
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2021

True shared memory architecture
for next-generation multi-GPU
systems

https://hdl.handle.net/2144/42590
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

TRUE SHARED MEMORY ARCHITECTURE FOR

NEXT-GENERATION MULTI-GPU SYSTEMS

by

MD SAIFUL AREFIN MOJUMDER

B.Sc., Bangladesh University of Engineering & Technology, 2013
M.Sc., Bangladesh University of Engineering & Technology, 2015

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2021

© 2021 by
MD SAIFUL AREFIN MOJUMDER
All rights reserved

Approved by

First Reader

Ajay Joshi, Ph.D.
Associate Professor of Electrical and Computer Engineering

Second Reader

Martin Herbordt, Ph.D.
Professor of Electrical and Computer Engineering

Third Reader

Tali Moreshet, Ph.D.
Senior Lecturer and Research Assistant Professor of Electrical and
Computer Engineering

Fourth Reader

David R. Kaeli, Ph.D.
Distinguished Professor of Electrical and Computer Engineering
Northeastern University

Acknowledgments

First, I would like to express my sincere gratitude to my PhD adviser, Prof. Ajay Joshi,

for his tireless support and encouragement throughout the course of the PhD program.

During the ups and downs of the PhD life, Prof. Joshi was a constant source of guidance

and assistance in enhancing my research endeavours and skills. Over the years, I have

enjoyed working with and learning from him. Undoubtedly, this thesis would not have

been complete without him.

I would like to thank my collaborators, Prof. David Kaeli, Prof. John Kim, Prof.

José L. Abellán, Amir Kavyan Ziabari, Yifan Sun, and Trinayan Baruah for their sincere

support, assistance and guidance throughout my PhD work. I learnt how to think about big

picture and focus on solving problems from Prof. Kaeli. Prof. Kim provided the access

to the multi-GPU system that we extensively used throughout this work. José’s persistent

scrutiny of my work always kept me on the right track and I learned the fact that “no detail

is too small in research” from him. Amir helped me ramp up in research during the early

stage of my PhD. I particularly enjoyed and learnt a lot working with Yifan Sun who was

always there to help.

I want to thank the rest of my thesis committee memebers, Prof. Martin Herbordt

and Prof. Tali Moreshet, for their precious time and insightful feedback. Additionally, I

learnt the basics of computer architecture from the course taught by Prof. Moreshet, while

the valuable lesson I learnt from the ‘High Performance Programming with Multicore and

GPUs’ taught by Prof. Herbordt helped me design experiments for my research.

Many thanks to my labmates, Yenai Ma, Leila Delshadtehrani, Marcia Sahaya Luis and

Furkan Eris at Boston University. I would also like to thank all the members of the ICSG

research lab, the PEAC Lab research group, and the CAAD research group.

Finally, I want to express my gratitude to my parents for their endless love, uncondi-

tional support and incessant encouragement throughout my life. In particular, my mother

iv

has been the constant source of inspiration for all the achievements in my life. I want to

specially thank my wife, Tasmiah Nuzhath, who stood by me during this uncertain journey

and was a persistent source of support and encouragement.

v

TRUE SHARED MEMORY ARCHITECTURE FOR

NEXT-GENERATION MULTI-GPU SYSTEMS

MD SAIFUL AREFIN MOJUMDER

Boston University, College of Engineering, 2021

Major Professor: Ajay Joshi, PhD
Associate Professor of Electrical and Computer
Engineering

ABSTRACT

Machine learning (ML) is now omnipresent in all spheres of life. The use of deep neu-

ral networks (DNNs) for ML has gained popularity over the past few years. This is because

DNNs are capable of efficiently solving complex problems such as image processing, ob-

ject detection, language processing, etc. To train these DNN workloads, graphics process-

ing units (GPUs) have become the most widely used platform. A GPU can support a large

number of parallel threads that execute simultaneously to achieve a very high throughput.

However, as the sizes of the DNN workloads grow, a single GPU is no longer adequate to

provide fast training, and developers resort to using multi-GPU (MGPU) systems that can

reduce the training time significantly. Consequently, to keep pace with the growth of DNN

applications, GPU vendors are actively developing novel and efficient MGPU systems.

To better understand the challenges associated with designing MGPU systems for

DNN workloads, in this thesis, we first present our efforts to understand the behavior of

the DNN workloads, in particular, the training of DNN workloads on MGPU systems.

Using the DNN workloads as benchmarks, we observe the evolution of MGPU system

architecture. Based on our profiling and characterization of DNN workloads on exist-

vi

ing high-performance MGPU systems, we identify the computation- and communication-

intensiveness of the DNN workloads and the hardware- and software-level inefficiencies

present in the existing MGPU systems. We find that the data movement across multiple

GPUs and high remote data access cost leading to NUMA effects, data duplication, and

inefficient use of GPU memory leading to memory capacity issues, and the complexity

in programming MGPUs pose serious limitations in the execution of ever-scaling DNN

workloads on MGPU systems.

To overcome the limitations of existing MGPU systems, we propose to unify the main

memory of GPUs to design an MGPU system with true shared memory (MGPU-TSM).

Our proposed MGPU-TSM system demonstrates a significant performance boost (3.8⇥

for a 4 GPU system) over the best-performing existing MGPU system. This is because

MGPU-TSM system eliminates the NUMA effects and the necessity for data duplication.

To provide seamless data sharing across multiple GPUs and ease programming of MGPU-

TSM, we propose a light-weight coherence protocol called MGCC. MGCC is a timestamp-

based protocol that provides both intra- and inter-GPU coherence. We implement a number

of hardware features including unified memory controller, request tracker and timestamp

storage unit to support MGCC. Using both standard and synthetic stress benchmarks, we

evaluate the MGPU-TSM system with MGCC leveraging sequential as well as relaxed

consistency. Our evaluation of a 4-GPU system using MGPUSim simulator suggests that

our proposed coherent MGPU system achieves up to 3.8⇥ improved performance than

current best-performing MGPU system while the stress tests performed using synthetic

benchmarks suggests that MGCC leads to up to 46.1% performance overhead.

vii

Contents

1 Introduction 1

1.1 A Brief History of GPUs . 1

1.2 Background . 3

1.2.1 Deep Learning using MGPU Systems 4

1.2.2 MGPU System Architecture . 7

1.2.3 Remote Memory Access Mechanisms in an MGPU System 9

1.2.4 Coherence and Consistency in GPU and MGPU Systems 11

1.3 Challenges in Existing MGPU Systems 14

1.3.1 DNN Training on MGPU Systems 14

1.3.2 RDMA Access Cost . 17

1.4 Thesis Contributions . 18

1.4.1 DNN Workload Characterization on MGPU Systems 19

1.4.2 MGPU Systems with True Shared Memory 21

1.4.3 Coherence in MGPU-TSM . 21

1.5 Related Work . 23

1.5.1 DNN Workload Characterization on MGPU Systems 23

1.5.2 NUMA Effects in MGPU System 24

1.5.3 MGPU Memory System and Coherence 25

1.6 Organization . 27

2 DNN Workload Characterization on Existing MGPU Systems 29

2.1 Workload Characterization on Pre-Volta MGPU Systems 29

viii

2.1.1 DNNs . 30

2.1.2 Evaluation Methodology . 36

2.1.3 Evaluation Results . 38

2.1.4 Summary . 45

2.2 Workload Characterization on DGX-1 Volta MGPU Systems 46

2.2.1 Evaluation Methodology . 47

2.2.2 Evaluation Results . 50

2.2.3 NCCL Overhead . 55

2.2.4 Training Time Breakdown . 57

2.2.5 Memory Usage Analysis . 60

2.2.6 Weak Scaling . 63

2.2.7 Accelerating Training of DNNs 64

2.2.8 Summary . 65

2.3 Evaluation of MGPU Systems Using Synthetic Workloads 66

2.3.1 Synthetic Workloads . 67

2.3.2 Evaluation Results Using Synthetic Workloads 70

3 True Shared Memory for MGPU System 73

3.1 MGPU-TSM Architecture . 73

3.2 Evaluation Methodology . 76

3.2.1 MGPU System Configurations . 76

3.2.2 Simulation Platform . 77

3.2.3 Standard Application Benchmarks 77

3.3 Evaluation Results . 78

3.4 Thermal Feasibility of MGPU-TSM . 80

3.5 Summary . 81

ix

4 Coherence in MGPU-TSM 83

4.1 Timestamp-Based Coherence in a Single GPU System 83

4.1.1 Applicability of G-TSC Protocol in MGPU System 85

4.2 MGCC Protocol for Coherence in MGPU-TSM 86

4.2.1 Read Operations . 86

4.2.2 Write Operations . 88

4.2.3 Intra-GPU Coherence . 90

4.2.4 Inter-GPU Coherence . 92

4.2.5 Request Tracker Operation . 93

4.2.6 TSU Implementation . 93

4.2.7 Timestamp Design . 95

4.3 Evaluation Methodology . 96

4.3.1 MGPU System Configurations . 96

4.3.2 Simulation Platform . 97

4.3.3 Synthetic Benchmarks . 97

4.4 Evaluation . 100

4.4.1 Standard Application Benchmarks 100

4.4.2 Xtreme Benchmarks . 106

4.5 Summary . 111

5 Summary and Future Work 112

5.1 Summary of the thesis . 112

5.2 Future Directions . 114

5.2.1 Workload Characterization and Benchmarking 114

5.2.2 MGPU System Design . 115

References 117

Curriculum Vitae 130

x

List of Tables

1.1 Comparison of different communication mechanisms in existing MGPU

systems. We compare the main memory usage and programmability of

each mechanism w.r.t. P2P memcpy (baseline for comparison represented

by ’–’), and remote memory (RM) access latency and bandwidth w.r.t. local

main memory access latency and bandwidth. ‘7’, ‘X’, and ‘XX’ indicate

‘no’, ‘fair’ , and ‘good’, respectively. 10

2.1 Shape parameters of a CONV/FC layer . 33

2.2 MGPU Systems evaluated in this work. 37

2.3 Specifications of the CNN Networks used in this Work. More details about

the CNN workloads can be found in Section 2.2.1. 38

2.4 Profiling results for different workloads on 1 and 2 GPUs in Kepler, Titan

and DGX-1 MGPU systems . 42

2.5 Evaluation results for different CNN workloads using 2 GPUs of the

MGPU systems . 43

2.6 Scaling in DGX-1 MGPU system for different CNN workloads1. 45

2.7 Description of the networks. (Conv = Convolution, Incep = Inception, and

FC = Fully Connected) . 49

2.8 NCCL overhead compared to P2P for the workloads executed on a single

GPU. 56

2.9 cudaStreamSynchronize API overhead for training LeNet with a batch

size of 16, 32 and 64 using 1, 2, 4 and 8 GPUs. 59

xi

2.10 Memory usage when using the NCCL-based communication method dur-

ing the pre-training stage and the training stage of DNNs when using 4

GPUs. The memory usage of all GPUs is the same for the pre-training

stage. GPUz refers to the memory usage of a GPU during the pre-training,

where z can take any value from 0 to 3. GPU0 refers to the memory usage

of the GPU0 during training while GPUx refers to memory usage of the

remaining GPUs, where x can take any value from 1 to 3. 61

3.1 GPU Architecture. 77

3.2 Application benchmark suite used for evaluation. Memory represents the

footprint of the GPU memory required by a benchmark. 78

3.3 RDMA and DRAM transaction counts for MGPU-RDMA, per 100M instructions. 80

3.4 MGPU-TSM components obtained from publicly available product speci-

fications. 80

4.1 Terminologies and definitions . 84

xii

List of Figures

1·1 The timeline of an epoch during MGPU DNN training using the data-

parallelism approach with synchronous SGD. FP, BP, AVG, and AG repre-

sent forward propagation, backward propagation, averaging, and add gra-

dients, respectively. (This figure is not drawn to scale.) 6

1·2 Conventional MGPU system. Switch (SW) handles the remote access re-

quests from one GPU to another GPU. PCIe or NVLink is used as the

off-chip link. 8

1·3 Runtime of SGEMM kernel from cuBLAS library for different matrix sizes.

Each bar corresponds to a different distribution of local and remote mem-

ory accesses. 18

2·1 Artificial Neural Networks commonly used in Deep Learning. (a) Multi

Layer Perceptron (MLP). (b) Convolutional Neural Network (CNN):

AlexNet (Krizhevsky et al., 2012). CONV = Convolutional layer, MP =

Max-Pooling layer, and FC = Fully-Connected Layer. (c) Recurrent Neu-

ral Network (RNN) with sparsely-connected neurons. 31

2·2 Effect of changing batch size for MNIST dataset for training in a 3-layer-

MLP and LeNet network using 2 GPUs of the Kepler, Titan and DGX-1

system. 40

2·3 Network Topology in a DGX-1 System. 48

xiii

2·4 Training time per epoch for 5 different workloads on the Volta-based DGX-

1 system using the P2P and the NCCL-based communication. Each bar

represents the mean training time of 5 repetitions. The standard deviation

is shown by the black line on top of each bar. 51

2·5 Breakdown of training time into computation (FP stage and BP stage) time

and communication (WU stage) time. The X-axis represents (GPU count,

Batch Size). 57

2·6 Weak scaling evaluation for the 5 workloads. The height of the ‘entire bar’

represents the total time per epoch for training with 256k, 512k, 1024k and,

2048k images using 1, 2, 4 and, 8 GPUs, respectively. The height of the

‘hatched bar’ represents the average time to train with 256k images. This

facilitates the comparison between the training time for weak scaling with

that for strong scaling. 63

2·7 Distribution of input data and weights for synthetic workload representing

(a) baseline P2P memcpy, (b) zerocopy, (c) unified virtual memory for gra-

dient synchronization, (d) our proposed true shared memory model and, (e)

implementation of our true shared memory model to improve performance

of DL workloads . 68

2·8 Performance comparison of different data transfer mechanisms among the

three MGPU systems (2 GPUs of each system) using synthetic workloads

that mimic (a) MNIST dataset (b) Cifar10 dataset (c) ImageNet dataset with

MLP network. 70

3·1 (a) Conventional MGPU system vs. (b) MGPU-TSM. 74

3·2 A high-level representation of our MGPU-TSM architecture (left). The

description of the TSU is provided in Section 4.2.6. 75

3·3 Speedup of our MGPU-TSM system w.r.t. a MGPU-RDMA system. 79

xiv

3·4 Thermal map for an MGPU-TSM system with 4GPUs, 1 CPU and 4 HBM

stacks on an interposer (50mm ⇥ 50mm) using 2.5D integration technology. 82

4·1 Transactions between (a) a CU and an L1$ for read operations, (b) an L1$

and an L2$ for read operations, (c) an L2$ and the MM for read operations,

(d) a CU and an L1$ for write operations, (e) an L1$ and an L2$ for write

operations, and (f) an L2$ and the MM for write operations. 87

4·2 The timeline for (a) the intra- and (b) inter-GPU coherence. [] represents

response traffic in [Data, wts, rts] or [Data] format, {} represents the

updated cts of a cache. In (a), the two L2$ instances refer to the same

physical L2$. 90

4·3 Time Stamp Unit (TSU). The TSU operates independently and in parallel

with the memory access. 94

4·4 Comparison across different MGPU-TSM configurations. The results are

normalized w.r.t. the TSM-WB-NC-RC . 101

4·5 Comparison of MGPU-TSM with MGCC to the state-of-the-art MGPU

with HMG. Figure shows the speedup of HMG w.r.t. TSM-WT-C-RC 104

4·6 Study of bandwidth sensitivity of MGPU-TSM with 4 GPUs for different

system bandwidth ranging from 128GB/s to 4096GB/s in the case of RC

(a) and SC (b) . 104

4·7 Scalability of coherent MGPU-TSM configurations. The results are nor-

malized w.r.t. coherent MGPU-TSM with 4 GPUs. 105

4·8 Evaluation of MGPU-TSM configurations using Xtreme1 benchmarks for

different vector sizes per GPU. 108

4·9 Evaluation of MGPU-TSM configurations using Xtreme2 benchmarks for

different vector sizes per GPU. 109

xv

4·10 Evaluation of MGPU-TSM configurations using Xtreme3 benchmarks for

different vector sizes per GPU. 109

4·11 Timestamp sensitivity for a vector size of 384KB. The runtime is normal-

ized w.r.t. the TSM-WT-NC-C. {wts,rts} refers to {WrLease,RdLease} 110

xvi

List of Abbreviations

AWS Amazon Web Services
BP Backward Propagation
CPU Central Processing Unit
CU Compute Unit
DL Deep Learning
DNN Deep Neural Network
DtoH Device-to-Host
FP Forward Propagation
GPU Graphics Processing Unit
HtoD Host-to-Device
MC Memory Controller
MCM Multi-Chip Module
ME Metric Evaluation
Memcpy Memory copy
MGCC Multi-GPU Cache Coherence
MGPU Multiple Graphics Processing Units
ML Machine Learning
P2P Peer-to-Peer
SGD Stochastic Gradient Descent
SM Streaming Multiprocessor
SWMR Single-Writer-Multiple-Reader
TSM True Shared Memory
TSU Timestamp Storage Unit
UM Unified Memory
WU Weight Update

xvii

1

Chapter 1

Introduction

1.1 A Brief History of GPUs

Graphics Processing Units (GPUs) have been used in computing systems for more than

four decades. GPUs were first used in 1978 (Booth et al., 1985) to accelerate video pro-

cessing. At the beginning, GPUs (although not officially called GPU) targeted the gaming

applications. Among the early versions of GPU, the IBM Professional Graphics Controller

(PGA) was launched in the market in 1984 and it took over the video processing tasks from

the central processing unit (CPU) (James, 1987), (McClanahan, 2010). With the introduc-

tion of OpenGL in 1989, Silicon Graphics Inc. (SGI) pioneered the development of the

graphics pipeline (Crow, 2004). The graphics cards released by SGI were mostly limited to

the workstations, and graphics hardware vendors such as 3DFX, NVIDIA, ATI, and Matrox

took the opportunity to market the consumer 3D graphics accelerators in the 1990s (Mc-

Clanahan, 2010). The adoption of the GPU hardware started growing with the release of

games such as Quake and Doom that relied on these graphics boards (McClanahan, 2010).

The first true GPU was released by NVIDIA in 1999 (GeForce256) (Dietrich, 1999) and

ATI released its first true GPU in 2000 (Radeon 7500) (Crayton et al., 2004). With the in-

troduction of these two GPUs, the gaming industry started to surge. NVIDIA took the big

step of making GPU pipeline programmable in 2001 (Crow, 2004). With the introduction

of CUDA (Kirk et al., 2007) and OPENCL (Munshi, 2009), programming GPUs became

easier.

Although initially GPUs were developed to accelerate 3D image processing for gaming

2

applications (Blythe, 2008), over time both academia and industry started using GPUs for

general purpose computing (Booth et al., 1985), (Mišić et al., 2012). GPUs started to bene-

fit a wide variety of applications, including image processing (Viola et al., 2003), (Strzodka

et al., 2003), signal processing (Manocha, 2003), (Govindaraju et al., 2006), computer vi-

sion (Fung et al., 2002), (Woetzel and Koch, 2004), oil and gas exploration (Lin and Hall,

2007), (Deschizeaux and Blanc, 2007), linear algebra (Hoff III et al., 2001), (Bolz et al.,

2003) physics (Zeller, 2005), (Hagen et al., 2006), chemistry (Harris et al., 2002), (Kim

and Lin, 2003), databases and data mining (Govindaraju et al., 2005), (Govindaraju et al.,

2005), biomedical applications (Tran et al., 2004), (Cates et al., 2004), and life sci-

ences (Mosegaard and Sorensen, 2005), (Li et al., 2007). Nowadays, GPUs are ubiq-

uitous and are extensively used in almost every computation domain, especially after

the widespread adoption of machine learning (ML). Although ML applications leveraged

GPUs in the late 1990s (Zheng and Pekhimenko, 1997), the introduction of high-level

frameworks such as Caffe (Jia et al., 2014) and MXNet (Chen et al., 2015a) has enabled

users from different application domains to use GPUs for training computation-intensive

ML applications. To support the growth of ML applications, GPU vendors have intro-

duced several innovations in the GPU architecture, designed powerful GPU systems such

as NVIDIA DGX-1 (NVIDIA, 2016), NVIDIA DGX-2 (Choquette and Gandhi, 2020),

AMD MI100 (AMD, 2020), etc. as well as developed highly optimized software li-

braries (NVIDIA, 2018; NVIDIA, 2008) and runtime support to ease programming the

GPUs.

Both industry and academia commonly used single-GPU systems up until 2004. A typ-

ical single GPU has thousands of parallel threads that run concurrently to achieve very high

throughput. However, die size restricts the number of parallel computing cores known as

compute units (CUs)1 or streaming multiprocessors (SMs) in a single GPU (Arunkumar

et al., 2017). With the continued growth of applications that demand extremely high com-
1Throughout this manuscript, we use CU to refer to compute cores

3

puting resources, the compute resources of a single GPU were no longer adequate. This led

to the design and adoption of Multiple Graphics Processing Unit (MGPU) systems. Today,

MGPU systems have become the platform of choice for accelerating a variety of applica-

tions, including ML (Chen et al., 2015b), (Al-Rfou et al., 2016), (Abadi et al., 2016),

(Paszke et al., 2019), (Jia et al., 2014), (Tokui et al., 2015), graph applications (Che

et al., 2013), (Xu et al., 2014), (Shi et al., 2019), (Wang et al., 2019), medical appli-

cations (Valero-Lara, 2014), (Saikia and Kanhirodan, 2014), (Zhu et al., 2019) and large-

scale simulations (Zhu et al., 2018), (Yamazaki et al., 2014), (Zhang et al., 2018). Hence,

MGPU systems have become an integral part of online services such as Amazon Web

Services (AWS) (Amazon, 2015), Microsoft Azure (Copeland et al., 2015), and Google

Cloud (Krishnan and Gonzalez, 2015).

In fact, MGPU systems have enabled researchers from different domains to solve com-

plex, large and time-consuming problems that were previously impossible due to lack of

computing resources. For instance, Goyal et al. (Goyal et al., 2017) trained ResNet-50

in 1 hour using 256 GPUs, which would have otherwise taken more than a week using a

single GPU and months using high-end CPUs. As a result, there have been tremendous ef-

forts from both industry and academia to improve the MGPU system design so that MGPU

systems can continue to help solve the continually growing complex applications.

1.2 Background

In this thesis, we present our work on the profiling of ML applications on MGPU systems,

hardware and software design choices that limit the performance of MGPU systems while

running the ML applications, and our novel memory system and associated coherence poli-

cies that improve the MGPU system design. To better understand our novel contributions

to the field of MGPU systems, here we provide a background on running deep learning

(DL) workloads on MGPU systems and MGPU system architecture.

4

1.2.1 Deep Learning using MGPU Systems

DL is a branch of ML that has become increasingly popular for solving complex data-

intensive problems. Deep Neural Network (DNN) model, a type of DL model, is commonly

used today in a number of application domains. To maximize the potential of the DNN

models, we need to train them carefully. Both single-GPU and MGPU systems are used

for training DNNs (Jia et al., 2014). In this section, we provide an overview of DNNs, the

process of training DNNs using MGPU systems and the associated challenges.

DNN and its Training Process

A DNN has multiple layers of neurons. Neurons in a layer are connected to the neighboring

layers by weighted edges. Each layer applies a set of mathematical operations, such as dot-

product, convolution, max-pooling or sigmoid to the layer’s inputs. A DNN can be trained

to classify input data samples with high accuracy. Training a DNN is an iterative process

of updating the parameters (weights) of each layer. The iterative process consists of the

following stages in each iteration:

1. Forward Propagation (FP)

2. Backward Propagation (BP)

3. Weight Update (WU)

4. Metric Evaluation (ME)

In FP, each layer performs a set of linear and non-linear operations using a set of weight

parameters (randomly initialized in the beginning, but updated during each BP step in the

training process) on the input data. The common type of layers in a model include: the

convolution layers, the fully connected layers, and the activation layers. The observed

output is then compared with the expected output. The difference between the two is then

5

fed back into the network, from the last layer back to the first layer. This is the BP stage.

The outputs of the BP stage are the local gradients of the network parameters, suggesting

how each parameter should change its value to reduce the difference between observed

and expected output, i.e., improve neural network classification accuracy. After a complete

backward pass, the gradients are used to update the weights during the WU stage. This

process of updating weights using gradients is based on the Stochastic Gradient Descent

(SGD) algorithm. During the ME stage, performance metrics such as training accuracy are

calculated. This is performed for each batch of data. Since our evaluation only focuses on

performance rather than algorithm efficiency and the ME stage only adds a fixed amount

of execution time, we do not include the ME stage in our study.

The FP, BP, and WU stages are repeated multiple times until the output error rate is less

than a desired value. For DNNs with large training datasets it is expensive to update the

weights after performing FP and BP for each input-output pair of the whole training set.

Hence, training data is randomly sampled into mini-batches. All inputs within a mini-batch

go through the FP and BP stages. The gradients are accumulated for all input-output pairs

within a mini-batch and WU is performed only once.

MGPU DNN Training

MGPU systems enable faster DNN training compared to single-GPU systems because the

training is distributed and parallelized across multiple GPUs. In this work, we do not dive

deep into how the DNN training algorithm works. We focus on how the training data is

managed and moved in a typical DNN training process. Although the exact stages of the

training process differ from framework to framework, the overall approach is the same.

The timeline for training DNNs using the synchronous SGD algorithm with four GPUs is

shown in Figure 1·1. When the algorithm starts, the CPU randomly generates the internal

parameters of the network model (not shown in Figure 1·1, as this is a one time process).

The network model is broadcasted to all the GPUs. The CPU also loads k mini-batches

6

CPU

GPU 0

GPU 1

GPU 2

FP

FP

FP

BP

BP

GPU 3

BP

FP BP

AVG

AVG

AVG AG

FP

Time

BP

Sending
Training Data

Sending
Gradient Data

WU

Figure 1·1: The timeline of an epoch during MGPU DNN training using
the data-parallelism approach with synchronous SGD. FP, BP, AVG, and
AG represent forward propagation, backward propagation, averaging, and
add gradients, respectively. (This figure is not drawn to scale.)

of the training data, where k equals to the number of GPUs in the system, and sends one

mini-batch to each GPU (see the left-most arrows in the figure). All the GPUs perform FP

and BP to calculate the gradients. The size of the gradient data should be approximately

equal to the size of data in the neural network model (Glorot and Bengio, 2010).

The gradients calculated by each GPU is not the same and we need to calculate the

average gradient. The average is calculated with a reduction approach. For example, if

four GPUs are used, the gradients calculated by GPU1 will be moved to GPU0 and GPU0

takes the average of the gradients from GPU0 and GPU1. Simultaneously, GPU2 collects

the gradients from GPU3 and calculates the average. Finally, GPU0 collects the averaged

result from GPU2 and then calculates the average. GPU0 updates the neural network data

with averaged gradients and then, it broadcasts the updated network model to the remaining

three GPUs. Once all the GPUs have the next mini-batch of the training set sent from

the CPU, the next iteration will start. The process is repeated for a specific number of

7

epochs.2 Here, the number of epochs depends on the desired accuracy of training and

convergence of the training algorithm. Today, a large number of deep learning frameworks,

including Caffe (Jia et al., 2014), CNTK (Yu et al., 2014), TensorFlow (Abadi et al., 2016),

Torch (Collobert et al., 2011), MXNet (Chen et al., 2015a), Pytorch (Paszke et al., 2019),

and Theano (Al-Rfou et al., 2016), use GPUs to reduce the training time of DNNs.

1.2.2 MGPU System Architecture

Over the past few years, NVIDIA and AMD, the two major GPU vendors, have intro-

duced a number of high performance MGPU systems such as NVIDIA Pascal-based DGX-

1 (Foley and Danskin, 2017), NVIDIA Volta-based DGX-1 (NVIDIA, 2017), NVIDIA

Volta-based DGX-2 (NVIDIA, 2018a), NVIDIA Ampere-based DGX-2 (Choquette and

Gandhi, 2020), and AMD MI100 (AMD, 2020). These MGPU systems primarily target

the ML domain. To support the ML workloads, GPU vendors have integrated a num-

ber novel hardware and software features in these MGPU systems. The noteworthy hard-

ware features include NVLink interconnect (Foley and Danskin, 2017) and AMD Infinity

Fabric Link (AMD, 2020) to accelerate data transfers across GPUs, and dedicated tensor

cores (Markidis et al., 2018) and matrix cores (AMD, 2020) for fast and efficient matrix-

related computations. On the software side, GPU vendors have introduced variety of soft-

ware libraries including NCCL (NCCL, 2018), RCCL (AMD, 2021) cuDNN (NVIDIA,

2018), and cuBLAS (NVIDIA, 2008).

Figure 1·2 is representative of existing MGPU systems (Young et al., 2018; Milic et al.,

2017). In this example MGPU system, there are 4 GPUs, where each GPU has 64 CUs

in this example. Each CU has its own private L1$. L2$ is distributed and has multiple (8

in this example) banks. It is shared across all the CUs. The L1$s and the L2$ banks are

connected via a network (a Xbar in this example). There is a memory controller connected
2An epoch is a complete pass through all the data in the training dataset. Each epoch involves processing

of multiple mini-batches of data.

8

CU CU CU CU

L2

Xbar

Main Memory

CU CU CU CU

L2

Xbar

CU CU CU CU

L2

Xbar

CU CU CU CU

L2

Xbar

Off-chip Link
SW

SW

SW

SW

GPU0 GPU1

GPU2

L1 L1 L1 L1 L1 L1 L1 L1

L1 L1 L1 L1 L1 L1 L1 L1

GPU3

Main Memory

Main Memory Main Memory

Figure 1·2: Conventional MGPU system. Switch (SW) handles the remote
access requests from one GPU to another GPU. PCIe or NVLink is used as
the off-chip link.

with each L2$ bank and the memory controller serves the requests it receives from L2$ to

read or write the data from main memory.

Thus, we have a total of 8 memory controllers in this example. Each GPU has its own

native memory (8 GB for each GPU in this example). Hence, each memory controller

controls 1 GB of main memory. The L2$ banks and the main memory of a GPU are con-

nected using high bandwidth and low-latency connections. Each GPU in the MGPU sys-

tem can access the other GPUs’ memory through low-bandwidth high-latency links (PCIe

or NVLink) by means of Remote Direct Memory Access (RDMA). These off-chip links

have 5⇥ to 20⇥ lower bandwidth (for transferring data between GPUs, and between CPU

and GPU) than the bandwidth of the links used for accessing local main memory of a

GPU (Young et al., 2018), (Buono et al., 2017). When the CU of a GPU requests data that

resides on a remote GPU, the request goes to its remote direct memory access (RDMA)

9

engine via the L1$ of the CU. This RDMA engine communicates with the RDMA engine

residing on the remote GPU. The remote RDMA engine routes the request to the L2$ and

then to main memory (if data is not already in the L2$) of the remote GPU. The response

from the main memory of the remote GPU is cached in the L2$ of the remote GPU, and

then routed to the L1$ of the local GPU via the two RDMA engines (remote and then lo-

cal). Note that the CPU memory in a typical MGPU RDMA-based system is placed on the

CPU side. Hence, off-chip links are used to transfer data between CPU and the GPUs.

1.2.3 Remote Memory Access Mechanisms in an MGPU System

As mentioned before, GPUs in an MGPU system (as described in Section 1.2.2) need to

communicate with each other due to the data sharing requirements of the applications.

Hence, GPU vendors have introduced a number of mechanisms, summarized in Table 1.1,

to enable data sharing across multiple GPUs. This section briefly describes different inter-

GPU data transfer/access mechanisms and their pitfalls.

P2P Memcpy

Using the Peer-to-Peer (P2P) memcpy method, one GPU can directly copy data to/from

another GPU’s memory from/to its own memory. Hence, multiple copies of data exist in

different GPUs’ memory. The data is transferred using the RDMA engine using the off-

chip links. In case of any modification of the copied data, the programmer has to manually

update the data in all locations by copying back and forth to maintain coherence. Thus, this

method leads to programming complexity.

P2P Direct Access

Using the P2P direct access method, one GPU can directly access the data that resides on

remote GPU’s memory without copying the data in its own memory. The details about

P2P direct access using RDMA has been described in Section 1.2.2. As the same data may

10

Table 1.1: Comparison of different communication mechanisms in existing
MGPU systems. We compare the main memory usage and programmability
of each mechanism w.r.t. P2P memcpy (baseline for comparison represented
by ’–’), and remote memory (RM) access latency and bandwidth w.r.t. local
main memory access latency and bandwidth. ‘7’, ‘X’, and ‘XX’ indicate
‘no’, ‘fair’ , and ‘good’, respectively.

Method RM Access
Latency

RM Access
Bandwidth

Data
Duplication

Improves
Programmability

Improves GPU
Mem. Usage

P2P Memcpy High Low Yes – –
P2P Direct High Low Partial X X
Zerocopy Extremely

high Low No XX 7

Unified Memory Extremely
High Low No XX X

reside in local GPU’s cache as well as remote GPU’s cache and main memory, handling

data races among multiple GPUs is programmer’s responsibility as existing GPUs lack

coherence support at hardware level. However, this method allows programmer to avoid

multiple copies of data in GPUs’ memory leading to relatively easier programming.

Zerocopy

Zerocopy method does not use GPU memory. Rather, all the GPUs in the system use the

Host or CPU memory. This method addresses the memory capacity issue of GPUs. The

memory is pinned to a particular GPU and that GPU can directly access the data using PCIe

links. Caches are bypassed for this method. As a result, this method results in extremely

slow data access and may introduce serialization delays if multiple GPUs need to access

same address space.

Unified Memory

To ease the programming of MGPU systems, NVIDIA introduced unified memory which

is a software abstraction of shared main memory. With unified memory, all the physically

separate main memory of CPU and GPUs are presented as a single memory space to the

programmer. Hence, the programmer can use a single pointer from any of the devices

11

(CPU or GPU) to access a desired memory location irrespective of its physical location.

This method is facilitated by the recently introduced user transparent page fault support in

GPUs (Chien et al., 2019). If a GPU wants to access a memory location that is outside its

local memory region, a page fault occurs. The GPU runtime along with the CPU handles

the page fault and provides the required page to the GPU. However, the unified memory

is known to be inefficient in terms of performance even though it eases programmabil-

ity (Baruah et al., 2020).

1.2.4 Coherence and Consistency in GPU and MGPU Systems

Coherence is required to ensure that all the processors in a system see the same view of

memory. In case of shared data, cache coherence ensures that all the components have the

same view of shared data. On the other hand, memory consistency is a contract between the

hardware and the software. A consistency model ensures that a hardware keeps its promises

to maintain certain memory orderings that the software knows. As the CUs of a GPU share

the L2 cache and copy data to their private L1$, we need a coherence protocol to make sure

all the CUs see the same view of the shared data. The GPU and MGPU consistency model

dictates what a programmer should expect from the GPU or MGPU in terms of ordering of

memory operations when writing programs. The programmer need to provide appropriate

barriers/synchronizations accordingly to obtain the correct result from the hardware.

This section provides the overview on memory coherence and consistency, and dis-

cusses support for coherence and consistency on existing GPUs.

Coherence

Consider a system having multiple cores and the system is executing a multi-threaded ap-

plication. In this multi-threaded application execution environment, coherence mechanism

decides how updates to a single memory location are propagated. We use the single-

writer–multiple-reader (SWMR) invariant to define coherence (Nagarajan et al., 2020).

12

SMWR invariant is defined as: at a given logical time, only one core can write to a given

location and other cores can only read the same location (Nagarajan et al., 2020). The

typical responsibilities (Nagarajan et al., 2020) of a cache coherence protocol involve:

1. When a memory location is updated, the new value must be propagated to all-sharers.

This can be done in either of the two ways:

(a) Update the private copies (known as write-update)

(b) Invalidate the private copies (known as write-invalidate)

2. When a write operation is performed, the updated value must be globally visible i.e.

visible to all threads and processors

3. A write operation must be logically seen by all thread at once (known as write-

atomicity (Adve and Gharachorloo, 1996)). This can be achieved by invalidating

or updating all private copies of data before completing a write operation.

Consistency

While memory coherence dictates how updates to a single memory location are propa-

gated, the memory consistency model defines a set of allowed behaviors of multi-threaded

programs to be correctly executed in a shared memory system (Nagarajan et al., 2020). A

memory consistency model tells the programmer what to expect from a system with shared

memory. In particular, a memory consistency model specifies the valid ordering of memory

operations (i.e. read and write) to different memory locations. There are different memory

consistency models such as sequential consistency (SC), relaxed consistency (RC), total

store order (TSO) consistency, etc. According to Lamport (Lamport, 1979), a multiproces-

sor is sequentially consistent if “the result of any execution is the same as if the operations

of all processors (cores) were executed in some sequential order, and the operations of each

individual processor (core) appear in this sequence in the order specified by its program.”

13

Sequential consistency represents the most strict form of memory consistency. Relaxed

consistency models permit a multiprocessor to violate the program order of memory oper-

ations. The TSO consistency model is a form of relaxed consistency model that maintains

the ordering of store operations but supports reordering of load operations. This model is

a compromise between strict sequential consistency and an extremely relaxed consistency

model that allows all types of memory reordering. In our work, we support sequential con-

sistency model as well as the relaxed memory consistency model that allows re-ordering of

memory operations (see Section 4.3)

Coherence and Consistency in GPUs and MGPUs

Single GPU: Existing GPUs support data-race-free (DRF) weak consistency (a form of

relaxed consistency) without coherence (Alsop et al., 2016), (Singh et al., 2015). The

programming model assumes that there is no inter-thread communication during kernel

execution. Under the DRF consistency model in existing GPUs, a sequentially consistent

execution is guaranteed only if program is data-race free. Hence, to make the program

data race free the programmer must annotate all data races as synchronization operations

by using fences or atomic operations (Singh et al., 2015). The programming model also

completely relies on the programmer to take precautionary steps to manually support co-

herence if needed. There are several ways a programmer can achieve coherence manually.

First, the programmer can disable private caching of data in the L1$ and perform the co-

herence action in shared L2$. Note that modern GPUs support some accesses as coherent

accesses at the shared L2$ (Tabbakh, 2018). Bypassing L1$ and executing memory op-

eration at shared L2$ lead to additional traffic and performance degradation. Second, the

programmer can perform kernel-stopping coarse-grained synchronization to maintain co-

herence. This results in poor performance as multiple kernels need to be launched. Third,

the programmer can use atomic operation, but it does not support complex instructions.

However, all of the methods are inefficient and create additional burden on programmer

14

when programming a single GPU.

MGPU: The DRF consistency model along with lack of coherence support exacerbates

the performance issues and programming complexities in an MGPU system. The program-

mer must manually address any consistency issues in a program. To maintain coherence

across multiple GPUs, the programmer can again bypass the cache when accessing the re-

mote data and directly access the data from a remote GPU’s main memory. However, it

leads to significant latency in memory access because of the involvement of high-latency

low-bandwidth off-chip links. Another frequently used method is to manually copy data

back and forth across multiple GPUs and use kernel-stopping synchronization to main-

tain coherence. This results in inefficient use of GPU memory because of the existence of

multiple copies of the same data in different GPUs’ memory.

1.3 Challenges in Existing MGPU Systems

Data sharing across multiple GPUs during kernel execution leads to programming chal-

lenges as the programmer must choose between programmability and performance. In this

section, we examine the challenges in existing MGPU systems using the DNN training

process as an example. We highlight how different communication mechanisms trade-off

programmability for performance. Finally, we show how remote memory accesses in an

MGPU system is extremely expensive.

1.3.1 DNN Training on MGPU Systems

Training a DNN on a MGPU system introduces various challenges:

• The programmer has to explicitly distribute the data (input data and network model

data) among multiple GPUs. The programmer can either distribute the input data

onto multiple GPUs while replicating the network model in each of the GPUs (Yadan

15

et al., 2013) (referred to as data parallelism), or assign different parts of the neural

network model to distinct GPUs (referred to as model parallelism) (Yadan et al.,

2013).

• Both approaches require data to be transferred and synchronized across GPUs. The

programmer needs to carefully handle data transfer and synchronization to ensure

correctness of computations.

• The input data is fed to the GPUs as mini-batches (also called batches). Each mini-

batch consists of a certain number of unique inputs chosen by the programmer from

the dataset. The choice of mini-batch size has implications on training time, GPU

memory usage and training accuracy. Recent works (Goyal et al., 2017), (You et al.,

2017), (Smith et al., 2017) have shown that batch size can be increased without losing

accuracy.

• Although we can parallelize the computation required for training DNNs, the GPUs

still need to communicate with each other during the different phases of training.

High-end MGPU systems support different methods and libraries for communica-

tion. Depending on the size of neural networks, communication can pose signif-

icant bottlenecks. To minimize the communication time, both hardware-level (i.e.

NVLinks) and software-level (i.e. NCCL library) solutions have been introduced.

Nonetheless, the training algorithm requires more hardware-specific optimizations

to achieve the peak performance from an MGPU system.

To understand the programming complexities and inefficiencies in an MGPU system,

we use Algorithms 1, 2 and 3, where we consider three different ways a programmer can

perform the WU stage.

16

Algorithm 1: Using Memcpy⇤

Initialization: weights in CPU ;
Copy weights from CPU to GPU0 ! wGPU0 ;
Copy weights from CPU to GPU1 ! wGPU1 ;
FP+BP on GPU0 using wGPU0! gGPU0 ;
FP+BP on GPU1 using wGPU1! gGPU1 ;
Copy gGPU1 from GPU1 to GPU0 ! gGPU0Copy ;
WU on GPU0 using (gGPU0,gGPU0Copy)! wGPU0 ;
Copy wGPU0 from GPU0 to GPU1 ! wGPU1 ;

Algorithm 2: Using P2P direct access⇤

Initialization: weights in CPU ;
Copy weights from CPU to GPU0 ! wGPU ;
FP+BP on GPU0 using wGPU! gGPU0 ;
FP+BP on GPU1 using wGPU! gGPU1 ;
WU on GPU0 using (gGPU0,gGPU1)! wGPU ;

Algorithm 3: Using shared main memory⇤

Initialization: weights in CPU ;
FP+BP on GPU0 using weights! g0 ;
FP+BP on GPU1 using weights! g1 ;
WU on GPU0 using (g0, g1)! weights ;
⇤In the pseudocode, the right arrows point to destination variables of an operation.

We will assume a 2-GPU MGPU system here. Algorithm 1 shows that when using

memcpy, the programmer must maintain coherence explicitly by periodically copying data

to GPU1’s memory. Thus, there is an additional copy of data i.e. SGD (gGPU1) in GPU0’s

memory, leading to additional memory usage. Nonetheless, this mechanism can be efficient

in terms of kernel runtime because P2P memcpy can run asynchronously. Algorithm 2

shows how P2P direct access with RDMA can eliminate the data copy step, but at the

expense of accessing data using off-chip links. Still, the programmer must transfer the

data from the CPU to the GPUs. Algorithm 3 illustrates that a shared main memory could

ease programmability and eliminate explicit GPU-to-GPU or CPU-to-GPU data transfers.

Note that UM and Zerocopy solutions use Algorithm 3. UM, as proposed by NVIDIA,

17

eases programming with a software abstraction, but suffers from performance degradation

due to inefficient page-fault support and expensive remote accesses (Baruah et al., 2020).

A Zerocopy solution does not use GPU memory at all. The GPUs access pinned CPU

memory using the off-chip (PCIe) links (Negrut et al., 2014). We argue that we need a

solution which would not trade-off programmability to gain performance.

1.3.2 RDMA Access Cost

In this section, using the data access latency metric, we present the performance impact

of remote data access in an MGPU system as the previous section demonstrates the ne-

cessity of communication across multiple GPUs in the exiting MGPU systems. Here, we

run the commonly-used matrix multiplication kernel SGEMM (used in training DNNs), from

NVIDIA’s cuBLAS library (NVIDIA, 2008), on an MGPU system with V100 GPUs (com-

pute capability of 7.0). We use two GPUs connected through NVLink 2.0 (total of 50

GB/s unidirectional bandwidth). The conclusions of our analysis are broadly applicable to

systems with more than 2 GPUs that use GPU-GPU RDMA.

The computations in the SGEMM kernel consist of three matrices A, B, and C. In our

experiment, we distribute the matrices in the memory of two GPUs (GPU0 and GPU1) and

examine the performance degradation caused by different degrees of remote access (using

P2P direct access as an example) when the SGEMM is executed on GPU0. We use the aL-bR

format to represent a% local access and b% remote access for GPU0, where a and b are

integers. We evaluate the following four matrix distributions across memory:

1. Matrices A, B and C are in GPU0’s memory. This leads to 100% local access for

GPU0 (100L-0R).

2. Matrices A and B are in GPU0’s memory, and C is in GPU1’s memory (67L-33R).

3. Matrix A is in GPU0’s memory, and matrices B and C are in GPU1’s memory

(33L-67R).

18

4. Matrices A, B and C are in GPU1’s memory. This leads to 100% remote access for

GPU0 (0L-100R).

Figure 1·3 shows the runtime for the SGEMM kernel execution with different matrix sizes

for the above four matrix distributions. For smaller matrix sizes, accessing remote mem-

ory is very expensive because of the fixed remote access overhead. The runtime of SGEMM

for the 0L-100R distribution for a 4k⇥4k matrix is 27⇥ longer than that of the 100L-0R

distribution. On the other hand, the runtime of SGEMM for the 0L-100R distribution for the

32k⇥32k matrix is 12.2⇥ longer than that of the 100L-0R distribution. Here, the fixed

remote access overhead gets amortized. From these experiments, we can see the signif-

icant impact of remote accesses on performance, and in turn, argue that to improve the

performance of applications, we need to avoid remote accesses as much as possible.

4k X 4k 8k X 8k 16k X 16k 32k X 32k
0atrLx 6Lze

10

100

1000

10000

7L
m

e
(m

s)

100L-0R
67L-33R
33L-67R
0L-100R

Figure 1·3: Runtime of SGEMM kernel from cuBLAS library for different
matrix sizes. Each bar corresponds to a different distribution of local and
remote memory accesses.

1.4 Thesis Contributions

The first part of this thesis focuses on understanding the behaviour of DNN applications,

the performance limiting factors for training DNN workloads in MGPU systems and proto-

19

typing a potential solution to eradicate the performance bottlenecks. Based on the insights

gained from DNN workload characterization, we propose and evaluate a novel and efficient

MGPU system with True Shared Memory (MGPU-TSM) in the second part of the thesis.

Finally, the third part of the thesis concentrates on solving one of the major challenges, i.e.

coherence, in the proposed MGPU system. The key contributions of the thesis are provided

in the sections below.

1.4.1 DNN Workload Characterization on MGPU Systems

To understand the characteristics of emerging workloads and the performance limitations

in existing MGPU systems, we perform workload characterization on different generations

of MGPU system. We breakdown the characterization in two parts– the first part presents

workload characterization on MGPU systems prior to the launch of NVIDIA Volta-based

MGPU systems, and the second part of the workload characterization is performed on the

NVIDIA Volta-based MGPU systems.

Workload Characterization on Pre-Volta MGPU Systems

The key contributions of our workload characterization on the Pre-Volta system are as

follows:

• We evaluate three different MGPU systems (NVIDIA Kepler, Titan Z and DGX-1) using

different DNN workloads, and observe that communication among GPUs, as well as

between the CPU and GPUs, can consume up to 40.6% of the total execution time.

• We develop and use synthetic workloads to evaluate data transfer mechanisms between

two NVIDIA GPUs, and between a CPU and a GPU. This evaluation is useful for DNN

algorithm developers to find the best communication mechanism for training their algo-

rithms in existing MGPU systems.

20

• By forcing the GPUs in the MGPU system to use data from a shared main memory

space, we demonstrate that a prototype (real) MGPU system with shared main memory

improves performance for synthetic MNIST, Cifar10 and Imagenet datasets on a MLP

network by 3.7⇥, 3.2⇥ and 3.5⇥, on average, (across all three MGPU systems when us-

ing 2 GPUs) as compared to their respective baseline that uses P2P memcopy for gradient

synchronization.

Workload Characterization on DGX-1 Volta MGPU Systems

For this characterization, we profile the three stages – Forward Propagation (FP), Backward

Propagation (BP), and Weight Update (WU) of the DNN training process on a Volta-based

NVIDIA DGX-1 system with 8 GPUs. The contributions of this work include:

• We compare the impact of P2P and NCCL based communication methods on the train-

ing time of DNN workloads (LeNet, AlexNet, GoogLeNet, ResNet and Inception-v3) on

NVIDIA’s Volta-based DGX-1 system. We profile these workloads to isolate and quan-

tify the computation-intensive and the communication-intensive portion of the training

process to identify the software and hardware-level bottlenecks.

• Our evaluation shows that MGPU communication latency cannot be hidden by simply

increasing the computation-intensiveness of the workloads or compute capability of the

GPUs. We also show that only increasing the bandwidth (BW) of the interconnect net-

work in the MGPU system cannot completely eliminate the communication bottleneck.

We also need an efficient implementation by the developers/programmers of DNN work-

loads to take advantage of the high BW interconnect.

• We quantify the impact of growing network size and increasing batch size on memory

usage, and identify memory capacity to be a key limiting factor that hinders the speedup

of the training of DNNs on MGPU systems.

21

1.4.2 MGPU Systems with True Shared Memory

In this section, we highlight our proposal to eliminate the major performance bottlenecks

that we observe from our DNN workload characterization efforts. To simplify program-

ming, eliminate the costly remote data movement latency, increase the memory utilization

efficiency, and avoid redundant data copies, our solution is to physically unify the main

memory of the GPUs. We refer to this system as a MGPU system with true shared mem-

ory (MGPU-TSM). Unlike existing MGPU systems that rely on RDMA to access non-local

GPU memory, an MGPU-TSM system allows all GPUs to directly access the entire phys-

ical main memory of the system, thus eliminating non-uniform memory access (NUMA)

effects observed in traditional MGPU systems. The major contributions of this work are as

follows:

• We are the first to demonstrate the performance benefits of MGPU-TSM. Our

MGPU-TSM system eliminates NUMA accesses to main memory as well as the

need to transfer data back and forth between the CPU’s or GPUs’ main memory.

• We implement the MGPU-TSM system architecture with 4 GPUs in MGPUSim sim-

ulator (Sun et al., 2019) and compare the performance of MGPU-TSM with exist-

ing MGPU systems using standard benchmarks. We demonstrate that MGPU-TSM

achieves 3.81⇥ better performance on average versus an existing MGPU system that

uses RDMA direct access.

1.4.3 Coherence in MGPU-TSM

To provide efficient support for both intra-GPU and inter-GPU coherence, in this thesis,

we propose MGCC- a new timestamp-based hardware-level cache coherence scheme for

MGPU-TSM systems. MGCC uses hardware-level coherence support for inter-GPU and

intra-GPU data sharing using a single-writer-multiple-reader (SWMR) invariant. The con-

tributions of the work are as follows:

22

• We propose a novel timestamp-based hardware-level inter-GPU and intra-GPU co-

herence protocol named MGCC, a scheme that ensures seamless data sharing in an

MGPU-TSM system. MGCC leverages the concept of a logical timestamp (Plakal

et al., 1998)

• MGCC introduces a new cache-level logical time counter to reduce traffic in the

memory hierarchy. MGCC can reduce request traffic by up to 41.7% and response

traffic by up to 3.1%. MGCC includes a novel timestamp storage unit (TSU) to keep

track of cache block timestamps. We strategically place the TSU outside the critical

path of memory requests. The TSU is accessed in parallel with the MM, thereby

avoiding any performance overhead.

• MGCC also provides support for tracking memory requests to avoid potential load-

after-store and store-after-load issues. Our implementation supports sequential and

existing relaxed memory consistency models, but MGCC can also work as a building

block for other memory consistency models, such as release consistency and total

store ordering (TSO) consistency.

• We evaluate MGCC using both standard and synthetic benchmark suites with the

MGPUSim simulator (Sun et al., 2019). Compared to an existing MGPU system

supporting RDMA, for standard benchmarks, our MGPU-TSM system with MGCC

delivers 3.7⇥ and 3.0⇥ better performance, on average, using RC and SC, respec-

tively. Our MGCC protocol only introduces a 2% and 21% performance overhead,

on average, for supporting RC and SC, respectively, when running standard bench-

marks. Compared to MGPU systems utilizing the HMG coherence protocol (Ren

et al., 2020), an MGPU-TSM system utilizing MGCC performs, on average, 2.4⇥

better, when running standard benchmarks. Stress tests performed using our syn-

thetic benchmark suite show that, compared to a non-coherent MGPU-TSM, a coher-

23

ent MGPU-TSM system with MGCC has 26.6% and 46.1% performance overhead

for supporting RC and SC, respectively. However, this is a reasonable cost to pay for

significantly lowering programmer burden.

1.5 Related Work

1.5.1 DNN Workload Characterization on MGPU Systems

As mentioned before, DNN has emerged as the most ubiquitous workload in the modern

computing system. So, there are ongoing efforts to understand the behavior of DNN work-

loads on single GPU and MGPU systems, and to develop new software and hardware to

achieve better performance.

Several prior works (Shi et al., 2016), (Bahrampour et al., 2015), (Kim et al.,

2017), (Sze et al., 2017), (Li et al., 2016) have studied GPU-accelerated ML frameworks.

Shi et. al. (Shi et al., 2016) benchmarked a selection of these frameworks including Caffe,

CNTK, MXNet, TensorFlow, and Torch, using three popular types of deep neural networks

(FCNs, CNNs, and RNNs) on two CPU platforms and three GPU platforms. The goal

was to provide a guide for selecting appropriate combinations of the hardware platforms

and software tools. Bahrampour et. al. (Bahrampour et al., 2015) present a comparative

study of Caffe, Neon, TensorFlow, Theano, and Torch, from three different aspects, namely

extensibility, hardware utilization, and performance. Kim et. al. (Kim et al., 2017) ana-

lyze the GPU performance characteristics of Caffe, CNTK, TensorFlow, Theano, and Torch

from the perspective of a representative CNN model, focusing on the performance charac-

teristics of these five frameworks on a single GPU system and a MGPU system. Unlike

previous approaches, they measure layer-wise execution times, as well as the processing

time, of an input batch. While these studies provide users some insight into the strengths

and limitations of these deep learning frameworks, they do not introduce hardware or soft-

ware modifications to improve the performance of these frameworks.

24

In comparison to the prior works, our DNN characterization work focuses on the

both previous and current generations of MGPU systems to provide insight into the grad-

ual evolution of MGPU architectures to support the emerging DNN workloads. Apart

from that, unlike previous works, our characterization and profiling provide insight into

communication– and computation–intensiveness of the DNN workloads.

1.5.2 NUMA Effects in MGPU System

MGPU system architecture is evolving over time along with the architecture improvement

of individual GPUs. However, the works related to MGPU system architecture mostly

focus on reducing the NUMA effects in existing MGPU systems. Hence, a number of

recent works from both academia and industry have attempted to address the NUMA ef-

fects in existing MGPU systems, but they did not succeed in eliminating the NUMA effects

completely. This is because eliminating NUMA effect requires drastic changes in the mem-

ory architecture and interconnect network architecture, and the previously proposed works

mostly focus on achieving incremental improvements.

Milic et al. propose a NUMA-aware multi-socket GPU solution to resolve performance

bottlenecks related to NUMA memory placement in multi-socket GPUs (Milic et al., 2017).

The proposed system dynamically adapts inter-socket link bandwidth and caching policies

to avoid NUMA effects. The proposed system exploits the changing application phase be-

havior in terms of inter-socket bandwidth demand and data locality in L1 and L2 caches

by dynamically adapting the inter-socket link bandwidth and L1 and L2 caching policies,

respectively. Our proposed MGPU-TSM system with MGCC completely eliminates the

impact of NUMA on performance. Arunkumar et al. (Arunkumar et al., 2017) and Ren et

al. (Ren et al., 2020) propose an MCM-GPU, where multiple GPU modules are integrated

in a package to improve energy efficiency. As in MCM-GPU, our proposed MGPU-TSM

can take advantage of novel integration technologies to improve energy efficiency and per-

formance.

25

The recently introduced NVIDIA DGX-2 (NVIDIA, 2018a), (Choquette and Gandhi,

2020) system still suffers from NUMA effects as each GPU has its own local main mem-

ory and multiple GPUs still need to communicate via NVLinks. Although there has been

improvement in the bandwidth of NVLink and the interconnect topology for connecting

multiple GPUs to each other, the remote data access is still expensive as demonstrated in

Section 1.3.2. Similarly, AMD introduced AMD Infinity Fabric Link (AMD, 2020) to im-

prove the communication performance across MGPUs as well as between CPU and GPU.

Kim et.al. (Kim et al., 2014) propose an MGPU system with unified memory network

(UMN) that connects GPUs’ main memory modules (knows as Hybrid Memory Cube or

HMC (Pawlowski, 2011)) to provide faster connectivity across different GPUs and CPU.

In particular, the authors propose a sliced flattened butterfly topology for the UMN by re-

moving local HMC channels to ensure improved scalability. However, unlike our proposed

MGPU-TSM system, the proposed UMN cannot provide GPUs with uniform memory ac-

cess (UMA) to all the main memory modules. Arunkumar et al. (Arunkumar et al., 2019)

also argue the need to improve inter-GPU communication. Our evaluation of MGPU-TSM

also agrees with the argument.

In summary, our work on MGPU-TSM system is unique in the sense that no prior work

comprehensively explored the impact of uniform memory access (UMA) to all the CPU

and GPUs in the system.

1.5.3 MGPU Memory System and Coherence

In recent years, coherence in MGPU systems have gained significant attention. To support

coherence in MGPU systems, researchers have proposed architectural changes from both

software– and hardware–perspective in the memory design. In this section, we first discuss

prior works related to CPU and GPU coherence, and then we discuss the prior works related

to coherence in the MGPU domain.

26

CPU and GPU Coherence

A number of works proposed directory-based cache coherence for APUs (Alsop et al.,

2018), (Power et al., 2013), (Hechtman et al., 2014)3. In contrast, we are the first to

propose an efficient timestamp-based cache coherence protocol for an MGPU. Kumar et

al. (Kumar et al., 2015) and Boroumand et al. (Boroumand et al., 2019) propose protocols

for coherence between a CPU and GPU. These works are complementary to our own and

can be leveraged to address CPU-GPU coherence issues. Qian et al. (Qian et al., 2010) pro-

poses ScalableBulk, a directory-based cache coherence protocol for multicore CPUs. Since

GPUs have heavier traffic patterns than CPUs, invoking different directories in a GPU en-

vironment to maintain coherence would lead to severe performance degradation. Thus, we

believe ScalableBulk is not suitable for GPUs.

MGPU Coherence

NUMA-Aware multi-socket GPU (Milic et al., 2017) maintains inter-GPU coherence by

extending SW-based coherence for L1$s to the L2$s. The resulting coherence traffic low-

ers application performance. Similarly, MCM-GPU (Arunkumar et al., 2017) leverages the

software-based L1$ coherence protocol for its L1.5$. The flushing of the caches and co-

herence traffic hurt system scalability. Young et al. (Young et al., 2018) propose CARVE,

a method where part of a GPU’s memory is used as a cache for shared remote data and the

GPU-VI protocol is used for coherence. This protocol does not scale well with an increase

in the amount of read-write transactions and false sharing. Also, the CARVE method can

cause performance degradation for workloads with large memory footprint as it reduces ef-

fective GPU memory space. HMG (Ren et al., 2020) is a recent hardware-managed cache

coherence protocol for distributed L2$s in GPUs using a scoped memory model consis-

tency. HMG proposes to extend a simple VI-like protocol to track sharers in a hierarchical
3An APU contains a CPU and a GPU in the same die

27

way, and achieves a cost-effective solution in terms of on-chip area overhead, inter-GPU

coherence traffic reduction and high performance. This protocol, however, relies on error-

prone scoped memory consistency model that increases programming complexity. Sinclair

et al. (Sinclair et al., 2015) propose a memory consistency model for GPUs without using

user-managed scopes of a variable in the memory hierarchy, while Alsop et al. (Kumar

et al., 2015) propose a lazy release consistency model for GPUs. Both of these studies

only consider single CPU and single GPU systems. Exploring efficient MGPU memory

consistency models is an open challenge and results from these studies can be leveraged

to address that challenge. We demonstrate the impact of RC and SC consistency in this

work and our flexible MGCC protocol can be used as a building block for exploring other

consistency models. To reduce coherence traffic, Singh et al. propose timestamp-based

coherence (TC) protocol for intra-GPU coherence (Singh et al., 2013). As this protocol

relies on a globally synchronized clock across all CUs, maintaining clock synchronization

is a challenging task for large MGPU systems. To address this, Tabakh et al. (Tabbakh

et al., 2018) propose a logical timestamp based coherence protocol (G-TSC). However, the

G-TSC protocol is designed for single GPU systems and does not scale well for MGPU

systems unlike our MGCC protocol.

All the prior MGPU coherence-related work focused on imposing a light-weight coher-

ence protocol to improve NUMA effects. However, MGPU-TSM with MGCC provides the

means to completely eradicate NUMA effects and impose a very light-weight low-overhead

coherence protocol.

1.6 Organization

The rest of the thesis is organized as follows:

• Chapter 2 discusses the workload characterization efforts on different generations of

MGPU systems to quantitatively and qualitatively understand the inefficiencies in

28

existing MGPU systems.

• Chapter 3 describes our proposed solution MGPU-TSM to overcome the inefficien-

cies in existing MGPU systems.

• Chapter 4 presents theory and evaluation of our proposed MGCC coherence protocol

for MGPU-TSM.

• Chapter 5 discusses the future reserach direction and concludes the thesis.

29

Chapter 2

DNN Workload Characterization on Existing
MGPU Systems

In this chapter, we present our DNN workload characterization methodology and profiling

results when running DNN workloads on different generations of NVIDIA MGPU sys-

tems. The work in this chapter is motivated by the fact that DNN workloads have become

ubiquitous and MGPU system architectures are evolving to support the growth of DNN

workloads. Our objective is to understand the DNN workloads, the impact and limitations

of MGPU hardware to train DNN workloads, and provide insights into the improvements

necessary to develop next-generation MGPU systems. In Section 2.1, we discuss our char-

acterization and evaluation of the training of DNNs on three NVIDIA pre-Volta MGPU

systems– Kepler, Titan Z and DGX-1. Section 2.2 presents the in-depth profiling of DNN

workloads on NVIDIA DGX-1 MGPU system with 8 V100 GPUs. Section 2.3 presents

our prototype solution, true shared memory (TSM) system, to lower the communication

overhead.

2.1 Workload Characterization on Pre-Volta MGPU Systems

DNN workloads (LeCun et al., 2015), (Jordan and Mitchell, 2015), (Libbrecht and Noble,

2015), (Kourou et al., 2015), (Alsheikh et al., 2014) are presently being used in a number

of application domains. To maximize the potential of DNNs, we need to carefully per-

form training. However, training DNN algorithms is very challenging. Apart from the fact

that the training involves tuning several parameters that require experience and intuition,

30

it involves performing thousands of matrix operations, which can be very time consum-

ing. Given the inherent parallelism available on today’s GPUs, we can reduce the cost of

these matrix operations, and in turn, accelerate the DNN training process (Chen and Lin,

2014), (Schmidhuber, 2015), (Zhang et al., 2015). However, as the size of DNN work-

loads scales up, single GPUs are not enough, and we need to consider moving to MGPU

systems for training (Coates et al., 2013). Nonetheless, performance of DNN workloads

does not scale with GPU count, as MGPU system performance is limited by its memory

system, number of compute units and communication among different GPUs. Our work

focuses on identifying the bottlenecks in MGPU systems when running DNN workloads

and developing solutions to remove these bottlenecks.

2.1.1 DNNs

In this section, we provide an overview of three different artificial neural network (ANN)

based DNN algorithms used for evaluating MGPU systems. In particular, we focus on the

Multi-Layer Perceptron (MLP) Networks, which are good at handwritten character recog-

nition (Singh and Sachan, 2014); Convolutional Neural Networks (CNNs), which excel

in accurate image understanding (Krizhevsky et al., 2012) and speech recognition (Sainath

et al., 2013); and Recurrent Neural Networks (RNNs) (Hochreiter and Schmidhuber, 1997),

which are typically employed for efficient natural language processing (Graves et al., 2013).

Multi-Layer Perceptron (MLP)

A typical MLP network is shown in Figure 2·1a. It consists of an input layer of artificial

neurons (ANs), one or more hidden layers of ANs (example shows one hidden layer) and

an output layer of ANs. Each neuron in the hidden layer(s) and output layer computes

a weighted sum over values arriving on its input edges, applies an activation function to

compute an output, and propagates this output to neurons in the next layer. An MLP has

two modes of operation: inference or feedforward computation and training.

31

Hidden Layer
Input
Layer

Output Layer

Neuron
Weigths

Fully Connected

Feed
Forward

(a)

Sparsely
Connected

 Recurrent

Hidden Layer
Input
Layer

Output
Layer

(b)

Figure 2·1: Artificial Neural Networks commonly used in Deep Learn-
ing. (a) Multi Layer Perceptron (MLP). (b) Convolutional Neural Network
(CNN): AlexNet (Krizhevsky et al., 2012). CONV = Convolutional layer,
MP = Max-Pooling layer, and FC = Fully-Connected Layer. (c) Recurrent
Neural Network (RNN) with sparsely-connected neurons.

Inference/Feedforward Computation: To begin processing, an input vector is sent to

the first hidden layer (the input layer in an NN is pass-through). Each AN computes its

output, z, by applying an activation function (e.g., a sigmoid), s, to an input–weight inner

product, y:

y = Â
8 weights

weight⇥ input (2.1)

z = s(y) (2.2)

Training using Error Back Propagation and Weight Updates: Learning, or training,

involves modifying the weights of inter-neuron connections in an attempt to minimize an

output cost function (e.g., the mean squared error (MSE)). The challenge of learning is

then rapidly determining the relative contribution of each weighted connection towards

this cost function, i.e., the partial derivative of the cost function with respect to each weight.

By deliberately choosing differentiable activation functions, output derivatives (or errors)

backpropagate through the network in a single backward sweep, much faster than via the

chain rule. In the update step, weights are moved against their individually computed

derivatives to decrease the cost function.

32

During training, each output neuron uses its expected output value, E[zout], to compute

MSE cost function derivative, d. This derivative requires the activation function derivative,

s0, which is defined in terms of known parameters for a sigmoid (Equation 2.3). The output

error, E[zout]� zout, is amplified with an inverse hyperbolic tangent function that penalizes

large errors (Equation 2.4):

s0
sigmoid(y) = ssigmoid(y)⇥ (1�ssigmoid(y)) (2.3)

dout = s0 (yout)(E[zout]� zout) (2.4)

Output derivatives are broadcast backwards along the input connections of an output

neuron, multiplied by their connection weights, and accumulated at the previous layer

nodes (see Equation 2.5). Scaled by the activation function derivative (s0) this product

forms the cost function derivative for each hidden node:

dhiddeni�1 = s0 �yhiddeni�1

�
Â

8weights
douti ⇥weighti (2.5)

Weights can be updated after every input–output pair—as in stochastic gradient descent—

or the accumulated weight updates of all input–output pairs can be batched and applied at

once—as in standard gradient descent. Partial weight updates, Dw, for each input–output

training pair are determined by multiplying the neuron-specific cost function derivative, d,

by the current input seen along that connection:

Dw = d⇥ input (2.6)

All accumulated partial weight updates are finally scaled by a user-specified learning rate

(divided by the number of training pairs) and added to the old weight value:

weight+=
learning rate

training pairs
⇥ Â

8 training pairs
Dw (2.7)

This process of error back propagation and weight updates is repeated until the cost func-

33

tion is minimized.

Convolutional Neural Network (CNN)

CNN is a feed-forward sparsely-connected ANN which is composed of multiple types of

layers. Figure 2·1b shows a popular CNN called AlexNet (Krizhevsky et al., 2012), which

is made up of 5 convolutional layers (CONV) which are used to create a higher-level ab-

straction of the input data, called a feature map or fmaps (features in Figure 2·1b); 3 Max-

Pooling (MP) layers, used for ignoring small shifts and distortions (noise) in the input data;

and 3 fully-connected (FC) layers, which are used for classification.

Inference/Feedforward Computation: As described in (Sze et al., 2017), each CONV

layer involves computation of high-dimensional convolutions, where a set of 2D input fea-

ture maps (ifmaps), called a channel, is convoluted with a distinct 2D filter, and the results

of the convolution at each point are summed across all the channels. The result of this

computation is one channel of the output feature map (ofmap). Finally, multiple stacks of

ifmaps may be processed together as a batch to improve reuse of the filter weights. The

computation is described in Equation 2.8, assuming the shape parameters in Table 2.1.

Table 2.1: Shape parameters of a CONV/FC layer

Shape Parameter Description
N Batch size of 3D fmaps
M # of 3D filters / # of ofmap channels
C # of ifmap/filter channels
P ifmap plane width/height
R filter plane width/height (=P in FC)
E ofmap plane width/height (=1 in FC)

34

Here, O, I and W are the matrices for the ofmaps, ifmaps and filters, respectively.

O[z][u][x][y] = f (
C�1

Â
k=0

R�1

Â
i=0

R�1

Â
j=0

I[z][k][Ux+ i][Uy+ j]

⇥W[u][k][i][j])

0  z < N;0  u < M;0  x,y < E;E = (P�R+U)/U (2.8)

The MP computation involves estimating the maximum value in a given set of elements

of a vector, matrix or cube, so that the output is a smaller representation of the quadrant

(just a single value). This is a filter applied after the CONV layers to avoid noise and

extract the most significant information for the next layer (CONV or FC, as it is shown

in Figure 2·1b). Finally, a small number of FC layers are used for classification purposes,

where Equation 2.8 still holds for the computation with P = R, E = 1 and U = 1.

Training using Error Back Propagation and Weight Updates: The backward prop-

agation of a CNN involves estimating the gradients for the last layer of the CNN, and

propagating the gradients back to the first layer. The principles of this computation are

based on Equation 2.7 and depend on the type of layer in the CNN (CONV, MP and FC).

For the sake of brevity, we do not include the formulation of each case. For further details,

we refer the reader to (LeCun et al., 1998).

Recurrent Neural Network (RNN)

An RNN is categorized as a feed-back or recurrent ANN. As shown in Figure 2·1c, an RNN

contains cyclic connections that pass the previous outputs of a hidden layer back to the

current input of the hidden layer. These recurrent connections can take the time dimension

into account to predict sequential data, which is very useful for speech recognition and

machine translations tasks.

35

Inference/Feedforward Computation: An RNN computes the hidden layer vector se-

quence H = (h1, ...,hT) that maps an input sequence X = (x1, ...,xT) to an output sequence

Y = (y1, ...,yT), by iterating the following equations from t = 1 to T :

ht = s(Wxhxt +Whhht�1) (2.9)

yt =Whyht (2.10)

Where Wxh is the weight matrix between the input layer and the hidden layer, and Why

corresponds to the weight matrix between the hidden layer and the output layer. Moreover,

Whh represents the weight matrix of recurrent connections between two consecutive time

steps of the hidden layer states. Finally, s is the hidden layer activation function (f (.)), an

element-wise sigmoid() function.

In this work, we will focus on RNNs with Long Short Term Memories (LSTMs)

(Hochreiter and Schmidhuber, 1997) due to their popularity to obtain high prediction accu-

racy (Graves et al., 2013). LSTM can maintain long-term memory by relying on memory

cells in order to decide what to remember, what to forget and what to output. For that, a

standard LSTM cell implements input, forget and output gates. We omit a discussion of

these gates for the sake of brevity. For further information, we refer the reader to (Hochre-

iter and Schmidhuber, 1997). An LSTM extends Equation 2.9 and Equation 2.10 as follow:

it = s(Wxixt +Whiht�1) (2.11)

ft = s(Wx f xt +Wh f ht�1) (2.12)

~ct = tanh(Wxcxt +Whcht�1) (2.13)

ct = ft � ct�1 + it �~ct (2.14)

ot = s(Wxoxt +Whoht�1) (2.15)

ht = ot � tanh(ct) (2.16)

36

where s is the sigmoid() function, and f , i,~c, o are the output vectors of forget, input,

memory cell and ouput gates, respectively. Wab represents a weigh matrix (e.g., if a =

x,b = i, W is the weight matrix between input gate i and input vector x).

Training using Error Back propagation and Weight Updates: The backward pass of

an LSTM-RNN computes the loss function of Equation 2.7 that depends on the output of

the hidden layer at both current time and next time steps. For further information, we refer

the reader to (Hochreiter and Schmidhuber, 1997).

2.1.2 Evaluation Methodology

MGPU System Description

In our evaluation, we use a Kepler system (one NVIDIA K40c and one NVIDIA K20c

GPU), a Titan system (2 NVIDIA Titan Z GPUs) and a NVIDIA DGX-1 system (8 NVIDIA

P100 GPUs). Table 2.2 shows the specifications of the Kepler, Titan and DGX-1 MGPU

systems. The Kepler system uses a PCIe generation 2 (PCIe 2.0) interconnect, while the

Titan system uses a PCIe generation 3 (PCIe 3.0) interconnect. Both systems consist of

GPUs of same NVIDIA Kepler architecture with similar compute capability. We use com-

pute capability to refer to the number of cores and clock rate of a GPU. Given that the

bandwidth of PCIe 3.0 interconnect is twice the bandwidth of of PCIe 2.0, the compari-

son between the Titan and Kepler systems provide some insight into the potential impact

of network bandwidth when running DNN workloads in a MGPU system. The DGX-1

system has higher compute capability and interconnect bandwidth. In terms of compute

capability, each P100 GPU in the DGX-1 system is 2.73⇥ and 2.36⇥ faster than K20c and

Titan Z GPUs, respectively. Each unidirectional link in the NVLink is 1.25⇥ and 2.5⇥

faster than each of the unidirectional PCIe 3.0 and PCIe 2.0 links, respectively. Comparing

performance across the DGX-1, Titan and Kepler systems help understand the importance

of both increased compute capability and bandwidth. More importantly, this comparison

37

Table 2.2: MGPU Systems evaluated in this work.

System #GPUs #Cores Clock Memory Memory Inter- Archi-
per Speed (GB) BW connect tecture

GPU (MHz) (GB/s)

Kepler 1 (K40c) 2880 745 12 288 PCIe 2 Kepler1 (K20c) 2496 706 5 208
Titan 2 (Titan Z) 2880 705 6 363 PCIe 3 Kepler
DGX-1 8 (P100) 3584 1328 16 732 NVLink 1 Pascal

provides valuable insights for future research directions for both GPU hardware (architec-

ture for MGPU systems) and software (management of computation and communication

resources in MGPU systems).

Workloads

In this work, we use the network model for MLP, LeNet, ResNet, AlexNet, GoogLeNet

and Inception-v3 available with the MXNet framework. We use both real-world datasets

(MNIST and CIfar10) and the synthetic ImageNet dataset for training the networks to eval-

uate the performance of different MGPU systems. We use MXNet release version 0.11.0,

which requires cuDNN 5 for CUDA 8.0. The overall computation time and communication

time for the training of the workloads depends on the batch size, the number of weights in

the network, the input dataset and the number of epochs. Since one epoch is representative

of the entire training process using the entire dataset, we train the networks for only one

epoch. We use a different combination of datasets and networks. Hence, the total number

of weights in a network will vary based on the input dataset. Table 2.3 shows the num-

ber specification of the workloads used in our work. We show the approximate number

of weights for the CNN networks. The 3-layer-MLP network has one hidden layer which

has 128 neurons. The LSTM network has 2 stacked RNN layers with 200 neurons in the

hidden layer. We use MNIST, Cifar10, synthetic ImageNet and PennTreeBank dataset in

38

our evaluation.

Table 2.3: Specifications of the CNN Networks used in this Work. More
details about the CNN workloads can be found in Section 2.2.1.

Network Conv. FC Weights
Layers Layers

LeNet 2 2 ⇠60k
ResNet-110 109 1 ⇠1.7M
GoogLeNet 21 1 ⇠7M

AlexNet 5 3 ⇠61M

Profiling Tools

We use nvprof and NVIDIA’s Visual Profiler to profile the workloads. We calculate the total

computation time and communication time (i.e. host-to-device data copy time + device-to-

host data copy time + device-to-device data copy time) using the profilers. We use the

internal timer of MXNet to obtain the run time of a DNN workload for one epoch. Profil-

ing applications with nvprof requires a large amount of GPU memory (as opposed to the

applications running standalone). As a result, it is not possible to profile larger workloads

using nvprof or the Visual Profiler. Nonetheless, we gain insights about the performance

of MGPU systems by profiling smaller workloads, and based on those insights, we analyze

the performance of larger workloads run on a MGPU system.

2.1.3 Evaluation Results

In this section, we first present our evaluation of the Kepler, Titan and DGX-1 MGPU

systems using DNN workloads. We explore the impact of changing the batch size on

communication and computation, while training a DNN workload. We present the results

obtained from both nvprof and the MXNet timer for different DNN workloads, as run with

2 GPUs on the Kepler, Titan and DGX-1 systems. We show how the workloads scale on

39

the DGX-1 system for 2, 4 and 8 GPUs; then, we analyze and identify the factors affecting

scaling.

Effect of Changing Batch Size

Here, we show the effect of batch size for training a neural network to gain insights into

the behavior of larger workloads that we will evaluate in the later sections. First, we eval-

uate the performance of a 3-layer MLP and LeNet (CNN) network with MNIST dataset to

understand the effect of batch size on the degree of computation and communication. We

use 2 GPUs from each of the three MGPU systems for this evaluation.

Figure 2·2a shows the computation time for both MLP and CNN workloads for the three

MGPU systems. For smaller batch sizes, the number of kernel launches is large, although

the size of the kernels is very small in terms of computation. Hence, most of the GPU

computing resources remain under-utilized for small batch sizes. The computation time

saturates after the batch size reaches 128 for both workloads. There are two factors that

affect the computation time. First, as the batch size increases, each GPU needs to process

fewer batches, which helps to reduce computation time. Second, each GPU has to perform

more computations per batch. This increases the computation time. After the batch size of

128, these two factors cancel each other out. But at smaller batch sizes kernel launching

overheads and under-utilization of GPU’s compute resources lead to performance degrada-

tion.

The workload with LeNet network is more computationally-intensive than the MLP

workload. Given that the Kepler system performance is limited by the weaker K20c GPU

with 2496 cores, the Titan system with 2880 CUDA cores performs 1.4⇥ faster than the

Kepler MGPU system for the LeNet network with a batch size of 64. As workload with

MLP network requires lesser amount of computation than the LeNet network, the Titan

system achieves only a 1.06⇥ speedup over the Kepler system for a batch size of 64. Each

P100 GPU in the DGX-1 system has a 1.9⇥ higher clock rate as compared to the Titan Z or

40

(a) (b)

(c)

Figure 2·2: Effect of changing batch size for MNIST dataset for training in
a 3-layer-MLP and LeNet network using 2 GPUs of the Kepler, Titan and
DGX-1 system.

the K20c GPUs. Furthermore, P100 GPU has 1.44⇥ and 1.24⇥ more CUDA cores than the

K20c and Titan Z, respectively. Hence, in terms of clock rate and compute resources, each

P100 GPU in the DGX-1 system is expected to obtain 2.73⇥ and 2.36⇥ faster computation

as compared to the K20c and the Titan Z GPUs, respectively. The DGX-1 system performs

2.02⇥ and 2.63⇥ faster than Kepler system for the MLP and CNN workload, respectively,

with a batch size of 64. For the same batch size, the DGX-1 system computes 1.9⇥ and

1.87⇥ faster than the Titan system for the MLP and CNN workload, respectively.

Figure 2·2b and Figure 2·2c show the communication time and P2P memcpy time, re-

41

spectively, for the three MGPU systems for both workloads. At smaller batch sizes the

overall communication time is high becasue of a large number of P2P memcpy for gradi-

ent synchronization. As the batch size increases, the number of P2P memcpy decreases.

After the batch size of 128, the total P2P memcpy time is small relative to the overall com-

munication time, as communication is dominated by the CPU-to-GPU memcpy time. The

P2P memcpy time also allows us to compare the performance of PCIe 2.0, PCIe 3.0 and

NVLink 1.0. For the LeNet network workload, using a batch size of 64, Titan and DGX-1

systems require 2.22⇥ and 3.34⇥ less P2P memcpy time, respectively, as compared to the

Kepler system.

Scaling of Workloads to 2 GPUs

Table 2.4 shows a breakdown of the runtime in terms of communication time and com-

putation time obtained using nvprof for different workloads employing 1 and 2 GPUs on

Kepler, Titan and DGX-1 MGPU systems. We also report P2P memcpy time for 2 GPU

cases. Note that the overhead for the CUDA API calls is different for different MGPU

systems under consideration because of the CPU configuration and network used in each

MGPU systems of the three MGPU systems. Hence, comparing the total run time may not

be fair. We use runtime to calculate scaling factor for different number of GPUs within the

same MGPU system.

For both the MNIST and Cifar10 datasets with 3-layer MLP networks, none of the

three MGPU systems achieve good scaling. This happens because our datasets are too

small in terms of the input image size, and the network is also very small in terms of

number of layers and neurons per layer. Consequently, the GPUs launch a number of very

lightweight kernels to perform forward and backward propagation to train the workload.

If we compare the P2P memcpy time for 2 GPUs across the three MGPU systems, we see

that DGX-1 system achieves 3.2⇥ and 1.94⇥ shorter communication times than Kepler and

42

Table 2.4: Profiling results for different workloads on 1 and 2 GPUs in
Kepler, Titan and DGX-1 MGPU systems

Dataset Network Batch GPU
Run Comm. Comp. P2P Scaling

Size Time Time Time Memcpy Factor(ms) (ms) (ms) Time (ms)

MNIST MLP 64

Kepler K20c 845 43 370 � 1
Kepler 2 GPU 750 135.7 198.4 92.5 1.13
Titan Z 1 GPU 639 26.5 331.5 � 1
Titan Z 2 GPU 609 87.7 191.3 56.8 1.05
P100 1 GPU 1090 24.8 192 � 1
P100 2 GPU 880 55 98 29.3 1.2

MNIST LeNet 64

Kepler K20c 2795 44.1 2411 � 1
Kepler 2 GPU 2006 374.8 1468 329.3 1.4
Titan Z 1 GPU 2259 24.4 1874 � 1
Titan Z 2 GPU 1401 165.6 976.4 139.4 1.6

(CNN) P100 1 GPU 2336 26 1017 � 1
P100 2 GPU 1261 125.8 567 98.4 1.85

Cifar10 MLP 64

Kepler K20c 2263 102.1 420 � 1
Kepler 2 GPU 1951 305.2 195 200.7 1.16
Titan Z 1 GPU 2256 51.4 416.9 � 1
Titan Z 2 GPU 2080 179.3 302.1 100.6 1.08
P100 1 GPU 2219 53.6 225.6 � 1
P100 2 GPU 2000 127.4 110.8 58.8 1.1

Cifar10 LeNet 64

Kepler K20c 3769 102.7 2582.9 � 1
Kepler 2 GPU 3251 383.2 1263.7 279.8 1.16
Titan Z 1 GPU 3307 52.61 1813 � 1
Titan Z 2 GPU 2596 217.4 1185 149.1 1.27

(CNN) P100 1 GPU 2747 57 915.6 � 1
P100 2 GPU 2111 145.7 512.2 83 1.3

LSTM 128

Kepler K20c 23800 17.5 23127 � 1
Kepler 2 GPU 14700 1208.8 13605 1163 1.6

Pen- Titan Z 1 GPU 20981 13.7 19449 � 1
Tree- Titan Z 2 GPU 11596 501.5 10387 466.0 1.81
Bank (RNN) P100 1 GPU 14800 17.0 10059.2 � 1

P100 2 GPU 8900 373.6 5040.8 332.6 1.7

Titan systems, respectively. This is because of the higher bandwidth provided by NVLink

for P2P memcpy.

To show how workloads with heavier kernels (kernels that perform more computations)

can amortize the kernel launch overhead and scale better in a MGPU system, we kept the

dataset the same, but use a larger LeNet network that increases computation. For example,

the GPUs in the DGX-1 system perform 5.8⇥ more computation, with an increase in com-

munication time of only 2.3⇥ for the workload with LeNet network as compared to the

43

Table 2.5: Evaluation results for different CNN workloads using 2 GPUs of
the MGPU systems

Dataset Network Batch GPU Run Scaling
Size Time (s) Factor

ImageNet LeNet 16

Kepler K20c 20.4 1
Kepler 2 GPU 17.2 1.18
Titan Z 1 GPU 14.4 1
Titan Z 2 GPU 10.4 1.38
P100 1 GPU 10.6 1
P100 2 GPU 9.6 1.1

ImageNet AlexNet 16

Kepler K20c 14.4 1
Kepler 2 GPU 10.4 1.38
Titan Z 1 GPU 10.1 1
Titan Z 2 GPU 7.4 1.36
P100 1 GPU 5.8 1
P100 2 GPU 6.0 0.97

ImageNet GoogLeNet 16

Kepler K20c 25.9 1
Kepler 2 GPU 13.2 1.96
Titan Z 1 GPU 16.8 1
Titan Z 2 GPU 9.2 1.83
P100 1 GPU 7.4 1
P100 2 GPU 4.4 1.68

ImageNet ResNet 16

Kepler K20c 75 1
Kepler 2 GPU 38.3 1.95
Titan Z 1 GPU 55.6 1
Titan Z 2 GPU 28.6 1.94
P100 1 GPU 18.4 1
P100 2 GPU 10.1 1.82

Cifar10 ResNet 16

Kepler K20c 263.8 1
Kepler 2 GPU 147.8 1.5
Titan Z 1 GPU 173.2 1
Titan Z 2 GPU 103.5 1.67
P100 1 GPU 147 1
P100 2 GPU 90.4 1.63

workload with the MLP network.

As mentioned in Section 2.1.2, larger workloads cannot be profiled using nvprof be-

cause of insufficient GPU memory. Table 2.5 shows the results for the 2 GPU configu-

rations on the Kepler, Titan, and DGX-1 systems processing the ImageNet dataset, while

considering different networks, and Cifar10 dataset with ResNet network. The batch size

cannot be increased beyond 16 per GPU on the Kepler system because of the 5GB mem-

ory on the K20c GPU. The scaling factor for the 2-GPU Kepler system, as compared to

the single K20c GPU, is close to 2 when training the GoogLeNet and ResNet networks

using ImageNet datasets. The AlexNet network does not scale when using a batch size of

44

16 because this network has only 5 convolutional layers, but approximately 61M weights.

Hence, the P2P memcpy for the gradient synchronization requires a large amount of time.

In case of DGX-1 system, a batch size of 16 per GPU cannot utilize the compute resources

fully for any of the workloads.

To evaluate the effect of input data size on scaling, we change the dataset to Cifar10,

which is a smaller input dataset. As the input data size become smaller, the amount of

computation is reduced. Hence, this workload does not scale beyond 1.67 in any of the

three MGPU systems.

Scaling in DGX-1 MGPU System

In this section, we present results for workload scalability beyond 2 GPUs in DGX-1 sys-

tem. We use weak scaling for this study.1 We consider the ImageNet dataset to train

AlexNet, GoogLeNet, and ResNet networks. To investigate the performance bottlenecks in

the DGX-1 system, we vary the batch size per GPU to train different CNN networks on 1,

2, 4 and 8 GPUs, separately.

In previous sections, we have shown that the smaller workloads such as Cifar10 with

LeNet and the 3-layer-MLP network, ImageNet dataset with AlexNet and the GoogLeNet

network do not scale well for 2 GPUs in the DGX-1 MGPU system for a batch size of 16.

Here, we increase the batch size of the ImageNet dataset.

Table 2.6 shows the results of scaling on 2, 4 and 8 GPUs for different workloads.

Beyond 2 GPUs, the workload with the AlexNet network does not scale well as the batch

size is increased from 32 to 64. This because the network is very small and cannot utilize

the P100 GPUs’ computing resources.

The GoogLeNet and ResNet workloads tend to show improved scaling as the batch size
1Strong scaling of the training of DNNs is the speedup in training time as we increase the GPU count

while keeping the size of the input dataset fixed. Weak scaling is the speedup in training as we increase the
GPU count and the size of the input dataset by a factor equal to the GPU count.

2We do not report results for smaller MLP and RNN networks that do not scale well for 2 GPUs. We only
report the results for the workloads that have potential to scale beyond 2 GPUs.

45

Table 2.6: Scaling in DGX-1 MGPU system for different CNN workloads2.

Dataset Network Batch # of Run Scaling
Size GPUs Time (s) Factor

ImageNet AlexNet 32
1 21 1
2 14.0 1.5
4 10.1 2.1
8 13.7 1.53

ImageNet AlexNet 64
1 34 1
2 20.3 1.67
4 15.6 2.18
8 22.9 1.48

ImageNet GoogLeNet 32
1 46.3 1
2 24.8 1.87
4 13.5 3.43
8 10.0 4.63

ImageNet GoogLeNet 64
1 85.2 1
2 45.9 1.86
4 23.6 3.61
8 14.6 5.84

ImageNet ResNet 32
1 130.1 1
2 65.8 1.98
4 34.0 3.83
8 20.9 6.22

ImageNet ResNet 64
1 246.9 1
2 127.1 1.94
4 64.5 3.83
8 34.8 7.1

increases. The GoogLeNet achieves a scaling of 3.61 when the batch size is increased to

64 from 32 with 4 GPUs, but it does not scale similarly for 8 GPUs. Our largest network,

which in terms of the number of convolutional networks is ResNet, achieves the highest

scaling of 7.1 for 8 GPUs. Hence, our evaluation of DGX-1 system in this section shows

that workloads with larger number of weights and small number of convolutional layers

struggle to scale in a MGPU systems. This is because of the communication bottlenecks

that is present in the existing MGPU systems.

2.1.4 Summary

With the widespread adoption of DNNs in applications, it has become imperative to pro-

vide fast and efficient training of the DNNs. Because of the inherently parallel nature of

DNNs, MGPU systems can train DNNs much faster than high-end CPUs. However, even

46

on MGPU systems, the training of DNNs consumes a large amount of time as it requires

numerous data transfers between CPU and GPUs, and among multiple GPUs. To further

accelerate the training of DNNs, we need to improve throughput and reduce the communi-

cation time in MGPU systems.

In this work, we evaluate three different high performance MGPU systems– an NVIDIA

Titan with 2 GPUs, a Kepler-based cluster with 2 GPUs, and a DGX-1 with 8 GPUs, using

a variety of DNN workloads, with the goal of identifying the performance bottlenecks of

these systems. We profile MLP–, CNN– and RNN–based workloads using these MGPU

systems. We show that for DNN workloads, communication among the GPUs and between

the CPU and GPUs can consume up to 40.6% of total execution time. Based on this obser-

vation, we evaluate different types of communication mechanisms (zerocopy, memcpy and

unified memory) using our synthetic workloads that mimic the communication pattern of

these DNN workloads.

2.2 Workload Characterization on DGX-1 Volta MGPU Systems

In this section,we focus on DNN workload characterization on NVIDIA’s Volta-based

DGX-1 system. In particular, we present the limits and opportunities for training the fol-

lowing five DNN workloads: GoogLeNet, AlexNet, Inception-v3, ResNet and LeNet on the

DGX-1 system. These workloads represent a wide mixture of computation and communi-

cation behavior. We present a thorough analysis of how well the training of various DNNs

scales with GPU count on the DGX-1 multi-GPU system. We identify hardware-level (i.e.

computation, communication and memory capacity) and software-level (i.e. NCCL library,

the programming framework for DNNs, etc.) bottlenecks present in the training of the var-

ious DNNs using multi-GPU systems. The detailed descriptions about the background of

this work have been presented in Section 1.2.1 ans Section 2.1.1. Hence, we present our

evaluation methodology and results in the following sections.

47

2.2.1 Evaluation Methodology

To gain insights into the factors affecting the speedup of DNN training in a multi-GPU

environment, we compare two most popular inter-GPU communication methods , i.e., P2P

memcpy and NCCL. With the help of nvprof profiler, we isolate the computation-intensive

and the communication-intensive portion of the workloads to identify the computation and

communication bottlenecks in the underlying hardware.

Evaluation Platform

Our evaluations are performed on NVIDIA’s Volta-based DGX-1 system (NVIDIA, 2016).

The DGX-1 system has two 20-Core Intel Xeon E5-2698 v4 CPUs and eight Tesla V100

GPUs. Each Tesla V100 GPU incorporates 80 streaming multiprocessors (SMs) and deliv-

ers 17.7 TFLOPs single precision computing capability. The Tesla V100 GPU also features

eight tensor cores that serve as dedicated hardware that can accelerate matrix operations.

With the tensor cores, a Tesla V100 GPU can achieve a throughput of 125 TFLOPs, which

is 7⇥ faster than only using the traditional single precision computing devices. Since we

focus on the DNN workloads where matrix multiplication is the most common operation,

the tensor cores are utilized to accelerate the training of the DNNs.

Figure 2·3 shows a high-level view of the network topology of the Volta-based DGX-1

system. As depicted in Figure 2·3, the CPUs in the DGX-1 system use the PCIe bus to

communicate with the GPUs, while the GPUs are connected with high-bandwidth peer-

to-peer NVLink connections. Each NVLink connection delivers 25 GB/s data transfers in

each direction. For GPU pairs that have more than one connection, NVLink can aggregate

the connections and provide a 50 GB/s virtual connection. Each CPU has direct access

to only four GPUs. To access the other four GPUs it needs the help of the other CPU.

Some GPUs have two direct connections between them (e.g. between GPU 0 and GPU

2), while some GPUs have only one direct connection between them (e.g. between GPU 2

48

and GPU 3). Moreover, some GPUs may not have a direct connection between them (e.g.

between GPU 3 and GPU 4), and they require the help of another GPU or two CPUs for

communication. A maximum of one intermediate node (two hops) is required to connect

any pair of GPUs.

&38 1 &38 2

*38 0

*38 1

*38 2

*38 3

*38 4

*38 5

*38 6

*38 �

PCIe NVLink InWel QXick PaWh

Figure 2·3: Network Topology in a DGX-1 System.

Framework and Tools

For our evaluation, we use the NVIDIA container image of MXNet, release 18.04

and CUDA 9.0.176. The DNN frameworks run on the cuDNN 7.1.1 (NVIDIA, 2018)

and cuBLAS 9.0.333 (NVIDIA, 2008). The MXNet framework uses Broadcast and

AllReduce communication collectives from NCCL 2.1.15. We collect the profiling data

using the nvprof (NVIDIA, 2018b) profiler. We use the NVIDIA System Management

Interface nvidia-smi to monitor memory usage of GPUs.

49

Table 2.7: Description of the networks. (Conv = Convolution, Incep =
Inception, and FC = Fully Connected)

Network Layers Conv
Layers

Incep
Layers

FC
Layers Weights

LeNet 5 2 0 2 60K
AlexNet 8 5 0 3 60M
GoogLeNet 22 3 9 1 4M
Inception-v3 48 7 11 1 24M
ResNet 110 1071 0 1 55M

1 Conv layers with residual input from previous layers

As discussed in Section 1.2.1, we only execute and profile the training of DNNs for FP,

BP, and WU stages. As FP, BP, and WU stages are repeatedly executed, the accuracy of the

network will improve. However, the time spent during each of the three stages within an

epoch will remain the same.

Workloads and Datasets

For our evaluation, we use five popular neural networks used for image classification. Ta-

ble 2.7 specifies the number of layers and parameters in each neural network. Layers in

LeNet and AlexNet are connected serially and consist of 3⇥3 to 11⇥11 kernels in the

Convolution layers for feature extraction. LeNet and AlexNet have a higher number of

parameters because of their relatively larger number of fully connected layers compared to

other neural networks in our evaluation.

GoogLeNet and Inception-v3 networks have both Convolution layers and Inception lay-

ers for feature extraction. Typical Inception layers consist of small parallel convolution ker-

nels (1⇥1 to 5⇥5) followed by concatenation layer to concatenate features extracted from

the parallel convolution kernels. Inception layers allow the network to use both local fea-

tures (small convolution kernels) as well as highly abstracted features (larger convolution

kernels). GoogLeNet and Inception-v3 require a smaller number of parameters compared

to AlexNet because of the inception layers.

ResNets are very deep neural networks with residual blocks. A residual block is created

50

by combining the output of the current layer and the output(s) from one or more previous

layers using a shortcut connection (i.e. a direct connection skipping any layers between the

current layer and the previous layer(s)). Residual block allows training very deep networks

without degrading the initially extracted features. It also requires a smaller number of

parameters compared to other neural networks.

We consider both strong scaling and weak scaling in our evaluation. We use 256K

images from Imagenet dataset to train our networks for evaluating the strong scaling. The

input image dimension is 299⇥299⇥3 for Inception-v3 and ResNet, and 224⇥224⇥3 for

the other networks. For evaluating weak scaling, we use 256K, 512K, 1024K and 2048K

images for 1, 2, 4 and 8 GPUs, respectively.

2.2.2 Evaluation Results

In this section, we present our evaluation and analysis of the training of 5 DNN workloads

using NVIDIA’s Volta-based DGX-1 multi-GPU system. Here, we discuss the comparison

of the P2P and the NCCL communication methods, quantify the NCCL overhead, show

the breakdown of training time into FP+BP and WU stages, determine memory usage, and

provide analysis on weak scaling for training the DNNs. We also provide in-depth insights

and guidance for future endeavors for accelerating the training of DNN workloads using

multi-GPU systems.

Comparison of P2P and NCCL

In this subsection, we compare the training time for the DNN workloads with the batch

sizes of 16, 32 and 64 using the P2P and the NCCL communication methods and identify

the factors that affect the training of the DNNs on the DGX-1 multi-GPU system.

Figure 2·4 shows the total training time for 5 different workloads using 1, 2, 4 and 8

GPUs. To analyze the results, first we start with the smallest network (LeNet) and discuss

the impact of increasing the number of GPUs for a given batch size on LeNet using the P2P

51

16 32 64
(a)

0

5

10

15

20

LeNet with P2P

16 32 64
(c)

0

5

10

15

20

25

30

AlexNet with P2P

16 32 64
(e)

0

50

100

150

200

250

ResNet with P2P

16 32 64
(i)

0

50

100

150

200

GoogLeNet with P2P

16 32 64
(k)

0

100

200

300

400

500

Inception-V3 with P2P

16 32 64
(b)

0

5

10

15

20

LeNet with NCCL

16 32 64
(d)

0

5

10

15

20

25

30

AlexNet with NCCL

16 32 64
(f)

0

50

100

150

200

250

ResNet with NCCL

16 32 64
(j)

0

50

100

150

200

GoogLeNet with NCCL

16 32 64
(l)

0

100

200

300

400

500

Inception-V3 with NCCL

Batch Size

To
ta

l T
ra

in
in

g
tim

e
(s

)

1 GPU 2 GPUs 4 GPUs 8 GPUs

Figure 2·4: Training time per epoch for 5 different workloads on the Volta-
based DGX-1 system using the P2P and the NCCL-based communication.
Each bar represents the mean training time of 5 repetitions. The standard
deviation is shown by the black line on top of each bar.

communication method. Then we discuss the impact of increasing batch size for training

LeNet with P2P for a given GPU count. Afterwards, we discuss the effect of increasing

both the batch size and the number of GPUs on the 5 workloads. Then, we compare the

impact of the two communication methods for all the workloads, different batch sizes and

different number of GPUs. Finally, we provide insights obtained from our analysis.

For training LeNet with a batch size of 16, as we increase the number of GPUs, the

overall training time decreases for both P2P and NCCL. With P2P we can speed up the

training time by factors of 1.62⇥, 2.37⇥ and 3.36⇥ for 2, 4 and 8 GPUs, respectively. On

the other hand, with NCCL we achieve speedup factors of 1.56⇥, 2.27⇥ and 2.77⇥ for 2,

4 and 8 GPUs, respectively. This is understandable because LeNet is a very small network

with only 2 convolution layers. GPUs do not have sufficient computation for this workload

to hide the latency of communication. As a result, communication time dominates the

52

training time. Hence, the training time does not decrease linearly for this workload as

we increase the number of GPUs. P2P outperforms NCCL for this workload due to the

overhead associated with incorporating NCCL into MXNet. In Section 2.2.3, we quantify

this overhead.

For all GPU counts, we observe that the time spent in training LeNet decreases almost

linearly as we increase the batch size from 16 to 32 to 64. For instance, for training LeNet

using 4 GPUs with P2P, as we increase the batch size from 16 to first 32 and then 64, the

training time decreases by a factor of 1.92⇥ and 3.67⇥, respectively. With the increased

batch size, two factors affect computation. The first factor is the total number of batches

that the GPU needs to process decreases for a fixed dataset. The second factor is that the

number of images each GPU needs to process increases. While a decrease in the number

of batches helps reduce computation time, an increase in the number of images per batch

leads to increased utilization of GPU compute cores, provided that the cores are not already

saturated. If the compute cores become saturated, increasing the batch size may lead to a

computation bottleneck. Moreover, as the number of batches decreases with a larger batch

size, the frequency of inter-GPU communication decreases. However, the amount of data

that needs to be transferred for each WU from one GPU to another remains constant. This is

because the number of gradients and weights is independent of the batch size, and depends

solely on the DNN. Hence, increasing the batch size helps decrease the communication

time.

Using the P2P communication method, the training time for all workloads under study

decreases as the batch size increases. As we increase the number of GPUs from 1 to 2, for

all the workloads, we observe up to a 1.8⇥ speedup in the training time. However, we do

not get the same rate of speedup when using 4 and 8 GPUs. This is because P2P memcopy

becomes increasingly communication heavy as we increase the number of GPUs. For in-

stance, consider the 4 GPU case. In the MXNet implementation using P2P, the gradients are

53

aggregated on GPU0. Hence, the other 3 GPUs transfer their locally computed gradients

to GPU0 using a reduction operation. Then, GPU0 updates the weights using the gradients

and transfers the updated weights to all the GPUs. The transfer of the gradients and the

weights is parallelized using an asynchronous data transfer between GPUs. Note that the

DGX-1 system provides asymmetric interconnects between different pairs of GPUs. This

can cause some of the GPUs to become idle during DNN training. The BW for commu-

nication between GPU0 and GPU1, and GPU0 and GPU2, is twice the BW rate between

GPU0 and GPU3 (see Figure 2·3). As a result, after updating weights, GPU3 has to wait

longer than GPU1 and GPU2 to receive the updated weights. This causes GPU1 and GPU2

to remain idle until GPU3 receives the updated weights.3

For the training with 8 GPUs, the situation is even worse because of the lack of direct

connectivity using NVLink between all the GPUs. For instance, GPU0 has direct NVLink

connections with GPU1, GPU2, GPU3, and GPU6. When weights are transferred from

GPU0 to GPU4, GPU5, and GPU7, direct P2P memory transfers cannot be used. Instead,

weights are transferred using a device-to-host (DtoH) memory copy followed by a host-to-

device (HtoD) memory copy over the slow PCIe interconnect.4 Hence, the communication

time can be significantly longer for training a DNN using 8 GPUs if the number of weights

is large. MXNet tries to overcome this issue by performing multi-stage transfers through

NVLink. More precisely, since GPU1 has no direct NVLink connection with GPU7, GPU0

first transfers the weights to GPU1 and then GPU1 transfers the weights to GPU7. This

multi-stage transfer requires some additional time, which results in a non-linear speedup as

we increase the GPU count from 2 to 4 to 8.

For training LeNet with a batch size of 16, P2P achieves a better speedup of training
3It is possible that GPU1 and GPU2 execute FP and BP immediately after receiving the updated weights.

In that case, before synchronizing the gradients, GPU1 and GPU2 have to remain idle after executing FP and
BP, until GPU3 finishes executing FP and BP.

4This is a limitation of the design of DGX-1. The “routers" within each GPU do not have the ability to
route a packet to another node, and thus, the communication for all non-1-hop packets go through the CPU.
This not a fundamental limitation, but instead, a design decision.

54

time than NCCL as we increase the GPU count. P2P achieves better training time than

NCCL even if we increase the batch size for training LeNet. This applies for training

AlexNet as well, because AlexNet has only 5 convolution layers and a large number of

weights (⇠60M). This implies that if the number of computation-intensive layers is small,

the overhead associated with incorporating the NCCL library cannot be amortized and P2P

will outperform NCCL. Note that DNNs with a small number of computationally-intensive

layers (i.e., Lenet, AlexNet) achieve non-linear speedup as we increase the GPU count to

4 and 8. This is because the amount of computation is not sufficient to hide the latency

of communication, as well as synchronization, among the GPUs. However, for workloads

with a larger number of computation-intensive layers, NCCL continuously outperforms

P2P, as we increase the batch size for 4 and 8 GPUs. For a batch size of 16, training of

GoogLeNet is 1.1⇥ and 1.2⇥ faster when using NCCL as compared to P2P for 4 and 8

GPUs, respectively. For both ResNet and Inception-v3, the training with a batch size of

16 is 1.1⇥ and 1.25⇥ faster using NCCL than using P2P with 4 and 8 GPUs, respectively.

This is because NCCL pipelines the data transfer for updating and transferring the weights

using AllReduce and Broadcast operations, respectively. This implies that the process of

pipelining data transfers can amortize the NCCL overhead if there are sufficient number of

data transfers 5.

Our evaluation based on training time provides the following insights:

• Increasing batch size reduces training time for an epoch linearly for all the workloads

we evaluated in this work. Hence, to accelerate DNN training, hardware support is

needed to facilitate training with larger batch sizes.

• Whether increasing the number of GPUs to train a particular network will lead to

faster training depends on the computation-intensity of the workload and the com-

munication method.
5More layers with weights mean more number of data transfers.

55

• With the increase of computation-intensive layers in DNN workloads, although the

overall training time increases, we can reduce training time by increasing the number

of GPUs.

• With NCCL, training time decreases significantly for 4 and 8 GPUs if the DNN

workload has a sufficiently large number of computation-intensive layers.

• NCCL implementation has additional overhead compared to P2P implementation.

NCCL should be used for training with more than 4 GPUs if the DNN network

model is large, otherwise, P2P is sufficient.

2.2.3 NCCL Overhead

In the previous section, we explained that using NCCL for communication comes with

additional overhead. When NCCL is used as the communication method, MXNet uses

different source code (i.e. variables, functions, and kernels) compared to P2P even if only

one GPU is used. MXNet uses AllReduce and Broadcast collectives available in NCCL

for aggregating gradients and transferring updated weights to the GPUs, respectively. In

particular, two kernels (ReduceKernel and BroadcastKernel) are used when NCCL is

used as the communication method. These kernels leverage the P2P direct memory access

where one GPU can directly use the data on another GPUs memory without transferring the

data to its own memory. Note that the P2P communication method that we compare with

NCCL uses P2P direct data transfers which is different from P2P direct memory access.

Since the kernels executed by the GPUs are different for NCCL and P2P method, the CUDA

runtime API overhead varies as data is accessed using different methods. For DNN training,

the overhead for NCCL is larger than the overhead for P2P. However, NCCL overcomes

this overhead by pipelining the data transfer as we increase the GPU count. In this section,

we measure that additional NCCL overhead by comparing the training times on a single

GPU for P2P and NCCL. This result explains why the use of NCCL cannot help reduce the

56

training time for all types of workloads.

Table 2.8 shows the NCCL overhead over P2P for training the 5 DNNs with different

batch sizes on a single GPU. The percent overhead varies by a value of less than 3.6 for

large networks (i.e. GoogLeNet, Inception-v3 and ResNet) with the increase of batch size

while the percentage of overhead increases with batch size for smaller networks (LeNet

and AlexNet). This is because as the batch size increases, the overall computation time

reduces significantly for these smaller workloads and the NCCL overhead becomes more

significant. This additional overhead is also present in the multi-GPU training.

Table 2.8: NCCL overhead compared to P2P for the workloads executed on
a single GPU.

Network Batch Size NCCL Overhead (%)
LeNet 16 16.4
LeNet 32 24
LeNet 64 26.7

AlexNet 16 21.8
AlexNet 32 21.8
AlexNet 64 31.8
ResNet 16 20.1
ResNet 32 22.9
ResNet 64 19.3

GoogLeNet 16 18.7
GoogLeNet 32 17.5
GoogLeNet 64 16.2
Inception-v3 16 16.9
Inception-v3 32 19.4
Inception-v3 64 18.9

In the MXNet implementation, the P2P memcopy method requires hundreds of GBs of

data copy per epoch from 3 GPUs (for training with 4 GPUs) or 7 GPUs (for training with 8

GPUs) to one of the GPUs’ (GPU0) memory, whereas using NCCL, one GPU simply reads

another GPU’s memory and directly uses the data for computation. As NCCL reduces the

communication time by leveraging the pipelining in data transfer, training a network using

2 GPUs cannot benefit much from the pipelining, rather it suffers from additional NCCL

overhead. However, if a network is large, NCCL benefits significantly from the pipelining

57

and overcomes the NCCL overhead when training the network with 4 and 8 GPUs. Hence,

with 4 and 8 GPUs, we observe a better speedup in the training time of ResNet, GoogLeNet

and, Inception-v3 using NCCL compared to training time using P2P.

2.2.4 Training Time Breakdown

In this section, we show the breakdown of the total training time into computation (FP+BP)

and communication (WU) time. The dataset contains a fixed set of 256K images from the

Imagenet dataset for this experiment. Figure 2·5 shows the breakdown of the total training

time for the 5 workloads for different batch sizes and GPU counts when using NCCL-based

communication. Since our comparison between P2P and NCCL shows that NCCL has the

potential to significantly decrease the training time and achieve larger speedup compared to

P2P as we increase the network size and GPU count, in this subsection, we only consider

NCCL-based communication. We use the nvprof profiler for this analysis.

During the FP stage of DNN training, the outputs (i.e. feature maps) of different layers

are generated for an input batch of data (i.e. images). During the BP stage, the error at

the final output layer is calculated and back-propagated to compute the gradients. Hence,

FP and BP are the compute-intensive portions of DNN training. During the WU stage the

gradients are aggregated and synchronized using AllReduce operations from the NCCL

Figure 2·5: Breakdown of training time into computation (FP stage and BP
stage) time and communication (WU stage) time. The X-axis represents
(GPU count, Batch Size).

58

library and the updated weights using the aggregate gradients are broadcasted to all GPUs

using Broadcast operations from the NCCL library. Hence, the amount of computation

is negligible in the WU stage. So, we make the assumption that the time spent in the WU

stage is primarily for communication.6 Note that for the single GPU case the WU is nearly

two orders of magnitude lower than the FP and BP stage (Shi and Chu, 2017) because

updating weights is simple matrix addition operation (i.e. Y = aX +B, where a is scalar

and Y and B are vectors) and does not involve any inter-GPU communication. Hence, in

our evaluation, we do not report the time spent in the WU stage for single GPU training.

To analyze the results, first, we discuss the impact of increasing the number of GPUs on

the FP+BP and WU stages for training LeNet with a given batch size. Then, we discuss

the effect of increasing the batch size on the FP+BP and WU stages for training LeNet for

a given GPU count. We discuss the effect of both batch size and GPU count across all the

workloads. Finally, we present the insights obtained from the breakdown of training time

into FP+BP and WU stages,

For the training of LeNet with a batch size of 16, we observe more than two-fold

improvement for FP+BP time as the number of GPUs increases from 1 to 2. This is

because the training with 1 GPU suffers from 21.8% additional NCCL overhead that

we have shown in Section 2.2.3. However, as the number of GPUs further increases,

the time required for FP+BP decreases non-linearly. Our profiling results show that the

cudaStreamSynchronize API consumes most of the time among all APIs.7 Table 2.9

shows the percent overhead of cudaStreamSynchronize for training LeNet with a batch
6As MXNet allows overlap of BP and WU, some of the communication latency can be hidden. The WU

stage takes into account the hidden latency. Hence, the actual communication time is larger than the time
required for the WU stage.

7While training DNNs using GPUs, the training process is conducted with the help of multiple CUDA
streams. Each stream is responsible for a unique set of tasks (i.e., one CUDA stream performs FP, while
another performs BP). All the tasks assigned to a particular stream execute sequentially, but the different
streams can be executed in parallel. The cudaStreamSynchronize API is used to maintain synchronization
of the streams with the CPU or host thread. It holds off execution in the CPU or host thread until all the
CUDA tasks assigned to the stream referenced by cudaStreamSynchronize finish execution. This overhead
can be amortized by assigning more tasks to the stream before synchronization.

59

size of 16 using 1, 2, 4 and GPUs. LeNet with a compute utilization of only 18.3% fails to

amortize this CUDA API overhead, and so we observe a non-linear scaling of time spent in

the FP+BP stages. The time spent in the WU stage decreases almost linearly as we increase

the number of GPUs from 2 to 4 to 8, for a batch size of 16.

Table 2.9: cudaStreamSynchronize API overhead for training LeNet with
a batch size of 16, 32 and 64 using 1, 2, 4 and 8 GPUs.

Batch Size GPU Count Time (%)

16
1 89.2
2 94.1
4 86.7
8 76.4

32
1 86.7
2 91.9
4 78.6
8 68.8

64
1 81.6
2 86.1
4 69.8
8 54.4

As we increase the batch size for training LeNet, both the time for FP+BP stage and

time for WU decreases linearly. This is expected because doubling the batch size halves

not only the number of batches each GPU processes, but also the number of times each

GPU needs to communicate with other GPUs for a fixed dataset. Since LeNet is neither

a computation-intensive (only 2 convolution layers) nor a communication-intensive (only

⇠60k parameters) workload, batch sizes of 32 and 64 cannot saturate the compute cores

or the NVLink BW. Nonetheless, Table 2.8 shows that as we increase the batch size,

percentage of time spent for cudaStreamSynchronize decreases. This is because with the

increased batch size, each CUDA stream performs more computations or tasks while the

number of times synchronization of streams is required reduces.

As the number of computation-intensive layers in the workload increases, we observe

that time spent in FP+BP stage reduces almost linearly for all GPU count (for Inception-

v3, we achieve near ideal linear scaling for the batch sizes of 16 and 32). However,

60

the time spent in the WU stage achieves ideal linear scaling only for AlexNet which

has ⇠60M weights and only 8 layers. As we increase the GPU count from 2 to 4 to

8, although for other workloads we do not obtain linear scaling, we observe that from

ResNet!GoogLeNet!Inception-v3, the WU stage achieves better speedup. From our ob-

servation, it is evident that workloads with more weights per layer (for layers that contain

weights) show better speedup in the WU stage. This is because transferring a small amount

of data is a waste of NVLink BW if the layers have a small number of weights.

Based on our evaluation using nvprof, in this section we provide the following insights:

• Computation time for FP+BP dominates the training time as we increase the number

of GPUs for the workloads under study.

• In order to achieve close to ideal linear scaling, FP+BP stages need to utilize GPU

compute cores efficiently (i.e. we can increase GPU compute utilization by increasing

the amount of work in each GPU by increasing the batch size and correspondingly,

reduce the number of data transfers).

2.2.5 Memory Usage Analysis

During our evaluation, we observe that the memory capacity of GPUs limits the maximum

batch size that can be used to train a DNN. Hence, in this section, we perform an in-depth

evaluation of memory usage by GPUs prior to the start of the training (pre-training) and

during training. During the pre-training stage, the network model is transferred to the GPUs

from the CPU and during the training stage additional GPU memory space is required to

house the feature maps and temporary results. We varied the batch size to see the impact

of batch size on both the pre-training and the training stage memory usage for 5 DNN

workloads. During training, since one of the GPUs (typically GPU0) is responsible for

coordinating the other GPUs, it requires additional memory.

Table 2.10 shows the memory usage for 4 GPUs during the pre-training and training

61

phase. Note that all the GPUs require the same amount of memory during the pre-training

phase. Additionally, there is a less than 5% difference in the memory usage of P2P mem-

copy and NCCL based communication methods. Hence we are only reporting memory

usage for NCCL-based communication method. We observe that during the training of

DNNs, all the GPUs except GPU0 consume the same memory irrespective of the number

of GPUs used for training. Furthermore, for training using 2, 4 or 8 GPUs, GPU0 consumes

almost the same amount of memory. Hence, the 4 GPU memory results are representative

of the memory usage for training with 2, 4 and 8 GPUs.

Table 2.10: Memory usage when using the NCCL-based communication
method during the pre-training stage and the training stage of DNNs when
using 4 GPUs. The memory usage of all GPUs is the same for the pre-
training stage. GPUz refers to the memory usage of a GPU during the pre-
training, where z can take any value from 0 to 3. GPU0 refers to the memory
usage of the GPU0 during training while GPUx refers to memory usage of
the remaining GPUs, where x can take any value from 1 to 3.

Network Batch Pre-training Training Training Additional Mem. Increase in Mem.

Size
GPUz GPU0 GPUx Usage in GPU0 Usage w.r.t. the
(GB) (GB) (GB) w.r.t. GPUx (%) Batch Size of 16 (%)

LeNet 16 1.37 2.76 1.96 41.1 –
LeNet 32 1.38 2.84 2.04 39.4 3.0
LeNet 64 1.40 2.89 2.36 22.7 4.8

AlexNet 16 1.24 2.15 1.55 39.2 –
AlexNet 32 1.25 2.36 1.76 34.5 9.9
AlexNet 64 1.27 2.97 2.37 25.6 38.2
ResNet 16 1.08 3.62 3.29 10.1 –
ResNet 32 5.98 5.66 5.63 6.2 56.1
ResNet 64 11.06 9.48 9.15 3.5 161.5

GoogLeNet 16 0.92 2.35 2.24 4.7 –
GoogLeNet 32 0.94 3.64 3.55 2.5 55.2
GoogLeNet 64 0.97 6.17 6.07 1.6 162.8
Inception-v3 16 1.04 3.89 3.60 7.9 –
Inception-v3 32 1.06 6.70 6.06 10.5 72.3
Inception-v3 64 1.09 11.01 10.78 2.4 183.3

As we increase the batch size, the memory usage increases for all workloads. While the

increase in the pre-training memory usage is insignificant, the memory usage increases sig-

nificantly during training. For instance, increasing the batch size from 16 to 64 increases the

GPU memory consumption by a factor of 1.83⇥ for Inception-v3. This is because with an

62

increased batch size, GPUs produce more feature maps or intermediate results. For all the

workloads, GPU0 uses more memory than the other GPUs used in training. This is because

MXNet uses GPU0’s memory for gradient aggregation and weight update. As we increase

batch size, the increase in the memory required for feature maps is significantly large. But

the additional memory required for gradients does not increase proportionately. Hence, the

percentage of additional memory usage by GPU0 decreases with increased batch size.

As the number of feature maps increases with the increase in the number of layers,

the memory usage increases significantly. Note that the increase in feature maps do not

necessarily depend on the number of layers, rather it depends on total nodes (neurons) in

different layers. For a batch size of 64, GPU0 requires a memory usage of 2.37GB to train

AlexNet while GPU0 requires 11GB of memory to train Inception-v3. Memory required

for feature maps can only be reduced by making algorithm-level changes.

During our evaluation, we also tried to evaluate batch sizes larger than 64 per GPU for

all the workloads. However, we could not train Inception-v3 and ResNet with a batch size

larger than 64 per GPU, and we could not train GoogLeNet with a batch size larger than 128

per GPU, due to GPU memory limitations. Hence, future research should focus on both

increasing memory capacity while preserving the memory BW from the hardware-level, as

well as more efficient memory mapping from the software-level.

Our evaluation in this subsection provides the following insights:

• While increasing the batch size reduces the training time of DNNs for each epoch,

the amount of GPU memory limits the maximum batch size that can be used for

training DNN workloads.

• For larger workloads (i.e. ResNet, GoogLeNet, and Inception-v3), the memory re-

quired for intermediate outputs at different layers far exceeds the memory required

for the network model.

63

(a)

0

10

20

30

40
LeNet with P2P

(c)

0

10

20

30

40

50

60

AlexNet with P2P

(e)

0

100

200

300

400

500

600

ResNet with P2P

(i)

0

100

200

300

400

GoogLeNet with P2P

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64
(k)

0

200

400

600

800

1000

Inception-V3 with P2P

16 32 64
(b)

0

10

20

30

40
LeNet with NCCL

16 32 64
(d)

0

10

20

30

40

50

60

AlexNet with NCCL

16 32 64
(f)

0

100

200

300

400

500

600

ResNet with NCCL

16 32 64
(j)

0

100

200

300

400

GoogLeNet with NCCL

16 32 64
(l)

0

200

400

600

800

1000

Inception-V3 with NCCL

Batch Size

To
ta

l T
ra

in
in

g
tim

e
(s

)

1 GPU 2 GPUs 4 GPUs 8 GPUs

Figure 2·6: Weak scaling evaluation for the 5 workloads. The height of the
‘entire bar’ represents the total time per epoch for training with 256k, 512k,
1024k and, 2048k images using 1, 2, 4 and, 8 GPUs, respectively. The
height of the ‘hatched bar’ represents the average time to train with 256k
images. This facilitates the comparison between the training time for weak
scaling with that for strong scaling.

2.2.6 Weak Scaling

We evaluated the weak scaling trends of the training time of the 5 DNN workloads by

increasing the number of images in the dataset as we increase the number of GPUs. We

use 256k, 512k, 1024k, and 2048k images for 1, 2, 4, and 8 GPUs, respectively. Figure 2·6

shows the average time for training with 256K images for both P2P and NCCL using 1, 2,

4 and 8 GPUs, as well as the total training time for evaluating weak scaling. Based on our

evaluation of weak scaling we provide the following insights:

• The speedup for training LeNet with weak scaling is larger than that with strong

scaling for all the batch sizes with both P2P and NCCL. As discussed in Section 2.2.4,

the overhead associated with CUDA APIs affects training time of LeNet. As the

64

dataset size is increased for weak scaling, the overhead associated with creating and

synchronizing CUDA streams gets amortized, which leads to a slightly improved

training time over strong scaling training time for LeNet.

• When using weak scaling, AlexNet shows better training time for the batch sizes

of 32 and 64 compared to strong scaling. With a small number of computation-

intensive layers, AlexNet suffers from the overhead of CUDA APIs for creating and

synchronizing streams. As we increase the number of batches, it amortizes some of

the overheads. Since AlexNet has a large number of weights per layer, it utilizes the

high BW of NVLink more efficiently than LeNet.

• In case of the relatively more computation-intensive workloads i.e. ResNet,

GoogLeNet, and Inception-v3, when using weak scaling we achieve speedups that

are less than 17% higher as compared to speedups with strong scaling using NCCL

for all the batch sizes.

2.2.7 Accelerating Training of DNNs

Based on our evaluation, we make the following suggestions to accelerate DNN training:

• In Section 2.2.2 and Section 2.2.3, we have shown that NCCL does not always per-

form better than P2P because of additional overhead associated with NCCL. This

overhead needs to be reduced. Apart from that, frameworks such as MXNet should

be improved to leverage the best available communication method automatically for

a given DNN workload.

• Increasing the GPU count does not improve the training time for smaller workloads

as shown in Section 2.2.2. Hence, the size of the workload (i.e. number of compute-

intensive layers, number of weights, etc.) should be taken into account to choose the

proper GPU count.

65

• Our evaluation in Section 2.2.4 shows that for FP+BP stages do not achieve ideal

linear speedup as we increase the batch size for a number of computation-intensive

workloads. GPUs with more tensor cores and compute cores can help accelerate the

FP+BP stage.

• Our memory analysis in Section 2.2.5 showed that GPU memory capacity can be a

severe bottleneck for training DNNs as larger networks need to be trained with larger

batch sizes to reduce training time. The maximum batch size that can be used to train

a network is limited by GPU memory capacity for data parallel implementation of

training. Hence, significant improvement in the memory technology is required to

increase GPU memory capacity.8

• Our evaluations show that inefficiency in the implementation of high-level frame-

works such as MXNet, may lead to under-utilization of GPU resources. For in-

stance, additional memory consumption of GPU0 compared to other GPUs causes

under-utilization of available GPU memory. This can be solved by a more efficient

distribution of data.

• CUDA API overheads for maintaining synchronization consume a significant amount

of training time. Faster synchronization mechanism needs to be developed to utilize

the GPU resources more efficiently.

2.2.8 Summary

High performance MGPU systems are widely used to accelerate training of DNNs by

exploiting the inherently massive parallel nature of the training process. Typically, the

training of DNNs in MGPU systems leverages a data-parallel model in which a DNN is

replicated on every GPU, and each GPU performs Forward Propagation (FP), Backward
8The memory required for training a DNN using GPUs can depend on how a framework is implemented.

Hence, different frameworks may need a different amount of memory for training the same DNN. But the
memory required for the output at each layer must be the same for all frameworks, for a given DNN.

66

Propagation (BP) and, Weight Update (WU). We analyze the WU stage that is composed

of collective communication (e.g., allReduce, broadcast), which demands very efficient

communication among the GPUs to avoid diminishing returns when scaling the number

of GPUs in the system. To overcome this issue, different data transfer mechanisms and

libraries have been introduced by NVIDIA, and adopted by high-level frameworks to train

DNNs. In this work, we evaluate and compare the performance of peer-to-peer (P2P) data

transfer method and NCCL library-based communication method for training DNNs on a

DGX-1 system consisting of 8 NVIDIA Volta-based GPUs. We profile and analyze the

training of five popular DNNs (GoogLeNet, AlexNet, Inception-v3, ResNet and LeNet)

using 1, 2, 4 and 8 GPUs. We show the breakdown of the training time across the FP+BP

stage and the WU stage to provide insights about the limiting factors of the training al-

gorithm as well as to identify the bottlenecks in the multi-GPU system architecture. Our

detailed profiling and analysis can help programmers and DNN model designers accelerate

the training process in DNNs.

2.3 Evaluation of MGPU Systems Using Synthetic Workloads

Our evaluation in previous sections shows that communication overhead has a huge im-

pact on the scalability of MGPU workloads. Hence, it is imperative to explore solutions

that address communication bottlenecks in MGPU systems. In this section, we describe

our synthetic workloads which we use to evaluate MGPU system performance and ad-

dress communication bottleneck in the MGPU systems. We consider different data trans-

fer mechanisms to develop our synthetic workloads. We describe our TSM solution and

present an evaluation of the true shared memory (TSM) solution using three MGPU sys-

tems under study.

67

2.3.1 Synthetic Workloads

We develop synthetic workloads that precisely mimic the communication pattern of

MNIST, Cifar10 and ImageNet datasets with the MLP network, based on the study of

the real-world workloads. We use these synthetic workloads as our baseline (using P2P

memcpy for gradient synchronization) to evaluate the communication mechanisms (zero-

copy and unified memory) supported by CUDA. Then we propose our TSM solution and

evaluate it using synthetic workloads.

We do not try to mimic the exact computations performed by the GPUs, but we are

able to reproduce the same volume of data transfers present in the DNN workloads in

our synthetic workloads. We use the Cifar10 dataset and the 3-layer MLP network as an

example to show how we calculate the weights in our synthetic workload. The size of

each image in the Cifar10 dataset is 32⇥32, which can be represented by a matrix of size

1024⇥1. The first fully-connected layer in the MLP network has 128 neurons; the output

of the first layer can be represented by a matrix of size 1⇥ 128. The weights for the first

layer can be represented by a matrix of size 1024⇥ 128. Similarly, for fully-connected

layers 2 and 3, with 64 and 1000 neurons, the size of weight matrices are 128⇥ 64 and

64 ⇥ 1000, respectively. The size of the weights is 794 KB. Similarly, the size of the

weights for MNIST and ImageNet dataset with the MLP network are 482 KB and 11245.6

KB, respectively. We use the cuBLAS library to perform matrix multiplications when

calculating the output of each layer and aggregating the gradients.

We design our synthetic workloads, running them on 2 GPUs. Figure 2·7 shows how we

can distribute memory space for gradients and input data. Figure 2·7a shows the baseline

P2P memcpy mechanism used by MXNet to update the gradients. A unique set of input data

is transferred from the CPU to each GPU. The weight matrix is initialized to random values

in the CPU, and the same weights are transferred from the CPU to the both GPUs. Each

GPU performs matrix multiplications to produce the output in each layer; this mimics the

68

forward propagation phase for training of the DNN workloads. We transfer the gradients

(represented by the weight matrices for our synthetic workload) from GPU1 to GPU0 to

update weights in GPU0. We use P2P memcpy to transfer the gradients. Once the weights

are updated, we transfer the updated weights from GPU0 to GPU1 using P2P memcpy.

(a) (b) (c)

(d) (e)

Figure 2·7: Distribution of input data and weights for synthetic workload
representing (a) baseline P2P memcpy, (b) zerocopy, (c) unified virtual
memory for gradient synchronization, (d) our proposed true shared mem-
ory model and, (e) implementation of our true shared memory model to
improve performance of DL workloads

In Figure 2·7b, we use the zerocopy mechanism, supported in NVIDIA CUDA, to re-

duce the number of P2P memcpy. Zerocopy is a data access mechanism where a GPU can

access the data from CPU’s memory without copying to its own memory. To ensure data

coherence, the data is pinned in GPU memory. This means if a GPU requires the data, it

has to wait until another GPU that is using the data finishes using it. If the data is too large,

our evaluation finds that serialization latency due to pinned memory can lead to severe per-

formance degradation. In our synthetic workload using zerocopy, we use zerocopy for the

weights since they have to be same for both GPUs. We can also avoid memcpy for gradi-

ent synchronization. The input data is transferred to the GPUs using memcpy. Hence, in

69

this workload, the weights are always in CPU memory. Although serialization latency can

degrade performance, this method can be used for training large batch sizes. We need to

fit both input data and network model data in GPU memory. However, we are restricted by

the size of GPU memory, and may not be able to train the network with large batch sizes.

But the zerocopy method provides a way to use CPU memory to hold the network model

data and allows training with larger batches.

We use unified memory (UM) supported by CUDA 6.0 or higher in our synthetic work-

load, as shown in Figure 2·7c. Unified memory provides a virtualization based mechanism

to support a single, shared, memory space that can be accessed using a single pointer. The

user does not need the exact physical location of the data since the CUDA runtime will

figure out how to transfer the data to the device. This transfer is transparent to the user. As

a result, this mechanism makes the programming easier, but does not necessarily reduce the

volume of data transferred across multiple devices. In our synthetic workloads, we keep

the weight matrices in the unified memory. The input data is transferred to the GPUs using

memcpy.

Finally, Figure 2·7d shows our proposed solution– true shared memory (TSM)– to ef-

ficiently use the memory space and improve performance. We propose using a true shared

memory space for both CPU and GPUs to avoid the large number of data copies back and

forth between the computing devices. To create a unified memory space synthetically, we

first copy the input datasets and weights in one of the GPU’s (GPU0) memories, as shown

in Figure 2·7e. We enable peer-to-peer direct memory access so that GPU1 can directly

use the memory of GPU0. Then each GPU works on a different set of data, but use the

same weights in the GPU0’s memory. They save the gradients in GPU0’s memory. In this

way, we have both the gradients and the weights in GPU0’s memory and we can update the

weights using the gradients without performing any additional data copies, as in the case

of P2P memcpy.

70

(a) (b) (c)

Figure 2·8: Performance comparison of different data transfer mechanisms
among the three MGPU systems (2 GPUs of each system) using synthetic
workloads that mimic (a) MNIST dataset (b) Cifar10 dataset (c) ImageNet
dataset with MLP network.

2.3.2 Evaluation Results Using Synthetic Workloads

Figure 2·8 shows the normalized results for Kepler, Titan and DGX-1 systems. We mimic

the communication patterns for training a batch size of 32 per GPU for all the synthetic

workloads. The runtime is normalized with respect to the runtime of the corresponding

baseline synthetic P2P workload in each of the three systems. We run our workloads on

three different servers, where each server has its own customized network for CPUs and

GPUs. Based on the complexity of the network for the CPUs and GPUs, the overhead

for different CUDA API calls can vary, and so comparing absolute runtime values can be

misleading.

Figure 2·8a and 2·8b show that zerocopy (ZC) and unified memory (UM) do not im-

prove performance in any of the three systems studied, as compared to the baseline P2P

memcpy method, when evaluting synthetic workloads. As discussed earlier, ZC causes se-

rialization when executing the kernels, given that there is a race between two GPUs that

try to get control of the data (weights). UM performs slightly worse than the baseline P2P

memcpy method because UM does not decrease the number of data copies as compared to

P2P memcpy. It also has additional CUDA runtime overhead (Landaverde et al., 2014).

Finally, our prototype solution, TSM, performs 2.07⇥, 1.95⇥ and 3.33⇥ better in terms

71

of runtimes compared to the respective baselines on the Kepler, Titan and DGX-1 system

respectively, for workloads mimicking MNIST dataset. The Kepler system shows slightly

better speedup versus the Titan system, because for the P2P memcpy method, the Kepler

system uses PCIe 2.0 bandwidth as opposed to PCIe 3.0 bandwidth (2⇥ bandwidth over

PCIe 2.0 in the Titan system). Since we avoid a large number of P2P memcpy in TSM, the

normalized runtime improves more in Kepler system compared to Titan system.

Based on our results for workloads mimicking the ImageNet dataset run with a MLP

network, as shown in Figure 2·8c, we can make the following observations. First, ZC is a

huge bottleneck on the GPUs, as a large number of weights for the ImageNet dataset on the

MLP network is pinned to one GPU (e.g., GPU0) and the other GPU (GPU1) cannot access

it for the entire time that GPU0 is using the data. Second, UM also performs worse than

the baseline because of the overhead associated with large amounts of user-transparent

data migration. In a DGX-1 system, UM performance is even worse compared to the

Kepler and Titan systems. This is because of the GPU page fault support on the Pascal

GPUs. Previously, data had to be transferred to the devices before executing a kernel.

Equipped with the new page fault support, if the data is not present in the GPU memory,

the GPU page fault occurs. Hence, there is the overhead for serving GPU page faults and

transferring the data to the GPUs. Third, the Kepler system achieves better performance

for the TSM solution, as compared to the baseline. This is not surprising because for the

baseline P2P method, the Kepler system uses the lowest bandwidth interconnect among the

three systems. Hence, the Kepler system requires the most time for the P2P method. But in

the case of the DGX-1 system, its baseline P2P method benefits from the higher NVLink

bandwidth. Nonetheless, for the ImageNet dataset our TSM solution achieves 3.7⇥ better

performance than our baseline. Speedups of the 3 datasets, as run on our TSM solution,

achieves a 3.7⇥, 3.2⇥, 3.5⇥ speedup versus the corresponding baseline P2P method in

Kepler, Titan and DGX MGPU systems, respectively.

72

We consider a MLP network in our synthetic workload. However, we should mention

that the data transfer mechanism is similar in CNN and RNN networks in MXNet and

other frameworks. Based on the amount of computation and communication, the size of the

network and the data set, and the number of weights in different layers of network, different

DL workloads may scale differently. For computationally-intensive workloads such as

CNN, the computation time increases quickly, based on the amount of communication.

Hence, CNN workloads show better scaling in MGPU systems. Nonetheless, our TSM

method will still improve overall performance.

Although we have used 2 GPUs in our evaluation, our proposed TSM solution will

improve the performance for MGPU systems with more than 2 GPUs. As the number

of GPUs is increased, the number data transfers increase. For the P2P memcpy method

using 4 GPUs, for example, the CPU has to transfer the input data to 4 GPUs. After the

calculation of gradients by all 4 GPUs, to upgrade the weights, the gradients have to be

transferred to one of the GPUs and the upgraded weights need to be transferred to other

GPUs. These transfers involve a number of CPU-to-GPU and P2P memcpy. As our TSM

solution improves performance by reducing the number of data transfers, MGPU systems

with more than 2 GPUs will benefit from TSM significantly.

The significance of our proposed solution is two-fold. First, it encourages computer

architects to develop new systems with true shared memory for both CPU and GPUs. When

the network model does not fit in the GPU memory, it degrades the GPU performance

for training (Dean et al., 2012). Our TSM solution introduces a unified memory space

for both CPU and GPUs, and removes the limitations that are imposed by the size of the

GPU’s native memory. Second, the developers of the DL frameworks or workloads can

gain insight into the communication mechanisms best suited for training DL workloads.

Users can choose the type of data transfer that is most suitable for their workload, when

using the existing MGPU systems.

Chapter 3

True Shared Memory for MGPU System

In this chapter, we present the overall design of our proposed MGPU-TSM system archi-

tecture to overcome the limitations of the MGPU systems that we have listed in Chapter 2.

While the concept of shared main memory has been used in APU designs (Hechtman and

Sorin, 2013), where a CPU and an integrated GPU share the same main memory, we extend

this shared memory to CPUs with multiple discrete GPUs. Unified memory (NVIDIA,

2018) provides an abstraction that the main memory is unified, but the underlying main

memory is still partitioned and each partition is only accessible by the CPU or GPU. In

comparison, MGPU-TSM provides an architecture where the CPU and GPUs truly share

the same physical main memory. We present our evaluation of MGPU-TSM with respect to

the existing MGPU system design in this chapter. We also perform a preliminary evaluation

of the thermal feasibility of an MGPU-TSM system.

3.1 MGPU-TSM Architecture

To create a low-latency UMA for multiple GPUs, we re-architect both the GPU memory

hierarchy organization and the CPU memory. To explain our envisioned MGPU-TSM ar-

chitecture, we consider an MGPU-TSM system consisting of 4 GPUs, 1 CPU and a total

of 32GB of main memory1, shared by the CPU and the GPUs. Figure 3·1b shows a logical

implementation of the idea with respect to the existing MGPU systems in Figure 3·1a. In
1We are using a 32GB main memory just to explain the MGPU-TSM architecture and make a fair compar-

ison with the MGPU system with RDMA, where the GPUs have the same compute and memory resources.
Our MGPU-TSM system also works with a much larger main memory.

73

74

the existing MGPU systems, each GPU has its own local main memory and a GPU can

access a remote GPU’s main memory using a PCIe or NVLink connected with a switch.

However, MGPU-TSM provides all the CPU and GPUs in the system access to the entire

main memory of the system by reorganizing the memory modules and connectivity to the

memory modules.

Figure 3·2 shows the overall layout of our MGPU-TSM architecture. We provided a

dedicated write-through L1$ for each CU. All the L1$s are connected to the L2$s via a

crossbar network. For our proposed MGPU-TSM system, we make changes to the memory

hierarchy, starting from L2$, and including the main memory.

As mentioned earlier, GPUs typically have distributed L2$ banks, where each L2$ bank

is connected to one memory controller. Each memory controller controls a region of main

memory. However, this memory controller configuration is not designed appropriately for

an MGPU-TSM system. This is because all the GPUs in the MGPU-TSM system have

direct access to the entire main memory, so 4 memory controllers (one from each one of

the 4 GPUs) can simultaneously send requests to the same memory location, resulting in

load-after-store and store-after-load issues. What is lacking is the necessary control logic

to correctly order the memory requests coming from the 4 discrete memory controllers,

enforcing an ordering before sending the requests to the DRAM. To prevent this from

happening, we need to re-architect the memory controllers.

We move the memory controllers from the GPU side to the memory side and group

GPU GPU GPU GPU

MM MM MM MM

SWITCH

CPU

MM GPU GPU GPU GPU

MM MM MM MM

SWITCH

CPU

MM
(a) (b)

Figure 3·1: (a) Conventional MGPU system vs. (b) MGPU-TSM.

75

Switch

CPU

Cores

L1s

L2

LLC

GPU 1

CU CU ... CU

L1 L1 L1...

XBar

L2 L2...

GPU 1

CU CU ... CU

L1 L1 L1...

XBar

L2 L2...

GPU 1

CU CU ... CU

L1 L1 L1...

XBar

L2 L2...

GPU

CU CU ... CU

L1 L1 L1...

XBar

L2 L2...

............
HBM Stack

M
M
C DRAM

Directory

HBM Stack

M
M
C DRAM

Directory

HBM Stack

M
M
C DRAM

Directory

MEM

M
C DRAM

TSU

HBM Stack

M
M
C DRAM

Directory

HBM Stack

M
M
C DRAM

Directory

HBM Stack

M
M
C DRAM

Directory

MEM

M
C DRAM

TSU

GPU0

L2

GPU1

L2

GPU2

L2

GPU3

L2

MEM

ReqTracker

TSU

Switch

Figure 3·2: A high-level representation of our MGPU-TSM architecture
(left). The description of the TSU is provided in Section 4.2.6.

MCs from different GPUs that target the same main memory region into a unified MC.

Thus, we end up with 8 unified memory controllers from 32 normal memory controllers

for the entire system, where each MC manages 1/8th of main memory and connects to

the corresponding L2$ bank on the GPU side.2 In each unified memory controller, we

implement request tracker logic (see ReqTracker in Figure 3·2) that keeps track of in-flight

memory transactions. We implement MSHR-style logic in the ReqTrack design to track

the requests being serviced. This tracking ensures that load-after-store and store-after-load

issues across multiple GPUs are properly addressed for a given cache line. At any given

time, a memory controller can serve four different requests, which is the case if we have 4

separate memory controllers. The ReqTracker keeps track of the in-flight transactions using

a hash table. If a new request arrives for a cache line that is in-flight for another request,

the ReqTracker does not allow it to be scheduled and thus avoids potential load-after-store
2An MGPU-TSM system architecture with unified memory controllers can be implemented using 2.5D

integration or PCB-like integration, where the unified memory controllers are on a separate chiplet or chip,
respectively.

76

or store-after-load problems. The exact implementation of ReqTracker varies based on the

underlying memory consistency model which we discuss later in Section 4.2.5.

Each L2$ bank is connected to a switch (SW), with a dedicated bidirectional link. Each

memory controller is also connected to the switch by a bidirectional link. Thus, each mem-

ory access requires a two-hop communication in each direction, from the L2$ to the switch

and from the switch to memory controller for memory requests, and from the memory con-

troller to the switch and then from switch to L2$ for memory responses. The timestamp

storage unit (TSU) is also part of the memory controller. The TSU is an essential compo-

nent to maintain coherence in the MGPU system. The TSU’s operation will be described

in detail in Section 4.2.6.

The key advantage of our TSM lies in physically-unified main memory, which pro-

vides uniform memory access (UMA) across the system. This physically-unified design

completely eliminates remote accesses via RDMA, as well as CPU-to-GPU data transfers.

3.2 Evaluation Methodology

In this section, we describe the RDMA-based (MGPU-RDMA) and TSM-based (MGPU-TSM)

MGPU system configurations, the simulator used, and application benchmarks selected to

compare the two MGPU configurations.

3.2.1 MGPU System Configurations

Table 3.1 shows the architecture of each GPU in both MGPU-RDMA and MGPU-TSM configu-

rations. Both configurations leverage a relaxed memory consistency model, which allows

re-ordering of memory requests as long as there are no read-write dependencies between

the requests. There is no support for coherence at the hardware level and the program-

mer needs to be aware of potential coherence issues and write programs accordingly. Both

configurations use a write-back cache replacement policy for L2$. To maintain a fair com-

77

Table 3.1: GPU Architecture.

Component Configuration Count Component Configuration Count
per GPU per GPU
CU 1.0 GHz 64 L1 Vector $ 16KB 4-way 64
L1 Scalar $ 16KB 4-way 8 L1I$ 32KB 4-way 8
L2$ 256KB 16-way 8 DRAM 512MB HBM 8
L1 TLB 1 set, 32-way 48 L2 TLB 32 sets, 16-way 1

parison, we limit the total L2-to-main memory bidirectional bandwidth for MGPU-TSM to 32

GB/sec, as the RDMA transactions are limited by the 32GB/sec BW of PCIe in MGPU-RDMA.

Hence, in our MGPU-TSM evaluation, the total L2-to-main memory bandwidth for 4 GPUs

is limited to 128 GB/sec. By doing so, we highlight the true benefit of MGPU-TSM versus a

MGPU-RDMA implementation. We later evaluate the impact of the availability of higher band-

width interconnects, in terms of performance, for our MGPU-TSM system in Section 4.4.1.

3.2.2 Simulation Platform

We used the MGPUSim (Sun et al., 2019) simulator for our evaluation. MGPUSim has

been validated against real AMD MGPU systems (Macri, 2015; Sun et al., 2019). MG-

PUSim supports the MGPU-RDMA configuration. The MGPUSim simulator faithfully mod-

els the PCIe 4.0 interconnects used for the MGPU-RDMA configuration. We extended the

simulator and its memory hierarchy to support MGPU-TSM.

3.2.3 Standard Application Benchmarks

In terms of workloads, we use a mix of memory-bound and compute-bound bench-

marks. Our suite includes 11 workloads in total (see Table 3.2), selected from the Hetero-

Mark (Sun et al., 2016), PolyBench (Pouchet, 2012), SHOC (Danalis et al., 2010), and

DNNMark (Dong and Kaeli, 2017) benchmark suites. We use this suite to compare the

performance of MGPU-RDMA and MGPU-TSM. These 9 benchmarks have a memory footprint

of 64 MB or higher, which is more than 8⇥ the capacity of all the L2$’s of the 4 GPUs

combined (8MB). In addition, these benchmarks present a diverse range of sharing pat-

78

Table 3.2: Application benchmark suite used for evaluation. Memory rep-
resents the footprint of the GPU memory required by a benchmark.

Benchmark (abbr.) Suite Type Memory
Advanced Encryption Hetero-Mark Compute 71 MBStandard (aes)
Matrix Transpose and PolyBench Compute 64 MBVector Multiplication (atax)
Breadth First Search (bfs) SHOC Memory 574 MB
BiCGStab Linear Solver (bicg) PolyBench Compute 64 MB
Finite Impulse Response (fir) Hetero-Mark Memory 67 MB
Matrix Multiplication (mm) AMDAPPSDK Memory 192 MB
Matrix Transpose (mt) AMDAPPSDK Memory 128 MB
Rectified Linear Unit (relu) DNNMark Memory 67 MB
Simple Convolution (conv) AMDAPPSDK Memory 145 MB

terns across the GPUs. This helps stress the memory hierarchy and thoroughly compare

MGPU-RDMA and MGPU-TSM.

3.3 Evaluation Results

In this section, we compare the performance of the MGPU-RDMA and MGPU-TSM system.

As we can see from Figure 3·3, MGPU-TSM achieves 3.81⇥ better performance on average

versus MGPU-RDMA. The MGPU-TSM configuration benefits from two factors:

1. The physically unified shared memory of MGPU-TSM eliminates the need for the CPU-

to-GPU and GPU-to-CPU data transfers.

2. TSM is organized such that it eliminates remote data accesses, so avoiding costly

RDMA transfers.

To better characterize the performance differences between MGPU-TSM and MGPU-RDMA

when running individual benchmarks, for each workload we determine the number of

RDMA transactions that access remote L2$, and the number of DRAM transactions that

access the local DRAM. Note that some of the RDMA transactions cause the remote L2$

to send the request to the remote GPU’s main memory, if there are L2$ misses. Table 3.3

79

30

35

40
0G38-5D0A 0G38-T60

De
s
DtD
x bfs bic

g
cR
nv fiU PP Pt Ue

lu

G0
eD
n

BenchPDUks

0
2
4
6
8

6S
ee
G-
8
S

Figure 3·3: Speedup of our MGPU-TSM system w.r.t. a MGPU-RDMA system.

shows the number of RDMA and DRAM transactions per 100M instructions for each work-

load. First, every benchmark requires that the GPUs use remote accesses to collabora-

tively execute the applications. Second, the memory-bound benchmarks, which are mm,

bfs, relu, mt, and fir, clearly benefit the most from MGPU-TSM. Among these memory-

bound benchmarks, mm achieves the most performance benefit with MGPU-TSM because

mm has larger number of remote accesses than the number of main memory accesses with

MGPU-RDMA. Third, the compute-bound benchmarks, such as atax and bicg, benefit only

moderately from MGPU-TSM. These benchmarks have sufficient computations to hide most

the memory access latency. Nonetheless, all the benchmarks under study see some benefits

from MGPU-TSM, as compared to MGPU-RDMA. Finally, the DRAM transaction count to the

RDMA transaction count (D/R ratio) indicates the relative number of DRAM accesses for

each RDMA access for the benchmarks. The mm benchmark generates 1.5⇥ more RDMA

accesses than DRAM accesses, which implies that the mm benchmark suffers when using

RDMA, experiencing a high direct access penalty, even though a high percentage of RDMA

accesses result in cache hits in a remote L2$. Hence, we have fewer DRAM transactions

than RDMA transactions for mm.

80

Table 3.3: RDMA and DRAM transaction counts for MGPU-RDMA, per 100M
instructions.

Benchmark #RDMA #DRAM D/R Ratio
aes 494,16 1,903,438 3.85
atax 15,142,282 18,938,385 1.25
bfs 38,416 9,468,865 246.5
bicg 15,142,276 18,939,477 1.25
conv 3,652,412 17,915,660 4.91
fir 7,402,806 10,169,010 1.37
mm 4,961,351 3,301,306 0.67
mt 1,573,680 4,194,339 2.66
relu 1,652.258 4,405,017 2.67

Table 3.4: MGPU-TSM components obtained from publicly available prod-
uct specifications.

Component Name Tech. Node Area Power
(nm) (mm2) (W)

GPU RX 5700 7 151 180
CPU Ryzen 9 3950X 7 144⇤ 105

Memory HBM 2.0 14 92 21.4⇤
⇤ Determined through technology scaling rules.

3.4 Thermal Feasibility of MGPU-TSM

In this section, we provide an initial evaluation of thermal behavior of an MGPU-TSM

system to understand its thermal feasibility.

For this preliminary evaluation, we use an MGPU-TSM system consisting of 4 GPUs,

1 CPU and 4 HBM stacks, for a total of 32 GB memory. The specifications of the GPU,

CPU and HBM stacks are provided in Table 3.4. We used components that were recently

released on the market. We can leverage 2.5D integration technology to build this MGPU-

TSM system. The maximum manufacturable interposer size is 50mm ⇥ 50mm (Cochet

et al., 2014). As technology scales, we expect to see lower area and power for the future

CPU, GPU and memory with similar performance; hence, an MGPU-TSM system will be

easier to build.

To understand if our proposed MGPU-TSM system is viable, we evaluated the physi-

81

cal design and thermal behavior of the system. The detailed thermal-aware placement and

routing (Coskun et al., 2018) of different components are beyond the scope of this thesis.

However, we intuitively placed the components on the silicon interposer to evaluate the

thermal behavior at the maximum power scenario using Hotspot (Huang et al., 2006). Fig-

ure 3·4 shows the thermal map resulting from our intuitive placement. The center of the

interposer is the hottest part of the system. We, therefore, place the CPU between the GPUs

and spread out the HBMs in the remaining open space. We assumed a square-shaped chip

for the CPU and GPU.

Figure 3·4 shows that at the maximum power consumption, our intuitive placement

results in a maximum temperature of 88.6°C. Typical systems can tolerate temperature up

to 100°C. Hence, even our intuitive placement results in a viable system. Note that in our

analysis we do not consider any sophisticated cooling method such as liquid cooling which

is becoming common for high power density systems (Fan et al., 2018), (Gullbrand et al.,

2019), (Khalaj and Halgamuge, 2017). With the application of efficient liquid cooling

mechanism, we expect the temperature to be lowered. Hence, we can pack more GPUs or

HBMs onto the interposer and increase the throughput density (Flop/mm2) of the system.

3.5 Summary

The sizes of GPU applications are rapidly growing. They are exhausting the compute

and memory resources of a single GPU, and are demanding the move to multiple GPUs.

However, the performance of these DNN workloads scales sub-linearly with GPU count

because of the overhead of data movement across multiple GPUs. Moreover, a lack of

hardware support for coherence exacerbates the problem because a programmer must ei-

ther replicate the data across GPUs or fetch the remote data using high-overhead off-chip

links. To address these problems, we propose an MGPU system with true shared mem-

ory (MGPU-TSM), where the main memory is physically shared across all the GPUs. We

82

GPU GPU

GPU GPUCPU
H
B
M

H
B
M

HBM HBM

88.62

86.21

83.80

81.40

78.99

76.59

74.18

72.58

Figure 3·4: Thermal map for an MGPU-TSM system with 4GPUs, 1 CPU
and 4 HBM stacks on an interposer (50mm ⇥ 50mm) using 2.5D integration
technology.

eliminate remote accesses and avoid data replication using an MGPU-TSM system, which

simplifies the memory hierarchy. Our analysis shows that MGPU-TSM with 4 GPUs per-

forms, on average, 3.8⇥ better than the current best performing MGPU configuration for

standard application benchmarks.

Chapter 4

Coherence in MGPU-TSM

In the previous chapter, we demonstrated that our proposed MGPU-TSM system can

achieve 3.81⇥ average speed-up as compared to a contemporary MGPU system. To ease

the programmability and data sharing within and across multiple GPUs, we add efficient

and scalable intra-GPU and inter-GPU hardware coherence support for MGPU-TSM by

means of our new MGCC protocol. To present how it works, we assume an example

MGPU-TSM system with 4 GPUs. Our MGCC protocol is based on the G-TSC proto-

col (Tabbakh et al., 2018). To better understand MGCC, we first briefly explain the op-

eration of G-TSC protocol (Tabbakh et al., 2018), which has been proposed to maintain

coherence in a single GPU system. Afterwards, we explain our MGCC protocol in de-

tail and then, we present a thorough evaluation of an MGPU-TSM system with MGCC

protocol.

4.1 Timestamp-Based Coherence in a Single GPU System

G-TSC protocol assigns a logical timestamp (warpts) to each CU in the GPU. Table 4.1

provides definitions for the terminology used to describe the G-TSC and also our proposed

MGCC protocol.

Read Operation: A read request from a CU contains the warpts and the address. Each

block in the L1$1 has a read timestamp (rts) and write timestamp (wts). If the block is
1Throughout this paper, we use L1$ to refer to L1$ vector cache unless specified otherwise.

83

84

Table 4.1: Terminologies and definitions

Term Definition
physical time The wall clock time of an operation.
logical time The logical counter maintained by a component (e.g., CU

and cache).
warpts The current logical time of a CU. In the G-TSC protocol, the

memory operations are ordered based on the warpts.
cts The current logical time of a cache. Each cache has a cts

that is updated based on the last memory operation.
block An entry containing address, data, and associated times-

tamps in the caches.
wts The write timestamp of a cache block. It represents the logi-

cal time when a write operation is visible to the processors.
rts The read timestamp of a cache block. It represents the logical

time until which reading the cache block is valid.
lease The difference between rts and wts. The data in the cache

block is valid only if cts or warpts is within the lease.
RdLease Lease assigned to a block after a read operation is executed.
WrLease Lease assigned to a block after a write operation is executed.
memts The memory time stamp that represents the logical read

timestamp that the memory assigns to a cache block.

present in the L1$ and the warpts falls within the range between wts and rts (i.e. the

lease), the read request is considered a cache hit. Otherwise, the read request is treated as

an L1$ miss and is forwarded to the L2$. This read request to L2$ contains the address,

the wts of the block and the warpts. If the wts value for the request is set to 0, it means a

compulsory miss occurred at L1$, and L2$ must respond with the data and the timestamps.

A non-zero value for wts implies the block exists in L1$, but the timestamp expired.

Upon receiving a read request, the L2$ checks if it has the requested cache block. If

the block does not exist in the L2$, then the L2$ sends a read request to the MM. If the

warpts of the request from L1$ is within the lease for that block in the L2$, the L2$ also

compares the wts from the L1$ request and the wts of the block in the L2$. If both wts

values are the same, it means that the data was not modified by another CU and simply that

the lease expired in the L1$. In that case, the L2$ extends the lease by increasing the rts

and sends the new rts and wts values to the L1$. If the wts values do not match, it implies

that the data was modified by a different CU. Hence, L2$ sends both data and new rts and

85

wts to the L1$.

Write Operation: Write requests are handled using a write-though policy from L1$ to

L2$, and L1$ adopts a no-write-allocate policy. To have a write hit in a cache, the warpts

of the cache block needs to be within the lease of the requested cache block. Otherwise,

it is considered a write miss. When there is a write hit in the L1$, the data is written in the

L1$, but the access to the data is locked until L2$ is updated and L2$ sends the updated

timestamps to the L1$ for the data. It is necessary to lock access to the block to ensure that

the warpts is updated correctly using the wts value that the L1$ receives from the L2$.

Any discrepancy in updating warpts may result in an incorrect ordering of memory access

requests. If there is an L1$ write miss, the data is directly sent to the L2$ to complete

the write operation. For an L2$ write miss, the L2$ sends a write request to the MM. If

we get a write hit at L2$, the L2$ writes the data to the block in the L2$ and updates the

timestamps for that block. L2$ then sends the updated rts and wts values to the L1$.

For both read and write operations, the responses from L1$ to CU contain the wts value

from the most recent memory operation. Based on this wts value, CU updates its warpts.

4.1.1 Applicability of G-TSC Protocol in MGPU System

This G-TSC protocol (Tabbakh et al., 2018), which was designed for intra-GPU coherence,

cannot be readily applied to MGPU systems. Maintaining coherence across multiple GPUs

is more challenging as the L1$s of a GPU can only interact with their own L2$. We need

to maintain coherence across multiple L2$s in different GPUs as well as in the shared MM.

A straightforward extension of G-TSC would be to add timestamps to each block of data in

the MM, but that would lead to significant area overhead as we would need space to store

the timestamps of each block of data in the MM. G-TSC also needs to maintain a logical

time counter at the compute unit which needs to send timestamps i.e. warpts back and

forth between CUs and L1$s leading to additional traffic overhead.

86

4.2 MGCC Protocol for Coherence in MGPU-TSM

We define the MGCC protocol using a single-writer-multiple-reader (SWMR) invariant.

The terms used to explain the MGCC protocol are defined in Table 4.1. Unlike the G-TSC

protocol, we do not have a warpts but assign a timestamp cts to each of the L1$s and

L2$s. Each CU has a private L1$, hence the cts for an L1$ is equivalent to the warpts

in the G-TSC protocol. Managing timestamps at the caches allows us to reduce timestamp

traffic between the L1$ and CU as well as between the L1$ and L2$ by eliminating the

need for sending cts with requests and responses to maintain coherence as compared to

G-TSC protocol which sends warpts with every request. We adopt write-through (WT)

cache policy for L2$.2 The memory operations are ordered based on the logical time, in

particular, cts. If two requests have the same cts value, the cache uses physical time to

order them. The key idea is that the block is only valid in the cache if the cts is within

the valid lease period. Additionally, while G-TSC simply provides the same lease for

both reads and writes, we provide different lease values for reads and writes. By doing so,

we can exploit the temporal locality of data. To elaborate, each write operation moves the

logical time counter ahead by the write lease value. If we use the same lease for read as

for write, each write operation will lead to self-invalidation of the previously read block.

Figure 4·1 shows the transactions between CUs, L1$s, L2$s, and MM for read and write

operations. We explain these transactions with the help of Algorithms 1–5. We assume

sequential consistency for this illustration.

4.2.1 Read Operations

L1$: Figure 4·1a shows the transactions between a CU and the L1$ for read operations.

As shown in Algorithm 1, a cache hit at L1$ occurs only when there is an address (tag)
2We could have used write-back (WB) cache policy as well. However, it would require additional com-

plexity to handle the L2$ evictions and dirty data in the L2$ leading to additional traffic or stalling. We leave
that for future work.

87

RdReq{Addr}

{B}
Block != nil

Cts < Brts
Rd Hit

Block == nil
Comp. Miss

{B}

Block != nil
Cts > Brts

Coherency Miss{B}

CU L1

RdReq{Addr}

RdReq{Addr}

RdReq{Addr, Cts} ChkDir(Addr) = nil
Add2Dir(Addr)
Update Memts{B, Rts, Wts}

ChkDir(Addr) != nil
Update Memts

RdReq{Addr, Cts}

{B, Rts, Wts}

Block != nil
Cts < Brts

Rd Hit

Block == nil
Comp. Miss

RdReq{Addr}

Block != nil
Cts > Brts

Coherency Miss
{B, Rts, Wts}

L2

{B, Rts, Wts}

L1

RdReq{Addr}

{B, Rts, Wts}

RdReq{Addr}

L2 MM

WrReq{Addr, B}

{Ack}
Block != nil

Cts < Brts
Wr Hit

Block == nil
Comp. Miss

{Ack}

Block != nil
Cts > Brts

Coherency Miss{Ack}

CU L1

WrReq{Addr, B}

WrReq{Addr, B}

WrReq{Addr, B, Cts} ChkDir(Addr) = nil
Add2Dir(Addr)
Update Memts{Rts, Wts}

ChkDir(Addr) != nil
Update Memts

WrReq{Addr, B, Cts}Block != nil
Cts < Brts

Wr Hit

Block == nil
Comp. Miss

WrReq{Addr, B}

Block != nil
Cts > Brts

Coherency Miss
{Rts, Wts}

L2

{Rts, Wts}

L1

WrReq{Addr, B}

{Rts, Wts}

WrReq{Addr, B}

L2 MM

{Rts, Wts}

(a) (b) (c)

(d) (e) (f)

Figure 4·1: Transactions between (a) a CU and an L1$ for read operations,
(b) an L1$ and an L2$ for read operations, (c) an L2$ and the MM for read
operations, (d) a CU and an L1$ for write operations, (e) an L1$ and an L2$
for write operations, and (f) an L2$ and the MM for write operations.

match and the current timestamp, cts, is within the lease period of the cache block. If

there is a tag hit, but the cts is not within the lease period, we fetch the cache block from

L2$ with new rts and wts values. For an L1$ miss, we fetch the cache block with its rts

and wts values from L2$.

L2$: Algorithm 2 shows how read requests are handled by the L2$. The L2$ hit or miss

is similar to that of L1$. Figure 4·1b shows the transactions between the L1$ and the L2$

for read requests. If there is a cache hit and the lease is valid, the L2$ sends the cache

block, rts, and wts to the L1$. If there is a cache miss in the L2$, then the L2$ sends a

request to the MM. After fetching the cache block from MM, the L2$ responds to the L1$

with the cache block, rts, and wts. If there is a tag match, but cts is not within the lease

period in L2$, we re-fetch the data with new timestamps from the MM. This re-fetching

of data ensures coherence in case another GPU modified the data in the MM. Note that

G-TSC protocol only fetches renewed timestamps from L2$ if data has not been modified

88

Algorithm 1: Read Request to L1
Initialization: cts = 0;
Fetch RdReqFromCU{Addr};
if Block(Addr) == nil or cts > rts(Block) then

Send RdReqToL2{Addr};
Fetch RspFromL2{Data, rts, wts};
Bwts = max[cts, wts];
Brts = max[wts + 1, rts];
Send RspToCU{Block{Data}};

else if cts <= rts(Block) then
Send RspToCU{Block{Data}};

Algorithm 2: Read Request to L2
Initialization: cts = 0;
Fetch RdReqFromL1{Addr};
if Block(Addr) == nil or cts > rts(Block) then
 Send RdReqToMM{Addr};
 Fetch RspFromMM{Data, Mrts, Mwts};
 Bwts = max[cts, Mwts];
 Brts = max[wts + 1, Mrts];
 Send RspToL1{Block{Data, Brts, Bwts}};
else if cts <= rts(Block) then
 Send RspToL1{Block{Data, Brts, Bwts}};

Algorithm 4: Write Request to L1

Algorithm 3: Read or WriteRequest to MM
Initialization: Memts = 0;
Fetch RdReqFromL1{Addr};
if TSU(Addr) == nil then
 AddEntryToTSUBlockAddr;
if Req==ReadReq then
 MemtsEntry = memts + RdLease;
 Mrts = MemtsEntry; Mwts = Mrts - RdLease;
else if Req==WriteReq then
 MemtsEntry = memts + WrLease;
 Mrts = MemTsEntry; Mwts = Mrts - WrLease;
Send RspToL2{Block{Data, rts, wts}};

Algorithm 5: Write Request to L2
Initialization: cts = 0;
Fetch WrReqFromL1{Addr};
if cts <= rts(Block) then
 WriteToBlock;
 LockAccesstoBlock;
 Send WrReqToMM{Addr};
 Fetch RspFromMM{Mrts, Mwts};
 Bwts = max[cts, Mwts];
 Brts = max[wts+1, Mrts];
 cts = max[cts, Bwts];
 UnlockAccessToBlock;
 Send RspToL1{Block{Data, Brts, Bwts}};

else
 Send WrReqToMM{Addr};
 Fetch RspFromMM{Block, rts, wts};
 WriteBlockToCache;
 Bwts = max[cts, wts]
 Brts = max[wts+1, rts];
 cts = max[cts, Bwts];
 Send RspToL1{Block{Data, Brts, Bwts}};

Initialization: cts = 0;
Fetch WrReqFromCU{Addr};
if cts <= rts(Block) then

WriteToBlock;
LockAccesstoBlock;
Send WrReqToL2{Addr};
Fetch RspFromL2{rts, wts};
Bwts = max[cts, wts];
Brts = max[wts+1, rts];
cts = max[cts, Bwts];
UnlockAccessToBlock;
Send RspToCU{Block{Data}};

else
 Send WrReqToL2{Addr};
 Fetch RspFromL2{Block, rts, wts};
 WriteBlockToCache;
 Bwts = max[cts, wts]
 Brts = max[wts+1, rts];
 cts = max[cts, Bwts];
 Send RspToCU{Block{Data}};

Algorithm 4: Write Request to L1

by another CU. However, such re-fetching requires CUs or L1$s to send the warpts with

each request (which we eliminated to reduce traffic) and adds more complexity when we

deal with a deeper memory hierarchy.

MM: Figure 4·1c shows the transactions to and from the MM for read requests from the

L2$. Algorithm 3 explains how a read request from the L2$ is handled by the MC. The

MM tracks the timestamp of each block accessed by the L2$s of all the GPUs using the

TSU. The TSU stores the read address and the timestamp (memts) of the block, but not

data itself. memts is used to keep track of the lease of a block sent to the L2$s. If there

is no entry for the requested address in the TSU (i.e., the block has never been requested

by the L2$s), it adds the address and then updates the memts of the block using the Mrts
3

allocated for the read operation. If there is already an entry in the TSU for the requested

address, the TSU extends the memts of the entry using the Mrts for the read operation.

4.2.2 Write Operations

L1$: Figure 4·1d shows the transactions that take place for write requests to the L1$.

We adopt a write-through (WT) cache policy for both the L1$s and L2$s. Algorithm 4
3Read timestamp, Mrts and write timestamp, Mwts are design parameters for the MGCC protocol; de-

pending on the implementation, these values can be statically or dynamically assigned.

89

illustrates how write requests to L1$ are handled. Due to the WT policy, a write request to

L1$ triggers a write request from L1$ to L2$, irrespective of a cache hit or miss. If the cts

is within the lease, it is a write hit. In case of a write hit, the data is written immediately

to the cache block in the L1$ and a write request is sent to the L2$. Access to the block

is locked until the L1$ receives a write response, along with the new timestamps, from the

L2$. The access is locked by adding an entry to the miss-status-holding-register (MSHR).

In the case of a write miss in the L1$, the L1$ sends the request to the L2$. Once the L2$

returns both the block and its timestamps to the L1$, the L1$ writes data to the appropriate

location and updates its cts.

L2$: Figure 4·1e shows the transactions that take place for write requests to the L2$s.

Algorithm 5 demonstrates how a write request to the L2$ is serviced. As we are using a

WT policy for the L2$, a write request to the L2$ triggers a write request from the L2$

to the MM, irrespective of whether the access is a cache hit or miss. Again, the cache hit

and miss conditions are the same as in the case of the L1$. If the access is a cache hit,

the data is written to the block in the L2$ and a write request is sent to the MM. The L2$

updates the timestamp of the cache block using the response that it receives from the MM.

The access to the block is locked until the write response and the timestamps are received

from the MM. If the L2$ access results in a cache miss, L2$ sends a write request to the

MM. The write request includes the data and address. The MM sends a response with the

block and updated timestamps. Next, the L2$ issues a write to the block and updates its

timestamps using the response from the MM.

MM: Figure 4·1f shows the transactions to and from the MM for a write request from

the L2$. Algorithm 3 explains how a write request from the L2$ is serviced by the MC.

If there is no matching entry for the requested address in the TSU, then the TSU adds the

address and updates the timestamp of the block using the lease for the write operation. If

90

CU0 L1 L2 MM L2 CU1
Rd(X) Rd(X)

6

[X=1,0,10]
5

Rd(X)

[X=1] [X=1,0,10]
0,10

X

[Y=2]

0,10
X

L1

10
X

Wr(Y)20

[Y=5,8,12]

[Y=5,8,12]
8,12

Y
8,12

Y

Y
12

0,7
Y

Wr(Y) Wr(Y)

8,12
Y

{0}

{8}

{0}

{8}

Rd(Y)Rd(Y)Rd(Y)

[Y=2,0,7]
0,7
Y

X
0,10

0,7
Y

7
Y

Wr(X)Wr(X)Wr(X)

[X=3,11,15]
11,15

X
11,15

X

15
X [X=3,11,15]

11,15
X

Rd(X)

[X=1]
{8}

{11}{11}

Rd(Y)
[Y=5,8,12]

Rd(Y)

8,12
Y{11}

{11}

[Y=5]
{11}

{0} {0}

GPU0, CU0
I0-1: Read X
I0-2: Write Y=5
I0-3: Read X

GPU0, CU1
I1-1: Read Y
I1-2: Write X=3
I1-3: Read Y

[Y=2,0,7]

18

(a)

08

14

21

30

34

09

13

22

26

31

33

01 02 03 04

050607

1011

12

15 16 17 18

1920

2324

25

27 28 Hit

29

32Hit

CU0 L1 L2 MM L2 CU0
Rd(X) Rd(X)

6

[X=1,0,10]
5

Rd(X)

[X=1] [X=1,0,10]
0,10

X

[Y=2]

0,10
X

L1

10
X

Wr(Y)20

[Y=5,8,12]

[Y=5,8,12]
8,12

Y
8,12

Y

Y
12

Wr(Y) Wr(Y)

{0}

{8}

{0}

{8}

Rd(Y)Rd(Y)Rd(Y)

[Y=2,0,7]
0,7
Y

0,7
Y

7
Y

Wr(X)Wr(X)Wr(X)

[X=3,11,15]

11,15
X

11,15
X

15
X [X=3,11,15]

Rd(X)

[X=1]
{8}

{11}

Rd(Y)
[Y=5,11,19]

Rd(Y)

11,19
Y

{11}

{11}

[Y=5]

{11}

{0} {0}

GPU0, CU0
I0-1: Read X
I0-2: Write Y=5
I0-3: Read X

GPU1, CU0
I1-1: Read Y
I1-2: Write X=3
I1-3: Read Y

[Y=2,0,7]

18

(b)

08

14

21

30

36

09

13

22

26

31

35

01 02 03 04

050607

1011

12

15 16 17 18

1920

2324

25

27 28 Hit

29

3233 Rd(Y)

34

11,19
X [Y=5,11,19]

Figure 4·2: The timeline for (a) the intra- and (b) inter-GPU coherence. []
represents response traffic in [Data, wts, rts] or [Data] format, {} repre-
sents the updated cts of a cache. In (a), the two L2$ instances refer to the
same physical L2$.

there is an entry present in the TSU for the requested address, the MM increases the memts

of the entry using the lease for a write operation.

4.2.3 Intra-GPU Coherence

We use instruction sequences identical to those described by Tabbakh et al. (Tabbakh et al.,

2018) to explain both intra-GPU and inter-GPU coherence using MGCC. Here, we first

present how intra-GPU coherence is maintained using our MGCC protocol. Figure 4·2(a)

shows the instructions and the sequence of steps for maintaining intra-GPU coherence. In

this example, we have two compute units, CU0 and CU1. Both CU0 and CU1 belong

to GPU0. Each CU has a private L1$, but the L2$ is shared between the two CUs. In

Figure 4·2(a), we show two L2$s for the sake of explanation, but both L2$s are the same

L2$. CU0 executes 3 instructions, I0-1, I0-2, and I0-3, which read location [X], write to

location [Y] and read location [X], respectively. Similarly, CU1 executes 3 instructions,

I1-1, I1-2, and I1-3, which are: read location [Y], write location [X], and read location

91

[Y], respectively. Both L1$ and L2$ have initial cts values of 0. 01 to 34 correspond to

different memory events that occur during the execution of the three instructions. At 01 ,

CU0 issues a read to location [X]. This request misses in the L1$. So at 02 , the L1$ sends

a read request to L2$. As the request misses in L2$ as well, the L2$ sends a read request to

the MM at 03 . At 04 , the MM sends the response to the L2$ with rts and a wts values

of 10 and 0, respectively (we choose these values for the timestamps just as an example.

Our protocol works correctly for any values of rts and wts). Based on the cache block

and the timestamps received from MM, at 05 L2$ updates its cts, the block’s rts and

wts, and responds to L1$ with the updated rts and wts values, along with the cache block.

Similarly, the L1$ updates its cts, and rts and wts values for the cache block at 06 . The

CU finally receives the data from L1$ at 07 . Instruction I1-1 from CU1 issues a read from

location [Y] and follows the same steps as I0-1. The CU1 receives the data through steps

08 to 14 . We assume a different timestamp values (wts= 0, rts= 7) for location [Y] in

this example.

CU0 requests to write to location [Y] at 15 . The write request from a CU is served by

the MM, regardless of whether it is a cache hit at L1$ or L2$ as the MM is responsible for

updating the lease for a cache block to maintain global visibility of updates. At 16 , the

L1$ of CU0 sends a write request to L2$. This results in a cache hit at L2$ as the location

[Y] was previously read by CU1 and cts  rts. At 17 , the L2$ sends a write request to

the MM for location [Y]. The MM updates the value and timestamps for location [Y]. We

assume a lease of 5 for write operations in this example, but the protocol can work with

any value of the lease. At 18 , the MM sends the response with rts= 12 and wts= 8 for

the block containing [Y] to the L2$. Then the L2$ updates the timestamps for [Y] and

sets cts= 8 at 19 and sends the updated timestamps to the L1$ of CU0. At 20 , the L1$

updates the timestamps for the block containing [Y] and the associated cts= 8. Note that

we do not show the actions to lock and unlock a block in the diagram for clarity. Every

92

write request to a block in the cache must lock access to the block in both L1$ and L2$

until receiving a response from the MM. At step 21 , there is a write request (I1-2) from

the CU1 at location [X]. This follows the same steps followed by I0-2. The response to

the write request is executed in steps 22 to 26 . Now, both L1$ and L2$ of CU1 have a

cts value of 11 after completing the write request to location [X]. At 27 , there is a read

request for location [X] from CU0. At 28 , the cts value is 8 and the block for location

[X] has a rts value of 10. Hence, it is a cache hit in L1$. Note that the advantage of using

a logical timestamp is that it allows the scheduling of a memory operation in the future by

assigning a larger wts value. Hence, the previous write on [X] by CU1 will be visible later

to L1$ of CU0 as it has a cts value lower than the assigned wts value to the block for the

write request by CU1 at 24 . Since the cts of the L1$ of CU0 is smaller than the cts value

of the L1$ of CU1 at this point, the read by CU0 of the L1$ happens before the write by

the L1$ of CU1. The data is sent to CU0 by L1$ at 29 . At 30 , CU1 sends a request to

read location [Y]. This request creates a coherence miss in L1$. This is because the cts is

11, but the block for location [Y] has a rts of 7. At 31 , L1$ sends a read request to L2$.

This request results in a cache hit at L2$, since L2$ has a cts value of 11 and the block

for [Y] has rts= 12 and wts= 8. The execution order of the instructions in this example

is I0-1! I1-1! I0-2! I0-3! I1-2! I1-3.

4.2.4 Inter-GPU Coherence

In this example, we use the same instructions as in the previous example for intra-GPU

coherence. CU0 of GPU0 executes instructions I0-1, I0-2, and I0-3. However, instructions

I1-1, I1-2, and I1-3 are executed by the CU0 of GPU1 in this example. Thus, we have two

different L2$s, one connected to GPU0 and one connected to GPU1. Figure 4·2b shows the

instructions and the sequence of execution for explaining inter-GPU coherence. The read

request from CU0 of GPU0 to read location [X] and read request from CU0 of GPU1 to

read location [Y] follow the exact same steps (steps 01 - 14) as in the case of intra-GPU

93

coherence. The write request from CU0 of GPU0 at 15 and the write request from CU0 of

GPU1 at 21 are also handled in the same manner as in the case of intra-GPU coherence.

The only difference is that the data for the write of [X] and for the write of [Y] reside in

different L2$s. The read request (I0-3) by CU0 of GPU0 at 27 still produces a cache hit in

L1$. The read request issued by CU0 of GPU1 (I1-3) results in a different set of execution

steps. This is because at 32 , there is no longer an L2$ hit, as the lease (rts= 7, wts= 0)

expired for a cts= 11. Hence the data for [Y] has to be fetched from the MM. The MM has

the updated value written by CU0 of GPU0. This value is received by CU0 of GPU1, and

thus it becomes coherent with CU0 of GPU0. The execution order for both the instructions

in this example is again I0-1! I1-1! I0-2! I0-3! I1-2! I1-3.

4.2.5 Request Tracker Operation

The request tracker (ReqTrack) logic (illustrated in Figure 3·2) is physically implemented

in hardware. It works as the first stage of the MC that receives requests from 4 different L2$

banks. Upon receiving multiple requests it compares the timestamp of the received requests

and place the requests in ascending order of timestamp values in a buffer to be served by

the MC. Thus, it helps maintain sequential consistency based on both physical and logical

time order as it considers the physical time of the arrival of request and then logical time

for responding to the requests. For relaxed consistency model, it allows reordering cache

blocks with same timestamps or an independent block with smaller wts for read operations

as read operation on independent cache block is permissible under RC.

4.2.6 TSU Implementation

The TSU is physically placed between the ReqTrack and MM in the same chiplet or chip

that houses the memory controllers. We could have chosen to place the TSU in the DRAM

layers, but this would increase memory access latency. We designed the TSU as an 8-way

set associative cache. The TSU needs to store the memts for all of the blocks in all the L2$s

94

in the MGPU system. We use 16 bits for each memts. Since we have 8 distributed L2$

modules in each GPU, each way of the TSU keeps track of the timestamps of the cache

blocks in one of the L2$ modules. For example, for an MGPU with a 2MB L2$ per GPU,

we need 64KB of space for the timestamps in the TSU for each GPU. As TSU logic only

searches for the presence of the timestamp of a block and generates or updates timestamps,

the latency for accessing the TSU is identical to a L3$ hit time of 40 cycles (Levinthal,

2009). We conservatively assume a 50 cycle access latency for TSU.

Figure 4·3 shows the operation of the TSU. A request from the memory controller is

sent to the TSU and the DRAM layer in parallel. The TSU responds with the timestamp

for the cache block, and in parallel with the DRAM layer, responds with the cache block.

Thus, the TSU never impacts the critical path of the DRAM access, and so does not add any

performance overhead. The eviction of TSU entries is related to the eviction of L2$ entries.

When there is an eviction from the L2$ of a GPU, the TSU also evicts the timestamp for

that cache block if it is not shared with other GPUs. The TSU logic determines the block

sharers using the memts value (if the value of memts is greater than one lease period, it is

assumed to be shared). In case the TSU is full, the TSU evicts the cache block with lowest

memts value.

MMC

L2 Cache

...

TSU Main Memory

50 cycles 100 cycles
Request Path

Response PathAck

Lookup path

Figure 4·3: Time Stamp Unit (TSU). The TSU operates independently and
in parallel with the memory access.

95

4.2.7 Timestamp Design

We use 16-bit fields for each one of the timestamps, rts and wts. We need 1KB of storage

for each L1$ of size 16KB and 8KB of storage per L2$ of size 256KB for holding the read

and write timestamps. For each cache timestamp (cts), we use 64 bits. For an example

GPU with 64 CUs, the GPU requires a total of 72 cts entries (64 for the 64 private L1$s

belonging to each CU and 8 for the L2$). Hence, we need a total of 576B (512B for all

L1$ and 64B for 8 L2$) to represent all the cts values for the entire GPU.

Assuming 64B cache block size, 4B for ACK, 4B for metadata and 8B address, from

L2$ to L1$ or from MM to L2$, MGCC increases the network traffic by 5% and 5.26% for

each read response and each write response, respectively. For each read and each write re-

quest from L2$ to MM, MGCC introduces 16.7% and 2.63% additional traffic, respectively.

If the timestamp value overflows, instead of flushing the cache, we simply re-initialize the

timestamps to 0. This re-initialization results in a cache miss for one of the cache blocks.

However, given we are using a write-through policy for writes in both L1$ and L2$, there

is no chance of losing data belonging to the cache block experiencing the overflow. We just

need to do an extra MM access.

In summary, MGCC has the following novelties:

• MGCC replaces CU-level timestamps with cache-level timestamps to reduce CU-to-

L1 traffic.

• MGCC introduces a novel request tracker in hardware to address load-after-store and

store-after-load orderings.

• MGCC implements a novel TSU to keep track of the timestamp values of the cache

block and the TSU is efficiently accessed such that it does not add any performance

overhead.

96

• Unlike G-TSC, MGCC eliminates the logic to extend the lease to simplify the coher-

ence protocol and help reduce request traffic.

4.3 Evaluation Methodology

In this section, we describe the evaluation methodology for the proposed MGCC protocol

that provides intra- and inter-GPU hardware coherence support for MGPU-TSM. We use

the MGPUSim simulator and standard benchmarks as described in Section 3.2. We describe

the MGPU-TSM system configurations4, simulation platform and synthetic benchmarks

to stress test the MGCC protocol in this section. For individual GPUs, the specification

remains same as shown in Table 3.1.

4.3.1 MGPU System Configurations

We evaluate the following different MGPU configurations to evaluate the MGCC protocol:

1. MGPU-TSM system with WB L2$, no coherence and relaxed consistency

(TSM-WB-NC-RC).

2. MGPU-TSM system with WT L2$, no coherence and relaxed consistency

(TSM-WT-NC-RC).

3. MGPU-TSM system with WT L2$, MGCC-based coherence and relaxed consistency

(TSM-WT-C-RC).

4. MGPU-TSM system with WT L2$, MGCC based coherence and sequential consis-

tency (TSM-WT-C-SC).

5. MGPU system with RDMA, HMG (Ren et al., 2020) coherence and scope-based

consistency (HMG) 5.
4To name the MGPU systems we use the following notation: C = cache-coherence support, NC = No

coherence support, WT = L2$ with write-through policy, and WB = L2$ with write-back policy.
5HMG is the most recently proposed solution for efficient HW cache-coherent support in MGPU systems.

97

The TSM-WB-NC-RC and TSM-WT-NC-RC configurations are used to compare L2$ write-

back (WB) policy with L2$ write-through (WT) policy in a MGPU-TSM system. This

comparison is necessary to understand the impact of changing L2 cache write policy from

write-back to write-through, which is a necessary condition for our proposed MGCC pro-

tocol. We compare the TSM-WT-NC-RC and TSM-WT-C-RC configurations to determine the

overhead of MGCC coherence protocol. The TSM-WT-C-SC highlights the impact of strict

sequential consistency protocol as compared to the relaxed consistency protocol. The

MGPU system with HMG represents the most recently proposed solution that uses a VI-

based coherence protocol to improve performance of RDMA-based MGPU system. In the

case of HMG, to maintain coherence, each GPU’s L2$ is connected to the RDMA engine to

send a remote request as the HMG protocol uses RDMA via L2$. For RDMA connections

between L2$ and MM, we use PCIe 4.0 links. To maintain fairness of comparison, we pro-

vide all the variable system-level scope for the HMG as all the MGPU-TSM configurations

provide coherence support across the entire memory hierarchy.

4.3.2 Simulation Platform

We extended the MGPUSim simulator and the memory hierarchy of GPUs to support

MGCC. We verified our implementation of MGCC using unit, integration, and acceptance

tests provided with the simulator. We also extended the simulator to support the HMG

protocol by implementing a hash function that assigns a home node for a given address,

directory support for tracking sharers and invalidation support for sending messages to the

sharers as needed.

4.3.3 Synthetic Benchmarks

We use standard application benchmarks (see Section 3.2.3) as well as synthetic bench-

marks to evaluate our MGCC protocol. The publicly available benchmark suites mentioned

in Section 3.2.3 have been developed considering the lack of hardware-level coherence sup-

98

port in GPUs. Hence, these benchmarks cannot necessarily harness the potential benefit of

the hardware-level coherence protocol like MGCC. To stress test our MGCC protocol, we

develop a synthetic benchmark suite called Xtreme. There are three benchmarks in the

Xtreme suite6. All the benchmarks in the Xtreme suite perform a basic vector operation:

C = A+B, where A, B and C are floating point vectors. We describe the basic opera-

tion of the Xtreme benchmarks with a simple example. For each example, we assume the

following:

1. There are two GPUs: GPUX and GPUY .

2. Both GPUX and GPUY are equipped with two CUs each: CUX0, CUX1, and CUY 0

and CUY 1, respectively.

3. There are three vectors A, B and C that are used to compute C = A+B using both

GPUX and GPUY .

4. Each of the three vectors, A, B and C, are split into 4 slices: A0, A1, A2 and A3; B0,

B1, B2 and B3; and C0, C1, C2, and C3.

5. At the beginning of the program, CUX0 reads A0, B0, and C0; CUX1 reads A1, B1,

and C1; CUY 0 reads A2, B2, and C2; CUY 1 reads A3, B3, and C3.

The three Xtreme benchmarks work as follows:

Xtreme1

1 CUX0 performs C0 = A0 +B0; Similarly, CUX1 operates on A1, B1 and C1; CUY 0 oper-

ates on A2, B2 and C2; and CUY 1 operates on A3, B3 and C3.

2 Repeat step 1 10 times.
6All the benchmarks in the Xtreme suite perform repeated writes to and reads from the same location.

This extreme behavior is typically uncommon in regular GPU benchmarks, and so the name Xtreme.

99

3 CUX0 performs A0 = C0 +B0; Similarly, CUX1 operates on A1, B1 and C1; CUY 0 oper-

ates on A2, B2 and C2; and CUY 1 operates on A3, B3 and C3.

4 Repeat step 3 10 times.

With Xtreme1, we evaluate the impact of consecutive writes to the same location by a

CU. There is no data sharing between the CUs or the GPUs. When there is a write to any

location, the corresponding, current logical time (cts) of the L1$ and L2$ step ahead and

generate read misses. Steps 2 and 4 force coherence misses in the caches.

Xtreme2

1 CUX0 performs C0 = A0 +B0; Similarly, CUX1 operates on A1, B1 and C1; CUY 0 oper-

ates on A2, B2 and C2; and CUY 1 operates on A3, B3 and C3.

2 CUX0 performs A1 = C1 +B1;

3 Repeat step 2 10 times.

4 Repeat step 1

With Xtreme2, we stress test MGCC for intra-GPU coherence. There is a SWMR invariant

dependency between CUX0 and CUX1 at 2 , CUX0 writes to a location that was previously

read by CUX1. Step 3 forces coherence misses.

Xtreme3

1 CUX0 performs C0 = A0 +B0; Similarly, CUX1 operates on A1, B1 and C1; CUY 0 oper-

ates on A2, B2 and C2; and CUY 1 operates on A3, B3 and C3.

2 CUX0 performs A3 = C3 +B3;

3 Repeat step 2 10 times.

4 Repeat step 1

With Xtreme3, we stress test MGCC for inter-GPU coherence. The difference between

Xtreme2 and Xtreme3 is that at 2 CUX0 writes to a location that was previously read by

CUX1 and CUY 1, respectively.

100

In our evaluation, we vary vector sizes from 384KB to 24MB for A, B and C so that we

can examine the impact of capacity misses at different levels of the memory hierarchy.

4.4 Evaluation

In this section, using standard benchmarks and synthetic benchmarks, we discuss the im-

pact of the MGCC protocol on the MGPU-TSM .

4.4.1 Standard Application Benchmarks

In this section we evaluate the impact of the MGCC protocol using the standard applica-

tion benchmarks. Then, we present a more in depth evaluation of MGCC using Xtreme

benchmark suite which contains the applications that require coherence.

Figure 4·4a shows the speedup for different MGPU configurations, as compared to

TSM-WB-NC-RC. We compare 4 different MGPU-TSM configurations: TSM-WB-NC-RC,

TSM-WT-NC-RC, TSM-WT-C-RC and TSM-WT-C-SC assuming a 4-GPU system.7 We use a

WrLease of 5 and a RdLease of 10 for this evaluation.8 On an average, the TSM-WT-NC-RC,

TSM-WT-C-RC, and TSM-WT-C-SC configurations achieve a 0.98⇥, 0.97⇥, and 0.79⇥ the

TSM-WB-NC-RC performance, respectively.

WB vs. WT

As mentioned before, our MGCC protocol requires L2$ to be write-through to ensure a

simpler timestamp-based coherence protocol. Hence, we compare the TSM-WB-NC-RC and

TSM-WT-NC-RC configurations and observe that TSM-WT-NC-RC achieves 98⇥ the perfor-

mance, on average, as that of the TSM-WB-NC-RC. From Figure 4·4b and Figure 4·4c, we

see that for these two configurations, we have similar L1 and L2 cache miss rates. How-

ever, Figure 4·4d shows that the average cache access latency (ACAL) for L1$ increases
7An evaluation of an MGPU-TSM system with 8 GPUs and 16 GPUs is presented later in this section.
8Please refer to Section 4.4.2 for details on why we choose these lease values.

101

ae
s
aWa
x bfs bic

g
cR
nv fiU mm mW Ue

lu

G0
ea
n

BenchmaUNs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

6S
ee
G-
8
S

T60-WB-1C-RC
T60-WT-1C-RC

T60-WT-C-RC
T60-WT-C-6C

(a)

ae
s

aWa
x bfs bLc

g
cR

nv fLr mm mW
re

lu

G0ea
n

BenchmarNs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

1
Rr

m
al

Lz
eG

 #
L1

 0
Ls

s

T60-WB-1C-RC
T60-WT-1C-RC

T60-WT-C-RC T60-WT-C-6C

(b)

ae
s

aWa
x bfs bLc

g
cR

nv fLr mm mW
re

lu

G0ea
n

BenchmarNs

0

1

2

3

4

5

1
Rr

m
al

Lz
eG

 #
L2

 0
Ls

s

TS0-WB-1C-5C
TS0-WT-1C-5C

TS0-WT-C-5C TS0-WT-C-SC

(c)

ae
s

aWa
x bfs bLc

g
cR

nv fLr mm mW
re

lu

G0ea
n

BenchmarNs

0

1

2

3

4

5

1
Rr

m
al

Lz
eG

 L
1

La
We

nc
y

TS0-WB-1C-5C
TS0-WT-1C-5C

TS0-WT-C-5C TS0-WT-C-SC

(d)

ae
s

aWa
x bfs bLc

g
cR

nv fLr mm mW
re

lu

G0ea
n

BenchmarNs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1
Rr

m
al

Lz
eG

 L
2

La
We

nc
y

TS0-WB-1C-5C
TS0-WT-1C-5C

TS0-WT-C-5C TS0-WT-C-SC

(e)

De
s

DWD
x bfs bic

g
cR

nv fir mm mW
re

lu

G0eD
n

BenchmDrNs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

1
Rr

m
Dl

iz
eG

 #
D

R
A0

 T

rD
ns

Dc
WiR

ns

T60-WB-1C-RC
T60-WT-1C-RC

T60-WT-C-RC T60-WT-C-6C

(f)

Figure 4·4: Comparison across different MGPU-TSM configurations. The
results are normalized w.r.t. the TSM-WB-NC-RC

for TSM-WT-NC-RC compared to TSM-WB-NC-RC. This happens because of the write opera-

tions. With WB policy, L2$ sends the write acknowledgement signal to the L1$. However,

with the WT policy, the MM has to send the write acknowledgement to the L2$ and then

L2$ sends the write acknowledgement to the L1$. Thus, the L1$ ACAL increases. The

same phenomenon is responsible for increased L2 cache access latency for benchmarks in-

cluding aes, atax, bfs, mm, and mt as observed from Figure 4·4e. Figure 4·4e also shows

some benchmarks such as conv, fir and relu have lower L2$ ACAL for WT as compared

102

to WB. For a read or write miss in the L2$ with a WB policy, first, the L2$ performs a

write to MM to generate a cache eviction if there is either a conflict or capacity miss. Only

then the L2$ can service the pending read or write transactions. The L2$ generating the

WB becomes a bottleneck when there are frequent cache evictions. This is why conv, fir

and relu have lower L2$ ACAL for WT. Consequently, L1$ with WT, on average, suffers

from 7.1% increased ACAL for WT, whereas L2$ achieves 13.0% lower ACAL for WT

compared to WB.

Coherence Overhead

Now, we analyze the TSM-WT-C-RC configurations versus the TSM-WT-NC-RC configura-

tions to understand the impact of introducing the MGCC protocol for relaxed consistency

model. From Figure 4·4(a), we observe that there is only 1% performance gap between the

TSM-WT-NC-RC and TSM-WT-C-RC configurations. Two factors are primarily responsible

for this low overhead:

1. Under the existing relaxed consistency model, the read and write requests for dif-

ferent cache lines can be reordered unless the programmer puts explicit barrier. As

these existing workloads already have the required barriers for both TSM-WT-NC-RC

and TSM-WT-C-RC, we do not see much performance degradation due to MGCC.

2. Most of the benchmarks are streaming in nature and we chose data sizes signifi-

cantly larger than the total L2$ capacity of all GPUs combined. Hence, there are

significantly more frequent capacity misses in the L1 and L2 caches compared to the

coherence misses.

From Figure 4·4a, we observe that TSM-WT-C-SC has, on average, 19.0% lower per-

formance than the TSM-WT-C-RC. As sequential consistency prohibits reordering of mem-

ory operations, we see the additional performance overhead. For both TSM-WT-C-RC and

TSM-WT-C-SC, we observe similar increase (average increase of 1.92% L1$ and 0.4% L2$

103

misses for TSM-WT-C-RC, and 2.15% L1$ and 0.1% L2$ misses for TSM-WT-C-SC) com-

pared to TSM-WT-NC-RC in cache misses because of the MGCC protocol as shown in Fig-

ure 4·4b and 4·4c. However, Figure 4·4d and 4·4e show that the L1$ ACAL, on average,

increases by 31.2%, whereas L2$ ACAL decreases by 11.8% for TSM-WT-C-SC compared

to TSM-WT-C-RC. Note that the relation between the speed-up is not necessarily linearly

dependent on ACAL. This is because ACAL measures average cache access latency and

with the introduction of MGCC the number of cache accesses also increase, which can

result in lower ACAL. For TSM-WT-C-SC, in Figure 4·4f, we observe slightly lower (on av-

erage, 2.7%) DRAM transaction count as compared to TSM-WT-C-RC. This is because the

MC for TSM-WT-C-SC is capable serving multiple requests with a single access to DRAM.

Since multiple requests can stay pending for the same cache block, any pending read-after-

write request can be served along with the previous write request and we do not take those

transactions into account for DRAM transaction count.

To sum up, despite the additional overhead introduced by the MGCC protocol, the

TSM-WT-C-RC and TSM-WT-C-SC, on average, achieve a speed-up of 3.7⇥ and 3⇥, respec-

tively in comparison to existing non-coherent MGPU system with RDMA (evaluated in

Section 3.3).

TSM-WT-C-RC vs. HMG

We compare the performance achieved from our proposed coherent MGPU-TSM system

to the performance achieved by the most recently proposed MGPU system HMG coherence

protocol. To make this comparison fair, we use relaxed consistency for MGPU-TSM with

MGCC. Figure 4·5 shows that HMG achieves, on average, only 41.2% performance in com-

parison to TSM-WT-C-RC. atax and bicg benchmarks achieve 1.5⇥ and 1.85⇥ speedup, re-

spectively for HMG. HMG caches data fetched using RDMA direct access from remote GPU’s

L2$ to its own L2$ unlike the RDMA which caches the data into L1$. These two benchmarks

have data sharing across multiple cores which benefit from caching the data into the shared

104

L2$ instead of the private L1$. Note that HMG performs, on average, 1.53⇥ better than

RDMA. Overall, TSM-WT-C-RC has not only 2.41⇥ average performance improvement over

HMG but also additional benefit of easing programmability.

aH
s
aWa
x bfs bic

g
cR
nv fiU mm mW UH

lu

G0
Ha
n

BHnchmaUks

0.0

0.5

1.0

1.5

2.0

2.5

SS
HH
G-
U
S

TS0-WT-C-5C H0G

Figure 4·5: Comparison of MGPU-TSM with MGCC to the state-of-the-art
MGPU with HMG. Figure shows the speedup of HMG w.r.t. TSM-WT-C-RC

Bandwidth Sensitivity

As mentioned before, we evaluate the MGPU-TSM system with the same bandwidth and

latency of the MGPU system with RDMA to maintain fairness of comparison. Practically,

ae
s
ata
x bfs bic

g
co
nv fiU mm mt Ue

lu

G0
ea
n

BenchmaUks

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

6S
ee
G-
8
S

128G
256G

512G
1024G

2048G
4096G

(a)

ae
s

ata
x bfs bic

g
co
nv fiU mm mt Ue

lu

G0
ea
n

BenchmaUks

0
2
4
6
8
10
12
14

6S
ee
G-
8
S

128G
256G

512G
1024G

2048G
4096G

(b)

Figure 4·6: Study of bandwidth sensitivity of MGPU-TSM with 4 GPUs
for different system bandwidth ranging from 128GB/s to 4096GB/s in the
case of RC (a) and SC (b)

105

ae
s

ata
x bfs bic

g
co

nv fiU PP Pt
Ue

lu

G0ea
n

BenchPaUks

0

3

6

9

12

6S
ee

G-
8

S
4 G38s
8 G38s
16 G38s

(a)

8

12

16 4 G38s
8 G38s
16 G38s

ae
s

ata
x bfs bic

g
co

nv fiU PP Pt
Ue

lu

G0ea
n

BenchPaUks

0
1
2
3

6S
ee

G-
8

S

(b)

Figure 4·7: Scalability of coherent MGPU-TSM configurations. The results
are normalized w.r.t. coherent MGPU-TSM with 4 GPUs.

the system-wide BW for MGPU-TSM is expected to be significantly more9. Hence, we per-

form a BW sensitivity study for MGPU-TSM by increasing the L2-to-MM BW while keep-

ing the latency constant. Figure 4·6 shows the speed-up of MGPU-TSM with 4 GPUs using

RC and SC for 256GB/s, 512GB/s, 1TB/s, 2TB/s and 4TB/s versus 128GB/s. With RC, the

MGPU-TSM achieves 1.40⇥, 1.77⇥, 1.93⇥, 1.96⇥ and 1.96⇥ speed-up while with SC,

the MGPU-TSM achieves 1.55⇥, 2.33⇥, 2.99⇥, 3.52⇥ and 3.90⇥ speed-up for 256GB/s,

512GB/s, 1TB/s, 2TB/s and 4TB/s, respectively. Lack of reordering support mandated by

the SC makes the BW more influential on performance for SC as compared to RC. Some

compute-intensive benchmarks such as atax, bfs and bicg do not require the larger BW and

hence do not achieve significant performance boost for large BW. On the other hand, the

relatively more memory-intensive workloads achieve up to 10⇥ speed-up for the BW of

4TB/s versus 128GB/s. Thus, we conclude larger system BW can significantly improve the

performance of MGPU-TSM which even with low bandwidth constraints, already performs

noticeably better than existing RDMA based MGPU system.
9Arunkumar et al. (Arunkumar et al., 2017) describes that 1.5TB/s is practically achievable in a package

level integration of an MGPU system. However, we expect larger BW will be possible in future with the
progress of silicon-photonic link technology.

106

Scalability

We use strong scaling to explore the scalability of the MGPU-TSM system with MGCC

protocol by varying the GPU count while keeping the size of the workloads constant. Fig-

ure 4·7 shows the scalabilty of MGCC protocol for RC and SC for the standard bench-

marks. For 8 and 16 GPUs, TSM-WT-C-RC achieves, on average, 1.6⇥ and 2.6⇥ speed-up

while TSM-WT-C-SC achieve 1.5⇥ and 1.8⇥ speed-up compared to the respective 4 GPU

configuration. However, three benchmarks, aes, atax and bicg do no show noticeable scal-

ability. This happens because we are using strong scaling and the data size itself for these

benchmarks are not scalable to larger configurations10. We verified this by running the

non-coherent configurations. On the other hand, MM achieves more than ideal speed-up

using 8 and 16 GPUs for both consistency models. This happens because as we distribute

fixed amount of work groups across multiple GPUs, each GPU processes less number of

workgroups and require less frequent cache evictions because of capacity misses. Overall,

our evaluation suggests that the MGCC protocol is scalable assuming that we increase the

interconnect and memory bandwidth as well as capacity accordingly.

4.4.2 Xtreme Benchmarks

As discussed before, the standard MGPU benchmarks have been developed with the as-

sumption that there is no hardware support for coherence and a weak-consistency pro-

gramming model is employed. Hence, we use our synthetic benchmark suite, Xtreme, to

evaluate the impact of our proposed MGCC protocol for some of the extreme cases of ap-

plications, where we need coherence to ensure the correctness of the computation. We use

MGPU-TSM with 4 GPUs for this evaluation. Figure 4·8, 4·9 and 4·10 show the compari-

son of speed-up for TSM-WT-NC-RC, TSM-WT-C-RC and TSM-WT-C-SC for all three Xtreme
10Increasing the data size could be an option to evaluate the scalability more thoroughly, but we are funda-

mentally limited by the amount of DRAM memory in the server as increasing the GPU count as well as data
size leads to exponential increase in the memory usage by the simulator.

107

benchmarks. With Xtreme benchmarks, we evaluate three different scenarios:

1. The data size (192KB, 384KB, 768KB) is small, so there are neither L1$ nor L2$

capacity or conflict misses.

2. The data size (1,536KB) is large enough to cause L1$ capacity and conflict misses,

but not large enough to cause L2$ capacity or conflict misses.

3. The data size (24,576KB) is large enough to cause both L1$ and L2$ capacity or

conflict misses.

Xtreme1

The repeated writes to the same cache location in Xtreme1 cause the cts of both the L1$s

and L2$s to step ahead in logical time, leading to coherence misses for the data that was

read before. For the Xtreme1 (see Figure 4·8a) the TSM-WT-C-RC and TSM-WT-C-SC have

up to 21.6% and 23.8% higher runtime than TSM-WT-NC-RC, respectively for the vector

sizes of 384KB and 768KB, respectively. These two vector sizes are within the capacity

of L1$ and demonstrate the impact of L1 cache misses due to coherence. For 1,536KB

vector size, the runtime increases by 8.2% and 19.8% for TSM-WT-C-RC and TSM-WT-C-SC,

respectively compared to TSM-WT-NC-RC.

Figures 4·8b-f further corroborate this behavior as there are significant increases in

the L1$ and L2$ cache misses as well as latencies for these vector sizes. As the L1$

suffers from capacity misses for 1,536KB vector size, the impact of L1$ misses due to

coherence is reduced by capacity misses which is present in both coherent and non-coherent

cases. For larger vector size of 24,576KB, the TSM-WT-C-RC has 7.84% lesser runtime than

TSM-WT-NC-RC. This is because the timestamp based ordering leads to more cache hits by

avoiding eviction of cache blocks with valid timestamp as can be seen from Figure 4·8b

and 4·8c. On the other hand, the TSM-WT-C-SC has up to 46.1% increased runtime due

to sequential accesses. The number of DRAM transactions do not increase much as long

108

38
4

76
8

15
36

24
57

6
0.0

0.4

0.8

1.2

1.6
1

Rr
m

Dl
Lz

ed
 5

un
tLm

e

(D)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1
Rr

m
Dl

Lz
ed

 #
L1

 0
LV

V

(b)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1
Rr

m
Dl

Lz
ed

 #
L2

 0
LV

V
(c)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

1
Rr

m
Dl

Lz
ed

 L
1

LD
te

nc
y

(d)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1
Rr

m
Dl

Lz
ed

 L
2

LD
te

nc
y

(e)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

1
Rr

m
Dl

Lz
ed

 #
D

5
A0

 7
rD

nV

(f)

1C-5C
C-5C
C-6C

VectRr 6Lze (.B)

Figure 4·8: Evaluation of MGPU-TSM configurations using Xtreme1
benchmarks for different vector sizes per GPU.

as the vector sizes are within L2$ capacity. As we increase the vector size significantly

above the L2$, the capacity and conflict misses dominate over coherence misses and the

performance overhead due to MGCC protocol reduces.

Xtreme2

The Xtreme2 benchmark evaluates the performance impact of intra-GPU coherence. Fig-

ure 4·9a shows that the intra-GPU coherence can lead up to 25.1% and 22.1% coherence

overheads for TSM-WT-C-RC and TSM-WT-C-SC, respectively for the vector size of 768KB

per GPU among the vector sizes below L1$ capacity. Figures 4·9b-f shows increased cache

miss rates, latency and DRAM transactions. We see a trend similar to the Xtreme1 bench-

mark for the vector sizes of 1,536KB and 24,576KB in this intra-GPU coherence case.

Xtreme3

The Xtreme3 benchmark evaluates the performance impact of inter-GPU coherence. From

Figure4·10a we observe up to 26.6% and 22.1% coherence overheads for TSM-WT-C-RC

and TSM-WT-C-SC, respectively for the vector size of 368KB and 768KB per GPU, respec-

109

38
4

76
8

15
36

24
57

6
0.0

0.4

0.8

1.2

1.6
1

Rr
m

Dl
Lz

ed
 5

un
tLm

e

(D)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

1
Rr

m
Dl

Lz
ed

 #
L1

 0
LV

V

(b)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1
Rr

m
Dl

Lz
ed

 #
L2

 0
LV

V
(c)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

1
Rr

m
Dl

Lz
ed

 L
1

LD
te

nc
y

(d)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1
Rr

m
Dl

Lz
ed

 L
2

LD
te

nc
y

(e)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.8

1.6

2.4

3.2

4.0

4.8

1
Rr

m
Dl

Lz
ed

 #
D

5
A0

 7
rD

nV

(f)

1C-5C
C-5C
C-6C

VectRr 6Lze (.B)

Figure 4·9: Evaluation of MGPU-TSM configurations using Xtreme2
benchmarks for different vector sizes per GPU.

tively. Increased cache miss rates, latency and DRAM transactions are responsible for this

overhead as seen from Figures 4·10(b)-(f). For vector sizes of 1,536KB and 24,576KB, we

see a similar trend as in the case of Xtreme1 and Xtreme2.

For both Xtreme2 and Xtreme3, we observe that TSM-WT-C-SC performs better than

TSM-WT-C-RC for vector sizes of 384KB and 768KB because of the additional synchroniza-

tion overhead associated with TSM-WT-C-RC to maintain correctness of operations. To sum

up, even with the worst case overhead, the MGPU-TSM performance significantly better

than the RDMA based systems.

38
4

76
8

15
36

24
57

6
0.0

0.4

0.8

1.2

1.6

1
Rr

m
Dl

Lz
ed

 5
un

tLm
e

(D)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

1
Rr

m
Dl

Lz
ed

 #
L1

 0
LV

V

(b)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1
Rr

m
Dl

Lz
ed

 #
L2

 0
LV

V

(c)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

1
Rr

m
Dl

Lz
ed

 L
1

LD
te

nc
y

(d)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1
Rr

m
Dl

Lz
ed

 L
2

LD
te

nc
y

(e)

1C-5C
C-5C
C-6C

38
4

76
8

15
36

24
57

6
0.0

0.8

1.6

2.4

3.2

4.0

4.8

1
Rr

m
Dl

Lz
ed

 #
D

5
A0

 7
rD

nV

(f)

1C-5C
C-5C
C-6C

VectRr 6Lze (.B)

Figure 4·10: Evaluation of MGPU-TSM configurations using Xtreme3
benchmarks for different vector sizes per GPU.

110

Sensitivity to Timestamps

We used {RdLease, WrLease} = {5, 10} for our evaluations. We examined the impact

of using different (RdLease, WrLease) values using the coherence-aware Xtreme bench-

marks for different vector sizes. Figure 4·11 shows a representative example of timestamp

sensitivity for a vector size of 384KB as this vector size demonstrated significant variation

of runtime for all the Xtreme benchmarks and across all the MGPU-TSM configurations.

Our evaluation suggests that we need to maintain a smaller difference between RdLease

and WrLease. In terms of absolute values of RdLease and WrLease, a large value of the

RdLease can help an application that performs significantly smaller number of writes than

number of reads accessing the same cache block. On the other hand, a small value of the

RdLease results in more coherence misses. We choose a WrLease value that is smaller than

RdLease value based on the fact that if a CU or a GPU writes to a cache block, it may write

to the same cache block in the future. This choice of WrLease, in turn, prevents making

cts too large, potentially causing many coherence misses. For all of the configurations

{WrLease, RdLease} value of {5,10} demonstrated the least runtime for majority of the

cases and consequently, we use these timestamp values for our evaluation.

Figure 4·11: Timestamp sensitivity for a vector size of 384KB. The
runtime is normalized w.r.t. the TSM-WT-NC-C. {wts,rts} refers to {Wr-
Lease,RdLease}

111

4.5 Summary

To enable seamless sharing of data in an MGPU system with TSM (MGPU-TSM system),

we introduce a novel lightweight timestamp-based coherence protocol called MGCC. Our

MGCC protocol replaces the compute unit (CU) level logical time counters with cache-

level logical time counters to reduce coherence traffic. Furthermore, MGCC uses a novel

timestamp storage unit (TSU) in the main memory to perform coherence transactions, with

no additional performance overhead. We evaluate a MGPU-TSM system equipped with

MGCC using MGPUSim simulator. For a set of standard MGPU benchmarks, a 4-GPU

MGPU system with TSM and MGCC, utilizing a relaxed consistency model, achieves a

3.8⇥ and 2.4⇥ speedup versus a 4-GPU MGPU system with existing RDMA, and with the

recently proposed HMG coherence protocol, respectively. We also evaluated the scalabil-

ity of MGCC using different GPU counts (8 and 16) using standard MGPU benchmarks.

Broadly speaking, MGCC scales well and achieves, on average, up to a 1.6⇥ and 2.6⇥

speedup for 8 and 16 GPUs, respectively compared to a 4-GPU configuration with MGCC.

Furthermore, we stress tested our MGCC protocol using a custom synthetic benchmark

suite to evaluate its impact on the overall performance.

112

Chapter 5

Summary and Future Work

5.1 Summary of the thesis

The advancement of data-intensive applications such as machine learning has forced the

researchers to develop non-traditional software and hardware solutions to support these

applications. At a high level, this thesis has two aims – first to understand and explain the

behaviour of the training and inference operations in these machine learning applications,

and second to use this understanding to propose novel memory systems and coherence

protocols for next-generation MGPU systems.

In the first part of the thesis, we perform workload characterization on different gener-

ations of MGPU systems to understand the application behavior and the evolution of GPU

architectures. We started with the evaluation of the performance bottlenecks in the Kepler,

Titan and DGX-1 MGPU systems for training DNN workloads. We used MNIST, Cifar10,

Imagenet and PennTreeBank datasets, and MLP, Lenet, Alexnet, Googlenet, Resnet and

LSTM networks implemented using MXNet frameworks in our evaluation. We found that

a number of workloads do scale linearly as the number of GPU is increased because of com-

munication bottlenecks. We investigated various data transfer mechanisms (P2P memcopy,

zerocopy and unified memory) using synthetic workloads, which mimic the communica-

tion pattern of DNN workloads, to understand the communication bottlenecks. Finally, we

demonstrate a scaled down MGPU system with true shared memory (TSM) reduces the

run time by more than 3⇥, on average, for all the three NVIDIA MGPU systems– Pascal,

Titan Z and DGX-1. This result motivated the unification the physical memory space for

113

the heterogeneous systems consisting of CPUs and GPUs. We continued our effort to per-

form more in-depth performance analysis of MGPU systems for training DNNs using the

contemporary NVIDIA DGX-1 system consisting of 8 NVIDIA V100 GPUs. In this work,

we performed a comprehensive analysis to understand the computation and communication

pattern of training DNN workloads on the Volta-based DGX-1 MGPU system and charac-

terized data movement and memory usage of five DNN workloads (GoogLeNet, AlexNet,

Inception-v3, ResNet and LeNet). We used the MXNet framework for training DNN work-

loads using the data parallelism approach. We compared NCCL library based communica-

tion with P2P memcopy based communication among the GPUs. Based on our evaluation,

we found that the MGPU scalability heavily depends on the neural network architecture,

batch size, and the GPU-to-GPU communication method. We concluded that workloads

scale better with NCCL-based communication than P2P for 4 and 8 GPUs. NCCL in-

troduced significant overhead for DNN training, especially when using 1 or 2 GPUs for

training. We observed that GPU memory capacity puts significant limitation on scaling

the size of DNN workloads. Furthermore, the lack of hardware-level coherence support

on GPUs exacerbated the memory capacity issues and programming complexity. We also

showed that remote data access degrades MGPU system performance significantly.

In the second part of this thesis, we proposed a novel MGPU system, where the CPU

and GPUs physically share the main memory to overcome the NUMA effects introduced

by remote memory accesses by GPUs. We refer to such a system as a multi-GPU sys-

tem with true shared memory (MGPU-TSM). This MGPU-TSM system eliminated both

the programmer’s burden of unnecessary data replication and the expensive remote mem-

ory accesses. We showed that our proposed MGPU-TSM system with 4 GPUs is capable

achieving, on average, 3.8⇥ better performance than existing MGPU system with 4 GPUs

for standard benchmarks.

To ensure seamless sharing of data across and within multiple GPUs, we proposed

114

MGCC, a novel timestamp-based hardware coherence protocol in the final part of this the-

sis. To support the MGCC protocol on MGPU-TSM system, we designed and implemented

a number of novel hardware features including unified memory controllers and a request

tracker logic to avoid coherence issues, and timestamp storage units (TSUs) to store and

access timestamps without adding any performance overhead. For standard benchmarks,

an MGPU-TSM system (that has 4 GPUs and uses MGCC) performed on average, 3.8⇥

better with relaxed consistency and 3.0⇥ better with sequential consistency, than the non-

coherent conventional MGPU system with same number of GPUs. In addition, compared

to a coherent MGPU system using the state-of-the-art HMG coherence protocol, an MGPU

system that uses MGCC had 2.4⇥ higher performance. Our scalability study showed that

our MGCC coherence protocol scales well in terms of GPU count. We developed syn-

thetic benchmarks that leverage data sharing to examine the impact of our MGCC protocol

on performance. For the worst case scenario in our synthetic benchmarks, the proposed

MGPU-TSM with MGCC suffered up to a 46.1% performance overhead.

5.2 Future Directions

5.2.1 Workload Characterization and Benchmarking

GPU and MGPU systems are increasingly being used for accelerating applications

from both current and emerging domains. In the emerging domains, graph neural

network-based applications (Liu et al., 2020) and Homomorphic Encryption-based appli-

cations (Al Badawi et al., 2020) have recently been leveraging GPU and MGPU acceler-

ation. An understanding of the behavior of the applications in these emerging domains

is necessary to gain insight into the architectural features that needs to be integrated into

the next-generation MGPU systems as well as software features necessary to provide opti-

mized performance. In our work, we have created stress-test benchmarks that can be used

to characterize the behavior of these emerging applications.

115

To gain in-depth insights into the performance issues of MGPU systems, we need

benchmarks that can capture a wide range of application behavior. In our work, we con-

tinually faced challenges in finding proper benchmarks to understand MGPU system per-

formance. Hence, we created synthetic benchmarks. An interesting research direction is

to create an extensive MGPU benchmark suite that stress tests different architectural fea-

tures in an MGPU system. Recently, few attempts such as Tartan (Li et al., 2018), (Li

et al., 2019), MLPerf (Mattson et al., 2020), etc. have been made to standardize the GPU

and MGPU benchmarking and performance analysis. We need more efforts in this area as

MGPU systems and its applications are continuously evolving.

5.2.2 MGPU System Design

To build efficient MGPU systems with TSM, a number of design considerations need to be

taken into account and future work should focus on solving the design challenges reported

in the subsequent sections.

Thermal Considerations

High-end MGPU systems consume a high amount of power and produce a significant

amount of heat. Hence, these systems can easily lead to the dark silicon problem (Henkel

et al., 2015). We, therefore, need to perform in-depth thermal analysis of these systems

to understand the thermal feasibility of the proposed MGPU-TSM system. Our prelimi-

nary evaluation suggests that 2.5D chip integration technology can be leverage to develop

thermally feasible MGPU systems (Eris et al., 2018), (Coskun et al., 2018), (Ma et al.,

2021).

Future research should look into emerging technologies such as 2.5D chip integration

technology with both passive and active interposers to build large MGPU systems, more

efficient routing and placement of components on the interposer, in-depth thermal analysis

of the MGPU systems and efficient means of cooling for such systems.

116

Interconnection Network

In our work, we considered a simple switch for connectivity between the L2 and main mem-

ory. This switch provides point-to-point connectivity between the GPUs and the main mem-

ory. Finding the optimal network topology for the MGPU-TSM system is an open research

problem. Future work should focus on exploring a variety of symmetric network topologies

including mesh, crossbar, clos, ring, butterfly, etc. as well as asymmetric topologies (Zi-

abari et al., 2015a). These network topologies will influence the available bandwidth for

the main memory, which in turn will impact overall system performance. As GPU count

increases, we will need to use multiple interposers. Consequently, this would require the

design of intra-interposer and inter-interposer communication methods. A promising tech-

nology for inter-interposer communication is the photonic link technology that provides

high-bandwidth low-latency communications (Chittamuru et al., 2017), (Abellán et al.,

2016), (Zhang et al., 2016), (Ziabari et al., 2015b), (Koka et al., 2010), (Joshi et al., 2009).

CPU-GPU Interaction and Consistency

In this work, we did not take into account the CPU and GPU interactions. Today’s hetero-

geneous system architectures already support a CPU-GPU collaborative computing envi-

ronment (Mittal and Vetter, 2015). As part of future work we need to develop hardware

and software features that provide support for CPU-MGPU-TSM collaborative comput-

ing environment. Our MGCC policy only supports coherence between GPUs. We will

need to develop coherence policies that are suitable for the CPU-MGPU system. Similarly,

our MGPU-TSM system with MGCC protocol supports sequential consistency and relaxed

consistency. One possible future research direction is not only to explore efficient memory

consistency models, but also to build tools to easily verify MGPU consistency models.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., et al. (2016). Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Abellán, J. L., Coskun, A. K., Gu, A., Jin, W., Joshi, A., Kahng, A. B., Klamkin, J.,
Morales, C., Recchio, J., Srinivas, V., et al. (2016). Adaptive tuning of photonic de-
vices in a photonic noc through dynamic workload allocation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 36(5):801–814.

Adve, S. V. and Gharachorloo, K. (1996). Shared memory consistency models: A tutorial.
computer, 29(12):66–76.

Al Badawi, A., Veeravalli, B., Lin, J., Xiao, N., Kazuaki, M., and Mi, A. K. M. (2020).
Multi-gpu design and performance evaluation of homomorphic encryption on gpu clus-
ters. IEEE Transactions on Parallel and Distributed Systems, 32(2):379–391.

Al-Rfou, R., Alain, G., Almahairi, A., Angermüller, C., Bahdanau, D., and et al., N. B.
(2016). Theano: A python framework for fast computation of mathematical expressions.
CoRR, abs/1605.02688.

Alsheikh, M. A., Lin, S., Niyato, D., and Tan, H.-P. (2014). Machine learning in wire-
less sensor networks: Algorithms, strategies, and applications. IEEE Communications
Surveys & Tutorials, 16(4):1996–2018.

Alsop, J., Orr, M. S., Beckmann, B. M., and Wood, D. A. (2016). Lazy release consistency
for gpus. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 1–14. IEEE.

Alsop, J., Sinclair, M., and Adve, S. (2018). Spandex: a flexible interface for efficient
heterogeneous coherence. In 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), pages 261–274. IEEE.

Amazon, E. (2015). Amazon web services. Available in: http://aws. amazon.
com/es/ec2/(November 2012).

AMD (2020). Amd instinct™ mi100 accelerator.

AMD (Accessed: January 4, 2021). Rocm communication collectives library. URL:
https://github.com/ROCmSoftwarePlatform/rccl.

117

118

Arunkumar, A., Bolotin, E., Cho, B., Milic, U., Ebrahimi, E., Villa, O., Jaleel, A., Wu,
C.-J., and Nellans, D. (2017). Mcm-gpu: Multi-chip-module gpus for continued perfor-
mance scalability. In ACM SIGARCH Computer Architecture News, volume 45, pages
320–332. ACM.

Arunkumar, A., Bolotin, E., Nellans, D., and Wu, C.-J. (2019). Understanding the future
of energy efficiency in multi-module gpus. In 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 519–532. IEEE.

Bahrampour, S., Ramakrishnan, N., Schott, L., and Shah, M. (2015). Comparative study
of deep learning software frameworks. arXiv preprint arXiv:1511.06435.

Baruah, T., Sun, Y., Dinçer, A. T., Mojumder, S. A., Abellán, J. L., Ukidave, Y., Joshi,
A., Rubin, N., Kim, J., and Kaeli, D. (2020). Griffin: Hardware-software support for
efficient page migration in multi-gpu systems. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 596–609. IEEE.

Blythe, D. (2008). Rise of the graphics processor. Proceedings of the IEEE, 96(5):761–
778.

Bolz, J., Farmer, I., Grinspun, E., and Schröder, P. (2003). Sparse matrix solvers on
the gpu: conjugate gradients and multigrid. ACM transactions on graphics (TOG),
22(3):917–924.

Booth, K. S., Cowan, W. B., and Forsey, D. R. (1985). Multitasking support in a graphics
workstation. In First IEEE International Conference on Computer Workstations, pages
82–89.

Boroumand, A., Ghose, S., Patel, M., Hassan, H., Lucia, B., Ausavarungnirun, R., Hsieh,
K., Hajinazar, N., Malladi, K. T., and Zheng, H. (2019). Conda: efficient cache co-
herence support for near-data accelerators. In Proceedings of the 46th International
Symposium on Computer Architecture, pages 629–642.

Buono, D., Artico, F., Checconi, F., Choi, J. W., Que, X., and Schneidenbach, L. (2017).
Data analytics with nvlink: An spmv case study. In Proceedings of the Computing
Frontiers Conference, pages 89–96.

Cates, J. E., Lefohn, A. E., and Whitaker, R. T. (2004). Gist: an interactive, gpu-based level
set segmentation tool for 3d medical images. Medical image analysis, 8(3):217–231.

Che, S., Beckmann, B. M., Reinhardt, S. K., and Skadron, K. (2013). Pannotia: Under-
standing irregular gpgpu graph applications. In 2013 IEEE International Symposium on
Workload Characterization (IISWC), pages 185–195. IEEE.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C.,
and Zhang, Z. (2015a). Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274.

119

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C.,
and Zhang, Z. (2015b). Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274.

Chen, X.-W. and Lin, X. (2014). Big data deep learning: challenges and perspectives.
IEEE access, 2:514–525.

Chien, S., Peng, I., and Markidis, S. (2019). Performance evaluation of advanced fea-
tures in cuda unified memory. In 2019 IEEE/ACM Workshop on Memory Centric High
Performance Computing (MCHPC), pages 50–57. IEEE.

Chittamuru, S. V. R., Desai, S., and Pasricha, S. (2017). Swiftnoc: a reconfigurable silicon-
photonic network with multicast-enabled channel sharing for multicore architectures.
ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(4):1–27.

Choquette, J. and Gandhi, W. (2020). Nvidia a100 gpu: Performance & innovation for
gpu computing. In 2020 IEEE Hot Chips 32 Symposium (HCS), pages 1–43. IEEE
Computer Society.

Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., and Andrew, N. (2013). Deep
learning with cots hpc systems. In International Conference on Machine Learning,
pages 1337–1345.

Cochet, K. R. P., McCleary, R., Rogoff, R., and Roy, R. (2014). Lithography challenges
for 2.5d interposer manufacturing. In 2014 IEEE 64th Electronic Components and
Technology Conference (ECTC), pages 523–527.

Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7: A matlab-like envi-
ronment for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-
192376.

Copeland, M., Soh, J., Puca, A., Manning, M., and Gollob, D. (2015). Microsoft Azure.
Springer.

Coskun, A., Eris, F., Joshi, A., Kahng, A. B., Ma, Y., and Srinivas, V. (2018). A cross-layer
methodology for design and optimization of networks in 2.5 d systems. In Proceedings
of the International Conference on Computer-Aided Design, page 101. ACM.

Crayton, M., Foss, M., Lindquist, D., and Tostado, K. (2004). Graphical processing units:
An examination of use and function. Proceedings of CA 2004 the Fall 2004 ENGR 3410
Computer Architecture Class, page 17.

Crow, T. S. (2004). Evolution of the graphical processing unit. A professional
paper submitted in partial fulfillment of the requirements for the degree of Mas-
ter of Science with a major in Computer Science, University of Nevada, Reno.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.368rep=rep1type=pdf.

120

Danalis, A., Marin, G., McCurdy, C., Meredith, J. S., Roth, P. C., Spafford, K., Tipparaju,
V., and Vetter, J. S. (2010). The scalable heterogeneous computing (shoc) benchmark
suite. In Proceedings of the 3rd Workshop on General-Purpose Computation on Graph-
ics Processing Units, pages 63–74. ACM.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P.,
Yang, K., Le, Q. V., et al. (2012). Large scale distributed deep networks. In Advances
in neural information processing systems, pages 1223–1231.

Deschizeaux, B. and Blanc, J.-Y. (2007). Imaging earth’s subsurface using cuda. GPU
Gems, 3:831–850.

Dietrich, S. (1999). Vertex blending under directx 7 for the geforce 256. Technical
Presentations, 99.

Dong, S. and Kaeli, D. (2017). Dnnmark: A deep neural network benchmark suite for
gpus. In Proceedings of the General Purpose GPUs, pages 63–72. ACM.

Eris, F., Joshi, A., Kahng, A. B., Ma, Y., Mojumder, S., and Zhang, T. (2018). Leveraging
thermally-aware chiplet organization in 2.5 d systems to reclaim dark silicon. In 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1441–
1446. IEEE.

Fan, Y., Winkel, C., Kulkarni, D., and Tian, W. (2018). Analytical design methodology for
liquid based cooling solution for high tdp cpus. In 2018 17th IEEE Intersociety Con-
ference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm),
pages 582–586. IEEE.

Foley, D. and Danskin, J. (2017). Ultra-performance pascal gpu and nvlink interconnect.
IEEE Micro, 37(2):7–17.

Fung, J., Tang, F., and Mann, S. (2002). Mediated reality using computer graphics hard-
ware for computer vision. In Proceedings. Sixth International Symposium on Wearable
Computers,, pages 83–89. IEEE.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256.

Govindaraju, N. K., Larsen, S., Gray, J., and Manocha, D. (2006). A memory model for
scientific algorithms on graphics processors. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, pages 89–es.

Govindaraju, N. K., Lloyd, B., Wang, W., Lin, M., and Manocha, D. (2005). Fast com-
putation of database operations using graphics processors. In ACM SIGGRAPH 2005
Courses, pages 206–es.

121

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A.,
Jia, Y., and He, K. (2017). Accurate, large minibatch sgd: training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recur-
rent neural networks. In 2013 IEEE International Conference on Acoustics, speech and
signal processing (ICASSP), pages 6645–6649. IEEE.

Gullbrand, J., Luckeroth, M. J., Sprenger, M. E., and Winkel, C. (2019). Liquid cooling of
compute system. Journal of Electronic Packaging, 141(1):010802.

Hagen, T. R., Lie, K.-A., and Natvig, J. R. (2006). Solving the euler equations on graphics
processing units. In International Conference on Computational Science, pages 220–
227. Springer.

Harris, M. J., Coombe, G., Scheuermann, T., and Lastra, A. (2002). Physically-based
visual simulation on graphics hardware. In Graphics Hardware, volume 2002, pages
1–10.

Hechtman, B. A., Che, S., Hower, D. R., Tian, Y., Beckmann, B. M., Hill, M. D., Reinhardt,
S. K., and Wood, D. A. (2014). Quickrelease: A throughput-oriented approach to release
consistency on gpus. In 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pages 189–200. IEEE.

Hechtman, B. A. and Sorin, D. J. (2013). Evaluating cache coherent shared virtual memory
for heterogeneous multicore chips. In 2013 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), pages 118–119. IEEE.

Henkel, J., Khdr, H., Pagani, S., and Shafique, M. (2015). New trends in dark silicon. In
2015 52nd ACM/EDAC/IEEE Design Automation Conference (Dac), pages 1–6. IEEE.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Hoff III, K. E., Zaferakis, A., Lin, M., and Manocha, D. (2001). Fast and simple 2d
geometric proximity queries using graphics hardware. In Proceedings of the 2001 sym-
posium on Interactive 3D graphics, pages 145–148.

Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., and Stan, M. R.
(2006). Hotspot: A compact thermal modeling methodology for early-stage vlsi design.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(5):501–513.

James, J. M. (1987). The third generation of pc graphics controllers. IEEE computer
graphics and applications, 7(10):24–27.

122

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,
and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In
Proceedings of the 22Nd ACM International Conference on Multimedia, MM ’14, pages
675–678, New York, NY, USA. ACM.

Jordan, M. I. and Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260.

Joshi, A., Batten, C., Kwon, Y.-J., Beamer, S., Shamim, I., Asanovic, K., and Stojanovic,
V. (2009). Silicon-photonic clos networks for global on-chip communication. In 2009
3rd ACM/IEEE International Symposium on Networks-on-Chip, pages 124–133. IEEE.

Khalaj, A. H. and Halgamuge, S. K. (2017). A review on efficient thermal management
of air-and liquid-cooled data centers: From chip to the cooling system. Applied energy,
205:1165–1188.

Kim, G., Lee, M., Jeong, J., and Kim, J. (2014). Multi-gpu system design with memory
networks. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 484–495. IEEE.

Kim, H., Nam, H., Jung, W., and Lee, J. (2017). Performance analysis of cnn frameworks
for gpus. In 2017 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 55–64. IEEE.

Kim, T. and Lin, M. C. (2003). Visual simulation of ice crystal growth. In Proceedings
of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
86–97.

Kirk, D. et al. (2007). Nvidia cuda software and gpu parallel computing architecture. In
ISMM ’07: Proceedings of the 6th international symposium on Memory management,
volume 7, pages 103–104.

Koka, P., McCracken, M. O., Schwetman, H., Zheng, X., Ho, R., and Krishnamoorthy,
A. V. (2010). Silicon-photonic network architectures for scalable, power-efficient multi-
chip systems. ACM SIGARCH Computer Architecture News, 38(3):117–128.

Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., and Fotiadis, D. I. (2015).
Machine learning applications in cancer prognosis and prediction. Computational and
structural biotechnology journal, 13:8–17.

Krishnan, S. and Gonzalez, J. L. U. (2015). Building your next big thing with google cloud
platform: A guide for developers and enterprise architects. Springer.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

123

Kumar, S., Shriraman, A., and Vedula, N. (2015). Fusion: design tradeoffs in coherent
cache hierarchies for accelerators. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, pages 733–745.

Lamport, L. (1979). How to make a multiprocessor computer that correctly executes
multiprocess progranm. IEEE transactions on computers, (9):690–691.

Landaverde, R., Zhang, T., Coskun, A. K., and Herbordt, M. (2014). An investigation of
unified memory access performance in cuda. In 2014 IEEE High Performance Extreme
Computing Conference (HPEC), pages 1–6. IEEE.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–
444.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Levinthal, D. (2009). Performance analysis guide for intel core i7 processor and intel xeon
5500 processors. Intel Performance Analysis Guide, 30:18.

Li, A., Song, S. L., Chen, J., Li, J., Liu, X., Tallent, N. R., and Barker, K. J. (2019).
Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch and gpudirect. IEEE
Transactions on Parallel and Distributed Systems, 31(1):94–110.

Li, A., Song, S. L., Chen, J., Liu, X., Tallent, N., and Barker, K. (2018). Tartan: evaluating
modern gpu interconnect via a multi-gpu benchmark suite. In 2018 IEEE International
Symposium on Workload Characterization (IISWC), pages 191–202. IEEE.

Li, J.-M., Wang, X.-J., He, R.-S., and Chi, Z.-X. (2007). An efficient fine-grained parallel
genetic algorithm based on gpu-accelerated. In 2007 IFIP International Conference on
Network and Parallel Computing Workshops (NPC 2007), pages 855–862. IEEE.

Li, X., Zhang, G., Huang, H. H., Wang, Z., and Zheng, W. (2016). Performance analysis
of gpu-based convolutional neural networks. In 2016 45th International Conference on
Parallel Processing (ICPP), pages 67–76. IEEE.

Libbrecht, M. W. and Noble, W. S. (2015). Machine learning in genetics and genomics.
Nature Reviews. Genetics, 16(6):321.

Lin, J. C.-R. and Hall, C. (2007). Multiple oil and gas volumetric data visualization
with gpu programming. In Visualization and Data Analysis 2007, volume 6495, page
64950U. International Society for Optics and Photonics.

Liu, H., Lu, S., Chen, X., and He, B. (2020). G3: when graph neural networks meet parallel
graph processing systems on gpus. Proceedings of the VLDB Endowment, 13(12):2813–
2816.

124

Ma, Y., Delshadtehrani, L., Demirkiran, C., Abellán, J. L., and Joshi, A. (2021). Tap-2.5 d:
A thermally-aware chiplet placement methodology for 2.5 d systems. In 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE). (To appear).

Macri, J. (2015). Amd’s next generation gpu and high bandwidth memory architecture:
Fury. In 2015 IEEE Hot Chips 27 Symposium (HCS), pages 1–26. IEEE.

Manocha, D. (2003). Interactive geometric and scientific computations using graphics
hardware. SIGGRAPH Course Notes, 11.

Markidis, S., Der Chien, S. W., Laure, E., Peng, I. B., and Vetter, J. S. (2018). Nvidia
tensor core programmability, performance & precision. In 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 522–531.
IEEE.

Mattson, P., Reddi, V. J., Cheng, C., Coleman, C., Diamos, G., Kanter, D., Micikevicius,
P., Patterson, D., Schmuelling, G., Tang, H., et al. (2020). Mlperf: An industry standard
benchmark suite for machine learning performance. IEEE Micro, 40(2):8–16.

McClanahan, C. (2010). History and evolution of gpu architecture. A Paper Survey, 9.
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf.

Milic, U., Villa, O., Bolotin, E., Arunkumar, A., Ebrahimi, E., Jaleel, A., Ramirez, A.,
and Nellans, D. (2017). Beyond the socket: Numa-aware gpus. In Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture, pages 123–135.
ACM.

Mišić, M. J., Ðurd̄ević, Ð. M., and Tomašević, M. V. (2012). Evolution and trends in gpu
computing. In 2012 Proceedings of the 35th International Convention MIPRO, pages
289–294. IEEE.

Mittal, S. and Vetter, J. S. (2015). A survey of cpu-gpu heterogeneous computing tech-
niques. ACM Computing Surveys (CSUR), 47(4):1–35.

Mosegaard, J. and Sorensen, T. S. (2005). Gpu accelerated surgical simulators for complex
morphology. In IEEE Proceedings. VR 2005. Virtual Reality, 2005., pages 147–153.
IEEE.

Munshi, A. (2009). The opencl specification. In 2009 IEEE Hot Chips 21 Symposium
(HCS), pages 1–314. IEEE.

Nagarajan, V., Sorin, D. J., Hill, M. D., and Wood, D. A. (2020). A primer on mem-
ory consistency and cache coherence. Synthesis Lectures on Computer Architecture,
15(1):1–294.

NCCL (2018). Nvidia collective communications library (nccl). https://developer.NVI-
DIA.com/nccl.

125

Negrut, D., Serban, R., Li, A., and Seidl, A. (2014). Unified memory in cuda
6.0. a brief overview of related data access and transfer issues. SBEL, Madison,
WI, USA, Tech. Rep. TR-2014-09. https://sbel.wisc.edu/wp-content/uploads/sites/56-
9/2018/05/TR-2014-09.pdf.

NVIDIA (2016). Nvidia dgx-1 with tesla v100 system architecture. https://pdfs.sema-
nticscholar.org/2e4e/fbcd8f52446b276129e1272512b916ddf093.pdf.

NVIDIA (2017). Nvidia tesla v100 gpu architecture. https://computing.llnl.gov/tuto-
rials/sierra/volta-architecture-whitepaper.pdf.

NVIDIA (2018). Nvidia cudnn. https://developer.NVIDIA.com/cudnn.

NVIDIA (2018). NVIDIA Unified Memory. http://on-demand.gputechconf.com/gtc/-
2018/presentation/s8430-everything-you- -need-to-know-about-unified-memory.pdf .

NVIDIA (2018a). Ontap ai–nvidia dgx-2 pod with netapp aff a800. https://resource-
s.NVIDIA.com/en-us-netapp/ontap-ai-dgx-2-pod-with-netapp-whitepaper.

NVIDIA (2018b). Profiler user’s guide. https://docs.NVIDIA.com/cuda/profiler-users-
guide/index.html.

NVIDIA, C. (2008). Cublas library. NVIDIA Corporation, Santa Clara, California,
15(27):31. https://developer.NVIDIA.com/cublas.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing sys-
tems, pages 8026–8037.

Pawlowski, J. T. (2011). Hybrid memory cube (hmc). In 2011 IEEE Hot chips 23 sympo-
sium (HCS), pages 1–24. IEEE.

Plakal, M., Sorin, D. J., Condon, A. E., and Hill, M. D. (1998). Lamport clocks: verifying a
directory cache-coherence protocol. In Proceedings of the tenth annual ACM symposium
on Parallel algorithms and architectures, pages 67–76.

Pouchet, L.-N. (2012). Polybench: The polyhedral benchmark suite. URL: http://www.
cs. ucla. edu/pouchet/software/polybench.

Power, J., Basu, A., Gu, J., Puthoor, S., Beckmann, B. M., Hill, M. D., Reinhardt, S. K.,
and Wood, D. A. (2013). Heterogeneous system coherence for integrated cpu-gpu sys-
tems. In 2013 46th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 457–467. IEEE.

126

Qian, X., Ahn, W., and Torrellas, J. (2010). Scalablebulk: Scalable cache coherence for
atomic blocks in a lazy environment. In 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 447–458. IEEE.

Ren, X., Lustig, D., Bolotin, E., Jaleel, A., Villa, O., and Nellans, D. (2020). Hmg:
Extending cache coherence protocols across modern hierarchical multi-gpu systems. In
2020 26th IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE.

Saikia, M. J. and Kanhirodan, R. (2014). High performance single and multi-gpu accelera-
tion for diffuse optical tomography. In 2014 International Conference on Contemporary
Computing and Informatics (IC3I), pages 1320–1323. IEEE.

Sainath, T. N., r. Mohamed, A., Kingsbury, B., and Ramabhadran, B. (2013). Deep convo-
lutional neural networks for lvcsr. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 8614–8618.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural net-
works, 61:85–117.

Shi, J., Yang, R., Jin, T., Xiao, X., and Yang, Y. (2019). Realtime top-k personalized
pagerank over large graphs on gpus. Proceedings of the VLDB Endowment, 13(1):15–
28.

Shi, S. and Chu, X. (2017). Performance modeling and evaluation of distributed deep
learning frameworks on gpus. arXiv preprint arXiv:1711.05979.

Shi, S., Wang, Q., Xu, P., and Chu, X. (2016). Benchmarking state-of-the-art deep learning
software tools. In 2016 7th International Conference on Cloud Computing and Big Data
(CCBD), pages 99–104.

Sinclair, M. D., Alsop, J., and Adve, S. V. (2015). Efficient gpu synchronization without
scopes: Saying no to complex consistency models. In Proceedings of the 48th Interna-
tional Symposium on Microarchitecture, pages 647–659.

Singh, A., Aga, S., and Narayanasamy, S. (2015). Efficiently enforcing strong memory
ordering in gpus. In Proceedings of the 48th International Symposium on Microarchi-
tecture, pages 699–712.

Singh, G. and Sachan, M. (2014). Multi-layer perceptron (mlp) neural network technique
for offline handwritten gurmukhi character recognition. In 2014 IEEE International
Conference on Computational Intelligence and Computing Research, pages 1–5.

Singh, I., Shriraman, A., Fung, W. W., O’Connor, M., and Aamodt, T. M. (2013). Cache
coherence for gpu architectures. In 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), pages 578–590. IEEE.

127

Smith, S. L., Kindermans, P.-J., and Le, Q. V. (2017). Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489.

Strzodka, R., Droske, M., and Rumpf, M. (2003). Fast image registration in directx9
graphics hardware. Journal of Medical Informatics & Technologies, 6.

Sun, Y., Baruah, T., Mojumder, S. A., Dong, S., Gong, X., Treadway, S., Bao, Y., Hance, S.,
McCardwell, C., Zhao, V., Barclay, H., Ziabari, A. K., Chen, Z., Ubal, R., Abellán, J. L.,
Kim, J., Joshi, A., and Kaeli, D. (2019). Mgpusim: Enabling multi-gpu performance
modeling and optimization. In Proceedings of the 46th International Symposium on
Computer Architecture, ISCA ’19, pages 197–209, New York, NY, USA. ACM.

Sun, Y., Gong, X., Ziabari, A. K., Yu, L., Li, X., Mukherjee, S., McCardwell, C., Ville-
gas, A., and Kaeli, D. (2016). Hetero-mark, a benchmark suite for cpu-gpu collabora-
tive computing. In 2016 IEEE International Symposium on Workload Characterization
(IISWC), pages 1–10. IEEE.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. (2017). Efficient processing of deep neural
networks: A tutorial and survey. arXiv preprint arXiv:1703.09039.

Tabbakh, A. (2018). Efficient Memory Coherence and Consistency Support for Enabling
Data Sharing in GPUs. PhD thesis, University of Southern California.

Tabbakh, A., Qian, X., and Annavaram, M. (2018). G-tsc: Timestamp based coherence for
gpus. In 2018 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), pages 403–415. IEEE.

Tokui, S., Oono, K., Hido, S., and Clayton, J. (2015). Chainer: a next-generation open
source framework for deep learning. In Proceedings of workshop on machine learn-
ing systems (LearningSys) in the twenty-ninth annual conference on neural information
processing systems (NIPS), volume 5.

Tran, J., Jordan, D., and Luebke, D. (2004). New challenges for cellular automata
simulation on the gpu. SIGGRAPH, Los Angeles. ACM. Poster. http://citeseerx.-
ist.psu.edu/viewdoc/download?doi=10.1.1.131.9597rep=rep1type=pdf.

Valero-Lara, P. (2014). Multi-gpu acceleration of dartel (early detection of alzheimer).
In 2014 IEEE International Conference on Cluster Computing (CLUSTER), pages 346–
354. IEEE.

Viola, I., Kanitsar, A., and Groller, M. E. (2003). Hardware-based nonlinear filtering and
segmentation using high-level shading languages. IEEE.

Wang, P., Zhang, L., Li, C., and Guo, M. (2019). Excavating the potential of gpu for accel-
erating graph traversal. In 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 221–230. IEEE.

128

Woetzel, J. and Koch, R. (2004). Multi-camera real-time depth estimation with disconti-
nuity handling on pc graphics hardware. In 2004 International Conference on Pattern
Recognition (ICPR) (1), pages 741–744.

Xu, Q., Jeon, H., and Annavaram, M. (2014). Graph processing on gpus: Where are the
bottlenecks? In 2014 IEEE International Symposium on Workload Characterization
(IISWC), pages 140–149. IEEE.

Yadan, O., Adams, K., Taigman, Y., and Ranzato, M. (2013). Multi-gpu training of con-
vnets. arXiv preprint arXiv:1312.5853.

Yamazaki, I., Dong, T., Solcà, R., Tomov, S., Dongarra, J., and Schulthess, T. (2014).
Tridiagonalization of a dense symmetric matrix on multiple gpus and its application to
symmetric eigenvalue problems. Concurrency and computation: Practice and Experi-
ence, 26(16):2652–2666.

You, Y., Zhang, Z., Hsieh, C.-J., Demmel, J., and Keutzer, K. (2017). 100-epoch imagenet
training with alexnet in 24 minutes. ArXiv e-prints.

Young, V., Jaleel, A., Bolotin, E., Ebrahimi, E., Nellans, D., and Villa, O. (2018). Com-
bining hw/sw mechanisms to improve numa performance of multi-gpu systems. In 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
339–351. IEEE.

Yu, D., Eversole, A., Seltzer, M., Yao, K., Huang, Z., Guenter, B., Kuchaiev, O., Zhang, Y.,
Seide, F., Wang, H., et al. (2014). An introduction to computational networks and the
computational network toolkit. Microsoft Technical Report MSR-TR-2014–112.

Zeller, C. (2005). Cloth simulation on the gpu. In ACM SIGGRAPH 2005 Sketches, pages
39–es.

Zhang, C., Zhang, S., Peters, J. D., and Bowers, J. E. (2016). 8⇥ 8⇥ 40 gbps fully
integrated silicon photonic network on chip. Optica, 3(7):785–786.

Zhang, C.-L., Xu, Y.-P., Xu, Z.-J., He, J., Wang, J., and Adu, J.-H. (2018). A fuzzy neural
network based dynamic data allocation model on heterogeneous multi-gpus for large-
scale computations. International Journal of Automation and Computing, 15(2):181–
193.

Zhang, H., Hu, Z., Wei, J., Xie, P., Kim, G., Ho, Q., and Xing, E. (2015). Poseidon: A
system architecture for efficient gpu-based deep learning on multiple machines. arXiv
preprint arXiv:1512.06216.

Zheng, B. and Pekhimenko, G. (1997). Ecornn: Efficient computing of lstm rnn on gpus.
Memory, 9:1735–1780.

129

Zhu, Y., Wang, Q., Li, M., Jiang, M., and Zhang, P. (2019). Image reconstruction by
mumford–shah regularization for low-dose ct with multi-gpu acceleration. Physics in
Medicine & Biology, 64(15):155017.

Zhu, Y.-L., Pan, D., Li, Z.-W., Liu, H., Qian, H.-J., Zhao, Y., Lu, Z.-Y., and Sun, Z.-Y.
(2018). Employing multi-gpu power for molecular dynamics simulation: an extension
of galamost. Molecular Physics, 116(7-8):1065–1077.

Ziabari, A. K., Abellán, J. L., Ma, Y., Joshi, A., and Kaeli, D. (2015a). Asymmetric noc
architectures for gpu systems. In Proceedings of the 9th International Symposium on
Networks-on-Chip, pages 1–8.

Ziabari, A. K. K., Abellán, J. L., Ubal, R., Chen, C., Joshi, A., and Kaeli, D. (2015b).
Leveraging silicon-photonic noc for designing scalable gpus. In Proceedings of the 29th
ACM on International Conference on Supercomputing, pages 273–282.

CURRICULUM VITAE

131

