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Abstract 

Background: Thyroid dysfunction is a common health issue in women, with a higher 

prevalence found in postpartum women. Postnatal depression (PND) is a maternal 

health issue which can exacerbate negative health effects on their newborns. Iodine, 

selenium, and iron are three essential nutrients for the synthesis of thyroid hormones. 

Historically, dietary insufficiency of iodine and selenium exist in New Zealand. To 

improve iodine status, the New Zealand government introduced mandatory 

fortification of bread with iodised salt (2009), and recommended iodine 

supplementation (150 µg/day) for all pregnant and breastfeeding women (2010). 

Mostly, the iron status of postpartum women in New Zealand is rarely medically 

examined, unless high levels of blood loss during childbirth are recorded. 

Objectives: The overall aim of this PhD thesis was to investigate maternal thyroid 

function, postnatal depression, and the intake and status of iodine, selenium and iron 

in mothers and infants during their first postpartum year. 

Method: This observational longitudinal cohort study was conducted in Palmerston 

North, New Zealand, from June 2016 to December 2017. Mother-infant pairs attended 

study visits at three, six and twelve months postpartum (3MPP, 6MPP, and 12MPP). 

Online questionnaires investigated maternal iodine knowledge, supplement use, 

mode of infant feeding, and sociodemographic characteristics. Weighed four-day 

dietary diary, with urine/blood/breastmilk samples, were taken to measure maternal 

iodine, selenium, and iron intake/status. Infant iodine and selenium concentrations 

were determined in spot urine samples. The Edinburgh Postnatal Depression Scale 

was used to screen for PND. At 6MPP, serum thyroid hormones [free triiodothyronine, 

free thyroxine, thyroid stimulating hormone (TSH), thyroglobulin (Tg) and anti-Tg 

and thyroid peroxidase antibodies] and thyroid volume were measured. 

Results: At 3MPP, 87 breastfeeding mother-infant pairs were recruited, followed up 

at 6MPP (n = 78) and 12MPP (n = 71). At 6MPP, 18% of women had thyroid dysfunction. 
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Median total thyroid volume was 6.1 mL. Median (p25, p75) Tg was 11.4 (8.6, 18.6) µg/L, 

above 10 µg/L. Median maternal plasma selenium was 105.8 (95.6, 115.3) µg/L; 23% 

(17/74) being below 95 µg/L; with 4% of women experiencing iron deficiency without 

anaemia. Women with marginally lower plasma selenium were 1.14% times more likely 

to have abnormal TSH concentrations. 

Over the first postpartum year, maternal median urinary iodine concentration 

(MUIC) was 82 (46, 157) µg/L, 85 (43, 134) µg/L, and 95 (51, 169) µg/L, all below 100 

µg/L; median BMIC was 69 (52, 119) µg/L, 59 (39, 108) µg/L, and 35 (26, 54) µg/L, all 

below the recommended 75 µg/L. Median maternal iodine intake was 151 (99, 285) 

µg/day, with 58% below the Estimated Average Requirement (EAR). At 3MPP, 46% of 

women took iodine-containing supplements, this reduced to 11% at 6MPP, and 6% at 

12MPP. Women who used iodine-containing supplements had significantly higher 

MUIC (111 vs 68 µg/L) and BMIC (84 vs 62 µg/L) than non-users (P < 0.001). Infants 

fed by women using iodine-containing supplements had a higher MUIC (150 vs 86 

µg/L, P = 0.036) than those of non-users. Infant MUIC at 3MPP [115 (69, 182) µg/L] and 

6MPP [120 (60, 196) µg/L] were below 125 µg/L (suggested cut-point for iodine 

adequacy in infants). Median maternal selenium intake was 62 (51, 85) µg/day and 

56% had intakes below the EAR. Median infant selenium intakes at 3MPP and 6MPP 

were 9 and 8 µg/day. Median maternal urinary selenium concentrations were 22, 22, 

and 26 µg/L across three time points, respectively. The highest prevalence of minor 

depression was observed in women with mean plasma selenium at 106 µg/L. 

Conclusions: A high prevalence of thyroid dysfunction was observed in a cohort of 

postpartum women who were iodine deficient, with suboptimal selenium intake, but 

having mostly adequate iron status. Women with low plasma selenium were likely to 

experience thyroid dysfunction. Iodine deficiency of lactating women remains, 

particularly for those who did not use iodine-containing supplements. The low use of 

iodine-containing supplements is concerning during later breastfeeding. Maternal 

selenium intake/status was suboptimal. Relation between selenium status and risk of 

PND was inconclusive. Iodine/selenium intake and status of infants were suboptimal.    
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Chapter 1 Introduction 
 

This Chapter introduces the background of the thesis and provides justification for the 

research work undertaken. It also presents the study aims, objectives and hypotheses of 

the thesis. The thesis structure is outlined, then concluded by a table describing each 

researcher’s individual contribution. 
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1.1 Introduction 

Women’s health during the first year after childbirth is important for their newborn 

infants’ growth and development, as well as for their own long-term health. Maternal 

endocrine hormones adjust to support foetal development during the pregnancy 

period, and continuous readjustment is needed to maintain homeostasis after 

parturition. Thyroid hormones play an essential role in metabolic function within the 

human body, and are responsible for adequate myelination, neuron maturation, and 

central nervous system development in a human developing brain (1). These 

hormones are tightly controlled by the hypothalamic-pituitary axis with a negative 

feedback system. Women with limited thyroidal reserves or iodine deficiency may 

develop thyroid dysfunction during the postpartum period (postpartum thyroiditis) 

(2); this remains one of the most common endocrine disorders that postpartum 

women experience (3). In 2017, the American Thyroid Association reported from 

different studies the prevalence of postpartum thyroiditis ranged from 1.1% to 16.7% 

(4). Maternal thyroid dysfunction has been linked to the development of postnatal 

depression (3, 5), is weakly associated with reduced breastmilk production and milk-

ejection reflex (“let-down”) (4), and potentially affects the infant’s neurodevelopment 

due to thyroid dependent processes, such as neural proliferation and 

differentiation(6). 

Optimal thyroid function relies on adequate biosynthesis of thyroid hormones, which 

depends on three trace elements: iodine, selenium, and iron (7, 8). Mostly, pregnant 

women made dietary changes to support foetal health, such as increase dietary intakes 

of iron and calcium, either through carefully selected food choices for food cravings 

and safety, or dietary supplements encouraged by health care providers (9). However, 

after childbirth, the centre of attention shifts considerably to nurture the newborn 

infants, rather than remaining with the new mothers themselves. There is some 

published research investigated breastfeeding women and their infants’ iodine and 

selenium status. There are only a few studies which  has examined women’s iron status 

postnatally. Maintaining optimal maternal nutrition during the post-partum period is 
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important to enable women to meet both the demands of their breastfed infant and 

their own needs. More importantly, having adequate iodine, selenium and iron 

intakes ensures optimal thyroid function. 

In New Zealand, both iodine and selenium are insufficiently contained within local 

food supplies. Iodine deficiency was a concern in New Zealand in the early 20th 

century, but its prevalence was mostly reduced through the introduction of iodised 

salt from the 1930s (10). However, mild iodine deficiency re-emerged in the 1990s (9, 

11, 12, 13, 14). This has resulted in mandatory addition of iodised salt in commercially 

made New Zealand bread and bread products, introduced in September 2009 (15); and 

in 2010, a New Zealand government subsidised iodine only supplement (150 µg/day) 

was recommended to all pregnant and breastfeeding women (16). Subsequent studies 

have demonstrated that most school children (17, 18) and adults (19, 20) in New 

Zealand have achieved adequate iodine intake and status, but the status of pregnant 

and breastfeeding women is unclear. 

Low selenium status in New Zealand has been partially reversed by increased 

consumption of imported flour from Australia (which generally has higher selenium 

concentrations than flour produced in New Zealand) (21, 22). Previous local research, 

which investigated selenium status in postpartum women and their infants in 2001 

(23), found these women were at that time at risk of selenium deficiency (after the 

importation of flour from Australia). With continuous dietary practice changes in the 

recent decade (including consuming plant-based diets) (24), limited research has 

since investigated selenium intake and the status of postpartum women and their 

newborn infants in New Zealand. 

Health professionals closely monitor the iron status of women during pregnancy (25). 

However, after childbirth, management of iron status can be inconsistent (25). The 

general belief is that lactational amenorrhea lowers the risk of iron deficiency without 

anaemia (ID) or iron deficiency anaemia (IDA) for breastfeeding women, and their 
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iron status recovers (26). Consequently, the iron status of postpartum women remains 

largely unreported, due mainly to infrequent research studies. 

Most previous research in women of childbearing age (27) and postmenopausal 

women (28) have investigated iodine, selenium, and iron intake/status separately, or 

a combination of any two of them. However, there is little up to date data on 

investigating the status of iodine, selenium, and iron together, as all three nutrients 

are important for the synthesis of thyroid hormones. 

1.2 Thyroid function and its relation to iodine, selenium, and iron  

Studies have shown mild-to-moderate iodine deficiency could impact on thyroid 

hormone synthesis (29). Both insufficient and excess iodine intake may be associated 

with a development of goitre (enlarged thyroid gland) and thyroid autoimmune 

disease (30). Both deficient and excessive selenium intake have been linked to 

increased risk of thyroid disorders in epidemiological studies (31). Lower serum 

selenium was reported to increase risk for goitre, or possible development of multiple 

thyroid nodules, in women, rather than men (32, 33). However, the effects of selenium 

supplementation on thyroid status are not yet conclusive after several selenium 

supplementation studies on elderly populations (34, 35, 36), and pregnant women (37, 

38). The degree of effect from selenium supplementation would depend on selenium 

status at the baseline, and the dose and duration of selenium supplementation 

implemented. 

Both animal and human studies have suggested ID or IDA may impair thyroid 

metabolism (39, 40, 41). A series of intervention study investigated the thyroid 

responses of goitrous-children to one oral dose of iodised oil containing 200 mg 

iodine, where, after 30 weeks, prevalence of goitre reduced dramatically within non-

anaemic children (12%) when compared to children with IDA (64%) (42); a following-

up trial provided oral iron supplementation (60 mg, 4 times/week for 12 weeks) to 

children with IDA and observed a  further reduction  in goitre prevalence to 20%. It 
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suggested that goitrous children with IDA may benefit from concurrent 

supplementation of iodine and iron (42). 

Most women return to normal thyroid function at three months postpartum after 

prenatal increase of thyroid hormone production (4). However, globally, postpartum 

women experience abnormalities in thyroid function at twice the prevalence of the 

general population (43). Pregnant women with positive antithyroid peroxidase 

antibodies (TPOAb) are at increased risk of experiencing postpartum thyroiditis 

(PPT). Although other micronutrients, such as zinc, copper, vitamins A and D, may 

also support thyroid hormone synthesis, only iodine, selenium and iron are 

preeminently essential, and therefore, all three were selected for this study among 

postpartum women in New Zealand. 

1.3 Iodine intake and status in New Zealand 

Iodine is the key component of thyroid hormones which play an essential role in brain 

development (44). Animal studies suggest that normal brain development requires 

optimal thyroid hormones and adequate supply of iodine (39). The World Health 

Organization (WHO) has estimated that iodine deficiency is the most preventable 

cause of compromised neurodevelopment which affects around two billion people 

spread over 130 countries. Most research has been focused on children’s development 

(45, 46) rather than younger infants (aged less than two years old). Alongside the 

recognised importance of prenatal development, achieving adequate iodine status is 

crucial for postnatal development (47). 

Due to the persistent inadequacy of iodine intake, a government subsidised iodine 

only supplement (150 µg/day) has been recommended for all breastfeeding women in 

New Zealand since the year 2010. The effectiveness of such prophylaxis was 

investigated in 2011, and a pilot study indicated a low awareness of the government 

subsidised iodine supplements for breastfeeding women, with only a 35% reported 

usage of any iodine-containing supplements (48). Investigation of the current use of 
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iodine-containing supplements by breastfeeding women, and their impact on the 

iodine status of women and their infants is warranted as the most recent data was 

collected in 2011 and was only a small sample. 

1.4 Selenium and postnatal depression 

A meta-analysis of 59 studies from across the globe has reported that 13% of women 

are affected by postnatal depression (49). A 1999 postal survey of New Zealand women 

at four months postpartum (n = 224) found a higher prevalence of PND (16%) than 

the global average (50). The same study reported that approximately one quarter of 

affected women were still depressed when their infant reached their first birthday. 

Mothers were often reluctant to seek available help (50), which echoes a recent report 

from the 2015 New Zealand new mothers’ mental health cross-sectional survey (n = 

805) (51). This survey indicated a prevalence of PND was 14% and those women were 

less likely to seek help (51). Such under-diagnosed and, at times, untreated mental 

health conditions (50, 51) affect both the mother and their children’s ongoing 

cognitive, emotional and behavioural development (52). 

In addition to socioeconomic status (53), dietary patterns (54), and thyroid hormones, 

micronutrient deficiencies have been suggested to adversely affect mental health (7, 

55, 56). Results from a longitudinal prospective Canadian study (Alberta Pregnancy 

Outcomes and Nutrition, n = 475) found that women who used selenium 

supplementation during their pregnancy experienced a lower risk of having future 

postpartum depressive symptoms (57), but details on the dose, frequency and 

duration of selenium supplements were unreported, and neither was selenium status 

assessed. A few studies have examined women’s selenium status in relation to the risk 

of PND, particularly during the first postpartum year.  
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1.5 Study aims and hypotheses 

The overall aim of this PhD thesis is to investigate maternal thyroid function, 

postnatal depression, and the intake/status of iodine, selenium and iron among 

mothers and infants during their first postpartum year. 

Study 1 – Secondary analysis on the Mother and Baby Study 

Study 1 was a secondary analysis of existing data collected from the 2009/2011 Mother 

and Baby Study. The study aim was to investigate selenium intakes of pregnant, 

lactating women, and their breastfed infants, in Palmerston North, in the North Island 

of New Zealand. 

Study 2 - Mother and Infant Nutrition Investigation (MINI) 

Study 2 was a longitudinal observational study following a cohort of mother-infant 

pairs at three, six and twelve months postpartum. The study’s aims included an 

investigation of thyroid function, and its relation to the intake and status of iodine, 

selenium, and iron of postpartum women, conjointly with the risk of developing 

postnatal depression. 

The objectives of Study 2 were to: 

• investigate the role of iodine, selenium, and iron status in maternal thyroid 

function; 

• compare breastfeeding women’s iodine intake and status in iodine-containing 

supplement users and non-users; 

• examine iodine and selenium intake and status of mothers and their infants 

at three, six and twelve months postpartum; 

• determine maternal selenium status in relation to the risk of postnatal 

depression during the first postpartum year; 

• explore maternal iron status at six months postpartum. 
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Hypothesis 1: Suboptimal iodine, selenium or iron status will impede maternal 

thyroid function at six months postpartum. 

Hypothesis 2: Breastfeeding women who used iodine-containing supplements will 

achieve better iodine status for themselves and their infants. 

Hypothesis 3: Postpartum women and their infants will remain iodine deficient, 

despite two New Zealand government initiatives to improve iodine status. 

Hypothesis 4: Suboptimal selenium intake and status exist among New Zealand 

postpartum women. 

Hypothesis 5:  Selenium intakes of breastfed infants aged three and six months are 

suboptimal. 

Hypothesis 6: Low plasma selenium will increase the risk of postnatal depression at 

three, six and twelve months postpartum. 

Hypothesis 7: High prevalence of iron deficiency and iron deficiency anaemia exist 

in women at six months postpartum. 

1.6 Structure of thesis 

The thesis is presented in nine chapters. Six of those chapters are either published or 

forthcoming articles, with two submitted for publication to peer review journals which 

are currently under review. All six articles are written in the style of the journals they 

have been submitted to, however, referencing and text formatting have been modified 

to match the flow of the thesis. 

This thesis begins with an introduction (Chapter One). Chapter Two provides a review 

of literature on the prevalence of thyroid dysfunction in postpartum women, and the 

central roles of iodine, selenium, and iron in thyroid function. It reviews the intake 

and status of the three nutrients in published studies both in New Zealand and 

globally, and summarises literature focused on biological factors associated with an 

increased risk of postnatal depression. Perceived research gaps are highlighted. This 
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is followed by Chapter Three which was published in the journal Nutrients, and 

presents the results from an analysis of the data collected in the 2009/2011 Mother and 

Baby study (Study 1), which explored selenium intake in iodine-deficient pregnant and 

breastfeeding women in Palmerston North, in the North Island of New Zealand. 

Chapter Four presents the MINI (Study 2) research method which has been published 

in the JMIR (Journal of Medical Internet Research) Research Protocols, detailing 

the study cohort recruitment and data collection procedure, together with methods 

used in this longitudinal follow-up cohort study investigation. 

Results from the MINI study (Study 2) are presented in Chapters Five (Hypotheses 1 

and 7), Six (Hypothesis 2), Seven (Hypothesis 3), and Eight (Hypotheses 4, 5 and 6). 

The findings of thyroid function, including thyroid hormone concentrations and 

thyroid volumes of postpartum women, together with their interactions with iodine, 

selenium, and iron status, are discussed in Chapter Five. Chapter Six focuses on iodine 

intake and the status of breastfeeding women who used iodine-containing 

supplements, making comparisons to those who were non-users; in addition, current 

iodine knowledge and practice are discussed. This chapter has been published in the 

Biological Trace Element Research. Chapter Seven examines iodine status of 

postpartum women and their infants at three, six and twelve months postpartum. 

Further, it explores iodine partitioning in urine and breastmilk among exclusively 

breastfeeding women at three months after parturition. Chapter Eight which has been 

published in the Journal of Trace Elements in Medicine and Biology, investigates 

maternal and infant selenium intake and status during the first postpartum year and 

the relationship with postnatal depression and anxiety. 

The final discussion in Chapter Nine presents a summary of the main findings, 

strengths, and limitations from two studies, and considerations of the significant 

contribution and relevance to the subject field. Final concluding points are 

summarised, together with relevant implications for public health practice and the 

identification of future research priorities. 
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Chapter 2 Review of the Literature 
 

Chapter 2 begins by outlining the framework of the literature review. It provides a 

detailed synthesis of important early and current published literature on the prevalence 

of thyroid dysfunction in postpartum women, the physiology of thyroid hormone 

regulation and synthesis, and the central roles of iodine, selenium, and iron in thyroid 

function. 

This is followed by a review of each of the three individual micronutrients and their 

pivotal importance to health; it contains details relating to the intake and status of 

iodine, selenium and iron in published studies, both in New Zealand and globally, with 

specific reference to postpartum women and their newborn infants. The prevalence of 

postnatal depression worldwide, including New Zealand, is presented, and literature 

centred on inadequate thyroid hormones, selenium, and iron in relation to the risk of 

postnatal depression is reviewed. 

Lastly, this review summarises notable research gaps across a wide research area. These 

feed into the research hypotheses and overall design of the Mother and Infant Nutrition 

Investigation (MINI). The research objectives of the MINI study aim to direct attention 

to such research gaps. 
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2.1 Introduction 

Thyroid dysfunction is a common health issue among women (1), with a higher 

prevalence found in postpartum women (2, 3).  Most of what is understood regarding 

the role of thyroid hormones, their regulation, synthesis, and release in the body, 

comes from experiments with animals, which will be described first in detail. Current 

knowledge of the prevalence of thyroid dysfunction in postpartum women will be 

reviewed. A wealth of research has emerged investigating the central roles of 

micronutrients in optimal thyroid function. Specific literature in this section will give 

insight into the contributions made by iodine, selenium, and iron in maintaining 

adequate thyroid function. 

Literature relating to iodine, selenium and iron intake and status will then follow, each 

in turn, within the global context. For each nutrient examined in the MINI study, 

literature involving postpartum women and their infants will be carefully reviewed. 

Literature discussing the impact of iodine deficiency on brain development also will 

be included. 

One important step in investigating nutrient intake and status is the selection and 

justification of choosing assessment methods. This literature review includes dietary 

assessment and measurement of nutrient intake methods related to iodine, selenium, 

and iron. The advantages and limitations of a range of biological assessment methods 

of iodine, selenium and iron status will be discussed to clarify the choice of methods 

used in the MINI study. 

It is well established that local food supplies in New Zealand contain low iodine and 

selenium, leading to low dietary intake (4). An abundance of literature has scrutinised 

knowledge gained in the study of iodine and selenium intake and status within New 

Zealand. This review will cover available major research work completed to date and 

emerging studies currently examining the effectiveness of two government iodine 

initiatives in New Zealand populations. These initiatives include mandatory 

fortification of all bread (except organic and unleavened) with iodised salt (2009) (5); 
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and the provision of subsidised 150 µg daily iodine supplement for all pregnant and 

breastfeeding women (2010) (6). 

Finally, the literature review examines previous research regarding the prevalence of 

postnatal depression and the role played by micronutrients. The suspected role of 

thyroid function in affecting the risk of postnatal depression will also be discussed. 

2.2 Thyroid function 

Optimal thyroid function relies on the biosynthesis of adequate thyroid hormones, 

which are essential in maintaining the human body’s metabolism, temperature 

(thermoregulation), and psychological mood (7). In a developing brain, thyroid 

hormones are responsible for adequate myelination, neuron cells maturation, and the 

central nervous system development (8). Three dietary minerals: iodine, selenium and 

iron play a pivotal role in the synthesis of thyroid hormones (9, 10). As one of the main 

research objectives, this thesis examines iodine, selenium, and iron status in relation 

to thyroid function. 

2.2.1 Thyroid dysfunction in postpartum women 

Thyroid function can be altered which results in hypothyroidism (underactive 

thyroid) or hyperthyroidism (overactive thyroid). A 2014 meta-analysis of 17 studies 

from European countries reported a higher prevalence of thyroid dysfunction in 

women than men, including both overt (6% vs 1%) and subclinical (8% vs 5%) 

categories (1). Globally, new mothers are more likely to experience thyroid 

dysfunction (7-23%), when compared to a prevalence of 3-4% in the general 

population (2, 3). Maternal hypothyroidism and hyperthyroidism have been suggested 

to negatively impact on breastmilk production and milk ejection reflex (“let-down”) 

(11). Although evidence was weak, the American Thyroid Association continues to 

recommend thyroid function testing for those who experience poor lactation without 

obvious identifiable reasons (11). 
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Postpartum thyroiditis (PPT) refers to thyroid dysfunction occurring in the first year 

after parturition, including transient (temporary) hyperthyroidism, hypothyroidism, 

or both, excluding Graves’ disease (11). The prevalence of PPT, ranging from 1.1% to 

16.7%, has been reported by the American Thyroid Association in 2017 (11). Increased 

risk of PPT has been observed for those with other autoimmune conditions, such as 

diabetes mellitus type 1 (12). Women with positive thyroid peroxidase antibodies 

(TPOAb) in early pregnancy may have an 50% increased risk in developing PPT (13). 

It was postulated that the presence of thyroid antibodies such as TPOAb may link to 

an increased risk of developing PPT due to the activation of the complement system 

(14). Antenatal screening of TPOAb and/or antithyroglobulin antibody (TgAb) status 

have been suggested to be part of a cost-effective strategy in identifying risks for PPT 

(15). Measuring TgAb may be more sensitive in detecting thyroid autoimmune 

abnormalities although further evaluation on the usefulness in predicting PPT is 

required (16). 

An 80-90% of women with PPT experience a transitional period of hypothyroidism 

and have normal thyroid hormones concentrations by the end of their first 

postpartum year (11). However, women with PPT might develop permanent 

hypothyroidism or experience PPT again in each subsequent pregnancy (16, 17). A 

large prospective study screened 4384 women at six and twelve months postpartum 

from an area of mild iodine deficiency in Southern Italy and reported the incidence of 

PPT was 3.9% (169/4384), and, of these, 54% (92/169) of women continued to be 

affected by hypothyroidism at the end of their first postpartum year (18). Combined 

data from 54 Welsh women who participated in three studies between 1983 and 1995 

showed those women who recovered from the initial PPT had a 70% (9/13 examined) 

risk of experiencing a recurrence in a subsequent pregnancy (14). After examining a 

cohort of Iranian women with subclinical (abnormal TSH concentrations but fT4 

within the normal reference range) and overt (abnormal TSH and fT4 concentrations) 

PPT, undergoing T4 therapy, Azizi found that slightly more women with subclinical 

PPT developed permanent thyroid dysfunction than those with overt PPT, although 
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it was non-significant (19). However, Azizi suggested that identifying both subclinical 

and overt cases of PPT early allows timely interventions. To the best of our knowledge, 

there are no current data available regarding the prevalence of postpartum thyroid 

dysfunction in New Zealand. 

2.2.2 Thyroid hormone regulation and biosynthesis 

The thyroid gland is a butterfly-shaped endocrine organ and consists of left and right 

lobes joined by the isthmus, which is located anterior to the trachea. This gland is 

responsible for synthesising and secreting thyroid hormones, including 

triiodothyronine (T3) and thyroxine (T4). Since the receptors for both T3 and T4 are 

abundant on most human body cells, thyroid hormones can stimulate protein 

synthesis, and promote the usage of lipids and glucose for adenosine triphosphate 

(ATP) production, thus effectively accelerating the human body’s metabolism (20). To 

maintain the body’s metabolic homeostasis, thyroid hormone synthesis and secretion 

are tightly regulated by the Hypothalamic-Pituitary-Axis. For example, low levels of 

thyroid hormones in the blood stimulate the hypothalamus to release a thyroidtropin-

releasing hormone (TRH) which promotes the secretion of thyroid stimulating 

hormones (TSH) from the pituitary gland. An increased level of TSH stimulates the 

thyroid gland to secrete thyroid hormones controlled by a tightly regulated negative 

feedback mechanism; any increase of thyroid hormones detected in the blood will 

inhibit the secretion of both TRH and TSH (Figure 2.1). Therefore, the levels of thyroid 

hormones remain continually at an optimal range for body function (20). 



38 
 

 

Figure 2.1 Illustration of the regulation of thyroid hormone secretion 

Thyroid hormone synthesis involves a series of reactions which require several 

essential micronutrients, notably, iodine, selenium, and iron [Figure 2.2 (20)]. 

Initially, iodine absorbed from the diet is converted to iodide circulating in blood 

plasma. Iodide is actively transported into thyroid cells via a sodium-potassium 

ATPase pump. Upon entering the thyroid cells, iodide is oxidised into iodine by the 

reduction of hydrogen peroxide (H2O2). At this moment, iodine combines with 

tyrosine residues of thyroglobulin, a large glycoprotein, to produce precursors of 

thyroid hormones. If one iodine atom binds to a thyroglobulin, it produces 

monoiodotyrosine (Thg-MIT). If two iodine atoms bind, diiodotyrosine (Thg-DIT) is 

produced. The process of forming Thg-MIT and Thg-DIT is catalyzed by the thyroid 

peroxidase (TPO) which requires iron for its activity (21). Excess H2O2generated from 

thyroid hormone synthesis is neutralised by the actions of selenium-containing 

enzymes, such as glutathione peroxidase (GPx). Following this, Thg-MIT and Thg-DIT 

are then transported into a thyroid colloid where Thg-DIT condenses with another 

Thg-DIT molecule to form Thg-thyroxine (Thg-T4), or alternatively condenses with a 

Thg-MIT molecule to form Thg-triiodothyronine (Thg-T3). 

Lastly, newly formed Thg-T4 and Thg-T3 are released to thyroid cells via exocytosis, 

and their amino acid components are removed before T3 and T4 are released into 
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blood circulation. The concentration of T4 in blood plasma is 40 times higher than 

that of T3, but T3 is the more metabolically active form of thyroid hormone. Most T3 

and T4 are bound with transport proteins in blood; a very small portion circulates as 

free forms, which can actively bind with target cell receptors. At the target tissue, T4 

is deiodinated into T3, with the removed iodine from T4 returned to blood for later 

use (20). To enable the conversion from T4 to T3, a selenium dependent iodothyronine 

5’-deiodinase is required (20). 

 

Figure 2.2 Thyroid hormone synthesis pathways [Gropper, Smith, Groff, 2005 (20)]  

 

2.2.3 Contribution of iodine, selenium and iron to optimal thyroid function 

2.2.3.1 Iodine in thyroid function 

Thyroid function can be impaired by deficient iodine intakes. A thyroid gland from a 

healthy adult resident in an iodine sufficient area can trap 60 µg of iodine per day to 

provide adequate thyroid hormone synthesis (22). At a low threshold of approximately 

50 µg iodine intake per day, the thyroid gland also maintains adequate synthesis of 
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thyroid hormones (22). When iodine deficient, TSH secretion from the pituitary gland 

is raised, which increases the available sodium-iodide symporters on thyroid cells to 

allow a maximum iodine update. Consequently, renal clearance of iodine is reduced 

(23). However, when iodine deficiency is severe, the depleted iodine stores 

continuously stimulate the thyroid gland for hormone synthesis. This process may 

result in hypothyroidism and, at extreme levels, the development of a goitre (enlarged 

thyroid gland) via hyperplasia.  

Thyroid function can be impaired by excessive iodine intakes. Generally, excessive 

iodine intake can be tolerant by euthyroid adults (up to 2g/day without any clinical 

signs) (24). The acute Wolff-Chaikoff effect (down regulation of NIS then decreasing 

organic binding of iodine to synthesise thyroid hormones) is described as a protective 

mechanism to prevent large quantities of iodine uptake. Most people escape from this 

effect without long-term adverse consequences, and their thyroid hormone 

productions resume (25). However, people with autoimmune thyroiditis, or history of 

PPT, continue to experience the Wolff-Chaikoff effect which results in 

hypothyroidism (24, 25). A five-year epidemiological survey investigated the 

incidences of thyroid diseases presenting in three communities in China (n= 3761) 

(24). Based on the median urinary iodine concentrations (MUIC), iodine status of 

three Chinese communities was classified as mildly iodine deficient (88 µg/L), more 

than adequate iodine (214 µg/L) and severe iodine excess (634 µg/L). This Chinese 

study found no significant differences in the cumulative incidence of hyperthyroidism 

(1.4%, 0.9%, and 0.8%, respectively, P > 0.05) related to their iodine status, indicating 

that high iodine intakes may not increase the risk of hyperthyroidism (26). However, 

excessive intakes were more likely to result in hypothyroidism as the incidence of 

subclinical hypothyroidism significantly increased from 0.2%, to 2.6% and 2.9% (P < 

0.001) (27).  

To correct iodine deficiency, mandatory legislation of the provision of iodised salt 

programs were reported in 108 countries prior to May 2018 (28). Increasing iodine 

intake from fortification in a mild-to-moderate iodine deficient population may 
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temporally increase the incidence of overt-hyperthyroidism [the Jod-Basedow effect 

(28)]. Possible explanations include the existence of autonomous thyroid nodules in 

the elderly population and the presence of autoimmune disease in young adults (23, 

29). This phenomenon was demonstrated in Danish adults with mild-to-moderate 

iodine deficiency (MUIC ranged 45 -61 µg/L) by an increased incidence of 

hyperthyroidism from 102.8 (baseline in 1997-1998) to 140.7 cases per 100, 000 people 

annually soon after the introduction of iodised salt (2001-2002) (30). Further, a 20% 

increase in the incidence of overt-hypothyroidism was reported in a seven-year follow-

up study in Denmark (the period of mandatory iodine fortification) within a mildly 

iodine deficient female population aged 20-59 years (Overall population MUIC 86 

µg/L in Aalborg and 99 µg/L in Copenhagen) (31). It has been suggested to gradually 

introduce iodised salt fortification to an optimal level in a population of existing mild 

and moderate iodine deficiency (23). Even a small change of iodine intake may result 

in increasing or decreasing prevalence or incidence of thyroid dysfunction. This 

suggests the importance of continuously monitoring thyroid function after the 

establishment of an iodine fortification programme. 

Iodine supplementation has been implemented to reduce iodine deficiency for 

pregnant and lactating women, as they are at greater risk of iodine deficiency due to 

increased requirement. A few interventional studies have evaluated its effects on the 

prevalence of PPT; however, the results are inconsistent. Swedish postpartum women 

in a 1990 interventional study were allocated into two treatment groups: 0.1 mg of 

levothyroxine daily for 38 weeks (n = 18), or a 150 µg/day iodine supplement for 40 

weeks (n = 20), and a separate control group (n = 20) (32). Women in the iodine 

supplementation group developed more severe episodes of PPT when compared to 

the control, suggesting the extra iodine aggravated thyroid dysfunction, however the 

iodine status of these women was not examined at baseline. To further examine the 

effect of iodine supplementation, a randomised placebo-controlled trial was 

conducted in Denmark, a moderately iodine-deficient area (33). Euthyroid pregnant 

women (n = 72) were assigned into three groups: a 150 µg/day iodine supplementation 
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during both pregnancy and postpartum, or only during pregnancy, or given a placebo 

(supplement without iodine). No significant differences in PPT prevalence, severity, 

or duration among three groups was reported. Danish authors suggested both 

prenatal and postpartum iodine supplementation of 150 µg/day were safe (33).  

Findings may differ if these women at the beginning of the study were iodine deficient, 

a sudden increase of iodine may trigger the Wolff-Chaikoff effect which results in 

hypothyroidism (24, 25). 

Enlarged thyroid and changes in thyroid hormone levels are related to iodine status. 

The prevalence of 5% or more goitres in school children may indicate a public health 

issue of iodine deficiency within a population, based on the WHO guideline updated 

in 2014 (34). A recent population study in Denmark [the Danish investigation on 

iodine intake and thyroid disease (The DanThyr)] found that the prevalence of goitre 

(thyroid volume more than 18 mL examined by ultrasound) was as high as 33% within 

women aged 60-65 years old who had mild-to-moderate iodine deficiency (29). Iodine 

fortification has greatly reduced the rates of thyroid enlargement in the Danish adults 

who live in areas of moderate iodine deficiency pre-fortification, when compared to 

those residing in the mild iodine deficiency areas (35). Similar effects were reported 

from a study in an Italian village fifteen years after the implementation of a voluntary 

iodised salt programme, with a lower goitre rate observed at 10% post-fortification 

compared with 34% within the same cohort pre-fortification (36). Thyroid hormone 

levels (serum T3 and T4) can remain within normal ranges despite of presenting mild-

to-moderate iodine deficiency in a population (37); however, with the presence of 

moderate-to-severe iodine deficiency, TSH concentrations may be elevated, but 

would appear to be lower within a population demonstrating mild iodine deficiency 

(38). Furthermore, serum T4 decreases while T3 may be normal or slightly increased, 

because T3 is more likely to be secreted than T4 during iodine deficiency. 
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2.2.3.2 Selenium in thyroid function 

The thyroid gland is one of the endocrine tissues containing the highest level of 

selenium per mass unit (39), and a hierarchical system exists in the thyroid to 

maintain its selenium content, even in conditions of limited supply (40). The 

functional role of selenium rests with its integral part of specific enzymes - 

iodothyronine 5’-deiodinases (a family of selenocysteine-containing proteins). These 

enzymes then convert the inactive form of thyroid hormone (T4) into active 

triiodothyronine (T3), which is then subsequently released into blood circulation (20). 

Of the three types of deiodinase (type I, II and III), type I is the most sensitive to 

selenium deficiency (41). Selenium as a component of the glutathione peroxidase 

(GPx) protects the thyroid from oxidative damage (41). 

Experimental studies in rats have been undertaken to determine the role of selenium 

deficiency interacting in iodine metabolism, which continues to affect thyroid 

function. An animal study from Dumont’s group suggested selenium and iodine status 

both contribute in thyroid hormone synthesis but fail to model co-deficiency in 

thyroid degeneration (42). Their data reported selenium deficient rats had decreased 

thyroid GPx activity, but a protective effect from selenium deficiency was observed on 

the thyroid gland (reduced thyroid weight and increased serum T3 and T4) in the 

animal model (42). Further histological analysis on the thyroid tissue of rats having 

iodine and selenium co-deficiency, evidenced an increased thyroid fibrosis and 

proliferation of thyroidal epithelial cells. This phenomenon suggested the existence of 

a possible connection between selenium deficiency and myxedematous cretinism (a 

type of cretinism characterised by mental retardation and hypothyroidism) (43). 

Previously, human evidence was reported of the coexistence of selenium deficiency 

and iodine deficiency in Zaire, Central Africa in the 1980s (44, 45, 46). In an area of 

high endemic goitre and cretinism, lower serum selenium and plasma GPx were 

recorded, compared to those residing in non-endemic areas. This presented evidence 

that selenium deficiency may modulate negative effects from any iodine deficiency. 
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Combined iodine and selenium deficiency may be an etiologic factor in the 

pathogenesis of endemic myxedematous cretinism, which remains highly prevalent in 

Central Africa (46, 47). During iodine deficiency, the production of hydrogen peroxide 

is increased due to the stimulation from TSH on the thyroid during hormone 

synthesis. Deficiency of selenium results in a negative impact of the GPx defense 

mechanism (protecting the thyroid gland from excessive hydrogen peroxide 

production). Concurrent selenium deficiency reduces the negative effect of low active 

thyroid hormone from iodine deficiency affecting the brain, the proposed diagram 

(Figure 2.3) suggests a mechanism for the development of myxedematous cretinism 

in combined selenium and iodine deficiency (41). 

 

Figure 2.3 A mechanism for the development of myxoedematous cretinism [Arthur, 
Beckett, Mitchell, 1999 (41)] 

Both cross-sectional and interventional studies have investigated the relationship 

between selenium status and thyroid function in adult, elderly, and pregnant 

populations. Within mild iodine deficiency areas, lower serum selenium was reported 

to increase the risk of enlarged thyroid glands or possible development of multiple 

thyroid nodules in women, rather than in men (48, 49). A small sample placebo-

controlled Italian trial of elderly persons aged over 85 years (n = 36) found a marked 

decrease in serum total T4 (67 vs 62 nmol/L), but not in free T4 (9.4 to 9.3 pmol/L) 
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after supplementation of 100 µg selenium (sodium selenite) daily for three months, 

giving the baseline mean serum selenium as 66 µg/L, raised to 106 µg/L after 

supplementation (50). However, a randomised double-blinded placebo-controlled 

trial of selenium supplementation in UK elderly participants (n = 501) reported no 

significantly measurable beneficial effect on the conversion from T4 to T3, despite 

consumption of 100, 200 or 300 µg daily for six months (51). This observation could be 

explained by selenium status at baseline (mean plasma selenium of 91 µg/L) being less 

likely to impact on the activity of the iodothyronine deiodinases. Pregnant women 

with positive TPOAb are more likely to develop PPT, selenium supplementation may 

reduce such incidence by decreasing inflammation activity (52). A randomised 

placebo-controlled Italian study reported women in their first trimester with positive 

TPOAb had a lower incidence of PPTs (28.6%), compared to 48.6% in the non-

supplementation group, after supplementing with selenium as selenomethionine at 

200 µg/day during both pregnancy and their postpartum period; however, the result 

still warrants further examination concerning the aspect of reverse-effects after 

stopping supplementation (52). Of interest, study subjects were advised to use iodised 

salt, but iodine status was not measured and remained unconfirmed, as deficiency of 

both iodine and selenium may impair thyroid function.  

Low levels of selenium are found in New Zealand soils, leading to low levels in the 

food supply (53).  The effects of selenium on thyroid status have been examined in 

New Zealand following instances of inadequate selenium status reported by 

Robinson’s trace element research group from Dunedin (53, 54). Based on the data 

from five different local studies of adults aged 18-68 living in the South Island, New 

Zealand, between 1993 and 2001 (55), it was suggested that selenium levels were 

borderline in maintaining optimal function of selenoproteins, as they exerted only a 

minor effect on serum T4 levels and T3:T4 ratios after supplementation. To explore 

further the effect of iodine and selenium supplementation on thyroid function, a 

randomised placebo-controlled trial was conducted in a group of moderately iodine 

deficient (MUIC as 48 µg/L) volunteers aged 60-80 years (n = 102) (56). The 
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participants were given a treatment of selenium solely (100 µg L-selenomethionine); 

or of 80 µg iodine solely; or with a combination of both iodine and selenium 

supplements; or a placebo for three months. No additional beneficial effect from 

either selenium supplementation in improving the thyroid hormone status was 

observed, apart from an increase in plasma selenium and whole blood GPx activity 

(56). The mean plasma selenium at baseline was 95 µg/L, so the deiodinases activities 

were likely maintained with less effect on thyroid function (56). Any effect of selenium 

supplementation on thyroid status among the elderly is yet to prove conclusive. 

Further studies are required to identify and understand as to what extent current 

selenium status might interact with mild iodine deficiency in relation to thyroid 

function.  

2.2.3.3 Iron in thyroid function 

Iron is another essential trace element believed to play an important role in thyroid 

hormone metabolism. Animal studies of iron deficient anaemic rats by Beard, Tobin 

and Green (1989) suggested an impaired response in thyroid hormone regulation, 

where, for example, rats failed to respond appropriately to TRH stimulation, resulting 

in decreased plasma levels of T3 and T4 (57). In addition, decreased activity of hepatic 

iodothyronine 5’-deiodinase was observed in severely affected iron deficient anaemic 

rats (57), which may result in a decreased production of T3. Furthermore, a randomly 

controlled trial provided strong evidence that the activity of TPO (a haem-iron 

dependent enzyme which enables the addition of iodine to tyrosine residue for thyroid 

hormone synthesis) reduced markedly within food-induced iron deficient anaemic 

male rats when compared to the controls in situ. The study used pair-fed controls to 

distinguish lower effects of serum thyroid hormones from reduced food intake due to 

iron deficiency anaemia (IDA) (58). 

Human studies have also suggested that iron deficiency without anaemia (ID) or IDA 

may impair thyroid metabolism. For example, lower T3, T4 and increased TSH were 

observed in subjects with moderate-to-severe IDA (haemoglobin < 75 g/l) (59) and 
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mild IDA (75 g/l < haemoglobin < 110 g/l) (60). Observational studies from Ethiopia 

and Philippines found no differences in goitre rate assessed by palpation of an 

enlarged thyroid gland (one of the measures for iodine deficiency) between anaemic 

and non-anaemic children (61, 62), pregnant and lactating women (62). However, 

anaemic status in these two studies were not classified as IDA which may due to 

deficiencies in folate, zinc, or vitamin B 12. Research has investigated the interaction 

between iron deficiency and goitre rate. An Iranian school children study reported a 

higher goitre rate (3.8 times, measured by palpation) in children with low serum 

ferritin (< 12 µg/dL), when compared to those with normal serum ferritin (63). 

One interventional study in the Ivory Coast investigated the thyroid responses of 

goitrous-children with IDA to iodine supplementation. Firstly, goitrous-children aged 

6-12 years were supplemented with one dose of 200 mg oral iodine; after 30 weeks, 

children without anaemia gained a higher percentage of thyroid volume reduction 

(45%) compared to children with IDA (22%), and the prevalence of goitre was 12% 

compared to 64% in children with IDA (64). This result indicated IDA may reduce the 

effectiveness of iodine prophylaxis. From the beginning of 30 weeks, children with 

IDA were provided with 60 mg oral iron supplementation (4 times/week for 12 weeks), 

and, at 65 weeks, thyroid volume reduction was observed to be 38%; the overall 

prevalence of goitre was reduced to 20% when compared to non-anaemic children 

(12%) (65). However, the diets of the children were not controlled, although the 

nutritional status (height, weight, and growth) was measured during the trial; there 

was no control group arranged for anaemic children without iron treatment. By the 

end of the trial, the group of goitrous children with IDA remained at a higher goitre 

rate, and the research results suggest that goitrous children with IDA may benefit 

from concurrent supplementation of both iodine and iron. 

A subsequent nine month randomised double-blind control trial by the Zimmermann 

group provided dual-fortified salt (DFS) containing 25 µg iodine and 1mg iron per 

gram of salt to iodised salt given to 6-15 years-old goitrous Moroccan children who 

had a high prevalence of IDA at 25-35% (such fortification achieving 150-250µg/day 
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iodine or 7-12 mg/day iron) (66). The study found a higher reduction of thyroid 

volume (38%) at 40 weeks among children receiving DFS, when compared to the 

iodised salt-only group (18%) (66). This dual fortification trial confirmed that 

concurrent supplementation with iron and iodine may achieve a reduction of both 

goitrous and iron deficiency in such vulnerable groups of children. A recent study of 

reproductive aged women with IDA in Turkey (a country with mild iodine deficiency) 

subsequent to a six-month oral iron supplementation (100 mg elemental iron per 

capsule, twice a day) reported a decreased mean thyroid volume at 13 mL, when 

compared to the baseline of 17 mL (67). However, selenium status remained untested 

during the clinic trials on school children and women detailed above. 

Although other micronutrients such as zinc, copper, vitamin A and vitamin D may 

also support thyroid hormone synthesis. In New Zealand, traditionally, iodine and 

selenium intakes are inadequate, and iron deficiency and iron deficiency anaemia are 

present in women at reproductive ages. Therefore, these three nutrients were selected 

for investigation among postpartum women in this MINI study. 

2.3 Iodine 

Iodine plays a role in adequate thyroid hormone synthesis enabling optimal thyroid 

function in the body. Iodine deficiency can result in a broad spectrum of disorders – 

Iodine Deficiency Disorders (IDD), including hypothyroidism, hyperthyroidism, 

goitre, physical development retardation, and cretinism) (68, 69). IDD are prevalent 

in many countries of the world and is mostly associated with inadequate dietary iodine 

intake, which affects all ages and stages of human life. 

2.3.1 Iodine and health 

Knowledge of the impact of iodine deficiency on brain development has expanded 

over the last 30 years (70). Animal studies have confirmed that normal brain 

development requires optimal thyroid hormones which rely on an adequate supply of 

iodine (70). In humans, iodine is essential for growth and development during the 
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prenatal period and the first two to three years postnatally. Iodine deficiency has 

resulted in 11.2 million individuals in the world experiencing cretinism (a condition of 

impaired growth, defects of hearing and speech, and brain damage) and a further 43 

million people with different levels of mental impairment in the 1990s (71). The latest 

evaluation of global iodine nutrition (2020) from 194 WHO members reported that 28 

countries remained iodine deficient (72). Where there is severe iodine deficiency 

occurring in utero, children and adolescents may develop neurological cretinism 

(severe mental retardation with euthyroid) rather than hypothyroid cretinism 

(dwarfism, myxedema and skeletal retardation with severe hypothyroidism) (22); even 

mild iodine deficiency in uterus can have long-term negative effects on brain 

development, such as poor academic performance in school children (73, 74). 

Meta-analysis enquiries from 18 observational and experimental studies (published 

between 1969 and 1990) reported populations aged from infancy to adulthood who 

were living in iodine deficient areas have been reported to have a mean of 13.5 

intelligence quotient (IQ) points lower than those present in non-iodine deficient 

groups, based on the assumption that the scores in both groups exhibited normal 

distributions (75). Authors of this meta-analysis questioned whether the score for the 

iodine-deficient group was able to be normally distributed and called for further 

studies. Another meta-analysis based on 37 studies of Chinese children aged under 16 

years, reported a reduction of 12.5 IQ points among children being exposed to severe 

iodine deficiency, when compared to children living in iodine sufficient areas (76). 

Results from the Chinese meta-analysis also showed an increment of the IQ points (12 

Raven points or 17.25 Binet IQ points) of children born 3.5 years after the introduction 

of an iodine supplementation programme (75). 

A number of human cohort studies have reported that mild or moderate iodine 

deficiency during pregnancy has resulted in impaired/delayed neurodevelopment in 

utero and the consequences were detected at infancy (77) and also at ages of eight to 

nine years (73, 74). A 2018 population-based prospective cohort study of 851 

Norwegian mother-infants measured maternal urinary iodine concentrations (UIC) 
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and infant neurodevelopment at 6, 12 and 18 months (assessed by Bayley Scales of 

Infant and Toddler Development, Bayley-III) (77). The authors found evidence of poor 

communication skills by infants aged 18 months who were born to mothers with mild 

iodine deficiency. Studies from two other large cohorts – the Avon Longitudinal Study 

of Parents and Children (ALSPAC) in the United Kingdom (UK) (73) and the 

Gestational Iodine Cohort Australia (74) investigated maternal UIC during early 

gestation in relation to children’s later educational outcomes. In the first study, 

children’s long-term neurodevelopment was assessed by verbal IQ at eight years of 

age, reading accuracy, and comprehension assessed at nine years of age (UK); and, in 

the second study, school-based Australian academic performance was assessed based 

on the Australian numeracy and literacy curriculum, only literacy measures were 

associated with maternal UIC. In both studies, many adjustments were made 

including maternal and paternal education and occupation, home and family 

situations, life events as well as maternal age, gestational age, and birth weight, 

however, maternal IQ was not adjusted for evaluating neurodevelopment of their 

children.  In contrast, another Australian study in Adelaide, after adjusting for 

maternal IQ, failed to find any association between maternal UIC and children’s 

neurodevelopment outcomes (Bayley-III) at the age of 18 months (78). This Adelaide 

study also found children born to women with both high (≥ 391 µg/day) and low (< 

220 µg/day) iodine intake in pregnancy (assessed by a validated iodine food frequency 

questionnaire) showed poor neurodevelopment outcomes (cognitive, language and 

motor scores) (78). A large Norwegian study (MoBa)  found that inadequate maternal 

iodine intake during early gestation (assessed from a food frequency questionnaire) 

was associated with delayed children’s language skills at the age of three years (79) 

and poor school performance at the age of eight years based on maternal self-

reporting scores (78). These epidemiological studies discussed are well-designed and 

have shown clear association between mild iodine deficiency in utero and impaired 

neurodevelopment remained after adjusting a comprehensive range of confounders. 

However, assessing neurodevelopment is challenging as different tools (both objective 



51 
 

and subjective) are used.  Iodine is required for the neurodevelopment during 

gestation, it is inconclusive how much iodine is sufficient or excessive in terms of 

optimal neurodevelopment.  

Most research studies have focused on school children’s development rather than 

investigating younger infants (those less than two years old). The World Health 

Organization estimates that iodine deficiency is the most preventable cause of brain 

damage which affects around two billion people living in over 130 countries (70). The 

most recent up-to-date meta-analysis combined data from population-based birth 

cohorts - Generation R (Netherlands), INMA (Spain), and ALSPAC (United Kingdom) 

between 1990 to 2008, using iodine-to-creatinine ratio (µg/g) as an indicator of 

maternal iodine status during the first trimester. Findings suggest that infants born to 

women with a low urinary iodine creatinine ratio until 14 weeks gestation, were more 

likely to have a low verbal IQ score (80). The researchers indicated achieving optimal 

iodine status during the early gestational period remains critical in 

neurodevelopment. However, the first 1000 days of life is designated a “window of 

opportunity” for optimal growth and development (81). Therefore, preconception 

period and the first two years after birth are also crucial in support optimal 

neurodevelopment by achieving adequate iodine supply, which may require further 

research investigation. 

2.3.2 Iodine intake and status 

An individual’s iodine intake depends on the type and amount of iodine-containing 

food and/or water regularly consumed. The personal choice of consuming iodised salt 

can vary considerably from day to day, excluding those living in countries where 

iodisation of salt is mandatory. Food sources and water may vary in their iodine 

content due to natural reasons, such as region of origin, seasonal variation, and 

fortified food versus unmodified (82). Regular consumption of iodine-containing 

supplements may contribute to daily iodine intake. 
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2.3.2.1 Food sources 

Iodine content in food can vary between countries and differ when sourced from 

different regions of the same country. In general, fish, seafood, and plant material 

from the sea (high concentration of iodide in sea water, 50 µg/Liter) usually contain 

higher levels of iodine in comparison to other food sources, such as poultry and meat. 

Milk and dairy products are the major contributors to iodine intake due to their 

moderate concentration of iodine and frequent daily consumption in many 

Westernised populations. The iodine contribution from plant and animal foods 

depends on iodine taken up from local soil, water used for irrigation, fertilisers and 

livestock feed. However, soils in New Zealand typically provides low levels of available 

iodine, which results in low iodine concentrations in locally grown foods (83). 

In New Zealand, important dietary sources are fish and shellfish containing varied 

iodine concentrations ranging from 24 to 130 µg/100 g (84). The next highest iodine 

concentration occurs in eggs, due to most poultry feeds being supplemented by trace 

minerals including different farming types (battery, free-range, barn laid) (85). From 

the 1960s, iodophors were used to sanitise milking machines and related equipment 

in the local dairy industry; as a result, milk and other dairy products made a significant 

contribution to the iodine intake within a typical New Zealand diet. Concern over 

contamination led to reduced use of iodophors from the early 1970s (86), for example, 

the iodine concentration in trim milk decreased from 0.44 mg/kg in 1978 to 0.10 mg/kg 

in 2009 (84). The reduced iodine content in milk has contributed to the more recent 

inadequate iodine intake re-emerging within New Zealand in the 1990s (83, 85). 

Table 2.1 illustrates the changes of iodine concentration in food from the 1920s 

through to the 2000s, reported from an ongoing series of the New Zealand Total Diet 

Survey (84, 87, 88, 89). The changes observed over the time (between 1920s and later 

times) may be that recent methods are more sensitive in detecting iodine, or changes 

in iodine concentrations in the samples of individual food items assessed, for example, 
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lamb-mutton composite sample examined in 2016, or mandatory fortification of 

iodised salt in bread.  

Iodised table salt was introduced from the 1930s in New Zealand, which had reduced 

the goitre rates by the 1950s (85). However, public health messages have led to reduced 

salt consumption to prevent high blood pressure and reduce the risks of other chronic 

medical conditions. Another possible contributor is the recent shifting from 

traditional home cooking with iodised salt to commercially prepared food containing 

non-iodised salt (90). Modern dietary choices have expanded to include other 

conventional salts containing minimum levels of iodine, for example, pink salt, rock 

salt, and herbal salt, reducing the iodised salt intake even further. A proportionate to 

population sized survey of New Zealand school children from Dunedin and 

Wellington found half of the children did not use iodised salt at the table, and this 

was coupled with a low use of iodised salt in cooking within the household (85). 

Although iodised salt is not considered to be a major contributor to iodine intake, for 

those who regularly consume iodised salt, its contribution cannot be ignored.  

More recently, to combat iodine deficiency, mandatory fortification of bread with 

iodised salt (25-65 mg iodine/kg salt) was introduced in New Zealand in September 

2009, applying to all commercial bread other than organic and unleavened. A post-

fortification study from the Ministry for Primary Industries measured iodine 

concentrations in all bread in 2012 (91). The median iodine concentration of bread 

requiring fortification ranged between 30.1 and 45.9 µg/100 g; this was in contrast to 

1.6 µg/100 g within bread without fortification (91). Comparison of fortified bread with 

pre-fortification values based on the Concise New Zealand Food Composition Tables 

8th edition (2009) (92) (Table 2.2) shows a dramatic increase of iodine concentration 

in the listed bread and bread products post-fortification. 
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Table 2.1 Iodine content (µg/kg) of New Zealand foods 

Food 1920s 2003-2004 2009 2016 

Animal food   

Fish, canned 360 130 180.1 182 

Fish, fresh 50-96 216 237 211 

Oysters 880 970 1298 1171 

Meat, bacon 15 11 16 35 

Beef 13 7-10 9-16 5-11 

Mutton/Lamb 10 32 10.6 294-297a 

Eggs 94 519 465 544 

Dairy, milk 20 86-96 94-103 78 

Cheese 31 63 61.4 44 

Cereal foods   

Bread, white 2 3.2 2 388b 

Bread, brown 12 4.8 13 414b 

Rice, white < 8 3.1 1.2 2-11 

Fruits and vegetables   

Apple 6 2 14 3 

Orange 2 2.1 2.3 1 

Tomato 8 1.1 1.0 0-2 

Carrot 8 4.4 17 7 

Kumara 3 2.9 2.3 3-4 

Lettuce 17 10.9 2.2 1-2 

Potato with skin 22 6.8 6.1 4-5 

Silver beet 27 27 16 9 

a
 This result was from a single lamb-mutton composite sample, and sheep may receive iodine supplementation, but meat from this area 

is rarely for human consumption. 
b 

Data presented is after the mandatory fortification of bread with iodised salt in New Zealand. 
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Table 2.2 Iodine content (µg/100 g) of New Zealand foods (pre- and post-fortification). 

Bread and bread product category Median Iodine (µg/100 g) 
Pre-fortification  

Median Iodine (µg/100 g)  
Post-fortification 

Bread rolls, white 0.3 53.5 

Bread rolls, mixed grain 1.2 41.1 

English style muffin n/a 43.9 

Fibre white n/a 49.3 

Hamburger buns n/a 51.1 

Organic and unleavened n/a 1.6 

Pita bread 0.5 27.7 

Pizza bases 0.3 0.5 

White 0.3 41.3 

Whole meal 0.5 38.8 

 

After the government iodine fortification initiative, studies of school children in New 

Zealand found that bread contributed 28% of iodine intake immediately after 

fortification (93), it increased to 51% six years later (94). These studies concluded that 

mandatory fortification successfully improved iodine intake assisting New Zealand 

school children to reach adequate levels. The data from New Zealand Ministry for 

Primary Industries in 2016 have suggested that iodine intake for women of 

childbearing age also achieved adequacy (95). Consequently, bread has been 

estimated currently to be the primary dietary source of iodine now contributing to 

most adult diets, as evidenced in the 2016 New Zealand Total Diet Survey (89). 

However, such fortification may not always provide sufficient iodine for pregnant and 

breastfeeding women due to their increased requirements. To assist, in 2010, the use 

of government subsidised iodine-only supplements (150 µg/day) was recommended 

to all pregnant and breastfeeding women in New Zealand (96). A 2011 study in 

Palmerston North, New Zealand, indicated that there was a low awareness of this 

supplementation initiative for breastfeeding women, with only 35% of the women 

reporting use of any iodine-containing supplements (97). Low use of iodine-
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containing supplements among both pregnant and lactating women was similarly 

reported in the United States (98). Recently, a cross-sectional study of over 110 

pregnant Australians reported that only 58% consumed iodine-containing 

supplements  (150, 200, 250 or 300 µg/day) (99), which was similar to 66% reported 

by a Western Australian study of 425 pregnant participants in 2012/2013 (ranging from 

38-500 µg per day) (100). In New Zealand, government subsidised iodine-only 

supplements can be purchased on prescription and a range of dietary supplements 

containing iodine are available over the counter. Consumers, however, easily may 

become confused as to which may be the most appropriate product for their own 

personal circumstances. Women on a tight budget may not be able to afford the cost 

of government subsidised iodine-only supplements outside the free antenatal care 

period of six weeks after birth as offered by their registered General Practitioners 

(GPs). A New Zealand supplementation study reported that 13% of women who were 

prescribed with government subsidised iodine-only supplements did not fill their 

individual prescription (need to be paid) (101). Further investigation is warranted to 

determine current use and barriers to use iodine-containing supplements and their 

effect on iodine intake. 

2.3.2.2 Dietary inhibitors of iodine metabolism - goitrogens 

Goitrogenic compounds can block iodine uptake by the thyroid gland, thus interfering 

with thyroid hormone synthesis, release and utilisation. These compounds are found 

in several natural food items. High consumption of cruciferous vegetables such as 

cabbage, kale, broccoli, cauliflower, turnip, brussels sprouts, cassava, lima beans, 

linseed, sorghum, and sweet potato are associated with a higher consumption of 

goitrogens. Diets rich in these foods may contribute to an increased risk of goitre and 

other IDD among people who reside permanently in iodine-deficient areas (22, 102). 

Isoflavones are other substances which may impair TPO activity and thus inhibit 

thyroid hormone formation (103). The main dietary sources of isoflavones include soy-

based food, peas, and millet. In animal models, it has been shown that soy’s anti-

thyroid effects are more marked when iodine deficiency exists (104). In humans, 
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infants fed with soy-formula without added iodine have been shown to develop goitre 

or hypothyroidism which can be alleviated and corrected by iodine supplementation 

(104). However, isoflavones are believed to have negligible effects on the thyroid 

function of healthy adults (22, 103), but their impact on other groups, such as people 

who have mild iodine deficiency, or those who have an extremely high level of 

consumption of soy products, remains unclear (105). 

In addition, another goitrogenic exposure is tobacco smoke. It is believed that 

thiocyanate content in tobacco smoke decreases breastmilk iodine concentrations in 

women who smoke during their pregnancy (106), or during lactation (107). This 

phenomenon was explained by smokers accumulating thiocyanate in their blood and 

tissues, which inhibit the sodium-iodide symporters (NIS) in the mammary gland and 

result in blocking iodine from being secreted into breastmilk. Overall, it is important 

to assess goitrogenic food consumption/tobacco smoke exposure when evaluating 

iodine intake, since the negative effects from goitrogenic factors may depend on the 

quantities of consumption/exposure and their background iodine intake. 

2.3.2.3 Requirement of iodine intake 

The Estimated Average Requirement (EAR) of iodine for adult men and non-pregnant 

non-lactating women are 100 µg/day to adequately maintain iodine in blood plasma 

and sufficient storage in the thyroid gland (86). The Nutrient Reference Values (NRVs) 

for Australia and New Zealand recommends the EAR and Recommended Dietary 

Intake (RDI) are 160 µg/day and 220 µg/day respectively for pregnant women (86) 

(Table 2.3). 

During lactation, iodine is required to fulfil maternal thyroid function, and be secreted 

into breastmilk to ensure adequate iodine for optimal infant thyroid function. Studies 

have suggested that the mammary glands are able to concentrate 20-50 times more 

iodine than maternal blood due to the active NIS (108). The secretion of iodine into 

breastmilk is influenced by prolactin, oxytocin and oestradiol (108). A lactating 

woman may secrete 75-200 µg iodine a day via 0.5-1.11 L breastmilk daily up until six 
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months postpartum; thus, the daily iodine requirement is estimated at 225-350 µg/day 

(71). However, the NRVs from Australia and New Zealand suggested an extra 90 

µg/day secretion of iodine throughout breastmilk and suggest 190 µg/day as the EAR 

value for lactating mothers (86) and an RDI of 270 µg/day (Table 2.3). 

Breastfed infants depend on the iodine content in breastmilk for thyroid function and 

to build up reserves in their thyroid gland during the first six months of life (108). 

There are slight differences in the recommendations for adequate intake of infants 

aged 0-6 months among advice from the WHO (109), the Institute of Medicine (IOM) 

(110), and the NRVs from Australia and New Zealand. For example, the NRVs assume 

an average breastmilk intake of 0.78 L/day and an average iodine concentration in 

breastmilk at 115 µg/L, and this suggests that 90 µg/day is adequate to ensure a positive 

iodine balance in growing infants (86), when compared with the higher IOM 

recommendation of 110 µg/day (109, 110). 

For a population to have a very low prevalence of inadequate dietary intake, the 

mean/median intake should be above the RDI; while the percentage below the EAR 

approximates the proportion that is at risk of dietary inadequacy, according to the 

EAR cut-point method (111, 112).  
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Table 2.3 Dietary Reference Intakes for iodine (ug/day) by age or population group 

AI = Adequate Intake; RDA = Recommended Dietary Allowance.  

 

2.3.2.4 Assessment of iodine intake 

The following discussion highlights how iodine intake can be assessed by using several 

dietary assessment methods, including estimated/weighed food records (dietary 

diaries), food frequency questionnaires (FFQs) and repeated 24-hour dietary recalls.  

Food records are used to measure actual food intake at the time of consumption rather 

than relying on respondents’ memory. Weighed food records are commonly treated 

as a gold standard method to accurately assess the dietary intake and can be frequently 

used as a validation tool for other methods (113, 114). However, it adds a huge burden 

to respondents as they are required to record all food items including names, brands, 

preparation methods, and accurately measured quantities at the time of consumption 

over a specific given period (115). It is more expensive to administer since adequate 

measurement equipment needs to be used as well as hard copies of the food record 

instruction booklets. It can be difficult when respondents dine at restaurants, buy 

takeaways, or simplify the recording by altering their normal diet. Furthermore, 

motivated study subjects are more likely to collect precise dietary information. Most 

Age or population 
group 

NRVs  
Australia and NZ 
(86) 

Institute of Medicine  
(110) 

World Health 
Organization 
(WHO) (109) 

Infant 0-6 months 90 (AI) 110 (AI) 90 

Infant 7-12 months 110 (AI) 130 (AI) 90 

Children 1-8 yr 65 (EAR) 90 (RDI) 65 (EAR) 90 (RDA) 120 

Children 9-13 yr 75 (EAR) 120 (RDI) 73 (EAR) 120 (RDA) 120 

Children 14-18 yr 95 (EAR) 150 (RDI) 95 (EAR) 150 (RDA) 150 

Adults >19 yr 100 (EAR) 150 (RDI) 95 (EAR) 150 (RDA) 150 

Pregnancy 160 (EAR) 220 (RDI) 160 (EAR)  220 (RDA) 250 

Lactation 190 (EAR) 270 (RDI) 209 (EAR) 290 (RDA) 250 



60 
 

recently, since the availability of mobile-based devices increased dramatically, new 

approaches have been developed to assess dietary record digitally, for example e-CA 

(an electronic mobile-based food record) (116). Such a tool has been suggested by 

researchers to reduce respondents’ burden and food data entry errors. However, 

further validation studies are required to assess and confirm their frequent usability. 

FFQs have been developed and validated to assess iodine habitual intake in a range of 

populations in different countries as it reduces burden on respondents and is less 

expensive to administer, when compared to dietary recalls and food records. High 

iodine content food items and foods containing iodine that are known to be frequently 

consumed by a certain population are included in the FFQ. Frequency is assessed by 

providing categories based on days, weeks, and months. Standard portion sizes are 

usually well-defined in a questionnaire so that total iodine intake per day can be 

estimated. FFQs are either administered by a personal interviewer or made available 

as a self-completion online or paper-based questionnaire. For instance, researchers 

have used iodine specific FFQs to assess dietary iodine intake among New Zealand 

school children (117) and adults (118), and pregnant women in Australia (113). However, 

information collected from FFQs relies heavily on respondents’ memory and cognitive 

ability to record retrospective data (115). Consequently, the overall accuracy of FFQs 

needs to be validated in conjunction with other more accurate dietary methods or 

biomarkers, for example, urinary iodine concentration or serum thyroglobulin 

The 24-hour recall is another dietary method carrying a low respondent burden and 

limited opportunity to change diet, especially if respondents are not pre-warned of 

the interview. However, this approach requires respondents having a good memory 

and some suitable ability to estimate portion sizes, along with an experienced 

interviewer to conduct the procedure. Extra assistance in estimating portion sizes is 

usually given by using photographs of foods, food models and providing household 

measuring cups, spoons and rulers which may all improve the quality of dietary data 

collected via 24-hour dietary recalls (119). This method has been often used with large 

representative population studies to assess average usual intake, for example, the New 
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Zealand National Nutrition Surveys (120) and the U.S. National Health and Nutrition 

Examination Survey (121). 

Despite the strengths and weaknesses of each dietary assessment method as described 

above, both under- and over-reporting remain of concern. To eliminate under-

reporting, the Goldberg cut-off method is commonly used to compare an individual’s 

energy intake with their basal metabolic rate based on age, weight, gender; excepting 

those who are purposely restricting food intake to manage body weight (122). Here, it 

is also important to note that adequate administration of any dietary assessment 

method and appropriate nutrient levels in an up-to-date food composition table is 

essential to achieve relatively adequate dietary intake data. 

It can be challenging to select an appropriate dietary assessment method which best 

suits the objectives of the study and a specific participant group, and to then balance 

the respondents’ burden with the required accuracy of the data collection. In the 

current study, FFQs were carefully selected to collect habitual iodine and selenium 

intake data. Weighed food records (dietary diaries) were used to evaluate participants’ 

current whole dietary intake, including iodine, selenium, and iron intake. The food 

records also may be used to validate the iodine-selenium specific FFQ which was 

adapted from one previously used in an Australian study (113). 

There are further challenges in estimating iodine intake. Due to a wide coverage of 

the iodised salt fortification programme, iodised salt may be a major contributor to 

overall iodine intake. However, it is difficult to accurately measure iodised salt 

consumption; accordingly, often a set amount is usually added. In New Zealand, 48 

µg iodine [equivalent to the consumption of 1 g discretionary iodised salt (48 mg 

iodine/kg salt)] was added to an individual’s daily dietary intake (118), for those who 

reported regular use of iodised salt at the table, or in cooking. Although the Concise 

New Zealand Food Composition Tables (12th Ed) has included iodine content in food 

items (90), the iodine content in bread has yet to be updated (91). In addition, this 

database has not been updated frequently to match the fast-changing food items more 
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recently available in the market and contains mostly data from the United Kingdom 

and the United States. Iodine content in those overseas databases may not accurately 

reflect local New Zealand food items. A call for a well-constructed iodine food content 

national database (including major dietary contributors from food, beverages, and 

supplements) has been made to improve the understanding of iodine intake patterns 

for both individuals and wider populations (90). 

2.3.2.5 Assessment of iodine status 

Measurement of urinary iodine 

Iodine absorbed through the diet is excreted mostly via urine, and the urinary iodine 

content reflects recent iodine intake. Iodine concentrations in spot urine (single void) 

samples (expressed as UIC µg/L) and a 24-hour urinary collection (expressed as UIE 

µg/day) can be measured to evaluate iodine status. Both measures may not be used as 

an indicator of an individual’ iodine status due to the variations of daily (123) and 

seasonal iodine intake (124). Iodine concentration in spot urine samples are also 

influenced by fluid intake (125, 126) and diurnal iodine secretion (127). Therefore, a 

single UIC value is limited in assessing an individual’s current iodine status. Ten 

repeated spot urine samples of UIC are needed to obtain an accurate measure of 

individual iodine intake (128). In comparison to spot urine iodine concentration, the 

24-hour urinary iodine excretion is not affected by diurnal and hydration variations 

over the day of measurement, but daily variation and seasonal difference of intakes 

remain. Obtaining a complete collection of urine over a single 24-hour period is 

challenging, due to the personal inconvenience for subjects and difficulty in ensuring 

accuracy, particularly in field research settings. Proving that compliance criteria have 

been fully met over a 24-hour period, urine sample collection is not easy to monitor, 

as subjects may unintentionally miss completing some collections. Spot urine samples 

are easier to obtain and cause less respondent burden during data collection. Recently, 

age and gender adjusted iodine creatinine ratio has been recommended for use by 

adults to allow correction for hydration status (129, 130). For example, in a Danish 
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pregnant and lactating women’s study, urine creatinine concentration was used to 

level out the fluctuations in the UIC caused by the timing of spot urine samples (131) 

and to estimate total 24-hour urinary iodine excretion (126). 

At population levels, UIC is a useful biomarker when specimens are collected from a 

large representative sample of a target group to lessen any inter- and intra-individual 

variations. The median value of UIC (MUIC) as µg/L is more commonly published, 

since most urinary iodine values are not normally distributed. In this respect, the 

World Health Organization, International Council for Control of Iodine Deficiency 

Disorders (ICCIDD), and the United Nations Children’s Fund (UNICEF) (2007) have 

summarised the epidemiological criteria for assessing iodine status based on the 

MUIC established for different subgroups [see Table 2.4, (132)]. Of note, lactating 

women, and children less than two years old, with MUIC less than 100 µg/L, will be 

classified as having insufficient iodine intake. 

Measurement of thyroid hormones 

As part of the body’s negative feedback system used to maintain homeostasis, 

decreased thyroid hormones (T3 and T4) trigger a higher secretion of TSH from the 

anterior pituitary gland directly into the blood. As inadequate iodine intake directly 

affects the thyroid function, thyroid hormone levels in serum are considered as 

functional measures. Increase or decrease in TSH, T3 and T4 are observed among 

iodine deficient populations, but concentrations can also overlap with the iodine 

sufficient populations, due to tight physiological homeostatic regulation (69). 

Therefore, serum T3, T4 and TSH are not considered sensitive indicators for assessing 

iodine status in adults (69). However, serum TSH has been suggested as a sensitive 

measure for newborn infants’ iodine status (132). 
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Table 2.4 Epidemiological criteria for assessing iodine nutrition for different groups (132) 

MUIC (µg/L)  Iodine intake 

Pregnant women 

< 150 Insufficient 

150-249 Adequate 

250-499 Above requirements 

≥ 500 Excessive 

Lactating womena 

< 100 Insufficient 

≥ 100 Adequate 

Children < 2 years of age 

< 100 Insufficient 

≥ 100 Adequate 

Children ≥ 6 years of age  Iodine intake Iodine Status 

< 20 Insufficient Severe iodine deficiency 

20-49 Insufficient Moderate iodine deficiency 

50-99 Insufficient Mild iodine deficiency 

100-199 Adequate Adequate iodine nutrition 

200-299 Above 

requirements 

A slight risk of more than adequate 
intake in the overall population. 

≥ 300 Excessiveb Risk of adverse health 
consequences (iodine-induced 
hyperthyroidism, autoimmune 
thyroid disease) 

a 
Although lactating women have the same requirement as pregnant women, the MUIC is lower because iodine is excreted in breastmilk. 

b 
The term “excessive” means in excess of the amount required to prevent and control iodine deficiency. 

 

Thyroglobulin (Tg) is a glycoprotein which plays an important role in the synthesis of 

thyroid hormones. Previously, the measurement of serum Tg has been used to 

monitor thyroid cancer treatment (133). A small amount of this protein (< 10 µg/L) is 

constantly present in the blood of healthy individuals with adequate iodine status. 

Serum Tg concentrations increase with enlarged or inflamed thyroid, or rising TSH 
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secretion (133, 134). Iodine supplementation studies suggest serum Tg responds 

rapidly to the changes in iodine supply (135, 136), which in turn indicates that serum 

Tg might be a more sensitive indicator than other thyroid hormone measurements 

(134, 137). Measuring serum Tg is acknowledged as being sensitive in assessing both 

iodine deficiency and excess at population levels (134, 137, 138). Measuring TgAb is 

recommended to avoid an underestimate of serum Tg (139). However, limitations exist 

in using serum Tg as a biomarker including the uncertain prevalence of TgAb in iodine 

deficiency, and large variations in assays for analysis and poor reproducibility which 

result in limited ability to establish normal ranges (140). 

Research has attempted to establish a reference cut-off of serum Tg (< 13 µg/L) for 

iodine status in school-aged children (141), and suggests iodine sufficiency if less than 

3% of the population have Tg > 40 µg/L. This cut-off has been validated in a 24-week 

supplementation study (150 µg/day) of an adult population in New Zealand (142). 

However, the effectiveness of the suggested cut-off for pregnant women remains 

unclear (143). For example, two recent observational cohort studies have investigated 

the use of serum Tg as a biomarker for iodine status among mildly iodine deficient 

pregnant women. One study in the United Kingdom of pregnant women (n = 230), 

reported a higher serum Tg (20 µg/L) in the group of women at 35 gestational weeks 

with the iodine-to-creatinine ratio < 150 µg/L, when compared to the others (16 µg/L); 

suggesting that serum Tg was a useful functional marker to evaluate iodine status 

during pregnancy (144). However, a study of 299 pregnant women in Greece did not 

support using serum Tg as a biomarker of iodine status during pregnancy, although 

serum Tg concentrations were weakly correlated to the UIC within mild iodine 

deficiency only in the third trimester, which suggests a possible stimulating effect 

from a decreased human chorionic gonadotropin (145). It remains debatable whether 

trimester specific serum Tg concentrations would be more useful in evaluating iodine 

status (143). No studies have investigated the value of Tg in evaluating the iodine 

status of lactating women. 
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Measurement of the thyroid gland 

Measurement of the thyroid gland size is another assessment method for evaluating 

iodine status. Palpation by experienced physicians is used to detect an enlarged 

thyroid gland (goitre). While palpation is non-invasive, the method is subjective and 

can result in a large inter-observer error. Palpation of goitre was considered insensitive 

and less specific in populations with mild iodine deficiency (140). Since the late 1990s, 

to improve diagnostic precision, ultrasound is used as a safe, quick and non-invasive 

technique in assessing thyroid gland size. However, ultrasound measurement on 

thyroid volume may introduce inter-observer variability due to subjective judgement 

being applied on finding and measuring the maximum diameters on the thyroid gland 

image, which indicates a standardisation of technique may increase the accuracy of 

sonographic measurement of thyroid volume (146). Possible intra-observer variations 

on the measure of children’s thyroid glands also have been reported, but the mean 

value was relatively smaller for intra-observer (8.4%) than the inter-observer (30%) 

errors (147), which may result in difficulties in comparing outcomes to other studies.  

There is often a long lag time taken to normalise the thyroid gland volume after 

adequate iodine intake is achieved (148). This is evident in the discrepancy shown in 

a normalisation of UICs and the remaining goitre rate after the introduction of the 

mandatory salt iodisation programme. A five-year consecutive study of children with 

moderate iodine deficiency in West Africa found that UICs were normalized within a 

year, with only an 8% reduction of the goitre rate; after four years, 29% of the children 

remained goitrous (148). A previous one-year study of South African children 

examined the short-term effectiveness of an iodised salt programme, and they found 

children achieved adequate intake based on the UIC, but the goitre rate assessed by 

palpation did not decline (149). Unlike UICs, which respond rapidly to changes in 

dietary iodine intake, thyroid volume changes primarily reflect historical iodine 

status. Therefore, when interpreting results from the measurement of thyroid volume, 

the current iodine status of the population should be taken into consideration. 
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The methods described above have been used in both observational and 

interventional studies to monitor iodine status among different population groups. In 

summary, the UIC values reflect recent iodine intake (within 24-hour periods), serum 

Tg displays a relatively slower response to dietary iodine intake, and the long-term 

iodine status being reflected in measuring thyroid volume.  

2.3.3 Iodine intake and status in postpartum women and their infants 

Iodine concentration in breastmilk is an additional indicator of iodine status/intake 

for lactating women and their breastfed infants. Breastfed infants rely on iodine from 

breastmilk to support their thyroid hormone synthesis, which is critical in their 

neurodevelopment (108). It is important that lactating mothers achieve adequate 

iodine intake. Hence, an increased expression of NIS raises iodide uptake by the 

mammary glands, culminating in an increased secretion of iodine in breastmilk (107). 

Maternal iodine intake needs to increase to allow for that secreted into breastmilk.  

Several factors may affect breastmilk iodine concentrations (BMIC), including the 

stages of lactation (150); the timing of breastmilk collection; maternal iodine intake; 

maternal fluid intake (126), and exposure to cigarette smoking (107). A 2018 systematic 

review of five longitudinal studies of BMICs in non-supplemented women 

summarised that the BMIC dropped from colostrum (200-400 µg/L) to mature milk 

(100-150 µg/L) (151), and continually decreased until nine months after birth (152). A 

New Zealand study between 2004 and 2005 observed a significant reduction of mean 

BMIC from week one (43 µg/L) to week 24 postpartum (25 µg/L) for breastfeeding 

women not consuming iodine-containing supplements (150). In addition, maternal 

fluid intake has less influence on breastmilk iodine than the urinary iodine 

concentrations (126). Importantly, smoking has been suggested to impair the NIS 

transporter in the mammary gland due to the presence of thiocyanate; smoking 

mothers showed a much lower level of BMIC when compared to non-smokers (107). 

Observational studies have been conducted on the iodine status of breastfeeding 

women among iodine-deficient and iodine-sufficient countries. A systematic review 
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included 42 published studies between 1964 and 2013 (153) and reported that iodine 

deficiency in lactating mothers remained irrespective of mandatory or voluntary 

fortification strategies implemented in their countries. For these reasons, authors 

supported the provision of 150 µg/day to pregnant and breastfeeding women (153). The 

table 2.5 summarises observational studies conducted in the past 10-year on 

postpartum women’s iodine status (2009-2020). As shown, most of the countries listed 

have implemented either mandatory or voluntary salt iodisation programmes, with 

levels of iodisation between 20 and 70 mg iodine/kg salt. Denmark introduced the 

mandatory fortification of bread with iodised salt (9-25 µg/100 g bread) from 2000 

(154); followed by Australia and New Zealand (14-28 µg/100 g bread) in 2009 (155). 

Bread fortification was projected to increase iodine intake to an average of 84 µg/day 

in New Zealand adults (156). Most studies recruited non-exclusive breastfeeding 

women (supplementing infants with formula or complementary foods), whereas some 

used data from exclusively breastfeeding women (infants solely fed from breastmilk). 

The timing of postpartum data varied from four days to 12 months, thus, the iodine 

concentration in breastmilk may reflect changes in the stages of lactation from 

colostrum to mature milk. 

The current cut-off for UIC for iodine adequacy in a population of lactating women is 

above 100 µg/L, and data from most countries (Table 2.5) indicated insufficient iodine 

intake. Based on the Global Scorecard of iodine nutrition in 2020 (72), iodine intakes 

stated from each country studied did not accurately reflect breastfeeding women’s 

iodine status, as the scores were based on the MUIC of school-aged children. The 

appropriate cut-off for BMIC has not yet reached a scientific consensus. Further study 

in examining BMIC and its relation to iodine status will be required in both iodine 

sufficient and insufficient regions. 

Some interventional studies have investigated the effects of mother and infant iodine 

supplementation on their iodine status. In regions of moderate to severe iodine 

deficiency (maternal MUIC as 30-37 µg/L), in Morocco, a randomised double-blinded 

placebo-controlled trial (n = 241 mother-infant pairs) compared the effectiveness of 
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using maternal supplementation, either with a single dose of 400 mg iodised oil or 

supplementing infants (aged ≤ 8 weeks) directly with a single dose of 100 mg (157). 

This study found that maternal supplementation is more effective in ensuring 

adequate infant iodine status and maintaining BMIC levels until at least six months 

postpartum (157). A recent randomised trial in Southern Ethiopia showed that 

continuous use for six months of iodine supplementation of 225 µg daily was equally 

effective at maintaining UIC and BMIC when compared to a household iodised salt 

programme (35 mg iodine/kg salt), as the median UIC/BMIC in the iodine 

supplementation group showed adequate iodine status (150 µg/L/104 µg/L)  and 110 

µg/L/111 µg/L in the iodised salt group (158). In the regions of moderate iodine 

deficiency (maternal MUIC as 42 µg/L), in New Zealand, prior to mandatory 

fortification of bread with iodised salt, a randomised double-blind placebo-controlled 

trial reported that maternal supplementation of 150 µg and 75 µg iodine daily for the 

first six months postpartum improved BMIC. It is important to note, however, that 

both dosages were not sufficient to enable achieving adequate iodine status for 

mothers and their infants (150). 

2.3.4 Iodine intake and status in New Zealand  

In New Zealand, soils contain low levels of iodine, resulting in low concentrations in 

the local food supply (88). Consequently, people living in New Zealand have a low 

dietary intake of iodine. Iodine deficiency was a concern in New Zealand in the early 

years of the 20th century, but its prevalence was mostly reduced through the 

introduction of iodised salt in the 1930s (85). However, since the 1990s, several studies 

in New Zealand have shown iodine deficiency has re-emerged within adults (159), 

pregnant and breastfeeding women (150, 160), school children (85) and breastfed 

infants and toddlers (161). To overcome iodine deficiency in New Zealand, two 

government initiatives were introduced: mandatory iodised salt in commercially 

made bread and bread products from September 2009 (5), and iodine 

supplementation (150 µg/day) for all pregnant and lactating women was 

recommended in 2010 (96). 



70 
 

Although recent studies suggested that adults (95, 118) and children (94) in New 

Zealand may now have adequate iodine intake/status, women aged 40 to 63 years with 

low bread intake (162), and both pregnant and breastfeeding women remain deficient 

(97). A pilot study of a small sample of self-selected highly educated pregnant (n = 34) 

and breastfeeding women (n = 36) assessed UIC, BMIC and serum Tg, and results 

suggested iodine deficiency (97). There is a need to investigate iodine status of a 

representative sample of postpartum women and their infants, after the establishment 

of government iodine interventions.
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Table 2.5 A summary of recent ten-year observational studies on postpartum women’s iodine status (2009-2020). 

    

Country 

Country 
iodine 
fortification 

Sample 
size  
(BF) 

Timing  
Postpartum 

MUIC  
(µg/L) 

Median 
Urine 
Creatinine 
(ug/g) 

Median  
BMIC 
(µg/L) 

% using 
iodine 
supplement  

Iodine 
supplement 
users vs non-
users Authors  

Australia 
MF of IS in 
bread 2009 50  

4  
days  46  81 84  n/a n/a 

Chan et al. 
2003 (163)  

Australia 
MF of IS in 
bread 2009 60  

6  
months  123  n/a n/a BF:45 

UIC:  
206 vs 97  
P=0.029 

Axford et al.  
2011(164) 

Australia 
MF of IS in 
bread 2009 

291 
(2006)       
653 
(2012) 

7  
days  n/a n/a 

Pre: 187 
Post: 103 
(P<0.001) 

P:  
Pre: 47  
Post: 90 

BMIC:  
pre: 100 vs 
105 P=0.93           
post: 195 vs 
137 P<0.001 

Huynh et al.  
2016(165)  

Australia 
MF of IS in 
bread 2009 55   

39  
days  n/a n/a 167  BF: 57 

BMIC:  
With IS: 272 
vs 156 
W/O IS: 151 
vs 98 
P=0.028 

Jorgensen et 
al. 2016(166)  

Australia 
MF of IS in 
bread 2009 538  

 3  
months 125  n/a 127  n/a n/a 

Huynh et al 
2017(167)  

Britain 
No IS  

168  
 26  
weeks  79  n/a n/a 28  

UIC:  
no difference  
P=0.600 

Bouga et al. 
2015(168)  
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Country 

Country 
iodine 
fortification 

Sample 
size  
(BF) 

Timing  
Postpartum 

MUIC  
(µg/L) 

Median 
Urine 
Creatinine 
(ug/g) 

Median  
BMIC 
(µg/L) 

% using 
iodine 
supplement  

Iodine 
supplement 
users vs non-
users Authors  

China  
(Linfen) 

MF of IS 
1993 

298  
Excl. 

15  
weeks 107  n/a n/a zero n/a 

Dold et al.  
2017(169)  

China 
(Henan) 

MF of IS  
1993 

747  
Excl. 

 4  
months  177  n/a n/a n/a 

UIC:  
192 vs 174  
P<0.001 

Yang et al. 
2017(170)  

China 
(Tianjin) 

MF of IS  
1993 88  

4, 8 and 12 
weeks  

*4 weeks  
152       
*8 weeks  
112         
 *12 weeks 
109           n/a 

mean 
4weeks   
222  
8weeks                  
175 
12weeks                           
148  n/a n/a 

Wang et al. 
2018 (171)  

Croatia 

Iodine 
sufficient  
No IS  

73  
Excl. 

12   
weeks 35   n/a 124  zero n/a 

Dold et al.  
2017 (169)  

Denmark 

MF of IS in 
bread 2000 
IS raised 
from 13 to 
20 mg/kg in 
July 2019  127   

22  
days 

 
 
72 n/a  83 BF: 47 

MUIC  
83 vs 65  
P =0.004  
BMIC  
112 vs 72  
P<0.001  

Andersen et 
al.  
2014 (126)  
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Country 

Country 
iodine 
fortification 

Sample 
size  
(BF) 

Timing  
Postpartum 

MUIC  
(µg/L) 

Median 
Urine 
Creatinine 
(ug/g) 

Median  
BMIC 
(µg/L) 

% using 
iodine 
supplement  

Iodine 
supplement 
users vs non-
users Authors  

Iceland 

Iodine 
sufficient -
high intake 
of fish and 
dairy in the 
adult 
Icelandic diet 
(172) 57 5.5 months n/a n/a 84 4-6 n/a 

Petersen et 
al. 2020 
(173) 

India  

Iodine-
replete  
No IS  

128  
Excl. 

30 to 90  
days  185  n/a 230  n/a n/a 

Pal et al.  
2018(174)  

Iran (Gorgan) 
MF of IS  
1994 100   

30-180  
days  259 n/a 93   n/a n/a 

Azizi 
2007(175)  

Iran (Tehran) IS 1990 147   
4  
days 68  n/a n/a n/a n/a 

Nazeri et al. 
2016(176)  

Iran (Tehran) IS 1990 148  
3-5  
days 

BMIC ≥100 
70 
BMIC < 100 
37 n/a 218 n/a n/a 

Nazeri et al. 
2018(177)  

Korean^ 
No IS 
fortification  50  

2-5  
days 
4  
weeks  n/a n/a 

mean   
2-5 days 
2170  
4 weeks 
892  n/a n/a 

Moon et al. 
2009(178)  

Morocco 

iodine 
deficient  
No IS 

74  
Excl. 

16  
weeks  33  n/a 30 n/a n/a 

Dold et al. 
2017(169)  
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Country 

Country 
iodine 
fortification 

Sample 
size  
(BF) 

Timing  
Postpartum 

MUIC  
(µg/L) 

Median 
Urine 
Creatinine 
(ug/g) 

Median  
BMIC 
(µg/L) 

% using 
iodine 
supplement  

Iodine 
supplement 
users vs non-
users Authors  

Nepal 

80% 
household 
had IS  500 

6.8  
months  230 n/a 250  n/a n/a 

Henjum et al. 
2018(179) 

Netherlands 
IS since 1945  
IS in bread 33 

4  
weeks  *112 n/a 152  P: 61 n/a 

Stoutjesdijk 
et al. 
2018(180)  

Norway 

IS with 50 
mg Iodine/kg 
salt 175  11 weeks 64 n/a 68  29 

habitual 
users  
99 vs 60  
P<0.001 
used last 24h 
140 vs 61  
P<0.001 

Henjum et al. 
2017(181)  

Norway 

IS with 50 
mg Iodine/kg 
salt 133 

1 to 12 
months 80 n/a 71 23 n/a 

Groufh-
Jacobsen et 
al. 2020 
(182) 

New Zealand 

MF of IS in 
bread in 
2009 + 
iodine 
150ug/day 35   

3  
months  
6  
months 
12 
months 

*3months 
37                        
*6months 
25                          
*12months 
47  n/a n/a n/a n/a 

Thomson et 
al. 2001(183)  

New Zealand  

MF of IS in 
bread in 
2009 + 
iodine 
150ug/day 68  

Pre:  
81  
days  
Post:  
135  
days  

*Pre: 34 
*Post:74        n/a 

Pre: 55 (48)  
Post: 63 
(44)  

Pre: 19  
Post: 36 

BMIC  
Post: 126 vs 
58 
P<0.001 

Brough et al. 
2013(97) 
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Country 

Country 
iodine 
fortification 

Sample 
size  
(BF) 

Timing  
Postpartum 

MUIC  
(µg/L) 

Median 
Urine 
Creatinine 
(ug/g) 

Median  
BMIC 
(µg/L) 

% using 
iodine 
supplement  

Iodine 
supplement 
users vs non-
users Authors  

Philippines 

IS, 26% 
household 
uses(184) 

281 
Excl. 

8  
weeks  89  n/a 185 zero n/a 

Dold et al. 
2017(169)  

South Africa 

IS, but a 
third lacks 
access  100 

3  
months  118 126  179 n/a n/a 

Osei et al.  
2016(185) 

Sudan  

IS, 14% 
household 
uses(186) 47  

3  
months  
6  
months 
9 
months 

3months 
51   
6months 
30  
9months 
63 n/a n/a n/a n/a 

Eltom et al. 
2000(187)  

Sweden 

IS, with 40-
70 mg 
iodine/kg 
salt (188) 84 

0.5 
months 
4  
months 
12 
months 

0.5 months 
n/a 
4 months 
78 
12 months 
107 n/a 

0.5 months 
90 
4 months 
12 months 
n/a 

0.5 months 
19 
4 months 
12 
12 months 
10 

0.5 months 
BMIC  
140 vs 71,  
P = 0.001 

Manousou et 
al. 2020 
(189) 

Switzerland 

IS, 90% 
household 
uses  196 

6  
months 
12  
months 67 n/a 

6months: 
51 
12months: 
42 3 n/a 

Andersson et 
al. 2010(190) 

BF: breastfeeding; BMIC: breastmilk iodine concentration; P: pregnancy; MF: mandatory fortification; IS: iodised salt; Pre: pre-fortification; Post: post-fortification; UIC: urinary iodine 

concentration. 

*samples used were 24-hour urinary collection. 

^In Korean, traditionally new mothers daily consume seaweed 
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2.4 Selenium 

Selenium plays a key role not only in the synthesis of thyroid hormones, but also is 

involved in multiple areas of human health, including immune function, mental 

health, and infant neurodevelopment. There is a complex relationship between 

selenium intake and health outcomes, as both selenium deficiency and excess may 

result in adverse health outcomes (191). Numerous research studies have investigated 

selenium and human health, and endeavoured to understand the mechanisms 

involved (192). 

2.4.1 Selenium and health  

Through selenoproteins, selenium plays an antioxidant and anti-inflammatory role 

against oxidative stress and regulates the redox reactions of several micronutrients 

(192). Severe selenium deficiency results in clinical effects such as Keshan (an endemic 

disease of myocardium necrosis and fibrosis) and Kashin-Beck diseases (an endemic 

disease of osteoarthropathy) within populations living in selenium-deficient areas 

(193). Selenium status is associated with pregnancy-induced hypertension, 

preeclampsia, pre-term birth, and recurrent miscarriage. These topic areas have been 

extensively researched by Rayman’s group (192, 194, 195) and Barrington (196), both 

are based in the United Kingdom. Selenium supplementation has shown protective 

effects for some selected cancers, such as prostate cancer, but only among those 

presenting with low selenium status initially (192). Excessive intake also can be 

detrimental, for example the human selenosis outbreak (selenium intoxication, such 

as loss of hair and nails, and lesions of skin) which occurred in Enshi, China, between 

1961-1964 (197). Therefore, like many essential nutrients, selenium presents a U-curve 

in its health effect (191, 198) (Figure 2.4). 
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Figure 2.4 U-shaped relationship between selenium status and disease risk [Winther, 
Rayman, Bonnema, and Hegedüs, 2020 (198)] 

Selenium plays an important role in normal brain development, although the exact 

mechanism is unclear. Two recent large cohort studies from Poland (n = 410) (199) 

and Spain (n = 490) (200) found maternal selenium status in the first trimester (mean 

serum selenium concentration in Polish mothers at 48.3 µg/L; in Spanish mothers at 

79.1 µg/L) was positively associated with neuropsychological development, which was 

measured by the Bayley Scales of Infants and Toddler Development at one year and 

two years of age (199), and the McCarthy Scales for Children’s Abilities (MSCA) at five 

years of age (197). A Norwegian study of 114 pregnant and lactating women and their 

infants examined the effect of maternal selenium status on infant neurodevelopment 

as measured by the Ages and Stages Questionnaire (ASQ), and reported that low 

maternal serum selenium concentration (< 71 µg/L) at 18 gestational weeks was 

associated with lower infant psychomotor scores (total, problem solving, personal-

social functioning and fine motor function) at six months of age (201). It should be 



78 
 

noted that infant neurodevelopment in relation to postnatal selenium intake and 

status will warrant ongoing investigation, as brain development continues up to two 

years of age (202). 

2.4.2 Selenium intake and status in postpartum women and their infants 

2.4.2.1 Selenium intake 

Most organic selenium occurs in human diets as selenomethionine and 

selenocysteine, which are absorbed and stored in pools to reserve selenium for the 

tissues (198). Inorganic forms selenite and selenate commonly used in dietary 

supplementation and infant formula may be less bioavailable than organic forms of 

selenium (198). The selenium content in food sources depends on the soils where 

plants are grown, and the nature of animal feed. Geographic variations of selenium in 

local soils are reflected in subsequent human dietary intake, with worldwide selenium 

intakes ranging from seven to 4990 µg/day, varying between deficient to toxic intakes 

(192). About 50-60% of selenium intakes are excreted into urine to maintain selenium 

homeostasis (203). 

Newborn infants are born with some selenium reserves; however, breastfed infants 

rely on continuous supplies from breastmilk to achieve optimal selenium status. 

Breastmilk is recommended as the best food for infants during the first six months of 

life (204). Selenium present in human breastmilk is significantly associated with 

maternal selenium intake (205, 206). Variation in dietary selenium intakes of people 

living in different geographic areas is widely reflected in breastmilk selenium 

concentrations (BMSC). For example, Shearer and Hadjimarkos observed that mature 

breastmilk from American women living in a high selenium area had a selenium 

concentration of 283 µg/kg, compared to only 2.6 µg/kg from women living in an area 

with endemic Keshan disease which indicates selenium deficiency (207). 

The assessment of selenium requirements for adults has been based on maximising 

plasma GPx activity, rather than the prevention of Keshan disease (208). During 
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lactation, selenium requirements are necessarily increased to meet the growing 

infants’ needs. The EAR for lactating women is at 65 µg/day to include an allowance 

of 12 µg/day selenium secreted into breastmilk and the RDI is 75 µg/day by assuming 

a coefficient of variation of 10% for the EAR (since insufficient data are available to 

determine the standard deviation). Final EAR and RDI recommendations are rounded 

up to the nearest 5 µg (86). The Upper Level of Intake (UL) is suggested as 400 µg/day 

for all women without amendment for lactation. Infants’ dietary intake is calculated 

from selenium concentration in human milk multiplied by the volume of breastmilk 

needed at different ages (86). Adequate Intakes (AI) for selenium are suggested to be 

12 and 15 µg/day for birth to six months, and seven to twelve months, respectively (86). 

UL for Infants are 45 and 60 µg/day for birth to six months, and seven to twelve 

months, respectively, based on a previous study of Shearer & Hadjimarkos (207). 

2.4.2.2 Selenium status 

Selenium status of postpartum women and infants have been examined. A 

comparative observation study from Levander et al. (1987) reported on plasma 

selenium from a small sample of 23 North American women at one, three and six 

months postpartum (136, 137, and 138 µg/L) (206). Although these concentrations did 

not change during the stages of lactation, they were lower than those in a non-

lactating group (151, 152, and 144 µg/L, above 110 µg/L to maximise expression of 

selenoprotein P )(203, 207). BMSCs of these American women at all three time points 

(20 µg/L, 15 µg/L, and 15 µg/L respectively) were found to be adequate to meet the 

needs of infants aged 0-6 months (10, 12 and 13  µg/day, based the US National 

Research Council recommendation 10-40 µg/day) (206). 

Recent studies examined both maternal plasma and cord blood selenium in 

postpartum women in Greek mothers along with Albanian mothers who had 

immigrated to Greece before birth (209), and Spanish mother-infant pairs (210). 

Maternal blood/plasma selenium concentrations were determined in labour, so, in 

consequence, they cannot be directly compared to the 1987 North American study. 
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Much lower serum selenium concentrations were observed in Albanian immigrant 

mothers (37 µg/L) compared to Greek women raised and living in the same region (68 

µg/L). Furthermore, Albanian infants showed much lower serum selenium (measured 

in the cord blood) when compared to Greek infants (34 vs 37 µg/L, P < 0.05). Authors 

suggested this phenomenon could be due to the low socioeconomic status of Albanian 

mothers who found selenium rich food unaffordable, particularly meat and fish (209). 

A cross-sectional study with 83 Spanish mother-infant pairs attempted to identify 

selenium varieties in maternal blood (during 24 hours before giving birth) and cord 

blood by measuring plasma selenium, selenoprotein P (SeP), serum GPx, and Se 

metabolites (SeMetab). Also reported was the low selenium status of these mothers to 

optimise GPx activity (< 70 µg/L) (210). Even though 25% of participating women 

consumed selenium-containing supplements during pregnancy, no differences in 

selenium measures were detected (median total plasma selenium 67.4 vs 69.7 µg/L, P 

= 0.54; SeP 41.4 vs 44.9 µg/L, P = 0.16; GPx 10.8 vs 11.6 µg/L, P = 0.43; SeMetab 4.4 vs 

3.2 µg/L, P = 0.18). This observation may be due to low dose of supplementation at 55 

µg/day as selenite, which is an inorganic form of selenium with less bioavailability. In 

addition, it would be useful to include supplement compliance when reporting results. 

Three clinical trials examined the effects of selenium supplementation on status. 

Common forms of selenium supplementations include selenium-Methionine (Se-

Met), yeast containing selenium (Se-yeast), together with inorganic form of selenite 

or selenate which may be less bioavailable than organic forms of selenium (198). In a 

randomised double-blind placebo-controlled trial, American women were 

supplemented 200 µg daily selenium as Se-Met or as Se-yeast at four weeks 

postpartum for four weeks (211). The participating women were followed at eight and 

twelve months postpartum. They found Se-Met significantly increased plasma 

selenium of lactating women (98.7 µg/L at four weeks, 194.3 µg/L at eight weeks 

postpartum), but a declined plasma selenium was observed in those lactating women 

who were in the placebo group (137.4 µg/L at four weeks, 119.3 µg/L at eight weeks 

postpartum) (211). This American study had a small sample size (31 lactating and 22 
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non-lactating), and even smaller numbers were allocated to each treatment group; 

breastfeeding patterns (exclusively or partially) were unreported. In addition, the 

baseline plasma selenium concentrations were statistically different between the 

control and Se-Met treatment group (137.4 vs 98.7 µg/L, P < 0.05). Such differences at 

baseline may suggest instability in the data (211). In a larger sample size interventional 

study (n = 167), 100 µg of selenite daily, or 100 µg of Se-yeast daily or no 

supplementation were randomly assigned to Finnish women who were exclusively 

breastfeeding (212). The participating women were followed at two, four and six 

months postpartum. The findings showed the Se-yeast, when compared to selenite, 

more effectively increased selenium in serum (increment of 86 µg/L vs 51 µg/L at four 

months of lactation) and breastmilk, which may have increased the infants’ selenium 

intake (11.5 vs 8.9 µg at age of six months based on 800 mL daily breastmilk 

consumption) (212). Authors suggested one of the available compounds in selenium 

yeast was Se-Met, therefore, organic forms of selenium supplementation showed clear 

effectiveness in improving maternal selenium status and infant selenium intake (212). 

In contrast, sub data generated from the Breastfeeding, Antiretrovirals and Nutrition 

study [randomised intervention with antiretroviral drugs (ARV), lipid-based nutrient 

(LNS) containing 75 µg selenite, LNS and ARV, and the control)] reported that the 

plasma selenium of HIV-infected Malawian mothers was unchanged after 

supplementing 75 µg selenite daily from birth till 28 weeks postpartum (213). Women’s 

HIV status may have had an impact on selenium uptake. The authors acknowledged 

selenite, as an inorganic form of selenium, is less readily absorbed, thus this may also 

have had a minimum impact on selenium status (213). Variable findings in these 

studies may be due to factors such as the type of selenium source, dosage, original 

selenium status before supplementation, or variable stages of lactating, so further 

research is needed to investigate the effects of selenium supplementation in 

improving maternal status. Interestingly, all three studies observed a similar decline 

of BMSC from early to later stages of lactation, despite appropriate supplementation. 
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It is thought that such gradual decreases of selenium in breastmilk concentrations 

may be a natural physiological process (the changing of needs of the infants) (210). 

2.4.2.3 Assessment of selenium intake and status 

Selenium intake can be assessed by dietary assessment methods, including 

estimated/weighed food records, food frequency questionnaires (FFQs), and repeated 

24-hour dietary recalls (see Section 2.3.2). Weighed food records is recognised as the 

gold standard measure of food and nutrient intake (119). However, this often presents 

challenges when estimating selenium intake solely from food records. Selenium values 

contained in the updated food composition data may not reflect regional variations of 

selenium in the food items consumed, since not all data bases may contain accurate 

selenium data. 

Methods used to assess selenium status for both breastfeeding women and their 

infants include urinary selenium excretion, blood and breastmilk selenium 

concentrations, and selenium concentrations obtained from hair/nail clippings. 

Urinary selenium excretion is the portion of absorbed selenium that has not been 

retained by body tissues. It is considered as a proxy measure reflecting short-term 

dietary selenium intake, since increased dietary intake results in raised urinary 

excretion of selenium (214). Historical data from China showed a 400 times higher 

urinary selenium excretion in people with selenosis compared to those living in an 

area of endemic Keshan disease (215). Urinary selenium excretion is commonly used 

to estimate daily dietary selenium intake for adults, based on 50-60% of the excretion 

rate. However, it is not possible to use the urinary selenium excretion rate to estimate 

selenium intake with lactating women, since selenium is also secreted into breastmilk. 

Selenium concentrations can be measured in both spot and 24-hour urine samples. 

Collecting 24-hour urine samples requires motivated participants and may not be 

practical in large studies. Diurnal variation and hydration status are the main 

challenges in evaluating selenium excretion in spot urine samples (215). Urinary 
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creatinine can correct for the changes in hydration status. In healthy Polish subjects 

(n = 199), the urinary selenium to creatinine ratio was positively correlated the whole 

blood selenium (216), which suggests the ratio may be a better method to estimate 

selenium status than urinary selenium excretion alone. 

Measuring the selenoproteins in blood, including selenoprotein P, GPx1(plasma GPx) 

and GPx3 (GPx in red blood cells) has been suggested, as these are useful functional 

markers for selenium status (200). Results may be misleading if only one of the 

selenoproteins is measured, due to the hierarchal arrangement of selenoproteins in 

body function. In a randomized double-blind trial in New Zealand in 1987, women 

aged 18-23 years were given either 200 µg Se-yeast enriched in Se-Met, or brewer’s 

yeast mixed with selenite, or a placebo for 32 weeks (217). At the conclusion of 

supplementation, plasma selenium in the Se-Met group (190 µg/L) was 1.7 times more 

than that in the selenite group (110 µg/L), both being effectively increased from the 

baseline values of 53 µg/L (217). A 2009 systematic review reported that plasma 

selenium was increased significantly by selenium supplementation (218). However, 

differences observed in gender, supplement type/dosage/duration, or the subject’s 

baseline selenium status, as well as an inconsistency of measurement assays raised 

difficulties in the meta-analyses of the results (218). The review found that plasma 

selenium is the most widely measured biomarker in the published supplementation 

studies, due to its effectiveness in reflecting levels of selenium intake (218).  

A range of plasma selenium values in adults has been suggested for optimal activity of 

iodothyronine 5’ deiodinases (65 µg/L) (208), nutritional adequacy (70 µg/L) (219), or 

maximal GPx activities (95 µg/L) (217), but no reference values are available at this 

time for plasma selenium to define adequate or deficient selenium status for lactating 

women. Furthermore, plasma selenium has been used to estimate selenium intake, as 

recorded from an extensive data analysis of Chinese studies, where a proposed formula 

was suggested to calculate selenium intake daily (log Y = 1.623 log X + 3.433; X = plasma 

selenium, mg/L; Y = selenium daily intake µg/day) (220). It is useful to compare such 

results to the estimated dietary intake from dietary assessment. 
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Measuring selenium concentrations in nail clippings is another established method of 

assessing selenium status (220, 221). Selenium is incorporated into hair or nails 

(keratinised tissues) and, as they grow slowly, this reflects long-term (up to 52 weeks) 

selenium status; however, hair and fingernails are easily contaminated by selenium-

containing shampoo or other environmental exposures, and toenails are recognised 

as having less exposure to these contaminants. Toenail clippings were used to 

determine selenium concentrations in large cohort or epidemiological studies, such 

as the risk of preeclampsia in pregnant women (195). In comparing selenium 

concentrations in toenails to other biomarkers including whole blood, serum and 

urine, twelve healthy American males were randomly assigned to either consuming 

two slices of study bread containing selenium at 206 µg/day, or 388 µg/day, or the 

control group over a one-year period; and their toenail clippings were collected for 

analysis at a twelve-week interval over a two-year period (222). The trial found toenail 

selenium concentrations started to reflect dietary change after the first three months, 

while whole blood and serum selenium increased after two weeks, and consequently, 

measuring selenium in nail clippings could be an important biomarker representing 

exposure up to 52 weeks (221, 222).  The advantages of measuring nail clippings include 

that collecting nail clipping samples are less invasive and convenient for participants 

(221). Additionally, measuring selenium concentrations in maternal toenail clippings 

after childbirth can be used to estimate fetal selenium exposure (222). 

2.4.3 Selenium intake and status in New Zealand 

In New Zealand, local food supply contains low levels of selenium. Historical data 

(1966-1986) collected by Robinson’s group reported low selenium intake in the New 

Zealand population, particularly those living in the South Island (223). Even after the 

importation of selenium-rich wheat from Australia (containing 10 times higher levels 

of selenium than that contained in New Zealand wheat), low selenium intake and 

status of people who live in the North and South Island continued to be present (53). 

Differing selenium intake between the two islands are due to  locally produced wheat 

being preferred for breadmaking in the South Island of New Zealand (83). 
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Based on self-reported 24-hour diet recall data from the 2008/09 New Zealand Adult 

Nutrition Survey, a median selenium intake of women aged 31-50 years old was 51.9 

µg/day, with 58% below the EAR, indicating the presence of inadequate intake (224). 

An increase in median selenium intake among females aged over 25 years from 2009 

(56 µg/day) to 2016 (68 µg/day) was observed in the 2016 New Zealand Total Diet 

Survey (percentages below the EAR were not reported) when compared to the 

previous national Adult Nutrition Survey (89). The authors suggested that the 

increased selenium intake was due to increased consumption of selenium rich food 

since selenium concentrations of key food contributors had remained constant (89). 

Low selenium intakes continue to be reported in New Zealand women of childbearing 

age (225), and postmenopausal women (226). Before the year of 2000, several research 

studies in New Zealand examined selenium status in adults, with serum or plasma 

selenium ranging from 43 to 69 µg/L, which was lower than the suggested minimum 

level of plasma selenium for nutritional selenium adequacy (70 µg/L) (227). It was 

clearly established that New Zealand adults had low selenium status. 

Pregnant and lactating women who live in low selenium areas remain of concern, 

owing to their increased requirement for meeting both foetal and infant growth. A few 

studies in New Zealand have investigated the selenium intake and status within these 

populations. An early double-blind supplementation study recruited thirty-five 

pregnant women from the South-Island of New Zealand (either receiving 50 µg 

selenomethionine daily, or a placebo) and they were followed up until 12 months 

postpartum, with the addition of 17 non-pregnant women who received a selenium 

supplement forming a positive control group (183). The focus of this South-Island 

study was to compare the responses of selenium supplementation for non-pregnant, 

pregnant and postpartum women. The data reported that levels of plasma selenium 

for postpartum women rose at three and six months postpartum but fell at 12 months 

postpartum. This confirmed an overall higher level of plasma selenium recorded for 

those women who received supplementation over the 12-month period, when 

compared to the non-supplemented pregnant group. Even so, the study, when 
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published, offered no detailed data report for the selenium status of these postpartum 

women, therefore their selenium status remained inconclusive (183). 

Between May 1998 to March 1999, an observational study by McLachlan et al. was 

conducted on infants aged 6-12 months, toddlers aged 12 to 24 months, and their 

postpartum mothers in the South Island of New Zealand (228). The study measured 

maternal plasma selenium and children’s serum selenium, and maternal dietary 

intake from three-day weighed food records. The mean selenium plasma 

concentration in lactating women (72.9 µg/L), was close to that of non-pregnant/non-

lactating women (73.5 µg/L, P = 0.055). Estimated dietary selenium intake was 

significantly higher in lactating women (46 µg/day) than non-pregnant/non-lactating 

women (36 µg/day, P = 0.004), despite their similar plasma selenium status. The loss 

of selenium in breastmilk may account for this difference. However, this study did not 

examine selenium concentration in breastmilk, therefore the total intake for breastfed 

infants was unable to be firmly established. 

More recent reported data was from a cross-sectional study of 53 exclusively 

breastfeeding mother-infant pairs at eight weeks postpartum in Dunedin, New 

Zealand between 2012 and 2013 (229). Results showed mean selenium intake was 47 

µg/day based on the three-day weighed food records; and mean maternal serum 

selenium concentration at 75 µg/L with 39% lower than 70 µg/L, suggesting 

suboptimal selenium status. However, the sample size was small, and the information 

as to the use or not of selenium-containing supplements during pregnancy or lactation 

was not forthcoming. To our knowledge, there have been no recent studies in New 

Zealand investigating selenium status in breastfeeding women. 

2.5  Iron 

Iron deficiency, one of the most common nutritional disorders, affects individuals of 

all ages and ethnicities in the world, although, infants, children, and women of 

childbearing age are disproportionately affected (230). For example, based on a 

published 2013 analysis of 257 surveys (232 nationally representative sources) from 190 
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countries categorised into 11 regions, anaemia prevalence decreased in pregnant 

women (43% to 38%), in non-pregnant women aged 15-49 years (33% to 29%), and in 

children aged less than five years (47% to 43%) through the years 1995 to 2011. 

However, eight hundred million women and children remained affected by anaemia 

globally in 2011, with iron deficiency contributing to at least 50% of anaemia in women, 

and 42% in children (230). According to the Global Health Observatory data 

repository, in 2016, 40% of pregnant women, 33% women of childbearing age were 

anaemic (231), and 42% of children younger than 5 years (232). 

Women of childbearing age are disproportionally affected by iron deficiency without 

anaemia (ID)/iron deficiency anaemia (IDA) (114), since low iron intake is probably 

the major cause. Failure to compensate for iron loss through heavy menstrual bleeding 

and failure to reach an increased iron requirement during pregnancy may play a part 

in developing ID/IDA in women (233). A cross-sectional study examined the 

prevalence of ID and IDA with women aged 18 -35 years living in the state of New 

South Wales in Australia (n = 300), where the prevalence of ID and IDA were 14% and 

6% respectively (234). In New Zealand, results from the 2008/2009 Adult Nutrition 

Survey found the highest prevalence of ID and IDA were observed among females aged 

31 to 50 years old, measured at 12% and 6% respectively (224). 

2.5.1 Iron and health 

Iron is a principal component of haemoglobin (Hb) and myoglobin (oxygen reserve in 

muscles) (20). The balance of the body’s iron presents as iron-containing enzymes 

which are involved in cellular respiration, cell proliferation and differentiation, 

optimal immune function, and hormone synthesis (20). The primary function of iron 

is erythropoiesis (formation of red blood cells), and this process is well protected, even 

if the iron store becomes depleted. Impaired iron status presents in discrete stages, 

from an early stage of iron storage depletion, tissue iron deficiency, then moving on 

to the last stage of impaired Hb production [Figure 2.5, (235)]. People with depleted 

iron stores usually do not show any noticeable clinical symptoms (235). When iron 
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deficiency occurs, Hb production is initially compensated for by drawing on stored 

iron. Concurrently, other iron functional roles are compromised in order to maintain 

erythropoiesis. If deficiency continues, this not only affects Hb formation, but may 

also cause abnormal red blood cells to form. Individuals then exhibit IDA, which may 

present as clinical symptoms, varying from fatigue, to hair loss, or spoon-shaped 

fingernails in more severe cases (235). 

 

Figure 2.5 Spectrum of Iron deficiency and diagnosis [Coad and Pedley, 2014 (235)] 

Iron deficiency may negatively impact on both the physical and mental health of 

reproductive aged women, including reduced work capacity, impaired cognitive 

function and adverse mental health (236). A recent cross-sectional study assessed 

cognitive function of women aged 18-35 years living in the state of New South Wales, 

Australia (n = 300), in relation to their iron status [iron replete (IR), ID, and IDA] 

(234). The results showed significant reduced attention in women with IDA but not 

observed in women with ID or IR after controlling the body mass index, inflammation 

and physical activity, despite the five cognition domains assessed (impulsivity, 

attention, information processing, memory and executive function) using the online 
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computer-based questionnaire. Authors suggested cognition is less likely affected at 

early stages of iron deficiency (234). 

Several interventional studies have examined iron status in relation to physical fitness, 

general mental health, and cognitive functioning. A randomised placebo-controlled 

trial of a group of 22 non-anaemic iron deficient (SF< 16 µg/L and Hb > 120 g/L) 

American women aged 18-33 years has shown improved fitness levels (measured by 

the VO2 max – the maximum rate of oxygen consumption) after correcting iron 

deficiency by a six-week daily supplementation (50 mg FeSO4) (237). Moreover, 

reduced fatigue and marginal improvement of general mental health were observed 

from a randomised controlled study of iron deficient Australian women aged 18 to 50 

years, after consuming a high iron diet (providing 2.25 mg absorbed iron daily) or iron 

supplements (350 mg FeSO4) over a 12-week trial period (238). Another placebo-

controlled stratified intervention study investigated the improved iron status on the 

accuracy of cognitive function (attention, memory and learning) among American 

women aged 18-35 years (239). According to the iron status, women were classified 

into three groups: one control (iron sufficient, n = 43), and two treatment groups (ID, 

n = 75; and IDA, n = 34).  Women in each group were given either 160 mg FeSO4 daily 

or a placebo for 16 weeks. Results showed that slower information processing was 

observed in women with ID when compared with others with normal iron status, and 

the iron supplementation led to an improvement in both cognitive performance and 

the timing required to complete the tasks (239). Strengths of this trial include detailed 

cognitive performance tasks (from Detterman’s Cognitive Abilities Test) at baseline 

and 16 weeks after treatment, and iron status was treated as continuous data to enable 

detection of subtle cognitive changes. Research shows that the developing brain is 

sensitive to iron depletion, which explains the link between iron deficiency and 

impaired neuronal functioning, more specifically, with cognitive function (attention 

and memory) and related psychological effects (240). 
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2.5.2 Iron physiology and intake patterns 

Dietary iron intake is required to meet the balance of losses from skin, urine and the 

gastrointestinal tract, and the loss of menstrual blood in women of childbearing age. 

However, iron balance is regulated by the amount of iron absorbed. In total, only 1-2 

mg of iron is absorbed from the 10-20 mg of iron consumed from food daily. The 

amount absorbed is mostly regulated by the divalent metal ion transporter 1 (DMT-1), 

and transferrin (the major iron transport protein) transports iron in the blood 

circulation (235). In addition, iron is recycled from the breakdown of red blood cells 

via macrophages into the circulating iron pool. The remainder is stored in bone 

marrow and the liver. Iron is stored as ferritin predominantly in hepatocytes, and a 

small amount of ferritin is present in serum which can be detected. Therefore, serum 

ferritin acts as a good indicator for assessing current iron storage. Figure 2.6 provides 

a visual representation of iron balance in the body (235). 

Most dietary iron, initially present as non-haem iron consumed in the ferric form, is 

reduced to ferrous iron before being absorbed and transported by DMT-1 expressed 

by enterocytes which line the intestine. Other metal ions, such as zinc and manganese 

compete for the DMT-1, which may limit iron absorption (20). The amount of iron 

entering the blood circulation is regulated by the secretion of hepcidin, a peptide 

hormone from the liver, which causes sequestration of iron by the enterocytes and 

macrophages. For example, when iron deficiency is present, hepcidin release is 

reduced to maximise iron absorption into the blood. Dietary haem iron from animal 

products, such as meat, fish, and poultry is more readily bioavailable for absorption 

(possibly by using haem carrier protein and haem oxygenase, Figure 2.7) than non-

haem iron(235), as well as being less likely to be influenced by meal composition (241). 

However, the detailed mechanism as how haem-iron is absorbed is less understood 

when compared with the mechanism used in non-haem iron (242, 243). 
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Figure 2.6 Iron balance in the body [Coad and Pedley, 2014 (235)] 

 

Figure 2.7 Mechanisms of intestinal iron absorption [Milman, 2020 (243)] 
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Moreover, several enhancers and inhibitors impact on non-haem dietary iron 

absorption. Ascorbic acid, alongside citric acid and lactic acid is one of the most 

recognised iron absorption enhancers, mostly evident from single meal consumptions 

rather than from a complete diet (244).  The possible mechanism is due to its ability 

to increase iron solubility in the small intestine and to reverse the negative effects of 

tea/coffee/phosphate. In addition, the “meat-fish-poultry” factor is also responsible 

for an increase in iron absorption (244, 245, 246), although a single mechanism is yet 

to be clearly identified. In contrast, many dietary factors inhibit iron absorption, 

including polyphenols derived from tea or coffee, phytates found in whole grains and 

legumes, or oxalic acid from spinach, berries, or chocolate. 

Iron balance in the human body is complex and influenced by dietary intake, 

metabolic processes, and physiological stages of life. When evaluating iron intake or 

status, dietary intakes, or enhancers and inhibitors in the diet, other non-dietary 

factors need to be considered. Most commonly, dietary assessment methods are used 

to estimate iron intake, as for example, weighed food records. Detailed selection of 

dietary assessment methods has been discussed in a previous section (2.3.2). However, 

dietary assessment of iron intake is more difficult than for other nutrients, as the 

complexity of a person’s diet contains both enhancers and inhibitors for iron 

absorption. Thus, in recent years, new approaches have been developed to consider 

the whole diet and to include food combinations in the diet (dietary pattern analysis) 

to evaluate iron-related nutrition. A food frequency questionnaire has been developed 

and validated in New Zealand to identify dietary patterns in relation to iron status 

(114). Subsequently, dietary patterns such as ‘meat and vegetable” or “milk and 

yoghurt” have been identified, which may reduce or enhance the likelihood of there 

being suboptimal iron status among young New Zealand women (247). In the MINI 

study, this validated FFQ is used to explore iron-related dietary patterns among 

postpartum women, and the relation of these patterns to their iron status.  
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2.5.3 Iron status and its assessment 

IDA is usually confirmed by a combination of lower serum ferritin (SF) and Hb; 

however, the diagnosis of ID is more complicated due to a wider selection of 

biomarkers and the lack of standards. SF is the most effective and recommended 

indicator to assess the adequacy of iron stores individually. SF below 12 ug/L indicates 

a depleted iron store (248). Interpretation of results from SF is complicated by acute 

and chronic inflammation and infection. Therefore, to avoid an underestimated iron 

deficiency, C-reactive protein (CRP) is measured. An increased CRP (with a cut-off 

range of 10-30 mg/L) may indicate that the high SF result is unreliable (140).  In 

contrast, elevated serum soluble transferrin receptors (sTfR) can confirm functional 

iron deficiency independently of inflammatory state. A recent meta-analysis 

suggested the ratio between sTfR, and the log value of SF may offer a better sensitivity 

and specificity to indicate IDA (249). The other commonly used biomarker is zinc 

protoporphyrin, where a value above 8 µg/L in red blood cells indicates ID (250). If 

feasible, assessing Hb and SF (provided inflammation is excluded), either zinc 

protoporphyrin or sTfR together is the best combination to measure iron status (140). 

2.5.4 Iron intake and status in postpartum women 

Postpartum mothers should have a lower risk of developing ID or IDA, when 

compared to other women at reproductive ages (248). The low risk results from a 

period of amenorrhoea, low levels of iron in breastmilk, and possible increased 

absorption of iron from the small intestine (251).  

To estimate postpartum anaemia prevalence, data collected from over 46,000 German 

postpartum women between 1993 and 2008 were analysed and the study reported that 

22% of women at the second day after delivery were anaemic (Hb < 100 g/L) (251).  

This figure may be slightly overestimated since water balance regulation changes 

between 24 to 48 hours after childbirth. However, this large sample size enabled 

exploration of attributable risk factors contributing to immediate postpartum 

anaemia, and blood loss during childbirth (> 500 mL) was identified as the most 
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important determinant (251). A similar dataset from the United States determined the 

prevalence of postpartum anaemia. Bodnar examined nearly 60,000 low-income 

American women four to 26 weeks postpartum and identified 27% as being anaemic 

(Hb < 120 g/L) (252). After assessing a range of potential determinants, the researchers 

identified prenatal anaemia as a key contributing factor to postnatal anaemia (252). A 

protective effect of breastfeeding status through the presence of amenorrhoea was 

also suggested. Both studies were inconclusive as to whether anaemia status was due 

to iron deficiency, or perhaps other nutrient deficiencies such as vitamin B12, given 

the absence of any further measurement of nutrient status, especially iron (251). 

With regard to ID and IDA, based on the analysis of data collected for the National 

Health and Nutrition Examination in the United States from 1988-94, a 16% ID (SF <15 

µg/L) and around 4% IDA (SF < 12 g/L, Hb < 120 g/L) among women from childbirth 

to six months postpartum (253). After controlling confounding variables, early 

postpartum women from low income groups presented a four times higher risk of IDA 

than their non-pregnant counterparts, and such heightened risks continued for those 

between 7-12, and 13-24 months postpartum (253). A cross-section study of Nepali 

lactating women [only 7% (33/465) < three months postpartum including exclusive 

and partial breastfeeding] reported that over 70% of studied women presented with 

inadequate iron intake (≤ 23.4 mg), but only 5% were identified as being ID (plasma 

ferritin < 15 µg/L) (254). There was a possibility of overestimation of inadequate intake 

since an EAR value of over three months postpartum was used. Low prevalence of ID 

and IDA was, perhaps, due to protective effects from amenorrhoea and over six-month 

consumption of iron supplements during pregnancy.  

Supplementation during later pregnancy may lower the prevalence of postpartum 

anaemia (255) and enhance iron status (256). An earlier double-blinded placebo 

pregnancy supplementation trial (28 gestation weeks, receiving 100 mg elemental Fe 

daily) in Niger also found that at three months postpartum there was less prevalence 

of ID among women from the supplementation group (12%), compared to the placebo 

group (34%) assessed by serum ferritin levels (< 12 µg/L) (257). The 2016 WHO 
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guideline recommends oral iron supplementation may be provided to women at six 

to twelve weeks postpartum where a prevalence of gestational anaemia is higher than 

20% and emphasised this was conditional due to low quality evidence (258). 

In New Zealand, a recent study from the Massey research group (unpublished data 

from the Mother and Baby Study in 2011) found the median iron intake met the RDI 

and no individual intake was below the EAR level, confirming that iron intake was 

adequate in these studied postpartum women. Although iron intake was estimated 

from repeated 24-hour dietary recalls, iron status itself was unexamined. Iron storage 

and Hb levels of postpartum women in New Zealand are rarely examined routinely, 

unless higher than usual levels of blood loss during childbirth are recorded (259), thus, 

research concerning iron intake and status of postpartum women is limited. 

2.6 Postnatal Depression (PND) 

Postnatal depression (PND) is one of the major maternal health issues to arise and can 

exacerbate negative health effects on their newborns (poorer growth, higher risk of 

diarrhoea) and children (delayed motor development and behavioural problems) (257, 

259). Its onset begins six weeks to six months after childbirth. Most women will 

recover over time from PND, though approximately one quarter of affected women 

report being depressed when their infant reaches their first birthday (260). It has been 

established that minor depressive symptoms during the postpartum stages may 

increase the risk of recurrence of depression throughout the reproductive years (261). 

Of additional concern, is that mothers with newborns are often reluctant or unable to 

seek help when they experience symptoms of PND (262). Such under-diagnosed and, 

at times, untreated mental health conditions affect both the mother and their 

children’s ongoing cognitive, emotional, and behavioural development (263). 

A meta-analysis from 59 studies globally suggested the prevalence of PND was 

approximately 13% among women after partition (264). Using the Edinburgh 

Postnatal Depression Scale (EPDS), the prevalence of PND in New Zealand was 

around 8% in 1994, and 16% in 2006. In the 2015 New Mothers’ Mental Health Survey, 
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the prevalence was estimated to be 14% (262), and it is now regarded as the most 

common disorder for mothers in their first postpartum year (265). 

Despite other instances of social and psychological aetiology of depression, potential 

risk factors have been extensively explored, including hormonal factors and the 

micronutrients status of birth mothers. 

2.6.1 Thyroid antibodies and thyroid hormones 

Endocrinological factors have been suggested to play a significant role in the 

development of PND, since women experience dramatic hormonal changes (such as 

progesterone) after parturition (264, 265, 266). In attempts to seek predictive factors, 

studies have measured antenatal thyroid function to evaluate risk of PND. They have 

found that pregnant women with low total and fT3 (267) or total T4 (268), and low 

fT3 and fT4 (269) may indicate increased risk of developing PND. However, other 

cofounding factors can also play a role in these studies, such as prepartum depression, 

or subjects being single mothers. Since thyroid dysfunction and depression were 

experienced concurrently by some postpartum women, some researchers have 

investigated their associations. A follow-up study from the Netherlands found that 

even though thyroid function was normal during pregnancy, 7% (n = 21) of women 

developed thyroid dysfunction after giving birth, with 38% (8/21) developing 

depression (270). In contrast, a Spanish observational study of pregnant women with 

follow-up at 1, 3, 6, 9 and 12 months postpartum, detected no cases of PND among a 

group of women with thyroid dysfunction, and no statistically significant depression 

scores (as measured by  Beck Depression Inventory) between healthy women and 

those with thyroid dysfunction (271). 

A double-blinded comparison study in Wales recruited a cohort of postpartum 

women with TPOAb positive (n = 145) and negative (n = 229), and found that women 

with positive antibodies (43%) were more likely to be depressed, when compared to 

similar women with negative antibodies (28%) (272). Such associations were also 

reported by Breese McCoy et al. (2008, n = 51) at four weeks postpartum (273) and Le 
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Donne et al. (2012, n = 74) at day three of postpartum (274), although only relatively 

smaller sample sizes were studied. In contrast, other studies of 57 Greek women (one 

and six weeks postpartum) and 1053 Spanish women (at eight and 32 weeks 

postpartum) have reported no associations between positive thyroid antibody status 

and risk of PND (based on EPDS scores) (267, 273). However, based on the possible 

effects of thyroid antibodies, only one known randomised control trial was conducted 

by supplementing 100 µg thyroxine daily (n = 167) or placebo (n = 174) to women with 

thyroid antibody positive from six weeks to six months postpartum (275). Even so, no 

significant effect on PND (measured by the Montgomery and Asberg Depression 

Rating Scale) was found to exist. 

In addition, individual thyroid hormones have been examined in relation to their 

association with PND. In a small sample observational study (n = 51), a high plasma 

TSH at four weeks postpartum has been found to increase the risk of depression of 

American women at the same time, however, only one person in the cohort showed 

abnormally high TSH (273). A larger sample of Swedish women’s study (n = 365) 

reported a high TSH (> 4 mIU/L, measured at childbirth) increased the risk of PND at 

six months postpartum (2). The specificity (69.4%) and sensitivity (76.2%) of using 

serum TSH at childbirth to predict PND at six months postpartum were examined, 

suggesting serum TSH can be used as a routine screening test for PND (2). However, 

a 2003 prospective study examined 57 breastfeeding British women and did not find 

any association between TSH examined at one and four weeks postpartum and the 

risk of PND (EPDS scores ≥ 10) at six months after birth (276). Further, a large 

observational Spanish study (n = 1053) reported thyroid function indicators (TPOAb, 

fT4, and TSH), measured immediately after childbirth, did not predict later postnatal 

depression risks examined at eight weeks and 32 weeks postpartum (277). 

Overall, it must be stated, that inconsistent results on the relationship between 

thyroid function on the risks of PND were more often reported. Further studies will 

be required using a standardised measure of postnatal depression scales to evaluate 

its predictive factors. 
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2.6.2 Selenium status  

Selenium is suggested to offer increased protective effects on impaired mental health. 

Lower dietary selenium intake has been associated with an increased risk of de novo 

major depressive disorder among women (278), whereas adequate dietary intake of 

selenium has been shown to improve the mental outlook among the general 

population (279), including young adults living in New Zealand (280). 

Results from a longitudinal Canadian study (Alberta Pregnancy Outcomes and 

Nutrition, APrON) found that women who used selenium supplementation during 

their pregnancy presented with a lower risk of having depressive symptoms at 12 weeks 

postpartum (281). Micronutrient supplementation in the APrON study was measured 

repeatedly by a self-reporting questionnaire, though selenium status was not 

measured and dietary intake from food was not included in the analysis. In contrast, 

a randomised clinical trial of supplementing selenium (100 µg/day as selenium yeast) 

to Iranian women early in primigravid pregnancy (n = 83) through to childbirth 

provided supportive evidence that prenatal supplementation may itself prevent PND 

(based on the EPDS), when compared to the placebo group (n = 83) (282). The mean 

EPDS scores in the selenium treatment group was 8.8, which is significantly lower 

than 10.7 in the placebo group, at eight weeks postpartum (P < 0.05). Such study 

outcome remained after adjusting for multiple confounders, including education, job 

and social support scores, and excluded subjects with existing depression (Beck 

Depression Inventory Test scores ≥ 31) (282). These results have demonstrated that 

prenatal selenium supplementation can impact positively on women’s postnatal 

mental health. However, there have been limited published studies which examine 

postpartum women’s selenium status in relation to the risk of postnatal depressive 

symptoms, particularly where continuous measurements were taken from childbirth 

to the end of the first postpartum year. 
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2.6.3 Iron status  

Research shows an association between iron status and cognitive performance among 

women of childbearing age. American women (n = 37) from Pennsylvania, with a low 

Hb (< 120 g/L, analysed by HemoCue device) at the first week of postpartum, had an 

increased risk of developing PND 28 days after childbirth (based on the Centre for 

Epidemiological Studies-Depressive Symptomatology Scale, 16.4 vs 6.9, P = 0.001) 

(283). This American cohort observational study suggested those postpartum women 

with symptoms of anaemia may benefit from iron supplementation (283). 

Unfortunately, iron status (serum iron or ferritin levels) was not measured in this 

study, neither was thyroid dysfunction screened. 

Two well-designed interventional studies have also investigated the relation between 

iron status and postpartum women’s emotion and cognition. A randomised six-month 

double-blind placebo-controlled trial was conducted by Beard et al. in 2005 (284). Low 

income postpartum South African mothers were allocated into three groups: 

nonanemic controls, anaemic mothers receiving placebo of the combination of 10 µg 

folate and 25 mg vitamin C, and anaemic mothers receiving 125 mg FeSO4 in 

conjunction with 10 µg folate and 25 mg vitamin C (284). Their iron status (Hb, mean 

corpuscular volume, and transferrin saturation), cognitive and behavioural variables 

were measured at six weeks and nine months postpartum. The researchers observed 

a strong relation between IDA and depression and anxiety (measured by the Raven's 

Progressive Matrices test) at nine months postpartum, suggesting an accumulative 

effect of IDA on maternal cognition. Another more recent randomised placebo-

controlled trial in 2017 was implemented on 70 Iranian mothers at seven days 

postpartum diagnosed with PND (EPDS score ≥11 and confirmation from further 

psychiatric interviews) (285). This was a six-week interventional study, non-anaemic 

women with PND were given 50 mg elemental iron daily starting from one week after 

childbirth. Reduced EPDS scores from 12 to 9 (P < 0.001) was observed in the iron 

supplementation group, while non-significant changes from 13 to 12 (P = 0.13) in the 

placebo group. The results highlighted that early iron supplementation had led to a 
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positive reduction in the EPDS scores, together with 43% of women from the 

treatment group having negative psychiatric interviews (285). It was noted also that a 

higher percentage of women with depletion of iron stores (serum ferritin < 15 µg/L) 

continuously presented with postnatal depression (27%) when compared to women 

with sufficient iron stores (4%, P = 0.02) (285). These results suggested iron may play 

a critical role in the aetiology of PND. 

Further, similar lowering effects of EPDS scores was reported in Italian women (n = 

424) at one month postpartum after daily supplementing with iron-containing 

multiple-mineral and vitamins (Elevit), particularly evident among women with a 

baseline EPDS score higher than 12. Unsurprisingly, no significant changes were found 

among women (n = 428) in the control group with dual supplementation of 500 mg 

calcium and 400 IU vitamin D3 (286). However, it was unclear the amount of iron 

which was supplemented in the treatment group. The researchers concluded iron 

mixed with vitamins played a favourable role in improving postnatal depression (286). 

In respect of the studies described above, iron status at different timing and stages of 

postpartum was measured, also their chosen screening scales and cut-offs varied, and 

some appear to have used follow-up psychiatric interviews to further diagnose PND. 

Therefore, it is inconclusive whether, and to what degree, unfavourable iron status 

contributes to the risk of depression or at which defined stages of postpartum. 

Although some high-quality control trials revealed a positive contribution of 

improving iron status towards postpartum women’s mental health (287), PND is a 

multifactorial condition. Further research is required to better identify risk factors, 

and to understand the role of  ID and IDA in relation to depression. 

2.7  Summary of the literature review 

Postpartum thyroiditis is one of the thyroid dysfunctions occurring in the first year 

after parturition, and even subclinical forms may develop into permanent thyroid 

dysfunction. However, as far as can be ascertained, there are no current available 

research data regarding the prevalence of postpartum dysfunction in New Zealand. 
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Previous literature has suggested that iodine, selenium, and iron are important in the 

synthesis of thyroid hormones. However, limited research has investigated the 

interaction of these three nutrients simultaneously within the thyroid function. 

Iodine deficiency affects all ages and stages of human life, especially postpartum 

women and their infants. Studies conducted to date support the importance of early 

gestational iodine status in infants’ neurodevelopment, which enables children to 

reach their optimal cognitive potential and academic performance in later years. 

Accordingly, the first 1000 days of life remain an important window of opportunity for 

optimal growth and development. Further research is required to investigate maternal 

postpartum iodine status in relation to early infant development. Re-emerging iodine 

deficiency has continued be a concern in New Zealand since the 1990s, so in an 

attempt to overcome such a deficiency, two government initiatives were introduced: 

1) mandatory fortification of bread and bread products with iodised salt from 

September 2009, and 2) the provision of iodine supplementation (150 µg/day) for all 

pregnant and lactating women in 2010. Subsequent studies have reported that most 

adults and children in New Zealand may now have reached adequate iodine 

intake/status, but further research is needed to examine more widely iodine intake 

and status of postpartum women and their infants in New Zealand. 

Selenium plays an important role as an antioxidant involved in thyroid function, 

mental health, and child development. New Zealand soils continue to provide low 

selenium to local food supplies. Low selenium intake has been reported in women of 

childbearing age and postmenopausal women, however, few research studies on 

breastfeeding women and their infants have been published. Given recent changes in 

dietary habits (excluding animal-products, such as chicken), increased food product 

availability and changing agricultural practices, the continual monitoring and 

reporting of both selenium intake and status in this vulnerable postpartum population 

is essential. 
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Postpartum women are known to pose a low risk of developing ID and IDA. However, 

unless significant blood loss during childbirth, iron status is not routinely monitored 

during the postpartum period. Despite possible negative effects on maternal-infant 

interactions and infant development, there has been insufficient recent research 

concerning postpartum women’s iron status in New Zealand. 

Lastly, PND is one of the major maternal health issues to arise and can often 

exacerbate negative health effects for mothers and their newborns. Previous literature 

has indicated possible biological contributors to PND are suboptimal thyroid 

hormones, and low selenium and iron status, but results published to date are 

inconclusive. Further opportunities of investigating iodine (the major component of 

thyroid hormone), selenium and iron together may provide additional evidence on 

their potential influence on the risk of postnatal depression. 



103 
 

2.8  References 

1.  Madariaga AG, Palacios SS, Guillén-grima F, Galofré JC. The incidence and prevalence 
of thyroid dysfunction in Europe : A meta-analysis. Endocr Res. 2014;99(3):923–31.  

2.  Sylven S, Elenis E, Michelakos T, Larsson A, Olovsson M, Poromaa I, et al. Thyroid 
function tests at delivery and risk for postpartum depressive symptoms. 
Psychoneuroendocrinology. 2013;38(7):1007–13.  

3.  Le Donne M, Mento C, Settineri S, Antonelli A, Benvenga S. Postpartum mood 
disorders and thyroid autoimmunity. Front Endocrinol (Lausanne). 2017;8(91):1–6.  

4.  Thomson CD, Packer MA, Butler JA, Duffield AJ, O’Donaghue KL, Whanger PD. 
Urinary selenium and iodine during pregnancy and lactation. J Trace Elem Med Biol. 
2001;14(4):210-217. doi:10.1016/S0946-672X(01)80004-3 

5. Food Standards Australia New Zealand (2009) Australia New Zealand Food Standards 
Code, Standard 2.1.1. Cereals and cereal products  

6. New Zealand Ministry of Health. Supplement (Tablet) to take when pregnant or 
breastfeeding. 2010. Wellington, New Zealand. 

7. Bauer M, Goetz T, Glenn T, Whybrow PC. The thyroid-brain interaction in thyroid 
disorders and mood disorders. J Neuroendocrinol. 2008;20(10):1101–14.  

8.  Zimmermann MB. The role of iodine in human growth and development. Semin Cell 
Dev Biol. 2011;22(6):645–52.  

9.  Schomburg L, Köhrle J. On the importance of selenium and iodine metabolism for 
thyroid hormone biosynthesis and human health. Mol Nutr Food Res. 
2008;52(11):1235–46.  

10.  Zimmermann MB, Köhrle J. The impact of iron and selenium deficiencies on iodine 
and thyroid metabolism: Biochemistry and relevance to public health. Thyroid. 
2002;12(10):867–78.  

11.  Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, et al. 2017 
Guidelines of the American Thyroid Association for the diagnosis and management of 
thyroid disease during pregnancy and the postpartum. Thyroid. 2017;27(3):315–89.  

12.  Gerstein HC. Incidence of postpartum thyroid dysfunction in patients with type I 
diabetes mellitus. Ann Intern Med. 1993;118(6):419–23.  

13.  Stagnaro-Green A. Approach to the patient with postpartum thyroiditis. J Clin 
Endocrinol Metab. 2012;97(2):334–42.  

14.  Lazarus JH, Ammari F, Oretti R, Parkes AB, Richards JC, Harris B. Clinical aspects of 
recurrent postpartum thyroiditis. Br J Gen Pract. 1997;47(418):305–8.  

15.  Benvenga S. Targeted antenatal screening for predicting postpartum thyroiditis and 
its evolution into permanent hypothyroidism. Front Endocrinol (Lausanne). 
2020;11:220.  

16.  Amino N, Arata N. Thyroid dysfunction following pregnancy and implications for 



104 
 

breastfeeding. Best Pract Res Clin Endocrinol Metab. 2020;34(4):101438.  

17.  Smallridge RC. Postpartum thyroid disease: A model of immunologic dysfunction. 
Clin Appl Immunol Rev. 2000;1(2):89–103.  

18.  Stagnaro-Green A, Schwartz A, Gismondi R, Tinelli A, Mangieri T, Negro R. High rate 
of persistent hypothyroidism in a large-scale prospective study of postpartum 
thyroiditis in Southern Italy. J Clin Endocrinol Metab. 2011;96(3):652–7.  

19.  Azizi F. The occurence of permanent thyroid failure in patients with subclinical 
postpartum thyroiditis. Eur J Endocrinol. 2005;153(3):367–71.  

20.  Gropper S, Smith J, Groff J. Advanced nutrition and human metabolism. 4th edition. 
Belmont, Calif: Thomson/Wadsworth; 2005.  

21.  Rayman MP. Symposium 2: Nutrient interactions and their role in protection from 
chronic diseases: Multiple nutritional factors and thyroid disease, with particular 
reference to autoimmune thyroid disease. Proc Nutr Soc. 2019;78(1):34–44.  

22.  Zimmermann MB. Iodine deficiency. Endocr Rev. 2009;30(4):376–408.  

23.  Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet 
Diabetes Endocrinol. 2015;3(4):286–95.  

24.  Farebrother J, Zimmermann M, Andersson M. Excess iodine intake: sources, 
assessment, and effects on thyroid function. Ann New York Acad Sicences. 
2019;1446:44–65. 

25.  Leung AM, Braverman LE. Iodine-induced thyroid dysfunction. Curr Opin Endocrinol 
Diabetes Obes. 2012;19(5):414–9.  

26.  Yang F, Shan Z, Teng X, Li Y, Guan H, Chong W, et al. Chronic iodine excess does not 
increase the incidence of hyperthyroidism: A propective community-based 
epidemiological survey in China. Eur J Endocrinol. 2007;156(4):403–8.  

27.  Teng W, Shan Z, Teng X, Guan H, Li Y, Teng D, et al. Effect of iodine intake on 
thyroid diseases in China. N Engl J Med. 2006;354(26):2783–93.   

28.  Iodine Global Network. Global fortification data exchange on salt iodisation 
[Internet]. 2018. p. 1. Available from: https://fortificationdata.org/legislation-status/# 

29.  Laurberg P, Jørgensen T, Perrild H, Ovesen L, Knudsen N, Pedersen IB, et al. The 
Danish investigation on iodine intake and thyroid disease, DanThyr: Status and 
perspectives. Eur J Endocrinol. 2006;155(2):219–28.  

30.  Bülow Pedersen I, Laurberg P, Knudsen N, Jørgensen T, Perrild H, Ovesen L, et al. 
Increase in incidence of hyperthyroidism predominantly occurs in young people after 
iodine fortification of salt in Denmark. J Clin Endocrinol Metab. 2006;91(10):3830–4.  

31.  Bülow Pedersen I, Laurberg P, Knudsen N, Jørgensen T, Perrild H, Ovesen L, et al. An 
increased incidence of overt hypothyroidism after iodine fortification of salt in 
Denmark : A prospective population study. J Clin Endocrinol Metab. 2007;92(8):3122–
7.  



105 
 

32.  Kampe O, Jansson R, Karlsson FA. Effect of L-Thyroxine and iodide on the 
development of autoimmune postpartum thyroiditis. J Clin Endocrinol Metab. 
1990;70(4):1014–8.  

33.  Nøhr SB, Jørgensen A, Pedersen KM, Laurberg P. Postpartum thyroid dysfunction in 
pregnant thyroid peroxidase antibody-positive women living in an area with mild to 
moderate iodine deficiency : Is iodine supplementation safe? J Clin Endocrinol Metab. 
2000;85(9):3191–8.  

34.  WHO/NMH/NHD/EPG/14.5. Goitre as a determinant of the prevalence and severity 
of iodine deficiency disorders in populations. Who/Nmh/Nhd/Epg/145 Vmnis 
[Internet]. 2014;14–9. Available from: 
http://apps.who.int/iris/bitstream/10665/133706/1/WHO_NMH_NHD_EPG_14.5_eng.
pdf 

35.  Vejbjerg P, Knudsen N, Perrild H, Carlé A, Laurberg P, Pedersen IB, et al. Effect of a 
mandatory iodization program on thyroid gland volume based on individuals’ age, 
gender, and preceding severity of dietary iodine deficiency: A prospective, 
population-based study. J Clin Endocrinol Metab. 2007;92(4):1397–401.  

36.  Aghini Lombardi F, Fiore E, Tonacchera M, Antonangeli L, Rago T, Frigeri M, et al. 
The effect of voluntary iodine prophylaxis in a small rural community: The 
pescopagano survey 15 years later. J Clin Endocrinol Metab. 2013;98(3):1031–9.  

37.  Thomson CD, Woodruffe S, Colls AJ, Joseph J, Doyle TC. Urinary iodine and thyroid 
status of New Zealand residents. Eur J Clin Nutr. 2001;55(5):387–92.  

38.  Knudsen N, Bulow I, Jorgensen T, Laurberg P, Ovesen L, Perrild H. Comparative 
study of thyroid function and types of thyroid dysfunction in two areas in Denmark 
with slightly different iodine status. Eur J Endocrinol. 2000;143(4):485–91.  

39.  Dickson RC, Tomlinson RH. Selenium in blood and human tissues. Clin Chim Acta. 
1967;16(2):311–21.  

40.  Köhrle J, Jakob F, Contempré B, Dumont JE. Selenium, the thyroid, and the endocrine 
system. Endocr Rev. 2005;26(7):944–84.  

41.  Arthur JR, Beckett GJ, Mitchell JH. The interactions between selenium and iodine 
deficiencies in man and animals. Nutr Res Rev. 1999;12(1):55–73.  

42.  Golstein J, Corvilain B, Lamy F, Paquer D, Dumont JE. Effects of a selenium deficient 
diet on thyroid function of normal and perchlorate treated rats. Acta Endocrinol. 
1988;118(4):495–502.  

43.  Contempre B, Dumont JE, Denef JF, Many MC. Effects of selenium deficiency on 
thyroid necrosis, fibrosis and proliferation: A possible role in myxoedematous 
cretinism. Eur J Endocrinol. 1995;133(1):99–109.  

44.  Corvilain B, Contempre B, Longombe AO, Goyens P, Gervy-Decoster C, Lamy F, et al. 
Selenium and the thyroid : How the relationship was established. Am J Clin Nutr. 
1993;57(2):244S-248S.  

45.  Goyens P, Golstein J, Nsombola B, Vis H, Dumont J. Selenium deficiency as a possible 



106 
 

factor in the pathogenesis of myxoedematous endemic cretinism. Acta Endocrinol. 
1987;114(4):497–502.  

46.  Vanderpas JB, Contempré B, Duale NL, Goossens W, Bebe N, Thorpe R, et al. Iodine 
and selenium deficiency associated with cretinism in northern Zaire. Am J Clin Nutr. 
1990;52(6):1087–93.  

47.  Vanderpas JB, Diplock T, Bebe N, Du E. Selenium deficiency mitigates 
hypothyroxinemia in iodine-deficient subjects. Am J Clin Nutr. 1993;57(2):271S-275S.  

48.  Derumeaux H, Valeix P, Castetbon K, Bensimon M, Boutron-Ruault MC, Arnaud J, et 
al. Association of selenium with thyroid volume and echostructure in 35- to 60-year-
old French adults. Eur J Endocrinol. 2003;148(3):309–15.  

49.  Rasmussen LB, Schomburg L, Köhrle J, Pedersen IB, Hollenbach B, Hög A, et al. 
Selenium status, thyroid volume, and multiple nodule formation in an area with mild 
iodine deficiency. Eur J Endocrinol. 2011;164(4):585–90.  

50.  Olivieri O, Girelli D, Azzini M, Stanzial AM, Russo C, Ferroni M, et al. Low selenium 
status in the elderly influences thyroid hormones. Clin Sci. 1995;89(6):637–42.  

51.  Rayman MP, Thompson AJ, Bekaert B, Catterick J, Galassini R, Hall E, et al. 
Randomized controlled trial of the effect of selenium supplementation on thyroid 
function in the elderly in the United Kingdom. Am J Clin Nutr. 2008;87(2):370–8.  

52.  Negro R, Greco G, Mangieri T, Pezzarossa A, Dazzi D, Hassan H. The influence of 
selenium supplementation on postpartum thyroid status in pregnant women with 
thyroid peroxidase autoantibodies. J Clin Endocrinol Metab. 2007;92(4):1263–8.  

53.  McKenzie RL, Rea HM, Thomson CD, Robinson MF. Selenium concentration and 
glutathione peroxidase activity in blood of New Zealand infants and children. Am J 
Clin Nutr. 1978;31(8):1413–8. 

54. Robinson JR, Robinson MF, Levander O a., Thomson CD. Urinary excretion of 
selenium by New Zealand and North American human subjects on differing intakes. 
Am J Clin Nutr. 1985;41(5):1023–31.  

55.  Thomson CD, Mclachlan SK, Grant AM, Paterson E, Lillico AJ. The effect of selenium 
on thyroid status in a population with marginal selenium and iodine status. Br J Nutr. 
2005;94(6):962–8.  

56.  Thomson CD, Campbell JM, Miller J, Skeaff SA, Livingstone V. Selenium and iodine 
supplementation : effect on thyroid function of older New Zealanders. Am J Clin Nutr. 
2009;90(4):1038–46.  

57.  Beard J, Tobin B, Green W. Evidence for thyroid hormone deficiency in iron-deficient 
anemic rats. J Nutr. 1989;119(5):772–8.  

58.  Hess SY, Zimmermann MB, Arnold M, Langhans W, Hurrell RF. Iron deficiency 
anemia reduces thyroid peroxidase activity in rats. J Nutr. 2002;132(7):1951–5.  

59.  Martinez-Torres C, Cubeddu L, Dillmann E, Brengelmann GL, Leets I, Layrisse M, et 
al. Effect of exposure to low temperature on normal and iron-deficient subjects. Am J 
Physiol. 1984;246(3 Pt 2):R380–3.  



107 
 

60.  Beard L, Borel M, Derr J. Impaired thermoregulation and thyroid function in iron-
deficiency anemia. Am J Clin Nutr. 1990;52(5):813–9.  

61.  Wolde-Gebriel Z, West CE, Gebru H, Tadesse  a S, Fisseha T, Gabre P, et al. 
Interrelationship between vitamin A, iodine and iron status in schoolchildren in Shoa 
Region, central Ethiopia. Br J Nutr. 1993;70(2):593–607.  

62.  Florentino R, Tanchoco C, Podriguez M, Cruz A. Interactions among micronutrient 
deficiencies and undernutrition in the Philipppines. Asia Pac J Clin Nutr. 
1996;5(3):175–80.  

63.  Azizi F, Mirmiran P, Sheikholeslam R, Hedayati M, Rastmanesh R. The relation 
between serum ferritin and goiter, urinary iodine and thyroid hormone 
concentration. Int J Vitam Nutr Res. 2002;72(5):296–9.  

64.  Zimmermann M, Adou P, Torresani T, Zeder C, Hurrell R. Persistence of goiter 
despite oral iodine supplementation in goitrous children with iron deficiency anemia 
in Cote d’Ivoire. Am J Clin Nutr. 2000;71(1):88–93.  

65.  Zimmermann M, Adou P, Torresani T, Zeder C, Hurrell R. Iron supplementation in 
goitrous, iron-deficient children improves their response to oral iodized oil. Eur J 
Endocrinol. 2000;142(3):217–23.  

66.  Zimmermann MB, Zeder C, Chaouki N, Torresani T, Saad A, Hurrell RF. Addition of 
microencapsulated iron to iodized salt improves the efficacy of iodine in goitrous, 
iron-deficient children: a randomized, double-blind, controlled trial. Eur J 
Endocrinol. 2002;147(6):747–53.  

67.  Etik DÖ, Erdoğan MF. The effect of treatment of Iron deficiency anemia on thyroid 
volume. Turkish J Endocrinol Metab. 2019;23(1):38–46.  

68.  Andersson M, de Benoist B, Darnton-Hill I, Delange F. Iodine deficiency in Europe: A 
continuing public health problem [Internet]. Geneva, Switzerland; 2007. Available 
from: https://apps.who.int/iris/handle/10665/43398 

69.  Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. Lancet. 
2008;372(9645):1251–62.  

70.  Chen Z-P, Hetzel BS. Cretinism revisited. Best Pract Res Clin Endocrinol Metab. 
2010;24(1):39–50.  

71.  Delange F. Iodine requirements during pregnancy, lactation and the neonatal period 
and indicators of optimal iodine nutrition. Public Health Nutr. 2007;10(12A):1571–83.  

72.  The Iodine Global Network. Global Scorecard of Iodine Nutrition in 2020 in the 
general population based on shcool-age children (SAC) [Internet]. Iodine Global 
Network. Ottawa, Canada; 2020. Available from: 
http://www.ign.org/cm_data/IGN_Global_Map_AllPop_30May2017.pdf 

73.  Bath SC, Steer CD, Golding J, Emmett P, Rayman MP. Effect of inadequate iodine 
status in UK pregnant women on cognitive outcomes in their children: Results from 
the Avon Longitudinal Study of Parents and Children (ALSPAC). Lancet. 
2013;382(9889):331–7.  



108 
 

74.  Hynes KL, Otahal P, Hay I, Burgess JR. Mild iodine deficiency during pregnancy is 
associated with reduced educational outcomes in the offspring: 9-Year follow-up of 
the Gestational Iodine Cohort. J Clin Endocrinol Metab. 2013;98(5):1954–62.  

75.  Bleichrodt N, Born MP. A metaanalysis of research on iodine and its relationship to 
cognitive development. In: Stanbury JB, editor. The damaged brain of iodine 
deficiency. Cognizant Communication Corporation; 1996. p. 195–200.  

76.  Qian M, Wang D, Watkins WE, Gebski V, Yan YQ, Li M, et al. The effects of iodine on 
intelligence in children: a meta-analysis of studies conducted in China. Asia Pac J Clin 
Nutr. 2005;14(1):32–42.  

77.  Markhus MW, Dahl L, Moe V, Abel MH, Brantsæter AL, Øyen J, et al. Maternal iodine 
status is associated with offspring language skills in infancy and toddlerhood. 
Nutrients. 2018;10(9):1270.  

78.  Zhou SJ, Condo D, Ryan P, Skeaff SA, Howell S, Anderson PJ, et al. Association 
between maternal iodine intake in pregnancy and childhood neurodevelopment at 
age 18 months. Am J Epidemiol. 2019;188(2):332–8.  

79.  Abel MH, Caspersen IH, Meltzer HM, Haugen M, Brandlistuen RE, Aase H, et al. 
Suboptimal maternal iodine intake is associated with impaired child 
neurodevelopment at 3 years of age in the Norwegian Mother and Child Cohort 
Study. J Nutr. 2017;147(7):1314–24.  

80.  Levie D, Korevaar TIM, Bath SC, Murcia M, Dineva M, Llop S, et al. Association of 
maternal iodine status with child IQ: A meta-analysis of individual participant data. J 
Clin Endocrinol Metab. 2019;104(12):5957–67.  

81.  Baye K, Faber M. Windows of opportunity for setting the critical path for healthy 
growth. Public Health Nutr. 2015;18(10):1715–7.  

82.  Rasmussen LB, Ovesen L, Bülow I, Jørgensen T, Knudsen N, Laurberg P, et al. Dietary 
iodine intake and urinary iodine excretion in a Danish population: effect of 
geography, supplements and food choice. Br J Nutr. 2002;87(1):61–9.  

83.  Thomson CD. Selenium and iodine intakes and status in New Zealand and Australia. 
Br J Nutr. 2004;91(5):661–72.  

84.  Vannoort RW, Thomson BM. 2009 New Zealand total diet study: Agricultural 
compound residues, selected contaminant and nutrient elements. Wellington, New 
Zealand: Ministry of Agriculture and Forestry; 2009.  

85.  Skeaff SA, Thomson CD, Gibson RS. Mild iodine deficiency in a sample of New 
Zealand schoolchildren. Eur J Clin Nutr. 2002;56(12):1169–75.  

86.  National Health and Medicine Council, New Zealand Ministry of Health. Nutrient 
Reference Values for Australia and New Zealand including Recommended Dietary 
Intake. Canberra: Australia; 2006.  

87.  Vannoort RW, Thomson BM. 2003/04 New Zealand total diet survey - Agricultural 
compound residues, selected contaminants and nutrients. Wellington, New Zealand: 
New Zealand Food Safety Authority; 2005. 144 p.  



109 
 

88.  Thomson BM, Vannoort RW, Haslemore RM. Dietary exposure and trends of 
exposure to nutrient elements iodine, iron, selenium and sodium from the 2003-4 
New Zealand Total Diet Survey. Br J Nutr. 2008;99(3):614–25.  

89.  Pearson A, Gibbs M, Lau K, Edmonds J, Alexander D, Nicolas J, et al. 2016 New 
Zealand Total Diet Study. Vol. 4. Wellington, New Zealand; 2016.  

90.  Ershow AG, Skeaff SA, Merkel JM, Pehrsson PR. Development of databases on iodine 
in foods and dietary supplements. Nutrients. 2018;10(1):1–20.  

91.  Ministry for Primary Industries. Update report on the dietary iodine intake of Zealand 
children following fortification of bread with iodine. Wellington, New Zealand; 2014.  

92.  Lesperance L. The Concise New Zealand Food Composition Tables [Internet]. 2009. 
28 p. Available from: www.foodcomposition.co.nz 

93.  Skeaff SA, Lonsdale-Cooper E. Mandatory fortification of bread with iodised salt 
modestly improves iodine status in schoolchildren. Br J Nutr. 2012;190(6):1109–13.  

94.  Jones E, Mclean R, Davies B, Hawkins R, Meiklejohn E, Ma ZF, et al. Adequate iodine 
status in New Zealand school children post-fortification of bread with iodised salt. 
Nutrients. 2016;8(5):298.  

95.  Ministry for Primary Industries. Mandatory iodine fortification in New Zealand : 
Supplement to the Australian Institute of Health and Welfare 2016 report- 
Monitoring the health impacts of mandatory folic acid and iodine fortification. Vol. 3. 
Wellington; 2016.  

96.  New Zealand Ministry of Health. Supplement (Tablet) to Take when pregnant or 
breastfeeding. Ministry of Health. Wellington, New Zealand; 2011.  

97.  Brough L, Jin Y, Shukri NH, Wharemate ZR, Weber JL, Coad J. Iodine intake and 
status during pregnancy and lactation before and after government initiatives to 
improve iodine status, in Palmerston North, New Zealand: A pilot study. Matern 
Child Nutr. 2015;11(4):646–55.  

98.  Gupta PM, Gahche JJ, Herrick KA, Ershow AG, Potischman N, Perrine CG. Use of 
iodine-containing dietary supplements remains low among women of reproductive 
age in the United States: NHANES 2011–2014. Nutrients. 2018;10(4):6–13.  

99.  Mitchell EKL, Martin JC, D’Amore A, Francis I, Savige GS. Maternal Iodine dietary 
supplements and neonatal thyroid stimulating hormone in Gippsland, Australia. Asia 
Pac J Clin Nutr. 2018;27(4):848–52.  

100.  Hine T, Zhao Y, Begley A, Skeaff S, Sherriff J. Iodine-containing supplement use by 
pregnant women attending antenatal clinics in Western Australia. Aust New Zeal J 
Obstet Gynaecol. 2018;58(6):636–42.  

101.  Reynolds AN, Skeaff SA. Maternal adherence with recommendations for folic acid and 
iodine supplements: A cross-sectional survey. Aust New Zeal J Obstet Gynaecol. 
2018;58(1):125–7.  

102.  Pearce EN, Braverman LE. Environmental pollutants and the thyroid. Best Pract Res 
Clin Endocrinol Metab. 2009;23(6):801–13.  



110 
 

103.  Hampl R, Ostatnikova D, Celec P, Putz Z, Bilek R, Lapcik O, et al. Correlation 
between soy phytoestrogens and thyroid laboratory parameters: implications for 
iodine nutrition. In: Preedy V, Burrow G, Watson R, editors. Comprehensive 
Handbook of Iodine. Elsevier; 2009. p. 353–63.  

104.  Doerge DR, Sheehan DM. Goitrogenic and estrogenic activity of soy isoflavones. 
Environ Health Perspect. 2002;110(Suppl 3):349–53.  

105.  Lightowler H. Assessment of iodine intake and iodine status in Vegans. In: Preedy V, 
Burrow G, Watson R, editors. Comprehensive Handbook of Iodine. 1st ed. Academic 
Press; 2009. p. 429–36.  

106.  Pearce E, Oken E, Gillman M, Lee S, Magnani B, Platek D, et al. Association of first-
trimester thyroid function test values with thyroperoxidase antibody status, smoking, 
and multivitamin use. Thyroid. 2008;14(1):33–9.  

107.  Laurberg P, Nøhr SB, Pedersen KM, Fuglsang E. Iodine nutrition in breast-fed infants 
is impaired by maternal smoking. J Clin Endocrinol Metab. 2004;89(1):181–7.  

108.  Semba RD, Delange F. Iodine in human milk: perspectives for infant health. Nutr Rev. 
2001;59(8):269–78.  

109.  FAO, World Health Organization. Vitamin and mineral requirements in human 
nutrition Second edition [Internet]. World Health Organization. Geneva, 
Switzerland; 2004. Available from: www.who.org 

110.  Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for 
Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, 
Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington DC, National 
Academy Press (US): National Academy of Sciences; 2001.  

111.  Carriquiry AL. Assessing the prevalence of nutrient inadequacy. Public Health Nutr. 
1999;2(1):23–33.  

112.  Institute of Medicine (IOM). DRI Dietary Reference Intakes: Applications in dietary 
assessment [Internet]. Vol. Available, National Academy Press (US). National 
Academies Press; 2000. http://www.ncbi.nlm.nih.gov/books/NBK222890/pdf/Bo. 
Available from: http://www.ncbi.nlm.nih.gov/pubmed/25057725 

113.  Condo D, Makrides M, Skeaff SA, Zhou SJ. Development and validation of an iodine-
specific FFQ to estimate iodine intake in Australian pregnant women. Br J Nutr. 
2015;(9):1–9.  

114.  Beck KL, Kruger R, Conlon CA, Heath ALM, Coad J, Matthys C, et al. The relative 
validity and reproducibility of an iron food frequency guestionnaire for identifying 
iron-related dietary patterns in young women. J Acad Nutr Diet. 2012;112(8):1177–87.  

115.  Gibson RS. Measurement errors in dietary assessment. In: Gibson RS, editor. 
Principles of Nutrition Assessment. 2nd ed. New York: Oxford: Oxford University 
Press; 2005. p. 105–28.  

116.  Torre SB Della, Carrard I, Farina E, Danuser B, Kruseman M. Development and 
evaluation of e-CA, an electronic mobile-based food record. Nutrients. 2017;9(1):1–12.  



111 
 

117.  Saeedi P, Skeaff SA, Wong JE, Skidmore PML. Reproducibility and relative validity of 
a short food frequency questionnaire in 9-10 year-old children. Nutrients. 2016;8(5):1–
13.  

118.  Edmonds J, McLean R, Williams S, Skeaff S. Urinary iodine concentration of New 
Zealand adults improves with mandatory fortification of bread with iodised salt but 
not to predicted levels. Eur J Nutr. 2015;25(3):1201–12.  

119.  Gibson RS. Measuring food consumption of individuals. In: Gibson RS, editor. 
Principles of Nutrition Assessment. 2nd ed. New York: Oxford: Oxford University 
Press; 2005. p. 41–64.  

120.  Ministry of Health. Methodology report for the 2008 New Zealand Adult Nutrition 
Survey. Wellington, New Zealand; 2011.  

121.  CDC/National Center for Health Statistics. Dietary Interview Component [Internet]. 
2018. Available from: 
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/questionnaires.aspx?BeginYe
ar=2017 

122.  Black A. Critical evaluation of energy intake using the Goldberg cut-off for energy 
intake: basal metabolic rate. A practical guide to its calculation, use and limitations. 
Int J Obes. 2000;24:1119–30.  

123.  Rasmussen LB, Ovesen L, Christiansen E. Day-to-day and within-day variation in 
urinary iodine excretion. Eur J Clin Nutr. 1999;53(5):401–7.  

124.  Als C, Haldimann M, Bürgi E, Donati F, Gerber H, Zimmerli B. Swiss pilot study of 
individual seasonal fluctuations of urinary iodine concentration over two years: is 
age-dependency linked to the major source of dietary iodine? Eur J Clin Nutr. 
2003;57(5):636–46.  

125.  Remer T, Fonteyn N, Alexy U, Berkemeyer S. Longitudinal examination of 24-h 
urinary iodine excretion in schoolchildren as a sensitive, hydration status-
independent research tool for studying iodine status. Am J Clin Nutr. 2006;83(3):639–
46.  

126.  Andersen SL, Møller M, Laurberg P. Iodine concentrations in milk and in urine 
during breastfeeding are differently affected by maternal fluid intake. Thyroid. 
2014;24(4):764–72.  

127.  Als C, Helbling A, Peter K, Haldimann M, Zimmerli B, Gerber H. Urinary iodine 
concentration follows a circadian rhythm: A study with 3023 spot urine samples in 
adults and children. J Clin Endocrinol Metab. 2000;85(4):1367–9.  

128.  Konig F, Andersson M, Hotz K, Aeberli I, Zimmermann MB. Ten repeat collections for 
urinary iodine from spot samples or 24-hour samples are needed to reliably estimate 
individual iodine status in women. J Nutr. 2011;141(11):2049–54.  

129.  Knudsen N, Christiansen E, Brandt-Christensen M, Nygaard B, Perrild H. Age- and 
sex-adjusted iodine/creatinine ratio. A new standard in epidemiological surveys? 
Evaluation of three different estimates of iodine excretion based on casual urine 
samples and comparison to 24 h values. Eur J Clin Nutr. 2000;54(4):361–3.  



112 
 

130.  Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Andersen S, Rasmussen LB, et al. 
Estimation of iodine intake from various urinary iodine measurements in population 
studies. Thyroid. 2009;19(11):1281–6.  

131.  Andersen SL, Sørensen LK, Krejbjerg A, Møller M, Klitbo DM, Nøhr SB, et al. Iodine 
status in Danish pregnant and breastfeeding women including studies of some 
challenges in urinary iodine status evaluation. J trace Elem Med Biol. 2014;31:285–9.  

132.  World Health Organization, UNICEF, ICCIDD. Assessment of iodine deficiency 
disorders and monitoring their elimination. Geneva, Switzerland; 2007.  

133.  Knudsen N, Bulow I, Jorgensen T, Perrild H, Ovesen L, Laurberg P. Serum Tg--a 
sensitive marker of thyroid abnormalities and iodine deficiency in epidemiological 
studies. J Clin Endocrinol Metab. 2001;86(8):3599–603.  

134.  Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Carlé A, Pedersen IB, et al. 
Thyroglobulin as a marker of iodine nutrition status in the general population. Eur J 
Endocrinol. 2009;161(3):475–81.  

135.  Ristic-Medic D, Piskackova Z, Hooper L, Ruprich J, Casgrain A, Ashton K, et al. 
Methods of assessment of iodine status in humans: a systematic review. Am J Clin 
Nutr. 2009;89 (suppl):2052S-2069S.  

136.  Gordon RC, Rose MC, Skeaff SA, Gray AR, Morgan KMD, Ruffman T. Iodine 
supplementation improves cognition in mildly iodine-deficient children. Am J Clin 
Nutr. 2009;90(5):1264–71.  

137.  Zimmermann MB, Andersson M. Assessment of iodine nutrition in populations: Past, 
present, and future. Nutr Rev. 2012;70(10):553–70.  

138.  Zimmermann MB, Aeberli I, Andersson M, Assey V, Yorg J a J, Jooste P, et al. 
Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in 
children and indicates no adverse effects on thyroid function in the UIC range of 100-
299 μg/L: A UNICEF/ICCIDD study group report. J Clin Endocrinol Metab. 
2013;98(3):1271–80.  

139.  Dufour DR. Thyroglobulin antibodies - Failing the test. J Clin Endocrinol Metab. 
2011;96(5):1276–8.  

140.  Zimmermann MB. Methods to assess iron and iodine status. Br J Nutr. 2008;99(Suppl 
3):S2–9.  

141.  Zimmermann MB, De Benoist B, Corigliano S, Jooste PL, Molinari L, Moosa K, et al. 
Assessment of iodine status using dried blood spot thyroglobulin: Development of 
reference material and establishment of an international reference range in iodine-
sufficient children. J Clin Endocrinol Metab. 2006;91(12):4881–7.  

142.  Ma ZF, Venn BJ, Manning PJ, Cameron CM, Skeaff SA. Iodine supplementation of 
mildly iodine-deficient adults lowers thyroglobulin: A randomized controlled trial. J 
Clin Endocrinol Metab. 2016;101(4):1737–44.  

143.  Ma ZF, Skeaff SA. Thyroglobulin as a biomarker of iodine deficiency : A review. 
Thyroid. 2014;24(8):1195–209.  



113 
 

144.  Bath SC, Pop VJM, Furmidge-owen VL. Thyroglobulin as a functional biomarker of 
iodine status in a cohort study of pregnant women. Thyroid. 2017;27(3):426–33.  

145.  Koukkou E, Ilias I, Mamalis I, Adonakis GG, Markou KB. Serum thyroglobulin 
concentration is a weak marker of iodine status in a pregnant population with iodine 
deficiency. Eur Thyroid J. 2016;5(2):120–4.  

146.  Zimmermann MB, Molinari L, Spehl M, Podoba J, Hess S, Delange F. Toward a 
consensus on reference values for thyroid volume in iodine-replete schoolchildren : 
Results of a workshop on inter- observer and inter-equipment variation in 
sonographic measurement of thyroid volume. Eur J Endocrinol. 2001;144(3):213–20.  

147.  Özgen A, Erol C, Kaya A, Özmen MN, Akata D, Akhan O. Interobserver and 
intraobserver variations in sonographic measurement of thyroid volume in children. 
Eur J Endocrinol. 1999;140(4):328–31.  

148.  Zimmermann MB, Hess SY, Adou P, Toresanni T, Wegmüller R, Hurrell RF. Thyroid 
size and goiter prevalence after introduction of iodized salt: A 5-y prospective study 
in schoolchildren in Côte d’Ivoire. Am J Clin Nutr. 2003;77(3):663–7.  

149.  Jooste PL, Weight MJ, Lombard CJ. Short-term effectiveness of mandatory iodization 
of table salt, at an elevated iodine concentration, on the iodine and goiter status of 
schoolchildren with endemic goiter1. Am J Clin Nutr. 2000;71(4):75–80.  

150.  Mulrine HM, Skeaff SA, Ferguson EL, Gray AR, Valeix P. Breast-milk iodine 
concentration declines over the first 6 mo postpartum in iodine-deficient women. Am 
J Clin Nutr. 2010;92(4):849–56.  

151.  Azizi F, Smyth P. Breastfeeding and maternal and infant iodine nutrition. Clin 
Endocrinol (Oxf). 2009;70(5):803–9.  

152.  Dror DK, Allen LH. Iodine in Human Milk: A Systematic Review. Adv Nutr. 
2018;9(23):278S-294S.  

153.  Nazeri P, Mirmiran P, Shiva N, Mehrabi Y, Mojarrad M, Azizi F. Iodine nutrition 
status in lactating mothers residing in countries with mandatory and voluntary iodine 
fortification programs: An updated systematic review. Thyroid. 2015;25(6):611–20.  

154.  Rasmussen LB, Ovesen L, Christensen T, Knuthsen P, Larsen EH, Lyhne N, et al. 
Iodine content in bread and salt in Denmark after iodization and the influence on 
iodine intake. Int J Food Sci Nutr. 2007;58(3):231–9.  

155.  Food Standards Australia New Zealand. Australia New Zealand Food Standards Code, 
Standard 2.1.1. Cereals and Cereal Products. Australia New Zealand Food Authority. 
Barton. Australia; 2015.  

156.  Thoma C, Seal J, Mackerras D, Hunt A. Iodine Fortification of Bread: Experiences 
from Australia and New Zealand. In: Preedy VR, Watson RR, Patel VB, editors. Flour 
and Breads and their Fortification in Health and Disease Prevention. Burlington; 2011. 
p. 281–91.  

157.  Bouhouch RR, Bouhouch S, Cherkaoui M, Aboussad A, Stinca S, Haldimann M, et al. 
Direct iodine supplementation of infants versus supplementation of their 



114 
 

breastfeeding mothers: A double-blind, randomised, placebo-controlled trial. Lancet 
Diabetes Endocrinol. 2014;2(3):197–209.  

158.  Gebreegziabher T, Stoecker BJ. Comparison of two sources of iodine delivery on 
breast milk iodine and maternal and infant urinary iodine concentrations in southern 
Ethiopia: A randomized trial. Food Sci Nutr. 2017;5(4):921–8.  

159.  Thomson CD, Colls AJ, Conaglen J V, Macormack M, Stiles M, Mann J. Iodine status 
of New Zealand residents as assessed by urinary iodide excretion and thyroid 
hormones. Br J Nutr. 1997;78(6):901–12.  

160.  Pettigrew-Porter A, Skeaff SA, Gray A, Thomson CD, Croxson M. Are pregnant 
women in New Zealand iodine deficient? A cross-sectional survey. Aust N Z J Obstet 
Gynaecol. 2011;51(5):464–7.  

161.  Skeaff SA, Ferguson EL, McKenzie JE, Valeix P, Gibson RS, Thomson CD. Are breast-
fed infants and toddlers in New Zealand at risk of iodine deficiency? Nutrition. 
2005;21(3):325–31.  

162.  Finlayson J, Hurst P Von, Brough L. Iodine intake and status of mid-life women in 
Auckland, with low bread intakes. Proceeding Annu New Zeal Nutr Soc Conf. 
2019;37(15):3390.  

163.  Chan SSY, Hams G, Wiley V, Wilcken B, McElduff A. Postpartum maternal iodine 
status and the relationship to neonatal thyroid function. Thyroid. 2003;13(9):873–6.  

164.  Axford S, Charlton K, Yeatman H, Ma G. Improved iodine status in breastfeeding 
women following mandatory fortification. Aust N Z J Public Health. 2011;35(6):579–80.  

165.  Huynh D, Condo D, Gibson R, Makrides M, Muhlhausler B, Zhou SJ. Comparison of 
breast-milk iodine concentration of lactating women in Australia pre and post 
mandatory iodine fortification. Public Health Nutr. 2017;20(1):12–7.  

166.  Jorgensen A, O’Leary P, James I, Skeaff S, Sherriff J. Assessment of breast milk iodine 
concentrations in lactating women in western Australia. Nutrients. 2016;8(11):1–8.  

167.  Huynh D, Condo D, Gibson R, Muhlhausler B, Ryan P, Skeaff S, et al. Iodine status of 
postpartum women and their infants in Australia after the introduction of mandatory 
iodine fortification. Br J Nutr. 2017;117(12):1656–62.  

168.  Bouga M, Layman S, Mullaly S, Lean M, Combet E. Iodine intake and excretion are 
low in British breastfeeding mothers. Proc Nutr Soc. 2015;74(OCE1):E25.  

169.  Dold S, Zimmermann MB, Aboussad A, Cherkaoui M, Jia Q, Jukic T, et al. Breast milk 
iodine concentration is a more accurate biomarker of iodine status than urinary 
iodine concentration in exclusively breastfeeding women. J Nutr. 2017;147(4):528–37.  

170.  Yang J, Zhu L, Li X, Zheng H, Wang Z, Hao Z, et al. Maternal iodine status during 
lactation and infant weight and length in Henan Province, China. BMC Pregnancy 
Childbirth. 2017;17(1):1–6.  

171.  Wang W, Sun Y, Zhang M, Zhang Y, Chen W, Tan L, et al. Breast milk and infant 
iodine status during the first 12 weeks of lactation in Tianjin City, China. Asia Pac J 
Clin Nutr. 2018;27(2):393–8.  



115 
 

172.  Nystrom H, Brantsæter AL, Erlund I, Gunnarsdottir I, Hulthen L, Laurberg P, et al. 
Iodine status in the Nordic countries - past and present. Food Nutr Res. 
2016;60:31969.  

173.  Petersen E, Thorisdottir B, Thorsdottir I, Gunnlaugsson G, Arohonka P, Erlund I. 
Iodine status of breastfed infants and their mothers ’ breast milk iodine 
concentration. Matern Child Nutr. 2020;16(3):e12993.  

174.  Pal N, Samanta SK, Chakraborty A, Chandra NK, Chandra AK. Interrelationship 
between iodine nutritional status of lactating mothers and their absolutely breast-fed 
infants in coastal districts of Gangetic West Bengal in India. Eur J Pediatr. 
2018;177(1):39–45.  

175.  Azizi F. Iodine nutrition in pregnancy and lactation in Iran. Public Health Nutr. 
2007;10(12A):1596–9.  

176.  Nazeri P, Mirmiran P, Hedayati M, Mehrabi Y, Delshad H, Azizi F. Can postpartum 
maternal urinary iodine be used to estimate iodine nutrition status of newborns? Br J 
Nutr. 2016;115(7):1226–31.  

177.  Nazeri P, Dalili H, Mehrabi Y, Hedayati M, Mirmiran P, Azizi F. Is there any 
difference between the iodine statuses of breast-fed and formula-fed infants and their 
mothers in an area with iodine sufficiency? Br J Nutr. 2018;(119):1012–8.  

178.  Moon S, Kim J. Iodine content of human milk and dietary iodine intake of Korean 
lactating mothers. Int J Food Sci Nutr. 1999;50(3):165–71.  

179.  Henjum S, Kjellevold M, Ulak M, Chandyo RK, Shrestha PS, Frøyland L, et al. Iodine 
concentration in breastmilk and urine among lactating women of bhaktapur, Nepal. 
Nutrients. 2016;8(5):1–11.  

180.  Stoutjesdijk E, Schaafsma A, Dijck-Brouwer DAJ, Muskiet FAJ. Iodine status during 
pregnancy and lactation: A pilot study in the Netherlands. Neth J Med. 
2018;76(5):210–7.  

181.  Henjum S, Lilleengen AM, Aakre I, Dudareva A, Gjengedal ELF, Meltzer HM, et al. 
Suboptimal iodine concentration in breastmilk and inadequate iodine intake among 
lactating women in Norway. Nutrients. 2017;9(7):13–7.  

182.  Groufh-Jacobsen S, Mosand L, Oma I, Bakken K, Solvik B, Lovise E, et al. Mild to 
moderate iodine deficiency and inadequate iodine intake in lactating women in the 
inland area of Norway. Nutrients. 2020;12(630):1–14.  

183.  Thomson CD, Packer MA, Butler JA, Duffield AJ, O’Donaghue KL, Whanger PD. 
Urinary selenium and iodine during pregnancy and lactation. J Trace Elem Med Biol. 
2001;14(4):210–7.  

184.  Serafico ME, Ulanday JRC, Alibayan M V., Gironella GMP, Perlas LA. Iodine Status in 
Filipino Women of Childbearing Age. Endocrinol Metab. 2018;33(3):372–9.  

185.  Osei J, Andersson M, van der Reijden O, Dold S, Smuts CM, Baumgartner J. Breast-
milk iodine concentrations, iodine status, and thyroid function of breastfed infants 
aged 2-4 months and their mothers residing in a south african township. J Clin Res 



116 
 

Pediatr Endocrinol. 2016;8(4):381–91.  

186.  Mahfouz MS, Gaffar AM, Bani IA. Iodized salt consumption in Sudan: Present status 
and future directions. J Heal Popul Nutr. 2012;30(4):431–8.  

187.  Eltom A, Eltom M, Elnagar B, Elbagir M, Gebre-Medhin M. Changes in iodine 
metabolism during late pregnancy and lactation: A longitudinal study among 
Sudanese women. Eur J Clin Nutr. 2000;54(5):429–33.  

188.  Andersson M, Berg G, Eggertsen R, Filipsson H, Gramatkovski E, Hansson M, et al. 
Adequate iodine nutrition in Sweden : A cross-sectional national study of urinary 
iodine concentration in school-age children. Eur J Clin Nutr. 2009;63:828–34.  

189.  Manousou S, Augustin H, Eggertsen R, Hulthén L, Nyström HF. Inadequate iodine 
intake in lactating women in Sweden : A pilot 1-year , prospective , observational 
study. Acta Obstet Gynecol Scand. 2021;100(1):48–57.  

190.  Andersson M, Aeberli I, Wüst N, Piacenza AM, Bucher T, Henschen I, et al. The Swiss 
iodized salt program provides adequate iodine for school children and pregnant 
women, but weaning infants not receiving iodine-containing complementary foods as 
well as their mothers are iodine deficient. J Clin Endocrinol Metab. 2010;95(12):5217–
24.  

191.  Rayman MP. Selenium intake, status, and health: a complex relationship. Hormones. 
2020;19(1):9–14.  

192.  Rayman MP. Selenium and human health. Lancet. 2012;379(9822):1256–68.  

193.  Levander OA. A Global View of human selenium nutrition. Annu Rev Nutr. 
1987;7:227–50.  

194.  Rayman MP, Bath SC, Westaway J, Williams P, Mao J, Vanderlelie JJ, et al. Selenium 
status in UK pregnant women and its relationship with hypertensive conditions of 
pregnancy. Br J Nutr. 2015;113(2):249–58.  

195.  Rayman MP, Bode P, Redman CWG. Low selenium status is associated with the 
occurrence of the pregnancy disease preeclampsia in women from the United 
Kingdom. Am J Obstet Gynecol. 2003;189(5):1343–9.  

196.  Barrington JW, Taylor M, Smith S, Bowen-Simpkins P. Selenium and recurrent 
miscarriage. J Obstet Gynaecol (Lahore). 1997;17(2):199–200.  

197.  Yang G, Wang S, Zhou R, Sun S. Endemic selenium intoxication of humans in China. 
Am J Clin Nutr. 1983;(37):872–81.  

198.  Winther KH, Rayman MP, Bonnema SJ, Hegedüs L. Selenium in thyroid disorders — 
essential knowledge for clinicians. Nat Rev Endocrinol. 2020;16(3):165–76.  

199.  Polanska K, Krol A, Sobala W, Gromadzinska J, Brodzka R, Calamandrei G, et al. 
Selenium status during pregnancy and child psychomotor development - Polish 
Mother and Child Cohort study. Pediatr Res. 2016;79(6):863–9.  

200.  Amorós R, Murcia M, González L, Rebagliato M, Iñiguez C, Lopez-Espinosa MJ, et al. 
Maternal selenium status and neuropsychological development in Spanish preschool 



117 
 

children. Environ Res. 2018;166:215–22.  

201.  Varsi K, Bolann B, Torsvik I, Eik TCR, Høl PJ, Bjørke-Monsen AL. Impact of maternal 
selenium status on infant outcome during the first 6 months of life. Nutrients. 
2017;9(5):1–12.  

202.  Velasco I, Bath SC, Rayman MP. Iodine as essential nutrient during the first 1000 days 
of life. Nutrients. 2018;10(3):1–16.  

203.  Thomson CD. Assessment of requirements for selenium and adequacy of selenium 
status: a review. Eur J Clin Nutr. 2004;58(3):391–402.  

204.  World Health Organization. Breastfeeding recommendations [Internet]. Available 
from: https://www.who.int/health-topics/breastfeeding#tab=tab_2 

205.  Sanz Alaejos M, Diaz Romero C. Selenium in human lactation. Nutr Rev. 
1995;53(6):159–66.  

206.  Levander OA, Moser PB, Morris VC. Dietary selenium intake and selenium 
concentrations of plasma, erythrocytes, and breast milk in pregnant and postpartum 
lactating and nonlactating women. Am J Clin Nutr. 1987;46(4):694–8.  

207.  Shearer TR, Hadjimarkos DM. Geographic distribution of selenium in human milk. 
Arch Environ Health. 1975;30(5):230–3.  

208.  Duffield AJ, Thomson CD, Hill KE, Williams S. An estimation of selenium 
requirements for New Zealanders. Am J Clin Nutr. 1999;70(5):896–903.  

209.  Schulpis KH, Karakonstantakis T, Gavrili S, Chronopoulou G, Karikas GA, Vlachos G, 
et al. Maternal - Neonatal serum selenium and copper levels in Greeks and Albanians. 
Eur J Clin Nutr. 2004;58(9):1314–8.  

210.  Santos C, García-Fuentes E, Callejón-Leblic B, García-Barrera T, Gómez-Ariza JL, 
Rayman MP, et al. Selenium, selenoproteins and selenometabolites in mothers and 
babies at the time of birth. Br J Nutr. 2017;117(9):1304–11.  

211.  McGuire MK, Burgert SL, Milner JA, Glass L, Kummer R, Deering R, et al. Selenium 
status of lactating women is affected by the form of selenium consumed. Am J Clin 
Nutr. 1993;(58):649–52.  

212.  Kumpulainen J, Salmenpera L, Siimes MA, Koivistoinen P, Perheentupa J. Selenium 
status of exclusively breast-fed infants as influenced by maternal organic in organic 
selenium supplementation. Am J Clin Nutr. 1985;42(5):829–35.  

213.  Flax VL, Bentley ME, Combs GF, Chasela CS, Kayira D, Tegha G, et al. Plasma and 
breast-milk selenium in HIV-infected Malawian mothers are positively associated 
with infant selenium status but are not associated with maternal supplementation: 
Results of the Breastfeeding, Antiretrovirals, and Nutrition study. Am J Clin Nutr. 
2014;99(4):950–6.  

214.  Combs GF. Biomarkers of selenium status. Nutrients. 2015;7(4):2209–36.  

215.  Alaejos MS, Romero CD. Urinary selenium concentrations. Clin Chem. 
1993;39(10):2040–52.  



118 
 

216.  Wasowicz W, Zachara BA. Selenium concentrations in the blood and urine of a 
healthy Polish sub-population. Clin Chem Lab Med. 1987;25(7):409–12.  

217.  Thomson, C D, Robinson, M F, Butler, J A, Whanger, P D. Long-term 
supplementation with selenate and selenomethionine: selenium and glutathioin 
peroxidase in blood components of New Zealand women. Br J Nutr. 1993;69(2):577–
88.  

218.  Ashton K, Hooper L, Harvey L, Hurst R, Casgrain A, Fairweather-Tait S. Methods of 
assessment of selenium status in humans: a systematic review. AmJClin Nutr. 
2009;89(6):2070S-2084S.  

219.  Nève J. Human selenium supplementation as assessed by changes in blood selenium 
concentration and glutathione peroxidase activity. Top Catal. 1995;9(2):65–73.  

220.  Han F, Liu L, Lu J, Chai Y, Zhang J, Wang S, et al. Calculation of an Adequate Intake 
(AI) value and safe range of Selenium (Se) for Chinese infants 0–3 months old based 
on Se concentration in the milk of lactating Chinese women with optimal Se intake. 
Biol Trace Elem Res. 2019;188(2):363–72.  

221.  He K. Trace elements in nails as biomarkers in clinical research. Eur J Clin Invest. 
2011;41(1):98–102.  

222.  Longenecker MP, Stampfer MJ, Morris JS, Spate V, Baskett C, Mason M, et al. A 1 -y 
trial of the effect of high-selenium concentrations in blood and toenails. Am J Clin 
Nutr. 1993;57:408–13.  

223.  Robinson MF. Selenium in Human Nutrition in New Zealand. Nutr Rev. 
1989;47(4):99–107.  

224.  University of Otago, Ministry of Health. A focus on nutrition key findings of the 
2008/09 New Zealand Adult Nutrition Survey. Wellington, New Zealand: Ministry of 
Health; 2011.  

225.  Shukri NH, Coad J, Weber J, Jin Y, Brough L. Iodine and selenium intake in a sample 
of women of childbearing age in Palmerston North , New Zealand after mandatory 
fortification of bread with iodised salt. Food Nutr Sci. 2014;5(4):382–9.  

226.  Brough L, Gunn CA, Weber JL, Coad J, Jin Y, Thomson JS, et al. Iodine and selenium 
intakes of postmenopausal women in New Zealand. Nutrients. 2017;9(3):254.  

227.  Combs GF. Selenium in global food systems. Br J Nutr. 2001;85(5):517–47.  

228.  McLachlan SK, Thomson CD, Ferguson EL, McKenzie JE. Dietary and biochemical 
selenium status of urban 6- to 24-month-old South Island New Zealand children and 
their postpartum mothers. J Nutr. 2004;134(12):3290–5.  

229.  Kendall ML. Nutritional status of lactating New Zealand mothers and their breast 
milk concentrations of selenium and zinc [Internet]. University of Otago; 2016. 
Available from: http://hdl.handle.net/10523/6311 

230.  WHO. The Global Prevalence of Anaemia in 2011. Geneva; 2015.  

231.  World Health Organization. Global Health Observatory data repository: prevalence of 



119 
 

anaemia in women [Internet]. 2016. Available from: 
https://apps.who.int/gho/data/view.main.GSWCAH28REG?lang=en 

232.  World Health Organization. Global Health Observatory data repository: anaemia in 
children <5 years by region [Internet]. 2016. Available from: 
https://apps.who.int/gho/data/view.main.ANEMIACHILDRENREGv?lang=en 

233.  Percy L, Mansour D, Fraser I. Iron deficiency and iron deficiency anaemia in women. 
Best Pract Res Clin Obstet Gynaecol. 2017;40:55–67.  

234.  Cook RL, O’Dwyer NJ, Parker HM, Donges CE, Cheng HL, Steinbeck KS, et al. Iron 
deficiency anemia, not iron deficiency, is associated with reduced attention in healthy 
young women. Nutrients. 2017;9(11):1–13.  

235.  Coad J, Pedley K. Iron Deficiency and iron deficiency anemia in women. Scand Jour. 
2014;74(Suppl 244):82–9.  

236.  Bodnar LM, Cogswell ME. Have we forgotten the significance of postpartum iron 
deficiency ? Am J Obstet Gynecol. 2005;193(1):36–44.  

237.  Brownlie T, Utermohlen V, Hinton PS, Giordano C, Haas JD. Marginal iron deficiency 
without anemia impairs aerobic adaptation among previously untrained women. Am J 
Clin Nutr. 2002;75(4):734–42.  

238.  Patterson AJ, Brown WJ, Roberts DCK. Dietary and supplement treatment of iron 
deficiency results in improvements in general health and fatigue in Australian women 
of childbearing age. J Am Coll Nutr. 2001;20(4):337–42.  

239.  Murray-Kolb LE, Beard JL. Iron treatment normalizes cognitive functioning in young 
women. Am J Clin Nutr. 2007;85(3):778–87.  

240.  Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003;23:41–
58.  

241.  Lynch SR, Cook JD. Interaction of vitamin C and iron. Ann New York Acad Sci. 
1980;589(134):32–44.  

242.  West AR, Oates PS, West AR, Oates PS, Physiology M. Mechanisms of heme iron 
absorption : Current questions and controversies. World J Gastroenterol. 
2008;14(26):4101–10.  

243.  Milman NT. A review of nutrients and compounds, which promote or inhibit 
intestinal iron absorption: Making a platform for dietary measures that can reduce 
iron uptake in patients with genetic haemochromatosis. J Nutr Metab. 
2020;9:7373498.  

244.  Cook JD, Reddy MB. Effect of ascorbic acid intake on nonheme-iron absorption from 
a complete diet. Am J Clin Nutr. 2001;73(1):93–8.  

245.  Martinez-Torres C, Layrisse M. Effect of amino acids on iron absorption from a staple 
vegetable food. Blood. 1970;35(5):669–82.  

246.  Cook JD, Monsen ER. Food iron absorption in human subjects . III . Comparison of 
the effect of animal proteins on nonheme iron absorption. Am J Clin Nutr. 



120 
 

1976;29(8):859–67.  

247.  Beck KL, Kruger R, Conlon CA, Heath ALM, Matthys C, Coad J, et al. Suboptimal iron 
status and associated dietary patterns and practices in premenopausal women living 
in Auckland, New Zealand. Eur J Nutr. 2013;52(2):467–76.  

248.  Lopez A, Cacoub P, Macdougall IC, Peyrin-biroulet L. Iron deficiency anaemia. 
Lancet. 2015;6736(15):1–10.  

249.  Infusino I, Braga F, Dolci A, Panteghini M. Soluble transferrin receptor (sTfR) and 
sTfR/log ferritin index for the diagnosis of iron-deficiency anemia: A meta-analysis. 
Am J Clin Pathol. 2012;138(5):642–9.  

250.  World Health Organization/United Nations Chidren’s Fund/United Nations 
University. Iron deficiency anaemia: Assessment, Prevention, and Control - A guide 
for programmme managers. Geneva, Switzerland; 2001.  

251.  Bergmann RL, Richter R, Bergmann KE, Dudenhausen JW. Prevalence and risk factors 
for early postpartum anemia. Eur J Obstet Gynecol Reprod Biol. 2010;150(2):126–31.  

252.  Bodnar LM, Scanlon KS, Freedman DS, Siega-Riz AM, Cogswell ME. High prevalence 
of postpartum anemia among low-income women in the United States. Am J Obstet 
Gynecol. 2001;185(2):438–43.  

253.  Bodnar LM, Cogswell ME, Scanlon KS. Low income postpartum women are at risk of 
iron deficiency. J Nutr. 2002;132(8):2298–302.  

254.  Henjum S, Manger M, Skeie E, Ulak M, Thorne-Lyman AL, Chandyo R, et al. Iron 
deficiency is uncommon among lactating women in urban Nepal, despite a high risk 
of inadequate dietary iron intake. Br J Nutr. 2014;112(1):132–41.  

255.  Holm C, Thomsen LL, Norgaard A, Langhoff-Roos J. Single-dose intravenous iron 
infusion or oral iron for treatment of fatigue after postpartum haemorrhage: 
a randomized controlled trial. Vox Sang. 2017;112(3):219–28.  

256.  Taylor, D J, Mallen C, McDougall N, Lind T. Effect of iron supplementation on serum 
ferritin levels during and after pregnancy. BJOG An Int J Obstet Gynaecol. 
1982;89(12):1011–7.  

257.  Preziosi P, Prual A, Galan P, Daouda H, Boureima H, Hercberg S. Effect of iron 
supplementati on the iron status of pregnant women: Consequences for newborns. 
Am J Clin Nutr. 1997;66(5):1178–82.  

258.  World Health Organization. Guideline: Iron supplementation in postpartum women 
[Internet]. Geneva, Switzerland; 2016. Available from: 
https://apps.who.int/iris/bitstream/handle/10665/249242/9789241549585-eng.pdf 

259.  Calje E, Skinner J. The challenge of defining and treating anemia and iron deficiency 
in pregnancy : A study of New Zealand midwives ’ management of iron status in 
pregnancy and the postpartum period. Birth. 2017;44(2):181–90.  

260.  Thio I, Oakley Browne M, Coverdale J, Argyle N. Postnatal depressive symptoms go 
largely untreated: A probability study in urban New Zealand. Soc Psychiatry Psychiatr 
Epidemiol. 2006;41(10):814–8.  



121 
 

261.  Cooper P, Murray L. Course and recurrence of postnatal depression evidence for the 
specificity of the diagnostic concept. Br J Psychiatry. 1995;166(2):191–5.  

262.  Deverick Z, Guiney H. Postnatal depression in New Zealand :Findings from the 2015 
new mothers’ mental health survey. Wellington, New Zealand; 2016.  

263.  Murray L, Fiori-Cowley  a, Hooper R, Cooper P. The impact of postnatal depression 
and associated adversity on early mother-infant interactions and later infant 
outcome. Child Dev. 1996;67(5):2512–26.  

264.  O’Hara MW, Swain AM. Rates and risk of postpartum depression - A meta-analysis. 
Int Rev Psychiatry. 1996;8(1):37–54.  

265.  Campbell S, Norris S, Standfield L, Suebwongpat A. Screening for postnatal 
depression within the Well Child Tamariki Ora Framwork. HSAC Report. 
Christchurch, New Zealand; 2008.  

266.  Hendrick V, Altshuler LL, Suri R. Hormonal changes in the postpartum and 
implications for postpartum depression. Psychosomatics. 1998;39(2):93–101.  

267.  Pedersen CA, Johnson JL, Silva S, Bunevicius R, Meltzer-Brody S, Hamer RM, et al. 
Antenatal thyroid correlates of postpartum depression. Psychoneuroendocrinology. 
2007;32(3):235–45.  

268.  Wissart J, Parshad O, Kulkarni S. Prevalence of pre- and postpartum depression in 
Jamaican women. BMC Pregnancy Childbirth. 2005;5(15):2–6.  

269.  Lambrinoudaki I, Rizos D, Armeni E, Pliatsika P, Leonardou A, Sygelou A, et al. 
Thyroid function and postpartum mood disturbances in Greek women. J Affect 
Disord. 2010;121(3):278–82.  

270.  Pop, V J, de Rooy, H A, Vader, H L, van der Heide D, van Son M, Komproe, I H, et al. 
Postpartum thyroid dysfunction and depression in an unselected population. N Engl J 
Med. 1991;329(14):977–86.  

271.  Lucas A, Pizarro E, Granada ML, Salinas I, Sanmarti A. Postpartum thyroid 
dysfunction and postpartum depression: Are they two linked disorders? Clin 
Endocrinol (Oxf). 2001;55(6):809–14.  

272.  Harris B, Othman S, Davies JA, Weppner GJ, Richards CJ, Newcombe RG, et al. 
Association between postpartum thyroid dysfunction and thyroid antibodies and 
depression. Br Med J. 1992;305(6846):152–6.  

273.  Breese McCoy SJ, Beal JM, Payton ME, Stewart AL, DeMers AM, Watson GH. 
Postpartum thyroid measures and depressive symptomology: A pilot study. J Am 
Osteopath Assoc. 2008;108(9):503–7.  

274.  Le Donne M, Settineri S, Benvenga S. Early pospartum alexithymia and risk for 
depression: Relationship with serum thyrotropin, free thyroid hormones and thyroid 
autoantibodies. Psychoneuroendocrinology. 2012;37(4):519–33.  

275.  Harris B, Oretti R, Lazarus J, Parkes A, John R, Richards C, et al. Randomised trial of 
thyroxine to prevent postnatal depression in thyroid-antibody-positive women. Br J 
Psychiatry. 2002;180(APR.):327–30.  



122 
 

276.  Ingram JC, Greenwood RJ, Woolridge MW. Hormonal predictors of postnatal 
depression at 6 months in breastfeeding women. J Reprod Infant Psychol. 
2003;21(1):61–8.  

277.  Albacar G, Sans T, Martín-Santos R, García-Esteve L, Guillamat R, Sanjuan J, et al. 
Thyroid function 48h after delivery as a marker for subsequent postpartum 
depression. Psychoneuroendocrinology. 2010;35(5):738–42.  

278.  Pasco JA, Jacka FN, Williams LJ, Evans-Cleverdon M, Brennan SL, Kotowicz MA, et al. 
Dietary selenium and major depression: A nested case-control study. Complement 
Ther Med. 2012;20(3):119–23.  

279.  Benton D. Selenium intake mood and other aspects of psychological funtioning. Nutr 
Neurosci. 2002;5(6):363–74.  

280.  Conner TS, Richardson AC, Miller JC. Optimal serum selenium concentrations are 
Associated with lower depressive symptoms and negative mood among young adults 1 
– 3. J Nutr. 2015;145(1):59–65.  

281.  Leung BMY, Kaplan BJ, Field CJ, Tough S, Eliasziw M, Gomez MF, et al. Prenatal 
micronutrient supplementation and postpartum depressive symptoms in a pregnancy 
cohort. BMC Pregnancy Childbirth. 2013;13(2):1–11.  

282.  Mokhber N, Namjoo M, Tara F, Boskabadi H, Rayman MP, Ghayour-Mobarhan M, et 
al. Effect of supplementation with selenium on postpartum depression: a randomized 
double-blind placebo-controlled trial. J Matern Fetal Neonatal Med. 2011;24(1):104–8.  

283.  Corwin EJ, Murray-Kolb LE, Beard JL. Low hemoglobin level is a risk factor for 
postpartum depression. J Nutr. 2003;133(12):4139–42.  

284.  Beard JL, Hendricks MK, Perez EM, Murray-kolb LE, Berg A, Vernon-feagans L, et al. 
Maternal iron deficiency anemia affects postpartum emotions and cognition. Nutr 
Epidemiol. 2005;135(2):267–72.  

285.  Sheikh M, Hantoushzadeh S, Shariat M, Farahani Z, Ebrahiminasab O. The efficacy of 
early iron supplementation on postpartum depression, a randomized double-blind 
placebo-controlled trial. Eur J Nutr. 2017;56(2):901–8.  

286.  Paoletti AM, Orrù MM, Marotto MF, Pilloni M, Zedda P, Fais MF, et al. Observational 
study on the efficacy of the supplementation with a preparation with several minerals 
and vitamins in improving mood and behaviour of healthy puerperal women. Gynecol 
Endocrinol. 2013;29(8):779–83 

287.  Wassef A, Nguyen QD, St-andré M. Anaemia and depletion of iron stores as risk 
factors for postpartum depression : a literature review. J Psychosom Obstet Gynecol. 
2019;40(1):19–28.  

  



123 
 

Chapter 3 Selenium intake in iodine-deficient pregnant and 

breastfeeding women in New Zealand 
 

Historically, insufficient selenium intake exists in the New Zealand population, and 

numerous studies have investigated selenium intake during the decade of 1980-1990. 

However, limited studies have monitored selenium intake/status in recent years, 

especially in pregnant and breastfeeding women (noted in Chapter 2).  

This chapter reports the results of a secondary data analysis arising from the Mother 

and Baby pilot study over the 2009 and 2011 period (Study 1). It explores the selenium 

intake in a sample of iodine-deficient pregnant and breastfeeding women residing in 

Palmerston North, in the North Island of New Zealand. Ethics approval was obtained 

from the Massey University Human Ethics Committee (Southern A 08/32 and 10/54). 

The main findings suggest suboptimal dietary selenium intake continues to be of 

concern for both pregnant and breastfeeding women and their breastfed infants in New 

Zealand. Inadequate intake of selenium for pregnant women was not followed up, as it 

is not within the scope of this PhD thesis. The focus of this thesis is on a cohort of 

breastfeeding women; it is pivotal to measure their actual selenium status by assessing 

plasma selenium. As selenium has numerous roles, it is also necessary to investigate any 

effects of low intake on other health outcomes during the perinatal period, specifically 

postnatal depression. The research gaps arising from this pilot study predominantly 

contributed to form the basis of the Mother and Infant Nutrition Investigation (MINI) 

study research questions and final design. 

 

This chapter has been published as: 

 Jin Y, Coad J, Weber J, Thomson J, Brough L. Selenium intake in iodine-deficient 

pregnant and breastfeeding women in New Zealand. Nutrients. 2019;11(1):69. 

doi:10.3390/nu11010069 
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3.1 Abstract 

Background 

Selenium plays a role in antioxidant status and, together with iodine, in thyroid 

function. Iodine deficiency exists in New Zealand during pregnancy and lactation, and 

selenium deficiency may further affect thyroid function. 

Objective 

This study investigated selenium intakes of pregnant and lactating women, in 

Palmerston North, in the North Island of New Zealand. 

Methods 

Dietary intake was estimated using three repeated 24-hour dietary recalls. Dietary 

intake in pregnancy was also estimated from 24-hour urinary excretion of selenium. 

Selenium concentrations were determined in urine and breastmilk using inductively 

coupled plasma mass spectrometry. 

Results 

Median (p25, p75) selenium intakes based on dietary data were 51 (39, 65) µg/day in 

pregnancy and 51 (36, 80) µg/day in lactation, with 61% and 68% below estimated 

average requirement (EAR). Median daily selenium intake in pregnancy based on 

urinary excretion was 49 (40, 60) µg/day, with 59% below EAR. Median selenium 

concentration in breastmilk was 11 (10, 13) µg/L and estimated median selenium intake 

for infants was 9 (8, 10) µg/day, with 91% below the Adequate Intake of 12 µg/day. 

Conclusions 

These pregnant and breastfeeding women were at risk of dietary selenium inadequacy. 

Further research is required to assess selenium status in relation to thyroid function 

and health in this group. 
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3.2 Introduction 

The intake of selenium worldwide ranges from 7 to 4990 µg/day and varies greatly 

from deficient to toxic intakes (1). New Zealand soils contain low levels of selenium, 

leading to low levels in the food supply (2). The most recent New Zealand Total Diet 

Survey suggested dietary selenium intake was inadequate throughout the New 

Zealand population, putting them at risk of deficiency (3). Recent New Zealand studies 

have shown low selenium intakes in women of childbearing age and older women 

based on urinary selenium excretion (4, 5). 

Selenium is essential in human health to produce selenoproteins, which have 

antioxidant and anti-inflammatory roles, and for production of thyroid hormones (6). 

Selenoproteins (iodothyronine deiodinases) are required for generating the active 

thyroid hormone T3 (triiodothyronine) from the inactive T4 (thyroxine) form (7). 

Selenium is also an essential cofactor for glutathione peroxidase, a potent antioxidant, 

which protects thyroid cells from damage due to any excessive hydrogen peroxide 

generated from the synthesis of thyroid hormones (8). 

Selenium has been suggested to play an important role in normal brain development, 

although the mechanism is not clear. Two recent large cohort studies from Poland 

and Spain found selenium status in the first trimester was adversely associated with 

neuropsychological development assessed at one year and two years of age by the 

Bayley Scales of infants and Toddler development (9), and five years of age by the 

McCarthy Scales for Children’s Abilities (MSCA) (10). Varsi et al. (2017) investigated 

the effect of maternal selenium status on neurodevelopment of infants and reported 

that low serum selenium concentration in pregnancy was negatively associated with 

infant psychomotor score at six months of age (11). 

The interaction between selenium and iodine in thyroid hormone synthesis is of 

particular concern in New Zealand due to dietary insufficiency of both selenium and 

iodine. Iodine deficiency has historically been a health problem in New Zealand (12) 

and the mandatory fortification of all bread (except organic and unleavened) with 
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iodised salt was introduced in September 2009 (13). Since mandatory fortification, 

most adults (14) and school-aged children (15) in New Zealand have adequate iodine 

intakes. Despite an iodine supplement being recommended and available to all 

pregnant and lactating women in New Zealand, this population group still has 

insufficient intakes and low status (16). Selenium deficiency could potentially 

exacerbate the consequences of mild iodine deficiency in this vulnerable group (12). 

During pregnancy and lactation, there are increased selenium requirements for the 

growing fetus and newborn (3). Low maternal serum selenium concentrations are 

associated with adverse pregnancy outcomes such as pre-eclampsia (17), other types 

of pregnancy-induced hypertension (18) and preterm birth (19). Human milk is critical 

for an exclusively breastfed infant’s optimal selenium status. A study in the South 

Island of New Zealand (1998–1999) showed postpartum women and breastfed infants 

had low plasma selenium, suggesting suboptimal status (20). Since then, no data 

about selenium intakes have been collected for this population. Given changes in 

dietary habits, food product availability and agricultural practices, continual 

monitoring of selenium intake in this vulnerable population is essential. 

This study aimed to assess current maternal selenium intake during pregnancy and 

lactation and estimate infant selenium intake in a sample of women in Palmerston 

North, North Island, New Zealand. 

3.3 Materials and methods 

3.3.1 Study population 

Pregnant and breastfeeding women were recruited from January to July 2009 and 

January to September 2011 via local health professionals who work closely with 

pregnant and breastfeeding women, as described previously (16). Volunteers were 

aged 16 years and older, in their third trimester of pregnancy (greater than 26 weeks 

of gestation), or at least three weeks postpartum and breastfeeding. Women who had 

medical complications during their pregnancy were excluded. Women had to actively 
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volunteer for this study and no data were kept from women who did not meet the 

selection criteria (16). Ethical approval was obtained from the Massey University 

Human Ethics Committee (Southern A 08/32 and 10/54). Written consent was 

obtained from all participants. 

3.3.2 Dietary data collection 

A 24-hour dietary recall was conducted based on the US Department of Agriculture 

Automated Multiple-Pass Method but excluded the Forgotten Foods List (21). A 

photographic food atlas was provided to estimate portion sizes (22). Participants were 

also asked to include any dietary supplements taken, including the brand name and 

the amount. Two subsequent recalls were collected via telephone interviews over the 

following two weeks, ensuring a weekend day was included; food portion sizes were 

estimated using household measures. Previous research has found no difference in 

energy intakes when comparing 24-hour dietary recalls collected in person versus via 

the telephone (23). Dietary data were analysed using Foodworks 2009 (Xyris Software, 

Brisbane, Australia) based on the New Zealand food database (24). Dietary 

supplements used by participants were included in dietary data analysis.  

The estimated average requirement (EAR) cut-point method can be used to assess 

population nutrient intake providing nutrient requirements are normally distributed 

(e.g., selenium); the percentage below the EAR approximates the proportion that is at 

risk of dietary inadequacy (25). For a population to have a very low prevalence of 

inadequate dietary intakes, the mean/median intake should be above the 

recommended daily intake (RDI) (25). Current intakes based on diet and urine data 

were compared to Australian and New Zealand recommendations; the EAR and RDI 

for selenium for pregnant women are 55 and 65 µg/day, and for lactating women are 

65 and 75 µg/day, respectively (3). 
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3.3.3 Sample collection and selenium analysis of urine and breastmilk 

All participants were asked to collect a 24-hour urine sample and provided with an 

insulated box containing two polythene bottles for urine storage and frozen silica pads 

to keep the sample cool. Lactating women were also requested to provide a breastmilk 

sample (around 30 mL) and provided with a breast pump if required; timing of 

collection of breastmilk samples was not standardized, since no significant differences 

have been found in selenium concentrations between hind-milk and fore-milk (26). 

The concentration of selenium in breastmilk varies most significantly during the first 

21 days from the transition from colostrum to mature milk (26), thus breastmilk 

samples were collected after three weeks postpartum. All samples were brought 

immediately to the Human Nutrition Research Unit for processing after collection. 

The total volume of urine collected over 24 hours was measured for each participant. 

Samples were stored without preservative at −20 ◦C, prior to analysis. Urine samples 

were defined as inaccurate if urine volume was below 1 L and urinary creatinine below 

5 mmol/day, or extreme outliers of creatinine (> 3 standard deviation) (27). However, 

no study samples were classified accordingly. 

Selenium concentrations of urine and breastmilk samples were determined by Hill 

Laboratories, Hamilton, New Zealand, using inductively coupled plasma mass 

spectrometry (28). Quality Control procedures included analysis of blanks, analytical 

repeats and spiked samples in order to ensure accuracy and precision. Calibration 

standards and checks were undertaken on every run with the limit of detection at 

0.002 mg/kg.  Dietary selenium intake was estimated for pregnant women, based on 

a urinary excretion of 55% of selenium intake (29). However, it was not possible to 

estimate dietary selenium intake for lactating women via urine, as we were unable to 

determine the daily loss of selenium from breastmilk. Creatinine was measured using 

the Jaffe Method Flexor E (Vital Scientific NV, 6956 AV Spankeren/Dieren, Rheden, 

Gelderland, The Netherlands) at the Massey University Nutrition Laboratory. 
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3.3.4 Statistical analysis 

Data were analysed using IBM SPSS (Statistics Package for the Social Sciences, IBM, 

Armonk, NY, USA) version 20. Data were tested for normality using Shapiro-Wilk’s 

test. Non-parametric data were expressed as median (25th, 75th percentile) and 

parametric data expressed as mean (± standard deviation; SD). Bivariate correlations 

were tested using the nonparametric Spearman’s rho correlation coefficient. Scatter 

plots were generated for suspected bivariate correlations and visually inspected for 

verification. Fisher’s exact test was used to detect associations between dietary and 

biological methods in assessing dietary intake. 

3.4 Results 

Fifty-nine pregnant and 68 lactating women were recruited. The mean age was 31.6 ± 

5.7 and 31.3 ± 5.0 years for pregnant and breastfeeding women, respectively (Table 3.1). 

The ethnicities of participants were Caucasian (80%, 81%), Maori (12%, 9%), Asian 

(5%, 2%) and other (3%, 8%). Participants were predominantly educated at tertiary 

level (86% pregnant and 68% breastfeeding), with approximately half being pregnant 

with or breastfeeding their first infant. 

Table 3.1 Description of pregnant and breastfeeding participants. 

n (%) Pregnant (n = 59) Breastfeeding (n = 68) 

Age, years (Mean ± SD) 31.6 ± 5.7 31.3 ± 5.0 

Tertiary Education 51 (86) 46 (68) 

Ethnicity (Caucasian)  47 (80) 56 (81) 

Ethnicity (Maori)  7 (12) 6 (9) 

Ethnicity (Asian) 3 (5) 1 (2) 

Ethnicity (Other) 2 (3) 5 (7) 

Nulliparous 31 (53) - 

First time lactation  - 36 (53) 

Age of infants, days (Mean ± SD)  113.4 ± 96.9 
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Median selenium intake based on dietary assessment among pregnant women was 51 

(39, 65) µg/day, below both the RDI (65 µg/day) and EAR (55 µg/day), with 61% below 

the EAR (Table 3.3). Median urinary selenium for pregnant women was 14.1 (9.1, 18.2) 

µg/L (Table 3.2) and median selenium intake based on urinary excretion was 49 (40, 

60) µg/day (Table 3.3); below both the RDI, with 59% below the EAR. Dietary and 

urinary data both suggest inadequate selenium intakes among pregnant participants. 

Only four of the 59 pregnant and six of the 68 lactating women were taking selenium-

containing supplements. 

Table 3.2 Selenium and creatinine in 24-hour urine samples and selenium in breastmilk. 

Median (p25, p75)  Pregnant  Breastfeeding 

Numbers of participants (n) 59 68 

Urine volume (L) 2.2 (1.5, 3.0) 1.8 (1.2, 2.5) 

Urinary selenium concentration µg/L  14.1 (9.1, 18.2)  12.1 (7.8, 19.9) 

Measured 24-hour urinay selenum µg/day  27.1 (22.0, 32.9) 21.2 (14.5, 29.9) 

Urinary creatinine g/L  0.5 (0.4, 0.7) 0.7 (0.5, 1.1) 

Urinary creatinine g/day 1.2 (1.0, 1.5) 1.3 (1.2, 1.4) 

Selenium: creastinine µg/g 22.8 (17.7, 28.7) 16.5 (12.3, 23.8) 

Selenium in breastmilk µg/L - 11.3(10.0, 13.3) a 
a 

n= 64 for breastmilk samples. 

 

Based on dietary assessment the median selenium intake for breastfeeding women 

was 51 (36, 80) µg/day (Table 3.3), also below both the EAR (65 µg/day) and RDI (75 

µg/day), with 68% below the EAR. Median selenium concentration in breastmilk (n = 

64) was 11 (10, 13) µg/L (Table 3.2). Using an estimated daily breastmilk intake of 750 

ml (30), the median estimated selenium intake for infants was 9 (8, 10) µg/day; 70% 

(45/64) were below the daily minimum of 10 µg/day suggested by Levander (31), and 

91% (58/64) below the Adequate Intake of 12 µg/day (32). 

For breastfeeding women, selenium concentration in breastmilk was weakly, 

positively correlated with 24-hour selenium excretion in urine as µg/day (r = 0.269, P 

= 0.032, see Appendix 16.2). Pregnant participants’ dietary selenium intake based on 

dietary assessment was not associated with selenium excretion as either µg/L (r = 

0.053, P = 0.692) or µg/day (r = 0.230, P = 0.079). However, the classification of intakes 
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as either above or below the EAR were associated for the two methods of assessing 

dietary intake (P = 0.016, Fisher’s Exact Test). 

Table 3.3 Estimated selenium intake in pregnant and breastfeeding women, infants and 
comparison to recommendations. 

Selenium Intake 
Pregnant  
(n = 59)  

Breastfeeding  
(n = 68) 

Infant 

(n = 64) 

Estimated selenium intake; median (p25, p75) 

Based on 24-hour urine, µg/day 

 

49 (40, 60) 
  

Based on 24 hour dietary recalls, µg/day  51 (39, 65)  51 (36, 80)  - 

Below EAR (55 µg/day) (n, %) 
Based on 24-hour urine  

 

35 (59) 
  

Based on 24-hour dietary recalls 36 (61) 45 (68) - 

Estimated selenium intake; median (p25, p75) 

Based on 750 ml breastmilk per day  
- - 9 (8, 10) 

Below (10 µg/day) (n, %) - - 45 (70) 

Below (12 µg/day) (n, %) - - 58 (91) 

a EAR = estimated average requirement, 55 µg/day for pregnant women and 65 µg/day for breastfeeding women. 

3.5 Discussion 

This study found 59–61% of pregnant and 68% breastfeeding participants had 

estimated selenium intakes below the EAR, suggesting this vulnerable group is at risk 

of an inadequate selenium intake. This supports the latest New Zealand Adult 

Nutrition Survey 2008/2009, which estimated that 44–72% of women aged 19–50 years 

had inadequate selenium intakes (33). Previous research shows that low selenium 

status is associated with an increased risk of thyroid enlargement, which may indicate 

compromised thyroid function (34). Iodine deficiency has previously been reported in 

both pregnant and breastfeeding women in New Zealand in the same cohort 

investigated in this study (16), and selenium deficiency could further compromise 

thyroid function. 

In the present study, dietary intake was assessed by three 24-hour dietary recalls, due 

to its low participant burden and good compliance. Under- or over-reporting is a 

concern for dietary assessment. As energy expenditure was not recorded, we were 
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unable to determine if participants had misreported dietary intake. A large daily 

variation of selenium intake was reported in an earlier study of American pregnant 

and postpartum women using duplicate-plate food and drink composites and dietary 

recalls (35). Single 24-hour recalls do not consider day-to-day variation, therefore 

repeated 24-hour dietary recalls are frequently used to estimate usual intake (36). 

In the current study, 24-hour urinary selenium excretion was used to estimate 

selenium intake. It is estimated that 50–60% of dietary selenium is excreted in urine 

(29), and selenium intake determined in this manner is suggested to be more accurate 

than dietary assessment data (37). However, collecting 24-hour urine samples requires 

motivated participants and is not practical for all populations or large studies. Urinary 

selenium has been shown to be a valid method to assess recent selenium intake in 

populations that live in selenium-deficient areas (37, 38). Research has shown that 

serum selenium and glomerular filtration rate increase in pregnancy, and studies have 

shown an increase in selenium in urine during pregnancy (39). Thus, the selenium 

excretion of 55% could be overestimated, so actual selenium intakes could be even 

lower than estimated values. A previous New Zealand study found selenium intake 

determined from a Food Frequency Questionnaire was associated with 24-hour urine 

excretion in pregnant women (39). Although the current study found no such 

association in pregnant women, the classification of intakes as either above or below 

the EAR was associated for the two methods of assessing dietary intake. 

Median intake of selenium for pregnant women in the current study was 51 µg/day 

based on dietary intake and 49 µg/day based on urine excretion. In previous studies 

of New Zealand pregnant women, Watson and McDonald found median intakes 

ranging between 33.5 µg/day excluding dietary supplements to 67 mcg/day including 

dietary supplements (40), however, these data were based on dietary assessment with 

no verification using biomarkers. The median selenium intake of 51 µg/day for 

breastfeeding women was higher than previously reported (46 µg/day) in the 1998–

1999 study of lactating mothers from the South Island of New Zealand (20). This was 

not unexpected, as selenium intake is typically lower in the South Island of New 
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Zealand, where bread is made from local wheat, compared to the North Island, where 

bread is manufactured from wheat imported from Australia, which has higher levels 

of soil selenium (12). It could also be due to changes occurring in diet in the last 20 

years. Even though selenium intake is higher among breastfeeding women in the 

current study than previously reported, many current intakes are still below the EAR, 

thus suggesting a risk of dietary inadequacy. 

Breastmilk selenium concentration is associated with maternal selenium intake 

and/or status. Selenium is generally higher in colostrum (26 µg/L), and then decreases 

to nadir levels in mature milk (1–3 months, 15 µg/L) (31). Median selenium breastmilk 

concentrations (11.3 µg/L) in the present study were similar to those reported in the 

South Island in 1992 (13.4 µg/L) (41) and also a recent study in the North Island (14 

µg/L) (42). Adequate selenium concentrations in breastmilk have been observed to 

maintain optimum selenium status in both preterm and term infants (26). For 

exclusively breastfed infants, breastmilk is the only source of selenium; in the current 

study, 70% of infants would not have achieved the 10 µg/day suggested as adequate by 

extrapolation from adults (31) and 91% did not achieve the Adequate Intake of 12 

µg/day (18). This suggests infants in the present study are at risk of selenium 

deficiency. 

The inadequate selenium intakes in this vulnerable population are of concern. Studies 

in rats have previously shown that in utero selenium deficiency can impair neonatal 

lung development (43). Maternal selenium status in French women was negatively 

associated with risk of wheezing in children aged 1–3 years; this could potentially lead 

to asthma later in life (44). Low selenium status in childhood in New Zealand has also 

been associated with increased risk of wheeze (45), for which New Zealand has a high 

incidence (46). Low maternal selenium status in Norwegian women has been 

associated with an increased risk of neonatal infections in the first 6 weeks of life and 

lower psychomotor score at six months (11). Adequate dietary intake of selenium has 

been suggested to be beneficial in improving mental outlook among the general 

population (47). Lower dietary selenium intake has also been associated with an 
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increased risk of de novo major depressive disorder among women (48). Selenium 

supplementation during early pregnancy has been found to reduce postnatal 

depression (49), which has a 7.8% to 16% prevalence in New Zealand (50). 

Determining selenium concentrations in blood (whole, plasma or erythrocyte), 

plasma selenoprotein P or GPx activity in blood (whole, plasma or platelet) are 

considered more reliable markers of selenium status (51, 52) However, urinary 

selenium excretion is associated with both plasma selenium and dietary intake in 

populations with low selenium intake (12).  A limitation of the current study is not 

measuring selenium or GPx activity in blood, however, determining daily urinary 

selenium excretion serves as a proxy measure for selenium intake and indicates the 

need for further research. 

This study included a small sample of pregnant and breastfeeding women who were 

predominantly well educated and more likely to be affluent, thus the sample is not 

representative of the New Zealand population. However, women who volunteer for 

health studies tend to be interested in health and motivated towards a healthy 

lifestyle, thus it is of concern that these women are at risk of selenium deficiency. 

Further, we would not expect such women to have a poorer health status than less 

affluent women. The age spread of infants may indicate that some infants were not 

exclusively breastfed, and consuming complementary food may impact on infant 

selenium intake.  

Additionally, supplement intakes could contribute to participants’ dietary selenium 

intake; however, only a small proportion of participants consumed selenium-

containing supplements. Thus, we were not able to meaningfully investigate the 

potential impact of supplement intake on other measures. 

3.6 Conclusions  

This current research suggests dietary selenium intake is a concern for pregnant and 

breastfeeding women and their infants in New Zealand. Further research is required 
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to assess selenium status among these groups by measuring biomarkers such as 

plasma selenium or GPx activity in blood selenium. Further investigations should also 

include all socioeconomic groups. It is essential that we assess whether suboptimal 

intake of selenium adversely affects thyroid function in this already iodine deficient 

population. As selenium is a nutrient with numerous roles, it is also necessary to 

investigate any effects of low intake on other health outcomes potentially related to 

selenium in the perinatal period, such as postnatal depression and impaired infant 

neurodevelopment. 
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Chapter 4 Study Protocol: Mother and Infant Nutrition 

Investigation in New Zealand (MINI Project): An Observational 

Longitudinal Cohort Study 
 

Chapter 4 describes the study protocol followed in the Mother and Nutrition 

Investigation (MINI) study. Ethics approval was obtained from the Health and 

Disability Ethics Committee (15/NTA/172) in December 2015. The study was registered 

with the Australian New Zealand Clinical Trials Registry (ACTRN12615001028594). This 

manuscript presents information on the research participant recruitment; the 

questionnaires used to collect data; methods used to estimate dietary intake; and 

maternal and infant anthropometry measurements. In addition, it details the process of 

biological sample collection and biomarker analysis of urine, breastmilk, blood, and nail 

clipping samples. It provides information on the study outcome measures, including 

iodine, selenium and iron intake and status; maternal thyroid function; longitudinal 

assessment of maternal mental health and infant neurodevelopment. 

A large volume of data has been collected in this observational longitudinal cohort 

study. Only certain data analyses are reported in this thesis, including data collected 

from the maternal questionnaires; weighed four-day dietary diary, maternal and infants’ 

anthropometric measures; thyroid gland volume determined via ultrasound; biological 

sample analysis of iodine, selenium and iron status; and thyroid hormone 

concentrations. Also, the thesis contains the results from assessing maternal mental 

health using the Edinburgh Postnatal Depression Scale. 

 

This Chapter has been published as: 

Jin Y, Coad J, Zhou SJ, Skeaff S, Benn C, Kim N, Pond RL, Brough L. Mother and Infant 

Nutrition Investigation in New Zealand (MINI Project): Protocol for an Observational 

Longitudinal Cohort Study. JMIR Res Protocol.2020;9(8): e18560. DOI: 10.2196/18560. 

PMID: 32852279 
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4.1 Abstract 

Background 

Thyroid dysfunction is associated with cognitive impairment, mood disturbance, and 

postnatal depression. Sufficient thyroid hormone synthesis requires adequate intake 

of iodine, selenium, and iron. Iodine deficiency was historically a problem for New 

Zealand, and initiatives were introduced to overcome the problem: (1) mandatory 

fortification of all bread (except organic and unleavened) with iodized salt (2009) and 

(2) provision of subsidised iodine supplements for pregnant and breastfeeding women 

(2010). Subsequent to these initiatives, most adults and children have adequate iodine 

status; however, status among breastfeeding women and their infants remains 

unclear. This paper outlines the methodology of the Mother and Infant Nutrition 

Investigation (MINI) study: an observational longitudinal cohort study of 

breastfeeding women and their infants. 

Objectives 

This study will determine women’s iodine intake and status between supplement 

users and nonusers; women’s intake and status of iodine, selenium, and iron relating 

to thyroid function; associations between women’s selenium status, thyroid function, 

and postnatal depression; and infants’ iodine and selenium status relating to first year 

neurodevelopment. 

Methods 

Breastfeeding women aged over 16 years with a healthy term singleton infant were 

recruited from Manawatu, New Zealand. Participants attended study visits three, six, 

and twelve months postpartum. Maternal questionnaires investigated supplement use 

before and after birth, iodine knowledge, and demographic information. Dietary 

assessment and urine, blood, and breastmilk samples were taken to measure iodine, 

selenium, and iron intake/status. The Edinburgh Postnatal Depression Scale was used 

repeatedly to screen for postnatal depression. Thyroid hormones (free 
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triiodothyronine, free thyroxine, thyroid stimulating hormone, thyroglobulin, 

antithyroglobulin antibodies, and thyroid peroxidase antibodies) were measured in 

blood samples, and thyroid gland volume was measured by ultrasound at six months 

postpartum. Infant iodine and selenium concentrations were determined in urine. 

The Ages and Stages Questionnaire was used to assess infant development at four, 

eight, and twelve months. 

Results 

Data collection was completed. Biological samples analysis, excluding nail clippings, 

is complete. Data analysis and presentation of the results will be available after 2020. 

Conclusions 

This study will provide data on the current iodine status of breastfeeding women. It 

will also provide a greater understanding of the three essential minerals required for 

optimal thyroid function among breastfeeding women. The prospective longitudinal 

design allows opportunities to examine women’s mental health and infant 

neurodevelopment throughout the first year, a crucial time for both mothers and their 

infants. 



144 
 

4.2 Introduction 

Postpartum women experience abnormalities in thyroid function at twice the 

prevalence of the general population (1). Thyroid hormone is essential in maintaining 

the human body’s metabolism, temperature (thermoregulation), and psychological 

mood (2). In a developing brain, thyroid hormone is responsible for adequate 

myelination, neuron cell maturation, and central nervous system development (3). 

Optimal thyroid function relies on adequate biosynthesis of thyroid hormones, which 

depends on three dietary minerals: iodine, selenium, and iron (4, 5). Pregnancy 

increases thyroid hormone turnover; women with limited thyroidal reserve or 

marginal iodine deficiency are at increased risk to develop thyroid dysfunction after 

birth (6), which is one of the most common endocrine disorders that postpartum 

women experience (7). 

Iodine is the major component of thyroid hormones and a regulator for the synthesis 

and secretion of the thyroid hormones triiodothyronine (T3) and thyroxine (T4). 

Selenium, as a component of the selenocysteine-containing proteins glutathione 

peroxidase, protects the thyroid gland from oxidative damage (5). Selenoproteins are 

required to convert T4 to T3, the active form of thyroid hormone. Iron is required for 

haem-dependent thyroperoxidase activity, which is required for the synthesis of 

adequate thyroid hormone. Selenium deficiency and iron deficiency anemia may 

negatively affect thyroid hormone synthesis by impairing selenium- and iron-

dependent enzyme activities, even if iodine status is adequate (5). Previous research 

has investigated iodine, selenium, and iron intake/status separately or a combination 

of any two of them among women of childbearing age (8) and postmenopausal women 

(9). However, further research is needed to explore all three micronutrients together, 

acknowledging their close relationship in thyroid hormone synthesis. 

Thyroid dysfunction is a significant health issue in New Zealand, with women 

diagnosed at five times the prevalence in men (10, 11). Concerning adequate thyroid 

function, iodine, selenium, and iron play important roles. In New Zealand, soils 
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provide low levels of available iodine and selenium, resulting in low concentrations in 

the food supply (12), hence in the diet (13). Iodine deficiency in early life is associated 

with impaired neurodevelopment (14). Iodine deficiency was a concern in New 

Zealand in the early years of the 20th century, but its prevalence was mostly reduced 

through the introduction of iodized salt in the 1930s. However, since the 1990s, a 

number of studies in New Zealand have shown iodine deficiency has reemerged in 

adults (15), pregnant and breastfeeding women (16, 17), school children (18) and 

breastfed infants and toddlers (19). To improve iodine status in New Zealand, two 

government initiatives were introduced: mandatory iodized salt in commercially 

made bread and bread products from September 2009 and the provision of iodine (150 

µg/day) supplementation for all pregnant and lactating women in 2010 (20). Although 

recent studies suggested that adults (21, 22) and children (23) in New Zealand may 

now have adequate iodine intake/status, both pregnant and breastfeeding women 

remain deficient. A pilot study of a small sample of self-selected highly educated 

pregnant and breastfeeding women assessed urinary iodine excretion, breastmilk 

iodine concentration, and blood thyroglobulin and suggested iodine deficiency (24). 

There is a need for a more robust investigation into the iodine status of postpartum 

women and their infants from a wide range of socioeconomic backgrounds. 

Low selenium status in New Zealand has been partially reversed by increased 

consumption of imported flour from Australia (which generally has higher selenium 

concentrations than flour produced in New Zealand) (25, 26). In addition, both 

pregnant and breastfeeding women have an increased requirement for dietary 

selenium due to the demands from the fetus and breastfed infants. Previous research, 

which investigated selenium status among postpartum women and their infants in 

New Zealand 20 years ago (27), measured urinary selenium excretion and plasma 

selenium and indicated that such women were at risk of selenium deficiency. To our 

knowledge only one small study of breastfeeding women, by our research group, 

assessed dietary selenium, urinary selenium excretion, and breastmilk selenium 
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concentration and suggested selenium inadequacy was still a concern (28). Research 

investigating selenium status among postpartum women and their infants is limited. 

Health professionals closely monitor the iron status of women during pregnancy. 

However, after birth, management of iron status can be inconsistent. Results from a 

UK multicentre study reported only 50% of postpartum women had hemoglobin levels 

checked after delivery (with 30% of those women confirmed as anemic), while the 

overall iron stores of participating women remained unexamined (29). Generally, 

postpartum women’s iron status recovers as a consequence of cessation of menstrual 

bleeding since conception or a minimal secretion of iron via breastmilk if 

breastfeeding (30). However, if women have suffered iron deficiency before and/or 

during pregnancy and/or have experienced significant blood loss during childbirth, 

their iron status may not reach optimal levels even if an intervention subsequently 

occurs. A New Zealand study of 186 women found 77% of women were not tested for 

hemoglobin levels after childbirth. Further, out of those most at risk (with low iron 

status during late pregnancy and high blood loss, exceeding 500 mL, during 

childbirth), few women were then retested for their iron status after 10 days 

postpartum (31). Iron status of postpartum women remains largely underreported. 

Low serum selenium has been identified as an independent risk factor for depression 

(32) and selenium supplementation has been observed to reduce postnatal depression 

(33). Postnatal depression is one of the main disorders women experience postnatally, 

its onset being timed at six weeks to six months after birth (34). Most women will 

recover from postpartum depression, though approximately one-quarter of affected 

women report being depressed when their infant reaches their first birthday (34). 

Using the measured criteria of postnatal depression on the Edinburgh Postnatal 

Depression Scale (EPDS), the prevalence of postnatal depression in New Zealand was 

about 8% in 1994 and 16% in 2006 (35). In the 2015 New Mothers’ Mental Health Survey 

(36), the prevalence was 14% and is now recorded as the most common disorder for 

mothers in their first year after childbirth (37). 
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Of additional concern, mothers are often reluctant or unable to seek help when they 

experience symptoms of postnatal depression (36). Such underdiagnosed and 

untreated mental health conditions affect both the mother and their children’s 

ongoing cognitive, emotional, and behavioral development (38). Despite other social 

and psychological etiology of depression, potential links between micronutrient 

status, thyroid hormone, and the risk of postpartum depression need to be further 

explored. This may help develop new preventive approaches to lower the risks of 

postpartum depression. 

4.3 Study objectives  

The study’s primary outcomes include investigating breastfeeding women’s iodine 

intake and status among supplement users and nonusers following the 

implementation of two government initiatives to improve iodine status; examining 

maternal iodine, selenium, and iron intake status; and exploring iodine, selenium, and 

iron status in maternal thyroid function. 

In addition, the study provides preliminary data on possible associations between 

women’s selenium status, thyroid function, and postnatal depression over a one-year 

period and infants’ iodine and selenium status in relation to neurodevelopment 

during their first year of life. Ultimately, this research will inform a future larger study 

of potential variables impacting maternal thyroid function and the risk of postnatal 

depression, together with early infant neurodevelopment. 

4.4 Methods 

4.4.1 Study design and overview 

The MINI study is an observational longitudinal cohort study spanning the first 

postpartum year. It was approved by the Health and Disability Ethics Committee 

(15/NTA/172) in December 2015. The study’s ethics approval was registered with the 
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Royal New Zealand Plunket Ethics Committee in June 2016. The MidCentral District 

Health Board in New Zealand also approved the study. 

The study is being conducted in the Human Nutrition Research Unit at Massey 

University, Palmerston North, New Zealand. The first study visit for participants is at 

approximately three months postpartum (3MPP), and follow-up assessments take 

place at six months (6MPP) and twelve months postpartum (12MPP) (Appendix 7). 

4.4.2 Selection criteria 

The target population for the study were healthy breastfeeding women aged over 16 

years who had birthed a healthy term singleton infant three months prior. Women 

were excluded if they developed significant health problems, such as metabolic 

disease or cancer. Women were excluded if they had been diagnosed or treated at any 

time for hyperthyroidism or hypothyroidism. Participants were required to live within 

or near the local Palmerston North area and be able to attend Massey University for 

scheduled study visits. Women of any ethnic and socioeconomic status were eligible. 

4.4.3 Recruitment and participation 

Posters to promote the study were placed at selected sites (General Practitioner 

surgeries, midwifery clinics, pharmacies, antenatal classes, ultrasound clinics, 

maternal wards in hospitals, local community playgroups, and early childhood 

centres, etc.). Local newspapers and social media sites were used to publicise the 

study. Local midwives, childbirth educators, and lactation consultants were asked to 

raise awareness of the MINI study to their clients. An effort was made to recruit 

women from a wide range of socioeconomic backgrounds and ethnic groups, 

including Maori, Pacific Islanders, and Asian women. Potential participants 

responded by recording an expression of interest online or via telephone or email. 

Prospective participants were provided with a study information sheet. Interested 

participants then completed a screening questionnaire to ensure eligibility. Written 

informed consent was obtained from all participants before their enrolment in the 
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study. Mothers also gave written content to their infants’ participation in the study. 

After providing informed consent, participants were assigned a unique identifier code 

and scheduled for their first study visit. 

4.4.4 Sample size calculation 

The main outcome measure was iodine excreted per day, and the sample size was 

calculated using G*Power 3.1 (Heinrich Heine University) based on data (mean and 

standard deviation) from a preliminary study of breastfeeding women (24). 

Calculation used one-way analysis of variance with two groups (95% power, 𝛼 = 0.05, 

two-tailed) and three repeat measures; 80 participants were needed, using expected 

mean daily urine iodine concentrations of 140 and 100 µg/L for iodine supplement 

users and nonusers, respectively, and a standard deviation of 60. 

4.4.5 Outcome measures 

4.4.5.1 Questionnaires 

At the initial visit, general baseline questions were asked about salt and supplements 

use, nutrition knowledge of iodine, tobacco and alcohol use, breastfeeding patterns, 

general health, and demographic information (including age, ethnicity, educational 

attainment, household size, and income). Potential changeable information including 

tobacco and alcohol use, breastfeeding patterns, and general health was also sought 

at the second and third visits. 

Participants were assessed about their general health and that of their infants by 

online questionnaire when infants reached six months and twelve months of age. 

During the postpartum period, stress may negatively affect immunity, and the 

occurrence of infection symptoms can be an estimated measurement of postpartum 

immune function. The Carr Infection Symptom Checklist, which has been validated 

for use with postpartum women (39), was used to measure the symptoms of infection 

experienced by the mother since the childbirth. The Infant Symptom Checklist (which 
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reports the frequency of symptoms of common illnesses in young infants) was used to 

measure the health of infants (39). 

The 10-item EPDS was completed online by participating women to assess any 

symptoms of depression and anxiety over the previous seven days. Women recorded 

severity of symptoms on a 4-point scale (40). Specified anxiety disorders were 

evaluated using the EPDS-3A, a cluster of selected question items numbered three, 

four, and five from the original EPDS (41). This is a validated tool to screen for 

probable anxiety and depression during the postpartum period. A cut-off point of 13 

or above was used to define high levels of depressive symptoms (36). Any woman 

whose score equalled 13 or above was advised to see her general practitioner for further 

evaluation as well as being provided with an information sheet containing postnatal 

depression services in New Zealand. Only study participants with the correct link 

supplied via emails could complete these questionnaires. All questions were answered 

in the same order. Participants could not go back to change their answers once the 

questionnaire was completed. Answers from incomplete questionnaires may be used 

for analysis. 

The first year of infant neurodevelopment was assessed using a parent-completed 

Ages and Stages Questionnaire (ASQ) when the infant was aged four, eight, and twelve 

months (42). These questionnaires were self-administered and completed in hard 

copies. This screening tool uses parent observation to assess child development and 

behaviour and records results in five developmental domains: communication, gross 

motor, fine motor, problem solving, and personal-social. There are six questions in 

each domain, with answers of yes, sometimes, or not yet. A yes indicates reaching the 

achievement with ten points awarded, a sometimes indicates partial achievement with 

five points awarded, and a not yet indicates not achieved with 0 points awarded. The 

sum score of each domain was calculated and compared with the cut-off scores 

reached, which were derived empirically by subtracting two standard deviations from 

the mean for each area of development (42). A score below the cut-off point indicates 

a fail on the ASQ. The questionnaires were used to assess the relationship between 
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maternal and infant iodine and selenium status, maternal iron status, and recorded 

early child neurodevelopment. 

4.4.5.2 Dietary Intake 

To assess participant dietary intake including nutrients that may be associated with 

mental health and child development including iodine, selenium, and iron intake, 

participants were asked to complete a weighed four-day diet diary within two weeks 

of the initial study visit. All four days were consecutive and included one weekend 

day. Each participant was requested to record food items, brands, amount consumed, 

and the content of the nutritional information panel if applicable. All food and 

beverage items consumed were weighed and measured with a QM-7288 electronic 

kitchen scale (Digitech), and household measurement cups and spoons were 

provided. The Digitech scale can weigh up to five kilograms with an accuracy to one 

gram; all women were shown how to use the scale to quantify food items. All 

participants received both written and oral instructions on how to complete the 

record, which included a written example of a one-day food record. Women were also 

asked to include dietary supplements consumed. When eating or dining out, 

participants were asked to estimate the portion size of all food eaten. The food record 

and equipment were collected, or return posted two weeks after the initial visit. 

A 69-item self-administrated semiquantitative iodine- and selenium-specific food 

frequency questionnaire, adapted from an Australian study of pregnant women (43), 

was used to estimate habitual maternal iodine and selenium intake at the first and 

third study visits. An iron-specific food frequency questionnaire, validated by other 

female population groups in New Zealand, was used to assess women’s iron-related 

dietary patterns (44) at the second study visit. Within two weeks of this visit, 

participants also completed a three-day estimated food dietary record for their infants 

to enable assessment of infant nutrient intakes at weaning periods. 

All dietary data were entered into Foodworks 9 Professional (Xyris Pty Ltd) online and 

analyzed using data sets from the New Zealand Foodfiles 2016 to estimate nutrient 
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intake. When food items were not included in Foodfiles 2016, new food items were 

created based on the information directly provided by participants (i.e. food packages) 

or from appropriate international databases from Australia and the United States. 

Estimates for iodine concentrations of categories of bread (e.g. white, fiber white, 

fruited, mixed grain) were based on data from the Ministry of Primary Industries (22), 

since iodine content has not been determined for all commercially made bread in New 

Zealand after the mandatory fortification of bread with iodized salt. It was difficult to 

quantify the amount of discretionary salt added to food. However, for women who 

reported using iodized salt, 48 µg of iodine (equivalent to one gram of salt) was added 

to their iodine intakes (21). Dietary supplements used by participants were entered 

into Foodworks as a new food item based on nutritional information obtained from 

the manufacturers. To ensure accuracy and completeness, a registered nutritionist 

(YJ) checked all dietary data and then transferred the data to SPSS Statistics (IBM 

Corporation) version 23 for statistical analysis. 

4.4.5.3 Anthropometry 

Maternal and infant anthropometry measurements were obtained at each study visit. 

Women’s weight was measured using the same annually calibrated weighing scale 

with a capacity of 150 kilograms (Detecto). Before standing on the scale, participants 

were asked to remove their shoes and to wear minimum clothes. Body weight was 

recorded to the nearest 0.1 kilogram. Height was measured by using a Toledo 

stadiometer and recorded to the nearest millimeter (45). Maternal body composition 

was determined using both bioelectrical impedance analysis (InBody230, InBody Co) 

and air displacement plethysmography (BodPod, COSMED SRL). Measurements were 

completed under the following conditions: minimal clothing, wearing swimming cap, 

before midday, after urination, normal room temperature (20℃ to 25℃), with no 

exercise, eating, drinking, or bathing/showering within two hours prior to 

measurement (preferably completing the measurement after breastfeeding the baby). 

On the day of the test, quality control steps for BodPod were carried out by following 
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the manufacturer’s instructions, with acceptance criteria being volume ±100 mL of 

actual volume and standard deviation ≤ 75 mL. 

Infant recumbent length was measured crown to heel using an infant length board 

and recorded to the nearest millimeter. Infant weight (without clothing and diapers) 

was measured using a baby weighing scale (Nagata Scale Co Ltd) and recorded to the 

nearest 10 grams. Infant head circumference was measured over the most prominent 

part on the back of the head (occiput) and just above the eyebrows (supraorbital 

ridges) by using a flexible non-stretch tape (45) and recorded to the nearest even 

millimeter. 

4.4.5.4 Ultrasound measurement of thyroid volume 

A portable ultrasound (uSmart 3200T Ultrasound System, Teratech Corp) equipped 

with a linear transducer (7 to 15 MHz) was used for the thyroid measurement. Women 

were examined in a supine position (an adequate neck extension was achieved by 

placing pillows under the shoulders). Longitudinal and transverse scans were 

performed. Measurements of anteroposterior diameter and width (mediolateral 

diameter) were obtained with electronic calipers on a transverse image. The maximum 

lobe length was measured on a longitudinal width. The total volume of each thyroid 

gland was the sum of the volumes of left and right lobes, excluding the volume of the 

isthmus but including any nodules and/or cystic areas. The formula used to calculate 

the volume for each lobe is anteroposterior diameter × width × length × 0.479 (46). A 

total volume greater than 18 mL was defined as thyroid enlargement based on the 

normative thyroid volume in iodine sufficient populations (47). Any participant with 

observed abnormalities was referred to clinical health professionals for further 

assessment. 

4.4.5.5 Biomarker analysis 

During each study visit, spot urine samples from each participating woman and her 

infant were collected to assess iodine, selenium, and creatinine excretion. All maternal 
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spot urine samples were collected in the morning and immediately frozen and stored 

at –20℃. Infant urine was collected using a 100 mL pediatric urine bag placed inside 

the diaper and checked every 10 minutes. The collected urine was frozen and stored 

at –20℃ for later analysis. Spot urine samples can be used to estimate iodine status of 

a population but not for individual iodine deficiency diagnosis (48). As creatinine 

output is relatively constant, the adjusted iodine/creatinine ratio (µg iodine per gram 

creatinine) can be used as a proxy measure of iodine excretion (49). However, the total 

dietary iodine and selenium intake for lactating women cannot be estimated from 

urinary output because some of the iodine and selenium is diverted to breastmilk.  

Lactating women were asked to provide a breastmilk sample (approximately 30 to 50 

mL) at each visit using an Allegro electric breast pump (Unimom NZ) if required. All 

breastmilk samples were collected before noon on the study visit day, and timing of 

breastmilk collection was not standardized. Breastmilk samples were analyzed for 

iodine and selenium concentration, allowing for estimations of infant intake of iodine 

and selenium based on 750 mL/d of milk production (50). 

Iodine and selenium concentration in both urine and breastmilk samples were 

determined by an accredited commercial laboratory (Hill Laboratories) using 

inductively coupled plasma mass spectrometry (ICP-MS) (51). Quality control 

procedures included analysis of blanks, analytical repeats, and certified reference 

material to ensure accuracy and precision. The Massey University Nutrition 

Laboratory measured creatinine using the Jaffe method in a Flexor E (Vital Scientific) 

biochemistry analyser. 

To assess further selenium status, toenail clippings from women and nail clippings 

from infants were collected. Toenail clippings have been used to determine selenium 

concentrations in large cohort or epidemiological studies, such as for the preeclampsia 

risk in pregnant women (52). The instruction for sample collection was explained to 

participants during each study visit and nail clippings were self-collected by 

participating women at home, with the collected samples brought back by the 
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participants at the following study visit. All toenail clippings were stored at room 

temperature prior to analysis. Nail clipping samples will be prepared by using the 

method adapted from nail zinc analysis (53). This involves washing all nail clipping 

samples by using five minutes contact with 25 mL portions in the order of acetone, 

water, acetone, water, and water (54). Selenium concentration will be measured by 

ICP-MS. 

During the second study visit, to assess blood hemoglobin concentrations, the 

handheld Hemocue Hb 201+ device (HemoCue America) was used, a standard in 

hemoglobin point-of-care testing (55, 56). It requires a finger prick and wicking of 

capillary blood into a pretreated microcuvette for analysis. Quality tests using 

external, liquid controls were necessary for each day of instrument use prior to sample 

analysis. 

A qualified and experienced phlebotomist collected non-fasting maternal venous 

blood samples (22 mL) at the second study visit. Samples were centrifuged and 

aliquoted into microcentrifuge tubes prelabeled with participant unique sample 

identification number and then stored at –80℃. In conjunction with the hemoglobin 

results, collected maternal venous blood samples were used to determine iron status 

by measuring soluble transferrin receptors and serum ferritin [using the 

chemiluminescent microparticle immunoassay (CMIA) method], which reflects iron 

storage, but if serum ferritin levels are increased during infection or inflammation, it 

may mask any iron deficiency results (57). Therefore, an inflammatory marker, C-

reactive protein, was measured [tested by an immunoturbidometric method analyzed 

on an Abbott C Series analyzer (Abbott Labs)]. 

Venous blood samples were assayed for hormonal biomarkers: free T3, free T4, and 

thyroid stimulating hormone via CMIA method; thyroglobulin (Tg, Beckman Coulter 

Access method); and antithyroglobulin antibodies (anti-Tg, CMIA method) at 

Canterbury Health Laboratories. Serum thyroglobulin has been suggested as an 

alternative method to assess individual iodine status reflecting a period of months 
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(58); to avoid potential underestimation of thyroglobulin, anti-Tg and thyroid 

peroxidase antibodies (TPOAb) were measured. Selenium status was assessed by 

determining the biomarker plasma selenium via ICP-MS method (59). 

Details of data and biological samples collected from both mothers and infants 

throughout the study period are summarized in Tables 4.1 and 4.2. 

Table 4.1 Summary of outcomes collected from participating women and their infants. 

Outcome Visit 1 Visit 2 Visit 3 

Dietary intake 
   

 
Maternal 4-day dietary diary x 

  

 
Maternal food frequency questionnaire–iodine/selenium x 

 
x 

 
Maternal food frequency questionnaire–iron 

 
x 

 

 
Infant 3-day dietary diary 

 
x 

 

Anthropometry 
   

 
Maternal weight and height x x x 

 
Maternal body composition via BodPod and BIA x x x 

 
Infant weight, height, and head circumference x x x 

Biochemistry 
   

 
Maternal spot urine samples x x x 

 
Maternal breastmilk samples x x x 

 
Maternal toenail clipping samples x x x 

 
Maternal venous blood samples 

 
x 

 

 
Maternal capillary blood samples 

 
x 

 

 
Infant spot urine samples x x x 

 
Infant nail clipping samples x x x 

Others 
   

 
Maternal thyroid gland volume via ultrasound 

 
x 

 

 
Maternal Edinburgh Postnatal Depression Scale results x x x 

 
Maternal self-reported health questionnaire x x x 

 
Maternal iodine nutritional knowledge questionnaire x 

  

 
Infant health questionnaire reported by mothers x x x 
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Table 4.2 Analysis from biological data collected at each study visit  

Samples Visit 1 Visit 2 Visit 3 
 

Mothers Infants Mothers Infants Mothers Infants 

Spot urine 
      

 
Iodine x x x x x x 

 
Selenium x x x x x x 

 
Creatinine x 

 
x 

 
x 

 

Breastmilk (if available) 
      

 
Iodine x 

 
x 

 
x 

 

 
Selenium x 

 
x 

 
x 

 

Blood 
      

 
Iodine statusa 

  
x 

   

 
Selenium statusb 

  
x 

   

 
Iron statusc 

  
x 

   

 
Thyroid functiond 

  
x 

   

Nail clippings for selenium 
      

 
Toenails x x x x x x 

 
Fingernails 

 
x 

 
x 

 
x 

a
Iodine status: testing thyroglobulin and antithyroglobulin. 

b
Selenium status: testing plasma selenium. 

c
Iron status: testing hemoglobin, serum ferritin, soluble transferrin receptors, and C-reactive protein. 

d
Thyroid function: testing serum free triiodothyronine, free thyroxine, thyroid stimulating hormone, and antithyroid peroxidase. 

 

4.4.6 Statistical analysis 

Statistical analysis will be performed using SPSS Statistics version 23. The Shapiro-

Wilk test will be used to test for data normality. Nonparametric data will be expressed 

as median (25th, 75th percentile), and parametric data will be expressed as mean and 

standard deviation. Bivariate correlations will be tested using the nonparametric 

Spearman 𝜌 correlation coefficient. Repeated-measures analysis of variance will be 

used to calculate continuous variables between groups. Nonparametric Mann-

Whitney U test (2-tailed) will be used to examine iodine intake and status between 
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supplement users and nonusers. Multiple regression model analysis will be used to 

determine the associations between iodine, selenium, iron status, and thyroid 

function, as well as considering confounding factors. Multivariate analysis will be used 

to examine possible associations between women’s selenium status, thyroid function, 

and postnatal depression and infant first year neurodevelopment. 

4.5 Results 

Recruitment traversed the 19-month period between June 2016 and December 2017, 

and a sample of 91 women-infant pairs was enrolled (Figure 4.1). Data collection has 

been completed. Biological samples analysis, excluding nail clippings, is complete. 

Data analysis and presentation of the results will be available after 2020. 

4.6 Discussion  

A unique aspect of this study is that it will investigate all three micronutrients 

responsible for adequate thyroid hormone synthesis concurrently, rather than each 

separately in isolation. This observational longitudinal cohort study will measure the 

iodine and selenium status of women repeatedly in their first year after childbirth, 

which provides an evaluation of their nutritional status. Iodine status among 

supplement users and nonusers will provide up-to-date data on this postpartum group 

in New Zealand around eight years after government interventions. Results will 

explore whether maternal iodine and selenium status could be used as a proxy 

measure of infant status. It provides an opportunity to examine the association of 

maternal iodine and selenium with infant neurodevelopment during their first year. 

This study explores selenium status using both short-term and long-term measures in 

relation to neurodevelopment at six months and twelve months of age, which has not 

been reported previously. Furthermore, the study results will add preliminary data on 

iron status of women at six months postpartum. 

Importantly, the study will investigate overall thyroid function of women at six 

months postpartum with respect to the risk of postnatal depression. Measurement of 
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thyroid hormones, thyroid stimulating hormone, TPOAb, Tg, and anti-Tg in serum as 

well as measuring thyroid gland volume via ultrasound will provide an overall picture 

of maternal thyroid function after childbirth. This is an opportune time to check 

thyroid status, especially as women with limited thyroidal reserve or iodine deficiency 

in pregnancy may develop postpartum thyroid dysfunction, one of the most common 

endocrine disorders women experience (6, 60). 

Additionally, there will be longitudinal assessment of mothers’ mental health via 

repeated screening by using the EPDS. The results may add to the literature in 

postpartum mental health status. Their offspring’s growth and neurodevelopment will 

be followed during the first postpartum year. The findings from this study have the 

potential to inform future public health policy and practice regarding postpartum 

women’s nutritional status and mental health together with infant health outcomes. 
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Figure 4.1 MINI Study Recruitment Flowchart 
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Chapter 5 Prevalence of thyroid dysfunction in postpartum 

women with suboptimal iodine and selenium and adequate 

iron status 
 

This chapter is the first of four articles (published and forthcoming) presenting the 

research findings from the MINI study, each, in turn, describing different features 

obtained from the analysis of data collected from the participating postpartum women 

and their infants. Despite the critical roles of iodine, selenium, and iron in synthesising 

thyroid hormones, limited research has investigated the interaction of these three 

nutrients simultaneously within the thyroid function (noted in Chapter 2).  This 

forthcoming article focuses on research objectives which investigate the roles of iodine, 

selenium, and iron status in maternal thyroid function, and explore maternal iron status 

at six months postpartum. It reports on postpartum women’s thyroid function including 

the prevalence of thyroid dysfunction; and maternal thyroid volumes which were 

compared to data from other countries. In addition, maternal status of all three 

nutrients are reported. This article presents further examination of the extent to which 

iodine status (urinary iodine concentration, breastmilk iodine concentration, serum 

thyroglobulin), selenium status (plasma selenium), and iron status (serum ferritin and 

soluble transferrin receptors) were likely to relate to maternal dysfunction among a 

cohort of women at six months postpartum. 

This forthcoming publication addresses hypothesis 1: Suboptimal iodine, selenium or 

iron status will impede maternal thyroid function at six months postpartum; and 

hypothesis 7: High prevalence of iron deficiency and iron deficiency anaemia exist in 

women at six months postpartum. 

 

 

This chapter has been submitted for publication to the Clinical Endocrinology 

and is currently under review.   
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5.1 Abstract 

Background 

Postpartum women experience thyroid dysfunction at twice the prevalence of the 

general population. Optimal thyroid function relies on adequate biosynthesis of 

thyroid hormones, which depends on three trace elements: iodine, selenium, and iron. 

Objective 

This study aimed to investigate thyroid dysfunction within a cohort of women at six 

months postpartum in relation to iodine, selenium, and iron status. 

Methods 

This cross-sectional study was part of an observational longitudinal cohort Mother 

and Infant Nutrition Investigation; data obtained at six months postpartum are 

reported. Thyroid hormones [free triiodothyronine, free thyroxine, thyroid 

stimulating hormone (TSH)] and thyroid peroxidase antibodies were measured. 

Urinary iodine concentration, breastmilk iodine concentration, serum thyroglobulin, 

plasma selenium, serum ferritin, and serum soluble transferrin receptors were 

determined. 

Results 

Mother-infant pairs (n = 87) were recruited at three months postpartum and followed 

up at six months postpartum (n = 78). Overall, 18% of women had thyroid dysfunction, 

and 4% of women had iron deficiency without anaemia. Median urinary iodine 

concentration was 85 (43, 134) µg/L, median breastmilk iodine concentration was 59 

(39, 109) µg/L, and median serum thyroglobulin at 11.4 (8.6, 18.6) µg/L, indicating 

iodine deficiency. Women with marginally lower plasma selenium were 1.14 % times 

more likely to have abnormal TSH concentrations (P = 0.001). 
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Conclusions 

There was a high prevalence of thyroid dysfunction. Plasma selenium was the only 

significant predictor of the likelihood that women had thyroid dysfunction within this 

cohort, who were iodine deficient and mostly had adequate iron status. Future 

research should investigate how selenium interacts with other micronutrients in 

thyroid function. 
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5.2 Introduction 

Thyroid dysfunction has been associated with anxiety, depression, cognitive deficit 

(1), and adverse effects on reproductive health (2). Thyroid dysfunction occurring in 

the first year after parturition is defined as postpartum thyroiditis (PPT). In 2017, the 

American Thyroid Association reported from different cohorts of studies the 

prevalence of PPT ranged from 1.1% to 16.7% (3). Most women initially diagnosed with 

PPT have normal thyroid hormones concentrations by the end of their first 

postpartum year (3). However, longitudinal follow-up studies have reported that 

between 12% and 30% of women developed permanent hypothyroidism three to five 

years after the original episode of PPT (4). Maternal thyroid dysfunction has been 

linked to the development of postnatal depression (5, 6), is weakly associated with 

reduced breastmilk production and milk-ejection reflex (“let-down”) (3) and may 

impact on infant neurodevelopment (7). 

Iodine, selenium and iron are essential for the synthesis of thyroid hormones (8, 9). 

Iodine is an integral component of thyroid hormones, thyroxine (T4) and 

triiodothyronine (T3). Selenium is a component of the selenocysteine-containing 

protein, glutathione peroxidase (GPx), which protects cells from damage by 

neutralising the excessive hydrogen peroxide generated during thyroid hormone 

synthesis (10,11). The deiodinases, which convert biologically inactive T4 into active 

T3, are selenoproteins (10). Furthermore, the activity of thyroid peroxidase, a haem-

dependent enzyme required for adequate synthesis of thyroid hormones, is impaired 

in iron deficiency (11). 

The interaction between selenium and iodine in synthesising thyroid hormones is of 

particular concern within New Zealand due to dietary insufficiency of both nutrients 

(12). Two New Zealand government initiatives aim to improve iodine status: the 

mandatory fortification of bread with iodised salt, introduced in 2009, and the 

provision of iodine supplements for all pregnant and lactating women introduced in 

2010 (13). Despite these initiatives, this population group continues have suboptimal 
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iodine intake and status (14). Selenium deficiency could potentially aggravate the 

negative consequences of mild iodine deficiency in this vulnerable group (15). Further, 

the iron status of postpartum women in New Zealand is rarely clinically determined, 

except in women who had significant blood loss during childbirth (16). 

This study aimed to investigate thyroid dysfunction in a cohort of women at six 

months postpartum in relation to maternal iodine, selenium, and iron status. 

5.3 Methods 

The Mother and Infant Nutrition Investigation (MINI) study was approved by the 

Health and Disability Ethics Committee, New Zealand (15/NTA/172) in December 2015 

(ACTRN12615001028594). Prior written consent was obtained from all participants. 

Infants’ participation was consented to by their mothers. 

5.3.1 Study design and participants 

The MINI study was an observational longitudinal cohort study spanning the first 

postpartum year in Palmerston North within the North Island of New Zealand. Data 

from six months postpartum are reported here, since biomarkers for iodine, selenium 

and iron status, and thyroid hormone concentrations were only determined at this 

time point. Women aged 16 years and older, who had given birth to a healthy term 

singleton infant aged less than three months of age, were invited to join the study. 

Women were excluded: 1) if they had pre-existing or developed significant health 

problems, such as metabolic disease and cancer; 2) if they had been diagnosed or 

treated at any time for hyperthyroidism or hypothyroidism. The full study protocol is 

published (17). 

5.3.2 Data collection  

5.3.2.1 Assessment of thyroid hormones and thyroid volume 

Thyroid hormone biomarkers [serum free T3, free T4, and thyroid stimulating 

hormone (TSH)] were measured using the chemiluminescent microparticle 
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immunoassay (CMIA) method at Canterbury Health Laboratories, New Zealand which 

is accredited with International Accreditation New Zealand (IANZ). The adult 

reference ranges of these biomarkers were used due to the absence of reference ranges 

specifically for lactating women. Thyroid peroxidase antibody (TPOAb) concentration 

above 10 IU/mL was regarded as indicative of a potential autoimmune disorder. 

Reference ranges for euthyroid are: TSH, 0.40 - 4.00 mIU/L; free T4, 10 - 24 pmol/L; 

and free T3, 2.5 - 6.0 pmol/L. These reference ranges were used to calculate the 

prevalence of thyroid dysfunction including subclinical hypothyroidism (TSH > 4.00 

mIU/L and normal free T4), overt hypothyroidism (TSH > 4.00 mIU/L and free T4 < 

10 pmol/L), subclinical hyperthyroidism (TSH < 0.40 mIU/L and normal free T4), and 

overt hyperthyroidism (TSH < 0.40 mIU/L and free T4 > 24 pmol/L) (18). 

Thyroid volume was measured by a portable ultrasound (Terason uSmart3200TTM, 

Terason Corporation, USA) equipped with a linear transducer (7 - 15 MHz). The 

measurements of anteroposterior diameter and width (mediolateral diameter) were 

obtained with electronic calipers on a transverse image. The total volume of the 

thyroid gland was the sum of the volumes of left and right lobes, excluding the volume 

of the isthmus, but including any nodules and/or cystic areas. The formula used to 

calculate the volume for each lobe was: Anteroposterior diameter x Width x Length x 

0.479 (19). A total volume greater than 18 mL was defined as thyroid enlargement, 

based on the normative thyroid volume in an iodine sufficient population (20,21). Any 

participant with observed abnormalities was referred to clinical health professionals 

for further assessment. 

5.3.2.2 Assessment of iodine, selenium, and iron status 

Maternal non-fasting spot urine samples (approximately 120 mL) were collected to 

measure maternal urinary iodine concentration (UIC, µg/L) and creatinine 

concentration to determine maternal urinary iodine creatinine ratio (µg/g). Women 

were asked to provide a breastmilk sample (approximately 30-50 mL) using an electric 

breast pump, if needed, and breastmilk iodine concentration (BMIC, µg/L) was 
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determined. The timing of breastmilk collection was not standardised, although all 

samples were collected before 12 noon on the study visit day. All samples were stored 

without preservative at -20°C prior to analysis. Non-fasting maternal venous blood 

samples (22 mL) were collected by a phlebotomist, and separated into plasma and 

serum samples before storage at -80°C. 

Iodine concentrations in urine and breastmilk samples were determined by Hill 

Laboratories, Hamilton, New Zealand, using inductively coupled plasma mass 

spectrometry (22). Quality control procedures included analysis of blanks, analytical 

repeats, and spiked samples in order to ensure accuracy and precision. Calibration 

standards and checks were undertaken on every run with the limit of detection at 

0.002 mg/kg. Each batch (25 samples) of urinary samples was analysed together with 

an external reference standard (Seronorm Trace Elements Urine, L-2, Norway) giving 

a mean ± SD iodine concentration of 286 ± 12 µg/L, with a coefficient of variance (CV) 

of 4.2% (n = 14). Creatinine was measured in maternal urine using the Jaffe Method 

Flexor (Randox Assayed Multisera levels 2&3) at Massey University Nutrition 

Laboratory in Palmerston North. Each batch of breastmilk samples was analysed 

together with an external reference standard (Skimmed milk powder, Elements in 

organic matrix, European) giving a mean ± SD iodine concentration of 1.603 ± 0.029 

mg/kg, with a coefficient of variance (CV) of 4.9% (n = 6). 

Serum thyroglobulin (Tg) was measured by the Beckman Coulter Access method and 

anti-thyroglobulin antibodies were determined by the CMIA method, at Canterbury 

Health Laboratories, Christchurch, New Zealand. Serum Tg has been suggested as a 

biomarker to assess individual iodine status reflecting a period of weeks or months 

(23, 24); if anti-thyroglobulin antibodies were detected positive (≥ 10 IU/mL), Tg 

concentrations were disregarded. 

Plasma selenium concentration was assessed by the inductively coupled plasma 

spectrometry method at Canterbury Health Laboratories, New Zealand (25). A plasma 
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selenium concentration of 95 µg/L has been suggested to saturate GPx activity (26), 

this was used as a cut off for the current study. 

Hemoglobulin (Hb), serum ferritin (SF), and soluble transferrin receptor (sTfR) 

concentrations were determined to evaluate maternal iron status. Hb concentrations 

were measured using a handheld Hemocue Hb 201+ device (HemoCue® Hb 201+, 

Sweden) (27). sTfR (using the Nephelometry method) was measured to determine iron 

demand versus iron supply. Serum ferritin (using the CMIA method) and C-reactive 

protein (CRP) were determined (using an immunoturbidimetric method analysed on 

an Abbott c series analyser), and, if CRP ≥ 8 mg/L (indicating inflammation), the 

serum ferritin concentration was disregarded (28). The iron status of participants was 

defined using the following definitions: sufficient iron stores: SF ≥ 12 µg/L and Hb ≥ 

120 g/L; anaemia without iron deficiency: SF ≥ 12 µg/L but Hb < 120 g/L; iron deficiency 

without anaemia (ID): SF < 12 µg/L and Hb ≥ 120 g/L; iron deficiency anaemia (IDA): 

SF < 12 µg/L and Hb < 120 g/L (29). 

5.3.3 Data analysis 

All data were analysed using IBM SPSS (Statistics Package for the Social Sciences, IBM, 

Armonk, NY, USA) version 20 and R statistical programme (Vienna, Austria. 

https://www.R-project.org/) (30). 

Data were tested for normality using the Shapiro-Wilk test. Non-parametric data were 

expressed as median (25th, 75th percentile), and parametric data expressed as mean (± 

standard deviation; SD). Bivariate correlations were tested using either the parametric 

Pearson correlations or the nonparametric Spearman’s rho correlation coefficient, as 

appropriate. Differences in categorical variables were tested by Fisher’s exact t-test. 

Plasma selenium concentrations were split into two categories (≥ 95 µg/L or < 95 µg/L) 

for comparison with the biomarkers; independent t-test was used for parametric data 

after natural log transformation (including UIC, urinary iodine creatinine, BMIC, Hb, 

SF, free T3:T4), biomarkers which were unable to be transformed into parametric data 

(including serum Tg, sTfR and TSH) were tested by Mann Whitney U test. A logistic 
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regression model was employed to consider factors likely to influence abnormal TSH 

concentrations. The dependent variable was binary, with the value of one being 

abnormal TSH concentration and the value of zero being normal TSH concentration. 

Age, parity and iodine status have been suggested as risk factors for maternal thyroid 

disease (31). Selenium is involved in thyroid autoimmunity (32) and iron deficiency 

impairs the synthesis of thyroid hormones (9). Therefore, age of participants; parity 

(categorical variable); UIC; BMIC; plasma selenium; and sTfR were selected as 

covariates to enter the logistic regression model simultaneously (Table 5.1). Average 

marginal effects are less sensitive to changes in the specification of the logistic 

regression model when compared to odds ratios (33). Therefore, average marginal 

effects were calculated to illustrate the effect of small changes in covariates on the 

binary dependent variable (TSH concentration). 

Table 5.1 Description of the variables entered the logistic regression model. 

Variables Description  Definition 

Dependent variable    

TSH  0 - Normal (0.4-4 mIU/L) 

1- Abnormal (< 0.4 mIU/L or > 

4.0 mIU/l) 

Abnormal TSH concentrations indicate 

thyroid dysfunction. 

Covariates    

Age of participants Continuous (Years) Age of participants in years 

Parity 1 – Primiparity 

0 - Multiparity 

The number of childbirths; single or 

multiple 

UIC Continuous (µg/L) Indicator for iodine status 

BMIC Continuous (µg/L) Indicator for iodine status  

Plasma selenium  Continuous (µg/L) Indicator for selenium status 

sTfR Continuous (mg/L) Reflection of functional iron status 

5.4 Results 

A total of 87 breastfeeding mother-infant pairs were recruited at three months 

postpartum, nine participating pairs dropped out from the study at six months 
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postpartum (n = 78). A description of characteristics of breastfeeding women and their 

infants at enrolment are shown in Table 5.2.  At six months postpartum, 31% (24/78) 

were exclusively breastfeeding, 4% (3/78) had stopped breastfeeding, with the 

remainder providing partial breastfeeding. Iodine, selenium, and iron containing 

dietary supplements were used by nine, one and six women, respectively. 

Table 5.2 Description of breastfeeding participants and their infants at recruitment. 

Maternal characteristics n % 

Maternal age, years (Mean ± SD) 31.5 ± 4.2  

Tertiary Education 67  77 

Ethnicity (Maori) 9  10 

Ethnicity (Caucasian) 66  76 

Ethnicity (Asian) 9  10 

Ethnicity (Other) 3  4 

Annual household income (Above median)* 54  62 

Primiparity 38  44 

Caesarean delivery 19  22 

Gestational ages at birth, weeks (Mean ± SD) 39.4 ± 1.5  

Age of infants at recruitment, days (Mean ± SD)  88.5 ± 14.8  

Infants birth weight, kilograms (Mean ± SD) 3.6 ± 0.6  

* Median annual household income based on Statistics New Zealand is 75,995 New Zealand dollars for the year ended June 2016 (36) 

5.4.1 Thyroid hormones and thyroid volume 

The median (p25, p75) maternal total thyroid volume was 6.1 (4.4, 8.4) mL, ranging 

from 2.2 to 15.2 mL, with none above 18 mL which is the suggested cut-off of thyroid 

enlargement for women (21). Based on maternal thyroid function markers, 18% (13/74) 

had thyroid dysfunction, with 8% (6/74) having positive TPOAb indicating 

autoimmune thyroid disorders (Table 5.3). Positive TPOAb was correlated with 

abnormal TSH (r = 0.261, P = 0.025). Total thyroid volume was weakly, positively 

associated with serum free T4 (r = 0.314, P = 0.006).  
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Table 5.3 Thyroid function biomarkers and thyroid dysfunction prevalence (n = 74). 

Thyroid markers Median (p25, p75) 

TSH, mIU/L 0.96 (0.69, 1.33) 

free T4, pmol/L 12 (11, 12) 

free T3, pmol/L 3.8 (3.6, 4) 

free T3:T4 ratio 0.33 (0.31, 0.36) 

 n (%) 

TPOAb (+)a 6 (8) 

Subclinical hypothyroidismb 0 (0) 

Overt hypothyroidismc 2 (3) 

Subclinical hyperthyroidismd 11 (15) 

Overt hyperthyroidisme 0 (0) 

a
TPOAb ≥ 10 IU/mL indicates positive. 

b
Subclinical hypothyroidism: TSH > 4.0 mIU/L and 10 < free T4 < 24 pmol/L. 

c
Overt hypothyroidism: TSH > 4.0 mIU/L and free T4 < 10 pmol/L 

d
Subclinical hyperthyroidism: TSH < 0.4 mIU/L and 10 < free T4 < 24 pmol/L 

e
Overt hyperthyroidism: TSH < 0.4 mIU/L and free T4 > 24 pmol/L. 

 

5.4.2 Iodine, selenium, and iron status  

The WHO (2007) defines iodine deficiency in a population by using the median UIC 

and suggests a cut-off for deficiency in non-pregnant women below 100 µg/L (34). 

Maternal median UIC was 85 (43, 134) µg/L, indicating deficiency (35). Median BMIC 

was 59 (39, 109) µg/L, below 75 µg/L which has been suggested as the index of 

sufficient infant iodine intake (36). After excluding nine women with positive Tg 

antibodies, median Tg was 11.4 (8.6, 18.6) µg/L, above the suggested cut-off of 10 µg/L, 

and suggests iodine deficiency (37, 38, 39). All three biomarkers indicated iodine 

deficiency in this cohort of postpartum women. Median maternal plasma selenium 

was 105.8 (95.6, 115.3) µg/L; with 23% (17/74) below 95 µg/L, suggesting inadequate 

status as this concentration is required to saturate GPx activity (26). 
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During childbirth, 17% (13/78) of women experienced severe blood loss (> 500 mL), 

46% (6/13) received an iron transfusion and 15% (2/13) had a blood transfusion. Six 

women reported taking iron-containing supplements of either 60 mg (5/6) or 5 mg 

(1/6) daily. Mean Hb was 132.5 ± 9.00 g/L. Median SF was 41 (27, 78) µg/L after 

excluding three women with elevated CRP. Median sTfR was 1.12 (1.00, 1.26) mg/L, 

with 4% having elevated values suggesting iron-deficient erythropoiesis (40). In total, 

90% (64/71) of women were classified as having sufficient iron stores. Four 

participants were classified as having anaemia without iron deficiency. Only three 

women were classified as being ID, and no participants were classified as having IDA. 

Women who had a plasma selenium concentration below 95 µg/L had a significantly 

lower urinary iodine creatinine ratio, SF and TSH, and a higher serum Tg, compared 

to women with an adequate plasma selenium concentration (≥ 95 µg/L) (Table 5.4). 

Table 5.4 Iodine and iron status based on plasma selenium cut-off at 95 µg/L. 

 
Median  
(25th,75th percentile) 

Plasma Se 
(< 95 µg/L) 
n = 17 

Plasma Se 

(≥ 95 µg/L) 
n = 57 

Independent  
t-Test 
P value 

UIC µg/La 58 (38,116) 89 (42, 159) 0.318 

Urinary iodine creatinine 
µg/ga 

99 (63, 159) 145 (93, 208) 0.024 

BMIC µg/La 56 (38, 90) 62 (39, 114) 0.769 

Hb g/La 133 (123, 139) 132 (126, 140) 0.865 

SF µg/La 29 (17, 50) 48 (30,81) 0.024 

free T3:T4 
a  0.33 (0.32, 0.35) 0.33 (0.30, 0.36) 0.996 

   Mann-Whitney U 
test P value 

Serum Tg µg/Lb 23.6 (10.6,34.0)  10.2 (8.6, 15.8) 0.017 

Serum sTfR mg/Lb 1.18 (1.11, 1.35) 1.10 (0.97, 1.25) 0.063 

TSH mIU/Lb 0.62 (0.04, 1.17) 1.02 (0.77, 1.50) 0.005 

a 
Data become normally distributed after natural log transformation 

b 
Data remans non-parametric after natural log transformation  
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5.4.3 Iodine, selenium and iron status and thyroid hormone concentrations  

All women using iodine-containing supplements (9/74) had normal TSH 

concentrations, while 20% (13/65) who did not use iodine-containing supplements 

had abnormal TSH concentrations. The proportion of women with thyroid 

dysfunction was higher in those who had plasma selenium concentrations below 95 

µg/L compared with women who had plasma selenium concentrations of 95 µg/L or 

above (41% vs. 10.5%, P = 0.008). 

The logistic regression showed a negative but statistically significant coefficient of 

plasma selenium, and the marginal effect suggests women with lower plasma 

selenium were 1.14 % times more likely to have abnormal TSH concentrations. 

However, none of other covariates had a significant effect when entered the model 

(Table 5.5). Although UIC was weakly correlated with BMIC, the variance impact 

factor was close to one, thus no correction was needed for the multicollinearity. 

No significant correlations were observed between biomarkers for iron status (Hb, SF 

and sTfR) and thyroid hormone concentrations. There were no statistically significant 

differences in iron status observed between women with abnormal and normal TSH 

concentrations. 

Table 5.5 Logistic model of factors affecting abnormal TSH concentrations (n = 69) 

 Coefficients  P > [z]  Marginal effect 

Age of Participants 0.117 0.185 0.01356 

UIC ug/L 0.004 0.181  0.00048 

 BMIC ug/L -0.000 0.973 -0.00003 

Plasma Se ug/L -0.103 0.001 -0.01144 

Parity -0.323 0.761  -0.02516 

Serum sTfR mg/L -1.222 0.300  -0.16920 
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5.5 Discussion 

This cross-sectional study of 78 women at six months postpartum found thyroid 

dysfunction in 18%, including 3% with overt hypothyroidism, and 15% with subclinical 

hyperthyroidism. This was higher than a previous study of Australian women (n = 748) 

which detected 11.5% with thyroid dysfunction at six months postpartum (41). In New 

Zealand (2006/2007), 4.8% of adults aged from 18 to 80 years old registered with 

General Practices had thyroid dysfunction (42), however, the prevalence in women of 

childbearing age was not determined. Median thyroid volume (6.1 mL) in the MINI 

study was similar to that estimated in a study of Cuban women (6.4 mL) aged 18-50 

years who lived in iodine sufficient areas (43). There was no obvious thyroid 

enlargement observed in the current study, however, ultrasound echogenicity of the 

thyroid gland was not examined, which has been suggested as a predictor in thyroid 

dysfunction development (44). A follow-up study in the United Kingdom has 

suggested that women experiencing PPT may present hypoechogenicity (structural 

changes revealed in ultrasound images) during the first postpartum year, but most 

were improved by the 77-81 month-follow-up (45). 

In the MINI study, low selenium status was the only significant predictor of the 

likelihood that women had thyroid dysfunction. Women with a plasma selenium 

concentration below 95 µg/L had a higher likelihood of experiencing thyroid 

dysfunction (41.2%), compared to only 10.5% in women with a plasma selenium 

concentration above 95 µg/L. This aligns with the results of a large Chinese 

observational study (n = 6152) which reported a higher prevalence of thyroid disease 

in people living in a low selenium region  compared to those living in an adequate 

selenium region  (31% vs 18%, P < 0.001) (46). The authors suggested low selenium 

may result in inadequate expression of selenoproteins, hence less protection of the 

thyroid gland from oxidative damage. In the current study, women with a plasma 

selenium concentration below 95 µg/L had a significantly lower TSH and SF, but 

higher serum Tg, compared to women with adequate plasma selenium 

concentrations. Although, median TSH and SF concentrations in the low versus high 
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selenium groups were significantly different, these were still within the normal range. 

However, median serum Tg in women with low selenium status was double the 

suggested normal concentration of 10 µg/L, indicative of iodine deficiency. Similar 

dietary sources contribute to the intake of iodine and selenium. Low selenium may 

exacerbate the consequences of iodine deficiency in this group of postpartum women, 

due to the requirement for both selenium and iodine for the synthesis of thyroid 

hormones (12). 

Iodine status (UIC or BMIC) was not a predictor of thyroid dysfunction in the current 

study, which was not entirely unexpected as UIC has high intraindividual variation (10 

-15 urine samples are suggested for assessing habitual status) (47). This could also be 

due to a small number of women who had abnormal thyroid hormones, and that 

thyroid hormones may remain in the normal range even in a mild-to-moderate iodine 

deficient population (35). In contrast, a cross-sectional study of Australian women at 

six months postpartum (n = 149) found a lower median UIC was significantly 

associated with TSH above normal concentrations (48). The current study found 

women using iodine-containing supplements (9/74) presented with normal TSH 

concentrations, while 20% (13/65) of women not using iodine-containing supplements 

were found to have abnormal TSH concentrations. This suggests there is a beneficial 

effect from iodine supplementation on thyroid function. However, it is inconclusive 

since the numbers using iodine-containing supplements were too small. 

It was unexpected that most women at six months postpartum achieved adequate iron 

status, with only 4% being iron deficient without anaemia (ID). The low rate of ID in 

the current study could be due to the protective effects of six-months’ lactational 

amenorrhoea. However, a previous study of American women up to six months 

postpartum (n = 220) reported that 12.7%  were ID, and women up to six months 

postpartum from low income groups had a fourfold increased risk of ID compared to 

than their non-pregnant counterparts (49). In the current study, 62% reported a 

household income above the median New Zealand household income (50). Although 

iron status in the current cohort was mostly adequate, further research is required to 
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ascertain the iron status of low-income postpartum women in New Zealand, who are 

known to consume a diet having lower iron bioavailability (51). 

Iron status in the current study was not associated with thyroid hormone 

concentrations, which may be due to the predominantly adequate iron status of the 

women. However, a nationally representative study of pregnant Swedish women, who 

lived in an area of iodine deficiency (median UIC at 139 µg/L), reported that lower iron 

status (sTfR to SF ratio) predicted elevated levels of TSH (≥ 4.0 mU/L) and lower 

concentrations of T4 (< 100 nmol/L). The authors suggested that a low iron status 

blunts the activity of the haem-dependent enzyme (thyroid peroxidase) which results 

in a reduction of thyroid hormone synthesis (52). 

To the best of our knowledge, the MINI study was the first study to examine iodine, 

selenium and iron concurrently in relation to thyroid function of postpartum women. 

It is one of a few studies to investigate the prevalence of thyroid dysfunction in a New 

Zealand postpartum cohort. One of the strengths of this study is the comprehensive 

range of biomarkers used to measure iron, iodine, and selenium status. Measuring SF 

is a well-established method to assess iron storage (53), but it does not indicate the 

severity of iron depletion. Increased serum sTfR would indicate functional iron 

deficiency without being confounded by inflammation. Changes in the reciprocal 

relationship between these measures would provide a better understanding of iron 

status and allow early detection of ID before the occurrence of IDA (40). Iodine status 

was determined by measuring UIC and BMIC to reflect recent iodine intake and serum 

Tg which is a sensitive biomarker (23).  Plasma selenium reflects short-term status and 

was used because it is the most used biomarker in other published research which 

would allow comparison. A potential limitation of this study is not determining 

functional selenium status by measuring plasma or platelet GPx (54) to assess 

nutritional deficiency. Measuring selenium in nail clippings may be another useful 

assessment of selenium status over a long-term exposure time (up to 52 weeks) (55). 

Other limitations of the study include the small sample size, and the participants were 

predominantly well-educated and may not have been representative of the wider New 
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Zealand population. Less educated women are under-represented, thus their thyroid 

function, and their iodine, selenium, and iron status may require further investigation. 

Few participants reported the use of selenium-containing supplements; therefore, this 

study has insufficient statistical power to examine the effects of such supplementation 

on thyroid function. 

5.6 Conclusion  

A high prevalence of thyroid dysfunction (especially subclinical hyperthyroidism) was 

observed, and low plasma selenium significantly increased the risk of thyroid 

dysfunction within this group of iodine deficient postpartum women who 

predominantly had adequate iron status. Future studies are required to provide a 

greater understanding of the role of selenium status, when combined with other 

micronutrients, in optimal thyroid function. Measuring long-term selenium status via 

nail clippings, could identify the risk of selenium deficiency and its impacts on thyroid 

function. Strategies may be required to improve both iodine and selenium status, 

which may support optimal thyroid function for women during perinatal period. 
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Chapter 6 Use of iodine supplements by breastfeeding mothers is 

associated with better maternal and infant iodine status 

 

Although maternal iodine status did not predict thyroid dysfunction, the use of iodine-

containing supplements showed some beneficial effect (noted in Chapter 5). Despite the 

establishment of two government initiatives, continually monitoring iodine intake and 

status is essential (see Chapter 2). 

Chapter 6 is the second article (published) derived from the analysis of the MINI study 

data. It concentrates on the research objective to compare breastfeeding women’s iodine 

intake and status between iodine-containing supplement users and non-users. In 

addition, this article records the participant’s levels of iodine knowledge, including the 

importance of iodine in health; good dietary sources of iodine; the two New Zealand 

government initiatives to improve iodine status; and the behaviour related to iodine. 

Finally, the effects of maternal use of iodine-containing supplements on the iodine 

status of mothers and infants are discussed and implications for future research and 

practice are considered. 

This published article addresses hypothesis 2: Breastfeeding women who used iodine-

containing supplements will achieve better iodine status for themselves and their 

breastfed infants. 

 

This chapter has been published as: 

Jin, Y, Coad, J, Zhou, JS, Skeaff, S, Benn C, Brough L. Use of iodine supplements by 

breastfeeding mothers is associated with better maternal and infant iodine status. 

Biological Trace Element Research. 2020. DOI: 10.1007/s12011-020-02438-8  
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6.1 Abstract 

Background 

Adequate iodine status during conception, pregnancy and lactation is essential for 

supporting infant neurodevelopment. Iodine status in adults and children was 

improved after two New Zealand government initiatives, but the status of 

breastfeeding women is unknown. 

Objectives 

This study aimed to investigate the iodine intake and status of lactating mother-infant 

pairs at three months postpartum, and to assess maternal iodine knowledge and 

practice. 

Methods 

Iodine intake was estimated by a weighed four-day diet diary (4DDD). Maternal 

urinary iodine concentrations (UIC) in spot urine, breastmilk iodine concentrations 

(BMIC), infant UIC were measured. Questions about iodine specific knowledge and 

practice were asked. 

Results 

In 87 breastfeeding mother-infant pairs, maternal iodine intake was 151 (99, 285) 

µg/day, 58% had an intake below the Estimated Average Requirement (EAR) of 190 

µg/day. Maternal median UIC (MUIC) was 82 (46, 157) µg/L indicating iodine 

deficiency (i.e. < 100 µg/L). Women who used iodine-containing supplements had a 

significantly higher MUIC (111 vs 68 µg/L, P = 0.023), and BMIC (84 vs 62 µg/L, P < 

0.001) than non-users. Infants fed by women using iodine-containing supplements 

had a higher MUIC (150 vs 86 µg/L, P = 0.036) than those of non-users. 66% (57/87) 

of women had no or low iodine knowledge. The iodine knowledge score was a 

statistically significant predictor of consuming iodine-containing supplements [(beta 

= 1.321, P = 0.008)]. 
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Conclusions 

Despite a decade of initiatives to increase iodine intakes in New Zealand, iodine 

knowledge was low, iodine intake and status of these lactating women were 

suboptimal, but women who used iodine-containing supplement were more likely to 

achieve adequate status. 
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6.2 Introduction 

Iodine is an essential trace element for thyroid hormone synthesis. Adequate thyroid 

hormone is required for the myelination of the central nervous system during the early 

postnatal period (1). Severe iodine deficiency may result in iodine deficiency disorders, 

such as goitre, and may negatively affect infant growth and mental development (2, 

3), even at mild to moderate iodine deficiency (4). 

During lactation, an adequate iodine intake is required for maternal thyroid function, 

and iodine is also secreted into breastmilk (5). Breastfed infants depend on the iodine 

content in breastmilk to ensure their optimal thyroid function during the first six 

months of life (3, 6). Therefore, it is essential that lactating women have adequate 

iodine status for their own health and that of their newborns. In countries with low 

iodine intake from dietary sources, supplementation is recommended for 

breastfeeding mothers (5). 

In New Zealand, soils provide low levels of available iodine, resulting in low 

concentrations in the food supply (7), and hence the diet (8). Iodine deficiency was a 

concern in New Zealand in the early 20th century, but its prevalence was mostly 

reduced through the introduction of iodised salt after the 1930s (9). However, mild 

iodine deficiency re-emerged in the 1990s (9, 10, 11, 12, 13). To improve iodine status, 

two New Zealand government initiatives were introduced: mandatory fortification of 

bread with iodised salt in 2009, and the provision of a subsidised iodine supplement 

(150 µg) for all pregnant and lactating women in 2010 (14). Subsequent studies have 

demonstrated that most adults (15, 16) and children (17) in New Zealand have achieved 

adequate iodine intake and status, but the status of pregnant and breastfeeding 

women is unknown. A pilot study assessed a small sample of self-selected highly 

educated breastfeeding women before (n = 25 and 32; 2009) and after (n = 34 and 36; 

2011) these initiatives, by testing their urinary iodine excretion, breastmilk iodine 

concentration and blood thyroglobulin; the results suggested iodine deficiency (18). 
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Globally, personal knowledge empowers people to make optimal decisions in dietary 

practices, including choice of food and use of supplements. Good general nutrition 

knowledge by women during pregnancy has been reported in the United Kingdom 

(19). However, researchers remained concerned about very low awareness of iodine-

specific recommendations for pregnant women (19). Poor knowledge of important 

food sources of iodine for women of reproductive age living in the UK/Ireland has 

been reported (20). Breastfeeding women from Norway and Australia had low 

knowledge of the importance of iodine in normal child growth and development, or 

sources of iodine, which may have contributed to their iodine deficiency (21, 22, 23). 

Overall, very few studies investigating iodine knowledge, practice, intake and status 

of breastfeeding women have eventuated.  

The aims of this study were: to evaluate iodine intake and status of breastfeeding 

women at three months postpartum; and to assess current iodine knowledge and 

practice of breastfeeding women in New Zealand. 

6.3 Materials and methods 

6.3.1 Participants and recruitment 

The Mother and infant Nutrition Investigation (MINI) followed a cohort of women 

from three months postpartum over the first year postpartum (24). This paper reports 

on data from three months postpartum. Healthy breastfeeding women were recruited 

from June 2016 to December 2017. Participants were required to live within or near the 

local Palmerston North area and be able to attend scheduled study visits. Women aged 

16 years and older, who had given birth to a healthy term singleton infant at around 

three months old were invited to join the study. Women were excluded: 1) if they had 

pre-existing or developed significant health problems, such as metabolic disease 

including uncontrolled diabetes and cancer; 2) if they had been diagnosed or treated 

at any time for hyperthyroidism or hypothyroidism. Written consent was obtained 

from all participants, mothers provided consent for their infants. 
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6.3.2 Data collection at three months postpartum 

6.3.2.1 Assessment of iodine status 

Non-fasting maternal (approximately 120 mL) and infants’ spot urine samples 

(approximately 20 mL) were collected to measure urinary iodine concentrations. 

Women were asked to provide a breastmilk sample (approximately 30-50 mL) 

expressed by hand or with an electric breast pump if needed. Timing of breastmilk 

collection was not standardised. All biological samples were collected between 0900 

and 1200 on the study visit day. Samples were stored without preservative at –20°C 

prior to analysis. 

Iodine concentrations in maternal and infant urine and breastmilk samples were 

determined by Hill Laboratories, Hamilton, New Zealand, using inductively coupled 

plasma mass spectrometry (25). Quality Control procedures included analysis of 

blanks, analytical repeats and spiked samples in order to ensure accuracy and 

precision. Calibration standards and checks were undertaken on every run with the 

limit of detection at 0.002 mg/kg. Each batch (25 samples) of urinary samples was 

analysed together with an external reference standard (Seronorm Trace Elements 

Urine, L-2, Norway) giving a mean ± SD iodine concentration of 286 ± 12 µg/L, with a 

coefficient of variance (CV) of 4.2% (n = 14). Creatinine was measured in maternal 

urine using the Jaffe Method Flexor (Randox Assayed Multisera levels 2&3) at Massey 

University Nutrition Laboratory in Palmerston North. Each batch of breastmilk 

samples was analysed together with an external reference standard (Skimmed milk 

powder, Elements in organic matrix, European) giving a mean ± SD iodine 

concentration of 1.603 ± 0.029) mg/kg, with a coefficient of variance (CV) of 4.9% (n 

= 6). 

6.3.2.2 Assessment of iodine intake and practice 

Iodine intake was estimated from a weighed four-day diet diary (4DDD). Participants 

were asked to complete the food record within two weeks of the initial study visit. The 
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four days were consecutive and included one weekend day. Detailed food items, 

brands, amount consumed, and the content of the nutritional information panel if 

applicable were recorded. All food and beverage items consumed were weighed with 

an electronic kitchen scale (Digitech, QM-7288), or measured using household 

measurement cups and spoons, which were provided. All participants received both 

oral and written instructions as to how to complete the record, which included a 

written example for one day. Women were also asked to include any dietary 

supplements consumed each time, including the brand and dose. When eating or 

dining out, participants were asked to estimate the portion size of all food eaten. All 

dietary data were entered in Foodworks 9 Professional (Xyris software, Brisbane, 

Australia), and analysed using data sets from the New Zealand Foodfiles 2016 to 

estimate nutrient intake. Where food items were not included in Foodfiles 2016, new 

food items were created based on the information directly provided by participants 

(i.e. food packages), or from appropriate international databases from Australia and 

the United States. To ensure accuracy and completeness, a registered nutritionist (YJ) 

checked all dietary data. Iodine-containing supplement use 24 hours prior to the 

biological sample collection was also collected via a separate question at the study 

visit day. This was also used in statistical analysis of biological variables to compare 

supplement users with non-users. 

Iodine related practice was investigated via a self-administered online questionnaire. 

Participants reported on the type of salt they usually used individually at the table or 

in cooking, and on their habitual use of iodine-containing supplements in pregnancy 

and lactation together with the brand, dose, and duration of consumption. Women 

were asked to give reasons if they chose not to take any supplements at any stage. 

Iodine contribution from discretionary iodised salt was added as 48 µg/day to 

individual’s dietary intake (15), for those who had reported regular use of iodised salt 

at the table or in cooking. 

For a population to have a very low prevalence of inadequate dietary intake, the 

mean/median intake should be above the Recommended Daily Intake (RDI); while 
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the percentage below the Estimated Average Requirement (EAR) approximates the 

proportion that is at risk of dietary inadequacy, according to the EAR cut-point 

method (26, 27). Current intakes based on the 4DDD were compared to Australian 

and New Zealand recommendations; the EAR and RDI for iodine for lactating 

women,190 and 270 µg/day, respectively (28). 

6.3.2.3 Assessment of iodine knowledge 

Iodine knowledge was assessed in two parts. Firstly, four questions examined iodine 

knowledge: Q1 and Q3 (each has only one correct answer); Q2 (four correct answers) 

and Q4 (three correct answers) (Appendix 9). One point was awarded to each correct 

answer given, and a maximum of nine points were generated (Table 6.1). Secondly, 

participants were asked to identify good or poor food sources for iodine from a list of 

12 food items (Appendix 9). Two points were awarded to each correctly identified good 

food source (high contribution of iodine to a normal New Zealand diet, e.g. fish and 

milk); one point was awarded to each correctly identified poor food source (19). If all 

parts were answered correctly, a maximum 17 points were generated. Those who 

gained more than 14 points from the second part of the questionnaire were awarded 2 

points towards their final knowledge score, while those gaining between 10-13 points 

were awarded one point towards their final knowledge score. Total iodine knowledge 

scores were determined from the two parts ranging from 0 to 11 and categorised as 

follows: no knowledge (0-2 points), low knowledge (3-5 points), medium knowledge 

(6-8 points), and high knowledge (9-11 points) (Table 6.4). 

6.3.2.4 Other assessments  

Sociodemographic characteristics of the mothers including age, ethnicity, educational 

attainment, smoking status, household size and income were collected on the initial 

study visit. Information on infants’ birth was collected from the “Well Child Tamariki 

Ora” book (New Zealand child health record) provided by participants, including 

gestational age at birth, birth weight, and date of birth which was used to calculate 

the ages of infants at the day of study visit. 



197 
 

Table 6.1 Iodine knowledge score calculation and number (%) of participants. 

Questions Correct choices Points  n (%) 

1) Why iodine is 

important 

Need iodine for thyroid gland 1 64 (74) 

2) Health issues 

associated with  

iodine deficiency 

Goitre 1 42 (48) 

Birth defects 1 33 (38) 

Mental retardation  1 23 (26) 

Impaired physical development during 

childhood 

1 28 (32)  

3) Awareness of iodine 

deficiency in NZ 

Yes 1 42 (48) 

4) Awareness of NZ 

government initiatives 

Mandatory iodised salt fortification of 

bread 

1 18 (21) 

Recommended routine taking iodine 

supplements – pregnant 

1 78 (90) 

Recommended routine taking iodine 

supplements – breastfeeding 

1 49 (56) 

5) Identify good food 

source for iodine 

   

 Poor  0 68 (77) 

 Some  1 16 (18) 

 Good  2 3 (3) 

 Maximum Total  11  

 

6.3.3 Data Analysis 

All data were analysed using IBM SPSS (Statistics Package for the Social Sciences, IBM, 

Armonk, NY, USA) version 20. Data were tested for normality using the Shapiro-Wilk 

test. Non-parametric data were expressed as median with interquartile range (25th,75th 

percentile) and parametric data expressed as mean (± standard deviation; SD). 

Bivariate correlations were tested using the nonparametric Spearman’s rho correlation 
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coefficient. Mann-Whitney U test was used to examine iodine status between 

exclusively breastfeeding and mixed feeding (providing breastmilk and infant 

formula) women and their infants. Differences in iodine status between iodine-

containing supplement users and non-users were tested with a nonpaired t-test after 

log transformation of these variables. Logistic regression was used to predict the 

likelihood of using iodine-containing supplements based on all variable(s) entered 

simultaneously: education attainment, parity, household income, and iodine 

knowledge scores. Logistic regression was fitted to examine the likelihood of a higher 

iodine knowledge score (> 5), based on all variable(s) entered simultaneously: 

educational attainment, habitual use of iodised salt, habitual use of iodine-containing 

supplement during this pregnancy. Chi-square tests were used to examine whether 

women with higher education (tertiary or lower than tertiary) or higher income 

(above or below the median income of New Zealand population) were more likely to 

habitually use iodine-containing supplements during this pregnancy and lactation 

(iodine practice). 

6.4 Results 

In total, 87 breastfeeding mother-infant pairs were recruited at three months 

postpartum. The mean age of the women was 32 years, and 83% were exclusively 

breastfeeding (no other food or drink, not even water, except breastmilk) at three 

months after childbirth (Table 6.2). Compared with the 2013 New Zealand Census data 

among women aged 30-34 years, this sample had a lower proportion of Māori (10% vs. 

13%), a higher percentage of Caucasians (76% vs 60%), and a similar proportion of 

Asians (10% vs. 8%) (29), a higher proportion of women who achieved a tertiary 

qualification (77% vs. 61%) (30), and 38% reported an annual household income below 

the national median for 2016 ($NZ75995) (31). In addition, 23 women reported that 

they had been smoking but most stopped after becoming pregnant, apart from one 

woman who continued. Further, three women stopped smoking during this 

pregnancy, but started again after the birth. 
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Table 6.2 Description of breastfeeding participants and their infants. 

Maternal characteristics n % 

Maternal age, years (Mean ± SD) 31.5 ± 4.2  

Tertiary Education 67  77 

Ethnicity (Māori) 9  10 

Ethnicity (Caucasian) 66  76 

Ethnicity (Asian) 9  10 

Ethnicity (Other) 3  4 

Annual household income (Above median)* 54  62 

Primiparity 38  44 

Caesarean birth 19  22 

Gestational ages at birth, weeks (Mean ± SD) 39.4 ± 1.5  

Age of infants, days (Mean ± SD)  88.5 ± 14.8  

Infants birth weight, kilograms (Mean ± SD) 3.6 ± 0.6  

* Median annual household income based on Statistics New Zealand is 75,995 New Zealand dollars for the year ended June 2016 (31). 

6.4.1 Iodine status  

Iodine deficiency in a population is defined by the median urinary iodine 

concentration (MUIC); the WHO guidelines (2007) currently recommend the cut-off 

as 100 µg/L for lactating women (32). Maternal MUIC (25th, 75th percentile) in the 

current cohort was 82 (46, 157) µg/L below 100 µg/L (32), which indicated iodine 

deficiency in this population of breastfeeding women (Table 6.3). Infant MUIC of 115 

µg/L was lower than the suggested cut off for infant MUIC of 125 µg/L based on the 

Estimated Average Requirement of 72 µg/day of infants aged two to five months 

derived from a Swiss study of infants (33). The MUIC of women who were exclusively 

breastfeeding was not significantly different from those who were mixed feeding (78 

vs. 117 µg/L, P = 0.511); the MUIC of infants who were exclusively breastfed was not 

significantly different from those who were mixed breastfed (111 vs. 134 µg/L, P = 

0.280). Median breastmilk iodine concentration (BMIC) of 69 µg/L was below 75 µg/L 



200 
 

which has been suggested as an index of sufficient iodine intake (34). Women who 

used iodine-containing supplements achieved significantly higher MUIC (111 vs 68 

µg/L), maternal urinary iodine creatinine ratio (197 vs 96 µg/g) and BMIC (84 vs 62 

µg/L) than non-supplement users (P < 0.001). Infants from women who used iodine-

containing supplement attained a higher infant MUIC of 150 (97, 193) µg/L, above the 

recommended cut-off of 125 µg/L, while infant MUIC from infants of non-users was 

86 (53, 171) µg/L (P = 0.036). 

The iodine knowledge score was statistically significant predictor of consuming 

iodine-containing supplements [(beta = 1.321, P = 0.008)], while educational 

attainment, parity, household income, breastfeeding patterns were not predictors. 

Although educational attainment and household income was weakly correlated, the 

variance impact factor equals to one, thus no correction was required for the 

multicollinearity. 

Table 6.3 Maternal and infant iodine status  

Median  
(p25, p75) 

Total Iodine- 
containing 
Supplement 
users 

Iodine- 
containing 
Supplement non-
users 

P 
Value1 
 

Numbers of participants (n) 
87 35 52 - 

a Maternal MUIC µg/L 82 (46, 157) 111(46, 240) 68 (44, 123) 0.023 

Maternal urinary creatinine 
g/L 0.6 (0.3, 1.1) 0.6 (0.2, 0.9) 0.7 (0.3, 1.3) 0.131 

Maternal urinary iodine 
creatinine ratio µg/g 124 (77, 231) 197 (129, 335) 96 (69, 169) <0.001 

bInfant MUIC µg/L 115 (69,182) 150 (97, 193) 86 (53, 171) 0.036 

cBMIC µg/L 69 (52,119) 84 (68, 167) 62 (47, 81) <0.001 
a

 Maternal MUIC cut-off is 100 µg/L (32); 
b

 Infant MUIC cut-off is 125 µg/L (33); 
c
 BMIC cut-off is 75 µg/L (34). 

1
 As determined by unpaired t-test 
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6.4.2 Iodine intake and practice 

Median estimated iodine intake including iodine supplements based on 4DDD was 151 

(99, 285) µg/day below the RDI of 270 µg/L, with 58% below the EAR of 190 µg/day 

(Table 6.4). Median iodine intake for women using iodine-containing supplements 

was 289 µg/day, significantly higher than for non-users (120 µg/day, P < 0.001). For 

women using iodine-containing supplements, median iodine intake was above the 

RDI with only 10% (3/30) below the EAR, whereas median intakes for non-users were 

below the RDI with 89% (42/47) below the EAR. 

Table 6.4 Maternal iodine intake based on 4DDD. 

Estimated iodine intake, 

µg/day 

Total Iodine-containing 

Supplement users 

Iodine-containing 

Supplement non-users 

Numbers of participants (n) 77 30 47 

Median  

(p25, p75) 

151  

(99, 285) 

289  

(250, 356) 

120  

(984, 145) 

Below the EAR of 190 µg/day 

n (%) 45 (58) 3 (10) 42 (89) 

 

Despite iodised salt being available in New Zealand for over 80 years, only 51% (44/87) 

reported using iodised salt at the table or in cooking. Median consumption of fortified 

bread with iodised salt was 56 (36, 105) g/day, which is about 1.5 slices (based on 38g 

per slice of bread) (15), and iodine obtained from fortified bread was 23 (15, 41) µg/day. 

Median contribution of fortified bread to the total iodine intake was 15% (7%, 27%). 

Eighty-six percent (75/87) of women took iodine-containing supplements (ranging 

from 150 to 270 µg iodine per day, with 79% (59/75) consuming the government 

subsidised iodine of 150 µg/day) during pregnancy but this reduced to 46% (40/87) 

during lactation (ranging from 100 to 250 µg iodine per day, with only one person 

consuming a supplement containing less than 150 µg/day iodine, and 58% (23/40) 

consuming the government subsidised iodine). Habitual iodine-containing 
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supplement use during pregnancy was moderately correlated with education 

attainment (r = 0.434, P < 0.001), but not household incomes. Further Chi-square test 

showed during pregnancy, women with a tertiary education were more likely to use 

iodine-containing supplements than those who has not obtained tertiary education 

(94% vs 58%, P < 0.001). During lactation, habitual iodine-containing supplement use 

was not associated with either educational attainment or household incomes. The 

reasons for not taking iodine supplement during lactation included: 1) never being 

advised to do so by health professionals (31%, 16/87); 2) believing adequate nutrient 

intake was achieved from their overall diet (24%, 12/87); and 3) not remembering to 

take supplements daily (22%, 11/87). 

6.4.3 Iodine knowledge and its related iodine intake/status 

The median iodine knowledge score was 5 (3, 6), and 66% (57/87) of women had no 

or low iodine knowledge (Table 6.5). Forty-eight percent (42/87) of women identified 

that goitre was related to iodine deficiency (Table 6.1). When considering two 

government initiatives to combat iodine deficiency, only 21% (18/87) of women 

reported being aware of iodine fortification of bread. Although 90% (78/87) knew that 

iodine supplementation is recommended during pregnancy, the figure dropped to 

56% (49/87) for awareness that iodine supplementation is also recommended for 

breastfeeding women. Overall, the iodine knowledge score was moderately correlated 

with the estimated iodine intake (r = 0.304, P = 0.007). The iodine knowledge score 

was weakly correlated with iodine status determined by the maternal urinary iodine 

creatinine ratio (r = 0.250, P = .026), but not associated with maternal UIC (r = -0.026, 

P = 0.811) or BMIC (r = - 0.009, P = 0.931). The habitual use of iodised salt was a 

statistically significant predictor of a higher iodine knowledge score [(beta = 0.975, P 

= 0.042)], while educational attainment and habitual iodine-containing supplement 

use during pregnancy were not. 
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Table 6.5 Categorised total iodine knowledge scores (n = 87). 

Categories of scores (points) Indicators n (%) 

0-2 No knowledge  18 (21) 

3-5 Low knowledge 39 (45) 

6-8 Medium knowledge 24 (27) 

9-11 High knowledge 6 (7) 

6.5 Discussion 

6.5.1 Iodine intake/status of iodine-containing supplement users and non-

users 

The MINI study found iodine deficiency was present in this sample of New Zealand 

breastfeeding women, despite the implementation of two government initiatives to 

improve iodine status. The maternal MUIC for current study participants (82 µg/L), 

was below the WHO cut-off suggesting deficiency, although it was similar to that 

reported among lactating women (74 µg/L) in the pilot study carried out in the same 

region one year after the government initiatives had been implemented (18). Although 

lower than reported among Australian breastfeeding women (125 µg/L) from a post-

fortification study (35), this was not unexpected due to a relatively higher iodine 

content in the Australian food supply in comparison to that in New Zealand (36). In 

the current study, there was not a significant difference in maternal and infant MUIC 

between women who were exclusively breastfeeding and those who were mixed 

feeding (providing breastmilk and infant formula) (78 vs 117 µg/L, P = 0.511; 111 vs 134 

µg/L, P = 0.280), although both maternal and infant MUIC from  women who were 

mixed feeding were higher than the suggested cut-offs of 100 µg/L (32) and 125 µg/L 

(33) respectively for iodine adequacy. Careful interpretation of this result is needed as 

the lack of statistical power from the low numbers of mixed feeding women (n = 11) in 

this study. Potentially supplementing breastfeeding with infant formula may increase 

UIC for both mothers and their infants in this study cohort. The overall iodine status 

of breastfeeding women remained deficient, which raises concern regarding the long-
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term effectiveness of the present strategies in establishing iodine sufficiency. Further 

studies on the long-term effects on infants’ neurodevelopment are required to 

determine definitions of the levels of iodine deficiency, as there for other population 

groups. 

In the present study, maternal and infant MUIC, BMIC, and maternal urinary iodine 

creatinine ratio were all significantly higher for women who used iodine-containing 

supplements compared to non-users. Median values for women who used iodine-

containing supplements were higher than recommended cut-offs suggesting 

adequacy; this was not observed for non-users. Similarly, an Australian post-

fortification study of 60 breastfeeding women reported a significantly higher MUIC 

from iodine supplement users (206 µg/l) than non-users (97 µg/L) and identified 

iodine deficiency among breastfeeding women who did not consume iodine 

supplements (23). This finding was consistent with the results from a supplementation 

trial in an iodine deficient area, in Morocco, where maternal supplementation of one 

dose of 400 mg iodine in early lactation effectively provided adequate iodine for their 

breastfed infants up until the age of six months (37). Our results suggest that 

appropriate supplementation of iodine during breastfeeding will effectively improve 

iodine status for both women and their breastfed infants. 

The estimated median iodine intake of lactating women in the current study based on 

the 4DDD suggested an inadequate intake. However, the median intake in women 

who used iodine-containing supplements was 289 µg/day above the RDI, with only 

10% below the EAR compared to median intake of 120 µg/day in the women who did 

not take supplements with 89% below the EAR. The inadequate iodine intake in this 

vulnerable population is of concern. Significant differences of the median iodine 

intake between iodine-containing supplements users (139 µg/day) and non-users 

(126µg/day) was reported in a Danish adult study (DanThyr), where only 34% of the 

participants used iodine supplements ranging from 50-150µg/day (38). However, the 

median iodine intake in both groups were below the RDI for adults at 150 µg, which 

may due to low levels of iodine supplementation. An observational study of 
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Norwegian pregnant women also reported an improvement of median iodine intake 

among supplement users [122 µg/day with 28% below the Nordic Nutrition 

Recommendations (NNR) of 175 µg/day], compared to non-users [116 µg/day with 80% 

below the NNR], however, the percentage of those using iodine-containing 

supplements was not reported (39). 

6.5.2 Iodine knowledge and iodine intake/status 

In the current study only 56% of breastfeeding women were aware of the 

recommendation of iodine supplementation during lactation, although 90% were 

aware of the need during pregnancy. This was reflected in 86% of current study 

participants reporting using iodine-containing supplements during pregnancy, which 

is compatible to 81% reported in a large pregnancy cohort study (n = 783) in Australia 

(40), but only 46% during breastfeeding which is lower than 57% of lactating women 

(41) who reported using iodine-containing supplements in an Australian study. A 

previous study in 2011 in Palmerston North, New Zealand indicated that there was a 

low awareness of the need for iodine supplements for breastfeeding women, with only 

35% reporting use of any iodine-containing supplements (18). Recently, low use of 

iodine-containing supplements among both pregnant and lactating women was also 

found in the United States (42). Currently, iodine-only supplements (government 

subsidised) and a suitable range of dietary supplements containing iodine are known 

to be available within New Zealand. Consumers, however, may become confused as to 

which may be the most desirable for their own personal circumstances. Women on a 

tight budget cannot afford the cost of government subsidised iodine-only 

supplements outside the free antenatal care period (six weeks after birth) from their 

registered general practitioners (GPs). A New Zealand study reported that 13% of 

women who received prescriptions for iodine supplements did not fill their 

prescription (43). In the current study, iodine knowledge score was the largest 

predictor for the use of iodine containing supplements by breastfeeding women, but 

educational attainment and household income were not predictors. Whereas, a 

previous large multicentred study of pregnant women in New Zealand (n = 968) 



206 
 

suggested low use of iodine-containing supplements among women with low 

education and income, despite the New Zealand Government subsiding the cost (44). 

The present study also found women with a tertiary education were more likely to 

consume iodine-containing supplements during pregnancy, but household income 

did not play a significant role in iodine-containing supplement use. This finding could 

be useful for targeting future educational interventions around iodine. 

The lack of awareness of the need for iodine supplementation during lactation is 

concerning. In New Zealand pregnant women are most reliant on midwives and GPs 

for their postnatal health advice. A 2014 Australian study investigating antenatal care 

(45), reported that even GPs could not correctly identify the best dietary food sources 

of iodine, and had expressed limited knowledge of the existing recommendations of 

iodine supplementation in Australia. The research found that a majority of Australian 

GPs questioned confirmed that they did not openly recommend iodine supplements 

to their patients (45). More recently an Australian-wide survey examined health 

professionals’ knowledge about iodine supplementation for pregnant and 

breastfeeding women, and results showed a clear lack of awareness of the appropriate 

dose and duration (46). Both Australian studies highlighted a need for iodine specific 

nutritional education initiatives being disclosed to all primary health care providers. 

Despite the current recommendation for taking iodine supplements during pregnancy 

and breastfeeding in New Zealand (14), the time at which supplement use should 

commence is currently under debate, To maintain adequate iodine status throughout 

pregnancy and lactation, adequate iodine stores in  the thyroid prior to conception 

are essential. The time required for iodine to be absorbed then incorporated into 

thyroid hormones may be several weeks. A recent study of women from Tasmania, 

Australia has reported a higher MUIC from women who were supplemented with 

iodine at 150 µg/day prior to conception than those who started supplementation 

during pregnancy (196 vs 140 µg/L, P = 0.032) (47). Starting iodine supplementation 

after a confirmed pregnancy could be too late for the iodine to have maximal effect 

(48). Thus, inadequate iodine stores prior to pregnancy may result in sub-optimal 
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iodine nutrition in mothers, their foetuses and infants, even if iodine supplementation 

commences after conception and continues throughout lactation. 

In the current study the iodine knowledge score was moderately correlated with the 

estimated iodine intake based on 4DDD. A previous study in the United Kingdom/and 

Ireland also had found a positive association between iodine knowledge and dietary 

iodine intake in women of childbearing age (20). However, in this study, iodine 

knowledge scores were not associated with maternal UIC, this aligns with a Norwegian 

lactating women’s study (21). The lack of association could be due to the variation in 

UIC due to hydration status (49). Further, a weak association was recorded with the 

maternal urinary iodine creatinine ratio (µg/g), which has been suggested to be a more 

reliable biomarker for iodine status (50). 

The current study was not able to compare iodine intake and status by ethnicity. The 

2014/2015 New Zealand Health Survey found both Maori and Asian women achieved 

the recommended MUIC cut-off of 100 µg/L for iodine adequacy (108 µg/L and 121 

µg/L, respectively), when compared to European women of 86 µg/L (51). A 

significantly higher BMIC was also reported in non-Caucasian South Australian 

mothers (n = 944), when compared to that of Caucasians, suggesting that different 

dietary behaviour or supplement use during lactation may contribute to these 

differences (40). 

6.5.3 Strengths and limitations 

The strength of this study was that it examined iodine intake and status in 

breastfeeding women coupled with knowledge and practice in New Zealand. It is the 

first study to report both breastfeeding women and their infants’ iodine status 

following the introduction of mandatory iodine fortification. Dietary intake was 

assessed using weighed 4DDD which is considered the gold standard of dietary 

assessment (52). To enable an overall understanding of iodine practice, iodine-

containing supplement use was assessed in three ways. Firstly, it was reported at the 

time of urine and breastmilk sample collection to allow accurate reflection on the 
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impacts of using supplements on biochemical measures. Secondly, women were also 

asked to include any dietary supplements consumed (including iodine-containing 

supplements) in their 4DDD to ensure correct reflection of their dietary iodine intake. 

Finally, retrospective data on their habitual use of iodine-containing supplements 

during this pregnancy and lactating period were collected to evaluate iodine practice 

among these breastfeeding women, as both pregnant and lactating period are critical 

in fetus and infant neurodevelopment. 

A limitation of this study is bias, women with pre-existing iodine knowledge may have 

been attracted to participate. Women in this study were better educated than the New 

Zealand population, typically, women who volunteer to participate in such studies are 

often more interested and motivated about health than the general population. 

However, if the iodine status of these women is inadequate, it is likely that women 

who are less well-educated and under-represented will have even poorer iodine status. 

Although this is a cohort study, dietary intakes and knowledge data were only assessed 

at three months postpartum, because this is a critical period of infant motor and 

neurodevelopment. A limitation of this study is its small sample size; therefore, the 

results need to be interpreted with caution. 

The use of a single spot urine samples can be affected by maternal hydration status; 

however, urinary creatinine values were determined to reduce the variation in 

maternal hydration. Due to the small sample of infant urine we were not able to 

measure creatinine in these samples, however there is less variation in infant 

hydration status. There is a high level of intra-individual variation in iodine intake 

research shows ten samples are required to determine habitual intake (53), thus using 

repeated measuring could have better predicted iodine status. (54). Iodised salt 

consumption was difficult to estimate accurately since the frequency and quantities 

recorded in the 4DDD can never be completely reliable. Therefore, 48 µg iodine per 

day was included for those women who self-reported regular usage of iodised salt at 

the table and/or in cooking (15) This method of estimation may still reflect a possible 

under or overestimate of iodine intake in this cohort. 



209 
 

6.6 Implications for research and practice 

Iodine deficiency of breastfeeding women after initiatives to improve iodine status is 

concerning, especially for those who do not use iodine-containing supplements. Only 

56% of participants were aware of the need for iodine supplements during lactation. 

There was also low awareness of the importance of iodine in health and good dietary 

sources of iodine. Further public health initiatives are important to ensure that both 

health professionals and women become aware of the need for iodine 

supplementation during lactation. It is essential that health professionals providing 

postnatal healthcare should promote iodine specific nutrition education to protect 

both maternal and infant short-term and long-term health. 
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Chapter 7 Iodine status of postpartum women and their infants 

aged 3, 6 and 12 months - Mother and Infant Nutrition 

Investigation (MINI) 
 

This chapter continues to report the research findings from the MINI study regarding 

iodine. One of the most important findings (noted in Chapter 6) was that breastfeeding 

women remain iodine deficient at three months postpartum, and only women who 

followed the recommendation of taking iodine-containing supplements achieved 

adequate status. This then led on to further investigation of iodine status in mothers 

and infants over the first postpartum year. This forthcoming publication centres on the 

research objective to examine iodine intake and status of postpartum women and their 

infants at three, six and twelve months postpartum. It describes the iodine status of 

mothers and their infants at all three time points by assessing urinary iodine 

concentrations; urinary iodine creatinine ratios; and breastmilk iodine concentrations. 

An increased expression of sodium iodide symporter in mammary glands increases 

iodine secretion in breastmilk (noted in Chapter 2). However, it is not clear how 

maternal iodine excretion is partitioned between urine and breastmilk during lactation. 

To address this research gap, this article will present the results from the analysis of 

data collected from exclusive breastfeeding mothers at three months postpartum. 

This article addresses hypothesis 3: Postpartum women and their infants will remain 

iodine deficient, despite two New Zealand government initiatives to improve iodine 

status. 

 

This chapter has been submitted for publication to the British Journal of 

Nutrition and is currently under review.  
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7.1 Abstract 

Background 

Iodine is essential for adequately synthesising thyroid hormones. These hormones play 

a key role in the neurodevelopment of infants and children during the first three years 

of age. Few studies have investigated mother and infant iodine status during the first 

postpartum year. 

Objectives 

This study aims to describe iodine status of supplement users and non-users (for both 

mothers and infants) at three, six, twelve months postpartum (3MPP,6MPP,12MPP). 

Partitioning of iodine excretion, between urine and breastmilk, of exclusive 

breastfeeding women at 3MPP was determined. 

Methods 

Maternal spot urinary iodine concentration (UIC), breastmilk iodine concentration 

(BMIC) and infant UIC were determined. 

Results 

In total 87 mother-infant pairs were recruited at 3MPP, followed at 6MPP (n = 78) and 

12MPP (n = 71). Maternal median UIC (MUIC) (p25, p75) at 3MPP [82 (46, 157) µg/L], 

6MPP [85 (43, 134) µg/L] and 12MPP [95 (51, 169) µg/L] were < 100µg/L. The use of 

iodine-containing supplements increased MUIC only at 3MPP. Median BMIC (p25, p75) 

at three time points [69 (52, 119) µg/L], [59 (39, 108 µg/L], and [35 (26, 54) µg/L] were 

below 75 µg/L. Infant MUIC (p25, p75) at 3MPP [115 (69,182) µg/L] and 6MPP [120 (60, 

196) µg/L] were below 125 µg/L. Among exclusive breastfeeding women at 3MPP, an 

increased partitioning of BMIC (highest proportion 60%) was shown at lower iodine 

intakes, along with a reduced fractional iodine excretion in urine (lowest proportion 

40%), indicating a protective mechanism for breastfed infants’ iodine status. 
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Conclusions 

In conclusion, this cohort of postpartum women was iodine deficient. Iodine status of 

their breastfed infants aged three and six months were suboptimal. Further research of 

the association between iodine status, infant thyroid function and neurodevelopment 

outcomes are necessary. 
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7.2 Introduction 

Iodine is an essential micronutrient for adequate production of thyroid hormones, 

including triiodothyronine (T3) and thyroxine (T4). Insufficient synthesis of thyroid 

hormones may impair the neurodevelopment of infants and children, particularly, in 

the first three years of life (1, 2). During lactation, maternal iodine requirement 

increases to allow the secretion of iodine into breastmilk and to maintain maternal 

thyroid hormone concentrations. Studies have suggested that during lactation 

mammary glands are able to concentrate 20-50 times more iodine than maternal 

blood due to the active sodium-iodide symporter (NIS) (3). The World Health 

Organization (WHO) recommends exclusive breastfeeding during the first six months 

of life, and to continue to breastfeed for up to two years and beyond (4). Exclusively 

breastfed infants rely fully on their mothers for an adequate iodine supply to 

synthesise sufficient thyroid hormones during the first six months, thereafter infants 

obtain additional iodine from appropriate complementary foods (5). 

The first postpartum year is important for women to re-adjust and meet their 

changing iodine requirements. Few studies have investigated iodine status at different 

time points from early lactation to the end of the first postpartum year (6, 7, 8, 9, 10). 

One small study of New Zealand women (n = 35) prior to government interventions 

reported median urinary iodine concentrations (MUIC) of 37 µg/L, 25 µg/L, and 47 

µg/L at three, six and twelve months postpartum, suggesting iodine deficiency (7). 

There continues to be a need for a more robust investigation into the iodine status of 

postpartum women and their infants. 

New Zealand soil typically provides low levels of available iodine, which results in low 

iodine concentrations in local food supply (11). Endemic goitre was prevalent in New 

Zealand in the early 20th Century, due to iodine deficiency. A voluntary salt iodisation 

programme was established in 1938 which dramatically reduced goitre rates by the 

1950s (12). However, public health messages have led to reduced salt consumption to 

prevent high blood pressure and reduce the risks of other chronic medical conditions. 
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The recent shifting from traditional home cooking with iodised salt to commercially 

prepared food with non-iodised salt has contributed to low use of iodised salt (13). 

Other possible reasons which may reduce population iodine intake include the 

cessation of using iodophors as cleaning agents in the New Zealand dairy industries 

which resulted in a drop of iodine content in milk (14), and the current dietary 

preferences of non-dairy milks made from soy, almond, rice and oat which contain 

low iodine < 0.02 mg/kg (15). Re-emerging iodine deficiency was reported in the 1990s 

for adults (16) and school children (12), also breastfed infants and toddlers (17). 

To combat iodine deficiency, mandatory fortification of bread with iodised salt (25-65 

mg iodine/kg salt) was introduced in New Zealand in September 2009, applicable to 

all commercial bread and bread products other than organic and unleavened (18). 

Recent studies in New Zealand have suggested that fortification has led to adequate 

intakes and status in the majority of school children (19, 20) and adults (21, 22). 

However, fortification was predicted to be inadequate for pregnant and breastfeeding 

women due to their increased requirements. Thus, in 2010, the use of government 

subsidised iodine-only supplements (150 µg/day) was recommended to all pregnant 

and breastfeeding women in New Zealand (23). A pilot study (n = 36) suggested 

breastfeeding women remain deficient (24), and reported mean breastmilk iodine 

concentrations (BMIC, 63 µg/L) (24) lower than suggested for adequacy (75 µg/L) (25); 

although iodine status of the breastfed infants was not investigated. 

The aim of this Mother and Infant Nutrition Investigation (MINI) was to describe 

iodine status of supplement users and non-users (for both mothers and infants) at 

three, six, twelve months postpartum. Further, it investigated partitioning of iodine 

excretion, between urine and breastmilk, of exclusive breastfeeding women at three 

months postpartum. 
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7.3 Methods 

7.3.1 Study population 

MINI was an observational longitudinal cohort study spanning the first postpartum 

year in Palmerston North, in the North Island of New Zealand. Breastfeeding women 

aged 16 years and older were recruited, who had given birth to a healthy term singleton 

three months prior. Women were excluded: 1) if they had pre-existing or developed 

complicated health problems, such as metabolic disorders and cancer; 2) if they had 

been diagnosed or treated at any time for hyperthyroidism or hypothyroidism. 

Recruitment spanned the 19-month period between June 2016 and December 2017. 

Posters to promote the study were placed at selected sites (General Practitioner 

surgeries, midwifery clinics, pharmacies, antenatal classes, ultrasound clinics, 

maternal wards in hospitals, local community playgroups, and early childhood 

centres, etc.). Local newspapers and social media sites were used to publicise the 

study. Local midwives, childbirth educators, and lactation consultants were asked to 

raise awareness of the MINI study to their clients. Potential participants responded by 

recording an expression of interest online or via telephone/email. Prospective 

participants were provided with a study information sheet. Interested participants 

then completed a screening questionnaire to ensure eligibility. Details of the study 

methods have been published previously (26). The first study visit for each mother-

infant pair was at approximately three months postpartum, and follow-up 

assessments took place at six months (2nd study visit) and 12 months (3rd study visit) 

postpartum. Written informed consent was obtained from all participants before their 

enrolments in the study. Mothers also gave the written consent to their infants’ 

participation in the study. 

7.3.2 Ethics approval 

All procedures performed in the MINI study involving human participants were in 

accordance with the ethical standards of the Health and Disability Ethics committee. 
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The MINI study was approved by the Health and Disability Ethics Committee 

(reference:15/NTA/172) in December 2015. 

7.3.3 Sample size 

The main outcome measure was urinary iodine concentration (UIC) and the sample 

size was calculated using G*Power 3.1 (Heinrich Heine University, Dusseldorf) (27) 

based on data [mean and standard deviation (SD)] from a preliminary study of 

breastfeeding women (24). The analysis utilised one–way ANOVA with two groups 

(95% power, alpha = 0.05, two tailed) and three repeat measures. Eighty participants 

were sought, using expected mean daily UIC of 140 and 100 µg/L for iodine supplement 

users and non-users, respectively, with a standard deviation of 60. 

7.3.4 Assessment of iodine status 

During each study visit, non-fasting spot urine samples were collected from each 

participating woman and her infant to assess iodine and creatinine excretion. A 

paediatric urine bag was placed inside the diaper and checked every 10 minutes during 

the study visit to collect infant urine samples. Women were asked to provide a 

breastmilk sample (approximately 30-50 mL) using an electric breast pump if needed. 

All samples were collected before 12 noon on the study visit day. Samples were stored 

without preservative at –20°C. Breastmilk samples were analysed for iodine 

concentration, allowing for estimations of daily excretion and infant iodine intake 

(28). Use of iodine-containing supplements was determined within 24 hours of the 

time of biological sample collections at each visit. 

Iodine concentrations of urine and breastmilk samples were determined by Hill 

Laboratories, Hamilton, New Zealand, using inductively coupled plasma mass 

spectrometry (29). Quality Control procedures included analysis of blanks, analytical 

repeats and spiked samples in order to ensure accuracy and precision. Calibration 

standards and checks were undertaken on every run with the limit of detection at 

0.002 mg/kg. Each batch (25 samples) of urinary samples was analysed together with 
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an external reference standard (Seronorm Trace Elements Urine, L-2, Norway) giving 

a mean ± SD iodine concentration of 286 ± 12 µg/L, with a coefficient of variance (CV) 

of 4.2% (n = 14). Creatinine was measured in maternal urine using the Jaffe Method 

Flexor (Randox Assayed Multisera levels 2&3) at Massey University Nutrition 

Laboratory in Palmerston North. Each batch of breastmilk samples was analysed 

together with an external reference standard (Skimmed milk powder, Elements in 

organic matrix, European) giving a mean ± SD iodine concentration of 1.603 ± 0.029 

mg/kg, with a coefficient of variance (CV) of 4.9% (n = 6). 

Iodine deficiency in a population is defined by a MUIC below 100 µg/L for lactating 

and non-lactating non-pregnant women, and children younger than two years (1). The 

WHO (2007) also recommends that for a population to be iodine sufficient no more 

than 20% should have a UIC less than 50 µg/L (1). There is no universal consensus on 

the optimal concentration for BMIC, however greater than 75 µg/L has been suggested 

to be sufficient for adequate infant iodine intake (25). 

7.3.5 Infant anthropometry 

At the initial visit, infant recumbent length was measured crown to heel using an 

infant length board and recorded to the nearest mm. Infant weight (without clothing 

and diapers) was measured, using a baby weighing scale (Nagata Scale Co Ltd) and 

recorded to the nearest 10 g. Infant’s weight-for-age Z-score (WAZ) and height-for-

age Z-score (HAZ) were calculated by entering the data into WHO-Anthro software 

(https://www.who.int/childgrowth/software/en/)(30). 

7.3.6 General demographic and health information 

At the initial visit, mode of infant feeding, maternal general health, and demographic 

information (including age, ethnicity, educational attainment, household size and 

income) were collected. Potential changeable information including mode of infant 

feeding and general health was also sought at the second and third visits.  Infants’ 

birth information including gestational age at birth, date of delivery, method of 
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delivery, birth weight, and gender was collected at the first visit, from the “Well Child 

Tamariki Ora” book (New Zealand child health record). Recorded date of delivery was 

used to calculate the age of infants on the day of study visit. 

7.3.7 Statistical analysis 

Data were analysed using IBM SPSS (Statistics Package for the Social Sciences, IBM, 

Armonk, NY, USA) version 20. Data were tested for normality using Shapiro-Wilk’s 

test. Non-parametric data were expressed as median with interquartile range (25th, 

75th percentile) and parametric data expressed as mean (± standard deviation; SD). 

Bivariate correlations were tested using the nonparametric Spearman’s rho correlation 

coefficient. Nonparametric data was natural log transformed for further analysis. A 

one-way mixed ANOVA with two groups was used to compare the mean differences 

between UIC of iodine-containing supplement users and non-users (based on iodine-

containing supplement use at three months postpartum) with a repeated measure at 

three, six and twelve months postpartum. Differences in iodine status for women who 

were breastfeeding at all three timepoints, determined by UIC, urinary iodine 

creatinine, and breastmilk iodine concentration (BMIC) between three measurement 

points were tested by one-way repeated measures ANOVA. 

For exclusive breastfeeding women (EBF), their daily maternal iodine excretion in 

urine was estimated based on 1.5 L of urine per day (31). Total estimated daily iodine 

excretion was the sum of urinary and breastmilk iodine excretions. The fractional 

excretions of iodine in urine and breastmilk were calculated as percentages of total 

daily iodine excretions (32). Assuming 92% of iodine consumed is excreted into urine 

and breastmilk together (31), total estimated maternal iodine intake was calculated. 

The estimated total daily iodine intake of their exclusively breastfed infants was 

calculated based on daily urine volume assumed at 0.5 L, with an assumption of 87% 

iodine consumed is excreted in infants’ urine (33). Independent t-test was used to 

compare natural log transformed maternal UIC, maternal urinary iodine creatinine 
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ratio, and BMIC between exclusive breastfeeding women who used iodine-containing 

supplements and non-users. 

7.4 Results 

7.4.1 Characteristics of mothers and their infants 

In total, 87 mother and infant pairs were recruited at three months postpartum 

(3MPP) and followed up at six months (n = 78, 6MPP) and twelve months (n = 71, 

12MPP).  A description of characteristics of breastfeeding women and infants at 

enrolment are shown in Table 7.1. All women were breastfeeding at 3MPP, and 96% of 

women continued to breastfeed their infants at 6MPP, but only 46% continued 

breastfeeding at 12MPP. 

Table 7.1 Description of breastfeeding participants and their infants at 3MPP 

Maternal characteristics at 3MPP Total  
 
(n = 87) 

Iodine-containing 
supplement  
users  
(n = 35) 

Iodine-containing 
supplement non-
users  
(n = 52) 

Maternal age, years (Mean ± SD) 31.5 ± 4.2 32.3 ± 3.3 30.9 ± 4.6 

Tertiary Education (n, %) 67, 77 31, 89 37, 71 

Ethnicity – Maori (n, %) 9, 10 4, 11 5, 10 

Ethnicity – Caucasian (n, %) 66, 76 26, 74 40, 77 

Ethnicity – Asian (n, %) 9, 10 5, 14 4. 8 

Annual household income (> median, n, %)* 54, 62 23, 66 31, 60 

Primiparity (n, %) 38, 44 15, 43 23, 44 

Caesarean delivery (n, %) 19, 22 8, 23 11, 21 

Infant characteristics    

Gestational age at birth, weeks (Mean ± SD) 39.4 ± 1.5 39.3±1.7 39.4±1.46 

Age of infants, days (Mean ± SD)  88.5 ± 14.8 90.1 ± 15.6 87.4 ± 14.3 

Male (n, %) 52, 60 19, 54 33, 63 

Birth weight, kilograms (Mean ± SD) 3.6 ± 0.6 3.5 ± 0.5 3.7 ± 0.7 

Weight-for-age Z-score (Mean ± SD) -0.049 ± 1.050 -0.777 ± 0.989 -0.029 ± 1.098 

Height-for-age Z-score (Mean ± SD) 0.066 ± 1.386 0.025 ± 1.318 0.092 ± 1.442 

* Median annual household income based on Statistics New Zealand was 75,995 New Zealand dollars for the year ended June 2016(34). 
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7.4.2 Maternal iodine status at three, six and twelve months postpartum 

Maternal MUIC (25th, 75th percentile) at 3MPP [82 (46, 157) µg/L], 6MPP [85 (43, 134) 

µg/L], and 12MPP [95 (51, 169) µg/L] were < 100 µg/L, suggesting iodine deficiency. 

Further, greater than 20% of women had a UIC below 50 µg/L: 29% at 3MPP; 27% at 

6MPP; and 23% at 12MPP. Median (25th, 75th percentile) BMIC was below the 

suggested concentration at all three time points [69 (52, 119) µg/L], [59 (39, 108 µg/L], 

and [35 (26, 54) µg/L]. BMIC was moderately correlated with urinary iodine creatinine 

ratio at all three timepoints (r = 0.441, P < 0.001 at 3MPP; r = 0.552, P < 0.001 at 6MPP; 

r = 0.577, P = 0.001 at 12MPP; Appendix 17). No significant differences between 

maternal iodine status measures were found among exclusive breastfeeding (EBF), 

partial breastfeeding (PBF) or non-breastfeeding (NBF) women (Table 7.2). 

Table 7.2 Iodine status during the first postpartum year by mode of infant feeding 

 3MPP 6MPP 12MPP 

Median  
(p25, p75) 

EBF 
(n=72) 

PBF 
(n=15) 

EBF 
(n=24) 

PBF 
(n=51) 

PBF 
(n=33) 

NBF 
(n=38) 

Number samples 
UIC µg/L 
 

72 
78  
(45, 150) 

15 
117  
(46, 174) 

24 
81 
(47, 148) 

51 
93 
(42, 134) 

33 
91 
(58, 156) 

38 
104 
(43, 171) 

Number samples 
Maternal urinary 
iodine creatinine 
ratio µg/g 

65 
125  
(76, 219) 

14 
107 
(91, 270) 

24 
130 
(99, 214) 

47 
133 
(75, 190) 

29 
127 
(90, 173) 

33 
111 
(88, 206) 

Number samples 
BMIC µg/L 
 

72 
68  
(52, 108) 

15 
80  
(50, 139) 

23 
78 
(32, 113) 

49 
59 
(41, 94) 

33 
35 
(26, 54) 

 
n/a 

3MPP: 3 months postpartum; 6MPP: 6 months postpartum; 12MPP: 12 months postpartum; BMIC: breastmilk iodine concentration; 

EBF: exclusive breastfeeding; PBF: partial breastfeeding; NBF: none-breastfeeding; UIC: urinary iodine concentration.  

 

Overall, among women who completed the study, 46% (33/71) took iodine-containing 

supplements at 3MPP, this reduced markedly to 11% (8/71) at 6MPP, and 6% (4/71) at 

12MPP. Defining women as supplement users or non-users at 3MPP, showed there was 

no significant main effect of time points on natural log UIC [F (2, 138) = 0.500, P = 

0.607, partial η2 = 0.007], with participants showing similar mean natural log UIC at 

3MPP (4.36), 6MPP (4.97), and 12MPP (4.49). However, there was significant 
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interaction between iodine supplement use and time points on the mean of natural 

log UIC [F (2,138) = 3.550, P = 0.031, partial η2 = 0.049] (Figure 7.1). At 3MPP, iodine-

containing supplement users showed a higher MUIC (111 µg/L) when compared to 

non-users (66 µg/L). The subgroup of women who were breastfeeding at the three 

timepoints showed a significant reduction in BMIC from 3MPP to 6MPP to 12MPP 

(Table 7.3).  However, there were no significant variations in UIC or maternal urinary 

iodine creatinine ratio over the three time points. 

 

Figure 7.1 UIC of women who completed the follow-ups at all three time points (n = 71). 

Table 7.3 Maternal iodine status of continuous breastfeeding women (n = 33). 

Median 
(p25, p75) 

3MPP 
 

6MPP 12 MPP P-value* 

UIC µg/L 69 (46, 106) 80 (41, 133) 91 (58, 156) 
 
0.259 

Maternal urinary  

Iodine: creatinine ratio µg/g 132 (82, 243) 148 (98, 199) 127 (90, 173) 

 

0.420 

BMIC µg/L 71 (52, 102) 61 (36, 100) 35 (26, 54) 

 

0.001 

3MPP: 3 months postpartum; 6MPP: 6 months postpartum; 12MPP: 12 months postpartum; BMIC: breastmilk iodine concentration; 

UIC: urinary iodine concentration. 

* One-way ANOVA 
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7.4.3 Iodine status of infants aged three, six and twelve months 

In the current study, infant MUIC at the age of three, six and twelve months were all 

above 100 µg/L with fewer than 20% below 50 µg/L (Table 7.4), suggesting adequate 

iodine status. However, at six months, infants who were EBF had an MUIC (80 µg/L, 

n = 13) which was below the 100 µg/L cut-off  and significantly lower than infants who 

were mixed-fed with complementary food (147 µg/L, n = 29, P = 0.033). Exclusively 

breastfed infants at three months of age had a lower infant MUIC than those who were 

PBF, but this was not statistically significant (Table 7.4). Infant UIC was significantly, 

moderately correlated with BMIC at 3MPP, 6MPP and 12MPP (r = 0.598, P < 0.001; r = 

0.602, P < 0.001; r = 0.656, P = 0.011, respectively; Appendix 17). 

Table 7.4 Infant UIC from infants aged three, six and twelve months. 

Median 
(p25, p75) 

Urine 
samples 
(n) 

3 months 
Urine 

samples 
(n) 

6 months 
Urine 

samples 
(n) 

12 
months 

UIC Total µg/L 67 
115 
(69, 182) 

43 
120 
(60, 196) 

33 
118 
(62, 220) 

UIC < 50 µg/L (n, %)  10, 15  5, 12  4, 12 

UIC EBF µg/L 55 
111 
(61, 182) 

13 
80 
(36, 128) 

 
- 

- 

UIC PBF µg/L 12 
127 
(104, 245) 

29 
147 
(78, 215) 

14 
129 
(70, 300) 

UIC NBF µg/L 
 
- 

 
- 

 
- 

 
- 

19 
106 
(54, 210) 

 P-value* 
 
- 

0.280 
 
- 

0.033* 
 
- 

0.872 

EBF: exclusive breastfeeding; PBF: partial breastfeeding; NBF: none-breastfeeding; UIC: urinary iodine concentration.  

*Mann-Wihitney U test 

7.4.4 Iodine status of EBF women and their infants at 3MPP 

The MUIC for EBF women was 78 µg/L, below 100 µg/L, suggesting iodine deficiency 

(Table 7.2). Median BMIC was 68 µg/L also below the suggested 75 µg/L. Median 

estimated maternal iodine intake was 212 (138, 331) µg/day (Table 7.5), below the 

Recommended Dietary Intake (RDI) of 270 µg/day and 46% (33/72) had intakes below 

the Estimated Average Requirement (EAR) of 190 µg/day(35). Only 44% (32/72) of EBF 
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women took iodine-containing supplements (range 150-250 µg iodine/day). Women 

who used iodine-containing supplements showed significantly higher MUIC (105 vs 

66 µg/L, P = 0.027), urinary iodine creatinine ratio (173 vs 94 µg/L, P < 0.001) and BMIC 

(84 vs 61 µg/L, P < 0.001), when compared to those women who did not use iodine-

containing supplements. 

Table 7.5 Daily iodine excretions and intakes in mothers and their infants at 3MPP 

Median (p25, p75) Mothers (EBF)  
(n= 72) 

Infants (EBF)  
(n = 55) 

Estimated daily iodine excretion 

      Based on maternal UIC µg/d 116 (68, 225) - 

      Based on BMIC µg/d 53 (41, 84) - 

     Total µg/d 195 (127, 305) - 

     From urine %total 69 (53, 76) - 

     From breastmilk % total 31 (24, 47) - 

Estimated daily iodine intake Total µg/d 212 (138, 331)  

Estimated iodine intake, based on infant UIC µg/d  64 (35, 105) 

Estimated iodine intake, based on BMIC µg/d  53 (41, 84) 

BMIC: breastmilk iodine concentration. EBF: exclusive breastfeeding; UIC: urinary iodine concentration. 

Based upon a visual inspection of the scatter plot of the partitioning of maternal UIC 

and BMIC in total daily iodine excretion (Figure 7.2), it demonstrates when total daily 

iodine excretion below 300 µg, an increased partitioning of BMIC (the highest 

proportion of 60%) was observed, together with a reduced fractional iodine excretion 

in urine (the lowest proportion of 40%). When total daily iodine excretion was higher 

than 300 µg, a constant proportion of excretion was observed in urine (80%) and 

breastmilk (20%). 
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Figure 7.2 Fractional iodine excretion in urine and breastmilk in relation to total 
estimated daily iodine excretion (n=72, exclusive breastfeeding). 

7.5 Discussion 

7.5.1 Iodine sufficiency and deficiency during the first postpartum year 

The MINI study found women who used iodine-containing supplements at 3MPP had 

a significantly higher MUIC than non-users (111 vs 68 µg/L). A post-fortification study 

of Australian breastfeeding women (n = 60) at around three months after parturition 

showed a similar significant positive effect of taking iodine-containing supplements 

on maternal MUIC (206 vs 97 µg/L) (36). However, in the current study, there was no 

difference in MUIC at six and twelve months postpartum based on definition of 

supplement use at 3MPP. This is unexpected, although could be due to the low 

proportion of women using iodine-containing supplements in later lactation 11% 

(8/71) at 6MPP, and 6% (4/71) at 12 MPP. The low use is unsurprising and the lack of 

awareness of the need for iodine supplementation during lactation in this population 
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has been reported (37). The low use of iodine-containing supplements during later 

breastfeeding is especially concerning for women who do not consume iodine rich 

foods and those who become pregnant again. In Morocco, a randomised double-

blinded placebo-controlled trial (n = 241 mother-infant pairs) compared the 

effectiveness of using maternal supplementation, either with a single dose of 400 mg 

iodised oil or supplementing infants (aged ≤ 8 weeks) directly with a single dose of 150 

mg. This study found that maternal supplementation is more effective in ensuring 

adequate infant iodine status and maintaining BMIC levels until at least six months 

postpartum (38). Achieving adequate maternal iodine status throughout lactation, 

together during pre-conception or pregnant period is critical for infants’ growth (39) 

and contributes to optimal fetal neurodevelopment (40). 

Overall iodine deficiency was present in a group of women during the first postpartum 

year based on the WHO epidemiology criteria (1). Our results showed an 

improvement in maternal iodine status, when compared to the results reported in a 

pre-fortification study of postpartum women in the South Island of New Zealand in 

2001 (37 µg/L, 25 µg/L, 47 µg/L at three, six and twelve months postpartum) (7). This 

indicates that the government initiatives have improved iodine status of breastfeeding 

women but more needs to be implemented to strengthen these strategies.  

The trend for increase in MUIC across three time points in the MINI study was also 

found in a study of Sudanese breastfeeding women (n = 47) living in an area with 17.5% 

goitre rate, where MUIC increased from three (51 µg/L) to nine (63 µg/L) months 

postpartum (6). Similarly, a recent large Norwegian longitudinal study of postpartum 

women (n = 915) reported the lowest MUIC at six weeks postpartum (57 µg/L), which 

increased through six, twelve and eighteen months postpartum (70 µg/L, 79 µg/L, 87 

µg/L) (9). The Norwegian authors suggested the increase was possibly due to an 

assumed decrease of iodine excretion in breastmilk during the postpartum period. 

However, these studies on Norwegian and Sudanese women did not measure BMIC. 
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In the current study, among women who continued to breastfeed, iodine secreted into 

breastmilk significantly decreased from the highest concentration of 71 µg/L at three 

months, to 61 µg/L at six months, and with the lowest concentration of 35 µg/L at 12 

months postpartum. This pattern suggests reduced transport of iodine to breastmilk. 

Similar observations were made in a cohort of New Zealand iodine deficient lactating 

women without iodine supplementation during the first six months postpartum in 

2004-2005 decreasing from 43 µg/L in week one to 25 µg/L in week 24 (41). A reduction 

of BMIC from three months (60 µg/L) to nine months (26 µg/L) was also reported in 

Moroccan mothers who were supplemented with one oral dose (400 mg) of iodine 

after delivery (38). Research has reported a sharp decrease of iodine concentration 

from colostrum to mature milk, which could be due to the low volume of colostrum 

(42). The further reduction of BMIC from six to twelve months postpartum observed 

in the current study must be interpreted with caution due to the small number of 

samples at twelve months. However, for breastfed infants, breastmilk is still an 

important iodine source. Therefore, it is important for lactating women to achieve 

adequate iodine status. 

Adequate infant iodine status was observed at three time points of this current study, 

using the WHO epidemiological criteria (1). However, the calculated iodine intake 

from a UIC of 100 µg/L is 55 µg/day (based on approximately 0.5 L daily urine volume 

and 92% of dietary iodine excreted into urine) (33). This is much lower than the 

Institute of Medicine suggested adequate intake (AI) of 110 µg/day for infants up to 

age of six months (43). Infant MUIC between 180 and 225 µg/L (44) are necessary to 

achieve the WHO recommended iodine intake of 90 µg/day (1). Further, results from 

a recent dose-response crossover iodine balance study of euthyroid term Swiss infants 

with iodine sufficiency suggested 125 µg/L as a cut-off for infant MUIC (based on the 

estimated average requirement of 72 µg/day for infants aged two to five months)(33). 

Using this cut-off, the MUIC for infants aged three (115 µg/L) and six months (120 µg/L) 

in the current study would indicate iodine deficiency, which was consistent with the 

estimated suboptimal intake from BMIC. Further, infants aged six months who were 
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exclusively breastfed had an MUIC (80 µg/L) lower than 125 µg/L suggesting iodine 

insufficiency, which was significantly lower than those who were partially breastfed 

(147 µg/L). This shows the importance of adequate maternal iodine status for those 

infants who are exclusively breastfed at six months of age. 

In the present study, despite differing amounts of breastfeeding and ages of infants, 

BMIC was moderately correlated with infant UIC. This finding is supported by a 

systematic review of 14 eligible studies (42), which suggested BMIC was the primary 

indicator of iodine status in breastfed infant iodine status due to the positive 

association between BMIC and infant UIC. In the current study, median BMIC at three 

and six months postpartum (69 µg/L and 59 µg/L) suggested inadequate infant iodine 

intake. Further analysis from a South Australia post-fortification study in 2017 found 

that infants from mothers with lower BMIC (< 100µg/L) were less likely to achieve 

adequate iodine status (infant UIC > 100 µg/L), when compared to those with higher 

BMIC (≥ 100 µg/L) (45). The Australian authors suggest that achieving adequate iodine 

status for lactating women is essential to ensure sufficient iodine supply to their 

breastfed infants. 

7.5.2 Iodine status of exclusive breastfeeding women and their infants at 

three months postpartum 

This current MINI study found iodine deficiency was present in exclusive 

breastfeeding mothers at three months postpartum. The current MUIC remained 

similar to the value (74 µg/L in 2011) previously reported from the same region in New 

Zealand (24), although it showed a marked improvement from 34 µg/L in 2009 (prior 

to government interventions) (24). Women who reported consuming iodine-

containing supplements at 3MPP were more likely to achieve adequate iodine status 

when compared to those who did not use such supplements, this has been discussed 

in detail previously (37). Exclusively breastfed infants fully rely on maternal breastmilk 

intake for thyroid function. The MUIC of exclusively breastfed infants at three months 

of age was 111 µg/L, below the suggested cut-off of 125 µg/L (33) indicating iodine 
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deficiency. Lack of iodine intake may interrupt the motor and neurodevelopment of 

these infants at this crucial time (46). 

The present study suggests that among this cohort of exclusive breastfeeding women 

who were iodine deficient, increased partitioning of iodine secretion into breastmilk 

(the highest proportion of 60%) occurred when total daily iodine excretion was low 

(< 300 µg/day). This partitioning potentially provides a protective effect to ensure 

iodine supply to their breastfed infants. In comparison, a similar partitioning pattern 

(increased fraction of iodine into breastmilk but decreased iodine in urine when total 

daily iodine excretion < 300 µg/day) was observed from a large multi-centre study of 

lactating women (iodine sufficient based on median BMIC) in China (n = 386), 

Philippines (n = 371) and Croatia (n = 109) (32). This pattern may be due to an 

enhanced capacity of sodium-iodide symporter transportation by mammary glands 

during early lactation (47), which may ensure adequate iodine supply to exclusively 

breastfed newborn infants (32). However, in the MINI study, when total daily iodine 

excretion was higher than 300 µg, a constant partitioning of excretion was observed 

in urine (80%) and breastmilk (20%), which differed from the previous multi-centre 

study of EBF women from iodine deficient areas showing a continuous decreased 

excretion in breastmilk but a measurable increase in urine (32). This may be due to 

the smaller number of participants in the current study whose total iodine excretion 

was above 300 µg/day, thus the current results need to be interpreted with caution. 

7.5.3 Strengths and limitations 

This study is the first longitudinal cohort study in New Zealand to assess the iodine 

status simultaneously of both mothers and infants, subsequent to the introduction of 

mandatory fortification of bread with iodised salt (2009) and the provision of iodine-

containing supplements (150 µg/day) to breastfeeding mothers (2010). 

The study examined the iodine status of mother-infant pairs during the transitional 

period from exclusive, to partial, and in some cases, cessation of breastfeeding 

throughout the first postpartum year, which enhances the existing available 
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knowledge of iodine status throughout postpartum period. Maternal iodine status was 

measured in both urine and breastmilk to provide a thorough measure of each 

participant’s iodine status. The study also contributes to the limited knowledge on the 

fractional uptake of iodine from the mammary gland in response to variations in 

iodine intake while exclusive breastfeeding. Since the study sample size was small, the 

results need to be interpreted with caution. 

In order to determine iodine status throughout the postpartum period, participants 

were defined as iodine-containing supplement users or non-users at 3MPP, this could 

have diluted the effect, as many participants stopped using iodine supplements. Other 

limitations of this study also include that the self-selected participants were 

predominantly well-educated with a relatively high household income, thus the 

sample may not be representative of the overall New Zealand population. If these 

women were iodine deficient, iodine status of women who are less educated and of 

low income may be of even greater concern. In addition, a potentially high level of 

intra-individual variability in the iodine level of urine samples due to the variation in 

maternal hydration status and substantial variation in daily iodine intake, a single spot 

sample may not be indicative of usual iodine status. This may weaken or mask 

associations of interest. Urinary iodine creatinine ratios were used to reduce the 

variation due to maternal hydration. To determine habitual intake, using repeated 

measuring could have better predicted iodine status (48). Newborn TSH can be used 

as another indicator of young infants’ iodine status by following a standardized 

protocol (49). However, potential confounding factors including maternal iodine 

status, mode of delivery, sampling time, and maternal exposure to iodine-containing 

antiseptics may limit the use of newborn TSH measurement (49). 

7.6 Conclusions 

In conclusion, after two New Zealand government interventions in 2009 and 2010, this 

cohort of women throughout the first postpartum year was iodine deficient 

irrespective of the amount or duration of breastfeeding. Iodine status of their 
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breastfed infants aged three and six months may be inadequate. Achieving optimal 

maternal iodine status is essential in maintaining adequate iodine intake for 

breastfeed infants. Importantly, when exclusive breastfeeding mothers had a low 

iodine intake, an increased fractional iodine excretion into breastmilk was observed, 

this is possibly a protective mechanism for maintaining their breastfed infants’ iodine 

status over the mothers. Further studies to assess maternal and infants’ iodine status 

with their thyroid function, and infant neurodevelopment outcomes are needed, to 

ensure optimal health of both mothers and their future offspring.  
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Chapter 8 Selenium intake and status of postpartum women and 

postnatal depression during the first year after childbirth in 

New Zealand – Mother and Infant Nutrition Investigation (MINI) 

Study 
 

Chapter 8, which focuses on selenium, is the last of four articles presenting research 

findings from the MINI study. A previous pilot study found suboptimal dietary selenium 

intake continued to be an issue for New Zealand breastfeeding women and their breastfed 

infants at three months postpartum (noted in Chapter 3). Although previous literature 

has suggested low dietary selenium intake is associated with negative mental health 

outcomes, there have been limited published studies which examine postpartum women’s 

selenium status in relation to the risk of postnatal depressive symptoms, particularly 

where continuous measurements were taken from birth to one year after (see Chapter 2). 

This article investigates the selenium intake and status of mothers and infants and aims 

to determine the relationship between maternal selenium status and the risk of postnatal 

depression during the 12 months postpartum. 

This article addresses hypothesis 4: Suboptimal selenium intake and status exist in New 

Zealand postpartum women; hypothesis 5: Selenium intakes of breastfed infants aged 

three and six months are suboptimal; and hypothesis 6: Low plasma selenium will 

increase the risk of postnatal depression at three, six and twelve months postpartum. 

 

This chapter has been published as: 

 Jin Y, Coad J, Pond R, Kim N, Brough L. Selenium intake and status of postpartum women 

and postnatal depression during the first year after childbirth in New Zealand – Mother 

and Infant Nutrition Investigation (MINI) Study. Journal of Trace Elements in Medicine 

and Biology 2020; 61:126503. DOI: 10.1016/j.jtemb.2020.126503. PMID: 32442890 
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8.1 Abstract 

Background 

Selenium (Se) plays an important role in selenoproteins as an antioxidant, and is 

involved in thyroid function, mental health and child development. Selenium is low in 

the local food supplies in New Zealand. Low selenium intake has been reported in 

women of childbearing age and postmenopausal women, however, there is little 

research relating to breastfeeding women and their infants. 

Objectives 

The study investigates maternal and infant selenium intake and status during the first 

year postpartum, and possible relationships to postnatal depression and anxiety. 

Methods 

The Mother and Infant Nutrition Investigation (MINI) study is an observational 

longitudinal cohort study. In total 87 breastfeeding mother-infant pairs were recruited 

and followed up at three, six and twelve months postpartum. Maternal selenium intake 

was estimated from a weighed four-day diet diary (4DDD). Selenium concentrations 

were measured in maternal spot urine, breastmilk and plasma, and infant spot urine 

samples. Postnatal depression was screened by the Edinburgh Postnatal Depression 

Scale (EPDS) questionnaire. 

Results 

Median maternal selenium intake was 62 (50,84) µg/day, with 56% below the Estimated 

Average Requirement (EAR) of 65 µg/day. At three, six, and twelve months postpartum, 

median (p25, p75) maternal urinary selenium creatinine ratios were 29.0 (22.4, 42.0), 

29.5 (23.1, 28.4), and 30.9 (24.3, 35.3) µg/g; median (p25, p75) infant urinary selenium 

concentrations (IUSC) were 8 (6,13), 11 (6, 15), and 24 (10, 40) µg/L; median (p25, p75) 

breastmilk selenium concentrations (BMSC) were 13 (11, 14), 11 (9, 11) and 12 (11, 13) µg/L; 

18%, 11% and 14% of women reported probable minor depression based on the EPDS 
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scores equal or above 10. Estimated median (p25, p75) infant selenium intake at three 

and six months were 9 (8,11) and 8 (7, 10) µg/day with 85% and 93% below the Adequate 

Intake of 12 µg/day. Median maternal plasma selenium was 105.8 µg/L at six months 

postpartum. Minor depression at three months postpartum was significantly different 

across tertiles of plasma selenium concentrations (P = 0.041), with the greatest at the 

medium tertile of 106 µg/L. 

Conclusions 

Suboptimal selenium intake was observed among breastfeeding mothers and their 

infants in the MINI study. Potentially, some women had insufficient selenium status. 

The relationship between selenium status and risk of postnatal depression and anxiety 

was inconclusive. Further research is required to explore effects on maternal thyroid 

function and infant neurodevelopment among women with inadequate selenium intake 

and status.  
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8.2 Introduction 

Selenium (Se) is essential in human health because selenoproteins play antioxidant and 

anti-inflammatory roles and contribute to optimal levels of thyroid hormones (1). 

Iodothyronine deiodinases are required for conversion of the inactive form of thyroid 

hormone (thyroxine, T4) to the active form (triiodothyronine, T3) (2). Selenium as a 

component of the selenocysteine-containing proteins, glutathione peroxidase (GPx), 

protects the thyroid from oxidative damage (3). Extremely low selenium intake has been 

associated with Keshan disease (4). Selenium is thought to play a key role in optimal 

brain functioning (5). Adequate dietary selenium intake has been found to improve 

mood among the general population, while low selenium intake is associated with low 

mood and an increased risk of de novo major depressive disorder in women (6, 7). This 

suggests that pregnant and postpartum women with low selenium intake may be more 

at risk of experiencing postnatal depression, which affects 13% of postpartum women 

globally (8). 

In New Zealand, low levels of selenium in the food supply, and low selenium intakes 

have been reported in women of childbearing age (9) and postmenopausal women (10). 

Low plasma selenium concentration among postpartum women and their infants 

residing in the South Island of New Zealand (1998-1999) suggested inadequate status 

(11). More recently, inadequate dietary selenium intake was reported in breastfeeding 

women three months after birth; however, selenium status from blood was not 

measured (12). There are no current data describing selenium status among 

breastfeeding women in New Zealand. Given changes in dietary habits, food product 

availability and agricultural practices, continual monitoring of both selenium intake 

and status in this vulnerable postpartum population is essential. This study aims to 

investigate maternal and infant selenium intake and status during the first year 

postpartum. Furthermore, the relationship between selenium status and postnatal 

depression and anxiety will be investigated. 
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8.3 Materials and Methods 

8.3.1 Study Population 

The Mother and Infant Nutrition Investigation (MINI) study is an observational 

longitudinal cohort study spanning the first year postpartum. Healthy breastfeeding 

women were recruited, in Palmerston North, New Zealand, from June 2016 to December 

2017. Women aged 16 years and older, who had given birth to a healthy term singleton 

infant aged less than three months were invited to join the study. Women were 

excluded: 1) if they developed significant health problems, such as metabolic disease or 

cancer; 2) if they had been diagnosed or treated at any time for thyroid disorders. 

The MINI study was approved by the Health and Disability Ethics Committee 

(15/NTA/172) in December 2015. The study was registered with the Australia and New 

Zealand Clinical Trials Registry (ACTRN12615001028594) in October 2015. Written 

consent was obtained from all participants. 

8.3.2 Questionnaires 

Sociodemographic information including age, ethnicity, educational attainment, 

household size and income was collected at the initial study visit. Potential changeable 

information including tobacco and alcohol use, breastfeeding patterns and general 

health was also sought at the second and third visits. 

The 10-item Edinburgh Postnatal Depression Scale (EPDS) was completed online by 

participating women at three, six and twelve months postpartum, to assess any 

symptoms of depression over the previous seven days. Questions of the EPDS include 

“Things have been getting on top of me,” “I feel so unhappy that I have had difficulty 

sleeping”, and “I have felt sad and miserable.” Women recorded severity of symptoms 

on a 4-point scale (13). A cut-off point of 10 or above was noted, which may indicate at 

least probable minor depression (14). A cut-off point of 13 or above was used to define 

high levels of depressive symptoms (13), which indicates probable major depression. 

Any woman whose EPDS score equalled 13 or above was advised to see her General 
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Practitioner (GP) for further evaluation and provided with an information sheet about 

postnatal depression services in New Zealand. Probable postnatal anxiety including 

generalised anxiety and panic disorder were evaluated by using EPDS-3A – a cluster of 

selected question items numbered 3, 4 and 5 from the original EPDS, as “I have been 

anxious or worried for no good reason”, “I have felt scared or panicky for no very good 

reason”, and “I have blamed myself unnecessarily when things went wrong”. A score of 

six or more on the EPDS-3A was used to indicate probable anxiety (15). The EPDS is a 

validated tool to screen for probable minor or major depression during the postpartum 

period (13), and the EPDS-3A cluster for probable anxiety (16). 

8.3.3 Dietary data collection 

Participants were asked to complete a weighed four-day diet diary (4DDD) within two 

weeks of the initial study visit. The four days were consecutive and included one 

weekend day. Each participant was requested to record food items, brands, amount 

consumed, and provide the nutritional information panel if possible. All food and 

beverage items consumed were weighed with an electronic kitchen scale (Digitech, 

QM-7288), or measured using household measurement cups and spoons, which were 

provided. All participants received both written and oral instructions as to how to 

complete the record, which included a written example for one day. Women were also 

asked to include any dietary supplements consumed. When eating or dining out, 

participants were asked to estimate the portion size of all food eaten. All dietary data 

were entered to Foodworks 9 Professional (Xyris software, Brisbane, Australia), 

analysed using data set from the New Zealand Foodfiles 2016 (17) to estimate nutrient 

intake. Dietary supplements used by participants were included in dietary data analysis. 

To ensure accuracy and completeness, a registered nutritionist (YJ) checked all dietary 

data and then transferred the data to IBM SPSS for statistical analysis. The estimated 

average requirement (EAR) cut-point method can be used to assess population nutrient 

intake providing nutrient requirements are normally distributed, such as selenium; the 

percentage below the EAR approximates the proportion that is at risk of dietary 
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inadequacy (18). Current intakes based on diet and urine data were compared to 

Australian and New Zealand recommendations; the EAR and Recommended Dietary 

Intake (RDI) for selenium for lactating women are 65 and 75 µg/day, respectively (19). 

8.3.4 Biological sample collection and analysis 

Spot urine samples from each woman and her infant were collected at each study visit, 

to assess selenium and creatinine excretion. Infants’ urine was collected using a 

paediatric urine bag (EMURIC, 100 mL), placed inside the diaper and checked every 10 

minutes. The collected urine was frozen and stored at -20°C for later analysis, without 

preservative. Women provided a breastmilk sample (approximately 30-50 mL) at each 

visit, using an electric Breast Pump (Unimom Allegro, Korea) if needed. All breastmilk 

samples were collected before 12 noon on the study day, and timing of breastmilk 

collection was not standardised, since no significant differences have been found in 

selenium concentrations between hind-milk and fore-milk (20). Samples were stored 

without preservative at – 20°C, prior to analysis. At the second study visit, non-fasting 

maternal venous blood samples (22 mL) were collected by a phlebotomist. Plasma 

samples were stored at -80°C for later analysis. 

Selenium concentrations of urine and breastmilk samples were determined by Hill 

Laboratories, Hamilton, New Zealand, using inductively coupled plasma mass 

spectrometry (ICP-MS) (21). Quality Control procedures included analysis of blanks, 

analytical repeats and spiked samples in order to ensure accuracy and precision. 

Calibration standards and checks were undertaken on every run with the limit of 

detection at 0.002 mg/kg.  Each batch (25 samples) of urine samples was analysed 

together with an external reference standard (Seronorm Trace Elements Urine, L-2, 

Norway) giving a mean ± SD selenium concentration of 75 (5) µg/L (published value 

and 95% confidence error: 71.7 ± 14.4 µg/L) with a coefficient of variance (CV) of 6.5% 

(n = 14). Each batch of breastmilk samples was analysed together with an external 

reference standard (Skimmed milk powder, Elements in organic matrix, European) 

giving a mean ± SD selenium concentration of 0.188 ± 0.009 mg/kg (published value 
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and 95% confidence error: 0.188 ± 0.014 mg/kg) with a coefficient of variance (CV) of 

4.9% (n = 6). Creatinine was measured using the Jaffe method Flexor E (Vital Scientific 

NV, 6956 AV Spankeren/Dieren, Rheden, Gelderland, The Netherlands) at Massey 

University Nutrition Laboratory. Plasma selenium was measured using ICP-MS at 

Canterbury Health Laboratories, New Zealand. 

8.3.5 Statistical analysis 

Data were analysed using IBM SPSS (Statistics Package for the Social Sciences, IBM, 

Armonk, NY, USA) version 20. Data were tested for normality using the Shapiro-Wilk’s 

test. Non-parametric data were expressed as median (25th, 75th percentile); and 

parametric data expressed as mean (± standard deviation; SD). Bivariate correlations 

were tested using the nonparametric Spearman’s rho correlation coefficient. Plasma 

selenium concentrations were categorised into tertiles, with one being the lowest and 

three being the highest. Independent sample Kruskal-Wallis tests were used to compare 

medians of EPDS and EPDS-3A scores across plasma selenium tertiles. Pearson chi-

square tests were used to compare prevalence of depression and anxiety across the 

tertiles of plasma selenium concentration. 

8.4 Results 

In total, 87 breastfeeding women were recruited at three months postpartum, and most 

were followed up at six months (n = 78) and twelve months (n = 71).  The mean age was 

32 years, and 83% were exclusively breastfeeding at three months after birth (Table 8.1). 

Most participants were Caucasian and had completed tertiary education. The majority 

had a vaginal delivery (78%) and for 44% this was their first child. Approximately a 

quarter (23/87) of the women reported being smokers, with all but one indicating they 

had ceased during pregnancy. Three women resumed smoking following their infants’ 

birth. 
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Table 8.1 Description of breastfeeding participants and their infants (n = 87). 

Maternal characteristics n % 

Maternal age, years (Mean ± SD) 31.5 ± 4.2  

Tertiary Education 67  77 

Ethnicity (Maori) 9  10 

Ethnicity (Caucasian) 66  76 

Ethnicity (Asian) 9  10 

Ethnicity (Other) 3  4 

Annual household income (above average household income) * 33  38 

Smokers 3 3 

Primiparity 38  44 

Caesarean delivery 19  22 

Gestational ages, weeks (mean ± SD) 39.4 ± 1.5  

Age of infants, days (mean ± SD)  86.5 ± 15.1  

Infants birth weight, kilograms (mean ± SD) 3.6 ± 0.6  

*Average annual household income based on Statistics New Zealand is 100,103 New Zealand dollars for the year ended June 2017 

 

Median maternal urinary selenium concentrations (MUSC) were 22, 22, and 26 µg/L at 

three, six, and twelve months postpartum, respectively (Table 8.2). Maternal urinary 

creatinine concentrations were used to correct spot urinary selenium concentrations 

expressed as µg/g. MUSCs were strongly correlated with urinary creatinine at three, six, 

and twelve months respectively (r = 0.868; r = 0.910; and r = 0.790, all Spearman’s P < 

0.001). Median infant urinary selenium concentration (IUSC) were 8, 11 and 24 µg/L at 

three, six and twelve months, respectively. IUSC at six months showed moderate 

correlations with the IUSC values measured at three months (r = 0.494, P = 0.003), and 

twelve months (r = 0.644, P = 0.002). 

Median maternal plasma selenium was 105.8 (95.6, 115.3) µg/L at six months; 23% (17/74) 

were below 95 µg/L which indicates saturation of GPx activity (22);  and 41% (30/74) of 

women met the criteria for maximum expression of selenoprotein P (> 110 µg/L), 

suggested by Hurst et al. (23). However, when compared to cut-offs suggested by 

Thomson (24), all the women in the current study showed adequate plasma selenium 

concentrations needed to achieve optimal activity of iodothyronine 5’ deiodinases (> 65 
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µg/L) and to maximize plasma GPx (> 80 µg/L). Supplement users had a significantly 

higher plasma selenium concentration (121.6 µg/L) than non-users (105.8 µg/L, P < 

0.001). Maternal plasma selenium was weakly but significantly correlated with 

breastmilk selenium concentrations (BMSC) at three months (r = 0.397, P < 0.001), and 

at six months (r = 0.373, P = 0.002), but not at twelve months (r = 0.112, P = 0.553); and 

with selenium: creatinine ratios at three months (r = 0.347, P = 0.004) and six months 

(r=0.452, P < 0.001), but not at twelve months (r = 0.110, P = 0.407). Assuming an intake 

of 750 mL breastmilk per day (25), median estimated infant intakes were 9 and 8 µg/day 

at three and six months. In total, 70% (49/72) would not have achieved an intake of 10 

µg/day based on the suggested adequate value extrapolated from adults (26) and 83% 

(60/72) did not achieve the Adequate Intake (AI) of 12 µg/day (27). BMSCs were 

associated with infant urinary selenium excretion at three and six months (r = 0.326, P 

= 0.007; r= 0.433, P = 0.005). 

Table 8.2 Selenium and creatinine in spot urine samples from women at 3, 6 and 12 
months after giving birth and urinary selenium from their infants. 

Median (p25, p75) 3 months 6 months 12 months 

Number of participants (n) 87 78 71 

Maternal Urinary Se concentration µg/L  22 (9, 34) 22 (8, 37) 26 (13,42) 

Maternal Urinary creatinine g/L  0.6 (0.3, 1.1) 0.8 (0.3, 1.2) 0.9 (0.4, 1.3) 

Maternal Urinary Se: Creatinine µg/g 29.0 (22.4, 42.0) 29.5 (23.1, 28.4) 30.9 (24.3, 35.3) 

Se in breastmilk µg/L 13 (11, 14) 11 (9, 11)a 12 (11, 13)b 

Infant Urinary Se concentration µg/L 8 (6, 13)c 11 (6, 15)d 24 (10, 40)e 

a
n = 72 and 

b
n = 33 for breastmilk samples 

c
n = 67 , 

d
n = 43 and 

e
n= 33 for infant urinary samples 

 

Only five out of 87 women were taking selenium-containing supplements ranging from 

25 to 65 µg/day. Median maternal selenium intake (including supplements) estimated 

from 4DDD was 62 (51, 85) µg/day, below the Recommended Dietary Intake (RDI) of 75 

µg/day and 56% had intakes below the EAR (Table 8.3). This suggests inadequate intake 

for over half of the population. Selenium intake was weakly but significantly correlated 

with urinary selenium: creatinine ratio (r = 0.324, P = 0.007). Using a proposed formula 
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to calculate selenium intake daily from blood plasma values (log Y = 1.623 log X +3.433; 

X = plasma Se, mg/L; Y = Se daily intake, µg/day) (28), estimated median selenium 

intake was 71 (60, 81) µg/day with 35% (26/74) below the EAR cut off. 

Table 8.3 Estimated maternal and infant selenium intakes 

Estimated Selenium Intake Median  
(p25, p75)  
µg/day 

Below EAR 
(65 µg/day) 
n (%) 

Below AI 
(10 µg/day)a 
n (%) 

Below AI 
(12 µg/day)b 
n (%) 

Mothers, w/o supplements, 
Based on 4 DDD 
(n = 77) 

58  
(50, 80) 

46 (60)   

Mothers, w/supplements, 
based on 4 DDD 
(n = 77) 

62  
(51, 85) 

43 (56) - - 

Mothers,  
based on plasma Se 
(n = 74) 

71  
(60, 81) 

26 (35) - - 

Infants, aged 3 months, 
based on breastmilk 
(n = 87) 

9  
(8, 11) 

- 59 (68) 58 (91) 

Infants, aged 6 months, 
Based on breastmilk 
(n = 72) 

8  
(7,10) 

- 55 (76) 65 (90) 

a
A daily intake of 10 µg of selenium is sufficient to meet nutritional requirement (25). 

b
The estimated daily selenium intake of infants up to six months old is 12 µg (26). 

 

Table 8.4 Maternal EPDS and EPDS-3A scores at 3, 6 and 12 months postpartum  

Postpartum EPDS score 
Median 
(p25, p75) 

EPDS-3A score  
Median 
(p25, p75) 

EPDS score  
equal to or 
above 10 
Probable minor 
depression a   
n (%) 

EPDS score  
equal to or 
above 13 
Probable major 
depressiona  
(n/%) 

EPDS-3A score  
equal to or 
above 6  
Probable 
anxiety b   
n (%) 

3 months 
(n=86) 

5  
(2, 8) 

2  
(1, 4) 

16 (18) 8 (9) 10 (12) 

6 months 
(n=79) 

5  
(2, 7) 

2  
(0, 4) 

9 (11) 4 (5) 3 (4) 

12 months 
(n=71) 

4  
(2, 7) 

2  
(1, 4) 

10 (14) 3 (4) 9 (13) 

a
 Suggested cut-off based on Matthey et al 2006 (14) and Leung et al 2013.(29). .  

b
 EPDS-3A – a cluster of selected question items numbered 3, 4 and 5 from the original EPDS, with a cut-off score six or more indicating 

probable anxiety (15). 
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At three months postpartum, 18% of women had an EPDS score equal to or greater than 

10, indicating probable minor depression (Table 8.4), and 9% had an equal or higher 

score than 13 suggesting probable major depression (14). At 12 MPP, of the 8 women 

with EPDS scores above 13 (i.e. with probable major depression) at 3MPP, 5 had 

withdrawn from the study and the remaining 3 continued to have scores above 13. EPDS 

scores at three months postpartum were moderately and significantly correlated to the 

EPDS scores at six months (r = 0.642, P < 0.001), and at twelve months (r = 0.392, P = 

0.001). Similarly, EPDS-3A scores at three months were significantly correlated to the 

EPDS-3A scores at six months (r = 0.558, P < 0.001), and at twelve months (r = 0.476, P 

< 0.001). 

Table 8.5 presents median EPDS scores at three, six and twelve months postpartum 

categorised by tertile of plasma selenium concentration. Only prevalence of major, 

minor depression and anxiety of women at three months postpartum is shown, owing 

to the small number of affected women at six and twelve months postpartum. The 

median of EPDS scores across three plasma groups were displayed, and no statistically 

significant differences were found using the Independent-Samples Kruskal-Wallis test. 

Prevalence of major depression and anxiety across plasma selenium tertiles was 

examined using Pearson Chi-Square test and no significant differences were found. 

However, minor depression at three months postpartum was significantly different 

across the tertiles of plasm selenium concentrations (P = 0.041). The highest prevalence 

of minor depression was observed among those women with mean plasma selenium at 

tertile 2 (106 µg/L). 
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Table 8.5 Median EPDS scores at 3, 6 and 12 months postpartum and prevalence of 
depression and anxiety at 3 months postpartum categorised by plasma selenium tertiles. 

 Tertiles of plasma selenium concentration* 

 1 (n = 25) 2 (n = 24) 3 (n = 25)  

Selenium, µg/L, mean±SD 92.8±3.7 106±3.5 123.7±14.5  

Age, years 30.6±4.0 31.4±4.3 32.7±4.1  

    Kruskal-Wallis  

EPDS score at 3 months, median 4 5 4 0.437 

EPDS score at 6 months, median 3 7 4 0.247 

EPDS score at 12 months, median 3 5 4 0.374 

    Pearson Chi-Square 

Probable major depression 3 months 
(n= 5) 

2 2 1 0.795 

Probable minor depression 3 months 
(n =11) 

3 7 1 0.041* 

Probable anxiety 3 months (n=5) 2 3 0 0.209 

*1 is the lowest and 3 is the highest tertile. 

8.5 Discussion 

8.5.1 Sufficiency and deficiency 

Suboptimal levels of dietary selenium intake were observed in our study participants. 

Maternal estimated selenium intake from the 4DDD was higher than previously 

reported from breastfeeding women (51 µg/day) from Palmerston North in 2009 and 

2011 (12), and from Dunedin (South Island) between 2012 and 2013 (30). The increase 

could be due to different dietary methods used in these studies. Weighed food records 

are suggested to be the most precise dietary method in measuring usual nutrient intakes 

of individuals (31). A 4DDD used in the current study, does not rely on respondents’ 

memory; dietary information was recorded at the time of food preparation and 

consumption. However, 24-hour dietary recalls, used in the other studies, depend on 

subjects’ memories and are less reliable. Typically, lower selenium was reported in the 

South Island of New Zealand where bread is made from local wheat, compared to North 

Island where bread is manufactured from wheat imported from Australia which 
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contains higher levels of selenium (32). Further, an increase in selenium intake among 

females aged over 25 years from 2009 (56 µg/day) to 2016 (68 µg/day) was observed in 

the 2016 New Zealand Total Diet Survey compared to previous dietary surveys. This 

survey suggested that the increase in selenium intake was due to increased 

consumption of selenium rich food, such as chicken as there were no changes of 

selenium concentrations from key food contributors (33). 

Over 20% of current study participants potentially have selenium deficiency by not 

achieving the suggested 95 µg/L required to saturate GPx activity (21). Mean plasma 

selenium concentrations found in the current study results were much higher than 

those reported in postpartum women in South Island of New Zealand (72 µg/L), as 

locally grown wheat (low concentrations of selenium) was used in South Island women 

(11).  A recent Chinese study reported plasma selenium concentrations of women (42 

days after birth) who were living in selenium deficient (78 µg/L), sufficient (112 µg/L) 

and toxic (184 µg/L) areas (28). Results of our study of women 180 days after birth were 

similar to those found for women living in selenium sufficient areas, considering that 

the level of plasma selenium concentration was not affected by the stage of lactation 

(34). Based on the suggested plasma selenium cut-off value of Robinson et al. (22), 23% 

of women in the current study would have insufficient selenium status. It is understood 

that more selenium is required to saturate selenoprotein P than optimize GPx (35), 59% 

did not achieve the suggested plasma selenium concentration to fully express 

selenoprotein P (23), but all women achieved adequate functional selenium status for 

GPx activities and selenoproteins, in relation to Thomson’s suggested value. Overall, 

there remains no consensus on the established cut-off levels for plasma selenium at 

present, and therefore careful interpretation of such results is needed to assess the 

adequacy of selenium status. 

8.5.2 Relationship between dietary and plasma selenium 

In this MINI study, plasma selenium was not associated with dietary selenium intake. 

This finding is consistent with results from a study of Brazilian lactating women (36) 



255 
 

and a South Island New Zealand study (11), although in an earlier New Zealand study 

(37) significant correlations were found between dietary intakes and status in a mixed 

population group. Lack of an association between dietary and plasma selenium does 

not mean that dietary selenium is not the main factor determining selenium status. 

Rather, the result is likely to reflect reasonably rapid redistribution of recently absorbed 

selenium to various body tissues for which a range of biological half-lives exist (38). 

Another point to consider is that plasma selenium was more influenced by urinary 

excretion rather than dietary intake (39). During lactation, it has been suggested 3-6 

µg/day of absorbed dietary selenium is secreted into breastmilk, with the remainder 

contributing to maternal blood plasma concentrations and selenoproteins (40). The 

current study shows plasma selenium concentrations were associated with selenium 

concentrations in breastmilk. Coupled with the above finding this might suggest that 

plasma (and breastmilk) selenium may be more influenced by internal homoeostatic 

processes than by recent dietary intake. 

8.5.3 Selenium in breastmilk and urine 

In the present study, breastmilk selenium concentration was associated with maternal 

selenium intake and status. Selenium is generally found to be higher in colostrum (26 

µg/L), which then decreases to nadir levels in mature milk (1–3 months, 15 µg/L) (26). 

Median breastmilk selenium concentrations in the present study were similar to those 

reported in South Island of New Zealand in 1992 (13.4 µg/L) (41), and two recent North 

Island studies (11 and 14 µg/L, respectively) (12, 42). This indicates there was little change 

over the years, in contrast to the increase of dietary intake shown in the current study. 

Mean selenium in breastmilk from women at three months postpartum in the MINI 

study was 13 ± 2.8 µg/L, which was consistent with the values reported from Liangshan 

women in China, a traditionally selenium-deficient area (28). For exclusively breastfed 

infants, breastmilk is the only source of selenium; in the current study, estimated 

selenium intake of most infants did not achieve the suggested AI. This suggests that 

most infants in our study were at risk of selenium deficiency. 
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Urinary selenium excretion can be used as a proxy measure for selenium status, 

especially, after adjusting for creatinine (43). The urinary selenium: creatinine (µg/g) at 

three months postpartum was associated with dietary selenium intake, breastmilk, and 

plasma selenium concentrations. Using creatinine to adjust urinary selenium is a better 

indicator of status than urinary selenium excretion alone due to variations in hydration 

status. When compared to a previous study of breastfeeding women carried out in the 

same region (12), the current results were double on average (22 µg/L), which was also 

reflected in an increased dietary intake from this current study cohort. In the present 

study, infant urinary selenium concentrations demonstrated strong correlations with 

maternal breastmilk selenium concentrations at three and six months, when breastmilk 

is the major food source. In contrast, it was difficult to estimate dietary selenium intakes 

from their urinary excretion since there is no research on selenium concentrations in 

infant urine, although infant kidney glomerular filtration rates are reported to be low 

at birth but gradually reach the adult level at two years of age (44). 

8.5.4 Relationship to postnatal depression 

Results from the MINI study were not atypical, with 18% having probable minor 

depression at three months postpartum. An earlier study found 16% of Pacific women 

living in Auckland, New Zealand, had EPDS scores 13 or higher indicative of probable 

major depression (45). About 8% to 16% of new mothers in New Zealand are reported 

to suffer from postnatal depression, the most common and serious disorder for mothers 

in the first year after childbirth (46, 47). Approximately one quarter of affected women 

are still depressed when their infant reaches their first birthday. In addition, mothers 

are often reluctant to seek available help (48). Results from the MINI study showed that 

at twelve months postpartum, three of the seventy-one participants (4%) continued to 

be classified with probable major depression, and another five withdrew, possibly 

indicating that other social factors prevented them from continuing the study. Our 

results also showed a deceased prevalence of both major and minor depression at six 

months postpartum which remained similar at twelve months postpartum. However, 
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there was a similar prevalence of anxiety found at three and twelve months, with a 

decrease at six months postpartum. It has been evident that minor depressive 

symptoms during postpartum periods may increase the risk of recurrence of depression 

throughout the childbearing years (49). In addition to socioeconomic status (50) and 

dietary patterns (51), micronutrients, including selenium have been suggested to 

inversely affect mental health (6, 7, 52). 

In the MINI study, no significant association was observed between plasma selenium 

values and EPDS scores at three, six and twelve months postpartum. A possible reason 

may be that less than one third of participants showed low plasma selenium levels with 

the majority indicated to meet a saturation of GPx activity. A randomised clinical trial 

in Iran reported that a prenatal selenium supplementation at 100 µg daily may be 

effective in preventing early postnatal depression (eight weeks postpartum) (53). A 

previous study of young adults aged 17-25 years old found the lowest depressive 

symptoms prevalence occurred when serum selenium concentrations were between 82-

85 µg/L and if both below or above this value presented higher rates of depressive 

symptoms (based on the Centre for Epidemiological Studies-Depression Scale) (52). 

The U shape relationship indicted in the young adult study was not observed in the 

current study, which may be due to all plasma selenium being above 85 µg/L. We only 

found a significant higher prevalence of minor depression among women with medium 

levels of plasma selenium levels (106 µg/L). The possible effects of selenium on 

postpartum women’s mental health; and to a lesser degree, its mechanism, and possible 

effects on infant cognitive development, will necessitate further investigation. 

8.5.5 Strengths and limitations 

This study was an in-depth prospective study of selenium intake and status of women 

and their infants in the first year postpartum. The strength was to assess dietary intake, 

excretion and tissue selenium to provide an overall evaluation of selenium status in 

breastfeeding women and their infants. The chosen dietary method was the gold 

standard dietary assessment tool to examine selenium intake. A limitation was this 
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cohort consists of women who were mainly well educated and motivated in achieving 

optimum health, thus this study was not representative for New Zealand population. 

Further, the study did not measure functional selenium status, including serum or 

plasma selenoprotein P (23), plasma GPX3 and erythrocytes GPX1 (54), which are more 

reliable markers in identifying nutritional selenium deficiency and examining responses 

after supplementation trials (55, 56).  However, plasma selenium at tissue level and 

selenium excretion in urine can indicate the degree of insufficient intake (56). 

8.6 Conclusions 

In the present study selenium intake was suboptimal for some of the mothers and 

infants, despite some observed increases in intake in recent studies; and some women 

had potentially insufficient selenium status. Further research is required to investigate 

whether these suboptimal intakes negatively affect maternal thyroid function, the 

development of postnatal depression and anxiety, and infant neurodevelopment. 
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Chapter 9 Discussion, Conclusions and Recommendations 
 

This chapter provides an overview of the major findings from both Study 1 – secondary 

data analysis of a previous Mother and Baby study, and Study 2 – Mother and Infant 

Nutrition Investigation (MINI). The overall aim of this PhD thesis and each research 

objective investigated in the two studies are considered closely, and summarised into 

five central aspects, including: 1) postpartum women’s thyroid function and its relation 

to iodine, selenium and iron; 2) maternal and infants’ iodine intake and status, and 

maternal use of iodine-containing supplements; 3) maternal and infants’ selenium 

intake and status, and postnatal depression; 4) iron status of postpartum women; 5) 

acknowledgement of the strengths and limitations of the studies. These results have 

contributed to current published literature, are likely to have implications for public 

health practice, and have identified important research priorities for future 

investigation. 
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9.1 Thyroid function, its relation to iodine, selenium, and iron  

Hypothesis 1: Suboptimal iodine, selenium or iron status will impede maternal thyroid 

function at six months postpartum. 

 

Abnormalities in thyroid function have been associated with anxiety, depression, 

cognitive deficit (1), and negative effects on reproductive health (2). Thyroid 

dysfunction during the first year after childbirth is defined as postpartum thyroiditis 

(PPT). The prevalence of PPT in a general population normally ranges from 1.1% to 

16.7% (3). Thyroid dysfunction is a significant health issue in New Zealand, with 

women suffering five times the prevalence of men (4, 5). However, few studies have 

investigated the prevalence of thyroid dysfunction in postpartum women in New 

Zealand. This has become of increased importance due to changes in dietary patterns, 

and the establishment of two government interventions to improve iodine status. 

In the MINI study, at six months after childbirth, 18% of women were experiencing 

thyroid dysfunction, including 3% with overt hypothyroidism and 15% with subclinical 

hyperthyroidism. The resulting overall prevalence was higher than that reported by a 

previous Australian study (n = 748) which identified 12% thyroid dysfunction among 

women at six months postpartum (6). This higher rate in our study could have 

occurred: 1) because women who participated had undiagnosed thyroid dysfunction 

during previous perinatal periods which may have increased their risk of thyroid 

dysfunction at this time; 2) because they could have a family history of thyroid 

dysfunction which may have encouraged their participation in this study; 3) because 

women who had autoimmune diseases that were previously unknown may have an 

increased risk of  developing PPT (3). Additionally, the risk of developing PPT may 

increase in women who presented positive thyroid peroxidase antibodies (TPOAb) 

during early pregnancy (7) or at childbirth (8). Our study also found positive TPOAb 

at six months postpartum was associated with abnormal TSH concentrations. After 

examining a cohort of Iranian women with subclinical and overt PPT, who were 

undergoing T4 therapy, Azizi reported that a trend of increasing numbers of women 
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with subclinical PPT developed permanent thyroid dysfunction than those with overt 

PPT, but such differences were not found to be statistically significant (9). However, 

Azizi suggested that identifying both subclinical and overt cases of PPT early can allow 

timely interventions. 

This MINI study has examined thyroid function in relation to iodine, selenium and 

iron status in postpartum women. The result has shown that selenium status 

measured as plasma selenium was the only significant predictor of the likelihood that 

women had abnormal thyroid stimulating hormone (TSH) concentrations. Women 

with a lower plasma selenium (< 95 µg/L) were more likely to experience thyroid 

dysfunction (41.2%), when compared to 10.5% of women with optimal plasma 

selenium to saturate glutathione peroxidases (GPx) activity. Numerous research 

studies have established the roles of selenium in thyroid function, including 

converting thyroxine (T4) to triiodothyronine (T3) via iodothyronine deiodinases; 

catalysing the reduction of hydrogen peroxide and protecting the thyroid gland from 

oxidative stress via GPx and selenoprotein P (10). Intervention studies have 

investigated selenium supplementation in the general population including pregnant 

women; selenium treatment may reduce TPOAb levels, improve thyroid echogenicity, 

and decrease the incidence of postpartum thyroid dysfunction, but researchers did 

not find significant effects of selenium on thyroid hormone synthesis (10, 11). However, 

this study finding raises questions as to who might benefit most from selenium 

supplementation, and what should be an effective dose and duration. 

In addition, iodine status determined by the urinary iodine concentration (UIC) and 

breastmilk iodine concentration (BMIC) did not predict thyroid dysfunction. One 

possible reason may be the high intra-individual variations in these measures, which 

predict status of populations rather than individuals. Alternative explanations may 

include that thyroid hormones remain in the normal range even in a mild-to-

moderate iodine deficient population (12). Further, the MINI study has found a high 

prevalence of subclinical hyperthyroidism (15%) in this cohort of iodine deficient 

postpartum women. This is consistent with the reports from Danish population 
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studies where the rate of hyperthyroidism was higher among those who were iodine 

deficient than those having adequate or excessive iodine intake (13, 14, 15). The MINI 

study found women using iodine-containing supplements (9/74) presented with 

normal TSH concentrations, while 20% (13/65) of women who did not use iodine-

containing supplements recorded abnormal TSH concentrations. This indicated a 

beneficial effect of iodine supplementation on optimal thyroid function in an iodine 

deficient population. However, the number of iodine-containing supplement users 

was too small to generate sufficient statistical power. 

Iron status in our study was not associated with thyroid hormone concentrations or 

thyroid volumes, which may be due to the predominantly adequate iron status of the 

women. However, a prospective study of iron deficient and anaemic (IDA) Turkish 

women of childbearing age (n = 66) found a significant reduction of thyroid volume 

after taking iron supplementation (16). This group of Turkish women were euthyroid 

and iodine deficient (MUIC, 83 µg/L). They were given equivalent to 100 mg elemental 

iron twice daily. Results showed that after a six-month treatment, their mean thyroid 

volume was significantly reduced from a baseline of 17 mL to 13 mL. Consequently, the 

authors suggested that iron status played a substantial role in the thyroid volume, 

possibly due to increased blood flow to thyroid gland, resulting in its subsequent 

enlargement occurring under iron deficiency anaemia (16). We may have found an 

association if more participants had ID or IDA.  

Data analysis from the MINI study confirms that hypothesis 1 was partly accepted, as 

selenium status assessed by plasma selenium was the only significant predictor of 

thyroid dysfunction among this cohort of women who were iodine deficient and who 

mostly achieved adequate iron status.  

9.2 Maternal and infants’ intake and status of iodine over the first 

postpartum year  

Hypothesis 2: Breastfeeding women who used iodine-containing supplements will 

achieve better iodine status for themselves and their breastfed infants. 
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Hypothesis 3: Postpartum women and their infants will remain iodine deficient, despite 

two New Zealand government initiatives to improve iodine status. 

 

To combat re-emerged iodine deficiency, mandatory fortification of bread (all 

commercial bread other than organic and unleavened) with iodised salt (25-65 mg 

iodine/kg salt) was implemented in New Zealand in 2009. Post-fortification studies 

showed an increase in the iodine status of adults [median UIC (MUIC) from 53 µg/L 

to 103 µg/L], and women of childbearing age (MUIC from 48 µg/L to 104 µg/L) (17), as 

well as children (MUIC from 68 µg/L to 113 µg/L), which is indicative of iodine 

adequacy (18). However, such fortification may not sufficiently meet the increased 

needs for pregnant and breastfeeding women (19). Thus, in 2010, using a 150 µg/day 

iodine supplement was recommended for all pregnant and breastfeeding women in 

New Zealand. Few studies in New Zealand have investigated the iodine status of 

pregnant and lactating women. 

The MINI study found iodine deficiency was present in the sample of New Zealand 

breastfeeding women at three months postpartum, despite the establishment of the 

two government initiatives. The maternal MUIC was 82 µg/L, which showed an 

improvement from 74 µg/L reported in a pilot study (n = 36) a year after the 

government initiatives (20). Furthermore, median BMIC was 69 µg/L in the MINI 

study, below the suggested index of 75 µg/L for adequacy (21). This remained similar 

to the mean BMIC of 63 µg/L reported in a New Zealand pilot study in 2011 (20). 

Both Denmark and Australia have implemented mandatory fortification of bread with 

iodised salt since 2000 (22) and 2009 (5), respectively. In addition, mandatory iodine 

fortification in household salt takes place in Denmark (23), however, in Australia and 

New Zealand, iodised fortification in household salt remains voluntary. Both Australia 

(24) and New Zealand (25) recommend iodine supplementation for all pregnant and 

breastfeeding women. In Denmark, currently, there remains no official 

recommendation of iodine supplementation for pregnant and lactating women. 
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A comparison study between pre- and post-fortification in Demark reported that 

breastfeeding women were still iodine deficient, following the establishment of 

mandatory iodised salt fortification, although an increment was observed from 50 

µg/L to 72 µg/L in MUIC (23). A small sample of pre- (n = 32) and post-fortification (n 

= 36) in New Zealand reported that iodine status of breastfeeding women was 

improved (34 to 74 µg/L), but still deficient (20). A recent cross-sectional study in 

South Australia compared the iodine status of breastfeeding women pre- and post- 

fortification, the results of which showed an increase in BMIC from 105 to 137 µg/L, 

confirming iodine adequacy (26). 

In the MINI study, women who took iodine-containing supplements achieved better 

iodine status than non-users. Women who used iodine-containing supplements 

obtained higher MUIC (111 vs 68 µg/L, P = 0.023) and median BMIC (84 vs 62 µg/L, P 

< 0.001) compared with non-users. This trend is consistent with a small sample post-

fortification study of 60 breastfeeding Australian women, recording a higher MUIC of 

206 µg/L in iodine supplement users than non-users (97 µg/L) (27). Similarly, another 

large sample post-fortification study of breastfeeding women in South Australia (n = 

653) reported a significantly higher BMIC of 195 µg/L in iodine supplement users 

compared to non-users (137 µg/L) (26). 

A post-fortification study of breastfeeding Danish women (n = 209) reported a higher 

median BMIC (112 vs 72 µg/L) and MUIC (83 vs 65 µg/L) of iodine supplement users 

than non-users (28). Despite no official recommendation of iodine supplementation 

in Demark, half of the postpartum women studied took supplements, and Danish 

researchers have suggested iodine supplementation for breastfeeding women in 

Denmark is essential (28). In the MINI study, despite of a government 

recommendation of using iodine supplementation during lactation, only 46% used 

iodine-containing supplements. This rate is lower than the rate (90%) reported in the 

South Australian post-fortification study (26), and slightly lower than the 50% 

reported in the Danish study. High rates of iodine-containing supplement use may 

have contributed to the achievement of adequate iodine status of breastfeeding 
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women and their infants in South Australia (29). Our findings together with other 

research showing  an improvement in iodine status of breastfeeding women who took 

iodine containing supplements supports the need for greater uptake of iodine 

supplements by breastfeeding women in New Zealand.  

In addition, infants of iodine-containing supplement users achieved a higher MUIC 

compared to those from non-users (150 vs 86 µg/L, P = 0.036). This result is 

comparable to the improved iodine status of Moroccan infants after their mothers 

were provided with a one-off supplementation of 400 mg iodine in early lactation (30). 

Therefore, urinary iodine results suggest that maternal iodine supplementation may 

benefit both breastfeeding mothers and infants. 

In the MINI study, supplementation advice from health professionals was 

communicated to pregnant women (86% used iodine-containing supplements), 

however, such practices reduced to 46% during lactation. A recent online survey of 

New Zealand women during their pregnancy phase (n = 442) and during the 0-6 

months postpartum period (n = 284) reported 95% and 63% (respectively) using 

iodine-containing supplements (31). These percentages are higher than was seen in 

our study, and higher than those reported previously (52% in 2017 for postpartum 

women) (32). However, the dosage, duration and frequency of iodine supplement use 

was not reported in the online survey, thus, it is difficult to know the adherence of 

iodine recommendations and whether iodine supplement use is sufficient (31). In the 

current study, the main predictor for using an iodine-containing supplement was 

iodine knowledge; however, 66% of women had nil or low iodine knowledge, 

including the importance of iodine in heath and good dietary sources of iodine; and 

79% and 54% were unaware of the 1st and 2nd government initiatives. One of the main 

reasons given by women for not using iodine supplements during this time was that 

very little advice concerning iodine supplementation during lactation was given by 

health professionals. A 2014 Australian study investigating antenatal care reported 

that a majority of Australian General Practitioners questioned did not openly 

recommend iodine supplement to their patients (33). Furthermore, a more recent 
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Australian nation-wide survey of health professionals (including general practitioners, 

obstetricians, gynaecologists, midwives, and dietitians, n = 396) reported a lack of 

awareness of the appropriate dose and duration of iodine supplementation that is 

recommended for pregnant and breastfeeding women (34). Although such data in 

New Zealand are at present unavailable, this Australian nation-wide survey 

highlighted a need for iodine specific nutritional education initiatives to be brought 

to the attention of all primary health care providers (34). 

To the best of our knowledge, only five studies have investigated iodine status at 

different time points from early lactation to the end of the first postpartum year, in 

Sudan (35), Switzerland (36), Norway (37), Sweden (38), and New Zealand (39) (Table 

9.1). The New Zealand study was carried out over twenty years ago with a small sample 

of 35 breastfeeding women, the MUIC (24 hours urine samples) recorded as 37, 25, and 

47 µg/L at three, six and twelve months postpartum, indicating iodine deficiency (39). 

In the MINI study, maternal MUIC of 82, 85, and 95 µg/L at three, six and twelve 

months postpartum, respectively were below the WHO cut-off of 100 µg/L, suggesting 

iodine deficiency. A trend for an increase in MUIC across three time points in the 

MINI study was also found in a study of Sudanese breastfeeding women (n = 47) living 

in an area with 17.5% goitre rate, where MUIC increased from three (51 µg/L) to nine 

(63 µg/L) months postpartum (35). Similarly, a recent Norwegian longitudinal study 

of postpartum women (n = 915) reported the lowest MUIC at six weeks postpartum 

(57 µg/L), which increased through six, twelve and eighteen months postpartum (70 

µg/L, 79 µg/L, 87 µg/L) (37). The Norwegian authors suggested the increase was 

possibly due to a decrease of iodine excretion in breastmilk during the postpartum 

period. Both decreased use of iodine-containing supplements and cessation of  

breastfeeding in the MINI study contributed to the increase of maternal UIC from 

3MPP to 12 MPP. However, these studies on Norwegian and Sudanese women did not 

examine the breastmilk iodine concentrations. 
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Table 9.1 Comparison of iodine status between four longitudinal studies and the MINI study. 

 

Country 
Iodine fortification at 
the time of study 

Sample 
size 

Postpartum 
time 

Maternal 
MUIC 
(µg/L) 

Median 
BMIC 
(µg/L) 

% using iodine 
supplement 

Tg 
(µg/L) 

Infant 
MUIC 
(µg/L) 

Year of 
the 
study Authors 

New Zealand 

Voluntary iodised salt 
(25-65 mg iodine/kg 
salt) 35 

3 months 37 

n/a n/a n/a n/a 
Prior to 
1999 

Thomson 
et al. 2001 
(39) 

6 months 25 

12 months 47 

Sudan 

Voluntary iodised salt 
(15 mg/kg), 14% 
household uses (40) 47 

3 months 51 

n/a n/a 

29 

n/a 
1993-
1995 

Eltom  
et al. 2000  
(35) 

6 months 30 27 

9 months 63 24 

Switzerland 

Voluntary Iodised salt 
(20mg/kg), 90% 
household uses (41)  196 

6 months 

75 

51 

3 

 
 
n/a 

91 
2005-
2007 

Andersson 
et al. 2010 
(36) 12 months 42 103 

Norway 
Voluntary iodised salt 
(5 mg/kg) (42) 915 

6 weeks 57 

n/a n/a 

 
 
 
n/a n/a 

2011-
2014 

Aakre  
et al. 2020 
(37) 

6 months 70 

12 months 79 

18 months 87 

Sweden 
Voluntary iodised salt 
(50µg/g salt) (43) 84 

0.5 month  

90 

19  11.8 (non 
EBF) vs 
22.3 (EBF) n/a 

2008-
2011 

Manousou 
et al. 2020 
(38) 

4 months 78 13 

12 months 107 11 

New Zealand 

Mandatory iodised 
salt in bread (25-65 
mg iodine/kg salt) and 
recommendation of 
consuming 150 µg/day 
iodine 87 

3 months 
 
82 69 40 n/a 115 

2017-
2018 

Jin et al. 
2020 

6 months 85 59 11 11.4 120 

12 months 95 35 6 n/a 118 
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In the MINI study, a continuous decrease of BMIC was detected as 69, 59, and 35 µg/L 

at three, six and twelve months postpartum. This pattern suggests reduced transport 

of iodine to breastmilk. A similar reduction was reported in the observational 

Switzerland study of women from six (51 µg/L) to twelve (42 µg/L) months postpartum 

(36). Past research reported a sharp decrease of iodine concentration from colostrum 

to mature milk, which could be due to the differences in volume levels (44). A further 

reduction was observed during the six to twelve months postpartum period in the 

MINI study, which was possibly due to infants starting complementary food, and 

therefore becoming less reliant on iodine supply in breastmilk. However, for infants 

(exclusively or partially breastfed), breastmilk remains an important source of iodine. 

A wide range of BMIC was observed in women in iodine-sufficient countries from 50 

µg/L in Finland to 270 µg/L in the United States, however, there was no consensus to 

adopt an adequate BMIC cut-off (45). In a systematic review published in 2009, Azizi 

reviewed BMIC from iodine-sufficient and -deficient countries and suggested a value 

above 75 µg/L as an index for adequate infant iodine intake (21). Based on the 

suggested average breastmilk consumption of 0.78 L (during the first six months of 

age) (45), estimated iodine intakes for infants aged three and six months in the MINI 

study was 54 and 46 µg/day, respectively. These are below the suggested Adequate 

Intake (90 µg/day) by the Australian New Zealand Nutrient Reference Value (46), 

thus, breastfed infants aged three and six months recorded insufficient iodine intake. 

In addition to indirectly estimating infant iodine intake from breastmilk, UIC in spot 

urine was used to evaluate infant’s iodine status in the MINI study. The WHO suggests 

a median  MUIC of at least 100 µg/L for population adequacy in infants (47), based on 

an estimated iodine intake is 55 µg/day (using approximately 0.5 L daily urine volume 

and 92% of dietary iodine excreted into urine) (48). This is much lower than the 

Institute of Medicine suggested adequate intake (AI) of 110 µg/day for infants up to 

age of six months (49). Furthermore, results from a 2016 dose-response crossover 

iodine balance study of euthyroid Swiss infants aged two to five months, suggested 125 

µg/L as a MUIC cut-off for population sufficiency (based on the estimated average 
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requirement of 72 µg/day for infants aged two to five months) (48). Using this cut-off, 

the MUIC for infants aged three (115µg/L) and six months (120µg/L) in the current 

study would suggest iodine deficiency, which was consistent with the estimated 

suboptimal intake from BMIC. Compared to adults, there is less variation in infant 

hydration status. Despite this, to assess individual status requires multiple samples 

and the number needed is similar for infants and adults (50, 51). Further investigation 

of health outcomes related to such measures may provide additional useful evidence 

to confirm an optimal cut-off for infant MUIC. Future studies need to explore the 

iodine status of young infants in relation to their neurodevelopment, as iodine 

deficiency is the most preventable cause for brain damage in early childhood (52, 53). 

Infant receiving complementary food  may be at an increased risk of iodine deficiency 

owing to their high requirement of iodine per body weight and the recommendation 

of not given infants neither iodised nor non-iodised salt up to one-year   (54). WHO 

recommends infants aged six months should receive complementary food in addition 

to breastmilk (55). In the present study, a significantly lower MUIC was found in 

infants aged six months who were exclusively breastfed, compared to infants who were 

mixed fed (80 vs 147 µg/L). Consumption of any complementary food or/and infant 

formula may contribute to such differences. Prior to the mandatory fortification of 

bread with iodised salt, the 2009 New Zealand Total Diet Survey (NZTDS) reported 

the mean iodine intake of infants aged 6-12 months was 66 µg/day which was mainly 

contributed by infant and follow on formula (56); after the fortification this was 

increased to 83 µg/day in the 2016 NZTDS , (57). This is possibly due to changes of 

iodine concentration in complementary foods. The 2016 NZTDS reported infants 

gained just under 70% of their iodine intake from infant formula and commercial 

infant foods, the balance was from other sources of dairy, grains, CEFM (chicken, eggs, 

fish, meat), and suggested that iodine intake of infants aged six to twelve months were 

less affected by the mandatory fortification of bread with iodine when compared to 

other populations, because infants have  less consumption of grain-based foods (57). 

In addition, the NZTDS only includes infants on formula and not those who are 
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breastfeeding, there is limited  data on iodine intake from complementary food 

sources in New Zealand. The current study results suggest the importance of iodine 

concentrations in breastmilk to enable adequate iodine intake for those who are not 

yet adding complementary foods. Recommended iodine supplementation of 150 µg/L 

for breastfeeding women in New Zealand may improve BMIC. 

Data analysis from the MINI study broadly accepts hypotheses 2. However, hypothesis 

3 is accepted in part since those women who used iodine-containing supplements and 

their breastfed infants both achieved adequate iodine status. 

9.3 Maternal intake and status of selenium, and postnatal depression 

Hypothesis 4: Suboptimal selenium intake and insufficient selenium status exist 

among New Zealand postpartum women. 

Hypothesis 5:  Selenium intakes of breastfed infants aged three and six months are 

suboptimal. 

Hypothesis 6: Lower plasma selenium will increase the risk of postnatal depression at 

three, six and twelve months postpartum. 

 

Numerous studies investigated selenium intake in New Zealand during the decade of 

1980-1990. However, a few studies have monitored selenium intake in recent years in 

children (58), women of childbearing age (59), and older adults (60, 61). Only two 

recent studies in 2004 (62) and 2012/2013 (63) from the South Island of New Zealand 

have explored the selenium intake and status of postpartum women and their infants. 

A secondary data analysis of the Mother and Baby study (2009/2011) found lactating 

women at three months postpartum had inadequate selenium intake [51 (36, 80) 

µg/day] when compared to the EAR (65 µg/day). In the 2017/2018 MINI study, a higher 

selenium intake of breastfeeding women was observed [62 (51, 85) µg/day], indicating 

a possible improvement in selenium intake in New Zealand women over time. The 
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2009/2011 dietary data were collected via repeated 24-hour dietary recalls, while data 

from the MINI study were collected from the weighed four-day diet diaries which are 

the gold standard method for estimating dietary intake. 

Using a weighed three-day diet diary, the 2016 study of postpartum women (n = 53) 

living in the South Island of New Zealand reported mean selenium intake was 47 

µg/day, which was much lower than that as reported in our studies (63). The 

differences may be due to the different methodologies. The importation of Australian 

wheat (containing ten times higher selenium content than New Zealand wheat) (64) 

has dramatically improved dietary selenium intake in the North Island of New 

Zealand, with less effect being observed in the South Island of New Zealand. From the 

results of the 2016 Total Diet Survey, bread from the North Island (0.1 mg selenium 

per kg bread) contains higher selenium than those from the South Island (< 0.005 mg 

selenium per kg bread) (57). Australian imported wheat is mainly used for making 

bread in the North Island, while locally produced wheat is mostly used for bread-

making in the South Island (57). The most recent New Zealand Total Diet Survey 

(2016) reported an increased selenium intake among females aged over 25 years from 

2009 (56 µg/day) to 2016 (68 µg/day) (57). This survey sampled 132 foods (the most 

consumed foods in New Zealand), and eight different samples of each food item were 

analysed. Food consumption data were based on 14 day simulated typical diets for 

different age-gender cohorts. This survey suggested increased consumption of 

selenium rich foods may contribute to the improvement of selenium intake since 

selenium concentrations of the key food contributors had remained unchanged (57). 

At three months postpartum, median urinary selenium concentration (MUSC) of 

lactating women in the MINI study [22 (9, 34) µg/L] was almost double from that 

recorded in the 2009/2011 Mother and Baby study [12 (8, 20) µg/L], and this may be 

due to an increased dietary selenium intake from 51 to  62 µg/day, and the sample size 

of the Mother and Baby study was much smaller. Further, in the MINI study, selenium 

concentrations were measured in spot urine samples, while 24-hour urine specimens 

had been used in the previous study conducted across 2009 and 2011. However, as 
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shown in Table 9.2, breastmilk selenium concentration (BMSC) in the MINI study [13 

(11, 14) µg/L] was slightly higher than 11 (10, 13) µg/L in the 2009/2011 study. It was also 

slightly higher than 11 µg/L in another 2012/2013 study conducted in the South Island 

of New Zealand (63). BMSC remained like those concentrations reported in the 1992 

study from the South Island of New Zealand (13 µg/L) (65), and a more recent study 

from the North Island of New Zealand (14 µg/L) (66). In contrast to the increase of 

dietary intake shown in the MINI study, these comparative results indicate little 

change of BMSC over the period stated above. It is arguable that, relatively constant 

selenium secretions in breastmilk (11 to 14 µg/L) could be due to adjustments in the 

supply of adequate selenium to breastfed infants. Thus, extra selenium from increased 

dietary intakes would be excreted into urine. BMSC are assumed to reflect maternal 

dietary intake, however whether mammary tissue sequesters selenium to provide for 

the infant is unclear, the lowest of 2.6 µg/L being recorded in an area of endemic 

Keshan disease in China (with 7.6 µg/L reported in New Zealand in 1983) increasing 

to the highest at 283 µg/L in an area of endemic human selenosis in China (67). The 

BMSC at three months postpartum in the MINI study was similar to the concentration 

from Liangshan women in China in 2016 (12 µg/L), living in a traditionally selenium-

deficient area (68). These BMSCs below the international reference range of 18.5 µg/L 

which provide adequate selenium intake for infants aged 0-6 months (13.9 µg/day) 

(69). To conclude, selenium intakes of breastfeeding women at three months 

postpartum were suboptimal in the 2009/2011 study and the 2017/2018 MINI study. 

Table 9.2 Selenium status between current and other New Zealand studies 

 

PhD  
Study 1 
(70) 

PhD  
Study 2 
(71) 

Kendall (2015)  
(63) 

Dolmore et al 
(1992) (65) 

Butts et al  
(2018) (68) 

Location  
North 
Island 

North 
Island 

South  
Island 

South 
Island 

North 
Island 

Data collection (year) 2009/2011 2017/2018 2012/2013 n/a n/a 

Participants (n) 68 87 53 70 78 

Timing (postpartum)  4 months 3 months 8 weeks up to 12 months 6-8 weeks 

MUSC, µg/L (median/mean) 12 22 n/a n/a n/a 

BMSC, µg/L (median/mean) 11 13 11 13 14 
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The MINI study explored both the MUSC and the BMSC of women at three, six and 

twelve months postpartum. Their maternal MUSC at three months postpartum (22 

µg/L) remained the same at six months postpartum but increased to 26 µg/L at 12 

months postpartum (P = 0.016). This significant increase could be due to less selenium 

being excreted in breastmilk to meet infants’ needs. Their BMSCs showed a slight 

variation from 13 µg/L at three months postpartum to 11 and 12 at six and twelve 

months postpartum, respectively. Reduction from three to six months postpartum 

was statistically significant (P = 0.003). Based on two review articles published in 1989 

and 2002 (67, 72), selenium is generally found to be higher in colostrum (26 ug/L), 

which then decreases to nadir levels in mature milk (1-3 months, 15 ug/L). Hence, this 

decrease of selenium concentrations may be both due to very low volume and high 

content of proteins in breastmilk during the early lactation period (72). 

In the MINI study, maternal selenium status was measured in blood plasma, the most 

common biomarker for selenium status in the published literature (73). It allows an 

ease of comparison of selenium status with other countries. In a systematic review of 

18 supplementation studies by Ashton et al. (2009) (73), plasma selenium significantly 

increased after selenium supplementation, suggesting it is useful in assessing 

selenium depletion. All women in the MINI study demonstrated adequate plasma 

selenium to achieve optimal activity of iodothyronine 5’ deiodinases (> 65 ug/L) (74), 

but 23% had  inadequate selenium status with plasma selenium below the 95 µg/L 

required for the saturation of GPx activity (75). Further, 59% of women did not achieve 

110 µg/L which is needed to achieve full expression of selenoprotein P (76). Median 

plasma selenium of lactating women in the MINI study (106 µg/L) was higher than 72 

µg/L reported by McLachlan et al. (2004) in the South Island of New Zealand (62), but 

remained lower than North American women at six months postpartum (138 µg/L) 

who lived in a selenium sufficient area (77). 

The current study is not able to evaluate the use of selenium supplementation due to 

the small number of women who took selenium-containing supplements (5/87). 
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Selenium supplementation studies are inconclusive as to the degree of health benefits. 

Also, supplementation requires caution because of the “U” shaped relationship 

between selenium status and health outcomes, for example, selenium deficiency may  

increase the risks of having thyroid autoimmune disease, viral infection, declined 

cognitive functions, and prostate cancer, while  excessive selenium may increase skin 

cancer, prostate cancer, and type 2 diabetes risks. (78, 79). Hence, further 

investigation is required to determine who will benefit  from selenium 

supplementations, to assess what a safe dose of supplementation might be (possible 

randomised placebo-controlled trials), and to identify what long-term effects may 

exist after the cessation of using supplements (longitudinal or retrospective studies). 

Hypothesis 5 states selenium intakes of breastfed infants aged three and six months 

are suboptimal. The current AI for infants aged 0-6 months (12 µg/day) was calculated 

from the average intake of 0.78 L breastmilk/day and BMIC of 15 µg/L [New Zealand 

study in 1992 (65) and Australian studies in 2000 (80)]. The estimated median infant 

selenium intake from the 2009/2011 cohort and the MINI study were identical at 9 

µg/day, which is below the recommended AI of 12 µg/day (AI) (46). The results also 

showed that 70% (45/64) in the 2009/2011 study and 70% (49/72) in the MINI study 

did not achieve an intake of 10 µg/day based on the suggested adequate value 

extrapolated from adults (67); thus, breastfed infants aged around three months were 

at risk of selenium deficiency. The estimated intake of infants aged six months in the 

MINI study was 8 (7, 10) µg/day, and 90% did not achieve AI, which suggests 

suboptimal selenium intake in this cohort. The current estimated selenium intake 

from breastmilk presents some difficulties due to the complexity of accurately 

measuring daily breastmilk consumption for infants. When infants start receiving 

complementary foods, it may become even more difficult to estimate their dietary 

intakes due to the variety of complementary foods and diverse of feeding practices. 

The MINI study has explored infant urinary selenium concentrations in spot urine 

samples. Infant MUSC was 8 (6, 13) µg/L at three months, 11 (6, 15) at six months, and 

24 (10, 40) at twelve months (P = 0.004). The significant increment from six to twelve 
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months may due to increased complementary food intake containing a more varied 

dietary selection of organic and inorganic selenium. Urinary selenium excretion 

directly reflects recent dietary intake, in adults, a 50-60% excretion rate is used to 

estimate selenium intake (81). There is limited research of young infants on their 

excretion rates of selenium in urine, therefore, it is difficult to estimate their selenium 

intake. Currently, there is no available cut-off for infant urinary selenium 

concentration to enable identification of selenium depletion in groups. It may be 

useful to investigate selenium excretion in urine from infants living in selenium-

sufficient countries to establish an optimal value for future research purposes. 

Infant selenium status can be measured using serum/plasma, or erythrocyte GPx 

activity in blood samples (80). However, it may be difficult to obtain parents’ consents 

to collect blood samples from their healthy infants. One of less invasive methods is to 

analyse selenium concentrations in the nail clippings of infants. Measuring selenium 

in nail clippings has been used in evaluating the relation to lung and prostate cancer 

in adults (81), and in assessing the preeclampsia risk for pregnant women (82). The 

main advantage of the method is to measure selenium intake over a long exposure 

time. This measurement may provide opportunity to explore selenium exposure in 

utero since nails grow at a slow rate and can be collected from participants over time. 

However, it is worth noting that one mm of nail samples can reflect approximately 

one-month accumulation of nutrient status (81), and there is also a need to 

acknowledge the varied nail growth rates which are affected by age, gender, metabolic 

rate, and health conditions. 

Prevalence of postnatal depression in the MINI study was typical, when compared to 

the results from a large longitudinal study - Growing Up in New Zealand - suggesting 

that 5% of women were experiencing depression symptoms at nine months 

postpartum (83). In the MINI study, the relation between selenium and postnatal 

depression was explored, but results remained inconclusive. No significant association 

was observed between plasma selenium and the Edinburgh Postnatal Depression 

Scale (EPDS) scores taken at three, six and twelve months postpartum. This may be 
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due to most women having plasma selenium higher than the 95 µg/L required for 

maximum GPx activity. In the event, our study found the highest prevalence of minor 

depression at three months postpartum and was only observed in women with a mean 

plasma selenium at 106 µg/L (the middle tertile), but not observed in other tertiles 

which may due to a small sample size. Another New Zealand study of young adults 

aged 17-25 years found a “U” relationship between serum selenium and the prevalence 

of depression, and the lowest depressive symptom prevalence occurred when serum 

selenium ranged between 82-85 µg/L (84). This phenomenon was not observed in the 

MINI study, since plasma selenium concentrations of all postpartum women were 

higher than 85 µg/L. The possible effects of suboptimal selenium on postpartum 

women’s mental health and its mechanism and possible effects on infant cognitive 

development, requires ongoing investigation. 

The data presented provides support for the hypotheses 4 and 5. Whether low plasma 

selenium increases the risk of postnatal depression (hypothesis 6), however, was 

inconclusive. 

9.4 Maternal iron status 

Hypothesis 7: High prevalence of iron deficiency and iron deficiency anaemia exist 

among women at six months postpartum. 

 

Hypothesis 7 was proposed in anticipation that most women would have inadequate 

iron status at six months postpartum. However, our findings showed that only 4% 

were iron deficient without anaemia (ID), and none were classified as iron deficiency 

anaemia (IDA). The low rate of ID in this current study cohort could be due to the 

protective benefits from six-month lactational amenorrhoea. The possible 

consumption of iron supplements during pregnancy (69% reported taking iron 

supplements although exact compliance was not measured) may also contribute to 

this low rate. Additionally, most women who experienced postpartum haemorrhage 

were immediately treated with iron or blood transfusion (62%), which may contribute 
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to low rates of ID, as severe blood loss is strongly related to an increased risk of 

postpartum ID and IDA (85).  In an iron status study of America women at six months 

postpartum, after controlling for confounding variables, the risk of ID in postpartum 

women, compared to non-pregnant women, was highest among those from low-

income groups (86). If our study had included a more representative sample in 

household income status than 62% of women reported acceptable household income 

above the median New Zealand household income, the prevalence of ID may have 

been higher. While the data collected does not provide support for the hypothesis 7, 

it does not exclude it. More work is needed to investigate the iron status of those in 

New Zealand who are less wealthy. 

9.5 Strengths and limitations 

To the best of our knowledge, the MINI study was the first study to examine iodine, 

selenium, and iron concurrently in relation to the thyroid function of postpartum 

women. It is one of a few studies to investigate the prevalence of thyroid dysfunction 

in a New Zealand postpartum cohort. This study examined the iodine status of 

mother-infant dyads during the transitional period from exclusive, to partial, and in 

some cases, cessation of breastfeeding at three time points after partition. Results 

from this current study add to the existing limited knowledge of iodine status 

throughout the postpartum period. A triangular method was used to assess iodine 

status, including UIC, BMIC and serum Tg. Furthermore, to evaluate selenium status 

in breastfeeding women, the excretion of selenium in urine and breastmilk (short-

term dietary selenium intake) and plasma selenium (the most common biomarker) 

were both assessed. Finally, both iron storage measuring SF and functional iron 

deficiency measuring serum sTfR which is less likely affected by inflammation status 

were assessed to provide a better understanding of iron status (87), and allow early 

detection of ID before the occurrence of IDA (88). Repeated measures on iodine and 

selenium concentrations in urine and breastmilk samples have rarely been carried out 

in other published literature. These measures applied in the MINI study provided a 
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continuous picture of iodine and selenium status in mothers and infants during their 

first postpartum year. 

A limitation of this study is selection bias, where women with pre-existing iodine 

knowledge may have been attracted to participate. Women in this study were affluent 

and highly educated, and, typically, women who volunteer to participate in such 

studies are often more interested and likely to be motivated about health than the 

general population (89). If the iodine and selenium status of these women were 

inadequate, it is likely that women in the community who are less well-educated and 

under-represented may present further reduced status.  

Since the study sample size was small, the results need to be interpreted with caution. 

However, the retention rates (90% and 82% at six and twelve months postpartum 

respectively) were sufficient to enable further analysis within follow-up visits. The 

MINI study did not measure functional selenium status, including serum or plasma 

selenoprotein P, plasma GPX3 and erythrocytes GPx1 in identifying selenium 

deficiency due to the cost and low stability. Biological samples cannot be measured 

immediately after sampling but need to be stored and measure in batches.  However, 

plasma selenium is the most used biomarker in other published research which 

allowed comparison. Few participants reported the use of dietary supplements 

containing selenium (1% -1/78) or iron (8% - 6/78) during postpartum, leading to this 

study having insufficient statistical power to examine the effects of such 

supplementation on thyroid function. 

9.6 Final Conclusions  

A high prevalence of thyroid dysfunction (assessed by serum TSH, fT4 and fT3) was 

observed in this cohort of women at six months postpartum, with 15% presenting with 

subclinical hyperthyroidism. Selenium status was the only significant predictor of 

thyroid dysfunction, while iodine status (measured by UIC and BMIC) and iron status 

(serum sTfR) were not implicated. Most postpartum women achieved adequate iron 

status with only 4% having ID. This cohort of women throughout the first year after 
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partition were iodine deficient irrespective of the amount or duration of 

breastfeeding, and despite two New Zealand government iodine interventions 

initiated in 2009 and 2010. The iodine status of their breastfed infants aged three and 

six months may be less than adequate. Women who used iodine-containing 

supplements were more likely to achieve adequate iodine status for themselves and 

their breastfed infants. Maternal selenium intake remained suboptimal, and some 

women may have insufficient selenium status. Most infants were at risk of selenium 

deficiency. Prevalence of postnatal depression was typical for women domiciled in 

New Zealand. Although minor depression at three months postpartum was 

significantly different across tertiles of plasma selenium concentrations, any close 

relationship between selenium status and risk of postnatal depression and anxiety was 

inconclusive. 

9.7 Implications for public health practice 

A high prevalence of thyroid dysfunction was found in this cohort of iodine-deficient 

postpartum women with suboptimal selenium intake. Literature has suggested that 

women with PPT might develop permanent hypothyroidism or experience PPT again 

after the subsequent pregnancies, and such risk increases if women had positive 

TPOAb during early pregnancy (3). However, screening for thyroid dysfunction is not 

routinely recommended for women who are either planning a pregnancy or become 

pregnant in New Zealand (90). Early screening of TPOAb may be useful in identifying 

women who are at a high risk of experiencing PPT, which can allow timely 

interventions. In addition, it would be useful for health professionals who care for 

postpartum women to offer a thyroid function check at six months postpartum, 

especially for women who had existing autoimmune diseases such as type 1 diabetes.  

This may help detect postpartum thyroid dysfunction and provide effective 

intervention to enhance future maternal reproductive health. However, a cost and 

benefit analysis is needed prior to implement this practice.  
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In the MINI study, low plasma selenium increased the risk of thyroid dysfunction of 

postpartum women. Literature has shown some positive effects of selenium 

supplementation for thyroid function, especially for patients with Graves 

ophthalmopathy (79). Although using selenium supplementation to treat thyroid 

dysfunction is presently inconclusive, it is worth considering the narrow window of 

optimal selenium intake and selenium status when managing maternal thyroid 

dysfunction. 

Despite recommendations made to date, the use of iodine-containing supplements 

was low in our lactating women. In the specific New Zealand context, mothers and 

their infants are cared for by midwives or obstetricians during the first six weeks after 

childbirth, then Plunket nurses, general practitioners (GPs), and lactation consultants 

all play an essential role in the postnatal care of mothers during the first postpartum 

year and beyond. Consequently, these health care workers are placed in an ideal 

position to provide timely advice to postpartum women. Here, we suggest promoting 

iodine specific nutrition education to all health professionals, especially midwives, 

obstetricians, Plunket nurses, and GPs. It is then recommended that these health 

professionals, as a trusted source of information, encourage the routine use of 

government subsidised iodine-only supplements during lactation. The MINI study 

found that using an iodine-containing supplement was strongly associated with 

maternal iodine knowledge. Such information should be considered for framing and 

targeting further educational interventions around iodine, as well as considering 

removing barriers for women to access these supplements. Providing practical advice, 

such as integrating iodine-related food sources in sample meal plans when developing 

nutrition specific educational resources, may be effective in improving maternal 

iodine status. 

The MINI study also found most women at six months postpartum achieved adequate 

iron status, with only 4% having ID and none classified as IDA.  However, as discussed 

earlier, the women in this study cohort were typically affluent and highly educated. 

As such, iron status of women in New Zealand who have low socioeconomic 
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backgrounds and are less well-educated may be of greater concern, since they may not 

be able to afford iron rich foods, such as meat. Also, postpartum haemorrhage is one 

of the significant risk factors in developing postpartum iron deficiency. In our study, 

most women who experienced haemorrhage at childbirth were treated with either 

iron or blood transfusion, however, their iron status was not followed up. The 2016 

WHO guideline recommends oral iron supplementation may be provided to women 

at six to twelve weeks postpartum where a prevalence of gestational anaemia is higher 

than 20% (91).  It is important to note that iron deficiency negatively impacts on 

maternal physical and mental health and assessing iron status in the early lactating 

period is pivotal. Overall, early detection of any stages of iron deficiency is important 

to ensure women have adequate iron status, especially before conceiving again. We 

recommend maternal iron status checks take place routinely at the six weeks 

postpartum medical check-up, as it is an opportune time when mothers and infants 

are individually assessed for their postnatal health by GPs. In practice, a full blood test 

examining both haemoglobin and serum ferritin is recommended. Alternatively, point 

of care equipment such as the HemoCue Hb 201+ system could be used to identify 

women at risk in the first instance, before referring them for a full blood test to further 

examine their iron status if necessary. However, women who have low iron stores 

without being anaemic may fail to benefit from this alternative approach. 

9.8 Research Recommendations 

1. Further investigation should be undertaken to examine the effects of iodine 

and/or selenium supplementation on maternal and infant thyroid function; for 

example, a randomised controlled trial with lactating women by dispensing 

only iodine or a combined iodine-selenium supplementation. 

2. To achieve optimal iodine status is crucial during the first two years in 

supporting optimal neurodevelopment. Thus, further research should focus on 

investigating maternal postpartum iodine status in relation to infants’ 

neurodevelopment for those early years after childbirth. 
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3. The current study confirmed that women who used iodine-containing 

supplements achieved adequate iodine status for themselves and their infants. 

Future cohort studies with iodine-depleted populations are indicated to 

confirm if iodine supplementation during conception and pregnancy can 

enhance future beneficial health outcomes for both mothers and their infants. 

4. Future quality evidence from health research is needed to further clarify the 

optimal cut-off of MUIC to ensure iodine adequacy during infancy. For 

example, a large cohort study might investigate infant MUIC in iodine 

sufficient populations and use neonatal heel blood TSH to measure infant 

thyroid function as an indicator of optimal iodine status. 

5. Future research studies should confirm how much iodine intake is contributed 

by infant formula or complementary foods in New Zealand; such results could 

help provide useful guidelines for improving infant iodine intake and status, 

particularly for infants having complementary feedings. 

6. Research is required to better clarify the association between maternal 

selenium status and the development of postnatal depression and anxiety; for 

example, a case control study to examine selenium status (by measuring serum 

or plasma selenoprotein P, plasma GPX3 and erythrocytes GPx1) in women who 

have been confirmed with PND, conjunctively with women without PND. 

7. Nail clippings have been used to determine selenium concentrations in large 

cohorts or epidemiological studies. Measuring selenium in nail clippings would 

be a useful biomarker representing long-term selenium exposure, from three 

to twelve months. Notably, in the MINI study, nail clippings have been 

collected, and further analysis presents a future opportunity to measure in 

utero selenium exposure for both mothers and their infants. 

8. Larger cohort studies are required to provide a greater understanding of the 

role of selenium status, when combined with other micronutrients, needed for 

optimal thyroid function, such as zinc, copper, and vitamin A. 
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Appendix 5 – MINI Study Health Screening Questionnaire 

 

Date of visit: _____ Day_____ Month_____ Year   

 

 

Thank you volunteering to take part in this study. I would like to ask you a few 
questions to check that you are a suitable subject and provide you with an opportunity 

to ask any questions that you may have about the study.    

What is your age?   

Are you currently breastfeeding?   

When was your baby born?   

Do you have any contagious blood borne disease, eg. Hepatitis A or HIV?   

Do you currently have any medical conditions?   

Have you ever been diagnosed with thyroid disease such as thyroid enlargement or goiter/ 
hyperthyroidism/ hypothyroidism?   

If yes, are you currently receiving any treatment or consuming medication containing iodine? Or, 

are you now fully recovered?   

Are you taking iodine contain supplements due to other reasons rather than 

pregnancy or lactation?   

Are you taking any other medication? If yes, can you please indicate the type or name of the 

medication(s) that you are taking?   

Does your baby have any health complications, eg. Preterm?  

 

Health Screening Questionnaire 
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Appendix 6 – MINI Study Participant Information Sheet 

 

Study title: [MINI - Mother and Infant Nutrition Investigation] 

Locality: Palmerston North Ethics committee ref: 15/NTA/172 

Lead 

investigator: 

Ying Jin Contact email: mini@massey.ac.nz 

Register your interest – 

www.massey.ac.nz/ministudy 

Phone: +64 (06) 9517556 

               027 399 4138 

 

Would you like to help us? 

We invite you to take part in a research study: Mother and Infant Nutrition Investigation 

(MINI). This sheet gives detailed information about the study. Please read it carefully before 

deciding whether you wish to join our study. 

We need mothers and their infants to take part. It is important that you understand why 

we are doing this research, and what it may involve for you. Please take time to read the 

sheet carefully. Feel free to discuss it with other people, such as your family, whānau, 

friends, or your health care providers. Please ask us questions if anything seems unclear, or 

if you wish to know more details. 

Introducing the researchers 

This research is led by PhD scholar Ms Ying Jin. Ying’s supervisors are Dr Louise Brough and 

Professor Jane Coad. They are human nutritionists in the School of Food and Nutrition, 

Massey University, Palmerston North. Anne Broomfield, research officer, will also assist in 

the study.  

What is the purpose of this study? 

After the birth of their baby, most women continue to see their health care professionals. 

However, the focus is often on the infant’s health. Only limited attention is given to the 

mother’s mental health. This study will monitor the mothers’ health by assessing her 

nutrient status, thyroid function and mental health. The thyroid is a small butterfly-shaped 

mailto:mini@massey.ac.nz
http://www.massey.ac.nz/ministudy
http://www.massey.ac.nz/ministudy
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gland at the base of the neck which produces hormones. How a mother’s health status 

might affect her baby’s development during early life is important. The three nutrients we 

are studying are iodine, selenium, and iron. Understanding these nutrients will help to 

provide better health care to future mothers. This leads to greater knowledge about the 

health and wellbeing of both the mothers and their infants.  

 

Do I have to take part? 

No. It is entirely up to you to decide whether you wish to take part. If you do agree, you will 

be asked to sign a Consent Form.  You will be given a copy of both the Participant 

Information Sheet and the Consent Form to keep.  

Should you change your mind about being in the study, you are free to withdraw from the 

study at any time without giving any reason. 

What would your participation involve? 

If you are interested in taking part in the study, please phone or email us. You can also enter 

your details on this study’s “Express of Interest” webpage. We will reply immediately and 

arrange a brief telephone conversation. We will ask you some questions to ensure that you 

are eligible. You must feel totally comfortable about taking part in the study.  

Soon after, we shall make an appointment for you and your baby to come into the Human 

Nutrition Research Unit at Massey University. If this is not possible, we may visit you either 

at home, at a local community Centre, or at a health professionals’ clinic. 

During the first visit, we shall 

ask you some questions about your nutrient supplement use, and your nutrition 

knowledge. We will also ask you about your health, diet and some personal information;  

• measure your weight, height, and body composition; 

• ask you to provide small samples of urine and breastmilk which we will use to 

assess your nutrient status; 

• measure your baby’s weight, length, and head circumference.  

http://www.massey.ac.nz/ministudy


305 
 

• collect a small urine sample from your baby to assess his/her nutrient status. 

• Your first visit should take no more than two hours.  

After the first visit, you will be given 

• two small paper bags for you to collect nail clippings from yourself and from your 

baby to assess selenium status.  

• a 4-day food record diary to measure your nutrient intake.  

Within a month after your first visit, at a convenient time, we will collect the samples and 

food diary from you at home.  

The 2nd visit will be when your baby is 6 months old. The 3rd visit will be when your baby is 

12 months old. We will ask you to complete questionnaires to assess your child’s 

development at 4, 8 and 12 months. A Flow Chart is included in this Information Sheet.  

How would the required samples be collected? 

A clear detailed instruction of how to collect infant or adult nail clippings would be given at 

the first visit. Infant urine samples will be collected by placing a pad inside the nappy, 

checking every 10 minutes until wet, and then urine aspirated (extracted) with a syringe. 

Blood samples will be drawn by experienced phlebotomist. The collected biological samples 

will be frozen, labelled with a unique code (no personal information will be displayed on the 

samples), and then stored for 10 years to allow a number of analyses to take place. After 10 

years, the samples will be properly disposed in biohazard bags to be incinerated (burned) 

by a professional company who specialise in destroying biological samples. We 

acknowledge that the use and storage of tissue is a cultural concern for some Māori people. 

We are unable to return body fluids such as blood, urine and breastmilk due to safety 

(microbiological) issues. However, if you wish, the nail clippings, after analysis, will be 

returned to you if you request this in advance.  

What are the possible risks to you? 



306 
 

There are small risks when taking blood samples such as discomfort, bruising, infection, or 

fainting. To minimise any risk, your blood will only be taken by experienced and fully trained 

research staff. 

Any risks involved in this study are very minor. All the checks are routinely made. If you have 

any concerns during the study, you may discuss these with any of the study team. 

Any complaints you may make will be fully investigated. If you have any concerns about any 

aspect of this study, you should speak immediately to a member of the study team. They 

will do their best to answer all your questions fully.   

What are the advantages of taking part in the study? 

Your thyroid gland size, thyroid function and iron status will be monitored during the study. 

These are not normally covered by primary health care services; 

Repeated monitoring of your wellbeing during the first year after delivering a baby;  

Based on your food diary, you will receive feedback on your intake of nutrients within a 

month after we receive the dietary diary. This will be compared to New Zealand standard 

dietary guidelines.  

You will also receive information about your child’s development assessments at 4, 8 and 

12 months.  

Will my participation in the study be kept confidential? 

Yes. All information collected about you and your baby during the study will be kept strictly 

confidential. Each mother will be given a unique code which will be used on all data 

collected. No identifying details will be recorded on the interview sheets or other records. 

When the study results are presented, you will not be named or recognised from any of the 

information given. All information will be entered into a protected database at Massey 

University. Information collected about you and your baby will be kept strictly confidential 

and secure in a locked filing cabinet. All electronic files on computers will have passwords 

and restricted access. Only the named members of research team will have access to 

detailed personal information.  

Massey University maintains a central record of all research projects undertaken. This does 

not include personal information about those who take part. The data (without containing 
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personal information) will be held for 10 years after the youngest person in the study has 

reached the age of consent or 16 years old.  

What will happen to the results? 

Should you wish, you will receive all the results about you and your baby. Should your 

results be, in any way, unusual, you will be encouraged to contact your general practitioner 

and seek appropriate medical advice. Once the whole study has ended, we can send you a 

summary of the study results, should you wish to have it. The results will also be presented 

at scientific meetings or published in peer reviewed journals. This ensures that a wider 

community, including health professionals, can know and read about the findings. You and 

your baby will not be identified by any of these publications or presentations.  

What would happen if you were injured in the study?  

If you were injured in this study, which is unlikely, you would be eligible for compensation 

from ACC. This would be the same as if you were injured in an accident at work or at home.   

If you have private health or life insurance, you may wish to check with your insurer that 

taking part in this study will not in any way affect your cover. 

Who has reviewed the study? 

This project has been reviewed and approved by the Northern A Health and Disability Ethics 

Committee through the full review pathway. 

Contact for further information:  

If you have any further questions or if you have any concerns whilst taking part in the 

study then please contact: 

Ms Ying Jin, Lead Investigator/PhD Scholar 
Email:  mini@massey.ac.nz, or go to www.massey.ac.nz/ministudy 
  Cell phone: 027 399 4138 
Telephone: +64 (06) 9517556 
 
Dr. Louise Brough, Principle Supervisor/Senior Lecturer 
Telephone: +64 (06) 356 9099 ext. 84575 
Email: L.Brough@massey.ac.nz 

mailto:mini@massey.ac.nz
http://www.massey.ac.nz/ministudy
mailto:L.Brough@massey.ac.nz
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Where can you go for more information about the study, or to raise concerns or 

complaints? 

If you have any questions, concerns or complaints about the study at any stage, you can 

contact:  

 Ms Anne Broomfield, Research Technical Officer 
Human Nutrition Research Unit 

 Massey Institute of Food Science and Technology  
Telephone: +64 (06) 356 9099 ext. 84566  

  Email:  A.M.Broomfield@massey.ac.nz  
 
If you want to talk to someone who is not involved with the study, you can contact an 

independent health and disability advocate on: 

Phone:  0800 555 050 

Fax:   0800 2 SUPPORT (0800 2787 7678) 

Email:   advocacy@hdc.org.nz 

 

If you feel you would like to talk to a Māori health support person, please contact: 

Dr Maureen Holdaway 
Associate Director, Research Centre for Maori Health & Development 
Telephone: +64 (06) 356 9099 ext. 85092 
Email:  M.A.Holdaway@massey.ac.nz 
 

You can also contact the health and disability ethics committee (HDEC) that approval this 

study on: 

 Phone:  0800 4 ETHICS 
 Email:  hdecs@moh.govt.nz 
 

mailto:A.M.Broomfield@massey.ac.nz
mailto:advocacy@hdc.org.nz
mailto:M.A.Holdaway@massey.ac.nz
mailto:hdecs@moh.govt.nz
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Appendix 7 - MINI Study Flow Chart 
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Appendix 8 - MINI Study Consent Form 

 

Please tick to indicate you consent to the following 

I have been given sufficient time to consider whether or not to 

participate in this study. 
  

I have had the opportunity to use a legal representative, whanau/ 

family support or a friend to help me ask questions and understand 

the study. 

  

I am satisfied with the answers I have been given regarding the 

study and I have a copy of this consent form and information sheet. 
  

I understand that taking part in this study is voluntary (my choice) 

and that I may withdraw from the study at any time without this 

affecting my medical care. 

  

I consent to the research staff collecting and processing my 

information, including information about my health. 
  

If I decide to withdraw from the study, I agree that the information 

collected about me up to the point when I withdraw may continue 

to be processed. 

Yes  No  

I consent to my GP or current provider being informed about my 

participation in the study and of any significant abnormal results 

obtained during the study. 

Yes  No  

I understand that my participation in this study is confidential and 

that no material, which could identify me personally, will be used in 

any reports on this study. 

  

I know who to contact if I have any questions about the study in 

general. 
  

I wish the nail clippings to be returned to me after analysis Yes  No  

I wish to receive a summary of the results from the study. Yes  No  

Declaration by participant: 
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Participant’s name: 

Signature: Date: 

 

Declaration by a member of the research team: 

 

I have given a verbal explanation of the research project to the participant and have 

answered fully any of the participant’s questions concerning this study.   

 

I believe that the participant fully understands the details of this study and has given 

informed consent to participate. 

 

Researcher’s name: 

Signature: Date: 
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Appendix 9 - MINI Study General Questionnaire - when your child is 

born 

 Date of visit: _______ Day_______ Month_________ Year 

 

  

 

I would like to ask you about what you usually eat and your meal preparation.   

1. Do you add any SALT to your food (either AT THE TABLE or in COOKING)?

  No (go to Q 4) 

   Yes 

 

2.  Do you add SALT to your food AT THE TABLE?   

 No (go to Q3)   

 Yes   

2a. If yes, what type of SALT do you mainly use (more than 60%)?   

 Plain table salt   

 Iodised salt (go to Q2b.)   

 Other mineral salt (rock, sea salt)   

 Others______________________   

2b. Considering only IODISED SALT added AT THE TABLE, please indicate the average 

amount of your individual portion used DAILY. 

 Less than 1/4 teaspoon   

1/4 teaspoon   

 1/2 teaspoon   

 1 teaspoon   

 More than 1 teaspoon   

 

3.  Do you add SALT to your food in COOKING?   

 No (go to Q4)   

 Yes   

 

 

 General Questionnaire – when your baby is born   
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3a. If yes, what type of SALT do you mainly use (more than 60%)?   

 Plain table salt   

 Iodised salt (go to Q3b.)   

 Other mineral salt (rock, sea salt)   

 Others_________________________   

 

3b. Considering only IODISED SALT added in COOKING please indicate the average amount 

of your individual portion used DAILY.   

 Less than 1/4 teaspoon   

1/4 teaspoon   

 1/2 teaspoon   

 1 teaspoon   

 More than 1 teaspoon   

4. Which of the following foods do you EXCLUDE from your usual diet? (Tick all that 

apply)   

 Eggs   

 Dairy   

 Fish   

 Seafood   

 Chicken   

 Beef   

 Lamb   

 Pork   

 Other meat or animal products   

 

I would like to ask you what you know about nutrition.   

5.  Which part of the body needs IODINE to produce hormones?   

 Brain   

 Heart   

 Bone   

 Thyroid gland 

 Do not know   
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6. What health issues are associated with inadequate intake of IODINE? (tick all that apply)   

 Neural Tube Defects   

 Goiter   

 Birth defects   

 Weak bone and teeth   

 Mental retardation   

 Impaired physical development during childhood   

 Blindness   

 Do not know   

7.  Do you think there is currently a problem with IODINE deficiency in New Zealand? 

  No 

 Yes 

 Do not know 

8.  From your knowledge, which of the following describes the current fortification in the   
manufacture of bread in New Zealand? (Tick all that apply)   

 Producers must add iodised salt (mandatory fortification)   

 Producers must add folic acid (mandatory fortification)   

 Producers may add or may not add iodised salt (voluntary fortification)   

 Producers may add or may not add folic acid (voluntary fortification)   

 Do not know   

9.  Since 2010, which target population groups routinely are recommended to take an IODINE   

supplement? (Tick all that apply)   

 Pregnant women    

 Breastfeeding women    

 All women of childbearing age   

 All babies   

 Do not know   
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10. From your knowledge, which of the following foods contribute good sources of IODINE?   

 

   I would like to ask about your supplement usage DURING REGNANCY.   

11. Did you take any supplements?   

 Yes (go to Q13)   

 No    

11a. If no, which if the following statements are the reasons for not taking any supplements?  

(Tick all that apply)   

 I was not advised to take them by doctor/nurse practitioner/mid-wife   

 I could not tolerate them because of nausea (or any other side effects)   

 I could not afford to purchase them   

 I did not feel the need to as my health is good   

 I believed that I could obtain adequate nutrients from my diet   

 Others ________________________   

 

 

 Good source Poor source Do not know 

Milk    

Potatoes    

Fish    

Carrots    

Bread (excluding organic)    

Organic bread    

Beef    

Seaweed    

Lettuce    

Eggs    

Sea salt    

Rock salt    
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12. Please complete the following table with details of any supplements you took.   

 

I would like to ask about your CURRENT supplement usage SINCE THE BABY WAS BORN 

13. Are you taking any supplements?   

 Yes (go to Q 14)   

 No    

13a. If no, which if the following statements are the reasons for not taking any supplements? 

(Tick all that apply)   

 I was not advised to take them by my doctor/nurse practitioner/mid-wife   

 I could not tolerate them because of nausea (or any other side effects)   

 I could not afford to purchase them   

 I did not feel the need to as my health is good   

 I believed that I could obtain adequate nutrients from my overall diet   

 Others ________________________   

 

 

 

 

 

 

 

Brand name  
(manufacture)   

GPs or   
Midwife’s   

prescription   

Start  
date   

Stop  
date   

Frequency   
Times per week   Dosage each   

time   
7   6   5   4   3   2   1   

Eg.Blackmores  
Pregnancy and  
breastfeeding   
gold capsule   

Yes   12/04/2015   12/08/2015               √   

  

2 tablets   
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14. Please complete the following table with details of any supplements you are taking now.   

Note to the interviewer: If the participant is not able to remember details please ask 
them to send us an email later with details. (Email requested  Email received )   

I will now ask you some questions about your smoking habits SINCE YOUR BABY WAS BORN.     

15. Have you ever smoked a total of more than 100 cigarettes in your entire life?   

 No (go to Q18)   

 Yes   

16. Did you smoke regularly during THIS pregnancy?    

 No (go to Q17)   

 Yes   

16a. If yes, on average, how many cigarettes did you smoke each day?   

 Less than 1 per day   

 1-5 per day   

 6-10 per day   

 11-15 per day   

 16-20 per day   

 21-25 per day   

 26-30 per day   

 31 or more a day      

17. Now, after the delivery of your baby, do you continue to smoke?   

 No (go to Q18)   

 Yes   

Brand name  
(manufacture)   

GPs or   
Midwife’s   

prescription   

Start  
date   

Stop  
date   

Frequency   
Times per week   Dosage each   

time   
7   6   5   4   3   2   1   

Eg.   
Blackmores   
Pregnancy   
and   
breastfeeding  
gold capsule   

Yes   12/04/2015   12/08/2015               √   

  

2 tablets   
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17a.If yes, on average, how many cigarettes do you now smoke each day?   

 Less than 1 per day   

 1-5 per day   

 6-10 per day   

 11-15 per day   

 16-20 per day   

 21-25 per day   

 26-30 per day   

 31 or more a day   

18. Are you regularly exposed to secondhand smoke; for example, does someone smoke around   

you, or in your house or a house you visit often?                   

 No   

 Yes   

18a. If yes, how many hours per day are you exposed to the smoking of others?   

________________Hours   

I will now ask you some questions about your use of alcoholic drinks SINCE YOUR BABY 

WAS BORN.     

19. Have you had a drink containing alcohol?    

  No (go to Q 20)   

  Yes   

    19a. If yes, how often have you had a drink containing alcohol?    

  Monthly or less   

  Up to 4 times a month   

  Up to 3 times a week   

  4 or more times a week   
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19b. How many units do you have on A TYPICAL DAY when you are drinking alcohol?    

 

 

 

 

 

 

 

 

 

 

About your child   

20. What did you give your child to drink routinely during the FIRST WEEK of life? 

(Tick all that apply)   

 Breastmilk   

 Water   

 Sugar water   

 Infant formula/milk formula   

 Pasteurized/bottled cow’s milk   

 Soy formula   

 Hypoallergenic formula   

 Fruit juices/water down juice/cordial   

 Herbal drinks   

 Tea/coffee   

 Fizzy drinks   

 Other, specify: _________________   

 

21. Do you add sugar to your child’s drink?   

 No   

 Yes   

 

 
Beer, cider and RTDs   Wine   Spirits   

    

   330ml glass   100ml glass   30 ml short   

How many             
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22. Since the baby was born, have you been breastfeeding your baby, including feeding   

expressed milk?   

 No (go to Q 26)   

 Yes   

22a. If yes, which of the choices below most describes your breastfeeding pattern?   

 Exclusive (100%) breastfeeding   

 Medium (50-80%) breastfeeding   

 Partial (less than 50%) breastfeeding   

 Artificial (less than 10%) breastfeeding   

23. On average, how many times a day (during the 24hour period) do you currently breastfeed 

our baby?   

______ Times   

24. On average, how long does it take for each breastfeed?   

______ minutes ______ hours   

25. How old was your baby when you stopped 

breastfeeding?   

 ______months______ weeks_______ days   

 I continue to breastfeed (go to Q 27)   

26. Tick the reason (s) you chose not to breastfeed, or to stop breastfeeding your baby: 

(Tick all that apply)   

 Have breastfed long enough   

 Baby had trouble latching on   

 Did not have enough milk   

 Breastmilk alone did not seem to satisfy my baby   

 Painful breast   

 Baby not gaining enough weight   

 Baby lost interest/self-weaned   

 I wanted/needed someone else to feed the baby   

 Went back to work and expressing breastmilk was not convenient/possible   

 New pregnancy   

 Baby was old enough that the difference between breastmilk and formula was minimal   

 Other, specify: _________________   
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27.  How often do you give your child the following to drink at the moment?   

 

Now I am going to ask a few questions about you and your current living situation. The 

answers to these questions help us to check that we have selected a representative 

sample of New Zealanders to participate in this survey.   

28.  Which country were you born in?   

 New Zealand   

 Australia   

 England   

 Scotland   

 China (People's Republic of China)   

 India   

 South Africa   

 Samoa   

 Cook Islands   

 Other (specify) ___________________   

29. What is your first language?  _____________.   

 

Type of drinks   Never   
 

(seldom) 

1-3 times/   
week 

4-6 times/   
week 

More than  
once a day 

Breastmilk   
    

Pasteurized/bottled cow’s milk   
    

Regular Infant formula/milk formula   
    

Hypoallergenic formula   
    

Soy formula   
    

Water    
    

Gripe water   
    

Sugar water   
    

Fruit juices/water down juice/cordial   
    

Herbal drinks   
    

Tea/coffee   
    

Other   
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30. Which ethnic group or groups do you identify with? (tick all that apply)   

 NZ European    

 Maori    

 Samoan    

 Cook Island Maori    

 Tongan   

 Niuean    

 Chinese   

 Indian    

 Other (specify) ____________   
 
31. If from overseas, in what year did you arrive to live in New Zealand? _________Year    

32. What is your date of birth?    

 _____ Year _____ Month (range Jan-Dec) _____ Day (range 1-31)   

 

33. How old are you?   

 <20    

 20-24    

 25-29    

 30-34    

 35-39    

 40-45    

 >45   

 

34. What is your highest completed qualification?    

 School   

 Trade Certificate   

 Diploma/Bachelor/Tertiary education   

 Postgraduate qualification   

 Other (specify) _________________   
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35. Who do you live with? (Tick all that apply)   

 Husband/partner    

 Other Children (not including new baby)    

 My siblings   

 My parents    

 Parents in laws   

 Other relatives   

 On my own (with my baby)   

 Others, specify ________________   

36. What is the total income of your household from all sources, before tax or any other   

deductions, in the last 12 months?    

 Loss   

 Zero income   

 $1 – $5,000   

 $5,001 – $10,000   

 $10,001 – $15,000   

 $15,001 – $20,000   

 $20,001 – $25,000   

 $25,001 – $30,000   

 $30,001 – $35,000   

 $35,001 – $40,000   

 $40,001 – $50,000   

 $50,001 – $60,000   

 $60,001 – $70,000   

 $70,001 – $100,000   

 $100,001 – $150,000   

 $150,001 or more   

 

Thanks for completing this questionnaire   
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Appendix 10 – MINI Study General Questionnaire – when your child is 

around 6 months old 

Date of visit: _______ Day_______ Month_________ Year 

1.  Which of the following foods do you EXCLUDE from your usual diet? (Tick all that apply)   

 Eggs   

 Dairy   

 Fish   

 Seafood   

 Chicken   

 Beef   

 Lamb   

 Pork   

 Other meat or animal products   

2.  How often do you eat red meat?   

 Never    

 Less than once a week   

 1-2 times per week   

 3-4 times per week   

 5-6 times per week   

 7+ times per day   

3.  How often do you use a cast-iron fry pan, wok or pot when preparing your meals?   

 Never or less than once a month   

 1-3 times per month   

 Once a week   

 2-3 times per week   

 4-6 times per week   

 Once a day   

 2-3 times per day   

 4+ times per day   

 

Questionnaire – when your child is around 6 months old   
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4.  Some foods and drinks have iron added to them (eg. Some breakfast cereals) when you are   

choosing foods and drinks, how often do you choose the product with added iron instead of 

the product without?   

 Whenever I can   

 Usually   

 Sometimes   

 Never   

 I do not know    

 I do not consider whether the product has iron added   

5.  On average, how many slices of bread/toast or bread rolls do you eat per day?   

 None, I do not eat bread or toast   

 Less than one per day   

 1-2 per day   

 3-4 per day   

 5-6 per day   

 7+ per day  
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6. Have you had any of the following symptoms since the baby was born?  If you know symptoms 
are due to allergy and not infection, do not check.  Please check the correct answer: 
(Carr Infection Symptom Checklist)   

0 = No symptoms    1 = Mild symptoms    2 = Moderate symptoms              

3 = Strong symptoms      4 = Severe symptoms        

 

   0   1   2   3   4   

Cold sores                     

Canker sores                  

Nasal stuffiness                       

Sore throat                        

Sinus drainage                        

Sinus pain/pressure                        

Swollen glands                        

Diarrhea                  

Abdominal cramps                        

Burning on urination                        

Dark, smelly urine                        

Earache                  

Hoarseness                  

Styes                        

Runny nose                        

Skin infections                        

Acne                  

Red eyes                        

Vaginal itching                        

Vaginal yeast infection                        

Vaginal herpes                        

Fever                  

Fingernail infection                        

Wheezing                  

Cough                  

Shingles                      

Generalized flu-like                        

Breast infection                        

Episiotomy infection                        

Dental abscess                     
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7.  Apart from when you were in hospital immediately after having your baby, have you 
experienced any of the following?     

 

 

 

 

 

 

 

 

 

 

 

 

8. Overall, how would you describe your physical health at the moment?   
 Excellent   

 Very good   

 Good   

 Fair   

 Poor   

9.  Do you take or have taken cod liver oil, vitamins or other dietary supplements since 
the previous questionnaire?   

 No   

 Yes   

9a. If yes, which product, when did you take it and how often (one line for each product)   

   Never   Rarely   Occasionally   Often   

Extreme tiredness/exhaustion               

More frequent coughs/colds/minor illness than 
usual   

            

Severe headache or migraines               

Lower back pain               

Upper back pain               

Painful perineum               

Pain from caesarean section wound               

constipation               

hemorrhoids               

Breast problems               

Pelvic pain               
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10. How often are you physically active at present?   

 

 

11. Have you ever suffered from low iron stores, iron deficiency or iron deficiency anemia?   

 No   

 Yes   

 

Brand name  
(manufacture)   

GPs or   
Midwife’s   

prescription   

Start  
date   

Stop  
date   

Frequency   
Times per week   Dosage each   

time   
7   6   5   4   3   2   1   

Eg. Blackmores  
Pregnancy and  
breastfeeding   
gold capsule   

Yes   12/04/2015   12/08/2015               √   

  

2 tablets   

            

 Never  1-3 times a 
month 

   

walking                  

brisk walking                  

running/jogging/orienteering                  

cycling                  

training studio/weight training                  

special gymnastics/aerobics for women                  

aerobics/gymnastics/dancing without   

running and jumping   

     

aerobics/gymnastics/dancing with 

running and jumping   

     

dancing (swing, rock, folk)                  

skiing                  

ball sport                  

swimming                  

riding                  

other                  

Once a   
week   

Twice a   
week   

Three times or   
more a week   
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12. Have 
you ever been treated for iron deficiency or iron deficiency anemia?   

 

  

1 3 .  Have you had a severe blood loss during delivering your baby?   
 No   

 Yes   

 

14. Do you have or have you had any medical condition which has resulted in blood loss?   

If yes, please describe it and give approximate date________________________________   

15. Have you had a blood donation during the last 6 months?   
 No   

 Yes   

15a. If yes, how many times did you donate your blood? _____________.   

16. Have you had a blood transfusion during the last 12 months?   

 No   

 Yes   

16a. If yes, do you know why you received the blood transfusion _________________   

17. Have you noticed any form of blood loss during the last 6 months?   
 Not at all   

 Yes, in stools   

 Yes, in urine   

 Yes, when brushing my teeth   

 Yes, from a wound   

18. Are you pregnant at the moment?   

 No   

 Yes   

18a. If yes, how many weeks have you been pregnant? ____________.   

19. Has your period started again?   

 No   

 Yes   

Diagnosis date   Diagnosed by   Any further details   

         

Type of treatment   Duration   Any further details   
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19a.If yes, please give an approximate date _____________.   

About your child    

20. How old was your baby when you stopped breastfeeding?   

 ______months______ weeks_______ days   

 I continue to breastfeed (go to Q 22)   

21. Tick the reason (s) you chose not to breastfeed or stop breastfeeding your baby (Tick all that   

apply)   

 Have breastfed long enough   

 Baby had trouble latching on   

 Did not have enough milk   

 Breastmilk alone did not seem to satisfy my baby   

 Painful breast   

 Baby not gaining enough weight   

 Baby lost interest/self-weaned   

 I wanted/needed someone else to feed the baby   

 Went back to work and expressing breastmilk was not convenient/possible   

 New pregnancy   

 Baby was old enough that the difference between breastmilk and formula was minimal   

 Others ________________________________   

22. Including times of weaning, what is the total time your baby was breastfed?    

 Weeks   

 Months   

 Less than one week   

23. At what age was your baby first given infant formula regularly? 

_____Weeks ______ Months   

24. At what age was your baby first given solid food regularly? 

_____Weeks _____ Months    
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25. How often do you give your child the following to drink at the moment? 

 

26. Do you give your child cod liver oil, vitamins, iron or any other dietary supplements?   

 No   

 Yes   

26a. if yes, specify  

Name of product How many 
teaspoons/time 

How often  How old was your child at first time 
consumption (months) 

    

    

 

 

 

   Never   
/seldom   

  At least   
once a day   

Breastmilk               

Pasteurised Cow’s milk               

Pasteurised Goat’s milk               

Evaporated milk               

Organic milk products (milk, yoghurt)               

Standard infant formula/formula milk               

Standard formula milk with Omega-3               

Hypoallergenic formula               

Water               

Gripe water               

Sugar water               

Cold flavored milk drinks               

Fizzy (carbonated) drinks               

Squash, artificially sweetened               

Baby cordial, artificially sweetened               

Fruit juice               

Herbal drinks               

Tea/Coffee               

Others _________________               

1-3   
times/week   

4-6   
times/week   
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27. Has your child had the following health problems? 
 

 Has your child 
had health 
problems 

Number 
of times 

Did you visit a 
doctor/clinic 

Has your child 
been admitted to 
hospital for this 

Common cold  Yes   No   Yes   No  Yes   No 

Throat infection  Yes   No   Yes   No  Yes   No 

Ear infection  Yes   No   Yes   No  Yes   No 

Bronchitis 
pneumonia 

 Yes   No   Yes   No  Yes   No 

Diarrhea  Yes   No   Yes   No  Yes   No 

wheezing  Yes   No   Yes   No  Yes   No 

vomiting  Yes   No   Yes   No  Yes   No 

High temperature  Yes   No   Yes   No  Yes   No 

Urinary tract 
infection 

 Yes   No   Yes   No  Yes   No 

Colic  Yes   No   Yes   No  Yes   No 

Nappy rash  Yes   No   Yes   No  Yes   No 

An accident  Yes   No   Yes   No  Yes   No 

 
28. How would you describe the health of your baby now: 

 Very healthy 

 Healthy, but a few minor problems 

 Sometimes quite ill 

 Almost always unwell 

29. Since your last visit, have you changed your smoking habits? 

 No 

 Yes, specify _____________________________________. 

30. Since your last visit, have you changed your drinking habits? 

 No 

 Yes, specify _____________________________________. 

 

Thanks for completing this questionnaire 
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Appendix 11 – MINI Study General Questionnaire – when your child is 

around 12 months old 

Date of visit: _______ Day_______ Month_________ Year 

 
I would like to ask you about what you usually eat and your meal preparation. 

1. Do you add any SALT to your food (either AT THE TABLE or in COOKING)?  

  No (go to Q 4) 

  Yes 

2. Do you add SALT to your food AT THE TABLE? 

 No (go to Q3) 

 Yes 

2a. If yes, what type of SALT do you mainly use (more than 60%)? 

 Plain table salt 

 Iodised salt (go to Q2b.) 

 Other mineral salt (rock, sea salt) 

 Others______________________ 

2b. Considering only IODISED SALT added AT THE TABLE, please indicates the average 
amount of your individual portion used DAILY. 

 Less than 1/4 teaspoon 

1/4 teaspoon 

 1/2 teaspoon 

 1 teaspoon 

 More than 1 teaspoon 

3. Do you add SALT to your food in COOKING? 

 No (go to Q4) 

 Yes 

3a. If yes, what type of SALT do you mainly use (more than 60%)? 

 Plain table salt 

 Iodised salt (go to Q3b.) 

 Other mineral salt (rock, sea salt) 

 Others_________________________ 

Questionnaire – when your child is around 12 months old 
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3b. Considering only IODISED SALT added in COOKING please indicate the average amount 

of your individual portion used DAILY. 

 Less than 1/4 teaspoon 

1/4 teaspoon 

 1/2 teaspoon 

 1 teaspoon 

 More than 1 teaspoon 

4. Which of the following foods do you EXCLUDE from your usual diet? (Tick all that apply) 

 Eggs 

 Dairy 

 Fish 

 Seafood 

 Chicken 

 Beef 

 Lamb 

 Pork 

 Other meat or animal products 

5. Do you take or have taken cod liver oil, vitamins, or other dietary supplements since the 

previous questionnaire? 

 No 

 Yes 

5a. If yes, which product, when did you take it and how often (one line for each product) 
 

Brand name 
(manufacture) 

GPs or 
Midwife’s 

prescription 

Start 
date 

Stop 
date 

Frequency 
Times per week 

Dosage each 
time 

7 6 5 4 3 2 1 

Eg. Blackmores 
Pregnancy and 
breastfeeding 
gold capsule 

Yes 12/04/2015 12/08/2015     √ 

  

2 tablets 
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6. Have you had any of the following symptoms since the baby was born? If you know symptoms are 
due to allergy and not infection, do not check. Please check the correct answer:       

0 = No symptoms    1 = Mild symptoms    2 = Moderate symptoms            
3 = Strong symptoms      4 = Severe symptoms       

 

 0 1 2 3 4 

Cold sores         

Canker sores      

Nasal stuffiness           

Sore throat            

Sinus drainage            

Sinus pain/pressure            

Swollen glands            

Diarrhea      

Abdominal cramps            

Burning on urination            

Dark, smelly urine            

Earache      

Hoarseness      

Styes            

Runny nose            

Skin infections            

Acne      

Red eyes            

Vaginal itching            

Vaginal yeast infection            

Vaginal herpes            

Fever      

Fingernail infection            

Wheezing      

Cough      

Shingles          

Generalized flu-like            

Breast infection            

Episiotomy infection            

Dental abscess         
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7. How often are you physically active at present? 
 

+ Never 1-3 times 

/month 

Once/ 

week 

Twice/ 

week 

3 times or 

more/week 

Walking      

Brisk walking      

Running/jogging/orienteering      

cycling      

Training studio/weight training      

Special gymnastics/aerobics for women      

Aerobics/gymnastics/dancing without 
running and jumping 

     

Aerobics/gymnastics/dancing with 
running and jumping 

     

Dancing (swing, rock, folk)      

Skiing      

Ball sport      

Swimming      

Riding      

Other      

 
8. Overall, how would you describe your physical health at the moment? 

 Excellent 
 Very good 
 Good 
 Fair 
 Poor, specify _______________________ 

 

About your child  
 

9. How old was your baby when you stopped breastfeeding? 

 ______months______ weeks_______ days 

 I continue to breastfeed (go to Q 11) 

 

10. Tick the reason (s) you chose not to breastfeed or stop breastfeeding your baby (Tick all that apply) 

 Have breastfed long enough 

 Baby had trouble latching on 
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 Did not have enough milk 

 Breastmilk alone did not seem to satisfy my baby 

 Painful breast 

 Baby not gaining enough weight 

 Baby lost interest/self-weaned 

 I wanted/needed someone else to feed the baby 

 Went back to work and expressing breastmilk was not convenient/possible 

 New pregnancy 

 Baby was old enough that the difference between breastmilk and formula was minimal 

 Others ________________________________ 

 
11. At what age was your baby first given infant formula regularly? 

_____Weeks ______ Months 

 

12. At what age was your baby first given solid food regularly?  

_______ Weeks _______ Months  

 

13. Do you give your child cod liver oil, vitamins, iron or any other dietary supplements since 

your last visit? 

 No 

 Yes, specify  

 

Name of product How much each 

time 

How often  How old was your child at first time 

consumption (months) 

    

    

    

 
  



338 
 

14. How often do you give your child the following to drink at the moment? 
 

 Never 
/seldom 

1-3 
times/week 

4-6 
times/week 

At least 
once a day 

Breastmilk     

Pasteurised Cow’s milk     

Pasteurised Goat’s milk     

Evaporated milk     

Organic milk products (milk, yoghurt)     

Standard infant formula/formula 

milk 

    

Standard formula milk with Omega-3     

Hypoallergenic formula     

Water     

Gripe water     

Sugar water     

Cold flavored milk drinks     

Fizzy (carbonated) drinks     

Squash, artificially sweetened     

Baby cordial, artificially sweetened     

Fruit juice     

Herbal drinks     

Tea/Coffee     

Others _________________     
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15. Has your child had the following health problems since your last visit? 
 

 Has your child had 
health problems 

Number 
of times 

Did you visit a 
doctor/clinic 

Has your child 
been admitted to 
hospital for this 

Common cold 
 

 Yes   No   Yes   No  Yes   No 

Throat infection 
with confirmed 
streptococcal 
infection 

 Yes   No   Yes   No  Yes   No 

Other type of 
throat infection 

       

Ear infection  Yes   No   Yes   No  Yes   No 

Pseudcroup        

Bronchitis 
pneumonia 

 Yes   No   Yes   No  Yes   No 

Gastric 
flu/Diarrhea 

 Yes   No   Yes   No  Yes   No 

Urinary tract 
infection 

       

Wheezing/ 
whistling in the 
chest 

 Yes   No   Yes   No  Yes   No 

Vomiting  Yes   No   Yes   No  Yes   No 

High 
temperature 

 Yes   No   Yes   No  Yes   No 

Urinary tract 
infection 

 Yes   No   Yes   No  Yes   No 

Colic  Yes   No   Yes   No  Yes   No 

Nappy rash  Yes   No   Yes   No  Yes   No 

An accident  Yes   No   Yes   No  Yes   No 

 

16. How would you describe the health of your baby now: 

 Very healthy 

 Healthy, but a few minor problems 

 Sometimes quite ill 

 Almost always unwell 
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17. Are there any changes in your living situation since your last time completing the 
questionnaire? 

 No 

 Yes, please specify___________________________ 

18. Since your last visit, have you changed your smoking habits? 

 No 

 Yes, specify _____________________________________. 

19. Since your last visit, have you changed your drinking habits? 

 No 

 Yes, specify _____________________________________. 

 

 

Thanks for completing this questionnaire 

  



341 
 

Appendix 12 - MINI Study Maternal Health Questionnaire –  

Edinburgh Postnatal Depression Scale 

 

Date of visit: _______ Day_______ Month_________ Year 
 
 

 
As you have recently had a baby, we would like to know how you are feeling. Please check the 
answer that comes closest to how you have felt IN THE PAST 7 DAYS, not just how you feel today. 
 
Before you start, I will show you an example question that has already been completed. 
 
I have felt happy: 
 Yes, all the time 
⊠ Yes, most of the time  
 No, not very often 
 No, not at all 
 
This would mean: “I have felt happy most of the time” during the past 7 days. Please complete the 
other questions in the same way. 
 
In the past 7 days: 
 

1. I have been able to laugh and see the funny side of things 

 As much as I always could 
 Not quite so much now 
 Definitely not so much now 
 Not at all 

2. I have looked forward with enjoyment to things 

 As much as I ever did 
 Rather less than I used to  
 Definitely less than I used to  
 Hardly at all 

3. I have blamed myself unnecessarily when things went wrong 

 Yes, most of the time 
 Yes, some of the time 
 Not very often 
 No, never 

Maternal Health Questionnaire  
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4. I have been anxious or worried for no good reason 

 No, not at all 
 Hardly ever 
 Yes, sometimes 
 Yes, very often 

5. I have felt scared or panicky for no very good reason 

 Yes, quite a lot 
 Yes, sometimes 
 No, not much 
 No, not at all 

6. Things have been getting on top of me 

 Yes, most of the time I have not been able to cope at all 
 Yes, sometimes I have not been coping as well as usual 
 No, most of the time I have coped quite well 
 No, I have been coping as well as ever 

7. I have been so unhappy that I have had difficulty sleeping 

 Yes, most of the time 
 Yes, sometimes 
 Not very often 
 No, not at all 

8. I have felt sad or miserable 

 Yes, most of the time 
 Yes, quite often 
 Not very often 
 No, not at all 

9. I have been so unhappy that I have been crying 

 Yes, most of the time 
 Yes, quite often 
 Only occasionally 
 No, never 

10. The thought of harming myself has occurred to me 

 Yes, quite often 
 Sometimes 
 Hardly ever 
 Never  
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Appendix 13 - MINI Study Maternal and Infant data collection sheets 

 

Date of visit: _______ Day_______ Month_________ Year 

 
DOB: 
 

Age:  Weeks after giving birth: 

 
Prior to Pregnancy: Estimated usual body weight ____________ kg 

Pregnancy: Blood hemoglobin  _____________  

Any complications:   

Maternal delivery Information 

Date of delivery: ______ Day _______ Month 

Time of delivery: ________________________ 

Method of delivery:  ________________________ 

Usage of iodine containing sanitizer: ________________________ 

Any severe blood loss ________________________ 

Pain relief used ________________________ 

Baby’s summary 

Gestation: ______________ weeks 

Gender:  ______________ 

Apgar score at 1 minute ______________ 

Apgar score at 5 minutes ______________ 

Birth weight: ______________ kg Head circumference: _____________ cm 

Body length:______________ cm  

Guthrie test :  __________________(positive or negative) 

Maternal Data  



344 
 

Have you given birth to any other children?      

   
 Yes = 1/ No = 0 
 

Number Gender Age 
 

Method delivery 
 

Method of feeding  
(probe duration of bf) 

     

     

     

 
 

Anthropometric measurement - Visit One 
 

Body weight _______________kg 

_______________ kg 

_______________ kg 

Average ___________ kg 

Body height _______________ cm 

_______________ cm 

_______________ cm 

Average ___________ cm 

BMI __________________  

BIA results  

  

BodPod Results  
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Anthropometric measurement - Visit Two 

 
 

Body weight _______________ kg 

_______________ kg 

_______________ kg 

Average ___________ kg 

Body height _______________ cm 

_______________ cm 

_______________ cm 

Average ___________ cm 

BMI __________________  

BIA results  

BodPod Results  

  

 
Anthropometric measurement - Visit Three 
 

Body weight _______________ kg 

_______________ kg 

_______________ kg 

Average ___________ kg 

Body height _______________ cm 

_______________ cm 

_______________ cm 

Average ___________ cm 

BMI __________________  

BIA results  

BodPod Results  
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Infant Anthropometric measurement – Visit One 
 

Body weight:                    _____________ kg  

                                            _____________ kg 

                                             _____________ kg                                        Average ___________ kg 

Body length:                       _____________ cm 

                                              _____________ cm 

                                             ______________ cm                                    Average ___________ cm 

Head circumference:         _____________ cm 

_____________ cm 

_____________ cm                                    Average ___________ cm 
 
 
 
Infant Anthropometric measurement – Visit Two 
 

Body weight:                       _____________ kg  

                                               _____________ kg 

                                               _____________ kg                                        Average ___________ kg 

Body length:                           ____________ cm 

                                                 _____________ cm 

                                                 _____________ cm                                    Average ___________ cm 

Head circumference:         ______________ cm 

  ______________ cm 

  ______________ cm                                    Average ___________ cm 

  

Infant Data  
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Infant Anthropometric measurement – Visit Three 

Body weight:                  _____________ kg  

                                         _____________ kg 

                                         _____________ kg                                        Average ___________ kg 

Body length:                    ____________ cm 

                                          _____________ cm 

                                          _____________ cm                                    Average ___________ cm 

Head circumference:         _____________cm 

 _____________cm 

 _____________cm                                    Average ___________ cm 

 

First week 

Body weight: _____________ kg 

2-4 weeks 

Body weight: ____________ kg Head circumference: _________________cm 

4-6 weeks 

Body weight: _____________ kg Head circumference__________ cm 

Body length: _____________ cm 

8-10 weeks 

Body weight: _____________ kg Head circumference__________ cm 

Body length: _____________ cm 

3-4 months 

Body weight: _____________ kg Development 

5-7 months 

Body weight: _____________ kg Development 

9-12 months 

Body weight: _____________ kg Body length: _____________ cm 

Development 

(Notes taken from the Well Child Book)  
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Appendix 14 - MINI Study Maternal Thyroid Gland Measurement sheet 

 

 Date of visit: _______ Day_______ Month_________ Year 

 

 
Left Lobe 

 

Width: _____________  

AP Diameter: _____________ 

Length: _____________ 

Tvol (L): _____________ 

 

Right Lobe 
 

Width: _____________  

AP Diameter: _____________ 

Length: _____________ 

Tvol (R): _____________ 

 
 
Calculation of Thyroid Volume 
 

Tvol Lobe:  Tvol Lobe (L) + Tvol Lobe (R) 

 

______________________ 

 

Isthmus:     _________________ 

 
Note: Tvol Lobe = Width x AP Diameter x Length x 0.479 

  

 
Maternal Thyroid Gland Measurement    
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Appendix 15 – MINI Study - 4-Day Dietary Diary (Maternal) 

 

Date of visit: _______ Day_______ Month_________ Year 

 
 
 
 

PLEASE READ THROUGH THESE PAGES BEFORE STARTING YOUR DIARY 
 
We would like you to record in this diary everything you eat and drink over 4 DAYS, including food consumed at home and outside the 

home. It is very important that you continue to eat and drink what you normally eat and drink during the period of recording. Please 

describe all the food you eat in as much detail as possible. Be as specific as you can.  

When to fill in the diary 

Please record the food you eat as you go, do not list from memory at the end of the day. Use written notes on a notepad if you 

forget to take your diary with you. Each diary day covers a 24-hour period, so please include any food or drinks that you may have 

had through the night. Remember to include foods and drinks between meals (snacks) including water. 

Home-made dishes 

Please record the name of the recipe, ingredients with amounts (including water and other fluids) for the whole recipe, the number 

of people the recipe serves, and the cooking method; record how much of the whole recipe you personally have eaten.  
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Take-away and eating out 

Please record as much detail about the amount and ingredients as you can, eg. Vegetable curry containing chickpeas, eggplant, onion 

and tomato.  

Brand name 

Please note the brand name (if known). Most packed foods will list a brand name, e.g. Bird’s eye, Hovis, or Supermarket own brands 

Portion Size 

Examples for how to describe the quantity or portion size you had of a particular food or drink are shown on pages 17-21 of this diary. 

 

For foods, quantity can be described using: 

o household measures, e.g. two thick slices of bread, 4 tablespoons (tbsp) of peas.  

o weights from labels, e.g. 500g steak, 420g tin of baked beans, 125g pot of yoghurt 

o number of items, e.g. 4 fish fingers, 2 pieces of chicken nuggets,  

For drinks, quantity can be described using (see page 21 for a real size glass): 

o the size of glass, cup or the volume (e.g. 300ml). 

o volumes from labels (e.g. 330ml can of fizzy drink). 

We would like to know the amount that was actually eaten which means taking any leftovers into account. You can do this in two 

ways: 

• Record what was served and make notes of what was not eaten e.g. 3 tbsp of peas, 1 tbsp not eaten: 1 large sausage roll, ½ 

not eaten 

• Only record the amount actually eaten e.g. 2 tbsps of peas, ½ a large sausage roll  
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At the end of each recording day, you will be prompted to tell us  

 

Was it a typical day? 

After each day of recording you will be prompted to tell us whether this was a typical day or whether there were any reasons why 

you ate or drank more or less than usual. 

Did you take any supplements?  

At the end of each recording day there is a section for providing information about any supplements you took. Brand name, full name 

of supplement, strength and the amount taken should be recorded. 

 

Overleaf (page 4-8) you can see an example day that has been filled in to show you how we would like you to record your food and 

drink. 

 

 

 

Thank you for your time- we really appreciate it! 

  

It only takes a few minutes for each eating occasion! 
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EXAMPLE 
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DAY 1  Date: __________Day ____________Month________Year 

Time Where Food/drink description & preparation Brand name Portion size or quantity eaten 

6am to 9am 

6.30am Kitchen Filter coffee, decaffeinated 

Milk (fresh, blue top) 

Sugar white 

 

Toast, multigrain bread 

Marmalade 

Robert Harris 

Anchor 

Pams 

 

Pams 

Pams 

Mug 

A dash 

1 level teaspoon 

 

1 slice 

1 heaped teaspoon 

9am to 12noon 

  Did not eat or drink anything  
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Time Where Food/drink description & preparation Brand name Portion size or quantity eaten 

12noon to 2pm 

12.30am Work 

tearoom 

Ham salad sandwich from home: 

Bread wholemeal thick sliced 

Margarine light 

Smoked ham thin sliced 

Lettuce, iceberg 

Cucumber with skin 

 

Pams 

Sunlight 

Supermarket 

 

 

 

 

2 slices 

1 tablespoon 

2 slices 

1 leaf 

4 thin slices 

2pm to 5pm 

3pm Meeting 

room 

Herbal tea 

Louise slice 

Healthiers 

bakery 

1 cup 

1 regular slice 
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Time Where Food/drink description & preparation Brand name Portion size or quantity eaten 

5pm to 8pm 

6.30pm At table 

with 

husband 

and 

children 

Spaghetti, wholemeal 

Bolognese sauce (see recipe) 

Courgettes 

Orange juice  

Pams 

Homemade 

Fresh 

Just Juice 

100g 

1 serve 

50g 

200mls 

8pm to 10pm 

9pm Sitting 

room 

alone 

Milk Chocolates 

 

Canterbury 25g 

10pm to 6am 

10pm bedroom water tape 200mls 
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Please record the details of any recipes or (if not already described) ingredients of made up dishes or take-away dishes. 

Write in recipes or ingredients of made-up dishes or take-away dishes 

Name of Dish: Bolognese sauce Serves: 4  

Ingredients Amount Ingredients Amount 

Low fat beef mince 500g   

garlic 3 cloves   

Brown onion 100g    

Sweet red pepper (capsicum) 50g   

Watties chopped tomatoes 400g   

Tesco tomato puree 1 tablespoon   

Pams canola oil 2 tablespoons   

Greggs mixed herbs 2 tablespoons   

Pams Worcester sauce 1 teaspoon   

Brief description of cooking method: 

Fry onion and garlic in oil, add mince and fry till brown. Add pepper, tomatoes, puree, Worcester sauce and herbs. Simmer for 30 

minutes.  
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Use the pictures to help you indicate the size of the portion you have eaten. 
Write on the food record the picture number and size A, B or C nearest to your own helping. 

 
Remember that the pictures are much smaller than life size. 

The actual size of the dinner plate is 10 inches (25cm), the side plate, 7 inches (18cm), 
and the bowl, 6.3 inches (16cm). 

 
The tables on pages 16-21 also give examples of foods that you might eat and how much 

information is required about them. 

 

Breakfast 

cereal 
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Spaghetti/
noodles 

 

Rice 

 

Chips 
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Broccoli or 
cauliflower 

 

Stew or curry 

 

Battered fish 
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Quiche or pie 

 

Cheese 

 

Spongy cake 

 

 

  



    

361 
 

Life Size Glass 
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Day 1 
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DAY 1  Date: __________Day ____________Month________Year 

Time Where Food/drink description & preparation Brand name Portion size or quantity eaten 

6am to 9am 

     

 

 9am to 12noon 
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Time Where Food/drink description & preparation Brand name Portion size or quantity eaten 

12noon to 2pm 

     

2pm to 5pm 
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Time Where Food/drink description & preparation Brand name Portion size or quantity eaten 

5pm to 8pm 

     

8pm to 10pm 

     

10pm to 6am 
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1. Was the amount of food that you had today about what you usually have, less than usual, or more than usual? 

 Yes, usual 

 No, less than usual.          No, more than usual 

 

 

 

 

 

2. Was the amount you had to drink today, including water, tea, coffee and soft drinks (and alcohol), about what you usually 

have, less than usual, or more than usual? 

 Yes, usual 

 No, less than usual         No, more than usual 

 

 

 

 

 

 

 

3. Did you finish all the food and drink that you recorded in the diary today? 

 Yes    No 

Please tell us why you had less than usual Please tell us why you had more than usual 

Please tell us why you had less than usual Please tell us why you had more than usual 
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If no, please go back to the diary and make a note of any leftovers 

 

4. Did you take any vitamins, minerals, or other food supplements today? 

 Yes    No 

 

If yes, please describe the supplements you took below 

 

Brand Name (in full) including strength Number of pills, capsules, teaspoons 

Example 

Thomson’s 

Calcium (1000mg) with vitamin D 1 tablet 
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Please record the details of any recipes or (if not already described) ingredients of made up dishes or take-away dishes 

Write in recipes or ingredients of made-up dishes or take-away dishes 

Name of Dish: Serves:  

Ingredients Amount Ingredients Amount 

    

    

    

    

    

    

    

    

    

Brief description of cooking method: 
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Write in recipes or ingredients of made-up dishes or take-away dishes 

Name of Dish: Serves:  

Ingredients Amount Ingredients Amount 

    

    

    

    

    

    

    

    

    

    

Brief description of cooking method: 

 
 

  



    

370 
 

Appendix 16.1 – Selenium in 24-hour urine samples in breastfeeding women using Spearman’s rho 

 

n=68  Urine 

Volume L 

Urine 

Selenium 

µg/L 

Urine 

Selenium 

µg/day 

Urine 

Creatinine 

g/L 

Urine 

Creatinine 

g/day 

Selenium: 

Creatinine 

ratio µg/g 

Milk 

Selenium 

µg/L 

Dietary 

Selenium 

μg/day 

Urine Selenium µg/L 
r -0.631        

p .000        

Urine Selenium µg/day 
r  0.642       

p ns .000       

Urine Creatinine g/L 
r -0.871 0.657       

p .000 .000 ns      

Urine Creatinine g/day 
r         

p ns ns ns ns     

Selenium Creatinine ratio µg/g 
r  0.580 0.879      

p ns .000 .000 ns ns    

Milk Selenium µg/day 
r   0.269   0.280   

p ns ns .000 ns ns .025 ns  

Dietary Selenium µg/day 
r    -0.357     

p ns ns ns .003 ns ns ns  

Total Energy Intake 
r .247       .405 

p .043 ns ns ns ns ns ns .001 
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Appendix 16.2 - Selenium in 24-hour urine samples in pregnant women using Spearman’s rho 

n=59  Urine  

Volume L 

Urine 

Selenium  

µg/L 

Estimated 

Selenium 

intake (urine) 

µg/day 

Urine 

Creatinine 

g/L 

Urine  

Creatinine  

g/day 

Selenium: 

Creatinine 

ratio  

µg/g 

Estimated 

Selenium intake  

(dietary data) 

μg/day 

Urine Selenium µg/L 
r -0.719       

p .000       

Estimated Selenium intake 

(urine) 

µg/day 

r  0.485      

p ns .000     
 

Urine Creatinine g/L 
r -0.863 0.760      

p .000 .000 ns     

Urine Creatinine g/day 
r   0.380 0.259    

p ns ns .003 0.047    

Selenium Creatinine ratio 

µg/g 

r  0.466 0.804     

p ns .000 .000 ns ns   

Estimated Selenium intake  

(dietary data) 

µg/day 

r   .230     

p ns ns .079 (ns) ns ns ns 
 

Total Energy intake kJ 
r       0.263 

p ns ns ns ns ns ns 0.044 
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Appendix 17 – Maternal UIC, urinary iodine creatinine ratio, and BMIC using Spearman’s rho 

  

Maternal  

UIC_V1_ug/L 

Urinary 

I:Cr_V1_ugg 

BMIC_V2 

_ug/L 

Maternal 

UIC_V2_ug/L 

Urinary 

I:Cr_V2_ugg 

BMIC_V3 

_ug/L 

Maternal 

UIC_V3_ug/L 

Urinary 

I:Cr_V3_ugg 

BMIC_V1 

_ug/L 

Correlation Coefficient .275** .441** .563** .125 .279* -.101 .007 .110 

Sig. (2-tailed) .010 .000 .000 .277 .016 .576 .952 .393 

N 87 79 72 78 74 33 71 62 

Maternal 

UIC_V1 

_ug/L 

Correlation Coefficient  .276* .075 .225* -.051 -.043 .171 -.197 

Sig. (2-tailed)  .014 .533 .048 .664 .813 .155 .125 

N  79 72 78 74 33 71 62 

Urinary 

I:Cr_V1_ugg 

Correlation Coefficient   .168 .005 .454** -.039 -.047 -.050 

Sig. (2-tailed)   .182 .968 .000 .835 .713 .708 

N   65 70 67 31 65 58 

BMIC_V2 

_ug/L 

Correlation Coefficient    .253* .552** .015 .062 .156 

Sig. (2-tailed)    .032 .000 .936 .621 .246 

N    72 69 32 66 57 

Maternal 

UIC_V2 

_ug/L 

Correlation Coefficient     .185 .068 .381** .045 

Sig. (2-tailed)     .115 .706 .001 .728 

N     74 33 71 62 

Urinary I:Cr 

_V2_ugg 

Correlation Coefficient      -.074 .077 .193 

Sig. (2-tailed)      .692 .537 .146 

N      31 67 58 

BMIC_V3 

_ug/L 

Correlation Coefficient       .301 .577** 

Sig. (2-tailed)       .089 .001 

N       33 29 

Maternal 

UIC_V3 

_ug/L 

Correlation Coefficient        .340** 

Sig. (2-tailed)        .007 

N        62 
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Appendix 18 – Statement of Contribution Doctorate with 

Publications/Manuscripts 
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