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Abstract. We consider limit cycles of a class of polynomial differential systems of the
form

{

ẋ = y,

ẏ = −x− ε(g21(x)y
2α+1 + f21(x)y

2β)− ε2(g22(x)y
2α+1 + f22(x)y

2β),

where β and α are positive integers, g2j and f2j have degree m and n, respectively, for each
j = 1, 2, and ε is a small parameter. We obtain the maximum number of limit cycles that
bifurcate from the periodic orbits of the linear center ẋ = y, ẏ = −x using the averaging
theory of first and second order.

Keywords: polynomial differential system; limit cycle; averaging theory

MSC 2020 : 34C07, 34C23, 37G15

1. Introduction

One of the main problems in the qualitative theory of real planar differential
equations is to determine the number of limit cycles for a given planar differential
system. As we all know, this is a very difficult problem for a general polynomial sys-
tem. Therefore, many mathematicians study some systems with special conditions.
To obtain as many limit cycles as possible for a planar differential system, we usually
take into consideration the bifurcation theory. In recent decades, many new results
have been obtained (see [9], [10]).
The number of medium amplitude limit cycles bifurcating from the linear cen-

ter ẋ = y, ẏ = −x for the following three kind of generalized polynomial Liénard
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differential systems, were studied in the papers [2], [4], [5], [6], [1] and [14], [15],
respectively:

ẋ = y, ẏ = −x− g2(x) + f2(x)y,

ẋ = y − g1(x), ẏ = −x− g2(x) + f2(x)y,

ẋ = y − f1(x)y, ẏ = −x− g2(x) + f2(x)y.

In [13], Llibre and Valls studied the polynomial differential systems

(1.1)

{

ẋ = y − ε(g11(x) + f11(x)y)− ε2(g12(x) + f12(x)y),

ẏ = −x− ε(g21(x) + f21(x)y)− ε2(g22(x) + f22(x)y),

where g1i, f1i, g2i, f2i have degree l, k, m, n, respectively, for each i = 1, 2, and ε

is a small parameter. They proved an sharp upper bound of the maximum number
of limit cycle that (1.1) can have bifurcating from the periodic orbits of the linear
center ẋ = y, ẏ = −x using the averaging theory of second order.

In 2014, Garca, Llibre and Pérez del Río (see [7]) using the averaging theory
studied the maximum number of limit cycles which can bifurcate from the periodic
orbits of a linear center perturbed inside the class of generalized polynomial Liénard
differential system of the form

(1.2)

{

ẋ = y,

ẏ = −x− ε(h1(x) + p1(x)y + q1(x)y
2)− ε2(h2(x) + p2(x)y + q2(x)y

2),

where h1, h2, p1, q1, p2 and q2 have degree n and ε is a small parameter. More
precisely, they found the maximum number of medium amplitude limit cycles which
can bifurcate from the periodic orbits of the linear center ẋ = y, ẏ = −x perturbed
as in (1.2).

In [11], the authors proved that the maximum number of limit cycles of the fol-
lowing generalized Liénard polynomial differential system

{

ẋ = y2p−1,

ẏ = −x2q−1 − εf(x)y2n−1

is at most [ 12m], where p, q and n are positive integers, m is the degree of the
polynomial f(x).

In this paper, first we consider the system

(1.3)

{

ẋ = y,

ẏ = −x− ε(g21(x)y
2α+1 + f21 (x) y

2β),
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where β and α are positive integers, g21 and f21 have degree m and n, respectively,
and ε is a small parameter. We find the maximum number of limit cycle that (1.3)
can have bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = −x

using the averaging theory of first order.
Let [x] denote the integer part function of x ∈ R. Our main result is the following

one.

Theorem 1. For |ε| sufficiently small, the maximum number of limit cycles of

the polynomial differential systems (1.3) bifurcating from the periodic orbits of the

linear center ẋ = y, ẏ = −x using the averaging theory of first order is [ 12m].

The proof of the above theorem is given in Section 3.
Now we consider the system

(1.4)

{

ẋ = y,

ẏ = −x− ε(g21(x)y
2α+1 + f21(x)y

2β)− ε2(g22(x)y
2α+1 + f22(x)y

2β),

where β and α are positive integers, g2j and f2j have degree m and n, respectively,
for each j = 1, 2, and ε is a small parameter. We find the maximum number of limit
cycle that (1.4) can have bifurcating from the periodic orbits of the linear center
ẋ = y, ẏ = −x using the averaging theory of second order. Our main result is the
following one.

Theorem 2. For |ε| sufficiently small and [ 12m] > β−1, the maximum number of

limit cycles of the polynomial differential systems (1.4) bifurcating from the periodic

orbits of the linear center ẋ = y, ẏ = −x using the averaging theory of second order is

λ = max
{[m

2

]

,
[n

2

]

+
[m− 1

2

]

+ β
}

.

The proof of the above theorem is given in Section 4.

2. Preliminaries

The averaging theory of first and second orders. In this section we present
the basic results from the averaging theory that we shall need for proving the main re-
sults of this paper. The averaging theory up to second order for studying specifically
periodic orbits was developed in [13], [3], [12]. It is summarized as follows.
Consider the differential system

ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),
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where F1, F2 : R × D → R, R : R × D × (−εf , εf) → R are continuous functions,
T -periodic in the first variable, and D is an open subset of Rn. Assume that the
following hypotheses hold.

(i) F1(t, ·) ∈ C2(D), F2(t, ·) ∈ C1(D) for all t ∈ R, F1, F2, R are locally Lipschitz
with respect to x, and R is twice differentiable with respect to ε.

We define Fk0 : D → R for k = 1, 2 as

F10(x) =
1

T

∫ T

0

F1(s, x) ds,

F20(x) =
1

T

∫ T

0

(

(DxF1(s, x))

∫ s

0

F1(t, x) dt+ F2(s, x)

)

ds.

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf, εf) \ {0}, there
exists aε ∈ V such that F10(aε) + εF20(aε) = 0 and dB(F10 + εF20, V, aε) 6= 0.

Then for |ε| > 0 sufficiently small there exists a T -periodic solution ϕ(·, ε) of the
system such that ϕ(0, ε) → aε when ε → 0.

The expression dB(F10 + εF20, V, aε) 6= 0 means that the Brouwer degree of the
function F10+εF20 : V → R

n at the fixed point aε is not zero. A sufficient condition
for this inequality to hold is that the Jacobian of the function F10+ εF20 at aε is not
zero.

If F10 is not identically zero, then the zeros of F10 + εF20 are mainly the zeros
of F10 for ε sufficiently small. In this case the previous result provides the averaging
theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10+εF20

are mainly the zeros of F20 for ε sufficiently small. In this case the previous result
provides the averaging theory of second order.

Descartes theorem. In order to confirm the number of zeros of certain real
polynomial, we will make use of the following Descartes theorem (see [11]).

Theorem 3. Consider the real polynomial p(x) = ai1x
i1 + ai2x

i2 + . . . + aikx
ik

with 0 6 i1 < i2 < . . . < ik and aij 6= 0 real constants for j ∈ {1, 2, . . . , k}. When

aijaij+1
< 0, we say that aij and aij+1

have a variation of sign. If the number of

variations of signs is m, then p(x) has at most m positive real roots. Moreover, it is

always possible to choose the coefficients of p(x) in such a way that p(x) has exactly

k − 1 positive real roots.
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3. Proof of Theorem 1

For the proof we shall use the first order averaging theory as it was stated in
Section 2. We write

(3.1) g21(x) =

m
∑

i=0

cix
i, f21(x) =

n
∑

i=0

dix
i.

Then in polar coordinates (r, θ) given by x = r cos θ and y = r sin θ, the differential
system (1.4) becomes







ṙ = −εG1(r, θ),

θ̇ = −1−
ε

r
G2(r, θ),

where

G1(r, θ) =
n
∑

i=0

dihi,2β+1(θ)r
2β+i +

m
∑

i=0

cihi,2α+2(θ)r
2α+i+1,

G2(r, θ) =

n
∑

i=0

dihi+1,2β(θ)r
2β+i +

m
∑

i=0

cihi+1,2α+1(θ)r
2α+i+1,

where hi,j(θ) = cosi θ sinj θ. Taking θ as the new independent variable, system (1.4)
becomes

(3.2)
dr

dθ
= εF1(r, θ) +O(ε2),

where

(3.3) F1(r, θ) = G1(r, θ).

First, we shall study the limit cycles of the differential equation (3.2) using the
averaging theory of first order. Therefore, by Section 2 we must study the simple
positive zeros of the function F10(r) =

1
2π

∫ 2π

0 F1(r, θ) dθ. For each of these zeros we
will have a limit cycle of the polynomial differential system (1.3).
Taking into account the expression of (3.3), in order to obtain F10(r) it is necessary

to evaluate the integrals of the form
∫ 2π

0
hi,j(θ) dθ, where hi,j(θ) = cosi θ sinj θ.

In the following lemma we compute these integrals.

Lemma 4. Let hi,j(θ) = cosi θ sinj θ and Mi,j(θ) =
∫ θ

0 hi,j(s) ds. Then

(3.4) Mi,j(2π) =

{

0 if i is odd or j is odd,

ξi,jπ if i and j are even,
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where

ξi,j =
(j − 1)(j − 3) . . . 1

(j + i)(j + i− 2) . . . (i+ 2)

1

2i−1

(

i
1
2 i

)

and

(

i
1
2 i

)

=
i!

(12 i!)
2
.

P r o o f. Using integrals (5.3) and (5.4) given in the Appendix with θ = 2π and
taking into account that hi,j(2π) = 0 if j 6= 0, we have that

(3.5) Mi,2α(2π) =
(2α− 1)(2α− 3) . . . 1

(2α+ i)(2α+ i− 2) . . . (i+ 2)
Mi,0(2π), Mi,2α+1(2π) = 0.

Again, using integrals (5.1) and (5.2) given in the Appendix, with θ = 2π we have
that M2i,0(2π) = 2π(2i− 1)(2i− 3) . . . 1/(2ii!) and M2i+1,0(2π) = 0. Substituting
M2i,0(2π) and M2i+1,0(2π) given as above into (3.5) we obtain (3.4). �

Using this lemma we shall obtain in the next proposition the integral of the func-
tion F10(r).

Proposition 5. We have

(3.6) 2πF10(r) = r2α+1

[m/2]
∑

i=0

c2iM2i,2α+2(2π)r2i.

P r o o f. Since

2πF10(r) =

n
∑

i=0

dir
2β+i

∫ 2π

0

hi,2β+1(θ) +

m
∑

i=0

cir
2α+i+1

∫ 2π

0

hi,2α+2(θ) dθ,

taking into account that
∫ 2π

0 hi,2α+2(θ) dθ = 0 if i is odd and
∫ 2π

0 hi,2β+1(θ) dθ = 0,

for all i, β ∈ N (see Lemma 4), we have that

2πF10(r) =

∫ 2π

0

m
∑

i=0
i even

cihi,2α+2(θ) dθr
2α+i+1 =

[m/2]
∑

i=0

r2i+2α+1

∫ 2π

0

c2ih2i,2α+2(θ) dθ

= r2α+1

[m/2]
∑

i=0

c2iM2i,2α+2(2π)r2i.

This completes the proof of Proposition 5. �

P r o o f of Theorem 1. From Proposition 5, the polynomial F10(r) has at most
λ1 = {[ 12m]} positive roots, and we can choose c2i in a way that F10(r) has exactly λ1

simple positive roots, hence Theorem 1 is proved. �
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4. Proof of Theorem 2

Now using the results stated in Section 2 we shall apply the second order averaging
theory to the previous differential equation. We write g21(x) and f21(x) as in (3.1),

and g22(x) =
m
∑

i=0

Cix
i, f22(x) =

n
∑

i=0

Dix
i. Then in polar coordinates (r, θ) given by

x = r cos θ and y = r sin θ, the differential system (1.4) becomes






ṙ = −εG1(r, θ)− ε2H1(r, θ),

θ̇ = −1−
ε

r
G2(r, θ)−

ε2

r
H2(r, θ),

where

G1(r, θ) =

n
∑

i=0

dihi,2β+1(θ)r
2β+i +

m
∑

i=0

cihi,2α+2(θ)r
2α+i+1 ,

H1(r, θ) =

n
∑

i=0

Dihi,2β+1(θ)r
2β+i +

m
∑

i=0

Cihi,2α+2(θ)r
2α+i+1 ,

G2(r, θ) =
n
∑

i=0

dihi+1,2β(θ)r
2β+i +

m
∑

i=0

cihi+1,2α+1(θ)r
2α+i+1 ,

H2(r, θ) =

n
∑

i=0

Dihi+1,2β(θ)r
2β+i +

m
∑

i=0

Cihi+1,2α+1(θ)r
2α+i+1 ,

where hi,i(θ) = cosi θ sinj θ. Taking θ as a new independent variable, system (1.4)
becomes

dr

dθ
= εF1(r, θ) + ε2F2(r, θ) +O(ε3),

where
F1(r, θ) = G1(r, θ), F2(r, θ) = H1(r, θ) −

1

r
G1(r, θ)G2(r, θ).

If F10(r) is identically zero, applying the theory of averaging of second order (see
again Section 2), every simple positive zero of the function

(4.1) F20(r) =
1

2π

∫ 2π

0

(

d

dr
F1(r, θ)

(
∫ θ

0

F1(r, s) ds

)

+F2(r, θ)

)

dθ

will provide a limit cycle of the polynomial differential system (1.4).
In order to compute F20(r), we need F10 to be identically zero. Then from (3.6)

in what follows we must take c2i = 0, for all i ∈ N.
We must study the simple positive zeros of the function F20(r). We split the

computation of the function F20(r) in two pieces, i.e. we define

2πF20(r) = L(r) + J(r),
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where

L(r) =

∫ 2π

0

d

dr
F1(r, θ)

(
∫ θ

0

F1(r, s) ds

)

dθ, J(r) =

∫ 2π

0

F2(r, θ) dθ.

Proposition 6. If F10(r) ≡ 0, then

J(r) = 2r2β+2α+1

[n/2]
∑

i=0

[(m−1)/2]
∑

p=0

d2ic2p+1M2p+2+2i,2α+2β+2(2π)r2p+2i

+ r2α+1

[m/2]
∑

i=0

C2iM2i,2α+2(2π)r2i.

P r o o f. Taking into account the expression of F2(r, θ), first we shall compute
the function

∫ 2π

0 H1(r, θ) dθ. Using the expression of H1(r, θ) and taking into account
that

∫ 2π

0
hi,2α+2(θ) dθ = 0 if i is odd and

∫ 2π

0
hi,2β+1(θ) dθ = 0 (see Lemma 4), we

have

∫ 2π

0

H1(r, θ) dθ =

m
∑

i=0
i even

Cir
i+2α+1

∫ 2π

0

hi,2α+2(θ) dθ = r2α+1

[m/2]
∑

i=0

C2iM2i,2α+2(2π)r2i.

Next, we shall study the contribution of the second part
∫ 2π

0
r−1G1(r, θ)G2(r, θ) dθ

of F2(θ, r) to F20(r). Using the expression of G1(r, θ) and G2(r, θ) and taking into
account that c2i = 0, for all i ∈ N, we have

G1(r, θ) =
n
∑

i=0

dihi,2β+1(θ)r
2β+i +

m
∑

i=0
i odd

cihi,2α+2(θ)r
2α+i+1

=

[(n−1)/2]
∑

i=0

d2i+1h2i+1,2β+1(θ)r
2i+2β+1 +

[n/2]
∑

i=0

d2ih2i,2β+1(θ)r
2i+2β

+

[(m−1)/2]
∑

i=0

c2i+1h2i+1,2α+2(θ)r
2i+2α+2

and

G2(r, θ) =

n
∑

p=0

dphp+1,2β(θ)r
2β+p +

m
∑

p=0
p odd

cphp+1,2α+1(θ)r
2α+p+1
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=

[n/2]
∑

p=0

d2ph2p+1,2β(θ)r
2p+2β +

[(n−1)/2]
∑

p=0

d2p+1h2p+2,2β(θ)r
2p+2β+1

+

[(m−1)/2]
∑

p=0

c2p+1h2p+2,2α+1(θ)r
2p+2α+2 .

By using Lemma 4, from the 9 main products of
∫ 2π

0
r−1G1(r, θ)G2(r, θ) dθ only the

following 2 are not zero when we integrate them between 0 and 2π. So the terms
of

∫ 2π

0
r−1G1(r, θ)G2(r, θ) dθ which will contribute to F20(r) are
∫ 2π

0

1

r
G1(r, θ)G2(r, θ) dθ

=

[n/2]
∑

i=0

[(m−1)/2]
∑

p=0

d2ic2p+1M2p+2+2i,2α+2β+2(2π)r2p+2α+2i+2β+1

+

[(m−1)/2]
∑

i=0

[n/2]
∑

p=0

c2i+1d2pM2p+2i+2,2β+2α+2(2π)r2p+2β+2i+2α+1

= 2r2α+2β+1

[n/2]
∑

i=0

[(m−1)/2]
∑

p=0

d2ic2p+1M2p+2+2i,2α+2β+2(2π)r2p+2i.

This completes the proof of Proposition 6. �

In order to complete the computation of F20(r) we must determine the func-
tion L(r). First we compute the integrals

∫ 2π

0 Mi,j(θ)hp,q(θ) dθ. In the following
lemma we compute these integrals.

Lemma 7. Let ϕp,q
i,j (2π) =

∫ 2π

0 Mi,j(θ)hp,q(θ) dθ. Then the following equalities

hold:

(a) The integral ϕp,q
2i+1,0(2π) is zero if p is odd or q is even, and equal to

1

2i+ 1

(

M2i+p,q+1(2π) +
i−1
∑

l=0

2l+1i(i− 1) . . . (i− l)

(2i− 1)(2i− 3) . . . (2i− 2l − 1)
M2i+p+2l−2,q+1(2π)

)

if p is even and q is odd.

(b) The integral ϕp,q
2i,2j+1(2π) is zero if p is even or q is odd, and equal to

−
1

2j + 2i+ 1

j−1
∑

l=1

2lj(j − 1) . . . (j − l + 1)

(2j + 2i− 1)(2j + 2i− 3) . . . (2j + 2i− 2l + 1)

×M2i+p+1,2j−2l+q(2π)−
1

2j + 2i+ 1
M2i+p+1,2j+q(2π)

if p is odd and q is even.
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(c) The integral ϕp,q
2i+1,2j(2π) is zero if p is odd or q is even, and equal to

(2j − 1)(2j − 3) . . . 1

(2j + 2i+ 1)(2j + 2i− 1) . . . (2i+ 3)
ϕp,q
2i+1,0(2π)

−
1

2j + 2i+ 1
M2i+p+2,2j+q+1(2π) +

1

2j + 2i+ 1

×

j−1
∑

l=1

(2j − 1)(2j − 3) . . . (2j − 2l + 1)

(2j + 2i− 1)(2j + 2i− 3) . . . (2j + 2i− 2l+ 1)
M2i+2+p,2j−2l+q−1(2π)

if p is even and q is odd.

P r o o f. Using integral (5.2) from Appendix and taking into account

hi,j(θ)hp,q(θ) = hi+p,j+q(θ),

we have

ϕp,q
2i+1,0(2π) =

1

2i+ 1

∫ 2π

0

i−1
∑

l=0

2l+1i(i− 1) . . . (i − l)

(2i− 1)(2i− 3) . . . (2i− 2l− 1)
h2i−2l+p−2,q+1(θ) dθ

+
1

2i+ 1

∫ 2π

0

h2i+p,q+1(θ) dθ.

Statement (a) now follows from Lemma 4. Using integrals from Appendix and taking
into account hi,j(θ)hp,q(θ) = hi+p,j+q(θ), we have

ϕp,q
2i+1,2α(2π)

=
(2α− 1)(2α− 3) . . . 1

(2α+ 2i+ 1)(2α+ 2i− 1) . . . (2i+ 3)
ϕp,q
2i+1,0(2π)

−
1

2α+ 2i+ 1

×

α−1
∑

l=1

(2α− 1)(2α− 3) . . . (2α− 2l + 1)

(2α+ 2i− 1)(2α+ 2i− 3) . . . (2α+ 2i− 2l+ 1)
M2i+p+2,2α−2l+q−1(2π)

+
1

2α+ 2i+ 1
M2i+p+2,2α+q+1(2π)

and

ϕp,q
i,2α+1(2π) =

−1

2α+ i+ 1

×
α−1
∑

l=1

2lα(α − 1) . . . (α− l + 1)

(2α+ i− 1)(2α+ i− 3) . . . (2α+ i− 2l + 1)
Mi+p+1,2α−2l+q(2π)

+
1

2α+ i+ 1
Mi+p+1,2α+q(2π),

Statements (b) and (c) now follow again from Lemma 4. �
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Proposition 8. If F10(r) ≡ 0, then

L(r) =

[(m−1)/2]
∑

i=0

[n/2]
∑

p=0

2(i+ α+ 1)c2i+1d2pϕ
2i+1,2α+2
2p,2β+1 (2π)r2p+2β+2i+2α+1

+

[n/2]
∑

i=0

[(m−1)/2]
∑

p=0

2(i+ β)d2ic2p+1ϕ
2i,2β+1
2p+1,2α+2(2π)r2p+2α+2i+2β+1.

P r o o f. Since

L(r) =

∫ 2π

0

(

( d

dr
F1(r, θ)

)

∫ θ

0

F1(r, s) ds

)

dθ,

using the expression of F1(r, θ) and taking into account that c2i = 0, for all i ∈ N,

we have

F1(r, θ) =
n
∑

i=0

dihi,2β+1(θ)r
2β+i +

m
∑

i=0
i odd

cihi,2α+2(θ)r
2α+i+1

=

[(m−1)/2]
∑

i=0

c2i+1h2i+1,2α+2(θ)r
2i+2α+2 +

[n/2]
∑

i=0

d2ih2i,2β+1(θ)r
2i+2β

+

[(n−1)/2]
∑

i=0

d2i+1h2i+1,2β+1(θ)r
2i+2β+1.

Next we calculate the terms of this integral. First we have that

dF1(r, θ)

dr
=

[(m−1)/2]
∑

i=0

2(i+ α+ 1)c2i+1h2i+1,2α+2(θ)r
2i+2α+1

+

[(n−1)/2]
∑

i=0

(2i+ 2β + 1)d2i+1h2i+1,2β+1(θ)r
2i+2β

+

[n/2]
∑

i=0

2(i+ β)d2ih2i,2β+1(θ)r
2i+2β−1

and

∫ θ

0

F1(r, s) ds =

[(m−1)/2]
∑

i=0

c2i+1M2i+1,2α+2(θ)r
2i+2α+2 +

[n/2]
∑

i=0

d2iM2i,2β+1(θ)r
2i+2β

+

[(n−1)/2]
∑

i=0

d2i+1M2i+1,2β+1(θ)r
2i+2β+1.
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By using Lemma 7, from the 9 main products of L(r) only the following 2 are not
zero when we integrate them between 0 and 2π. So the terms of L(r) which will
contribute to F20(r) are

L(r) =

[(m−1)/2]
∑

i=0

[n/2]
∑

p=0

2(i+ α+ 1)c2i+1d2pϕ
2i+1,2α+2
2p,2β+1 (2π)r2p+2β+2i+2α+1

+

[n/2]
∑

i=0

[(m−1)/2]
∑

p=0

2(i+ β)d2ic2p+1ϕ
2i,2β+1
2p+1,2α+2(2π)r2p+2α+2i+2β+1.

This completes the proof of Proposition 8. �

Proposition 9. If F10(r) ≡ 0, then the function F20(r) defined in (4.1) can be

expressed as 1
2r

2α+1
π
−1P (r), where

(4.2) P (r) =

[(m−1)/2]
∑

i=0

[n/2]
∑

p=0

2(i+ α+ 1)c2i+1d2pϕ
2i+1,2α+2
2p,2β+1 (2π)r2p+2i+2β

+

[n/2]
∑

i=0

[(m−1)/2]
∑

p=0

2(i+ β)d2ic2p+1ϕ
2i,2β+1
2p+1,2α+2(2π)r2p+2i+2β

+ 2

[n/2]
∑

i=0

[(m−1)/2]
∑

p=0

d2ic2p+1M2p+2+2i,2α+2β+2(2π)r2p+2i+2β

+

[m/2]
∑

i=0

C2iM2i,2α+2(2π)r2i.

P r o o f. The proof of the proposition follows immediately from the results of
Proposition 6 and Proposition 8. �

P r o o f of Theorem 2. Taking into account the above arguments and [ 12m] >

β − 1, we deduce that according to the Descartes theorem stated in Section 2, we
can choose the appropriate coefficients ci, di, Ci and Di in order that the simple
positive roots number F20(r) = 1

2r
2α+1

π
−1P (r) can have at most λ = max{[ 12m],

[ 12n]+ [ 12 (m− 1)]+β} simple positive zeros. This completes the proof of Theorem 2.
�

E x am p l e 10. We consider the differential system (1.4) with m = 2, α = 1,
n = 0 and β = 2

(4.3)







ẋ = y,

ẏ = −x− ε
(

xy3 +
1

7
y4
)

− ε2
((

−
1

16
+ 2x+

1

2
x2

)

y3 + 3y4
)

.
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An easy computation shows that F10(r) ≡ 0 and

F20(r) = −
1

128
r3(r2 − 1)(r2 − 3).

Therefore from the periodic orbits of radius 1 and 3 of the linear center ẋ = y,
ẏ = −x, it bifurcates two limit cycles.

E x am p l e 11. We consider the differential system (1.4) with n = 2, α = 2,
β = 1 and m = 3























ẋ = y,

ẏ = −x− ε
((

−
1

10
x+

1

29
x3

)

y5 + x2y2
)

− ε2
(( 1

160
−

11

120
x2 − x3

)

y5 + (x− x2)y2
)

.

An easy computation shows that F10(r) ≡ 0 and

F20(r) = −
1

3072
r5(r2 − 1)(r2 − 2)(r2 − 3).

Therefore from the periodic orbits of radius 1, 2 and 3 of the linear center ẋ = y,
ẏ = −x, it bifurcates three limit cycles.

R em a r k 12. The function P (r) defined in (4.2) can be expressed as P (r) =
λ
∑

j=0

Air
2j , where λ = max{[ 12m], [ 12n] + [ 12 (m − 1)] + β}. Then if [ 12m] > β − 1 we

can choose arbitrary values for ci, di, Ci and Di and, in addition, these coefficients
appear multiplied by nonzero constants, it is possible to reach this upper bound and
if [ 12m] < β − 1, the coefficients Ai = 0, for [ 12m] < i < β, then according to the
Descartes theorem it is not possible to reach this upper bound.

5. Appendix

Here we list some important formulas used in this article; for more details see [8].
For i > 0 and j > 0 we have

∫ θ

0

cosi s sinα s ds =
cosi−1 θ sinα+1 θ

i+ α
+

i − 1

i+ α

∫ θ

0

cosi−2 s sinα s ds(5.1)

= −
cosi+1 θ sinα−1 θ

i+ α
+

α− 1

i+ α

∫ θ

0

cosi s sinα−2 s ds,

163



∫ θ

0

cos2i s ds =
sin θ

2i

i−1
∑

l=1

(2i− 1)(2i− 3) . . . (2i− 2l + 1)

2l(i− 1)(i− 2) . . . (i − l)
cos2i−2l−1 θ(5.2)

+
sin θ

2i
cos2i−1 θ +

(2i− 1)(2i− 3) . . . 1

2ii!
θ

=
1

22i−1

i−1
∑

l=0

(

2i

l

)

sin 2(i− l)θ

2(i− l)
+

1

22i

(

2i

i

)

θ,

∫ θ

0

cos2i+1 s ds =
sin θ

2i+ 1

i−1
∑

l=0

2l+1i(i− 1) . . . (i− l)

(2i− 1)(2i− 3) . . . (2i− 2l − 1)
cos2i−2l−2 θ(5.3)

+
sin θ

2i+ 1
cos2i θ

=
1

22i

i−1
∑

l=0

(

2i+ 1

l

)

sin(2i− 2l+ 1)θ

2i− 2l+ 1
,

where
(

2i
p

)

= (2i)!/p!(2i− p)!;

∫ θ

0

cosi s sin2α s ds(5.4)

= −
cosi+1 θ

2α+ i

α−1
∑

l=1

(2α− 1)(2α− 3) . . . (2α− 2l+ 1)

(2α+ i− 2)(2α+ i− 4) . . . (2α+ i− 2l)
sin2α−2l−1 θ

+
(2α− 1)(2α− 3) . . . 1

(2α+ i)(2α+ i− 2) . . . (i + 2)

∫ θ

0

cosi s ds−
cosi+1 θ

2α+ i
sin2α+1 θ.

∫ θ

0

cosi s sin2α+1 s ds(5.5)

= −
cosi+1 θ

2α+ i+ 1

α−1
∑

l=1

2lα(α− 1) . . . (α− l + 1)

(2α+ i− 1)(2α+ i− 3) . . . (2α+ i− 2l+ 1)
sin2α−2l θ

−
cosi+1 θ

2α+ i+ 1
sin2α θ.
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[3] A.Buică, J. Llibre: Averaging methods for finding periodic orbits via Brouwer degree.
Bull. Sci. Math. 128 (2004), 7–22. zbl MR doi

[4] X.Chen, J. Llibre, Z. Zhang: Sufficient conditions for the existence of at least n or ex-
actly n limit cycles for the Liénard differential systems. J. Differ. Equations 242 (2007),
11–23. zbl MR doi

[5] C.Christopher, S. Lynch: Small-amplitude limit cycle bifurcations for Liénard systems
with quadratic or cubic damping or restoring forces. Nonlinearity 12 (1999), 1099–1112. zbl MR doi

[6] W.A.Coppel: Some quadratic systems with at most one limit cycle. Dynamics Reported
(U.Kirchgraber et al., eds.). A Series in Dynamical Systems and Their Applications 2.
B. G. Teubner, Stuttgart; John Wiley & Sons, Chichester, 1989, pp. 61–88. zbl MR doi

[7] B.García, J. Llibre, J. S. Peréz del Río: Limit cycles of generalized Liénard polynomial
differential systems via averaging theory. Chaos Solitons Fractals 62–63 (2014), 1–9. zbl MR doi

[8] I. S.Gradshteyn, I.M.Ryzhik: Table of Integrals, Series, and Products. Academic Press,
Amsterdam, 2007. zbl MR doi

[9] M.Han, P.Yu: Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles.
Applied Mathematical Sciences 181. Springer, Berlin, 2012. zbl MR doi

[10] J. Li: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J.
Bifurcation Chaos Appl. Sci. Eng. 13 (2003), 47–106. zbl MR doi

[11] J. Llibre, A.Makhlouf: Limit cycles of a class of generalized Liénard polynomial equa-
tions. J. Dyn. Control Syst. 21 (2015), 189–192. zbl MR doi

[12] J. Llibre, A.C.Mereu, M.A.Teixeira: Limit cycles of the generalized polynomial Liénard
differential equations. Math. Proc. Camb. Philos. Soc. 148 (2010), 363–383. zbl MR doi

[13] J. Llibre, C. Valls: On the number of limit cycles of a class of polynomial differential
systems. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 468 (2012), 2347–2360. zbl MR doi

[14] J. Llibre, C.Valls: Limit cycles for a generalization of polynomial Liénard differential
systems. Chaos Solitons Fractals 46 (2013), 65–74. zbl MR doi

[15] J. Llibre, C.Valls: On the number of limit cycles for a generalization of Liénard poly-
nomial differential systems. Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), Article
ID 1350048, 16 pages. zbl MR doi

Authors’ addresses: Aziza Berbache, Department of Mathematics, University of Bordj
Bou Arréridj, 34265 El Anasser, Algeria, e-mail: azizaberbache@hotmail.fr; Ahmed
Bendjeddou, Sabah Benadouane, Department of Mathematics, University of Ferhat Ab-
bas Sétif 1, 19000 Sétif, Algeria, e-mail: bendjeddou@univ-setif.dz, sabah.benadouane@
univ-setif.dz.

165

https://zbmath.org/?q=an:1055.34086
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2033097
http://dx.doi.org/10.1016/j.bulsci.2003.09.002
https://zbmath.org/?q=an:1131.34026
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2361100
http://dx.doi.org/10.1016/j.jde.2007.07.004
https://zbmath.org/?q=an:1074.34522
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1709857
http://dx.doi.org/10.1088/0951-7715/12/4/321
https://zbmath.org/?q=an:0674.34026
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1000976
http://dx.doi.org/10.1007/978-3-322-96657-5unhbox voidb@x kern .06em vbox {hrule width.3em}3
https://zbmath.org/?q=an:1348.34066
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3200747
http://dx.doi.org/10.1016/j.chaos.2014.02.008
https://zbmath.org/?q=an:1208.65001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2360010
http://dx.doi.org/10.1016/C2009-0-22516-5
https://zbmath.org/?q=an:1252.37002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2918519
http://dx.doi.org/10.1007/978-1-4471-2918-9
https://zbmath.org/?q=an:1063.34026
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1965270
http://dx.doi.org/10.1142/S0218127403006352
https://zbmath.org/?q=an:1325.34042
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3314541
http://dx.doi.org/10.1007/s10883-014-9253-4
https://zbmath.org/?q=an:1198.34051
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2600146
http://dx.doi.org/10.1017/S0305004109990193
https://zbmath.org/?q=an:1371.34044
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2949385
http://dx.doi.org/10.1098/rspa.2011.0741
https://zbmath.org/?q=an:1258.34060
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3011852
http://dx.doi.org/10.1016/j.chaos.2012.11.010
https://zbmath.org/?q=an:1270.34052
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3047963
http://dx.doi.org/10.1142/S021812741350048X

