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Abstract: Gulf War illness (GWI) refers to the multitude of chronic health symptoms, spanning from
fatigue, musculoskeletal pain, and neurological complaints to respiratory, gastrointestinal,
and dermatologic symptoms experienced by about 250,000 GW veterans who served in the 1991 Gulf
War (GW). Longitudinal studies showed that the severity of these symptoms often remain unchanged
even years after the GW, and these veterans with GWI continue to have poorer general health and
increased chronic medical conditions than their non-deployed counterparts. For better management
and treatment of this condition, there is an urgent need for developing objective biomarkers that can
help with simple and accurate diagnosis of GWI. In this study, we applied multiple neuroimaging
techniques, including T1-weighted magnetic resonance imaging (T1W-MRI), diffusion tensor imaging
(DTI), and novel neurite density imaging (NDI) to perform both a group-level statistical comparison
and a single-subject level machine learning (ML) analysis to identify diagnostic imaging features of
GWI. Our results supported NDI as the most sensitive in defining GWI characteristics. In particular,
our classifier trained with white matter NDI features achieved an accuracy of 90% and F-score of
0.941 for classifying GWI cases from controls after the cross-validation. These results are consistent
with our previous study which suggests that NDI measures are sensitive to the microstructural and
macrostructural changes in the brain of veterans with GWI, which can be valuable for designing
better diagnosis method and treatment efficacy studies.

Keywords: Gulf War illness; MRI; objective biomarker; machine learning; Kansas case criteria;
diffusion; grey matter; neurite density imaging

1. Introduction

Gulf War illness (GWI) refers to the variety of chronic symptoms experienced by about
250,000 United States veterans who served in the 1991 Gulf War (GW) [1]. According to the Kansas
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case criteria, symptoms of GWI fall into six categories: fatigue (fatigue and sleep problems),
pain (joint and muscle), neurological (cognitive, mood, headache, and dizziness), respiratory (persistent
cough and wheezing), gastrointestinal (diarrhea and nausea), and skin (rashes and other) problems.
Exposure to neurotoxicant chemicals (organophosphate pesticides and sarin) during the war and other
central nervous system (CNS) damage, such as mild traumatic brain injury (mTBI), are thought to have
caused an innate immune over-response in the CNS, resulting in the development of these chronic
GWI symptoms [2–7]). In order to meet the Kansas criteria for GWI, veterans must display chronic
symptoms in at least three of the six categories, without presenting concurrent psychiatric and medical
disorders [8]. However, accurate diagnoses of GWI remained challenging due to the heterogeneous
clinical presentation of this condition, as well as the level of subjectivity associated with self-reported
symptoms and neurotoxicant exposure history [8–10]. To improve management and treatment of GWI,
there is an urgent need for defining sensitive and objective biomarkers of the disorder.

Previous neuroimaging studies demonstrated distinct changes within brains of veterans with
GWI, which may underlie physiological symptoms. For example, T1W-MRI studies showed that GW
veterans with exposure to the neurotoxicant chemical sarin exhibit reduced gray matter (GM) and
white matter (WM) volumes, as well as reductions in hippocampal subfield volumes when compared
to non-exposed veterans [11,12]. More recent studies using diffusion tensor imaging (DTI) have shown
greater hippocampal mean diffusivity (MD) and increased axial diffusivity (AD) in the WM of sarin
and cyclosarin exposed GW veterans, which are correlated to fatigue, pain, or hyperalgesia, and may
serve as a potential biomarker for GWI [13–15]. We have previously applied a novel MRI diffusion
processing method, neurite density imaging (NDI), on high-order diffusion MRI to demonstrate that
the NDI measure scan successfully identify and validate different levels of neurological abnormalities
in veterans with GWI from the Boston Gulf War Illness Consortium cohort [16].

ML algorithms have been applied to study a wide range of neurological disorders, including
Alzheimer’s disease, Parkinson’s disease, and traumatic brain injury [17,18]. These studies have
reported promising results for identifying diagnostic biomarkers [19,20]. The ML approach have
strengths on exploiting features from different domains (i.e., neuropsychological, genetic and
neuroimaging) and providing further insights on the potential interactions between different markers
for classifying illness [21]. For the current study, we aimed to expand our previous work (on NDI)
to cross-compare different types of neuroimaging markers (T1W-MRI, DTI and NDI) to determine
whether these measures are useful for single subject-level classification of GWI cases vs. controls.
Specifically, we incorporated the machine learning (ML) framework to search out key imaging features
valuable for defining GWI. Computerized models were then trained based on the selected features and
tested for classifying veterans with GWI.

2. Methods

2.1. Participants

In this study, we included brain imaging data of 119 GW veterans from Boston University Gulf
War Illness Consortium (GWIC) (Table 1). GWIC is a multi-site study designed to identify the etiology
and potential biomarkers of GWI. The inclusion criterion was deployment to the GW between August
1990 and July 1991. The exclusion criteria included having a diagnosis of chronic medical illnesses
that could otherwise account for the symptoms experienced by GW veterans, including autoimmune,
CNS, or major psychiatric disorders that could affect the brain and immune functions (e.g., epilepsy,
stroke, severe head injury, etc.). Each participant completed an assessment protocol of health surveys,
a neuropsychological test battery, brain imaging, and collection of blood and saliva samples [2]. In this
study, we utilized brain imaging outcomes to study GWI. All participants provided written informed
consent to participate in the study. This study was reviewed and approved by the Boston University
institutional review board.
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Table 1. Subject Characteristics.

BU Subjects GW Control GWI Case

N 21 98
Age (years) 54.06 52.46

Gender (F/M) 3/18 20/78

Gulf War Illness Criteria and Symptom Surveys

GWI case status was defined from the Kansas GWI case definition, which requires multiple or
moderate-to-severe chronic symptoms in at least three of six statistically defined symptom domains:
fatigue/sleep problems, somatic pain, neurological cognitive/mood symptoms, gastrointestinal
symptoms, respiratory symptoms, and skin abnormalities [8]. GWIC participants not meeting
Kansas GWI or exclusionary criteria were considered controls. Veterans were excluded from being
considered GWI cases, for purposes of the research study, if they reported being diagnosed by a
physician with medical or psychiatric conditions that would account for their symptoms or interfere
with their ability to report their symptoms. GWIC subjects were administered a general demographic
information and medical conditions questionnaire and the Kansas Gulf War and health questionnaire
for assessing symptoms [8,10]. Additional validated health symptom surveys were completed by study
participants and included the multidimensional fatigue inventory (MFI-20), McGill pain inventory and
the Pittsburgh sleep quality index (PSQI) where higher scores suggested worse conditions [22–24].

2.2. Image Acquisition

All veterans were scanned on an Achieva 3T whole-body MRI scanner (Philips Healthcare,
Best, The Netherlands) at the Center of Biomedical Imaging, Boston University school of Medicine.
T1W-MRI were obtained using an MPRAGE sequence developed by the Alzheimer’s disease
neuroimaging initiative (ADNI) (Repetition time (TR) = 6.8 ms, Echo time (TE) = 3.1 ms, flip angle = 9◦,
slice thickness = 1.2 mm, 170 slices, Field of view (FOV) = 250 mm, matrix = 256 × 256) (accessible from
http://adni.loni.usc.edu/). Diffusion MRI data were obtained using 124 gradient directions utilizing
parallel imaging on a 16-channel parallel head coil (70 slices, TR = 13,214 ms, TE = 55 ms, with a
matrix size of 128 × 128 yielding a resolution of 2.0 × 2.0 × 2.0 mm3, no slice gap). Multi-shell
diffusion encodings with b-values 1000, 2000 and 3000 s/mm2 were acquired with a single-shot echo
planar imaging (EPI) sequence, and 6 b = 0 s/mm2 field maps were collected in addition to distortion
corrections built into the scanner.

2.3. Image Processing and Anatomical Defining

Structural T1W-MRI scans were analyzed with the Freesurfer package (version 6.0) to generate
anatomical regions of interest (ROI) for assessing GM morphometric measures, and to provide GM
anatomical co-registration references for diffusion images [25]. A total of 78 ROIs defined in the
average template space were co-registered to each subject’s cortical surface by applying nonlinear
co-registration parameters. All results were visually inspected for artifacts or incomplete segmentation.
Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD)
maps were created using tract-based spatial statistics (TBSS), part of FSL package that projects all
subjects’ diffusion tensor imaging (DTI) data onto a mean tract skeleton [26]. A total of 20 major
WM tracts were defined using the Johns Hopkins University (JHU) white-matter tractography atlas
provided in the FSL package, the same template was also used for special normalization and linear
co-registration of diffusion MRIs [27,28].

2.4. High-Order Diffusion Processing

Microstructural diffusion measures were reconstructed from multi-shell diffusion MRI images
containing 3 b-value encodings using the NDI model [16]. Two parameters, neurite density (ND)

http://adni.loni.usc.edu/
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index and orientation dispersion (OD) index were extracted from the NDI model. In brief, ND is
a fraction of tissue composed of neurites which include axons and dendrites, and OD provides the
spatial configuration of the neurite structures based on the composite pattern of intra- and extracellular
diffusivity [29]. For WM NDI measures, all subjects’ NDI data were registered to a common space
based on nonlinear transformation and projected to the WM tract skeleton. Next the major WM tract
ROIs were then applied to the skeletonized WM NDI maps to extract ROI-wise NDI measures [26].
For the GM diffusivity assessment, diffusion modeling parameters were determined by voxel wise
iterative parameter selection method. We used the maximum likelihood estimation of model fitting
error to define the optimal intrinsic free diffusivity parameters [30]. The optimal parameters were
used to reconstruct the GM NDI maps and then merged into the 78 GM ROIs to extract ROI-wise NDI
measures [30,31].

2.5. T1-Weighted MRI Measures

From the Freesurfer cortical reconstruction process of T1W-MRI, we extracted six measures per
subject, including cortical thickness, cortical surface area, cortical volume (cVolume), subcortical
GM volume (scVolume), WM volume, curvature (curv). Specifically, cortical thickness, surface area,
volume, and curvature are extracted from 62 ROIs based on Desikan–Killiany–Tourville (DKT) atlas,
while subcortical ROIs are defined by Freesurfer built-in atlas [31,32].

2.6. Statistical Analysis

From the data processing steps, we generated in total 14 types of imaging measures: 4 NDI,
4 DTI, and 6 T1-weighted morphometric measures. For each type of imaging measure, we conducted
statistical comparisons of GWI cases vs. controls using linear regression models adjusting for age and
sex, and then corrected for multiple comparison using false discovery rate (FDR) [33]. We reported
t-values and FDR-corrected p-values (FDR-p), significant features are defined as FDR-p < 0.05.

2.7. Machine Learning Classification

Imaging measures described in the previous sections are used as pre-defined features for training
ML classification models. Age- and sex-related confounds were removed from the raw data before
training the model. This step is achieved by estimating the effects of age and sex on imaging measures
using a linear regression model that is similar to a method applied in an early study [19]. For building
the classifier for each imaging measure we adapted a reinforcement learning algorithm with artificial
bee colony algorithm for feature selection (BSO: bee swarm optimization), and the K nearest neighbors
(KNN) algorithm for classification training and performance evaluation [34,35].

2.7.1. Feature Space Selection and Classifier Training

As mentioned previously, some specific neuroimaging markers (i.e., NDI measures) may be more
sensitive for detecting the subtle neurological changes occurring in GWI cases [16]. For training the
classifiers, each type of imaging measures (i.e., measurement domains) serves as prior information
that will allow us to set up specific feature space for potentially better ML outcomes. Within each
feature space, reinforcement learning-based BSO (QBSO) was used to perform iterative search of the
subset of features that provides the best classification performance on the training dataset (more details
described in QBSO Tuning). Through QBSO, a final subset of features (final solution) was selected to
build a final classifier. Final classifiers trained on each feature space were- then tested on the validation
dataset (see more details in Ensemble Approach).

QBSO Tuning

This feature selection concept combines the BSO and reinforcement learning (specifically
Q-learning) to upgrade simple local search to a more adaptive and efficient search for the final
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solution [34,35]. Previous study has shown that this hybrid method outperforms other well-known ML
algorithms for feature selection [35]. More specifically, the BSO method mimics the foraging behavior
of natural bees by performing iterative local search for an optimized solution [36].

From the predefined feature space explained earlier, the initial solution is randomly generated.
Then, BSO randomly modifies the initial solution to multiple different secondary solutions, where each
will be assigned to a bee (an agent) to perform local search to find local optimum (based on k-fold
cross-validation accuracy). In this local search stage, each bee refers to a series of experiments obtained
in previous steps to make a decision to do further search in the current search pace, and this local
search will continue until no further improvement of accuracy occurs. When the bee reaches this point,
each bee’s search history is shared to other bees and used for the diversification of searching process.

In the diversification process, the most distant solution will be selected based on the shared
information. During this process, the role of reinforcement learning is to allow the agent learn through
an interactive environment by trial and error. As the result, the QBSO method will search for a
solution (i.e., resulting feature list) that maximizes the reward through multiple iterations. In each
iteration, KNN runs on the candidate features (one of the secondary solutions) selected from the bee
and tested for 5 iterations of 5-fold cross-validation on the training dataset. We used an average
accuracy measure from the 5-fold cross-validation for estimating the reward. Finally, the search process
will terminate based on the pre-defined parameters. To set up the optimal parameters, we used a
grid-search strategy that is empirically searching the parameters resulting in the highest classification
accuracy for the training dataset. The final parameters used in this experiment are listed as follows:
flip: 20, max. chance: 9, nBees: 30.

Ensemble Approach

Per each feature space (i.e., one type of imaging measure), QBSO produces a subset of final features
that provides the highest average accuracy from the iterative search. QBSO is repeated 5 times in total
to generate 5 final solution candidates for a single training dataset. Per each solution, we built 3 different
classifiers- KNN, support vector machine, and random forest classifiers. The training dataset was
further split into 2 parts (i.e., training and testing) and used to train each classifier. Then the weighted
majority voting was used to ensemble those 15 classifiers (i.e., 3 classifiers from each solution) to make
a final prediction on the validation dataset. The following weight function was used: Wi = Pi/(1 − Pi),
Pi: performance of i-th classifier, i = [1:15].

2.7.2. Comparing Classification with Different Imaging Measures

As mentioned previously, each type of imaging measures was used to set up distinct candidate
feature space for training the classifiers. The resulting 14 different classifiers (4 NDI, 4 DTI, and 6 T1W-MRI
morphometric measures) were evaluated based on their classification performances. For the benchmark
testing, the entire dataset was initially divided into a training dataset and a validation dataset based
on a 5-fold partitioning. We took one fold as a validation dataset and used the remaining 4-fold data
for performing the QBSO training framework (Section 2.7.1). This process was repeated 5 times as
training/validation datasets rotate among the 5 folds (by taking each fold as the validation dataset in each
iteration). For the classification performance comparison, we reported performance measures (averaged
from 5 iterations after validation) of accuracy, sensitivity, specificity, and F-score. We included F-score as a
more representative performance measure for the imbalanced case and control groups [37]. In addition to
the average accuracy, we included the standard deviation (SD) of accuracy, as an estimate of variations
between iterations, and the highest accuracy value for the top three classifiers.
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3. Results

3.1. Group-Level Statistical Comparison and Key Imaging Features

Statistical analysis of NDI measures showed significant differences between GWI cases and
controls in both WM tracts and GM ROIs (FDR-p < 0.05) (Figure 1). The full result can be found
in Table S1. All major WM tracts showed significant decreases in ND and OD for GWI cases
compared to controls (Figure 1A). The greatest significant group differences between GWI cases and
controls were seen in the bilateral corticospinal tract (CST, t = −3.119 FDR-p = 0.017 (left), t = −3.129,
FDR-p = 0.017 (right)) and the bilateral anterior thalamic radiations (ATR, t = −2.891, FDR-p = 0.017
(left), t = −2.808, FDR-p = 0.017 (right)) for WM ND, and in the bilateral cingulum cingulate gyrus
bundle (CCG, t = −4.041 FDR-p = 0.002 (left), t = −3.384, FDR-p = 0.007) for WM OD. Both ND and
OD showed decreased patterns (FDR-p < 0.05) for most GM ROIs as well (Figure 1B). The greatest
significant group differences between GWI cases and controls were seen in the left isthmus of cingulate
gyrus (t = −3.319, FDR-p = 0.036) and the bilateral thalamus proper (t = −3.168, FDR-p = 0.036 (left),
t = −3.015, FDR-p = 0.036) for GM ND, and in the bilateral caudal anterior cingulate gyrus (t = −3.262,
FDR-p = 0.016(left), t = −3.182, FDR-p = 0.016 (right)), the bilateral posterior cingulate gyrus (t =−3.832,
FDR-p = 0.016 (left), t = −2.461, FDR-p = 0.03 (right)), the bilateral amygdala (t = −3.593, FDR-p = 0.016
(left), t = −3.516, FDR-p = 0.016 (right)) and the bilateral putamen (t = −3.228, FDR-p = 0.016 (left),
t = −3.134, FDR-p = 0.016 (right)) for GM OD. The full list of statistically significant imaging features
can be found in Table S1.

Figure 1. Gulf War illness (GWI) cases vs. Gulf War (GW) control group comparisons of gray matter
(GM) and white matter (WM) neurite density imaging (NDI) measures and summary of significant
regions. (A) 3D tract representation of significant WM ND differences between GWI case and control
groups. (B) 3D region of interest (ROI) representation of significant GM ND differences between GWI
case and control groups. Color bar corresponds to the magnitude of t-value, red indicates greater
difference between groups, and vice versa. Fmaj = corpus callosum forceps major, Fmin = corpus
callosum forceps minor, atr = anterior thalamic radiations, cst = corticospinal tract, cing = cingulum
cingulate gyrus bundle, ilf = inferior longitudinal fasciculus, slf = superior longitudinal fasciculus,
unc = uncinate fasciculus.

3.2. Machine Learning Classification Performance

As shown in Figure 2 and Table 2, the best classifier for GWI cases vs. control we had is trained
using the WM OD measures, which achieved F-score of 0.941, an accuracy of 90% (SD: 0.063, highest
accuracy: 91.7%), sensitivity of 95%, and specificity of 65%. The specific features include the left
CST, the corpus callosum forceps minor (fminor), the left inferior fronto-occipital fasciculus (IFOF),
the left inferior longitudinal fasciculus (ILF), the left superior longitudinal fasciculus (SLF), and the
left superior longitudinal fasciculus temporal (SLFT). All features were statistically significant based
on group-level analysis (Figure 1A, Table S1). The second-best classifier is trained using the GM
ND measures, which achieved F-score of 0.922, an accuracy of 86.7% (SD: 0.054, highest accuracy:
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91.7%), sensitivity of 96%, and specificity of 40%. The specific features used by this GM ND classifier
include both cortical and subcortical structures of the limbic system, including the bilateral caudal
anterior cingulate gyri (Table 2). The third best classifier was trained using the WM ND measures,
which achieved F-score of 0.914, an accuracy of 85% (SD: 0.048, highest accuracy: 91.7%), sensitivity
of 96%, and specificity of 30%. For this classifier, the specific features included the bilateral anterior
thalamic radiations (ATR), the bilateral IFOF, the bilateral ILF, the left SLF, the right SLFT and the
Fminor (Table 2). The full list of imaging features used by the top three classifiers can be found in
Table 2 and the full list of classifier performances can be found in Table S2.

Figure 2. Classification performances of all classifiers. Each bar represents the performance
(solid-colored bar: average F-score, shaded area: average accuracy) of each type of classifier
trained on one imaging measure, data is presented as mean ± SEM after cross-validation.
Grey-colored bars: NDI measure-based classifiers. Blue-colored bars: diffusion tension imaging
(DTI) measure-based classifiers. Green-colored bars: T1-weighted structural MRI (T1W-MRI)
measure-based classifiers. WM OD = white matter orientation dispersion, WM ND = white
matter neurite density, GM OD = grey matter orientation dispersion, GM ND = grey matter neurite
density, RD = radial diffusivity, MD = mean diffusivity, FA = fractional anisotropy, AD = axial
diffusivity, thickness = cortical thickness, area = cortical surface area, cVolume = cortical volume,
scVolume = subcortical GM volume, volume WM = white matter volume.

Table 2. Summary of classification performances and feature characteristics.

Measure ACC SEN SPE F-Score Key Features

WM OD 90% 95% 65% 0.941

L CST **
L IFOF **
L ILF **
L SLF **

L SLFT **
Fminor **

GM ND 86.7% 96% 40% 0.922

L caudal anterior cingulate *
L cuneus

L inferior temporal
L paracentral *

L posterior cingulate *
L thalamus proper *

R caudal anterior cingulat
R lingual

R pars orbitalis
R amygdala *
R putamen *

WM ND 85% 96% 30% 0.914

L ATR *
L IFOF *
L ILF *
L SLF *

Fminor *

R ATR *
R IFOF *
R ILF *

R SLFT *

ACC: accuracy, SEN: sensitivity, SPE: specificity, F-score: F1 score, WM OD: white matter orientation dispersion
index, GM ND: gray matter neurite density index, WM ND: white matter neurite density index, L: left hemisphere,
R: right hemisphere, CST: corticospinal tract, IFOF: inferior fronto-occipital fasciculus, ILF: inferior longitudinal
fasciculus, SLF: superior longitudinal fasciculus, SLFT: superior longitudinal fasciculus temporal, Fminor: corpus
callosum forceps minor, ATR: anterior thalamic radiation. *: FDR-p < 0.05 in group-level statistical comparison.
**: FDR-p < 0.01 in group-level statistical comparison.
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4. Discussion

In this study, we used various neuroimaging techniques (NDI, DTI, structural T1W-MRI) to identify
important features that may help to differentiate between veterans with GWI and control veterans.
These features were selected through two different analytical frameworks: (1) group-level statistical
analysis, and (2) single subject-level ML classification models. From our group-level, univariate
analysis, we identified important imaging features, especially from WM and GM NDI and T1W-MRI
regional volumetric measures, which showed high contrasts between veterans with GWI and control
veterans. From the multivariate classification results, we could additionally identify unique imaging
features that are important for making single-subject level inferences regardless of its relevance to the
group differences.

The results from the group-level statistical analysis showed that NDI measures are the most
sensitive marker for detecting GWI pathology than other types of neuroimaging measures. For WM
NDI measures, all major tracts showed significant decreases for veterans with GWI compared to
control veterans (Figure 1A). The greatest significant group differences were seen in the bilateral CST
for WM ND and bilateral CCG bundle for WM OD (Table S1). The roles of these tracts in many
essential physical and neuropsychological functions have been well described by previous literatures.
For instance, earlier studies showed that disruption of the CST WM integrity was associated with
motor impairment that occurs in the early stages of many neurological conditions such as Huntington’s
Disease and Multiple Sclerosis [38,39]. Similarly, disruption of CCG has been associated with impaired
executive functioning, pain, memory deficits, and has been a main target for conditions including major
depression, schizophrenia, post-traumatic stress disorder (PTSD), and autism spectrum disorder [40].
Changes in these tracts captured by our WM NDI results may also be important to understand specific
symptoms such as muscle pain, fatigue, and depression observed in GWI.

From the ML framework, we confirmed that WM OD, GM ND, and WM ND measures were
the sources of the top three classifiers (based on average accuracy) (Figure 2, Table 2). The classifier
trained using the WM OD measure showed the best performance and consistently reporting six
features: the left CST, IFOF, ILF, SLF, SLFT, and the Fminor (Table 2). Due to the completely imbalanced
distribution of the data used in this study, performance on classifying controls were more challenging
in QBSO and this calls better ideas on handling this issue. For example, synthetic oversampling
method such as the synthetic minority oversampling technique (SMOTE) may help addressing this
issue [41]. Additionally, in this type of imbalanced sample, assessing the F1-score might serve as a more
realistic measure of the classification performance [37]. Although we used average accuracy measure
for comparing classifiers, WM OD showed a high F-score (0.941), showing that our proposed ML
framework is providing reasonable performance at least in this sample. Compared to the NDI classifiers,
the classifiers from DTI measures or T1W-MRI measures all had lower classification performance than
NDI measures (Table S2). These results suggest that (1) NDI measures are important imaging markers
for defining GWI, and (2) the features defined from ML framework provides distinct information from
the group-level statistics on describing GWI. While several features from the group-level statistics may
present with overlapping patterns to ML classifiers, there are also unique features reported by ML
classifiers but not captured in the group-level analysis framework.

Both our findings on group-level statistics and single subject-level classification model
demonstrated the importance of NDI measures for defining GWI. Moreover, considering the other
ML methods tested on mild or preclinical stage illness, such as mild cognitive impairment staying
with ~78% accuracy levels, the classification performance obtained from NDI QBSO is impressive and
brings more attention into the complex diffusion imaging measures for studying preclinical stage or
mildly progressive illness [42]. In the current study, we not only identified widespread statistically
significant NDI features through group-level analysis, but also demonstrated that WM OD measures
trained a better classifier compared to other imaging measures. This is consistent with our previous
studies on NDI showing that this technique is sensitive to microstructural and macrostructural brain
alterations and useful for detecting neurological abnormalities in GW veterans [16]. Our result also
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corroborated with our previous findings that showed a higher sensitivity for the novel NDI measures
compared to the common DTI measures (e.g., FA, MD, etc.). As we suggested before, this might be due
to the higher specificity of NDI for detecting changes in different tissue components [16]. We previously
found that there is a strong correlation between alterations in GM ND measure and worse self-reported
fatigue and sleep symptoms, and with upregulated levels of proinflammatory cytokines TNFRI and
TNFRII [16]. However, based on our current findings, GM ND measures provided slightly lower
classification performance than WM OD and ND measures in this study. In addition, while classifier
trained on WM OD resulted in nearly identical final solutions across five iterations of validation,
GM measures resulted in more variabilities in the selected feature solutions. This might be due to the
differences in dimensional size between WM and GM feature space. GM measures have more numbers
of features (more complexity in the feature space) to be searched out during the QBSO process than
WM measures, and thereby requiring more delicate optimization process especially in this not-a-large
dataset problem. Although further investigations based on larger dataset is key to address the issue,
this may also indicate that WM OD measures can be better markers for simply classifying veterans
with GWI from control veterans, while GM ND can be a sensitive marker to specific symptom domains.
Our results also support the diagnostic value of these NDI markers for clinical applications.

Altogether, these results suggest that the microstructural changes measured by NDI may be
attributed to GM and WM deficits following chronic neuroinflammation. In line with this finding,
other studies have shown that chronic neuroinflammation related to GWI symptoms may be a
result of both morphological and functional changes that occurred in glial cells. For instance,
a study using a rat model of GWI showed that exposure to the chemical agent, diisopropyl
fluorophosphate (DFP: a sarin surrogate), was associated with fewer numbers of both mature and
dividing oligodendrocytes in the prefrontal cortex, which in turn interrupted the neuron-glial
interactions [43]. DFP injection also induced neuroinflammation and neurodegeneration in multiple
brain regions, which is associated with impaired contextual fear learning in these rats [44]. Similarly,
mice exposed to DFP demonstrated epigenetic changes to genes related to the immune and neuronal
systems and altered proportions of myelinating oligodendrocytes in the frontal cortex, which led to
disrupted synaptic connectivity and WM alterations in GWI [45]. A recent in-vivo positron emission
tomography study corroborated these findings and reported elevated levels of translocator protein
(TSPO), a protein upregulated in activated microglia and astrocytes, in veterans with GWI compared
to control veterans [46]. This elevation pattern was observed in many areas including the precuneus,
prefrontal, primary motor, and somatosensory cortices [46]. Considering this evidence, our current
findings further support the importance of novel NDI measures for detecting microstructural changes
in the brain following chronic neuroinflammation in GWI.

Besides NDI measures, some T1W-MRI measures also demonstrated good performances for
classifying veterans with GWI vs. control veterans. Among classifiers trained using T1W-MRI
measures, the cortical volume, subcortical volume, WM volume, and mean curvature models achieved
80.8% accuracy, and highlighted key features in the frontal and temporal regions (Table S2). The results
on the group-level statistical analysis also showed reduced volumes of frontal regions among veterans
with GWI (Table S1). GM atrophy has been well studied as a hallmark for various neuropsychological
disorders. Previous studies showed that reduced total cortical and regional frontal lobe volumes are
associated with poor subjective sleep quality and increased self-reported frequency of hearing chemical
alarm among GW veterans [12,47].

For DTI measures, the best performance was demonstrated by the MD classifier with an accuracy
of 80% and F-score of 0.887 (Table S2). There is evidence that DTI measures may correlate with GWI
symptom severity. An early study on GWI veterans showed that fatigue, pain, and hyperalgesia
are associated with increased AD in the right IFOF [15]. Another study showed that changes in
frontal-limbic WM connectivity, as indicated by reduced MD and increased FA in the right cingulate
bundle, was associated with higher PTSD symptom severity score among a sample of 20 GW
veterans [48]. In addition, GW veterans who had been exposed to chemical agents have increased
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AD throughout many regions of the brain including the temporal stem, cingulum bundle, IFOF, etc.,
compared to unexposed veterans [13]. Through our results, we found that while T1W-MRI and DTI
measures are less significant based on group-level statistical analysis, a subset of the regional measures
may still explain key components of GWI symptoms.

In this study, we showed that neuroimaging markers help to identify GWI Nevertheless, we are
expecting that the current approach can be improved in several aspects. One of the limitations of the
current work is the imbalanced sample size, where the number of case subjects greatly exceeded the
control subjects for building the classification model. This issue is reflected by the higher sensitivity
and lower specificity for all the classifiers. To better handle this issue, we are planning to employ an
oversampling method on the minority group to balance the samples. In our follow up work, we will
also expand our analysis to a larger GW cohort including more control veterans recruited from other
sites. Another important future direction is to test if the combination of multiple imaging measures,
or combination of imaging and clinical measures (e.g., cognitive scores, inflammatory profiles, etc.)
can improve the classification performance. This multivariate approach will be useful for identifying
important features from large datasets. In conclusion, our current work provided the first evidence
that novel NDI measures are not only useful for defining GWI based on the conventional group-level
statistical comparisons, but also constitute key features for building single-subject level ML models
for automated diagnostic classification. The features that are highlighted by our analysis suggest
neurological changes underlying GWI pathology and support neuroinflammation as a potential target
for therapeutic interventions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/11/884/s1,
Table S1: List of key imaging features based on group-level statistical comparison, Table S2: The classification
performance for all classifiers.
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