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INCOMPLETE INFORMATION AND RISK SENSITIVE
ANALYSIS OF SEQUENTIAL GAMES WITHOUT
A PREDETERMINED ORDER OF TURNS

Rubén Becerril-Borja and Raúl Montes-de-Oca

The authors introduce risk sensitivity to a model of sequential games where players don’t
know beforehand which of them will make a choice at each stage of the game. It is shown that
every sequential game without a predetermined order of turns with risk sensitivity has a Nash
equilibrium, as well as in the case in which players have types that are chosen for them before
the game starts and that are kept from the other players. There are also a couple of examples
that show how the equilibria might change if the players are risk prone or risk adverse.
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Classification: 91A10, 91A18, 91A25

1. INTRODUCTION

In game theory there are many types of models to study different situations. That is
why there exists a basic set of characteristics that every game has and various changes
or additions are made to extend the scope of these models.

In this paper a couple of variations to a model presented in [5] are studied in which
players make decisions in a sequential manner, but the order of the play is not known
beforehand to players: it is revealed as the game is played. The variations considered
involve players having incomplete information on the type of their opponents, making
it possible to consider situations in which there is uncertainty on the utilities of the
opponents; and considering risk sensitivity of the players, which makes the models more
accurate as players tend to consider risk in their choices, since utilities cannot be con-
sidered directly, such as the lump sum of money a player receives, or something similar.
To do this, the Arrow [2] and Pratt [14] approach for risk sensitivity is used and the
case in which players only consider what’s happening in the game is taken into account,
without any external variables interfering with their decision making. Not only is this
the usual approach taken when studying Markov decision processes, for instance, in [9]
and [16], but it has also been applied in [3, 4, 8, 10, 12], and [13] to study risk sensitivity
in static and dynamic games including, in this last case, Markov and differential games.
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For the games presented in this work, in order to ensure the existence of Nash equi-
libria the authors proceed by showing that an adequately defined set of best responses
satisfies the conditions of Kakutani’s fixed point theorem [6] and [11] (for an extension
of the Kakutani’s fixed point theorem known as Kakutani-Fan-Glicksberg’s fixed point
theorem, see [1]) and by observing that the fixed points are exactly the Nash equilibria
for the games. This is a known approach for some games and it is useful in this case to
show the existence of the equilibria for the present model.

The paper is structured as follows. In Section 2 the notation used throughout the
paper and some concepts that deviate from the well-known game theory are explained.
In Section 3 the model of sequential games without a predetermined order of turns
that will be used through the article is introduced and the risk sensitivity modification
is discussed, along with the required modifications to the sequential model previously
shown. In Section 4 the proofs for the results that are necessary to ensure the existence
of Nash equilibria are presented. In Section 5 two examples are described and worked
with to show the effect that risk sensitivity has on the equilibria of these games, both in
the case of complete and incomplete information. Finally, in Section 6 some concluding
remarks are given and possible extensions to the work are presented.

2. PRELIMINARIES

Throughout the article standard notation, as in [17], will be used. A game consists of
the following elements:

• A set I = {1, 2, . . . , N} of players.

• A finite set of pure strategies Si for each i ∈ I.

• A real-valued utility function ui : Σ → R for each i ∈ I, with Σ = ST × · · · × S1

where each St is the finite set of all the strategies available for any of the one of
the players in I at time t.

Remark 2.1. The definition of each St is related to the sets Si as every strategy si ∈ Si
must appear in at least one St for all i ∈ I, however it isn’t straightforward how to
determine each St in every game as it depends on the structure of the game that is
studied: sometimes the available strategies are dependent only on each player’s actions,
sometimes they depend on what all players have done previously.

In this article sequential games (also called dynamic games) will be studied, therefore
a horizon of play T ∈ N is also required, which will tell us the number of decision points
in the game. A decision point will be the equivalent of what is known as an information
set, except the game also has to choose which player will act at that point. This is
because the change made in this paper to models of games is introducing uncertainty
for players regarding the order in which they will make a choice. This modification is
in part due to how some models are made in which it is determined that players have
to decide in a given order, but in reality that might not be the case, and the order is
completely different or can even be considered to be random for all intents and purposes.
Therefore, this is an idea on how to make models that could be used in cases where the
order of turns can be dynamic as well.
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From the basic elements described above it is possible to obtain for each player i ∈ I
their set of mixed strategies Mi, which is made of the probability distributions that
have the set Si as their support. A profile of mixed strategies x = (x1, x2, . . . , xN ) is
defined as a vector made of strategies xi ∈ Mi for each player i, that is, a profile of
mixed strategies x describes the strategies followed by all players in the game. The set
of profiles of mixed strategies is denoted here by M .

If there is a profile x = (x1, x2, . . . , xN ), and x̃i ∈Mi, it is possible to combine them
to make the profile

(x̃i, x−i) = (x1, x2, . . . , xi−1, x̃i, xi+1, . . . , xN ),

that is, to replace in x the strategy xi corresponding to player i with the strategy x̃i.
Let us notice that each player can be chosen to make a move at every decision point

in the game, therefore forcing every player to select a strategy for each possible decision
point. Players learn who has made a move in previous decision points, and it may or
may not be that they also learn the actions other players have made. In either case
players have perfect recall and as such their decision is conditioned by the actions (or
possible actions) of all players. Pi is defined as the set of plans of conditioned strategies
for player i, which can be defined as the strategies (si | r1, . . . , rk−1) ∈ Pi where player
i observes the actions (r1, . . . , rk−1) taken before the current turn k ∈ T (or whichever
actions are visible to player i). In an analogous manner it is possible to consider mixed
plans of conditioned strategies for player i, xi(si | r1, . . . , rk−1) at each decision point
k ∈ T , which consist of probability distributions that have Pi as their support; the set
of mixed conditioned strategies for player i is denoted by Qi. Finally, it is possible
to define profiles of plans of (mixed) conditioned strategies as the vectors that consider
(mixed) plans of conditioned strategies for each player i ∈ I. The set of these is denoted
by P (resp. Q). When referring to the sets of profiles of plans of (mixed) conditioned
strategies of players other than i, we denote them by P−i (resp. Q−i).

It would be desirable to define a concept of solution for the games, that is, profiles
that satisfy some properties. Such a property is that once the strategies for all players
are chosen, no player would like to deviate from their choice. A profile that satisfies this
is called an equilibrium. These equilibria shall be defined for each of the models in the
following section.

For the games that will be studied in the rest of the article, it is considered that
players can be chosen to make many or few decisions in the game, anywhere from 0
to T . Therefore the information of how many decisions as well as when in the game
players will be making them is hidden from every player until they reach each of the
decision points in the game. Therefore, the model that will be worked on can be defined
as follows:

Definition 2.2. A sequential game without a predetermined order of turns is a game
with a horizon of play T and a set of probability densities P = {p1, . . . , pN}, where
pi(m) is the probability according to player i that player m is chosen at each decision
point.

In other words, the games that will be studied all have the characteristic that before
the game, it is not known what player will decide when. As the game goes on and it is
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required for a decision to be made, the game decides, via a randomized process (or what
at least seems to be for the players), who gets to move and then the player chosen acts.
Notice that it is allowed for each player to have their own model for the turn selection
process, which are known to every player, which also means that, if it is not explicitly
required that no player has an advantage, if such advantage exists, it is not known to
the other players, so each considers their density to be the most adequate model for
the turn selection process. As such, it can be assumed that however players come up
with their probability distribution model, they consider it to be the most adequate. For
the purposes of this paper’s examples in Section 5, the way the turn selection process
randomizes will be of common knowledge.

In order to work with these games, and be able to give a reasonable idea of how players
should choose their strategies, the expected utility is the way to go. The expected utility
of each player i when the profile of plans of mixed conditioned strategies x ∈ Q is played
is given by

Ei(x) =
∑
n1∈I

∑
s1∈Sn1

· · ·
∑
nT∈I

∑
sT∈SnT

ui(s
T , . . . , s1)

× xTn (sT | sT−1, . . . , s1)pi(n
T ) · · ·xn1(s1)pi(n

1).

As it stands, fixed probabilities for selecting players are considered but it is possible
to adapt the model to accept variable probabilities at each stage. One thing that should
be noticed is that these probabilities are known by every player, so it is known how each
player views the turn selection process. An equilibrium, therefore, is a profile x∗ ∈ Q
such that for every player i ∈ I and every plan of mixed conditioned strategies xi ∈ Qi
it holds that

Ei(x
∗) ≥ Ei(xi, x∗−i).

3. MODELS

3.1. Risk neutral models

First the case with incomplete information is studied, that is, there is the possibility of
players having different types, which can change the behavior of each player by modifying
their utility functions. Each player has as well a determined type before the game
starts and the type of each player is only known by the player himself, but it is general
knowledge which types are possible for each player and the utility functions associated
with each of these types. That is, players do not know the others’ types, but the set of
possible types for the other players is known, and each of these types carries a utility
function associated with it.

This way, for each player i, there is a finite set of types Θi. Before the game starts, a
type θi ∈ Θi is chosen for each i. Each player has an a priori distribution bi(·) : Θ→ [0, 1],
where Θ = ×i∈I Θi, which can be refined once player i knows what his type θi is. In
order to do so, it is required for the distribution bi to have Bayesian updating, that is,
for every i ∈ I

bi(θ−i = c | θi = a) =
bi(θi = a and θ−i = c)

bmi (θi = a)
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for every a ∈ Θi and c ∈ Θ−i = ×j 6=i Θj , where bmi (θi = a) is the marginal distribution
for player i.

As stated before, the utility function of i also needs to be dependent on the type of
i, that is, ui(· | θi) : Σ→ R.

Given all of the above, the ex-ante expected utility [15] for player i when the profile
x ∈ Q has been chosen is defined as:

Ei(x) =
∑
θ∈Θ

∑
n1∈I

∑
s1∈Sn1

· · ·
∑
nT∈I

∑
sT∈SnT

bi(θ)ui(s
T , . . . , s1 | θi)

× xnT (sT | sT−1, . . . , s1; θnT )pi(n
T ) · · ·xn1(s1 | θn1)pi(n

1).

A Bayes-Nash equilibrium for this model is a profile x∗ ∈ Q such that

Ei(x
∗) ≥ Ei(xi, x∗−i)

for every xi ∈ Qi and every i ∈ I.
Instead of dealing with all the sources of uncertainty in the game at once, it is possible

to do it in steps by defining other expected utilities according to what is known at the
moment. In order to do so, the ex-post expected utility for player i when the profile
x ∈ Q has been chosen and the vector of types θ of all players is known can be defined
as:

Ei(x, θ) =
∑
n1∈I

∑
s1∈Sn1

· · ·
∑
nT∈I

∑
sT∈SnT

ui(s
T , . . . , s1 | θi)

× xnT (sT | sT−1, . . . , s1; θnT )pi(n
T ) · · ·xn1(s1 | θn1)pi(n

1).

The ex-interim expected utility for player i when x ∈ Q has been chosen and the
player knows their type θi is given by

Ei(x, θi) =
∑

θ−i∈Θ−i

∑
n1∈I

∑
s1∈Sn1

· · ·
∑
nT∈I

∑
sT∈SnT

bi(θi | θ−i)ui(sT , . . . , s1 | θi)

× xnT (sT | sT−1, . . . , s1; θnT )pi(n
T ) · · ·xn1(s1 | θn1)pi(n

1),

that is, the ex-interim expected utility can also be rewritten as

Ei(x, θi) =
∑

θ−i∈Θ−i

bi(θi | θ−i)Ei(x, (θi, θ−i))

which in turn makes it possible to rewrite the ex-ante expected utility as either

Ei(x) =
∑
θ∈Θ

bi(θ)Ei(x, θ)

or
Ei(x) =

∑
θi∈Θi

bmi (θi)Ei(x, θi)

where bmi is the marginal distribution of bi for player i.
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3.2. Risk sensitive models

Additionally to the references [2] and [14] given for the risk sensitivity, the book by L.
Eeckhoudt, C. Gollier, and H. Schlesinger [7] is provided. In particular, in Chapter 1 of
[7], a complete treatise on the risk-sensitivity is analyzed.

Concerning games, it is important to mention the seminal paper by Nowak [13] in
which a detailed discussion on the risk-sensitive Nash equilibrium concept in static non-
cooperative games and two-stage stochastic games of resource extraction is given. More-
over, several detailed examples to show the meaning of the risk-sensitive Nash equilib-
rium in such models is presented.

Now a modification to the model of sequential games without a predetermined order
of turns, which was presented in the previous section, is made in order to study the
behavior of risk prone and risk sensitive players. To do this a risk sensibility variable λi
is introduced, such that the utilities of each player are affected adequately.

For starters, the risk aversion coefficient is defined according to Arrow [2] and Pratt
[14] as

ri(z) = −U
λi
i

′′
(z)

Uλi
i

′
(z)

, z ∈ (−∞,∞)

where Uλi
i is the modified utility function for player i. When ri(z) > 0, player i is risk

averse, whereas if ri(z) < 0, then player i is risk prone. The case in which ri(z) = 0
corresponds to player i being risk neutral, and the equation can be easily solved to find
that Uλi

i (z) is linear.
A general case to study the risk sensitivity is dependent on the current state of each

player, namely their current “wealth”. However, in this case this assumption will be
dismissed and therefore ri(z) = λi will be considered, where each λi is constant.

The other important property that will be used is what has been referred to as the
∆-property (see [9]), that is, when every reward is increased by ∆, then the certain
equivalent of the player (see [9]) has to be increased exactly by ∆ whether the player is
risk averse, neutral or prone. From these two considerations, it is possible to find that
if ri(z) = λi, then the modified utility function must be of the form:

Uλi
i (z) =


− exp(−λiz) if λi > 0

z if λi = 0

exp(−λiz) if λi < 0

up to an affine transformation. The previous expression can be succinctly written for
λi 6= 0 as

Uλi
i (z) = −(sgnλi) exp(−λiz),

whose inverse function is given by

Uλi
i

−1
(w) = − 1

λi
log(−(sgnλi)w).

Since the certain equivalent is defined by

Uλi
i (c(z̃)) = E(Uλi

i (z̃)),
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it is obtained that

c(z̃) = Uλi
i

−1
(E(Uλi

i (z̃)))

= − 1

λi
log(−(sgnλi)E(−(sgnλi) exp(−λz̃)))

= − 1

λi
log(E(exp(−λiz̃))).

In order to define the expected utility and an equilibrium with the risk sensitive
modification, it is necessary to find an expected utility operator Eλi

i such that Eλi
i (z) =

E(exp(−λiz̃)). This follows easily as shown below.
To analyze the risk sensitive case, a Nash equilibrium is defined as a profile x∗ ∈ Q

such that
Eλi
i (x∗) ≥ Eλi

i (xi, x
∗
−i)

for every xi ∈ Qi and every i ∈ I, where the expected utility for player i when the profile
of plans of mixed conditioned strategies x ∈ Q is played, is defined as

Eλi
i (x) =

∑
n1∈I

∑
s1∈Sn1

· · ·
∑
nT∈I

∑
sT∈SnT

e−λiui(s
T ,...,s1)xnT (sT | sT−1, . . . , s1)

× pi(nT ) · · ·xn1(s1)pi(n
1).

The case in which there is incomplete information and the players are risk sensitive
is also studied. The types of each player, as before, are only associated with their utility
function, and are completely independent of the sensitivity to risk of each player. A
Bayes-Nash equilibrium is defined as a profile x∗ ∈ Q such that

Eλi
i (x∗) ≥ Eλi

i (xi, x
∗
−i)

for every xi ∈ Qi and every i ∈ I, where the ex-ante expected utility of playing the
profile of plans of mixed conditioned strategies x ∈ Q is given as:

Eλi
i (x) =

∑
θ∈Θ

∑
n1∈I

∑
s1∈Sn1

· · ·
∑
nT∈I

∑
sT∈SnT

bi(θ)e
−λiui(s

T ,...,s1|θi)

× xnT (sT | sT−1, . . . , s1; θnT )pi(n
T ) · · ·xn1(s1 | θn1)pi(n

1);

the ex-interim expected utility of playing the profile x ∈ Q when player i is of type
θi ∈ Θi is given by:

Eλi
i (x, θi) =

∑
θ−i∈Θ−i

∑
n1∈I

∑
s1∈Sn1

· · ·
∑
nT∈I

∑
sT∈SnT

bi(θ−i | θi)e−λiui(s
T ,...,s1|θi)

× xnT (sT | sT−1, . . . , s1; θnT )pi(n
T ) · · ·xn1(s1 | θn1)pi(n

1);

and the ex-post utility of playing the profile x ∈ Q when the vector of types θ ∈ Θ is
known, can be defined as:

Eλi
i (x, θ) =

∑
n1∈I

∑
s1∈Sn1

· · ·
∑
nT∈I

∑
sT∈SnT

e−λiui(s
T ,...,s1|θi)
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× xnT (sT | sT−1, . . . , s1; θnT )pi(n
T ) · · ·xn1(s1 | θn1)pi(n

1),

and the relations shown previously between these expected utilities still hold.
In order to study the existence of Nash equilibria, the best response correspondences

are defined and it is shown that each of them is nonempty, convex and has a closed
graph.

The best response correspondence for each i ∈ I, x−i ∈ Q−i and λi 6= 0, is given by

BRi(x−i) = {xi ∈ Qi | Ei(xi, x−i) ≥ Ei(x̃i, x−i) for all x̃i ∈ Qi}.

For the risk sensitive cases, we consider that the risk sensitivity of each player is
common knowledge, that is, the values λi are known to everyone. With this in mind it
is possible to define the best response correspondences in terms of the certain equivalent,
according to whether the player is risk averse or risk prone. If λi < 0, that is, if the
player is risk prone, the best response correspondences are defined as:

BRi(x−i) =

{
xi ∈ Qi

∣∣∣∣− 1

λi
log(Eλi

i (xi, x−i)) ≥ −
1

λi
log(Eλi

i (x̃i, x−i)) for all x̃i ∈ Qi
}

whereas if λi > 0, that is, if the player is risk averse, the best response correspondences
are defined as:

BRi(x−i) =

{
xi ∈ Qi

∣∣∣∣− 1

λi
log(Eλi

i (xi, x−i)) ≤ −
1

λi
log(Eλi

i (x̃i, x−i)) for all x̃i ∈ Qi
}
.

4. PROOFS

As a preamble, it can be noticed that the case with complete information about the
players utilities is a special case of the incomplete information variant, in which the set
of types for each player is a singleton. Therefore, only the incomplete information case
will be considered in the rest of the article.

Remark 4.1. Each of the propositions that is proven next for the ex-post expected
utility trickles down because of the chained definitions of our different expected utilities,
and therefore gives the same characteristic to the ex-ante expected utility.

Proposition 4.2. For each player i, the ex-post expected utility function is a continuous
function in i’s plan of conditioned strategies.

P r o o f . Notice that the ex-post expected utility function can be split in the following
way:

Ei(x, θ) =

∑
s1∈Si

· · ·
∑
sT∈Si

ui(s
T , . . . , s1 | θi)xi(sT | sT−1, . . . , s1; θi)

× pi(i) · · ·xi(s1 | θi)pi(i)
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+

 ∑
n1∈I\{i}

∑
s1∈Sn1

∑
s2∈Si

· · ·
∑
sT∈Si

ui(s
T , . . . , s1 | θi)xi(sT | sT−1, . . . , s1; θi)

× pi(i) · · ·xi(s2 | s1; θi)pi(i)xn1(s1 | θn1)pi(n
1) + · · ·

+
∑
s1∈Si

· · ·
∑

sT−1∈Si

∑
nT∈I\{i}

∑
sT∈SnT

ui(s
T , . . . , s1 | θi)xnT (sT | sT−1, . . . , s1; θnT )

× pi(n
T )xi(s

T−1 | sT−2, . . . , s1; θi)pi(i) · · ·xi(s1 | θi)pi(i)

+ · · ·

+

 ∑
n1∈I\{i}

∑
s1∈Sn1

· · ·
∑

nT∈I\{i}

∑
sT∈SnT

ui(s
T , . . . , s1 | θi)

× xnT (sT | sT−1, . . . , s1; θnT )pi(n
T ) · · ·xn1(s1 | θn1)pi(n

1)

 ,

where the terms in the first bracket are those in which player i was selected T times, the
terms in the second bracket are those in which player i was selected T − 1 times, and
so on, ending with the terms in the last bracket in which player i was selected 0 times.
It can be easily seen that each of these terms is continuous in the plan of strategies for
player i, so the whole sum is continuous in the plan of strategies of player i. For the case

of risk prone and risk averse players, in the expression above, e−λiui(s
T ,...,s1|θi) is the

term that appears instead of only ui(s
T , . . . , s1 | θi), but the continuity of the expected

utility is conserved by the same arguments. �

The following proposition can be directly proved, see Theorem 2 in [5].

Proposition 4.3. The set of profiles of conditioned strategies Q is a non-empty, com-
pact and convex subset of some Rq.

Proposition 4.4. The best response correspondence BR : Q→ Q defined as

BR(x) = (BR1(x−1), . . . , BRN (x−N ))

is non-empty and has a closed graph.

P r o o f . Since the expected utility function is a continuous function defined on a com-
pact set, for each i and each x−i ∈ Q−i there must exist x∗i for which it achieves its
maximum. For the case of risk prone and averse players, it is necessary to analyze each
case separately. For risk prone players, the expected utility function is bounded below by
0, so− 1

λi
log(Eλi

i (x∗i , x−i)) is well-defined and continuous, and therefore it must attain its

maximum at some x∗i . For risk averse players, the same holds for − 1
λi

log(Eλi
i (x∗i , x−i)),

so it must attain its minimum at some x∗i .



Incomplete information and risk sensitive sequential games ... 321

Therefore, for each player i, BRi is non-empty for every x−i ∈ Q−i, so BR is non-
empty for every x ∈ Q.

Let (xk)∞k=1 be a sequence of strategy profiles and (yk)∞k=1 be the sequence of responses
derived from the previous sequence, that is, let yk ∈ BR(xk) for every k. Assume that
both sequences are convergent to x∗ and y∗, respectively. For each player i, therefore,
it is obtained that yk,i ∈ BR(xk,−i), that is, for every x̃i ∈ Qi it holds that

Ei(yk,i, xk,−i) ≥ Ei(x̃i, xk,−i)

for the risk neutral cases, whereas for the risk sensitive version an analogous result can
be seen:

− 1

λi
log(Eλi

i (yk,i, xk,−i)) ≥ −
1

λi
log(Eλi

i (x̃i, xk,−i))

for the risk prone case, and

− 1

λi
log(Eλi

i (yk,i, xk,−i)) ≤ −
1

λi
log(Eλi

i (x̃i, xk,−i))

for the risk averse case. In all instances it is possible to take limits on both sides, so

lim
k→∞

Ei(yk,i, xk,−i) ≥ lim
k→∞

Ei(x̃i, xk,−i)

lim
k→∞

− 1

λi
log(Eλi

i (yk,i, xk,−i)) ≥ lim
k→∞

− 1

λi
log(Eλi

i (x̃i, xk,−i))

lim
k→∞

− 1

λi
log(Eλi

i (yk,i, xk,−i)) ≤ lim
k→∞

− 1

λi
log(Eλi

i (x̃i, xk,−i))

and by continuity of log and interchanging the limits and the sums, it follows that

Ei(y
∗
i , x
∗
−i) ≥ Ei(x̃i, x∗−i)

− 1

λi
log(Eλi

i (y∗i , x
∗
−i)) ≥ −

1

λi
log(Eλi

i (x̃i, x
∗
−i))

− 1

λi
log(Eλi

i (y∗i , x
∗
−i)) ≤ −

1

λi
log(Eλi

i (x̃i, x
∗
−i))

holds for every x̃i ∈ Qi. Therefore, y∗i ∈ BR(x∗−i) for each player i. This implies that
y∗ ∈ BR(x∗). �

For these models, the convexity of the best response correspondence can be easily
proved.

Proposition 4.5. The best response correspondence BR is convex.

P r o o f . Let xi, x
′
i ∈ BRi(x−i), then the ex-post expected utility for the convex com-

bination µxi + (1− µ)x′i for µ ∈ [0, 1] against x−i can be written in the following way:

Ei(((µxi + (1− µ)x′i), x−i), θ) =

∑
si∈Si

· · ·
∑
sT∈Si

ui(s
T , . . . , s1 | θi)
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× (µxi(s
T | sT−1, . . . , s1; θi) + (1− µ)x′i(s

T | sT−1, . . . , s1; θi))pi(i) · · ·

× (µxi(s
1 | θi) + (1− µ)x′i(s

1 | θi))pi(i)


+

 ∑
n1∈I\{i}

∑
s1∈Sn1

∑
s2∈Si

· · ·
∑
sT∈Si

ui(s
T , . . . , s1 | θi) · · ·

× (µxi(s
T | sT−1, . . . , s1; θi) + (1− µ)x′i(s

T | sT−1, . . . , s1; θi))pi(i) · · ·

× (µxi(s
2 | s1; θi) + (1− µ)x′i(s

2 | s1; θi))pi(i)xn1(s1 | θn1)pi(n
1) + · · ·

+
∑
s1∈Si

· · ·
∑

sT−1∈Si

∑
nT∈I\{i}

∑
sT∈SnT

ui(s
T , . . . , sT | θi)xnT (sT | sT−1, . . . , s1; θnT )pi(n

T ) · · ·

× (µxi(s
T−1 | sT−2, . . . , s1; θi) + (1− µ)x′i(s

T−1 | sT−2, . . . , s1; θi))pi(i) · · ·

×(µxi(s
1 | θi) + (1− µ)x′i(s

1 | θi))pi(i)

+ · · ·

+

 ∑
n1∈I\{i}

∑
s1∈Sn1

· · ·
∑

nT∈I\{i}

∑
sT∈SnT

ui(s
T , . . . , s1 | θi)

× xnT (sT | sT−1, . . . , s1; θnT )pi(n
T ) · · ·xn1(s1 | θn1)pi(n

1)


=

∑
si∈Si

· · ·
∑
sT∈Si

ui(s
T , . . . , s1 | θi)

× (µxi(s
T | sT−1, . . . , s1; θi) + (1− µ)x′i(s

T | sT−1, . . . , s1; θi))pi(i) · · ·

× (µxi(s
1 | θi) + (1− µ)x′i(s

1 | θi))pi(i)


+

 ∑
n1∈I\{i}

∑
s1∈Sn1

∑
s2∈Si

· · ·
∑
sT∈Si

ui(s
T , . . . , s1 | θi) · · ·
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× (µxi(s
T | sT−1, . . . , s1; θi) + (1− µ)x′i(s

T | sT−1, . . . , s1; θi))pi(i) · · ·

× (µxi(s
2 | s1; θi) + (1− µ)x′i(s

2 | s1; θi))pi(i)

× (µxn1(s1 | θn1) + (1− µ)xn1(s1 | θn1))pi(n
1) + · · ·

+
∑
s1∈Si

· · ·
∑

sT−1∈Si

∑
nT∈I\{i}

∑
sT∈SnT

ui(s
T , . . . , sT | θi)

× (µxnT (sT | sT−1, . . . , s1; θnT ) + (1− µ)xnT (sT | sT−1, . . . , s1; θnT ))pi(n
T )

× (µxi(s
T−1 | sT−2, . . . , s1; θi) + (1− µ)x′i(s

T−1 | sT−2, . . . , s1; θi))pi(i) · · ·

×(µxi(s
1 | θi) + (1− µ)x′i(s

1 | θi))pi(i)

+ · · ·

+

 ∑
n1∈I\{i}

∑
s1∈Sn1

· · ·
∑

nT∈I\{i}

∑
sT∈SnT

ui(s
T , . . . , s1 | θi)

× (µxnT (sT | sT−1, . . . , s1; θnT ) + (1− µ)xnT (sT | sT−1, . . . , s1; θnT ))pi(n
T ) · · ·

× (µxn1(s1 | θn1) + (1− µ)xn1(s1 | θn1))pi(n
1)


= µEi((xi, x−i), θ) + (1− µ)Ei((x

′
i, x−i), θ).

Now, it can be seen that Ei((xi, x−i), θ) = Ei((x
′
i, x−i), θ). This is because, by

definition, since xi is a best response to x−i, then Ei((xi, x−i), θ) ≥ Ei((x̃i, x−i), θ) for
all x̃i ∈ Qi, particularly for x̃i = x′i. The same can be done reversing the roles of xi and
x′i. Therefore, it follows that

Ei(((µxi+(1−µ)x′i), x−i), θ) = µEi((xi, x−i), θ)+(1−µ)Ei((xi, x−i), θ) = Ei((xi, x−i), θ)

and then, since this follows for the ex-ante expected utility, implies that µxi + (1−µ)x′i
is a best response to x−i. Therefore BR is a convex correspondence.

Following similar arguments, we may show that in the risk sensitive case the best re-
sponse correspondence is convex. �
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The previous results show that the best response correpondence BR satisfies Kaku-
tani’s fixed-point theorem [6], therefore guaranteeing the existence of at least one fixed
point for the best response correspondence. It is easy to show that the fixed points of
the best response correspondence are exactly the Nash equilibria (or Bayes-Nash equi-
libria, respectively) of each of the models presented above, since the definition of the
ex-ante expected utility can be given in terms of the ex-interim and this one in turn
can be defined in terms of the ex-post utility, which means the best responses for the
ex-ante expected utility are an optimization over the “best responses” for the ex-interim
expected utility, and these are an optimization over the “best responses” for the ex-post
case. Therefore the ex-ante best responses are also optimal for the other two expected
utilities. Finally, this implies that finding a fixed point on the set of best responses is
equivalent to a Bayes-Nash equilibrium, since it is optimal in the ex-post case, where the
uncertainty over the types of the players has been removed. Therefore the main result
of this paper is obtained.

Theorem 4.6. Every game that can be modelled using any of the previous four frame-
works has at least one Nash (or Bayes-Nash, respectively) equilibrium.

5. EXAMPLES

Example 5.1. There are two players, denoted 1 and 2. To show how risk averse and risk
prone players change their behavior from risk neutral players the following example is
presented. There is a two stage game in which the player that chooses in the second stage
doesn’t know what the player in the first stage chose, unless the same player chooses in
both the first and the second stages. In each of these, players have two choices, which in
the first stage have been denoted as A and B and for the second stage as C and D. At
each decision point, each player has equal probabilities of being chosen. The diagram
for this game with the corresponding utilities for each possible pair of choices is shown
in Figure 1.

It can be noticed that there are no dominated strategies as there are instances in which
A and B are preferred in the first stage by both players according to what happens in the
second stage, while the same occurs for C and D. As previously stated, the player who
is chosen at the second and the last period can make a completely informed choice if and
only if the previous period he was chosen as well. Otherwise, the choice is dependent on
what the other player’s strategy is. Therefore what happens at the last period is studied
first and then the full expected utility for each player is considered.

If player 2 is chosen at the first period and player 1 is chosen at the second period,
then the expected utility of player 1 is:

E1(x) =
∑

s1∈{A,B}

∑
s2∈{C,D}

u1(s2, s1)p1(1)x1(s2 | s1)p1(2)x2(s1)

= 0.25(u1(C,A)x1(C)x2(A) + u1(C,B)x1(C)(1− x2(A))

+ u1(D,A)x1(D)x2(A) + u1(D,B)x1(D)(1− x2(A)))

= 0.25(5− 2x2(A))x1(C) + (2x2(A) + 4)(1− x1(C)))

= 0.25((1− 4x2(A))x1(C) + 2x2(A) + 4),



Incomplete information and risk sensitive sequential games ... 325

1

2

3, 2

6, 7

5, 6

4, 3

A

B

C

D

C

D

Fig. 1. A two-stage sequential game.

where player 1 doesn’t know whether A or B has been chosen at the first stage, so player
1’s strategies are unconditioned.

Therefore it is obtained that

• if x2(A) > 1
4 , then x1(C) = 0 and x1(D) = 1,

• if x2(A) < 1
4 , then x1(C) = 1 and x1(D) = 0, and

• if x2(A) = 1
4 , then x1(C) ∈ [0, 1] and x1(D) = 1− x2(C).

A similar process can be used for the case in which player 1 is chosen at the first
period and player 2 is chosen at the second period, as the expected utility of player 2 is:

0.25(u2(C,A)x2(C)x1(A) + u2(C,B)x2(C)(1− x1(A))

+ u2(D,A)x2(D)x1(A) + u2(D,B)x2(D)(1− x1(A)))

= 0.25((6− 4x1(A))x2(C) + (4x1(A) + 3)(1− x2(C)))

= 0.25((3− 8x1(A))x2(C) + 4x1(A) + 3)

which gives the following conditions:

• if x1(A) > 3
8 , then x2(C) = 0 and x2(D) = 1,

• if x1(A) < 3
8 , then x2(C) = 1 and x2(D) = 0, and

• if x1(A) = 3
8 , then x2(C) ∈ [0, 1] and x2(D) = 1− x2(C).

Now the first period is studied altogether. For player 1, the expected utility can be
written as

E1(x) =
∑

n1∈{1,2}

∑
s1∈{A,B}

∑
n2∈{1,2}

∑
s2∈{C,D}

u1(s2, s1)p1(n2)xn2(s2 | s1)p1(n1)xn1(s1)
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= 0.25{[2u1(C,B) + u1(C,B)x1(C | B2) + u1(C,B)x2(C | B1)

+ u1(C,B) + u1(D,B)x1(D | B2) + u1(D,B)x2(D | B1)]

+ [−u1(C,B) + u1(C,A)x2(C | A1)− u1(C,B)c2(C | B1)

+ u1(D,A) + u1(D,A)x2(D | A1)− u1(D,B)x2(D | B1)]x1(A)

+ [u1(C,A)x1(C | A2)− u1(C,B)x1(C | B2)− u1(C,B)

+ u1(D,A)x1(D | A2)− u1(D,B)x1(D | B2) + u1(D,A)]x2(A)}

from which it is possible to only focus on the factor that multiplies x1(A) as it determines
how player 1 should play if he is chosen at the first turn. Therefore, it is obtained that

−5 + 3x2(C | A1)− 5x2(C | B1) + 6 + 6x2(D | A1)− 4x2(D | B1) = −1 + 4x2(D)

since, given that players don’t know whether A or B was chosen by their opponent, it
is possible to consider x2(C | A1) and x2(C | B1) as simply x2(C), and the same occurs
for x2(D). Then the following conditions are obtained:

• If x2(D) > 1
4 , then x1(A) = 1 and x1(B) = 0,

• if x2(D) < 1
4 , then x1(A) = 0 and x1(B) = 1, and

• if x2(D) = 1
4 , then x1(A) ∈ [0, 1] and x1(B) = 1− x1(A),

which, together with the conditions when player 1 is chosen in the first period and player
2 is chosen in the second period, gives the equilibria:

1. x1(A) = 1, x1(B) = 0, x2(C) = 0 and x2(D) = 1,

2. x1(A) = 0, x1(B) = 1, x2(C) = 1 and x2(D) = 0, and

3. x1(A) = 3
8 , x1(B) = 5

8 , x2(C) = 3
4 and x2(D) = 1

4 .

By a similar analysis as the one made above, we get the equilibria for the case in which
player 2 is chosen first and player 1 is chosen second:

1. x1(C) = 0, x1(D) = 1, x2(A) = 1 and x2(B) = 0,

2. x1(C) = 1, x1(D) = 0, x2(A) = 0 and x2(B) = 1, and

3. x1(C) = 5
8 , x1(D) = 3

8 , x1(A) = 1
4 and x2(B) = 3

4 .

Now the players are risk averse or risk prone and it is to be studied how the equilibria
are affected. To see the effect, one of the players is kept risk neutral and the behavior
of the other player is changed. If player 1’s behavior is changed, his expected utility is
now

Eλ1 (x) =
∑

n1∈{1,2}

∑
s1∈{A,B}

∑
n2∈{1,2}

∑
s2∈{C,D}

e−λu1(s2,s1)xn2(s2 | s1)p1(n2)xn1(s1)p1(n1)

= 0.25((e−λu1(C,B)(2 + x1(C | B2) + x2(C | B1))

+ e−λu1(D,B)(x1(D | B2) + x2(D | B1)))
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+ [−e−λu1(C,B)(1 + x1(C | B)) + e−λu1(C,A)x2(C | A1)

+ e−λu1(D,A)(1 + x2(D | A1)− e−λu1(D,B)x2(D | B1)]x1(A)

+ {e−λu1(C,A)x1(C | A2)− e−λu1(C,B)(1 + x1(C | B2))

+ e−λu1(D,A)(1 + x1(D | A2))− e−λu1(D,B)x1(D | B2)}x2(A))

and only the factor inside square brackets is important to determine x1(A), for which
the numerical values for the utilities are substituted, and consider that players do not
know what happened in the second period if they were not chosen, i. e. both x2(C | B1)
and x2(C | A1) can be regarded as the same, as player 2 would not have the information
of the first period. This way the square brackets can be reduced to

2e−6λ − e−5λ − e−4λ + (e−3λ + e−4λ − e−5λ − e−6λ)x2(C),

since x2(C) = 1− x2(D). Therefore, the equilibrium is obtained when

x2(C) =
e−4λ + e−5λ − 2e−6λ

e−3λ + e−4λ − e−5λ − e−6λ
.

For values of λ < 0, that is when player 1 is risk prone, if x2(C) is regarded as the
belief about player 2’s choice, it can be seen that x2(C) > 3/4, that is, in order to play
with positive probability the choice A, player 1 can risk player 2 choosing C with a
higher probability, as long as it is possible that D is chosen, since (A,D) would give
the highest utility to player 1. Similarly, for λ > 0, when player 1 is risk averse, it is
obtained that x2(C) < 3/4, implying that player 1 requires C being chosen with less
probability in order to risk playing A, otherwise, it is better to play B as it has safer
utilities. Similarly, it is possible to get an expression for the expected utility of player 2:

Eλ1 (x) = 0.25((e−λu2(C,B)(2 + x1(C | B2) + x2(C | B1))

+ e−λu2(D,B)(x1(D | B2) + x2(D | B1)))

+ [−e−λu2(C,B)(1 + x1(C | B)) + e−λu2(C,A)x2(C | A1)

+ e−λu2(D,A)(1 + x2(D | A1)− e−λu2(D,B)x2(D | B1)]x1(A)

+ {e−λu2(C,A)x1(C | A2)− e−λu2(C,B)(1 + x1(C | B2))

+ e−λu2(D,A)(1 + x1(D | A2))− e−λu2(D,B)x1(D | B2)}x2(A))

and now the important part is between curly braces, which can be reduced to

2e−7λ − e−6λ − e−3λ + (e−2λ + e−3λ − e−6λ − e−7λ)x1(C)

implying that equilibrium is reached with

x1(C) =
e−3λ + e−6λ − 2e−7λ

e−2λ + e−3λ − e−6λ − e−7λ
.

As before, it is obtained for λ < 0 that x1(C) > 5/8, so player 2 would risk playing
A even if player 2 would choose C with higher probability than in the risk neutral case,
and for λ > 0 to play A the value should be x1(C) < 5/8, so being risk averse would
make player 2 choose A only if the chances of player 2 choosing D were higher than in
the risk neutral case.
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Example 5.2. For the next example, an addition is made onto Example 1. Player 2
will have two types which will reverse his payouts. For type α the payouts are the same
as in Figure 1, whereas for type β the game has the structure shown in Figure 2. Player
2 is type α with probability 0.4 and type β with probability 0.6.

1

2

3, 7

6, 2

5, 3

4, 6

A

B

C

D

C

D

Fig. 2. Variation of the game where player 2 is of type β.

The case in which player 1 is chosen at turn 1 and player 2 is chosen at turn 2 is
considered. The expected utility for player 1 (or rather the factor which concerns player
1’s choice at the first turn) is

(3− 4(0.4x2(C;α) + 0.6x2(C;β)))x1(A);

whereas player 2’s expected utility (the factor that determines player 2’s choice at the
second turn) is:

9 + x2(C;α)[−8x1(A) + 3] + x2(C;β)[8x1(A)− 3]

which means that the equilibria are given by:

• x1(A) =1, x1(B) = 0, x2(C;α) = 0, x2(D;α) = 1, x2(C;β) = 1, x2(D;β) = 0.

• x1(A) = 3
8 , x1(B) = 5

8 , and for player 2, any mixed strategies such that 0.4x2(C;α)+
0.6x2(C;β) = 3

4 .

Now if player 1 is risk sensitive, his expected utility is given by:

[e−6λ+e−6λ−e−5λ−e−4λ+(e−3λ+e−4λ−e−5λ−e−6λ)(0.4x2(C;α)+0.6x2(C;β))]x1(A)

which changes the second equilibrium described above to x1(A) = 3
8 , x1(B) = 5

8 and for
player 2 any mixed strategies such that:

0.4x2(C;α) + 0.6x2(C;β) =
e−4λ + e−5λ − 2e−6λ

e−3λ + e−4λ − e−5λ − e−6λ
. (1)
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We plot the right side of this last equation in order to figure out its behavior for
different values of λ.

λ

Fig. 3. Plot of the right side of Equation 1.

As it can be seen from Figure 3 the solutions to the left side of Equation 1 for λ < 0
are such that player 1 is willing to risk player 2 choosing C with a higher probability
than in the risk neutral case for at least one of its types (or maybe both). In the same
way, when λ > 0, player 1 is risk averse, so he’s playing A only if player 2 would choose
C with a smaller probability than what happens in the risk neutral case for at least one
of its types (if not both).

6. CONCLUSIONS

A modification to consider games with risk sensitivity was shown above, particularly
for games in which the order of the players is not known from the beginning, while
also considering games where players have partial information about the utilities of the
other players. To do so, it has been shown that the sets of best responses for each
player which are obtained via a best response correspondence satisfy the conditions of
Kakutani’s fixed point theorem, and such fixed points are the equilibria for the games.

Moreover, the examples showed first in a game with unobserved past choices the
equilibria in which introducing risk sensitivity made the equilibria move such that it
makes risk prone players go for the choices that lead towards the higher utilities, and
risk averse players go for a safer option with less variability. The degree of risk proneness
or averseness can also be observed as λ is farther from 0. Afterwards a similar example
with incomplete information is presented, in which the equilibria are presented for a
risk neutral player and then a risk sensitive modification is made, in which it is possible
to observe once again that players will move towards options that give a larger utility
but with a higher risk if they’re risk prone, and vice versa. In the example shown the
behavior is visible but it could get more entangled if the utilities change in a more drastic
way.

A possible extension to this work would be to change the way the risk aversion
coefficient is defined by allowing it to depend as well on the wealth of the player so
that ri(z) is no longer constant. In this way, players would not only make their choice
according to the utility but also according to the differences of the utilities in each
possible choice, and the relative difference of these with the current wealth, making it
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possible to model situations where external variables influence how choices in real life
are made.

Another possible line is to consider when the turn selection process is affected by
the choices made by players, therefore making it depend as well on the actions selected.
Therefore, players also have to take into account whether the choices they make are
worth it given that this may modify their chances of being picked to make another
move sooner or later. In a similar line, it would also be interesting to study the case in
which the turn selection process depends as well on the types of all players. Though we
only consider the case in which types affect the utility function of players, this would
introduce some incomplete information as well on the turn selection process, making it
more general, though at the same time, more difficult to study.
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[4] N. Bäuerle and U. Rieder: Zero-sum risk-sensitive stochastic games. Stoch. Processes
Appl. 12 (2017), 2, 622–642. DOI:10.1016/j.spa.2016.06.020

[5] R. Becerril-Borja and R. Montes-de-Oca: A family of models for finite sequential games
without a predetermined order of turns. In: Operations Research and Enterprise Systems
(B. Vitoriano, G. H. Parlier, eds.), Springer International Publishing, Cham 2017, 35–51.
DOI:10.1007/978-3-319-53982-9 3

[6] K. C. Border: Fixed Point Theorems with Applications to Economics and Game Theory.
Cambridge University Press, Cambridge 1985.

[7] L. Eeckhoudt, C. Gollier, and H. Schlesinger: Economic and Financial Decisions under
Risk. Princeton University Press, Princeton 2005. DOI:10.1515/9781400829217

[8] W. H. Fleming and W. M. McEneaney: Risk sensitive optimal control and differential
games. In: Stochastic Theory and Adaptive Control. Lecture Notes in Control and Infor-
mation Sciences (T. E. Duncan and B. Pasik-Duncan, eds.), Springer, Berlin Heidelberg
1992, pp. 185–197.

[9] R. A. Howard and J. E. Matheson: Risk sensitive Markov decision processes. Management
Sci. 18 (1972), 356–369. DOI:10.1287/mnsc.18.7.356

[10] M. R. James, J. Baras, and R. J. Elliott: Risk-sensitive control and dynamic games for
partially observed discrete-time nonlinear systems. IEEE Trans. Automat. Control 39
(1994), 780–792. DOI:10.1109/9.286253

https://doi.org/10.1287/moor.2017.0870
https://doi.org/10.1016/j.spa.2016.06.020
https://doi.org/10.1007/978-3-319-53982-9_3
https://doi.org/10.1515/9781400829217
https://doi.org/10.1287/mnsc.18.7.356
https://doi.org/10.1109/9.286253


Incomplete information and risk sensitive sequential games ... 331

[11] S. Kakutani: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8 (1942),
457–459. DOI:10.1215/S0012-7094-41-00838-4

[12] M. B. Klompstra: Nash equilibria in risk-sensitive dynamic games. IEEE Trans. Automat.
Control 45 (2000), 1397–1401. DOI:10.1109/9.867067

[13] A. S. Nowak: Notes on risk-sensitive Nash equilibria. In: Advances in Dynamic Games:
Applications to Economics, Finance, Optimization and Stochastic Control (A. S. Nowak
and K. Szajowski, eds.), Birkhäuser, Boston 2005, pp. 95–109.
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