackward =
1√
2

(
1 −1
1 1

)
. (6.18)

The back propagating photons are transformed in the following way.

a0→
1√
2
(e0 + f0), b0→

1√
2
(−e0 + f0). (6.19)

The controlled HOM effect can be observed in higher-dimensional multiports assisted

by extra beam splitters. Imagine beam splitters inserted in the system as in Fig. 6·5. Input

state ab is now transformed into −1
4(a−b)2 + 1

4(c+d)2 as indicated above, then further

transformed by beam splitters to obtain HOM pairs between the right side and left side of the

system. The right and left sides of the system each have two output ports. The exit port of

the photon pair can be controlled by varying phase shift settings before the beam splitters. A

phase shift on the left side of the system does not affect the result of the right side amplitude,

and vice versa. This system, having circulators at the beginning of the system, is denoted as

transformation pattern I, and the detailed discussions of its transformation are in Sec. 6.5.

6.4.2 Photon Propagation without Circulators

This method allows to redistribute input states between right and left side of the system

without changing amplitudes. Consider sending two photons from the left side of the beam
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Figure 6·6: System setup without circulators. The input photons are sub-
jected to a beam splitter before they enter the multiport. The input state
is transformed and propagated in one direction (shown as dotted arrows).
The BS transformed input state is transformed again by the first multiport
devices.

splitter as indicated in Fig. 6·6 then transform the output state by the multiport device. We

only consider the first multiport transformation here. The rest of the transformation is given

in Sec. 6.6.

e0 f0
BS−→−1

2
(a2

0−b2
0)

M−→−1
2
(a0−b0)(c0 +d0) (6.20)

The final state has cross-terms, and it is different from the case with circulators in a sense

that the output state is coupled. The state does not provide clear separation between right

moving and left moving amplitudes. Even though, the state does not have clear distinction

between right moving and left moving, we still refer the amplitudes right and left moving

amplitudes unless special attention is required. This system having no circulators is denoted

as transformation pattern II, and the detailed discussions of its transformation are in Sec. 6.6

6.5 Transformation Pattern I: Directionally-Controllable HOM Ef-
fect in Higher-Dimensional Spatial and Temporal Modes

In this section we discuss the transformation pattern I. The higher dimensional HOM effect

is generated by the multiport-based linear optics system with circulators at the inputs. The

propagation direction control and delays between amplitudes are discussed in subsections.

We use a single multiport device to show the control effect and we introduce two multiport
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devices in the system for delayed effect.

6.5.1 Control of Propagation Direction

Given that one two-photon amplitude must exit left and one right, there are four possible

combinations of outgoing HOM pairs as indicated in Fig. 6·7. The combinations are, (a):

(e2
0, f 2

1 ), (b): ( f 2
0 , f 2

1 ), (c): ( f 2
0 ,e

2
1), and (d): (e2

0, f 2
1 ). This means, in the case of (a) for

example, the left-moving two-photon amplitude leaves in mode f, and the right-moving

amplitude leaves in mode e. Directional control of the four cases is readily demonstrated, as

follows. In case (a) there is only a beam splitter transformation after the multiport, giving

−1
4(a0−b0)

2 BS−→− 1
4
√

2
(e0 + f0 + e0− f0)

2 =−1
2e2

0,

1
4(c1 +d1)

2 BS−→− 1
4
√

2
(e1 + f1− e1 + f1)

2 = 1
2 f 2

1 . (6.21)

The final output state is,

1
2
(−e2

0 + f 2
1 ) =−

1√
2
(|2,0〉0 + |0,2〉1). (6.22)

In case (b), a phase plate is inserted in the lower arm of the left side to switch the exit port

from d to c. All the phase shifters P are set to π, therefore transforming b→−b.

−1
4(a−b)2 + 1

4(c+d)2 P−→−1
4(a+b)2 + 1

4(c+d)2

BS−→ 1
2(− f 2

0 + f 2
1 ) =

1√
2
(−|0,2〉0 + |0,2〉1). (6.23)

Compared to case (a), the exit port is switched from f to e. In (c), phase plates are inserted

in the lower arms of both right and left sides. Photons in modes b and d are transformed to

−b and −d, respectively.

−1
4(a−b)2 + 1

4(c+d)2 P−→−1
4(a+b)2 + 1

4(c−d)2

BS−→ 1
2(− f 2

0 + e2
1) =

1√
2
(−|0,2〉0 + |2,0〉1). (6.24)
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Figure 6·7: Higher dimensional HOM effect with directional control. Corre-
lated photons, a0b0, are sent in from the circulators into the first multiport.
After the first multiport interaction, the incoming photon pair splits into right-
moving and left-moving two-photon amplitudes. The separately-moving
amplitudes are bunched at the beam splitters on right and left sides. We can
controllably switch between four different output sites, and where the clus-
tered output photons appear depends on the location of the phase shifter P. In
(a), no phase plates are introduced, and the output biphoton amplitudes leave
f0 and e1. The final state is 1√

2
(−|2,0〉0 + |0,2〉1), meaning superposition

of two photons in mode e0 and two in mode f1. In case (b), the phase shifter
P = π is to the left, changing the relative phase between upper and lower
arms. Similarly in (c) and (d), other locations for the phase shifters cause
biphotons to leave in other spatial modes.
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In (d), a phase plate is inserted in the lower arm of the right side. A photon in mode d is

transformed to −d.

−1
4(a−b)2 + 1

4(c+d)2 P−→−1
4(a−b)2 + 1

4(c−d)2

BS−→ 1
2(−e2

0 + e2
1) =

1√
2
(−|2,0〉0 + |2,0〉1). (6.25)

This demonstrates complete directional control of biphoton propagation direction using

only linear optical devices. Directional control does not require changing splitting ratios

at each linear optical device (BS and multiport), and occurs in a lossless manner since no

post-selection is required.

6.5.2 Delayed HOM effect

Delayed HOM Effect without Reflection

We introduce a phase shifter between two multiports as in Fig. 6·8 (b). Without the phase

plate between two multiport devices, the photons behave exactly the same as in the previous

subsection. However, the phase shifter can change propagation direction of right moving

amplitude to the left. This reflection results in detecting HOM pairs only on the left side,

but with some delay between the two exiting amplitudes. We start with the case without the

phase shifter. The photon insertion is the same as the previous case, coming from the left

side of the first multiport.

a0b0R
M−→−1

4(a0−b0)
2
L +

1
4(c0 +d0)

2
R

T+BS, T−−−−−→−1
2e2

0L +
1
4(a1 +b1)

2
R

M−→−1
2 f 2

0L +
1
4(c1 +d1)

2
R

BS−→−1
2e2

0L +
1
2 f 2

1R, (6.26)

where M, T, BS represents multiport, translation and beam splitter transformation respec-

tively. We use subscript R and L to illustrate amplitudes propagating to the right or left. T

translates a photon amplitude by a single time step (for example, 1
4(c0+d0)

2→ 1
4(a1+b1)

2).

The second transformation T +BS, T is read as applying T +BS on the first term and T on
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Figure 6·8: Delayed HOM effect. The two-photon amplitude transformation
progresses in time from top to bottom. The distance traveled in a single time
step is indicated by vertical dashed lines. The original photons as well as
photons in the target state are indicated using red circles. The green striped
circles indicate intermediate transformed state. The total number of photons
are always two through out the transformations. (a) Two multiports and
beam splitters without phase shifters between the multiports. In the first step,
the behavior is the same as for a single multiport with beam splitters. The
right-moving amplitude propagates through the second multiport, and left-
moving amplitude propagates through the beam splitter. The right moving
amplitude is delayed by one additional multiport transformation before a
two-photon observation probability will become available in spatial modes
on the right. (b) Two multiports and beam splitters with a phase shifter
P set at π between multiports. When the P is present, the right-moving
amplitude gains a relative phase between modes a1 and b1. Reflection occurs
at the multiport when the relative phase between the two is π. Therefore,
the transformed amplitude reflects upon a second multiport encounter, going
back to the original state with opposite propagation direction. Reflection does
not occur on this transformed left-moving amplitude, therefore it continues
to propagate leftward. The original left-moving amplitude becomes available
for detection earlier than the transformed left-moving amplitude.
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the second term.

The final state is,

−1
2

e2
0L +

1
2

f 2
1R =− 1√

2
(|2,0〉0T0L−|0,2〉1T1R), (6.27)

where T0 is the time when the first biphoton amplitude leaves the system and T1 is the exit

time of the second. The right moving amplitude stays in the system longer than the left

moving amplitude because of the extra multiport device in the system, leading to time delay

∆T = T1−T0.

Delayed HOM Effect with Reflection

When a π-phase shifter is inserted on one path between the multiports, the right-moving

amplitude gets reflected upon the second multiport encounter. Instead of having two-photon

amplitudes on the right and left sides of the system, both photon amplitudes end up leaving

from the left. The HOM effect still occurs but now with some delay between the two

amplitudes at the end of the BS. This is indicated in Fig. 6·8 (b).

a0b0R
M−→−1

4(a0−b0)
2
L +

1
4(c0 +d0)

2
R

T+BS, T+P−−−−−−−→−1
2e2

0L +
1
4(a1−b1)

2
R. (6.28)

The second transformation T +BS, T +P is read as applying T +BS on the first term and

T +P on the second term. Left-moving photons leave before right-moving photons.

M−→ 1
4(a1−b1)

2
L

P+T−−−→ 1
4(c0 +d0)

2
L

M−→ 1
4(a0 +b0)

2
L

BS−→ 1
2 f 2

0L. (6.29)

The final state,

−1
2

e2
0L +

1
2

f 2
0L =− 1√

2
(|2,0〉0T0L−|0,2〉0T2L), (6.30)

is now two HOM pair amplitudes, both on the left side of the system, at output ports e0 and

f0, with some time delay ∆T = T2−T0 between them. The first amplitude leaves port e0 at

T0, then the second leaves f0 and the time labeled T2.
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6.6 Transformation Pattern II: State Redistribution in Higher-
Dimensional Spatial and Temporal Modes

6.6.1 State Transformation and Propagation

We have considered the case where the input photon state is transformed by the multiport

device right after photon insertion in the previous section. Instead of using circulators, we

can transform the input state by the BS in advance and then transform the state by using

the multiport device. Though the Grover matrix spreads the input state equally in four

directions, the end result preserves the original form of the input state. We demonstrate a

state redistribution property using distinguishable and indistinguishable photons, meaning

the input state gets redistributed between right and left side without changing amplitudes.

The propagation result is different from the previous case. Consider sending two indistin-

guishable photons in the system. The input two photons have the same polarization to make

them indistinguishable. The input photons are inserted from the left side of the beam splitter.

The beam splitter transforms the input state and propagates from the left side to right side of

the device without any reflections. The amplitudes are transformed by the multiport device

after the beam splitter transformation. This transformation splits input photons into coupled

right-moving and left-moving amplitudes. The coupled left moving amplitudes reflected

from the first multiport counter propagates and transformed by the first beam splitter from

the right to the left. The right moving amplitude is transmitted without changes in amplitude.

This amplitude gets transmitted by the right side beam splitter at the end.

Indistinguishable Photons

We examine the mathematical details on indistinguishable photons in the system without

circulators first. We consider three cases by sending photons in spatial modes e and f. First,
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we consider indistinguishable a pair of single photons from spatial mode e and f.

eH0 fH0
BS−→−1

2
(a2

H0−b2
H0)

M−→−1
2
(aH0−bH0)(cH0 +dH0)

BS−→−eH0 fH1. (6.31)

HOM state with relative phase between two amplitudes equal to +1 is considered here.

1
2(e

2
H0 + f 2

H0)
BS−→ 1

2(a
2
H0 +b2

H0)

M−→ 1
4(aH0−bH0)

2 + 1
4(cH0 +dH0)

2 BS−→ 1
2(e

2
H0 + f 2

H1). (6.32)

The input state is redistributed in a sense that one amplitude is on the right side of the system

and the other amplitude is on the left side while maintaining the original structure of the

state.

HOM state with relative phase between two amplitudes equal to -1 is considered here.

1
2(e

2
H0− f 2

H0)
BS−→−aH0bH0

M−→ 1
4(aH0−bH0)

2− 1
4(cH0 +dH0)

2 BS−→ 1
2(e

2
H0− f 2

H1). (6.33)

In both cases, the output state is identical to the input state except for the spatial modes.

Distinguishable Photons

Now, we examine the case of distinguishable two photon input. The procedure is identical

to the the previous case. We begin with two distinguishable photons at each modes without

superposition.

eH0 fV 1
BS−→ 1

2(aH0−bH0)(aV 0 +bV 0)

M−→−1
2(aH0−bH0)(cV 0 +dV 0)

BS−→−eH0 fV 1. (6.34)
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We look at the case of HOM states.

1
2(e

2
H0± f 2

V 0)
BS−→ 1

4(aH0−bH0)
2± 1

4(aV 0 +bH0)
2

M−→ 1
4(aH0−bH0)

2± 1
4(cV 0 +dH0)

2 BS−→ 1
2(e

2
H0± f 2

V 1). (6.35)

The control of exit location can be performed as well in this scheme by introducing

phase shifters in the system as indicated in Fig. 6·9. This procedure does not destroy the

redistribution property. There are four potential spatial modes and by switching the phase

shift before beam splitters, the direction of propagation switches. The combinations are,

(a): (e0, f0)→ (e0, f1), (b): (e0, f0)→ ( f0, f1), (c): (e0, f0)→ (e0, f1), and (d): (e0, f0)→

(e0,e1).

The result from the system with circulators is summarized in Table. 6.1, the system

without them is in Table. 6.2. In the case of indistinguishable photons, the results are cyclic

in a sense that all three states can be produced by using the other system. However, there is

a significant difference when distinguishable photons are considered.

6.6.2 Delayed State Redistribution

We introduce the temporal delay effect as the higher dimensional HOM case by introducing

a phase shifter between two multiports.

Without Reflection

When there is no phase shifter between the two multiports, the result is identical to the

system with a single multiport from the previous section. The state transformation and

propagation is provided schematically in Fig. 6·10 (a). The photons are initially sent from

the left side of the BS. The correlated photons are transformed to HOM state through the

BS.

e0 f0R
BS−→ 1

2
(a2

0−b2
0)R

M−→−1
2
(a0−b0)L(c0 +d0)R. (6.36)
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Figure 6·9: Quantum state redistribution with control of propagation di-
rection. We performed the same analysis as the higher dimensional HOM
effect with direction control. By introducing phase shifters in the system
before beam splitters, we can change the exit direction of the amplitudes.
The starting state is e0 f0. The first beam splitter transforms the input state,
then they enter the multiport device. The multiport transformed state goes
through beam splitters on the right and left side. The final outcome has the
same form as the input state.
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State transformation with circulators

Indistinguishable photons aH0bH0→−1
2(e

2
H0− e2

H1)

HOM pair with +1 relative
phase

1
2(a

2
H0 +b2

H0)→
1
2(e

2
H0 + f 2

H1)

HOM pair with −1 relative
phase

1
2(a

2
H0−b2

H0)→ eH0 fH1

Distinguishable photons aH0bV 0→−1
2(eH0− fH1)(eV 0 + fV 1)

Distinguishable HOM pair 1
2(a

2
H0±b2

V 0)→
1
4{(eH0− fH1)

2± (eV 0− fV 1)
2}

Table 6.1: State transformations in a system with circulators. The first
three states deal with indistinguishable photons by giving them the same
polarization. A state consisting of two single photons will become an HOM
state. We analyzed HOM states as an initial state, and they become either the
HOM state or a two single-photon state. Distinguishable photons are also
analyzed by introducing orthogonal polarizations. The output states become
coupled states meaning the original states are not preserved.

State transformation without circulators

Indistinguishable photons eH0 fH0→ eH0 fH1

HOM pair with +1 relative
phase

1
2(e

2
H0 + f 2

H0)→
1
2(e

2
H0 + f 2

H1)

HOM pair with −1 relative
phase

1
2(e

2
H0− f 2

H0)→
1
2(e

2
H0− f 2

H1)

Distinguishable photons eH0 fV 0→ eH0 fV 1

Distinguishable HOM pair 1
2(e

2
H0± f 2

V 0)→
1
2(e

2
H0± f 2

V 1)

Table 6.2: State transformations in a system without circulators. The struc-
ture of the table is the same as Table. 6.1. The first three states deal with
indistinguishable photons by giving them the same polarization. The last
two states handle distinguishable photons. The output states preserve the
same form as the input state. We start the transformation from the system
location 0, then the transformed states are redistributed between location 0
and location 1. The result shows coherent transportation of input states.
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Figure 6·10: Delayed state redistribution. The two-photon amplitude transformation pro-
gresses in time from top to bottom. The distance traveled in a single time step is indicated
by vertical dashed lines. The total photon numbers are two in the system through out the
propagation. At the first step for both cases, the input two-photon state is transformed by
the BS. The transformed state becomes the HOM state, and it is indicated as red transparent
overlapped circles occupying both modes. The initial and the final transformed state are in-
dicated using solid red circles, and intermediate states are indicated in striped yellow circles.
(a) Two multiports and beam splitters without phase shifters between the multiports. The
HOM state enters the multiport and transformed taking the form of −1

2(a0−b0)(c0 +d0).
The amplitudes are coupled, however, they propagate without changing its amplitude. After
several steps, the amplitudes occupying two rails converges to a single mode state after
transformation by beam splitters. The final state has the same form as the input state. (b)
Two multiports and beam splitters with a phase shifter P set at π between multiports. When
the P is present, the right-moving coupled amplitude gains a relative phase between modes
a1 and b1. Reflection occurs at the multiport when the relative phase between the two is
π. Therefore, the transformed amplitude reflects upon a second multiport encounter, going
back to the original state. Reflection does not occur on this transformed coupled left-moving
amplitude, therefore it continues to propagate leftward. The original left-moving amplitude
becomes available for detection earlier than the transformed left-moving amplitude.
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The HOM state is transformed by the multiport device. This state is in a coupled state

because right moving and left moving amplitudes are not separated. We propagate this state

through the BS on the left and translate the amplitudes moving to the right.

BS,T−−−→− 1√
2

e0L(a1 +b1)R
M−→− 1√

2
e0L(c1 +d1)R

BS−→−e0T0L f1T1R (6.37)

The left moving amplitude is transformed by the left BS while right moving amplitude

propagates to the second multiport device. We introduced temporal difference between the

right moving and the left moving photons.

With Reflection

Reflection of amplitudes are introduced when there is a phase shifter between two multiport

devices as indicated in fig. 6·10 (b).

e0 f0R
BS−→ 1

2(a
2
0−b2

0)R
M−→−1

2(a0−b0)L(c0 +d0)R

BS,T+P−−−−→− 1√
2
e0L(a1−b1)R (6.38)

The right moving amplitude gains relative phase between upper and lower rails, and this

relative phase allows the amplitude to get reflected upon multiport encounter.

M−→− 1√
2
e0L(a1−b1)L

T+P−−−→− 1√
2
e0L(c0 +d0)L

M−→− 1√
2
e0L(a0 +b0)L

BS−→−e0T0L f0T2L (6.39)

The input photons do not have any delays between the two at the beginning. The delay

∆T = T2−T0 is introduced from the reflection in the system.
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6.7 Controllable Entangled-Photon State Distribution

The experimental setup illustrating the operation of the central unit in the proposed network,

the MCU, on a polarization-entangled state is illustrated in Fig. 6·11. Throughout this

paper, the figure-eight shape shown in this diagram will be used to denote entanglement

between the enclosed pair of photons. The MCU will be used as a building block to enable

distribution of two-photon entanglement as well as multi-photon entangled states among

any desired spatial modes. In the case of an entangled-photon pair, photons enter at e0 and

f0 and propagate towards the right (see Fig. 6·11 left).

6.7.1 Manipulation of Entangled Two-Photon States

We analyze the distribution of two-photon entangled Bell states exploiting polarization

degrees of freedom. Initially, the input polarization-entangled state is transformed by a

beam splitter; then the transformed input state is processed by the multiport. The multiport

splits the input state into right-moving and left-moving amplitudes confined to a two-rail

waveguided path (striped orange circles in Fig. 6·12).

We introduce polarization-entangled Bell states in both bra-ket and creation operator

notation. We use the simplified notation for creation operators by removing hat and dagger

symbols. The creation operators are always acting on vacuum state |0〉, therefore, we often

omit writing the vacuum states out explicitly.

|ψ±〉 =
1√
2
(|H〉0 |V 〉0±|V 〉0 |H〉0)

=
1√
2
(eH0 fV 0± eV 0 fH0) |0〉 , (6.40)

|φ±〉 =
1√
2
(|H〉0 |H〉0±|V 〉0 |V 〉0)

=
1√
2
(eH0 fH0± eV 0 fV 0) |0〉 . (6.41)

Initially, the Bell states are transformed by a beam splitter so that their amplitudes are
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Figure 6·11: Entanglement distribution in a multiport unit. Two polarization-
entangled photons occupying spatial modes e0 and f0 are inserted with the
propagation direction to the right. The photons leave through different ports
e0 and f1 after the linear-optical transformation at the multiport unit and
sustain their polarization entanglement. The figure-eight shape is used here
and throughout the rest of the paper to show entanglement between pairs of
photons.

spread between two spatial waveguides:

|φ±〉 BS−→ 1
2
√

2
(aH0

2±aV 0
2−bH0

2∓bV 0
2) |0〉 , (6.42)

|ψ+〉 BS−→ 1√
2
(aH0aV 0−bH0bV 0) |0〉 , (6.43)

|ψ−〉 BS−→ 1√
2
(aH0bV 0−aV 0bH0) |0〉 . (6.44)

Then two input state amplitudes occupying spatial modes a0 and b0 enter the Grover

multiport from the left and get distributed between the right side and left side of the multiport

without any losses in the system. The final amplitude transformation is performed by two

beam-splitters on either side of the Grover multiport. A detailed description of the quantum

amplitude transformation at the beam splitter and at the Grover multiport could be found in

(Osawa et al., 2020). We provide detailed calculation on the transformation of |φ+〉.
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Figure 6·12: Entangled photon exit amplitude control. The input photons
enter from ports e0 and f0. Depending on the placement of the phase shifters,
the photon pair could emerge at four different spatial modes.

|φ+〉 BS−→ 1
2
√

2
(a2

H0 +a2
V 0−b2

H0−b2
V 0) |0〉

M−→ − 1
2
√

2
((aH0−bH0)(cH0 +dH0)

+(aV 0−bV 0)(cV 0 +dV 0)) |0〉
BS−→ − 1√

2
(eH0 fH1 + eV 0 fV 1) |0〉 (6.45)

The original input entanglement between e0 and f0 modes is now redistributed between two

modes e0 and f1. These new modes become entangled as a result of the multiport-based

control unit (MCU) action. Such a distribution feature is valid for all four polarization Bell

states and can be demonstrated by engaging the same quantum amplitude transformation
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procedure.

|φ−〉 MCU−−−→ 1√
2
(eH0 fH1− eV 0 fV 1) |0〉 ,

|ψ±〉 MCU−−−→ 1√
2
(eH0 fV 1± eV 0 fH1) |0〉 . (6.46)

6.7.2 Control of Exit Modes

The final spatial location of exit photons belonging to the same entangled pair after their

manipulation by the linear-optical multiport unit could be controlled by imposing a π phase

shift denoted as P on a particular communication waveguide (Osawa et al., 2020). This

enables one to control the propagation of entangled state amplitudes and guides its energy

to the desired network nodes.

Consider |φ+〉 Bell state again and the state is introduced in the multiport unit from

the left at e0 f0 ports. The input output relationship is give in Fig. 6·12 (a). We show the

propagation amplitude can be changed by introducing the π phase shift (P) on the right side

of the multiport unit indicated in Fig. 6·12 (d).

|φ+〉= 1√
2
(eH0 fH0 + eV 0 fV 0) |0〉

BS+M−−−→ − 1
2
√

2
((aH0−bH0)(cH0 +dH0)

+(aV 0−bV 0)(cV 0 +dV 0)) |0〉 . (6.47)

This state is now a superposition illustrating coupled right-moving and left-moving

amplitudes. Each term is transformed once more by the final beam splitter interaction,

(a0−b0)
BS−→ e0, (6.48)

(a0 +b0)
BS−→ f0, (6.49)

(c0−d0)
BS−→ e1, (6.50)

(c0 +d0)
BS−→ f1. (6.51)
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We dropped scaling coefficients since they are irrelevant for this discussion of relative

phase effects.

If the relative phase between the two rails on both sides of the multiport is positive, as in

Eq. 6.49 and Eq. 6.51, then both photons leave the unit at ports f. Similarly, if the relative

phase between the two rails on both sides of the multiport is negative, as in Eq. 6.48 and

Eq. 6.50, then both photons leave at ports e. We can establish the following correspondence

between the phase shifts between upper and lower rails on a particular part of the multiport

(left phase, right phase) and exit ports for a particular portion of the entangled state:

(+,+) = ( f0, f1), (+,−) = ( f0,e1), (6.52)

(−,+) = (e0, f1), (−,−) = (e0,e1). (6.53)

The choice of phase shifts therefore provides complete control over the output distribution

of the entangled state spatial modes.

We take the final line of Eq. 6.47 and obtain a state |ξ〉 amplitude distribution prior to

encountering final beam splitters,

|ξ〉 ≡ − 1
2
√

2
((aH0−bH0)(cH0 +dH0)

+(aV 0−bV 0)(cV 0 +dV 0)) |0〉 (6.54)

Eq. 6.54 has a form of (-,+) for the first term, and (-,+) for the second term. The final BS

transformation on both sides provides

|ξ〉 BS−→ 1√
2
(eH0 fH1 + eV 0 fV 1) |0〉 . (6.55)

A phase shift in the right side (see Fig. 6·12 (d)) can alter Eq. 6.54 from (-,+) to (-,-) for

the first term and from (-,+) to (-,-) for the second term thus resulting in entangled quantum

amplitudes exiting from different ports of the apparatus. The result after the phase alteration
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is

|ξ〉 P+BS−−−→ 1√
2
(eH0eH1 + eV 0eV 1) |0〉 . (6.56)

In other words, the exiting photon in spatial mode fH1 is switched now to the mode eH1

and fV 1 is switched with eV 1. The result indicates we can actively redirect the quantum

amplitude propagation direction without disturbing the entanglement.

6.8 Scalability of Entangled-State Distribution Network

To further increase the number of spatial modes, we can link several multiport-based

control units together. A network could be composed of several units of the type previously

discussed, each encompassing two beam splitters and a multiport device, possibly with phase

shifters. Such units can be arranged in a network structure by connecting their ports using on-

chip waveguides or by fiber links when it is desirable to cover longer distances. A schematic

setup in Fig. 6·13 illustrates the two-photon quantum-entangled state transportation between

8 user nodes (16 modes) using multiport units. For the illustration purpose, this network

is separated into five sections. C, UL, BL, UR, and BR are central upper left, bottom left,

upper right, and bottom right multiport unit locations, respectively.

A two-photon entangled state is introduced from the left side into the central network

portion using optical isolators.

e0C f0C
BS−→ −1

2
(a2

0C−b2
0C)

M−→ −1
2
(a0C−b0C)(c0C +d0C)

BS−→ e0C f1C (6.57)

This equation illustrates a two-photon state distribution between spatial modes at the end of

the central part of the system action. Such transformed photons are now entering the bottom
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Figure 6·13: Two-photon entanglement distribution in a network. (a) The
network consists of five multiport-based units. Entangled photons are in-
serted at the central unit C. After the transformation in the first multiport
unit, the photons are propagated farther to the second layer of the network.
(b) Second layer of the network. The photons leaving C enter UL and BR
units in this case and get transformed by beam splitters. The two-photon
amplitudes (yellow striped circles) travel through the second layer of multi-
port devices. (c) Quantum amplitudes are transformed again by final beam
splitters resulting in the distribution of the original entangled state energy
between the right and left side of the system.
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left and the upper right second layer units because e0C is propagating to the left and f1C is

propagating to the right.

BS−→ 1
2
(c0UL +d0UL)(a0BR−b0BR)

P+M−−−→ 1
2
(a0UL +b0UL)(c0BR +d0BR)

BS−→ e0ULe1BR. (6.58)

e0C indicates a photon in the central multiport region occupying spatial mode e0. Sub-

scripts UL, BL, UR, and BR are given for appropriate creation operators.

The photon propagation direction can be controlled by inserting phase shifters, as

described in Sec. 6.7.2. This capability holds for both photon polarizations. The quantum

state transformation pattern (photon→ distributed two-rails amplitudes→ photon) repeats

every time a photon leaves the multiport unit and enters another one. Fig. 6·13 illustrates

the transition of the two-photon state energy from the central multiport to the bottom left

and top right multiports (Fig. 6·13 (c)). The form of the quantum state is preserved along its

propagation, and the entanglement distribution between any of the two exit locations of the

entire system can be performed. We can choose any of the four outputs on the right side for

the right moving amplitude and any of the four outputs on the left side for the left moving

amplitude by utilizing fixed phase shifters.

6.8.1 Entanglement Distribution Control Using Passive Phase Shifters

The network scalability is illustrated in Fig. 6·14 by a three-layered configuration of

multiport units. We can impose additional control to direct entangled photons towards

specific outgoing spatial modes in the network by inserting fixed phase shifters at each

multiport location.

One specific example of this network operation is provided in Fig. 6·14. After leaving

the first multiport unit, the photon enters the next multiport unit either from the top side
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Input

1st Layer2nd Layer3rd Layer

Figure 6·14: Amplitude control using passive phase shifters. Two photons
are sent from the left side of the central multiport device (green circles). The
red square in the circle indicates phase shifters embedded in the multiport
unit. The phase shifters change the propagation direction in transverse
direction as described in Section IIB. The final outgoing photon locations are
illustrated by solid red circles. The quantum amplitude distribution during
internal transport though the network is shown by faded red circles.

mode or the bottom side mode. When the photon enters from the bottom, the relative phase

difference between the two output modes is -1 (a-b). This means that the amplitude is

going to be reflected at the second multiport back to the original location if no phase shifter

is introduced in the path. The introduction of π phase shift allows the amplitude to keep

propagating forward. If the photon enters from the top mode of the beam splitter then,

the relative phase remains +1 (a+b), therefore the photon propagates forward without any

additional phase shifts.

Let us consider the amplitude evolution on the right side. The detailed discussion of the

quantum amplitude propagation control using phase shifts is provided earlier in Sec. 6.7.2.

The photon departs the first unit from the bottom side and enters the next unit from the top

side of the BS. The transformed amplitude has a negative relative phase, hence the phase

must be altered to make sure the photon propagates forward. Then, the propagated amplitude

can leave the second layer either from the upper or lower side of the unit depending on the

relative phase settings.

Assume that the amplitude leaves the second layer at the upper mode since the photon
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Figure 6·15: Passive and active phase shift altering propagation direction of
reflected amplitude. (a) Passive phase shifts. In this case, we do not need to
apply any phases therefore there is no phase shifters in the unit. A single
photon is entering from the mode e0. The photon is transformed by the BS
into a superposition of forward propagating quantum amplitudes towards
the multiport device. Depending on the relative phase shift between the two
rails, the amplitude gets either transmitted or reflected at the multiport. The
original amplitude transformation done by the input BS for the input mode e
has negative relative phase, therefore it will reflect back from the multiport
device if one apply zero phase shift (denoted as φ =+1). The second passage
through the passive φ =+1 passive phase shifter dictates the photon will exit
at the same entrance mode e0. (b) The active switch of the phase shifter to
φ =−1 only for the backward propagating amplitudes changes the relative
phase between two rails and switches the outgoing photon energy to the f0
mode. The active phase shifter allows switching spatial propagation modes
e0 → f0 while the passive phase shift only allows a full return e0 → e0.
Additional π phase is added to all phase shifters if the photon is entering
from the port f0 and is getting switched to e0.

has a positive relative phase. The same procedure is repeated at the third layer of multiport

units except for the final phase shift. The final phase shift in the third stage is set to guide

the photon energy to emerge from the lower outgoing port of the unit. The same procedure

applies to the left side amplitude as well.
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6.9 Reconfigurable Networks and Controllable Entanglement Distri-
bution

6.9.1 Redirection of Quantum Amplitude Propagation Using Active Phase Shifters

We have described state manipulation methods by using only passive phase shifters up to

this point. The passive phase shifter scheme is limited in performance and does not allow

for an arbitrary redirection of photons in the multi-user network. Each photon from an

entangled pair may independently experience multiport unit transformations while traveling

in a complex network. Consider the passive phase shifter based network again (see. Fig.

6·14) and focus on the left side of the network. In the passive network (constant phase

shifts), the second layer branches out into four outputs, two in forward direction and two for

a backward direction.

When a passive network is used, it is impossible for the input photon to exit from the

mode f0 in order to modify the general propagation path in the network. This makes 20 out

of 36 nodes in such passive network unattainable. One must engage active phase shifters

(phase shifts that can be controllably changed during the operation of the network) in order

to reverse the photon propagation direction from mode e0 to f0 as well as from mode f0 to

e0. A single-photon transformation using active phase shifters is presented that enables a

fully reconfigurable network infrastructure.

We focus on the propagation of one part of the two-photon entangled state traveling over

the network and its active amplitude manipulation (see Fig. 6·15). A single photon entering

port e0 can leave either at e0 or f0 depending on the phase manipulation. We compare the

quantum amplitude manipulation using both passive shifts and active shifts.

The system introduces zero forward passive phase shift and zero backward phase shift

as indicated in Fig. 6·15 (a). The photon is sent from mode e, therefore there is no need for

a phase shift to experience reflection at the multiport device in this case.

This can be seen explicitly by looking at the transformation of the state operators. The
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beam splitter transformation on a single photon from mode e0 is,

e0
BS−→ 1√

2
(a0−b0). (6.59)

The transformed amplitude experiences zero phase shift to keep the relative phase equal to

−1.

P−→ 1√
2
(a0−b0). (6.60)

The amplitude gets reflected at the multiport device,

M−→ 1√
2
(a0−b0). (6.61)

A passive phase shifter cannot change the amount of phase in a time dependent manner,

therefore the backward propagation experiences the same amount of phase (zero in this

case). Finally, the reflected amplitude is transformed again by the BS resulting in the same

location as the initial input location.

P−→ 1√
2
(a0−b0)

BS−→ e0. (6.62)

Consider the action of an active phase shifter as provided in Fig. 6·15 (b). Now the

system introduces zero phase shift for a forward amplitude and π phase shift after the

multiport reflection thus allowing to switch the photon propagation from e0 to f0. The first

three operations are the same as the passive phase shifter case,

e0
BS+P+M−−−−−→ 1√

2
(a0−b0). (6.63)

After the multiport transformation, the exit mode will be different from the input mode if

π phase shift is introduced. The time-dependent active phase manipulation is required to
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execute different phase shifts.

P−→ 1√
2
(a0 +b0)

BS−→ f0. (6.64)

The amplitude is redirected to mode f0 using active phase shifters.

6.9.2 Centralized Network

When passive phase shifters are used, the reflected amplitudes simply propagate back to its

original input location. Active phase shifters enable full propagation control of reflected

amplitudes as well as transmitted ones.

RightLeft

Re�ection

Re�ection
Input

Figure 6·16: Full amplitude distribution control using active phase shifters.
Two photons (green circles) are inserted from the left side of the multiport
device. The blue square in the circle indicates active phase shifters embedded
in the unit. The time-dependent phase shifters change the propagation direc-
tion when it is required. The final photon location is illustrated as solid red
circles. The path towards the final destination is traced by faded red circles.
The reflection to any desired port is now available in an active network. The
reflection occurs in sections indicated by gray boxes.

Consider an example of the entangled state distribution illustrated in Fig. 6·16. The

network configuration is similar to the one in Fig. 6·14 but all passive phase shifters are

replaced by active phase shifters now. The initial state is split into right moving and left

moving amplitudes by the central multiport unit. The left moving amplitude leaving port f0

while the right moving amplitude leaves port e1 of the central unit. The amplitude leaving

f0 enters one of the second layer unit from the port e. The active phase shifter is now
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required in the second layer to switch the photon direction from port e to f on the same

side after its reflection at the multiport unit. The photon proceed to the third layer after an

appropriate phase shift at the second layer. Unlike the passive network, all inner third layer

ports become accessible now. The photon entering the third layer from port e leaves the

system after reflection again. The right moving amplitude can be controlled in a similar way

as the left moving amplitude. The right moving amplitude leaves from port e of the central

unit. The amplitude enters a unit in the second layer from the port f . Unlike the left moving

amplitude, the relative phase between two rails is positive since the amplitude is entered

from f . The photon amplitude passes though the second layer multiport unit and leaves it

from the e port. One more reflection is introduced in the third layer by applying an active

phase shift as described above.

With the use of active phase shifters embedded in the system, the number of output ports

increases to 36 from 16 in a three-layer setup. The scalability can be generalized to 4×3n

where n is the number of layers. In this subsection, we only considered the centralized

configuration of the network where independent amplitudes travel over the right side and

the left side of the network. In general, the right side amplitude can be redirected back to

the left side of the device so that the two amplitude can reach end nodes positioned on the

same side of the system.

6.9.3 Decentralized Fully Reconfigurable Entanglement Distribution Network

A completely flexible and reconfigurable network design can be implemented using the

technical approach introduced above. One can insert two entangled photons at any part of

the network indicated in Fig. 6·17. In this setup, we assume again that active phase shifters

are available. There is no need for circulators at the insertion point now due to the active

phase shifter availability.

The first photon of an entangled pair (labeled as 1 and displayed as a green circle)

follows the green path, the second photon (labeled as 2, with a red circle) follows the red
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Figure 6·17: Decentralized fully reconfigurable entanglement distribution
network. Two entangled photons (red and green circles) are inserted from
two ports of the multiport unit. The propagation path of the first photon
(labeled as 1) is indicated in green color and the second photon (labeled as 2)
is indicated in red. They are following colored arrows in the diagram and
finally entangle quantum devices at two remote nodes.

path. The first photon gets reflected at the first multiport unit, and the photon is sent to a unit

in the opposite direction of the second photon. We set the active phase shifter so that the

first photon is then reflected at the second multiport unit making the green photon to come

back to the first unit. The rest of the propagation follows the same rule as the centralized

network. Likewise, the second red photon gets reflected at the first multiport device and

travels to the destination following the red arrows. The second photon experiences reflection

with change in propagation direction by active phase shifters three times. The input state is

traveling to two distinct locations and the output state remains entangled. We assumed the

system is lossless, and the entanglement transportation is only done by phase shifts. The

scheme does not require any post-selection, hence there is no reduction of amplitudes. We

chose this specific travel path as an example. However the setup allows the users to engage

any desired propagation pattern by introducing corresponding active phase mapping and

redirecting entangled photons to different remote locations.
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Note that the u-turn on the second and third time steps was added for the green photon

in Fig. 6·17 in order to ensure that the two photons were not on the same edge at the same

time. This allowed them to be controlled independently: by making sure they traverse

any common links in their trajectories at different times, the two photons can be made

to encounter different phase shifts at those locations and thereby be directed in different

directions.

6.10 Multiphoton Transportation

We introduce multiphoton transformation in a network. Now, we consider sending a BS

pre-processed four-photon state into the multiport as indicated in Fig. 6·18.

e0 f0e1 f1
BS−→ 1

4(a0−b0)(a0 +b0)(c0−d0)(c0 +d0)

M−→ 1
4(a

2
0c2

0−a2
0d2

0−b2
0c2

0 +b2
0d2

0)

BSle f t−−−−→ 1
2(c

2
0e0 f0−d2

0e0 f0)
BSright−−−−→ e0 f0e1 f1 (6.65)

The input and output states are identical except for the propagation direction. The result

implies that we can introduce a multiphoton entangled state.

Consider a four-photon GHZ state. We follow the state transformations given in Fig.

6·18.

1√
2
(|HHHH〉+ |VVVV 〉) ∝

1√
2
(e0H f0He1H f1H + e0V f0V e1V f1V ) |0〉 . (6.66)

We insert the GHZ state from all four spatial modes in the central portion of the network.

We focus on the first horizontally polarized term of the equation.

e0HC f0HCe0HC f0HC
Multiportunit−−−−−−−→ f1HULe1HBL f0HURe0HBR. (6.67)
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Figure 6·18: (a) Four-photon insertion. We insert photons from the left
and right side of the central multiport devices indicated as e0, f0,e1, and f1.
(b) Initial photon transformation by the beam splitters. The transformed
photons are sent to the multiport device simultaneously. (c) The photons
are propagated in four distinct multiport units. (d) The photons in (c) are
transformed by multiports and beam splitters. The photons from the central
portion of the network is redistributed to the end of four different multiport
units.
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After the first transformation, the amplitudes are sent to all four second layer individually.

Multiportunit−−−−−−−→ e0HULe0HBLe1HURe1HBR. (6.68)

The same is true for the other polarization, and the form does not change even though the

actual state is in a superposition of two polarization. We chose four separate locations here,

but it is possible to redistribute the photons in the same unit by utilizing active phase shifters

(such state would be e0HUL f0HULe1HUR f1HUR meaning two photons in UL, two photons in

UR).

6.11 Conclusion

We have shown that two-particle quantum interference allows two non-interacting, indistin-

guishable walkers to remain clustered as they walk along a chain of directionally-unbiased

Grover four-ports. The resulting state is a superposition of two spatially-localized two-

photon clusters, one confined near the origin, the other moving monotonically away. If the

particles are entangled, the pair moves as a single unit, with undiminished entanglement.

Whereas perfect state transport (PST) has been demonstrated for single photon states in

various systems (Bellec et al., 2012; Perez-Leija et al., 2013; Chapman et al., 2016), this

system demonstrates the existence of PST for entangled multi-particle states as well, with

50% arrival probability.

Potential applications are readily envisioned. Entangled pairs can be delivered in a con-

trollable manner to distant locations for standard applications like entanglement swapping,

quantum repeaters, or to control the flow of entanglement for two-photon interference effects

in quantum networks (McMillan et al., 2013). Since the ballistic part moves with constant

speed, these locations are addressable simply by waiting the appropriate amount of time for

the amplitude to arrive.

One reason why utilizing the clustering effect can be useful in such applications, rather
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than simply sending a photon pair along a fiber or through free space, is that by adding phase

shifts in the lines between the multiports the flow of the photon pairs can be controlled; they

can be stopped at a desired location (oscillating between two adjacent multiports) or their

direction of motion can be reversed. This sort of control is something that cannot by done

with a simple optical fiber, and here it can be done without damaging any entanglement

between the photons. The means of such control is readily seen: inserting phase shifts

of π

2 to an upper line and −π

2 to the corresponding lower line converts the reflecting and

transmitting states of Eqs. 6.10 and 6.11 into each other, allowing the experimenter to

controllably switch back and forth between ballistic and oscillating behavior.

Furthermore, the fact that there are two spatially-separated two-photon amplitudes

means that those amplitudes can be brought back together and interfered with each other.

This provides a means of probing the region that the ballistic portion has traveled through,

allowing new two-photon sensing methods.

Additionally, we demonstrated higher dimensional quantum state manipulation such as

the HOM effect and state redistribution by applying linear-optical four-ports realizing the

four-dimensional Grover matrix accompanied by beam splitters and phase shifters. Identical

photons are sent into two of the four input-output ports and split into right-moving and left-

moving amplitudes, with no cross terms to observe the HOM effect. This absolute separation

of propagation direction without mixing of right-moving and left-moving amplitudes insures

the photons remain clustered as they propagate through the system. Variable phase shifts in

the system allow the HOM photon pairs to switch between four spatial output destinations,

which can increase information capacity. Time delays between emerging parts of the

clustered two-photon state illustrating “delayed” HOM effect can be engineered using

two multiports. Depending on the phase shifter position, the propagation direction can

be reversed so that the right moving amplitude can get reflected at the second multiport,

resulting in HOM pairs always leaving only from the left side of the system and with a
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particular time-bin delay. The same situations have been investigated in a system without

circulators. This system allows to redistribute the input state between the right and the left

side of the system without changing amplitudes. The HOM effect and clustered photon

pairs are widely used in quantum information science. The approach introduced here adds

extra degrees of freedom, and paves the way for new applications that require control over

the spatial and temporal modes of the HOM amplitudes as they move through one- and

two-dimensional networks. We have demonstrated two photon amplitude control in both

spatial and temporal modes. This two photon system can be extended to multiphoton input

states, and manipulation of more complex entangled states have been explored as well.

The number of spatial modes can also be increased by connecting the multiple multiport

units forming a network. We have demonstrated some theoretical framework to realize the

entanglement distribution schemes. Experimental demonstration of such state transportation

would be the next milestone to be achieved.
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Chapter 7

Conclusions

7.1 Summary

We have introduced photonics based quantum information processing devices and their

usage through potential applications in this dissertation. This dissertation is divided into

three sections. The first section introduces a new device called directionally-unbiased

linear-optical multiports which consists of multiple beam splitters and multiple mirrors. The

operation of the devices is based on multipath interference effect and we integrated input

and output ports together to perform certain quantum information processing efficiently. We

used bulk optics to demonstrate tabletop experimental operation of the three-ports.

In later chapters, we introduced applications using such devices. We focused on quantum

walk based applications. We provided some overview on quantum walks in a photonic

platform and we show that the multiport devices we introduced can be used to form quantum

walk systems. Topological photonics has been attracting attention due to the capability of

protecting certain states against perturbation. It is known that linear optics based quantum

walk systems can host topologically protected edge states which is robust against some

perturbations in the system. In addition to the edge state protection, we demonstrate

propagation suppression of bulk states as well using the multiport devices. By utilizing the

bulk state suppression, we can introduce propagation suppression of polarized photons by

inserting photons in topologically distinct bulks.

Topological photonics is global in the sense that the system requires significant amount

of devices to demonstrate topological effects. Instead of using the global feature, we can
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also look at the localized effect when multiple multiport devices are connected. Quantum

walks are known for their ballistic spread of amplitude meaning one can find probability in

an extended region. When the Grover four-port matrix is used to propagate amplitudes, we

see state propagation without spreading amplitude meaning the photons remain localized

while propagating. This localization can be used to introduce higher dimensional Hong-

Ou-Mandel effect in spatial modes. This is further extended to quantum state redistribution

where the input state can be redistributed between two different spatial modes without

changing its final form. Not only we introduce HOM effect, we can apply the effect to

entangled states and higher dimensional states as well. We formed an network system using

the multiport based units consisting of a multiport with two beam splitters for some routing

applications.

7.2 Future Work

7.2.1 Miniaturization of Multiport Devices

A directionally-unbiased three-port has been experimentally demonstrated on an optical

table with bulk optical devices. The bulk implementation faced multiple obstacles need to

be solved.

1. Phase sensitivity. Photon based experiments rely on interference in nature, therefore,

precise control of relative phase is essential. This particular multiport system is based on

multipath interference, and bulk optics has limitations in terms of precise phase locking. It

is manageable for a single multiport device, however, this becomes an issue as soon as we

introduce multiple copies of the multiport devices.

2. Scalability. To implement the applications introduced throughout this dissertation,

it is necessary to prepare multiple devices and put them together. Having multiple copies

of the multiports implies that phase sensitivity issue needs to be solved, and it can be
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circumvented by miniaturize the device itself through an on-chip implementation. This

result in the scalability of the device.

Direct implementation of the directionally-unbiased linear-optical multiport on a chip

or fiber based optical tritter with mirrors can introduce flexible amplitude control. They

would be suitable candidates for quantum walk and topological photonics. Another ap-

proach to introduce a robust photonic device would be by making use of an inverse design

approach (Molesky et al., 2018). Inverse design based photonic chip is useful for the higher-

dimensional HOM effect and state transfer due to the fact that they require a highly stable

device realizing the 4 by 4 Grover matrix.

7.2.2 Topological Photonics

Two-dimensional Models

It is possible to form a mesh type of system by connecting multiple multiport systems

in sequence. The transition from 1D and 2D systems changes several things in terms of

topological invariance. A physical system can be classified topologically based on discrete

symmetries. A 1D quantum walk system belongs to one of these topological classes AIII,

BDI, D, DIII, and CII can provide topological invariance. A simple Hadamard 1D quantum

walk system we investigated belongs to BDI, which satisfies all time-reversal, particle-hole,

and chiral symmetry criteria according to the periodic table of topological insulator (Kitaev,

2009; Ryu et al., 2010; Morimoto and Furusaki, 2013). Other topological classes are

available by increasing alternation steps such as four-step quantum walk (Asbóth and Obuse,

2013). In class BDI (see Table. 7.1), integer valued topological invariance would appear,

however this is not the case for 2D system. Therefore, we need to look at some other

symmetries or even no symmetries to have topological invariance. The periodic table in

Table. 7.1 does not cover the Floquet topological insulators. Therefore, the extended version

in (Roy and Harper, 2017) needs to be used. The applications we have introduced in this

dissertation are using a Hermitian system.
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Symmetry Dimension
Class T P C d = 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2
D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z2 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Table 7.1: Periodic table for topological insulators. T, P, and C represent
time-reversal, particle-hole, and chiral symmetry respectively. In the sym-
metry columns, value 0 shows no symmetry in the system. When operators
T,P, and C, are introduced, the squares of the operators would be T 2 =±1,
P2 =±1, and C2 = 1. Associated operators for time-reversal and particle-
hole symmetry can be anti-unitary operators, therefore they can take -1 value
as well. Dimension d is for the spatial dimension of a system. If the system is
one dimensional, then topological invariance would appear when the system
belongs to any of the topological classes AIII, BDI, D, DIII, and CII.
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Bulk State Propagation Suppression in Different Quantum Walk Systems

In chapter 5, we introduced bulk state suppression for quantum information processing. It is

possible to examine the same analysis for some other 1D systems (i.e. split-step quantum

walk and extended long-range hopping based quantum walk). They can provide interesting

features because they have more parameters to tune. We have briefly performed the same

analysis using the split-step quantum walk model (see Appendix B). The result is not as

simple as the two-phase Hadamard quantum walk model. Some topological amplitude

suppression is present in the split-step model as well, but it has not been generalized, and

the similar analysis can be performed in a different system to understand when exactly the

bulk state suppression would occur.
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Appendix A

Directionally-Unbiased Linear-Optical
Multiports Matrix Method

We introduce a matrix method to construct the input-output transformation matrix of the

three-port. Consider a three-port device with labels in Fig. A·1.

P
M

P M

M

P

Port A

Port C

Port B

A1

A2

A3

A4Aexit

B1

B4
B3

B2

C1

C2

C3

C4

Bexit

Cexit

Figure A·1: Directionally-unbiased three-ports with labels at each vertex. A
mirror unit is indicated in green squares.

The vertex consists of a beam splitter and a mirror with a phase shifter. The inputs and

outputs are labeled as A1,A2,A3,A4, and Aexit . A1 is used as an input port and Aexit is used

as an exit port. A photon from the vertex A travels to vertex B and/or vertex C after the first

BS encounter. We calculate the final propagation probability of a photon in the system by

repeating some internal procedures. For the three-port device, it requires 15 by 15 matrices
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to reconstruct the final matrix because a beam splitter has four ports and the exit is separated

from the input, therefore each vertex consists of five entries. We have three sequential steps

for the matrix reconstruction. 1. Photon insertion and the first BS encounter. 2. Amplitude

transformation after a BS encounter (the photon either leaves the system or enters the mirror

unit). 3. Amplitude transformation after a mirror unit.

We start with the first operation, using the photon labels, the photon travels from A1 to

A3 and A4. Second, the photon in A3, A4 travels to vertex B and/or C. At each vertex, the

photon can either leave the system or stay in the system. If the photon stays in the system,

we continue the calculation using the third step otherwise we keep the exit amplitudes for

coherent amplitude summation until the end. The remaining photon travels from B2 to

B3 and B4 (C2 to C3 and C4). We repeat this procedure of applying the second operation

followed by the third operation until we reach the desired accuracy. For example, we can

repeat the operation until the cumulative probability approaches to near 100%. After enough

number of iterations, we extract some entries from the final 15 by 15 matrix to reconfigure

the 3 by 3 matrix.

We show the full form of the initial step as well as the compact representation by using

block matrices.

U1 =
1√
2

A1 A2 A3 A4 Aexit B1 B2 B3 B4 Bexit C1 C2 C3 C4 Cexit



A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A4 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Aexit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
B4 0 0 0 0 0 i 0 0 0 0 0 0 0 0 0

Bexit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
C4 0 0 0 0 0 0 0 0 0 0 i 0 0 0 0

Cexit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.(A.1)

This matrix represents the initial operation. Top labels represent input and left labels
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represent output. In the initial operation, a photon can enter the system from A1, B1,

or C1. The photon entered from A1 leaves port A3 and/or A4. The same rule applies

to a photon entering vertex B and C. In a mathematical form, the operation is given by

|A1〉= 1√
2
(|A3〉+ i |A4〉), |B1〉= 1√

2
(|B3〉+ i |B4〉), |C1〉= 1√

2
(|C3〉+ i |C4〉). It is possible to

simplify the notation of the 15 by 15 matrix through block matrix representation. UInput

matrix represents a general transformation by a beam splitter.

UInput =

A1 A2 A3 A4 Aexit


A1 0 0 0 0 0
A2 0 0 0 0 0
A3 1 0 0 0 0
A4 i 0 0 0 0

Aexit 0 0 0 0 0

. (A.2)

U1 =
1√
2

A B C( )A UInput 0 0
B 0 UInput 0
C 0 0 UInput

. (A.3)

U1 is simplified using UInput matrix. U1 is still a 15 by 15 matrix. In a similar manner,

the second operation can be simplified.

U2 =
1√
2

A B C( )A 0 UBA UCA
B UAB 0 UCB
C UAC UBC 0

. (A.4)

An amplitude transition from A to B is described as UAB, in the same way, transition

from B to A is described as UBA. UAB describes the amplitude transformation of the second

beam splitter encounter. After leaving the first beam splitter, the photon leaves the system or

travels to the mirror unit. The extra phase φA is imposed at the mirror unit.
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UAB =

A1 A2 A3 A4 Aexit


B1 0 0 0 0 0
B2 0 0 0 ieiφB 0
B3 0 0 0 0 0
B4 0 0 0 0 0

Bexit 0 0 0 1 0

. (A.5)

UAB =

B1 B2 B3 B4 Bexit


A1 0 0 0 0 0
A2 0 0 eiφA 0 0
A3 0 0 0 0 0
A4 0 0 0 0 0

Aexit 0 0 i 0 0

. (A.6)

The third operation describes the photon leaving the mirror unit. This operation repre-

sents a propagation within the same vertex.

U3 =
1√
2

A B C( )A Uthird 0 0
B 0 Uthird 0
C 0 0 Uthird

. (A.7)

UT hird =

A1 A2 A3 A4 Aexit


A1 0 0 0 0 0
A2 0 0 0 0 0
A3 0 i 0 0 0
A4 0 1 0 0 0

Aexit 0 0 0 0 0

. (A.8)

These three operations are the unit operations and we repeat operation 2 and 3 to describe

photon propagation in the system.

N = 2 : UMultiport =U2U1,

N = 4 : UMultiport =U2U3U2U1,

N = 6 : UMultiport =U2U3U2U3U2U1,

N = 8 : UMultiport =U2U3U2U3U2U3U2U1,



161

where N represents the numbers of beam splitter encounter. We can reconstruct the 3 by 3

matrix by choosing the transition from A1, B1, and C1 to Aexit , Bexit , and Cexit from the 15 by

15 matrix. After large enough number of iterations, we obtain the final matrix below.

UMultiport =

A1 A2 A3 A4 Aexit B1 B2 B3 B4 Bexit C1 C2 C3 C4 Cexit



A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 0 0 0 0 0 −i

3 0 0 0 0 i
3 0 0 0 0

A3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Aexit
−i
3 0 0 0 0 2i

3 0 0 0 0 2i
3 0 0 0 0

B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B2

i
3 0 0 0 0 0 0 0 0 0 −i

3 0 0 0 0
B3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bexit
2i
3 0 0 0 0 −i

3 0 0 0 0 2i
3 0 0 0 0

C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C2

−i
3 0 0 0 0 i

3 0 0 0 0 0 0 0 0 0
C3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cexit
2i
3 0 0 0 0 2i

3 0 0 0 0 −i
3 0 0 0 0

.(A.9)

We are interested in the relationship between input ports and output ports, therefore we

select the specific entries to reconstruct the desired matrix.

Uout =

A1 B1 C1( )Aexit A1→ Aexit B1→ Aexit C1→ Aexit
Bexit A1→ Bexit B1→ Bexit C1→ Bexit
Cexit A1→Cexit B1→Cexit C1→Cexit

(A.10)

The final matrix is

Uout =

A1 B1 C1 Aexit
−i
3

2i
3

2i
3

Bexit
2i
3

−i
3

2i
3

Cexit
2i
3

2i
3

−i
3

. (A.11)

N-port can be constructed using the same procedure. We used a specific splitting ratio

for a beam splitter, but it can be changed to arbitrary values.
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Appendix B

Split-Step Quantum Walk

In the main text, we have focused on the simple Hadamard walk to demonstrate the topo-

logical suppression of bulk state and topological protection of edge states. Instead of using

a single operator, we can introduce two operators and periodically alternate between the

two. In a split step quantum walk model, the coin operators are alternated every single

step. The single unitary operator consists of U = SC2(θ2)SC1(θ1) where θ1 and θ2 are coin

operator angles respectively. Having two angle tuning parameters allows to introduce more

topological classifications based on winding numbers. We follow the derivation of winding

number in split-step quantum walk by (Obuse et al., 2015). Using the equations below, we

can draw the winding number diagram given in Fig. B·2.

νπ =
(sign[−sin(θ1)− sin(θ2)]+1)

2
,ν0 =

(sign[sin(θ1)− sin(θ2)]+1)
2

(B.1)

U=SC1

U=SC2

U=SC1

U=SC2

U=SC1

Figure B·1: Split-step quantum walk. The unitary transformation alternates
between two steps. The first step uses SC1 and the second step uses SC2.
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In the simple quantum walk model, zero or two isolated values exist depending on the

topological property of the system in the eigenvalue diagram. In the case of split-step walk,

we would see four patterns.
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Figure B·2: Eigenvalue distribution of split-step quantum walk system. The system consists
of two bulk regions. The red dot in the winding number sections corresponds to coin angles
for the right region and the green dot is responsible for the left region. The coin operator
angle for the left region is fixed to have winding number equal to (ν0,νπ) = (0,0). We
examine four distinct topological regions and show distinct isolated eigenvalues. (a) Both
angles stay in region (ν0,νπ) = (0,0). Since they are both in the same region, there is no
topologically protected state. (b) Right winding number is (ν0,νπ) = (1,0). ∆ν0 = 1,∆νπ =
0 and there is one isolated eigenvalue. (c) Right winding number is (ν0,νπ) = (1,1).
∆ν0 = 1,∆νπ = 1 and there are two isolated eigenvalues. (d) Right winding number is
(ν0,νπ) = (0,1). ∆ν0 = 0,∆νπ = 1 and there is one isolated eigenvalue.

When a photon is inserted at the boundary with topologically distinct regions, we observe

topologically protected state similar to the single-step quantum walk case. We perform the

same probability distribution analysis as the single-step case for completeness. We fix the
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left coin angles so that we have (ν0,νπ) = (0,0) for the left bulk. The figures show the

remaining probability distribution when all the coin angles on the right side are exhausted.

We observe leakage of amplitude when ∆ν0 = 1 while ∆νπ = 0 is maintained. The result is

not as straight forward as the single-step quantum walk, however, the result could be utilized

for quantum information processing applications.
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Figure B·3: Probability distribution for each topologically distinct regions.
The system has four parameters to tweak around. Left side phases are fixed
as indicated as a red dot for each figure. Right side phase parameters are
translated from 0 to 2π. Blue solid line indicates gap closure at E = π and
red dashed line indicates gap closure at E = 0 (a) Non-topological region. (b)
Topological region. The red box shows strongly suppressed region compared
to the non-topological bulks. The side length of the box is π

4 .
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Appendix C

MATLAB Codes Used for Simulations

MATLAB code used for topological quantum walks.

1 %Author Shuto Osawa

2 clear all

3 close all

4 %Phase settings

5 theta1l = 7*pi/4;

6 theta1r = pi/4;

7 %Length of the chain

8 ln = 100;

9 ln2 = 50;

10 SC1 = zeros(ln*2);

11 input = zeros(ln*2,1);

12 input(ln) = 1;

13

14

15 for i = 1:ln

16 Z = zeros(1,ln);

17 Z(i) = 1;

18 if i+1 > ln

19 Zp = zeros(1,ln);

20 Zp(1) = 1;

21 else

22 Zp = zeros(1,ln);

23 Zp(i+1) = 1;

24 end

25 if i-1 == 0

26 Zm = zeros(1,ln);

27 Zm(ln) = 1;

28 else

29 Zm = zeros(1,ln);

30 Zm(i-1) = 1;

31 end
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32 if i <= ln/2

33 mat1 = [cos(theta1l) sin(theta1l); 0 0];

34 mat2 = [0 0 ;sin(theta1l) -cos(theta1l)];

35 else

36 mat1 = [cos(theta1r) sin(theta1r); 0 0];

37 mat2 = [0 0 ;sin(theta1r) -cos(theta1r)];

38 end

39 SC1 = SC1+kron(kron(Zp’,Z),mat1)+kron(kron(Zm’,Z),mat2);

40 end

41

42 QW = input;

43 array0 = zeros(ln*2);

44 array = zeros(ln2,ln+1);

45 array2 = zeros(ln/2);

46

47 for j = 1:ln2

48 QW = SC1*QW;

49 QWP = QW.*conj(QW);

50 odd = QWP(1:2:end);

51 even = QWP(2:2:end -1);

52 even = [even; 0];

53 fin = odd+even;

54 fintrans = fin ’;

55 array(j,:) = [0 fintrans(1:end)];

56 end

57

58 %probr = sum(QWP(ln+1:end));

59 %probl = sum(QWP(1:ln));

60

61 figure(1)

62 set(gcf , ’Position’, [400, 100, 600, 500])

63 imagesc(linspace(-ln/2,ln/2,ln),linspace(0,ln2,ln2),array)

64 colormap(jet)

65 caxis([0 1])

66 ylabel(’QW steps’,’FontSize’,14)

67 xlabel(’QW lattice site’,’FontSize’,14)

68 title([’Quantum walk probability distribution’],’FontSize’,24)

69 set(gcf ,’color’,’w’);

MATLAB code used for eigenvalues of quantum walk unitary matrix.

1 %Author Shuto Osawa

2 clear all
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3 close all

4

5 ln =100

6 SC = zeros(ln*2);

7 theta = pi/8

8 theta2 = pi/8

9 input = zeros(ln*2,1)

10 input(ln) = 1

11 bar(input)

12 for i = 1:ln

13 Z = zeros(1,ln);

14 Z(i) = 1;

15

16 if i+1 > ln

17 Zp = zeros(1,ln);

18 Zp(1) = 1;

19 else

20 Zp = zeros(1,ln);

21 Zp(i+1) = 1;

22 end

23 if i-1 == 0

24 Zm = zeros(1,ln);

25 Zm(ln) = 1;

26 else

27 Zm = zeros(1,ln);

28 Zm(i-1) = 1;

29 end

30 if i <= ln/2

31 mat1 = [cos(theta) sin(theta); 0 0];

32 mat2 = [0 0 ;sin(theta) -cos(theta)];

33 else

34 mat1 = [cos(theta2) sin(theta2); 0 0];

35 mat2 = [0 0 ;sin(theta2) -cos(theta2)];

36 end

37 SC = SC+kron(kron(Zp’,Z),mat1)+kron(kron(Zm’,Z),mat2);

38 end

39 [V,D] = eig(SC);

40 e = diag(D);

41 e.*conj(e);

42 figure(1)

43 set(gcf ,’color’,’w’);

44 set(gcf , ’Position’, [400, 400, 450, 400])
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45 %subplot(1,2,1)

46 plot(exp(1i*pi/2)*e,’.’,’MarkerSize’,10)

47 hold on

48 %plot(exp(1i*pi/2)*1i,’xr’,’MarkerSize ’,10)

49 hold on

50 %plot(-exp(1i*pi/2)*1i,’xr’,’MarkerSize ’,10)

51 title([’Eigenvalue distribution’],’Fontsize’,16)

52 xlabel(’Real’)

53 ylabel(’Imaginary’)

54 xlim([-1.2 1.2])

55 ylim([-1.2 1.2])

MATLAB code used for probability distribution based on topological quantum walks.

1 %Author Shuto Osawa

2 clear all

3 close all

4

5 rep = 51

6 ln = 100;

7

8

9 probplot = zeros(rep);

10 probc = zeros(rep);

11

12 ref = 1

13 for l = 1:rep

14 for m = 1:rep

15

16 SC1 = zeros(ln*2);

17

18 theta1l = 2*pi*(l-1)/(rep -1);

19 theta1r = 2*pi*(m-1)/(rep -1);

20

21 input = zeros(ln*2,1);

22 input(ln+ln/2) = 1;

23

24 for i = 1:ln

25

26 Z = zeros(1,ln);

27 Z(i) = 1;

28

29 if i+1 > ln
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30 Zp = zeros(1,ln);

31 Zp(1) = 1;

32 else

33 Zp = zeros(1,ln);

34 Zp(i+1) = 1;

35 end

36 if i-1 == 0

37 Zm = zeros(1,ln);

38 Zm(ln) = 1;

39 else

40 Zm = zeros(1,ln);

41 Zm(i-1) = 1;

42 end

43 if i <= ln/2

44 mat1 = [cos(theta1l) sin(theta1l); 0 0];

45 mat2 = [0 0 ;sin(theta1l) -cos(theta1l)];

46 else

47 mat1 = [cos(theta1r) sin(theta1r); 0 0];

48 mat2 = [0 0 ;sin(theta1r) -cos(theta1r)];

49 end

50 SC1 = SC1+kron(kron(Zp’,Z),mat1)+kron(kron(Zm’,Z),mat2);

51

52 end

53

54 ln2 = 1001;

55 array = [];

56

57 QW = (SC1^(ln2 -1))*input;

58 QWP = abs(QW.*conj(QW));

59 odd = QWP(1:2:end);

60 even = QWP(2:2:end -1);

61 even = [0; even];

62 fin = odd+even;

63

64 probr = sum(fin(ln/2+1:end));

65 probl = sum(fin(1:ln/2));

66

67

68 probplot(l,m) = probr;

69 probc(l,m) = fin(ln/2);

70

71 ref = ref+1;
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72 waitbar(ref/(rep*rep))

73 end

74 end

75

76 figure(1)

77 imagesc(linspace(0,2*pi,rep),linspace(0,2*pi,rep),probplot)

78 set(gcf ,’color’,’w’)

79 xlabel(’\theta_R’,’FontSize’,14)

80 ylabel(’\theta_L’,’FontSize’,14)

81

82 title([’Remaining probability distribution’],’FontSize’,16)

83 hold on

84 line([0,2*pi], [pi,pi], ’Color’, ’r’,’LineWidth’,2);

85 hold on

86 line( [pi,pi],[0,2*pi], ’Color’, ’r’,’LineWidth’,2);

87 colorbar
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entanglements from two entangled pairs. Physical Review Letters, 78(16):3031.

Zhan, X., Qin, H., Bian, Z., Li, J., and Xue, P. (2014). Perfect state transfer and effi-
cient quantum routing: A discrete-time quantum-walk approach. Physical Review A,
90(1):012331.

Zhang, J.-G., Sharma, A., Ni, Y.-D., and Li, Z. (2000). Investigation into network ar-
chitecture and modulation scheme for mil-std-1773 optical fiber data buses. Aircraft
Engineering and Aerospace Technology, 72(2):126–137.



185

Zhang, P., Ren, X.-F., Zou, X.-B., Liu, B.-H., Huang, Y.-F., and Guo, G.-C. (2007). Demon-
stration of one-dimensional quantum random walks using orbital angular momentum of
photons. Physical Review A, 75(5):052310.

Zhang, Y., Roux, F. S., Konrad, T., Agnew, M., Leach, J., and Forbes, A. (2016). Engineer-
ing two-photon high-dimensional states through quantum interference. Science Advances,
2(2):e1501165.

Zhao, Z., Du, J., Li, H., Yang, T., Chen, Z.-B., and Pan, J.-W. (2002). Implement quantum
random walks with linear optics elements. arXiv preprint quant-ph/0212149.

Zhong, H.-S., Li, Y., Li, W., Peng, L.-C., Su, Z.-E., Hu, Y., He, Y.-M., Ding, X., Zhang, W.,
Li, H., et al. (2018). 12-photon entanglement and scalable scattershot boson sampling
with optimal entangled-photon pairs from parametric down-conversion. Physical Review
Letters, 121(25):250505.
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