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Abstract 
 

Chewing is complex because of its sub-processes and interactions, and inter-individual differences 

between people. The development of mechanistic models can be a tool to explore these aspects and can 

lead to the development of foods with controlled digestion outcomes and improved sensory appeal.  

A mechanistic chewing model was developed based on selection and breakage processes and 

implemented using a discretised population balance to predict the changes in bolus particle size 

distribution during chewing. The model was successfully implemented on peanuts, which gave 

confidence for its implementation to cooked white rice, which is an aromatic food system and has strong 

correlations with in vitro digestion. The relationship between panellists physiological, chewing and 

aroma release parameters during mastication of white rice were investigated in vivo to provide insights 

for model development. The findings showed that the dynamic behaviour of aroma release of all five 

subjects followed a similar trend with the breakdown pathways where subjects with smaller particles 

size in their bolus had higher aroma release. The study paved the first step in understanding the role of 

chewing on aroma release of cooked white rice and provided a range of oral processing behaviours for 

model validation.  

A coupled chewing and aroma release model was developed and validated against experimental 

data. Adjusting the input parameters from the coupled model showed that the portion size, initial 

concentration of the studied aroma compound, initial liquid volume and the rice pasted fraction were 

the most sensitive product-related parameters. The oral cavity volume, pharynx volume, nasal cavity 

volume and the breathing frequency were the most sensitive physiological parameters. The physico-

chemical parameter which had the most significant effect was the mass transfer coefficient in the saliva 

phase. Examples were also given to show the difference in aroma release when aroma compounds of 

varying partition coefficients were used.  

The work from this thesis constitutes the first step in the application of mechanistic chewing 

models as a tool for food design. The next step will be to expand these models to a wider range of food 

systems and to a larger number of individuals to improve the model reliability.  
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Chapter 1 Introduction 

1.1 Project overview 

With the growing health crisis with the rapid increase in people with dietary related diseases such as 

obesity, type 2 diabetes and cardiovascular diseases, there has been an increasing awareness amongst 

consumers’ in food products that benefit their personal health.  This interests food manufacturers to 

design novel foods that can manage caloric intake, increase satiety responses, provide controlled 

digestion, and/or delivery of bioactive molecules (Singh & Gallier, 2014). To design such foods, a 

detailed understanding of how food structure and matrix design interact with the physiological and 

behavioural processes during digestion is required. In recent years, efforts have been made to 

understand how different food structures are broken down in the human gastrointestinal tract. However, 

chewing, which is the first operation of the gastrointestinal tract, is often assumed to be less important. 

Chewing, or mastication is a complex process whereby the sizes of food particles are reduced 

and processed with saliva to form a bolus for swallowing. Chewing is needed because it ensures food 

particles are fragmented small enough and are well mixed and properly lubricated with saliva to form a 

coherent bolus for safe swallow (Chen, 2009). In the last few decade or so, studies have explored the 

many benefits of chewing. It has been related to digestion by increasing the surface area of foods to 

allow more efficient breakdown by digestive enzymes. For instance, the glycaemic index of white rice 

(glycaemic response relative to their response to a standard glucose) when chewed 15 times was 

significantly lower (68) compared when chewed for 30 times (88) among 15 subjects (Ranawana et al., 

2014). A different study from the same research group has also found that the percentage of small 

particles in a rice bolus (particles smaller than 500 µm) correlated significantly with in vitro digestion 

rate where the higher the proportion of small particles showed a higher percentage of digested starch at 

the start of gastric digestion (Ranawana et al., 2010). Saliva adds lubrication to allow safe swallowing 

and also adds amylase to hydrolyse starches, and bicarbonate to buffer pH in the swallowed material. It 

is known that once swallowed, boluses can spend significant periods of time (1-2 hours for part of a 

meal) in the proximal unmixed region of the stomach where amylase activity can be significant 
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(Bornhorst et al., 2014; Bornhorst, 2017). The design of foods that can be safely swallowed with 

different saliva inclusion could provide an approach to influence digestion rates.  

Besides allowing a more efficient breakdown by the enzymes, the increase in the surface area 

through mastication also helps the release of flavour and aroma. For instance, the increase of the particle 

size distribution (PSD) was observed to significantly reduce the release of flavour volatile release in 

dark chocolate matrices (Afoakwa et al., 2009). When encapsulating oil droplets within biopolymer 

gelled particles of various sizes to reduce the rate of lipophilic flavour release, it was found that as the 

particle size increases, the maximum flavour intensity of ethyl hexanoate (one of the lipophilic flavours) 

was reduced (Malone & Appelqvist, 2003).  

Due to the many benefits of chewing as stated above, an opportunity exists for food 

manufacturers to design foods to manipulate chewing behaviour and the resulting bolus for improving 

the sensory and nutritional benefits in manufactured foods. However, this is not a straightforward task 

because chewing is a complex process where individuals have their own unique chewing style in which 

many factors are involved. An individual’s chewing behaviour is related to physiological (e.g. gender, 

age, dental status, saliva flow rate, muscle strength), anatomical (facial anatomy), physiological 

(personality type, emotion, cognitive processes) and behavioural (learned pattern) factors (Kim et al., 

2020). All of these characteristics affect, for example, the duration of a mouthful, the chewing rate, the 

movement of the bolus within the mouth, the speed and trajectory of the jaw motion, and the forces 

applied to the food, which all have an impact on the bolus properties (Kim et al., 2020). The 

development of mechanistic models can provide tools to assess strategies to design foods that achieve 

different outcomes in ways that are insensitive to these variations or tailored to them. Additionally, it 

can also be a tool to reveal in-depth underlying relationships of any experimental observations involving 

chewing.  

In the literature, mathematical models to predict some of the outcomes of chewing have been 

developed, such as the PSD. The majority of the prior research has adapted fundamental comminution 

theory of coal grinding (Epstein, 1947) to predict the PSD of foods during mastication (Lucas & Luke, 

1983a, 1983b; van der Bilt et al., 1987, 1992; Gray-Stuart, 2016). According to the theory, mastication 
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can be defined as a combined process of selection and breakage. Selection can be defined as a process 

whereby food particles have a chance to be placed between the teeth where they are at least damaged 

or broken by the subsequent breakage process. The breakage process is defined by the distribution of 

the broken particles that originated from a selected particle.  

Several attempts have been made to model the selection process during chewing. It has been 

shown to depend on particle size by a power function (van der Glas et al., 1987; van der Bilt et al., 

1992;) or to depend on both particle size and number by two mechanistically derived competitive 

selection models (van der Glas et al., 2018,1992). The competitive selection models have the potential 

to aid in food design by providing the essential knowledge to determine the conditions for a controlled 

flavour release by varying particle shape, size and number ratio in mixtures and the way particles are 

embedded into other food matrices (van der Glas et al., 2018). Despite efforts made to develop these 

models, they are rarely applied to real foods due to the number of time-intensive experiments needed 

to generate inputs to the model. This demonstrates the need to provide simple and rapid methods to 

generate model input data during the model development process.   

Additionally, the competitive selection models developed by van der Glas et al., (1992) have 

only been validated with cubic Optosil® particles, which is a silicone dental impression material, that 

is not affected by saliva (van der Glas et al., 2018). Optosil® is representative for natural brittle hard 

foods which form a loose aggregation of particles during chewing (stiffer than raw vegetables but less 

stiff than nuts). To date, only one study has applied the selection model to real food. This was the study 

by Gray-Stuart (2016), where he had successfully simulated the PSD of brown rice by applying the two-

way competition model. The application of selection models is a logical starting place for more complex 

chewing model development that can account for some of the anatomical and behavioural differences 

we see between people, although these models need to be extended to a wider range of food systems. 

The breakage function is determined by the internal mechanical properties of foods, which are 

properties that resist the formation of new surface by fracture (Agrawal et al., 2000). Previous studies 

which incorporate breakage in chewing simulations have used empirical and mechanistic functions to 

fit their experimental data. For instance, Lucas and Luke (1983b) used an empirical power function to 



4 

 

fit the breakage of carrot particles during chewing. Other studies have applied the mechanistic function 

describing the distribution of particles resulting from a single breakage event from Austin (1971) to 

simulate the PSD of Optosil®  particles (van der Bilt et al., 1987; van der Glas et al., 1987) and brown 

rice (Gray-Stuart, 2016). However, because of the requirement for conservation of volume in the 

distribution of daughter particles during breakage, for modelling, most literature methods apportion 

daughters to mean bin sizes. This results in less accurate model predictions when compared against 

experimental data as the size of the daughter particles generated is limited to the average between two 

bin sizes. There is opportunity to overcome these shortcomings and to adapt breakage models to be 

population balances where complete distributions of particles are followed over time.   

Extension to the selection and breakage models are the studies by Harrison & Cleary (2014), 

Harrison et al. (2014a, 2014b) who developed a coupled biomechanics-smoothed particle 

hydrodynamics to predict size distributions of food fragments for an agar model food. Other studies 

include Gray-Stuart et al. (2017), who developed a conceptual model of the decision-making criteria 

for bolus properties needed to ensure safe swallows, and Ng et al. (2017), who investigated slip 

extrusion as a function of bolus properties in a simulated swallow. Despite these extensions, the next 

steps to use such models for better design of foods have not been made. Comprehensive examples are 

needed to demonstrate the application of models to facilitate their use by industry. 

In the literature, models to predict PSD of bolus during mastication have been used to predict 

aroma compound release. Harrison et al. (1998) simulate aroma release from foods in the mouth by 

incorporating the selection and breakage functions that were described by a power law relationship. The 

model, however, was not validated against in vivo experimental data. Another study that modelled 

flavour release of jellied sweets incorporated mastication models by empirically fitting Pearson type IV 

distribution to the bolus experimental data (Wright et al., 2003). However, the model was not complete 

as breathing was not taken into account. Additionally, the assumptions are limited to the type of food 

matrix explored in the study (e.g. candy) and consumption patterns (e.g. sucking) (Doyennette et al., 

2014). The most comprehensive validated model of aroma release during chewing of solid foods was 

developed by Doyennette et al. (2014) for cheese. However, the mastication model was simplified by 
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assuming that the bolus surface area increases linearly with time. Clearly, there is still a gap in the 

literature in developing a validated and comprehensive mechanistic model which incorporates 

mastication models to predict flavour release.  

1.2 Overall Goal and Research Objectives 
 
Overall Goal: The purpose of this work was to develop a chewing model for solid foods during oral 

processing and to demonstrate model application through a series of case studies which are linked to 

the design of foods to influence digestion and sensorial outcomes.  

1.2.1 Research Objectives 

The specific objectives of this research were to: 

i. Develop conceptual and quantitative mathematical models to predict the PSD of bolus during 

chewing. 

ii. Validate the developed models against in vivo peanut chewing data to demonstrate model 

application in order to provide a mechanistic understanding of the chewing process and how it 

could lead to food design. 

iii. Develop conceptual and quantitative mathematical models which describe a combined chewing 

and aroma release mechanisms of a starch-rich food to expand model application for food 

design which influences digestion and sensorial outcomes. 

iv. Validate the coupled chewing-aroma release model using a starch-rich food by comparing 

model predictions to in vivo experimental data from human subjects. 

v. Apply the validated coupled chewing-aroma release model by demonstrating its usage on the 

better design of foods to influence sensorial outcomes.   

 

1.2.2 Organisation of the thesis 
 
The outcomes of the objectives of section 1.2.1 are documented and organised in this thesis as follows: 
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 Chapter 2 reviews the current literature on modelling mastication of solid foods and aroma 

release. From this a combined conceptual was developed. 

 In Chapter 3, based on objective (i), conceptual and mathematical models to predict the bolus 

PSD of chewing were developed based on the adaption of existing selection and breakage 

processes developed in the literature. Several numerical approaches were also developed to 

implement the models due to several model shortcomings such as ensuring the conservation of 

volume when daughter particles were generated. The establishment of the mathematical model, 

model assumptions and the numerical approach form the basis for the model application case 

studies in the subsequent chapters.  

 In Chapter 4, the models developed in Chapter 3 were applied to predict peanut breakdown to 

demonstrate model application on a real food system. The PSD predictions from the model 

were fitted to experimental data obtained from the literature using an optimisation tool called 

Particle Swarm Optimisation (PSO). A variety of mechanistic and empirical selection and 

breakage models in the literature were applied to determine which model provided the best fit 

to the experimental data. The fitted parameters were then interrogated to provide a mechanistic 

understanding of how peanuts were chewed. 

 In Chapter 5, similar to Chapter 4, the models developed in Chapter 3 were applied to peanuts 

to test model application for food design. Two case studies were presented which were aimed 

at understanding the breakdown process when the initial portion size was varied and when the 

initial moisture content (and hence breakage behaviour) was different. The optimisation 

technique developed in Chapter 4 was applied to the case studies where the resulting input 

parameters solved from the algorithm were interrogated to understand the difference in chewing 

mechanisms from the alteration in food design. Chapter 4 and Chapter 5 fulfilled objective (ii).   

 In Chapter 6, which was based on objective (iii), in vivo chewing and aroma release experiments 

were performed on five subjects using the chosen starch-rich food system. The physiological, 

oral processing and aroma release parameters of each subject were investigated. The results of 
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the study were then used to understand the relationship between physiology and chewing on 

aroma release as well as to generate the data for model validation. 

 In Chapter 7, the results of the in vivo study in Chapter 6 was used as the basis for the model 

development of a coupled chewing and aroma release model for the chosen starch-rich food 

system. A conceptual model which included model assumptions were developed and used to 

convert into several ordinary differential equations (ODEs) to predict aroma release. The ODEs 

were then solved numerically using MATLAB. This chapter fulfilled objective (iii). 

 Chapter 8 achieved objective (iv) by validating the combined chewing-aroma release model 

developed in Chapter 7 against the in vivo experimental data measured in Chapter 6. Two 

different approaches were used to validate the model; the first approach directly used the PSD 

outputs from experimental data to establish the coupling with the aroma release model whereas 

the second approach used the PSD outputs predicted from the chewing model developed in 

Chapter 3. The comparison made between the two different approaches provided a staged 

approach to validation of different parts of the combined particle breakdown-aroma release 

model. 

 Chapter 9 completed objective (v) by showing how modelling can act as a tool to provide 

insights towards the betterment of food design to influence sensorial outcome. This was 

demonstrated by manipulating the input parameters related to the product, physiology and 

physicochemical properties through application of the model validated in Chapter 8 to one of 

the subjects characterised in Chapter 6.  

In the final chapter, the work and results obtained for this research were summarised followed by 

recommendations for future work. 
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Chapter 2 Literature review 
 

2.1 Introduction 

Chewing is a complex phenomenon because various processes occur concomitantly to process the 

ingested food from its initial state into a safe-to-swallow bolus (Xu et al., 2007; Gray-Stuart, 2016; 

Almotairy et al., 2020). The objectives of thesis revolve around extending previous work on chewing, 

aroma release and the existing models for these processes in the literature. Therefore, the first part of 

this chapter will focus on understanding the main processes involved during chewing and saliva 

addition, as well as their main benefits to general health, well-being and sensorial experience. 

2.2 The chewing process 

Chewing is needed because it ensures food particles are fragmented small enough, well mixed and 

properly lubricated with saliva to form a coherent bolus for safe swallowing (Chen, 2009). Mastication 

is influenced by factors such as the characteristics of the food (e.g. water, fat percentage and hardness), 

teeth (e.g. total occlusal area), bite force (which depends on muscle volume, jaw muscle activity and 

the coordination of chewing muscles), and neuromuscular control (i.e. the movement of the jaw and the 

manipulation of tongue and cheeks) (van der Bilt et al., 2006). During mastication, specific oral 

processing steps occur as described in a conceptual model developed (Fig. 2-1) by Lucas et al. (2002).  

The conceptual model in Fig. 2-1 attempts to list the primary requirements for processing food 

entering the mouth. It is noted by its authors that the conceptual model does not intend to describe 

decisions made by the central nervous system from the sensory feedback it receives, and it is simply an 

analytical way of defining a general sequence of events. According to the model, any food entering the 

mouth must be gripped or else its movement cannot be controlled. Food can either be transported 

directly to the pharynx for swallowing depending on whether the food can crack or not. For example, 

easily swallowable food like porridge will not require a ‘crack initiation’ event, hence it will be 

transported straight to the pharynx. If food is perceived to be sufficiently solid such as a biscuit, the 

teeth will attempt to make a crack and hence the food will undergo more oral processing events such as 

‘Fracture’,  ‘Comminution’ and ‘Sculpture’ until it is safe to be transported to the pharynx. 
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Fig. 2-1: A conceptual model of chewing described as a sequence of events. Decision boxes are shown as 

diamonds whereas process boxes are rectangular, from Lucas et al. (2002). 

Similarly, Hiiemae (2004) drew a conceptual model that describes chewing as a series of 

sequential stages (Fig. 2-2). The model asks three questions; the first question is whether the food is 

safe to be eaten.  If the food is perceived to be poisonous, then it is expectorated at this stage. The 

second is whether the food material is suitable for swallowing. If the material is too large to be 

swallowed, then more chewing is needed to reduce the food particle size. At this stage, food particles 

are mixed with saliva to begin bolus formation. The last question is a threshold gate which asks if there 

is enough food to swallow. If food is not enough, it implies a lower volume limit which means food 

particles need to be constantly processed with saliva until the bolus volume reaches the swallowing 

threshold (Gray-Stuart, 2016). 

Gray-Stuart (2016) combined subsets from the Hiiemae (2004) and Lucas et al. (2002) 

conceptual models to demonstrate how food is transformed into a bolus and how it is assessed to 

determine whether it is safe to swallow (Fig. 2-3). His conceptual model integrates food breakdown, 

mixing and testing of the food properties. The swallowing decision in his model is based on a range of 
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properties the food must have, which are the temperature, volume, adhesion, bolus deformation, particle 

deformation and particle size. The threshold properties were determined using a chemical engineering 

methodology called a hazard and operability study (HAZOP) which is commonly used in chemical 

process plant design.  

 

 
Fig. 2-2: The process model of feeding from Hiiemae (2004) 

The conceptual models produced by Lucas et al. (2002), Hiiemae (2004) and Gray-Stuart 

(2016) are similar in a sense that all of them are displayed as a series of ‘decision-making’ processes 

where a threshold gate needs to be satisfied before proceeding to later stages. All of the models describe 

pathways that need to be taken by food to ensure that it is safe to be swallowed. Out of the three, the 

model by Gray-Stuart (2016) is the most complex and provides a better explanation of what occurs in 

each of the stages. His conceptual model stands out from the others by not only addressing the 

movement of food and the action of chewing, but also includes other mechanisms occurring to food 
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during oral processing such as the size reduction, work softening, dissolution, absorption, melting and 

mixing.  

   

 
Fig. 2-3: Conceptual model of oral processing from Gray-Stuart (2016). 

 
As mentioned above, all of the models provide a great overview of the processes involved 

during chewing. During chewing, saliva is produced to facilitate mastication, moisten food particles, 

contributes to bolus formation and assists in swallowing by providing lubrication (van der Bilt et al., 

2006). In the next section, a brief background of saliva will be presented.  

2.3 Saliva  

During chewing, saliva is secreted due to the combination of mechanical stimulation (from chewing) 

and chemical stimulation from food components (i.e. tastants and aromas). Saliva plays an important 

role in bolus formation, as it acts as a liquid binder between food particles which are bound together to 

form a cohesive bolus. Other functions of saliva include destabilizing colloidal systems such as 

emulsions, breaking down compounds by means of salivary α-amylase and lipase, dissolution of tastants 
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and binding aromas, and participates in the formation of soluble and insoluble aggregates (Mosca & 

Chen, 2017).  

2.3.1. Saliva production 

Approximately 90% of saliva is produced by the three major salivary glands in the oral cavity. These 

are the parotid, submandibular and the sublingual glands (Bornhorst & Singh, 2012; Carpenter, 2013; 

Mosca & Chen, 2017). The remaining 10% of the whole saliva is contributed by the gingival crevicular 

sulci (area between tooth and marginal free gingiva), the minor salivary glands (situated on the tongue), 

the buccal mucosae, the palate and by oro-naso-pharyngeal secretions (Aps & Martens, 2005). 

The flow rate of an unstimulated salivary flow is approximately 0.5 ml/min (Carpenter, 2012). 

Saliva flow rate and composition varies in response to gustatory stimulation (such as acid) or 

mechanical stimulation from chewing inert materials such as parafilm (Watanabe & Dawes, 1988). 

Watanabe and Dawes (1988) studied the effects of seven different foods and three concentrations of 

citric acid in 16 adult subjects on the saliva flow rate. The foods were steamed rice, French fries, 

cheeseburger, cookies, milk chocolate, apple, and rhubarb pie. The saliva flow rate was calculated by 

dividing the volume of saliva (calculated by subtracting the initial weight of food with the expectorated 

food bolus) with the chewing time. The food with the highest mean salivary flow rates was rhubarb pie 

(4.94 ± 1.51 ml/min) and the lowest was rice (3.15 ± 1.48 ml/min). Meanwhile, the highest 

concentration of citric acid (260 mmol/l) produced the highest mean salivary flow rates (7.07 ± 2.16 

ml/min) which is consistent with other studies looking at measuring the saliva flow rate in response to 

varying citric acid concentrations (Norris et al., 1984; Froehlich et al., 1987). Table 2-1  shows salivary 

flow rates from three different studies, measured in response to chewing different foods. 

From Table 2-1, it can be seen that saliva flow rates vary in response to chewing different type 

of foods. Toast and cake produce saliva flow rates significantly higher than other food types. This is 

because they are dry foods which require more saliva to form a bolus than the moist foods such as rice, 

apple and cheeseburger. Saliva flow rate can also be seen to be independent of food volume when 

compared within a single food type. This is shown with the saliva flow rates measured in response to 
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chewing different volumes of cakes. The unstimulated saliva flow rates measured in all of the studies 

are quite similar and lie in the range 0.38-0.72 ml/min. 

Table 2-1: Salivary flow rates in response to chewing different foods from (Watanabe & Dawes, 1988; 

Engelen et al., 2003; Gavião et al., 2004); *NA is defined as not applicable as the parameter was not 

measured in the study 

 

It can also be seen that gustatory stimulation has more effect than mechanical stimulation, 

which is shown by the lower flow rates for chewing parafilm in comparison to natural foods especially 

if it is considered that saliva flow rate is likely to be underestimated in this measurement method as it 

is assumed that all the ingested food is recovered in the expectorated bolus. Dry solids recovery of 

ingested foods can be as low as 50% of the original mouthful for different foods (Jalabert-Malbos, 

2007). 

 Engelen et al. (2003) also compared saliva flow rates between gender  and found that saliva 

flow rates for females are not significantly different from their male counterparts. However, Inoue et 

al. (2006) claimed that the unstimulated whole saliva flow rate in females is lower than males as their 

gland sizes are smaller due to their smaller body sizes. Li-Hui et al. (2016) analysed the difference of 

saliva flow rates for 28 females and 27 males before and after citric acid stimulation and found that the 

saliva flow rates in females before acid stimulation was significantly lower than in males in all samples 

Stimulus Flow rate (ml/min) 

Watanabe and Dawes 

(1988) 

Engelen et al. (2003) Gavião et al. (2004) 

Unstimulated 0.72 ± 0.28 0.38 0.53 ± 0.28 

Parafilm NA 1.12 1.40± 0.67 

Rice 3.15 ± 1.48 NA NA 

French fries 3.82 ± 1.32 NA NA 

Cheeseburger 3.92 ± 1.85 NA NA 

Cookie 4.17 ±1.32 NA NA 

Chocolate 4.18 ±1.44 NA NA 

Apple 4.76 ± 1.53 NA NA 

Rhubarb pie 4.94 ±1.51 NA NA 

Toast 8.84 ± 5.06 NA NA 

Toast (with margarine) 7.74 ± 4.97 NA NA 

Cake (small) 7.97 ± 5.02 NA NA 

Cake (medium) 7.32 ± 3.97 NA NA 

Cake (large) 7.42 ± 3.61 NA NA 

Odour 0.51 NA NA 

Citric acid (3 drops of 

4% concentration) 

1.87 NA NA 

52mmol/l citric acid 4.35 ± 1.92 NA NA 

156 mmol/l citric acid 5.94 ± 2.08 NA NA 

260 mmol/l citric acid 7.07 ± 2.16 NA NA 



14 

 

collected. They also found that there is no difference among gender for the salivary amylase activity 

measured. 

2.3.2 Saliva properties and components 

Saliva is made of 99% water and less than 1% electrolytes or organic compounds such as proteins 

(Mosca & Chen, 2017).  Although saliva is composed mostly of water, it is a non-Newtonian fluid as 

the viscosity decreases with increasing shear. The viscoelastic properties of saliva are a result of the 

mixture of water with mucins, glycoproteins and ionic components (Mosca & Chen, 2017). The strong 

viscoelastic quality of saliva is important as it allows the wetting of both hydrophobic and hydrophilic 

surfaces in foods (Boehm et al., 2014). Foods ingested in the mouth have different properties. They can 

be dry such as a biscuit or can be oily such as potato chips. To coat these foods with saliva to form a 

safe-to-swallow bolus, saliva needs to possess viscoelastic properties (Boehm et al., 2014). 

The properties of saliva are affected by many factors such as individual characteristics (e.g. 

age, gender), health status, emotional stress and the use of dentures (Mosca & Chen, 2017). Extrinsic 

factors related to the conditions of collection, handling and preservation of saliva samples can also 

afffect the properties of saliva (Mosca & Chen, 2017). 

A component of saliva which is not well studied in the literature is the role of its most abundant 

protein, salivary amylase. In humans, AMY1, the salivary gene, produces the amylase enzyme present 

in saliva. Salivary amylase is an endoenzyme that carries out multiple attacks on linear portions of 

starch amylose and amylopectin with maltose and maltotriose as the principal short chain products 

(Butterworth et al. 2011). A purified salivary amylase has a specific activity of 1.5 x 103 U per mg (1 

U is defined as milligrams of maltose produced in 3 mins at 20oC) (Butterworth et al. 2011). Using this 

assumption, the comparison of AMY1 gene copy number with amylase content of saliva, indicates that 

saliva would contain up to 2x104 U/ml.   

2.3.3 Saliva functions 

A comprehensive review of the essential functions of saliva in food oral processing has been given in 

Mosca & Chen, (2017). A conceptual model was drawn to summarise the roles of saliva in food oral 

processing (Fig. 2-4). At a food structural level, as chewing progresses and the food structure is 



15 

 

reduced into smaller pieces, saliva coating is essential as it helps to dissolve and release flavour 

compounds, prevents food particles from sticking to oral surfaces or teeth, clustering food particles 

and forming a safe-to-swallow bolus (Mosca & Chen, 2017).  

 

Fig. 2-4: Role of saliva in oral processing. Figure from Mosca & Chen (2017).  

At the molecular level, saliva destabilises colloidal food products such as emulsions and 

beverages through flocculation and coalescence. The flocculation of emulsion systems due to saliva, 

increases the viscosity, storage modulus and viscoelasticity of the emulsion (Mosca & Chen, 2017). 

Due to the action of salivary α-amylase, saliva-induced coalescence is observed in starch-stabilised 

emulsions. For instance, a study by Dresselhuis et al. (2008) observed that emulsions that were prepared 

with octenylsuccinate starch as an emulsifier had the highest scores for mouth-feel and after-feel fat-

related and taste-related attributes, due to emulsion droplet coalescence induced by saliva. Saliva also 

forms complexes by binding basic proline-rich salivary proteins to polyphenols (tannins). This is 

believed to be the main reason for astringency sensations (i.e. puckering, rough, dry mouth-feel and 

after-feel) (Mosca & Chen, 2017). 

The role of saliva on digestion is arguably one of the functions of saliva that is the most poorly 

understood. An enzyme in saliva, the salivary α-amylase is generally thought to be involved in the initial 

digestion of starch-containing foods. Hoebler et al. (1998) studied the levels of starch hydrolysis in the 

mouth by asking twelve volunteers to chew bread or spaghetti at their natural swallowing point. It was 
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found that during the short step of oral digestion (about 20-30s) about 50% of bread starch and 25% of 

pasta starch was hydrolysed and transformed into molecules of smaller molecular mass, however they 

were still mostly large molecules. Only a small fraction of the starch was broken down into 

oligosaccharides (mainly maltose and maltotriose). A more recent study investigating the role of 

salivary α-amylase in the gastric digestion of wheat bread starch found that the amylolytic activity of 

saliva hydrolyses up to 80% of bread starch in the first 30 min of gastric digestion (Freitas et al., 2018). 

This finding is significant as it shows that although the oral phase is the shortest phase of digestion and 

the changes to starch are relatively minor, it plays a significant role in total digestion. The action of 

amylase can also continue in the proximal regions of the stomach (during the gastric step), as it was 

found that amylase is partly protected from denaturation by acid pH in the distal region of the stomach 

(Rosenblum et al., 1988).  In addition, salivary α-amylase has been found to influence the physical 

breakdown and subsequent gastric emptying by changing the texture of the bolus. Bornhorst et al. 

(2014) studied the effect of α- amylase on rice bolus texture after simulated mastication and found that 

bolus texture was significantly lower in the presence of α-amylase. Boehm et al. (2014) also conducted 

a similar study with potato chips and found that within the first minute of mixing with saliva, the 

amylase degrades only 6% of starch but leads an order of magnitude reduction in the bolus elasticity.  

Lipase is another salivary enzyme that can play a role in the initiation of food digestion in the 

mouth. However, because of the low concentration of this enzyme in saliva, it is most likely that it does 

not influence fat digestion (Mosca & Chen, 2017). However, a low degree of fat hydrolysis might still 

have an influence on oral perception, but further investigation will be needed to confirm this hypothesis 

(Mosca & Chen, 2017). 

 Lastly, saliva at rest assists the tasting of foods. The low surface tension (a feature of resting 

and stimulated saliva) allows a rapid interaction of the tastant with taste receptors (Carpenter, 2012). 

Tastants such as salt and acids use saliva as a medium to convey the ions to the taste receptors, which 

enhances taste intensity. The components of saliva such as mucins can also interact with aroma 

compounds. When investigating the interactions between saliva components and 20 aroma compounds 

in water and oil model systems, mucins were showed to decrease the retention of highly volatile 

compounds and increase the retention of hydrophobic compounds (van Ruth et al., 2001). Salivary 



17 

 

enzymes in saliva can also affect aroma release and perception. A study by Buettner (2002) concluded 

that the persistence of odorous compounds in the mouth after food consumption is caused by the 

degrading action of salivary enzymes. When odor-active compounds are mixed with whole saliva, the 

concentrations of esters, thiols and aldehydes decrease but no change in concentration was observed 

when saliva was thermally treated at 100oC for 10 min.   

It is clear from the literature that saliva is important in mastication. In the next section, the key 

importance of chewing, particularly on digestion and taste and aroma release will be reviewed.  

2.4 Effects of mastication 
 

2.4.1 Effect of mastication on digestion 

In the literature, chewing has mostly been related to digestion as it increases the surface area of foods 

when the particle size is reduced. Studies have shown the role of chewing on the digestion of starch-

based foods. For example, when investigating the effects of mastication on glycaemic response of four 

different carbohydrate foods (sweetcorn, white rice, diced apple and potato), it was found that 

swallowing the foods without chewing significantly reduced the blood glucose response compared to 

when they were chewed thoroughly for 15 s (Read et al., 1986). In another study, when comparing the 

total glycaemic response, when white rice is chewed 15 or 30 times, it was shown that the total 

glycaemic response was significantly lower when chewed faster (glycaemic response of 155 mmol 

min/l for 15 times compared to 184 mmolmin/l for 30 times) (Ranawana et al., 2014). When 

investigating the role of mastication on in vitro digestion of white rice, it was found that the percentage 

of particles that were reduced to smaller than 500 µm correlated significantly with in vivo glycaemic 

response at the initial digestion stage (Ranawana et al., 2010). Chewing has also been shown to 

influence the release of other nutrients during digestion. It has been shown to influence the amino acid 

assimilation of meat protein (Rémond et al., 2007), bio-accessibility (nutrient release) of lipids from 

almonds (Cassady et al., 2009; Grundy et al., 2014; Mandalari et al., 2018) and the release of carotenoids 

from fruits (Lemmens et al., 2010; Low et al., 2015).  
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2.4.2 Effect of mastication on taste and aroma release 

The increase of surface area of foods due to the chewing process also influences the release of volatile 

compounds from foods, and subsequently affects the profile of volatiles in the nasal cavity. Numerous 

studies have shown the effects of decreasing particle size during mastication on flavour release; 

however they were mostly focused on in vitro studies due to the difficulty to characterise the bolus (e.g. 

the PSD) when the experiment is conducted in vivo. When investigating the effect of the mastication 

rate on temporal aroma release from ripe and unripe bananas using a model mouth system, the higher 

mastication rate (52 min-1) had significant odour active compounds detected (18 and 7) compared to 

without mastication, where only 3 and 2 compounds were detected (Mayr et al., 2003). Another in vitro 

study looking at the effect of mastication of apples on volatile release using an artificial mouth device 

observed more volatile compounds released the longer apples were chewed (Arvisenet et al., 2008). In 

vivo, a significant correlation between chewing parameters (e.g. chewing rate and muscle activity) and 

aroma release was also observed during eating of a model cheese when measured in vivo (Pionnier et 

al., 2004).   

Despite previous efforts to understand the role of chewing on aroma release, they were mostly 

focused on relating the chewing behavior (e.g. the chewing rate and muscle activity) with aroma release 

but very little effort was made in understanding the effects of the bolus PSD. Because of the complexity 

in characterizing the particle size in vivo, several attempts have been made to understand its role by 

developing mechanistic mathematical models. Although not validated with experimental data, Harrison 

et al. (1998) developed a model describing flavor release from solid foods during mastication based on 

the stagnant-layer theory of mass transfer. It showed that the fracture mechanics of food had an impact 

on the initial rate of flavor release. Similarly, the air-bolus contact area was shown to be one of main 

parameters affecting release intensity in a mechanistic model developed by Doyennette et al. (2014) to 

predict the flavor release of cheese.  

  These studies showed the importance of mastication, particularly on digestion and aroma 

release of foods. However, due to the complexity of chewing and the difficulty in obtaining good quality 

input data, there have been few efforts made to model the system. In the next sections, those attempts 

to model chewing will be presented.   



19 

 

2.5 Chewing models 

Models have been developed because of the time and labour-consuming nature of chewing experiments 

designed to measure the change of PSD across several number of chews (Liu et al., 2020). Models to 

describe chewing in the literature have been based on the selection and breakdown of particles. 

Selection in chewing can be defined as the process in which a food particle has the probability of being 

arranged between the antagonistic teeth for subsequent breakage. Particles are considered selected if 

they are at least damaged or comminuted. The breakage process can be defined as the process in which 

selected particles are fractured between the teeth into smaller fragments of variable size and number. 

Both selection and breakage are influenced by subject-related anatomical and physiological factors and 

food-related factors (van der Glas et al., 2018; Zhang et al., 2019; Liu et al., 2020). 

2.5.1 Selection as a function of particle size 

Selection can be observed from the change in PSD (PSD) collected on a stack of sieves after consecutive 

a chewing cycles, N and N+1 (where N is a given chew number). Non-selected particles will be found 

on the same sieve.  Selected particles will be damaged in some way.  Smaller daughter fragments will 

be found on lower sieves, but some particles will only have been cracked or chipped, rather than broken, 

so may also remain on their original sieve (van der Glas et al., 1987).  

Experimentally, the selection chance in cycle N+1 can be measured if particles are form-

labelled at cycle N (e.g. cubes or cylinders) so that selected particles can be differentiated as being 

damaged or broken in cycle N+1. The selection chance can be defined as the proportion of particles of 

size 𝑋�̅� that are damaged or broken between consecutive chew cycles. This is not easy to do 

experimentally as each sieve, below the largest one, has both particles arriving on and leaving the sieve 

after the cycle. Rather, authors observe the net change in PSD, where each sieve mean particle size, 𝑋�̅�, 

is defined by the sieve mid-point size, (i.e., the logmean of the aperture of adjacent sieves in series), 

and the selection √𝑋𝑖−1. 𝑋𝑖 , can be defined as the proportion of particles of size 𝑋�̅� that are damaged or 

broken between consecutive chew cycles.  

To study selection, Lucas and Luke (1983a) used carrot as a test food with ten subjects.  They 

found that selection decreased strongly as particle size decreased but, within that, also decreased weakly 
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with increasing chew number. Despite this, Lucas and Luke (1983a) did not propose a relationship for 

the dependence of selection on particle size but did propose a relationship for the dependence of 

selection on chew number.  For this, they assumed that the percentage of particles in a size fraction 

declines exponentially with the number of chews, in which case the selection function is dependent on 

chew number described by; 

𝑆 (𝑋�̅�) = 1 − (
𝑃2,𝑖
𝑃1,𝑖

)

1
𝐶2−𝐶1

(2.1) 

where 𝑆 (𝑋�̅�) is the average selection function of a mid-point size of a size fraction, 𝑃1 is the percentage 

of particles of average size 𝑋�̅� after 𝐶1 chew and 𝑃2 is the percentage remaining after chew number 𝐶2.   

Van der Glas et al. (1987) explored the size dependence of selection.  From a study of four 

panellists during chewing of silicone rubber (Optosil®), they found that selection as a function of 

particle size can be described by a power function  

𝑆 (𝑋�̅�) = 𝑣𝑋�̅�
𝑤

(2.2)  

where 𝑆 (𝑋�̅�) is the selection function (in the range of 0 ≤ 𝑆 (𝑋�̅�) ≤ 1), 𝑋�̅� is the particle size, and 𝑣 and 

𝑤 are constants. The 𝑣 variable describes the mixing action of the chewing that is the ability of the teeth 

to lock the particles for breakage as well as the movement of the tongue to arrange particles to fit on 

the occlusal area of the teeth. The exponent 𝑤 describes the degree of piling of the particles where 

damage can be applied to particles piled on top of each other on the occlusal surfaces. If 𝑤> 2 then 

piling of particles in the occlusal area of teeth might occur. They also found, like Lucas and Luke 

(1983a), that the selection value for the larger particles seemed to decline gradually as chewing 

progressed, which is captured here by the variable v increasing with chew number.  So, while the power-

law model for selection in Eq. (2.2) has been shown to successfully simulate the PSD during chewing 

in previous studies (van der Bilt et al., 1987, van der Glas et al., 1992), its weakness is that it does not 

mechanistically account for particle number. Nevertheless, the effect of competition is acknowledged 

by van der Bilt et al. (1987) where they surmise that, due to the limited occlusal area, an increase in the 

number of particles would saturate the available space, causing a decrease in selection chance. 
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2.5.2 Competitive selection as a function of particle size and number 

Van der Glas et al. (1992) introduced the idea of including breakage sites, defined as the part of the 

occlusal area of the post-canine teeth where particles of a specific size can be broken. As the same tooth 

surface is utilised to break particles of various sizes, the breakage sites available for large particles to 

break overlaps considerably with the locations at which small particles are broken. As chewing 

progresses, large particles would have to compete with the increasing number of smaller particles 

occupying the limited occlusal surface for chewing.  The selection model they developed differs from 

the above, where selection is expressed as the fraction of particles of a particular size selected for 

occlusion.  Instead, here selection refers to the number of particles that occupy sites in the occlusal 

plane relative to the maximum number of sites available for that particle size. For single-sized particles, 

the number of particles selected in size class 𝑋𝑖, 𝑛𝑠(𝑋𝑖, 𝑛𝑥𝑖),  after a single chew can be described by 

𝑛𝑠(𝑋𝑖, 𝑛𝑥𝑖) = 𝑛𝑏(𝑋𝑖). [1 − (1 − 𝑂1(𝑋𝑖, 1))
𝑛𝑥𝑖
] (2.3) 

 where 𝑛𝑏(𝑋𝑖) is the number of breakage sites that are available for particles in size class 𝑋𝑖, and 

𝑂1(𝑋𝑖, 1) is an affinity factor for particles in size class 𝑋𝑖. If  𝑛𝑏(𝑋𝑖) is the number of breakage sites, 

then the term [1 − (1 − 𝑂1(𝑋𝑖, 1))
𝑛𝑥𝑖
] must be the fractional occupancy of these breakage sites.  The 

term (1 − 𝑂1(𝑋𝑖, 1))
𝑛𝑥𝑖

 therefore represents the opposing fraction, (i.e., the fraction of breakage sites 

free of particles).  The power term indicates this fraction is affected by the number of particles within 

the portion of food.  As the number of particles in the system grows, the fraction of breakage sites free 

of particles decreases, approaching zero when 𝑛𝑥𝑖 is large.  Within this the term, 1 − 𝑂1(𝑋𝑖, 1) is best 

considered by imagining there is only one particle, 𝑛𝑥𝑖 = 1.  If so, it is the fraction of the breakage sites 

that are free of particles when one particle occupies one site.  Therefore, the affinity term 𝑂1(𝑋𝑖, 1) 

must be one divided by the number of breakage sites, 1/𝑛𝑏(𝑋𝑖).  Given that this is dependent on size, 

𝑂1(𝑋𝑖, 1) will decrease markedly as size 𝑋𝑖  becomes smaller, tending to zero as size becomes infinitely 

small. For an example, if there is one large particle in the portion that can occupy 20% of the occlusal 

area,  the number of breakage sites is five.  In this case the number selected is 

𝑛𝑠(𝑋𝑖, 𝑛𝑥𝑖) = 𝑛𝑏(𝑋𝑖). [1 − (1 − 𝑂1(𝑋𝑖, 1))
𝑛𝑥𝑖
] 
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𝑛𝑠(𝑋𝑖 , 𝑛𝑥𝑖) = 5 × [1 − (1 − 0.2)
1] = 5 × 0.2 = 1 

Given that there is one particle present and one is selected, this is correct.  Now imagine there are 6 

particles of the same equal size in the mouth competing for 5 breakage sites.  In this case the number 

selected is 

𝑛𝑠(𝑋𝑖, 𝑛𝑥𝑖) = 𝑛𝑏(𝑋𝑖). [1 − (1 − 𝑂1(𝑋𝑖, 1))
𝑛𝑥𝑖
] 

𝑛𝑠(𝑋𝑖 , 𝑛𝑥𝑖) = 5 × [1 − (1 − 0.2)
6] = 5 × 0.748 = 3.69 

This makes perfect sense too. So, if the above deduction is correct, the selection model for single sized 

particles is actually a single parameter model, requiring only 𝑛𝑏(𝑋𝑖).   

The selection model for single-sized particles was extended to particles in a mixture of sizes. 

Two models describe how different sized particles compete for the breakage sites: the one-way and 

two-way competition models. The one-way competition model (Eq.2.4) assumes that the selection of 

smaller particles will be affected by the presence of large particles without the reverse occurring. The 

number of selected particles as a function of number 𝑛𝑠(𝑋𝑖 , 𝑛𝑥𝑖) in the smaller size class (𝑋𝑖) in the 

presence of p classes of larger particles of sizes (p = 0 … i-1) can be described as: 

𝑛𝑠(𝑋𝑖 , 𝑛𝑥𝑖) = [𝑛𝑏(𝑋𝑖).∏𝑈(𝑋𝑝, 𝑛𝑥𝑝)

𝑖−1

𝑝=0

] [1 − (1 − 𝑂1(𝑋𝑖, 1))
𝑛𝑥𝑖
] (2.4)  

where 𝑈(𝑋0, 𝑛𝑥0) = 1 and 𝑈 (𝑋𝑝, 𝑛𝑥𝑝) = [1 − 𝑂1(𝑋𝑝, 1)]
𝑛𝑥𝑝

. The term 𝑛𝑏(𝑋𝑖) is the number of 

breakage sites available for size 𝑋𝑖 if larger sizes were not present, and 𝑂1(𝑋𝑖, 1) is the affinity factor 

related to particle size 𝑋𝑖 or to the other larger particle sizes 𝑋𝑝 (p = 0 … i-1), as defined previously, 

which is also independent of the presence of other particle sizes.  

Using the same approach as above, the one-way model competition model has the same two 

terms as the single size model, with the addition of the product multiplier.  Each term of the product 

multiplier 𝑈 (𝑋𝑝, 𝑛𝑥𝑝) = [1 − 𝑂1(𝑋𝑝, 1)]
𝑛𝑥𝑝

 is the fraction of breakage sites free of particles of size 

𝑋𝑝 where the power term accounts for the number of particles of this size in the portion. This term is 
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calculated in the same way as for the single size selection model above.  However, here there are many 

larger particle sizes to consider.  The cumulative effect of these is obtained by multiplying their effects 

together.  This reduces the number of available breakage sites for particles of size, 𝑛𝑏(𝑋𝑖).  As an 

example, imagine a mixture of three particle sizes, with 𝑛𝑏(𝑋𝑖) = 5, 10 𝑎𝑛𝑑 20.  . Imagine now that the 

numbers of each are in the portion are 2, 4 and 8 respectively. The number selected of the smallest size 

are compromised by the presence of the larger particles. The terms are evaluated as follows 

1st term 𝑛𝑏(𝑋1) = 20 

2nd term [1 − 𝑂1(𝑋𝑝2, 1)]
𝑛𝑥𝑝2

× [1 − 𝑂1(𝑋𝑝3, 1)]
𝑛𝑥𝑝3

= [1 − 0.1]4 × [1 − 0.05]8 = 0.88 

3rd term [1 − 𝑂1(𝑋𝑝1, 1)]
𝑛𝑥𝑝1

= [1 − 0.2]2 = 0.64 

The number selected is 20 x 0.87 x 0.64=11.2 

This shows that without the presence of the two larger sizes, 20 x 0.64=12.8 particles would have been 

selected.   

The two-way competition model (Eq. 2.5) accommodates the ability of the smaller particles to 

pile, which means piling can compensate for the height advantage of large particles and so improves 

the competitiveness of small particles for occupying breakage sites. Therefore, for any size class 𝑋𝑖, the 

number of selected particles as a function of particle number  𝑛𝑠(𝑋𝑖, 𝑛𝑥𝑖) in a mixture of j classes of 

particle sizes (j = 1…k) can be described as: 

𝑛𝑠(𝑋𝑖 , 𝑛𝑥𝑖) = 𝑛𝑏(𝑋𝑖) [𝑛𝑥𝑖
ln (1 − 𝑂1(𝑋𝑖, 1)

∑ [𝑛𝑋𝑗 ln (1 − 𝑂1(𝑋𝑗, 1))]
𝑘
𝑗=1

] [1 −∏(1 − 𝑂1(𝑋𝑗, 1))
𝑛𝑥𝑗

𝑘

𝑗=1

] (2.5)  

where 𝑛𝑏(𝑋𝑖) is the number of breakage sites available for size class 𝑋𝑖, and 𝑂1(𝑋𝑖, 1) is the affinity 

factor related to size class 𝑋𝑖 or to the other available size classes, 𝑋𝑗 (j = 1… k). The term in the middle 

bracket is the fraction of breakage sites free of particles that are able to be occupied by particles of size 

𝑋𝑖. The natural logarithm terms are the inverse of the critical particle numbers 1/𝑛𝑐 , 𝑋𝑖 and 1/𝑛𝑐 , 𝑋𝑗. The 

last term is the total fraction of breakage sites occupied by the particle mixture and will equal to 1 for a 

normal mouthful of food as there will be enough food particles to saturate the occlusal area. Van der 
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Glas et al. (1992) then went on to show the similitude between the power law model of Eq. 2.2 and the 

two-way competition model of Eq. 2.5. The one-way model, they concluded, is incompatible with 

experimental evidence.  However, in a more recent work including experimental results, van der Glas 

et al. (2018) show that the one-way model is most appropriate for small numbers of particles at the 

beginning of mastication, while the two-way model is better once large numbers of smaller particles 

accumulate. 

2.5.3 Experimental validation for the selection models 

 
For the selection model for single-sized particles in Eq.2.3, the model validation required the data from 

one-chew experiments with many particles of a specific size. Subjects performed a single chewing cycle 

and expectorated the particles, which were then transferred to a single sieve on which undamaged and 

large fragments of particles were retained. The contents from the sieve was then emptied on a sheet of 

smooth paper where damaged and undamaged particles were separated by visual inspection and the 

weight of the non-damaged (un-selected) particles was determined (van der Glas et al., 1992, 2018). 

The data acquisition is a time-consuming process as for each size of particles inspected, they 

must be repeated from six up to 50 times to obtain a reliable estimate of the number of particles selected. 

Due to the time-consuming nature of the single chew experiments, they were often performed in only 

several subjects; four subjects in van der Glas et al. (1992) and five subjects in van der Glas et al. (2018). 

Additionally, for small-sized particles of 1.2 mm that require a number of particles greater than 2000 to 

saturate the breakage sites as observed in van der Glas et al. (2018), this would take days to complete 

the experiment.  The method was acceptable for the test food Optosil® used in their study as it avoids 

the risk of degradation but would not be ideal for other ‘particle-like’ real foods such as rice or peanuts 

due to a risk of spoilage. Moreover, despite repeating the experiments multiple times, the data obtained 

would still be questionable as ‘damaged particles’ may have different meanings to different individuals 

and could raise question such as ‘Does this damage comes from chewing or preparation defects?’ 

As the selection models for particles in mixtures (Eq.2.4 and Eq.2.5) contain the 𝑛𝑏(𝑋𝑖) and 

𝑂1(𝑋𝑖, 1) terms as model inputs, single chew experiments will still be required to determine the input 
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variables. For each particle size studied, a relationship between the number of selected particles versus 

the number of offered particles is plotted and  𝑛𝑏(𝑋𝑖) and 𝑂1(𝑋𝑖, 1) are obtained by curve fitting with 

a selection model for single-sized particles (Fig. 2-5). If 𝑋 refers to the size of any particle, the number 

of breakage sites as a function of size 𝑛𝑏(𝑋), against 𝑋 relationship for each subject can be adequately 

described by a power-law function (Eq.2.6) after curve fitting. Hence, 

𝑛𝑏(𝑋) = 𝑘. 𝑋
−𝑚 (2.6)  

where k and m are the fitted constants.  

Similarly, the relationship between the affinity value and particle size can also be described by a power-

law function (Gray-Stuart, 2016), hence 

𝑂1(𝑋, 1) = 𝑝. 𝑋
𝑞 (2.7)  

where the multiplication factor p and exponent q are the fitted constants. 

2.5.3 Number of breakage sites and affinity factor 

The number of breakage sites becomes smaller the larger the particle size, and the absolute value of the 

exponent g in the power function of 𝑛𝑏(𝑋)- 𝑋 relationship found with Optosil®  particles was, in 

general, lower than two (van der Glas et al., 2018). A value higher than two of the exponent g would 

indicate that the initiation of breakage would be contributed by a combination of projected area (X2) of 

individual particles and a degree of piling. 

Although a mixture of small and large particles was used in the study, theoretically as indicated 

in the assumption of the two-way competition model, small particles should pile, and this would mean 

in some subjects, the exponent 𝑔 should be greater than 2. In contrast, the finding that the exponent 𝑔 

can take values lower than 2 suggests that small particles could slide along each other during further 

jaw-closing hence only a monolayer of particles is formed at the initiation of breakage (van der Glas et 

al., 2018). Additionally, a value of exponent g, smaller than 2 could also suggest that only specific tooth 

areas may be involved in the breakage of small particles, whereas every location on the teeth is suitable 

for breakage of large particles (van der Glas et al., 2018). Van der Glas et al. (2018) also indicated that 

the piling of small-sized particles might occur if the particle size is smaller than the buccolingual 

dimensions of the premolar or molar teeth. A stack of piled particles is normally composed of two to 

six layers of a small particle with a size of 1 to 3 mm (van der Bilt et al., 1991).  
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Fig. 2-5: A typical plot of number of selected particles vs number of offered particles. The data (red circle 

markers) was obtained from a single chew experiment performed on Subject 1 in van der glas et al. 

(2018) for particle size of 1.7 mm. The data is then fitted with Eq.2.3 to obtain the number of breakage 

sites nb and the affinity factor, O1. 

If the 𝑋−𝑔 term in Eq. (2.6) describes the projected area of particles, the multiplication factor 

𝑘 of the equation would be the projected area of the occlusal teeth. Hence, the number of breakage sites 

is the ratio of the projected occlusal area to the projected area of a food particle. If this concept is true, 

the number of breakage sites can be estimated by only measuring the projected occlusal and the particle 

area, which is significantly faster compared to performing the traditionally single chew experiments. 

To date, this idea has not been explored. 

2.5.4 Food locking function 

 
During selection, the tongue collects and transports food particles towards the space between 

antagonistic posterior teeth. Selected particles have the tendency to escape from the space between 

antagonistic teeth, however it has been shown by video-fluoroscopy that a cheek and the tongue are 

responsible for pushing particles back between the teeth, therefore keeping the particles locked up 

(Zhang et al., 2019). Thus, other than the effectiveness of transporting particles to the teeth, the selection 
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process during mastication is also dependent on the ability to lock up particles (food locking function) 

between the antagonistic posterior teeth, cheek, and tongue during the closing phase of a chewing cycle.  

A recent study by Zhang et al. (2019) measured the food locking function of 20 subjects by 

serving an artificial food that undergoes plastic deformation rather than breakage (spherical gum bolus) 

so that it will always be selected by the subject. The food locking function was obtained by measuring 

the width-length ratio of the gum bolus before and after chewing through image analysis. They found 

that when the tongue, cheek and teeth were involved in the food locking function, the spherical gum 

bolus becomes elongated following a number of chewing cycles (Fig. 2-6 left).  However, when the 

tongue was kept away from the bolus while chewing, the shape in the plane of scanning was in general, 

circular (Fig. 2-6 right). The results from the study shows the importance of the tongue to ensure the 

locking of particles during selection. 

 

Fig. 2-6: Change in shape of a spherical gum bolus from Zhang et al. (2019). Left shows the shape with a 

natural tongue function whereas the right side is when the tongue was kept away from the bolus.  

Furthermore, when investigating the relationship between the food locking function and 

chewing efficiency, they found that subjects who had ‘good’ chewing efficiency had a significant 

quadratic U-shaped relationship with the food locking function. The results as suggested by the authors 

might be an interplay of the two functions of the tongue to manipulate particles during selection (affinity 

factor); first, the collection of food particles and transport towards the occlusal area, and second, the 
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food locking of particles in the space between antagonistic teeth and the cheek. The findings from the 

study by Zhang et al. (2019) signify an area where the selection model developed by van der Glas et al. 

(1992) can be improved.   

 

2.5.5 Breakage functions  

 
After selection, particles are broken between the teeth into smaller fragments of variable number and 

size (breakage). The breakage functions used in the literature for chewing are based on fitting a weight 

distribution data from a sieving analysis. The breakage function in the chewing model of Lucas & Luke 

(1983b) applied to carrots was estimated from the weight distribution of broken particles after a single 

chew. Two equations were used which produced good fit to the weight distribution data. For an initial 

particle size of 𝑋𝑂, the percentage of particles undersize by volume can be plotted for different sieve 

size 𝑋𝑖 and can be given by 

 

𝐵(𝑋𝑖 , 𝑋𝑜) = 𝑏(
𝑋𝑖
𝑋𝑜
)𝑟 

 

                                     (2.8) 

   

where 𝐵(𝑋𝑖, 𝑋𝑜) is the weight or volume fraction of particles of size 𝑋𝑜 which break into particles 

smaller than size class 𝑋𝑖, and r and b are the fitted variables. A larger value of r and a smaller value of 

b in Eq.2.8 would show less fragmentation. For example an r value of 0.4 would have a higher 

proportion of smaller particles compared to r = 0.8 (constant b value of 1) as shown in Fig. 2-7a, but a 

b value of 1.0 with a constant r value of 1 had a higher proportion of smaller particles compared to a b 

value of 0.8 (Fig. 2-7b).  

and 

 

𝐵(𝑋𝑖 , 𝑋𝑜) = 1 − 𝑠(1 −
𝑋𝑖
𝑋𝑜
)𝑟 

 

                                     (2.9) 

   

where s and r are constants. Both s and r indicate the degree of fragmentation of the selected particle.  
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The difference between Eq.2.8 and Eq.2.9 is that Eq.2.8 has no mechanistic basis whereas 

Eq.2.9 was theoretically derived for a random single breakage of a solid particle from Gaudin and Meloy 

(1962). One of the assumptions behind the equation of Gaudin and Meloy (1962) is isotropy, therefore 

to use the equation; the food material should have uniform properties when force is applied in all 

directions. However, Lucas & Luke (1983b) indicated that it is possible that food particles are always 

randomly orientated on the teeth during chewing (thus, force is always applied in the same direction) 

hence the question if the food material is isotropic or anisotropic is not entirely critical.   

Austin (1971) improved the theoretical breakage function of Gaudin and Meloy (1962) as 

described in Eq. 2.8. Van der Glas et al., (1987) implemented the improved equation to fit the 

experimental values for Optosil® after a single chew for four subjects and can be given as 

 

𝐵(𝑋𝑖 , 𝑋𝑜) = 1 − (1 + 𝑟
𝑋𝑖
𝑋𝑜
) . (1 −

𝑋𝑖
𝑋𝑜
)𝑟 

 

(2.10) 

In contrast to Eq. 2.8, a larger r value in Eq. 2.9 and Eq. 2.10 would indicate higher degree of 

fragmentation, thus higher proportion of small daughter particles are produced for r = 0.8 compared to 

r = 0.4 as shown in Fig. 2-7c and Fig. 2-7e respectively.  Fig. 2-7d shows the effect of the s value when 

r is constant in Eq. 2.9 where a larger s value of 1 has a smaller proportion of smaller particles compared 

to an s value of 0.8. 

Eq. 2.10 also assumes isotropy, which was well-suited with the type of test food material, 

Optosil® used in the study in van der Glas et al. (1987). They found that the degree of fragmentation, 

r is dependent upon the initial particle size before chewing. A maximum value of r was found for 

particle sizes between 3.4 and 4.8 mm. Large particles which are locked between the teeth will most 

likely stick out, therefore a huge portion of the particles will not be subjected to breakage. Medium 

sized particles may possess large values of r as they will be cleaved more frequently by the teeth. 

Particles which are smaller with respect to the cusp size of the post-canine teeth are not likely to be 

cleaved and are most likely to squeeze between the antagonistic tooth surfaces without fragmentation 

(van der Glas et al., 1987).  
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When modelling the chewing process of brown rice, Gray-Stuart (2016) modified the improved 

Austin (1971) breakage function to include a pasted fraction term.  When measuring the PSD of rice 

bolus for a range of chews using Mastersizer and sieve analysis, he found that the size reduction 

mechanism of rice follows a ‘cleave and paste mechanism’ in which selected particles are cleaved into 

few large particles and the remaining fraction pasted into small particles. Hence, if the pasted fraction 

is a constant, the breakage function can be described as 

 

𝐵(𝑋𝑖 , 𝑋𝑜) = (1 − 𝑃) ∗ (1 − (1 + 𝑟
𝑋𝑖
𝑋𝑜
) . (1 −

𝑋𝑖
𝑋𝑜
)𝑟 

 

(2.11) 

   

where P is the pasted fraction.  

 

Fig. 2-7: Breakage function predictions example with varying input parameters. a. prediction with 

varying r values and a constant b value in Eq.2.8.  b, prediction with varying b values and  a constant r 

value in Eq.2.8. c, prediction with varying r values and a constant s value in Eq.2.9. d, prediction with 

varying s values and a constant r value in Eq.2.9 e, prediction with varying r values in Eq.2.10. 

2.8 2.8 

2.9 2.9 

2.10 
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Peanuts are another food commonly used to fit a breakage function. For a single peanut particle, 

Gray-Stuart (2016) found that 17% of fragments of a single occluded particle passed a 0.355 mm sieve, 

which suggested that peanuts produce a bimodal distribution. The size distribution of the occluded 

peanut was fitted by a mixed breakage function 

𝐵(𝑋𝑖, 𝑋𝑜) = 𝑌 ∗ (1 − (1 + 𝑟1
𝑋𝑖
𝑋𝑜
) . (1 −

𝑋𝑖
𝑋𝑜
)𝑟1  ) ∗ (1 − 𝑌) ∗ (1 − (1 + 𝑟2

𝑋𝑖
𝑋𝑜
) . (1 −

𝑋𝑖
𝑋𝑜
)𝑟2  ) 

 

 

(2.12) 

   

where 𝑌 is the portion of particle 𝑋𝑜 being distributed with fragmentation variable 𝑟1 and  

1 − 𝑌 of 𝑋𝑜 are distributed with 𝑟2. 

2.5.6 Matrix models 

In the literature, the selection and breakage functions were applied in matrices to predict the PSD during 

mastication. Van der Bilt et al. (1987) adapted the matrix methods from Broadbent & Callcott (1956) 

and Berenbaum (1961) which were developed for industrial comminution processes to predict the PSD 

during mastication. The PSD after one chewing cycle, p, can be predicted from the product of the 

comminution matrix, A, and the feed distribution, f. Therefore, 

𝑝 = 𝐴𝑓 (2.13) 

The comminution matrix, A is expressed in terms of the selection, S and breakage, B matrices 

respectively, 

𝐴 = [𝐵𝑆 + (𝐼 − 𝑆)] (2.14) 

where the term B.S represents the breakage of the selected particles, I-S refers to the portion of non-

selected particles and I is the unit matrix.  

In the study, the selection process was simulated using the power law model (Eq. 2.2), where the 

variables v and w were not obtained experimentally but rather determined from fitting the 

experimentally PSD data with the communition model using a least squares method. The selection 

matrix, S, was constructed as follows: 

𝑆 = 𝑣 (

𝑥1
𝑤

𝑥2
𝑤

𝑥3
𝑤

) (2.15) 
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where in an experiment with three sieves, x1, x2 and x3 are the average sizes of particles on successive 

sieves.   

The breakage matrix, B was constructed as follows: 

𝐵 = (

𝑏1,1 𝑏1,2 = 0 𝑏1,3 = 0

𝑏2,1 𝑏2,2 𝑏2,3 = 0

𝑏3,1 𝑏3,2 𝑏3,3 = 1
) (2.16) 

 

where 𝑏1,1, 𝑏2,1 and 𝑏3,1 are the fractions of daughter particles originating from the particles on the 

top sieve, 𝑏2,2 and 𝑏3,2 are the fractions of fragments from the second sieve and 𝑏3,3 is the fraction on 

the third sieve.  

The matrix A is only related to one chewing cycle. However, p can also be calculated at any chewing 

number by multiplying f by the matrix A, N times:  

𝑝 = 𝐴𝑁𝑓 2.17 

The matrix model developed by van der Bilt et al. (1987) was able to predict the PSD of a bolus 

of Optosil® particles, where a good agreement was obtained between the experimental and model 

PSDs. However, the main weakness of this model is that it does not take into account the losses of 

particles during chewing (Gray-Stuart, 2016).  

2.4.7 Population balance models 

 
The extension to the matrix model to predict the PSD of the particles in the bolus during mastication 

was the study by Gray-Stuart (2016) where he developed a particle population balance model to track 

the particle-phase within the mouth. The population balance model was developed to define the 

available surface area necessary for the rate processes that occur in the mouth such as absorption, 

dissolution and melting. The balance also defines particle size and when particles are occluded.  

The population balance is a discrete approach. Particles are labelled as ‘die’ if they are selected 

whereby when they give birth to new particles, they are called ‘daughter’ particles. When particles are 

broken below a lower limit threshold size they are not tracked, but their volumes are summed together. 

This is deemed as the suspended solids in the liquid phase.  
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Fig. 2-8: Discretised population balance during mastication from Gray-Stuart (2016). 

 
The population can be described mathematically by an array, Vp, where the elements are individual 

particles with the same volume, Vi . If particles less than the threshold size are created from breakage, 

their volume is summed and apportioned to the liquid-phase.  

where  𝑉𝑝

= 

[
 
 
 
 
 
 
 
𝑉1
𝑉2
⋮

𝑉𝑖−1
𝑉𝑖
𝑉𝑖+1
⋮

𝑉𝑚𝑎𝑥]
 
 
 
 
 
 
 
 

The particles in 𝑉𝑝 are sorted into size classes, 𝑖 where 𝑖 ranges from the minimum threshold size to the 

maximum size class used to describe the PSD. The PSD is given by the array 𝑁𝑘 , whose elements are 

the number of particles in each size class, and 𝑘, denotes the chew number.  

𝑁𝑘

= 

[
 
 
 
 
 
 
 
𝑛1,𝑘
𝑛2,𝑘
⋮

𝑛𝑖−1,𝑘
𝑛𝑖,𝑘
𝑛𝑖+1,𝑘
⋮

𝑛𝑚𝑎𝑥,𝑘]
 
 
 
 
 
 
 
 

During chewing all particles in the same size class are assumed to have the same chance of 

being selected. This selection chance is calculated from either the size dependent power law (Eq. 2.2) 

or the one-way (Eq. 2.4) and two-way competition selection model (Eq. 2.5). From the array of particles 
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𝑉𝑝, another array is generated with the corresponding chance of selection for each particle 𝑉𝑖. A particle 

is selected when a random number (generated from a random distribution (rand function, Matlab)) is 

less than the theoretical selection chance.  

These selected particles ‘die’ and undergo breakage producing daughter particles. Breakage is 

then approximated by a continuous breakage function B (X, Xi) of ‘cumulative fraction less than’ where 

the particle undergoing breakage has characteristic dimension Xi and the function gives the cumulative 

fraction less than size X. Common breakage functions used in mastication are Eq. 2.8, 2.9 and 2.10. To 

discretize this, the volume fraction falling within the bin of a single size class is calculated by finding 

the difference of B(Xj,Xi)- B(Xj-1,Xi) where the subscript j refers to the size classes from j=1 to j=i, after 

occlusion of a particle of size Xi. For a particle in size class Xi, the volume of births in size class Xj is 

given by 

𝑉𝑜𝑙𝑢𝑚𝑒𝑏𝑖𝑟𝑡ℎ𝑠,𝑗,𝑖 = 𝑉𝑖(𝐵(𝑋𝑗,𝑋𝑖) − 𝐵(𝑋𝐽−1,𝑋𝑖))  2.18 

For each j from j=1 to j=max, the array of birth volume for all size classes for particle Xi is given by, 

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒,𝑏𝑖𝑟𝑡ℎ𝑠= 𝑉𝑏𝑖𝑟𝑡ℎ𝑠 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑ 𝐵(𝑋1, 𝑋𝑖) − 𝐵(0, 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1

∑ 𝐵(𝑋2, 𝑋𝑖) − 𝐵(𝑋1, 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1

⋮

∑ 𝐵(𝑋𝑗−1, 𝑋𝑖) − 𝐵(𝑋𝑗−2, 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1

∑ 𝐵(𝑋𝑗 , 𝑋𝑖) − 𝐵(𝑋𝑗−1, 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1

∑ 𝐵(𝑋𝑗+1, 𝑋𝑖) − 𝐵(𝑋𝑗 , 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1

⋮

∑ 𝐵(𝑋𝑚𝑎𝑥, 𝑋𝑖) − 𝐵(𝑋𝑚𝑎𝑥−1, 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.19 

 

This matrix allows the number of birth particles in each size class to be calculated. The breakage process 

described by Eq. 2.19 above is applied to all the selected particles. The newly created particles are 

combined with the unselected particles and a new array, Vp, is obtained.  
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2.6 Application of the chewing models to aroma release 
 
During mastication, solid food particles are reduced into smaller fragments which increases the surface 

area. The increase in surface area increases the rate of release of volatiles from foods, and subsequently 

affects the profile of volatiles in the nasal cavity. Although mastication plays an important role in flavor 

release of solid foods, very few mathematical models have been developed which couple both 

mastication and flavor release process in the literature. This is not surprising given the complexity of 

the mastication process (Hills & Harrison, 1995).  

2.6.1 Two-film theory to describe flavour release 

 
Some of the pioneering work was undertaken in the late 1990s by Hills & Harrison (1995, 1996) 

and Harrison et al. (1998).  Hills & Harrison (1995) developed a model describing the flavor release of 

a perfectly spherical boiled sweet in the mouth. A conceptual model was made which describes the 

transportation of volatiles from the food product to the gaseous phase (Fig. 2-9). 

 

Fig. 2-9: Conceptual model showing the transfer of flavour release from a solid food from Hills and 

Harrison (1995). c denotes concentration, v, volume, and subscripts g, s and f refers to gas, saliva and 

food respectively.  

 

In their model, the following assumptions were made: 

1. Chemical equilibrium in the food matrix was assumed, as the dissociation rate constant is 

unlikely to be the rate-limiting step controlling flavor release. 



36 

 

2. The physiology of perception was ignored where the taste perception was assumed to be 

proportional to the concentration of flavor in saliva and aroma perception was proportional to 

the concentration of flavor in gas phase.  

3. Interfacial mass transfer of flavor across the food/saliva and/or saliva/air interfaces is the rate 

limiting step controlling flavor release as mastication removes diffusion gradients and 

generates fresh interfaces.   

A two-layer stagnant film theory was used to describe flavor release in their model (Fig. 2-10). It 

was assumed that all regions further from the layer are well stirred, and therefore the composition will 

be uniform. Across the film, transport takes place by diffusion and the concentration gradient across the 

laminar layer is assumed to be linear. The non-equilibrium concentration difference for volatiles 

between the food product and saliva or saliva and air phase in the mouth is the driving force for flavour 

release across the interface. Thus, the rate of mass transfer across the interface is given by 

𝑑𝑀

𝑑𝑡
=
𝐷

𝐿𝑠
𝐴(𝑡)[𝑐𝑠

𝑖(𝑡) − 𝑐𝑠(𝑡)] (2.20) 

where M is the total mass of volatile which diffuses across the interface, D is the diffusion constant, 

A(t) is the interface surface area, 𝐿𝑠 is the laminar thickness, and 𝑐𝑠
𝑖(𝑡) and 𝑐𝑠(𝑡) are the concentrations 

of volatile at interface and the bulk region, respectively.   

The predictions derived from the above theory were compared against experimental results in 

vitro and in vivo.  In vitro, the predictions were compared to the change in dye concentration in water 

after a single coloured boiled sweet was placed inside a beaker filled with water. The change in dye 

concentration in the liquid phase was measured using a spectrometer, where a small sample of solution 

was removed from the beaker at regular time intervals. The normalized absorbance vs time curve was 

assumed to be equivalent to the flavour concentration vs time curve. The change in mass of the boiled 

sweet over time was measured in vivo where the results were also compared against the model 

predictions. The boiled sweet which was sucked in the mouth, was removed at regular time intervals 

and weighed. The change in the mass of sweet was assumed to be directly proportional to the flavour 

release. Other input parameters such as Ksf were determined by assuming that the solution at the 
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interface was saturated with sugar (dye). The initial concentration of dye in the sweet, Cf was determined 

by dissolving a single sweet in a fixed volume of distilled water.  

The study by Hills and Harrison (1995) highlighted the importance of modelling the changes 

in surface area between the product of saliva by suggesting a multi-fragmentation theory to represent 

the chewing of the boiled sweet (assuming it was a cube). However, the theory may not be useful for 

real food products which do not always produce cubes where the area of fragments after each bite is 

essentially an increase by a factor of 2 (Doyennette et al., 2014).  

 

 

 
Fig. 2-10: Two-layer stagnant film theory from Hills and Harrison (1995). Solid vertical line is the 

interface. In the theory it was assumed there exists the surface layer of thickness Ls adjacent to the 

interface (the vertical lines). The volatile concentration can then be estimated by a linear concentration 

gradient across the stagnant layer (dotted) line, where the volatiles diffuse into the uniform bulk saliva 

concentration, cs.  

2.6.2 Flavour release models of solid foods 

 
Although the model developed by Hills and Harrison (1995), as described above was incomplete as it 

did account for other physiological parameters (e.g. breathing) and was not validated with in vivo data, 

the model provided a framework for subsequent modelling studies related to flavour release from solid 

foods. Using the same theory of flavour release and combining it with heat transport, a mathematical 
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model was developed to describe the flavour release from gelatin-sucrose gels (Harrison & Hills, 1996). 

The model was found to give good agreement with in vitro release experiments using gelatin gels 

containing sucrose and dye.  

The same group extended the flavour release model by incorporating a mastication model to 

generate PSDs after each chew (Harrison et al., 1998). The mastication model includes the selection 

and breakage functions which were described by a power law relationship (e.g. Eq. 2.2). If a parent 

particle size is y and the fragment size is x, the percentage of particles below size y after the nth chew is 

given by 

𝑄𝑛(𝑦) = ∫ 𝑃𝑛−1(𝑥)𝐵(𝑦, 𝑥)𝑆(𝑥)𝑑𝑥 + ∫ 𝑃𝑛−1(𝑥)𝑑𝑥
𝑦

0

∞

𝑦

(2.32) 

where 𝑃𝑛−1(𝑥) is the percentage of the total volume of size x to x + dx before the nth chew, and the 

second term on the right-hand side refers to the percentage of particles that exist below size y in the 

ingested feed particles before the nth chew.  

The percentage of particles of size x to x + dx before the (n + 1)th chew, 𝑃𝑛(𝑥)𝑑𝑥 is given by 

𝑃𝑛(𝑥) =
𝑑𝑄𝑛(𝑥)

𝑑𝑥
(2.33) 

The integrals in Eq. 2.32 were numerically solved to generate values of 𝑄𝑛(𝑥). 𝑃𝑛(𝑥) were then 

obtained by solving Eq. 2.33 using a finite difference method. The PSDs which were calculated using 

Eq. 2.33 were then used to calculate the surface area of the food assuming all fragments produced during 

mastication are spherical. The model was able to predict the concentrations of flavour in the gas phase 

of the mouth and sensitivity analysis of the model shows the concentration was less sensitive to the 

chewing frequency and salivary flow rate but was dependent on the breakage function of the food and 

mass transfer coefficient. Despite the extension made, the model did not include the effect of breathing 

and was not validated against in vivo experimental data.  

Wright & Hills (2003) and Wright et al. (2003) took a different approach to model the 

mastication process during flavour release of jellied sweets in the mouth by fitting a Pearson Type IV 

probability distribution to the subject’s electromyography (EMG) and surface area data. The model 

simulation produced the same trend as the sensory time-intensity (TI) data of the subjects. However, 
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the authors acknowledge that it needs to be compared against the actual headspace or saliva flavour 

concentrations to really test the model. Additionally, the model did not take the effect of breathing into 

account.  

The most comprehensive model that describes flavour release of solid food during mastication 

is the one developed by Doyennette et al., (2014) for flavour release from cheese. Fig. 2-11 shows a 

conceptual model, which describes the mastication process of the model. The process starts with the 

introduction of food in the mouth, the intra-oral manipulation of the product (chewing, swallowing (e.g. 

contraction and relaxation)) and the release after mastication is finished (resting).  Usually, the intra-

oral manipulation phase only lasts until the first swallow, however, for some products (e.g. firm 

products), it may need more swallows. The swallowing step includes contractions of the oral cavity and 

pharynx which occur concomitantly, which lead to the expulsion of air and product, followed by 

relaxation and filling with fresh air.  In each swallowing step, a small part of the liquid bolus is assumed 

to be deposited on the pharyngeal walls. If residual solids of the bolus are still present in the mouth, 

they will be chewed again and mixed with saliva to form a new bolus for swallowing.  

The model was the most complex one to date as it included all physiological compartments that 

are involved in flavour release. Additionally, the model also included the physiological aspect of 

breathing and takes aroma persistence (release from lubricated mucosa) into account, which was not 

included in previous models describing flavour release of solid foods. Two aroma compounds were 

tracked; 2-nonanone and ethyl propanoate which exhibit different persistence behaviour (2-nonanone 

interacts with the lubricated mucosa in the nasal cavity, oral cavity and pharynx, causing a higher release 

post swallowing). Results from the study showed that the model predictions (relative concentration of 

aroma compound in the nasal cavity) were in good agreement with the in vivo experimental data of ten 

subjects, which was measured using Atmospheric-Pressure Chemical Ionisation-Mass Spectrometry 

(APCI-MS). A sensitivity analysis of the model showed that the product dissolution rate in the mouth, 

the mass transfer coefficient of aroma compound in the bolus and the air-bolus contact area had a 

significant positive impact on the release intensity. The respiratory frequency on the other hand had a 

strong negative effect on the aroma concentration by increasing the rate of removal of aroma 
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compounds. Additionally, it was also found that the rate of saliva addition in the bolus and the 

velopharynx opening had a major influence on the overall kinetics of aroma release. 

 

Fig. 2-11: Conceptual model of the steps involved during mastication of a solid food product from 

Doyennette et al (2014) 

The weakness of the model is the strong simplifying assumptions made to describe the 

mastication process. The authors acknowledge it was challenging to predict the contact area between 

the solid product and liquid bolus due to the type of food used in the study (cheese) which becomes 

pasty during mastication. Hence, it was assumed that rate of change of contact area between the solid 

product and liquid bolus evolves linearly over time. This highlights an area of weakness of the model 

which can be improved by coupling with the selection and breakage models to predict the bolus PSD. 

However, characterising the bolus PSD data for model validation might prove a challenge.  

2.7 Chapter conclusion  

The first part of this review covered the main processes involved during mastication. To help visualise 

the main steps involved during chewing, several researchers have developed conceptual models (Lucas 

et al., 2002; Hiemae, 2004; Gray-Stuart, 2016). The most comprehensive model was the one developed 

by Gray-Stuart, (2016) where the model integrates food breakdown, mixing and testing of the food 

properties, which is more closely matched to the chewing process in real life. Understanding the 

chewing process will not be complete without including a review on the role of saliva as it plays an 

important role to bind food particles for bolus formation.  
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Mastication has been shown to affect digestion and flavour release as the reduction of food 

particles increases the surface area available for enzymatic action and the release of volatiles. Current 

studies relating mastication and digestion were mostly focused on carbohydrate-based foods (e.g. white 

rice) which is not surprising given the abundance of salivary amylase in the mouth. Studies have shown 

that the total glycaemic response was lower when chewed faster due to the presence of more large 

particles in the bolus (Ranawana et al., 2010, 2014). In addition, investigation on the role of mastication 

on aroma release were mostly focused on performing in vitro studies due to the challenge of 

characterising the bolus PSD in vivo which is laborious and time consuming. Mastication has been 

shown to affect in vivo aroma release of cheese (Pionnier et al., 2004) where it was correlated with 

chewing behavior, but again very minimal effort was made to understand the role of the bolus PSD on 

flavour release.  

The review also discusses previous mastication models which were developed in the literature. 

Selection and breakage functions which are commonly used in industrial comminution processes were 

adapted to chewing in previous studies (Lucas & Luke, 1983b; van der Bilt et al., 1987; Gray-Stuart, 

2016). The review first discusses pioneering selection models that were used in the literature, to the 

most comprehensive to date, which were the competitive models developed by van der Glas et al. 

(1992). The weakness of the model is that it requires input parameters which had to be measured from 

experimental data which are labour intensive and time consuming. The experiment involves chewing a 

defined number of food particles until the occlusal area is saturated, where model is then fitted to obtain 

the input parameters. The experiments may work for artificial test food such as Optosil® as used in the 

study but may not work for real foods as it may be challenging to differentiate which particles that are 

selected or not. Therefore, to apply the competitive selection models on real foods, new methods will 

need to be designed to obtain the input parameters. In addition, common breakage models in the 

literature for different type of foods were also described and compared. Previous approaches used to 

predict PSDs such as the matrix and population balance models were also described. 

 Finally, the extension to the chewing models is its application in food design. One way is to 

couple with a flavour release model, as if successful, it can be used to mathematically predict the effect 

of varying food composition, food structure, and mastication behaviour on aroma release (Harrison et 
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al., 1998). Early efforts have been made to include the selection and breakage functions such as in 

Harrison et al., (1998) however, the model was never validated against experimental data. Similarly, 

Wright et al. (2003) included mastication aspects in their model based on electromyography (EMG) 

readings, however the model could only predict the same trend with the sensory time intensity data.  

The model developed by Doyennette et al. (2014) was the most complex one to date as it 

includes the subject’s physiological data (e.g breathing cycle, oral cavity, pharynx and nasal cavity 

volumes, saliva flow rate) and the model was able to be validated against in vivo experimental data. 

Despite this, a strong simplifying assumption was made where the rate of change of surface area was 

assumed to increase linearly with time, which is not the case in real life. This leaves a gap to incorporate 

a validated chewing model to improve the aroma release model developed by Doyennette et al. (2014).  
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Chapter 3  Chewing model development 

Models have been established for the selection and breakdown of particles and changes to the PSD 

during the mastication process (Lucas & Luke, 1983a, 1983b; van der Glas et al., 1992; Prinz & Lucas, 

1997; Gray-Stuart, 2016). In each case, they have been applied to a limited number of food types and 

in some cases, only to model food systems such as Optosil®.  

While several selection and breakage models exist in the literature, only some have been used 

in previous mastication studies. Selection has been fitted by power law functions with respect to PSD 

during mastication of carrots, peanuts and Optosil® (Lucas & Luke, 1983; van der Bilt et al., 1987; 

Prinz & Lucas, 1997). It has been improved to account for both particle size and number by 

incorporating competition rules for occupancy of particle on the teeth before occlusion (van der Glas et 

al., 1992, 2018). The two models, called the one-way and two-way competition models, have been 

validated with Optosil®, but have not been applied to real foods experimental data. Breakage models 

are many and varied, but the most common one is the improved Austin, (1971) theoretical breakage 

function of Gaudin and Meloy (1962), which has been applied for the mastication of Optosil® (van der 

Bilt et al., 1987; van der Glas et al., 1987) and brown rice and peanuts (Gray-Stuart, 2016).  In the 

literature, selection and breakage functions have been applied to matrices (van der Bilt et al. 1987) and 

to a discretised population balance (Gray-Stuart, 2016) to predict the bolus PSD. However, since the 

competitive selection models are a function of particle number, the models need to be discretised, to be 

able to track the number of particles in a specific size class.  

This chapter aims to develop a mechanistic chewing model to predict the PSD of solid food 

bolus based on the selection and breakage processes.  

3.1 Conceptual model 

It is important to first understand the selection and breakage process involving mastication of solid 

foods through a conceptualised diagram. This will form the basis for the implementation of the particle 

size reduction model.  
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3.1.1 Selection and Breakage process – A conceptual model 

The selection and breakage processes involved during mastication of solid food particles are illustrated 

in Fig. 3-1.   

 

Fig. 3-1: Conceptual diagram describing the processes involved during mastication.  

 

During mastication, food particles undergo two separate processes, selection and breakage. 

Selection is the consequence of the tongue and jaw movements positioning particles in the occlusal 

zone before occlusion and on the likelihood of a particle on the occlusal zone being subjected to 

compression and shear during occlusion.  A selected particle is one that is subsequently damaged during 

jaw closure. Some particles present on the occlusal surface could escape damage by flowing away or 

may be positioned such that no forces can be applied for a given molar shape and jaw trajectory. 

Three key selection models have been developed (van der Glas et al. 2018). The power-law 

model, which describes selection and particle size relationship (the larger the particle size, the higher 

the selection chance), has been developed based on the observations found when chewing on labelled 

particles (Lucas & Luke, 1983a; van der Glas et al., 1987). The power-law model has been improved 

to account for both particle size and number by incorporating competition rules for occupancy of 

particles on the teeth before occlusion (van der Glas et al., 1992, 2018). The one-way competition model 

is somewhat similar to the power-law model that it assumes that the large particles will hinder the 
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selection of smaller particles without the reverse occurring. The difference is that selection of particles 

based on the one-way competition model accounts for particle number, where the selection chance is 

also dependent to the surface area of the post-canine teeth (the number of breakage sites). In contrast, 

the two-way competition model assumes that both large and smaller particles can compete equally, 

where smaller particles can pile in the space between antagonistic teeth (forces propagate from one 

particle to another rather than having to be directly between the opposing molar surfaces) and so 

compete with larger ones for the breakage sites (van der Glas et al., 2018). Once selected, particles 

undergo breakage into smaller daughter particles.  

After occlusion, the PSD may be significantly different. The process of size reduction is known 

collectively as breakage which includes a number of mechanisms. For example, the breakage of carrot 

produces a few small particles and two particle fragments being held together by an unbroken bridge of 

tissue (Lucas & Luke, 1983a). Thus, a narrow PSD is to be expected for this specific breakage 

mechanism after several chews. On the other hand, a wider PSD can be expected for the breakage of 

brown rice that follows a cleave and paste breakage mechanism. In this mechanism, several large 

daughter particles are produced and a fraction is pasted into many very small particles that are 

suspended in the liquid phase of the bolus and not further broken down (Gray-Stuart, 2016).  

3.1.2 Model assumptions 

The key assumptions in the model are described below; however, these assumptions will likely change 

as models are adapted to a wider range of foods. 

1. There are no losses of particles. However, the inclusion of particle loss could come later in model 

development. The mechanisms for losses would need to be considered in order to develop 

mathematical methods for how to choose which particles are lost and whether they can region the 

bolus and undergo further breakdown. Flynn (2012) demonstrated that two ‘compartments’ of 

particles existed, with a growing population of residue particles as mastication continues. Some of 

her data suggested that larger lost particles somehow find themselves being broken down later on 

in the chewing process, suggesting a recirculation of particles between the active bolus and residue 
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compartments. The following questions/aspects should be considered in order to include the losses 

of particles in the model. 

a. Are losses dependent on factors such as particle size, bolus volume and food 

properties?  

b. Will losses reduce as saliva and hence bolus cohesion increases?  

c. Mechanisms could include sticking to teeth, solubilisation of particles, washing out, 

sticking to other mouth surfaces etc.  

Apart from the studies by Peyron et al. (2004), Flynn (2012), and Hutchings et al. (2012), no 

structured experimental investigation of food losses and the mechanisms for the low recovery of 

ingested food in expectorated boluses has been completed. Because of this, no attempt was made 

to include losses in this work and therefore the application of the model will be limited to foods that 

incur high solids recovery. 

2. Selection could change with stage of mastication.  

a. During the initial phase of chewing, the number of small particles will be small and not 

piled, therefore larger particles could be preferentially selected according to the one-

way competition model. After a few initial cycles, the number of small particles of 

various sizes will start to build up and could begin to pile, which allows them to 

compete against the large particles for selection (two-way competition model). 

Therefore, the selection function could switch from one-way to two-way competitive 

model after a particular mastication stage. Although this mechanism has been 

suggested (van der Glas et al., 2018), it has not yet been applied in food breakdown 

modelling. 

b. The selection of smaller particles could increase due to cohesion provided by saliva 

which binds particles together. This cohesion effect would be negated when there is a 

lot of saliva or another fluid (a sip of water) where the small particle would more likely 
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be washed away from the occlusal surfaces during a chew. This effect could be partially 

accounted for in the two-way competition model where inter-particle cohesion could 

increase the chances of piling. 

3. Selection is likely to vary between people because of differences in teeth shape, jaw 

trajectories and chewing side preference used for specific foods. Cusps can trap food particles 

in lateral trajectories ensuring better selection chances than if the teeth are flat.  Furthermore, it has 

been shown that chewing was more efficient on the side where there was a greater occlusal area 

(Wilding, 1993). As such it is likely that the constants for selection are likely to vary between people 

and potentially different selection models may be more appropriate.  

4. Breakage could change throughout mastication due to a number of factors. A number of 

factors could change the breakage behaviour of particles undergoing occlusion. Some food 

structures can swell with increasing moisture absorption. Others may become softer or tougher on 

moisture uptake. Moisture may dissolve some of the food components and if structural materials 

are removed, the breakdown rate can be significantly impacted. Similarly, temperature changes can 

occur during mastication. This could change mechanical properties or melt fat-based components 

which impact the breakage properties of the food. To begin with, it is assumed that the breakage 

properties of foods are not changing with time, limiting the model application to systems that are 

around physiological temperature and resist moisture uptake by being high fat or already saturated 

in moisture. 

5. Breakage is likely to vary with jaw trajectory where more grinding lateral motions will apply 

more shear than the mainly compressive loads applied with vertical jaw trajectories. In 

studying the effects of varying chewing trajectories on the breakage function of peanuts using a 

chewing robot, Ng (2018) found that the degree of fragmentation was larger for lateral chewing 

compared to vertical chewing. She postulated that the reason peanuts were broken more in the 

lateral trajectory is due to a higher resultant force from the lateral shear which makes contact with 

a larger area of particles in each chewing cycle. Furthermore, chewing trajectories can also change 

with stages of mastication. Little or no lateral jaw trajectories (bilateral) were observed once the 
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food attains the consistency, homogeneity, and cohesiveness ready to be swallowed for various type 

of foods (Wictoria et al., 1971; Paphangkorakit et al., 2016). Thus, differences in trajectories can 

change with people, meaning breakage functions may be person specific, although some changes 

in trajectory can occur during mastication of a food within a subject, particularly in the early phases 

of mastication. In this work, breakage functions are assumed to not vary with time throughout 

mastication but could vary between individuals who have different chewing behaviour.  

3.2 Model formulation and implementation 

3.2.1 Selection model equations 

The selection model used in previous chewing studies was either the power-law model (Eq 2.2), the 

one-way competition model (Eq 2.4), or the two-way competition model (Eq 2.5). The important 

assumptions behind each model have been described previously in Chapter 2 (see section 2.5.1 & 2.5.2). 

The selection model equations are restated here for clarity. 

Power-law model: 

𝑆 (𝑋�̅�) = 𝑣𝑋�̅�
𝑤

(2.2)  

where 𝑆 (𝑋�̅�) is the selection function (in the range of 0 ≤ 𝑆 (𝑋�̅�) ≤ 1), 𝑋�̅� is the particle size, 

and 𝑣 and 𝑤 are constants.  

One-way competition model: 

𝑛𝑠(𝑋𝑖 , 𝑛𝑥𝑖) = [𝑛𝑏(𝑋𝑖).∏𝑈(𝑋𝑝, 𝑛𝑥𝑝)

𝑖−1

𝑝=0

] [1 − (1 − 𝑂1(𝑋𝑖, 1))
𝑛𝑥𝑖
] (2.4)  

where 𝑛𝑠(𝑋𝑖, 𝑛𝑥𝑖) in the smaller size class (𝑋𝑖) is the number of selected particles as a function of 

number in the presence of p classes of larger particles of sizes (p = 0 … i-1). 𝑈 (𝑋𝑝, 𝑛𝑥𝑝) = 

[1 − 𝑂1(𝑋𝑝, 1)]
𝑛𝑥𝑝

is the fraction of breakage sites free of particles of size 𝑋𝑝 . The term 𝑛𝑏(𝑋𝑖) is the 

number of breakage sites available for size 𝑋𝑖 if larger sizes were not present, and 𝑂1(𝑋𝑖, 1) is the 

affinity factor related to particle size 𝑋𝑖 or to the other larger particle sizes 𝑋𝑝 (p = 0 … i-1).  
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Two-way competition model: 

𝑛𝑠(𝑋𝑖 , 𝑛𝑥𝑖) = 𝑛𝑏(𝑋𝑖) [𝑛𝑥𝑖 .
ln (1 − 𝑂1(𝑋𝑖, 1)

∑ [𝑛𝑋𝑗 ln (1 − 𝑂1(𝑋𝑗, 1))]
𝑘
𝑗=1

] [1 −∏(1 − 𝑂1(𝑋𝑗, 1))
𝑛𝑥𝑗

𝑘

𝑗=1

] (2.5)  

where 𝑛𝑏(𝑋𝑖) is the number of breakage sites available for size class 𝑋𝑖, and 𝑂1(𝑋𝑖, 1) is the 

affinity factor related to size class 𝑋𝑖 or to the other available size classes, 𝑋𝑗 (j = 1… k).  

3.2.1.1 Selection model implementation 

Two input parameters are required to implement the one-way and two-way competition equations as 

described above. This is described below and summarised in Fig. 3-2. 

Input one: Number of particles in each size class 

The first input parameter required for the models is the number of particles that has been assigned to 

each size classes. To obtain a finer scale of scrutiny, a greater number of size classes can be defined, 

sorted into a desired number of size classes, ranging from the minimum size class to the maximum size 

class. This is expressed by the array 

𝑀𝑃 =

[
 
 
 
 
 
 
𝑀𝑚𝑖𝑛
⋮

𝑀𝑗−1
𝑀 𝑗

𝑀𝑗+1
⋮
𝑀𝑚𝑎𝑥]

 
 
 
 
 
 

=

𝑀𝑚𝑖𝑛
⋮

𝑛𝑗−1𝜌𝑝𝑓𝑜𝑜𝑑𝑉𝑗−1
𝑛𝑗𝜌𝑓𝑜𝑜𝑑𝑉𝑗

𝑛𝑗+1𝜌𝑝𝑓𝑜𝑜𝑑𝑉𝑗+1
⋮

𝑛𝑚𝑎𝑥𝜌𝑓𝑜𝑜𝑑𝑉𝑚𝑎𝑥

 

 

where the j counter is distinct from the i counter used in the equations above. 

The number of particles grouped in each size class (𝑛𝑗) is numerically counted from the 

distribution generated above, the volumes summed, and multiplied by density to obtain the mass matrix.   

Input two: Number of breakage sites and affinity factor 

The number of breakage sites are required in both one-way and two-way selection models. 

Traditionally, this is obtained by offering a large number of particles of a particular size until the 

occlusal teeth area is saturated.  This is the maximum number of particles that can be occluded during 

a chew stroke and is called the number of breakage sites. It varies with size to the power of X where 
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𝑛𝑏(𝑋) = 𝑘. 𝑋
−𝑚 (2.6)  

where k and m are the fitted constants.  

The affinity factor, 𝑂1(𝑋, 1), is defined as the fraction of breakage sites which is on average, occupied 

by the first particle that is selected by the teeth (van der Glas et al., 2018). Similarly, the relationship 

between the affinity value and particle size can also be described by a power-law function (Gray-Stuart, 

2016), hence 

𝑂1(𝑋, 1) = 𝑝. 𝑋
𝑞 (2.7)  

where the multiplication factor p and exponent q are the fitted constants. 

 

Selection outcome 

Once all of the model inputs are obtained, it is time to calculate the selection outcome. During occlusion, 

all particles assigned to the same size class are assumed to have the same selection chance (Gray-Stuart, 

2016). Once the theoretical number of selected particles in a size class Xj (𝑛𝑠(𝑋, 𝑛𝑥𝑖)) is obtained, the 

selection chance in a size class can be calculated as 

𝑆(𝑋𝑗) =
𝑛𝑠(𝑋𝑗, 𝑛𝑗)

𝑛𝑗
(3.1) 

where 𝑆(𝑋𝑗) refers to the selection chance in size class 𝑋𝑗. 

where for a mixture of particles following the one-way competition model 

and for a mixture of particles following the two-way competition model 

Each of the particles within each jth size class therefore has 𝑆(𝑋𝑗) chance of being selected.  To 

pick the specific particles that will undergo breakage, each particle is given a random number.  The 

particle is selected if the random number is less than 𝑆(𝑋𝑗). This method is stochastic, so the number 

of particles selected will vary between simulations. 
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Fig. 3-2 Schematic model diagram showing the steps required to implement the one-way and two-way 

competition models. 

3.2.1.2 One-way and two-way competition examples on peanuts data 

To demonstrate the one-way and two-way competition models on real food particles, the PSD of 4 g 

halved peanut bolus from a single subject (Flynn, 2012) was used. The data was presented as mass 

fraction against a series of sieve size classes, which provided the PSD for 4 g portions of peanuts chewed 

for various numbers of chews (1, 2, 4, 6, 8, 10, 15, 20, 25, 30 and 35 chews). A single subject (male, 

age =27 years old) was used with three replicates at each stage of chewing. The raw data which included 

the standard error of the three replicates can be found in Appendix D. Three PSDs representing early (1 

chew), middle (15 chews) and late phases of chewing (30 chews) were obtained. The mass fraction 

versus sieve size class data was converted to particle number versus size class, 𝑋𝑖 and used as inputs to 

the one-way and two-way competition models.   
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Two other parameters are also required, the maximum number of breakage sites for each 

particle size and the affinity factor. The latter of is a size dependent term for selection of each particle 

size, where larger particles have higher affinity factors (van der Glas et al., 1992, 2018).  Because the 

objective here was to demonstrate the mode and differences between the one-way and two-way 

competition selection models, the constants for the number of breakage sites power law model were 

obtained from the results for Subject no. 01 in van der Glas et al. (2018) where k = 216.9, m = 1.94, 

where k is the multiplication factor and m is the exponent in the power function. The affinity factor 

𝑂1(𝑋, 1) for Subject no. 01 in van der Glas et al. (2018) were converted from the critical particle 

number, using the equation below. 

𝑂1(𝑋, 1) = 1 − 𝑒
(− 

1
𝑛𝑐(𝑥)

)
(3.2) 

Eq.2.7 (𝑂1(𝑋, 1) = 𝑝. 𝑋
𝑞) was then used to fit the affinity factors vs particle size (mm) data to 

obtain the p and q constants (where p is the multiplication factor and q is the exponent in the power 

function), which were 0.0038 and 1.94 respectively.  

Fig. 3-3 shows the difference in the volume fraction of selected particles (defined as the sum of 

the volume of particles that are selected divided by the volume of particles in the bolus) whereas Fig. 

3-4 illustrates the difference in the number of selected particles when the one-way and two-way 

selection models were applied to the different PSD’s. In every simulation, the number of particles 

selected is different each time. Therefore, to predict the PSD for any bolus, more than one of simulations 

is required to ensure the average number of particles selected reaches a convergence (e.g. 20 simulations 

from Gray-Stuart (2016)). In Fig. 3-3 and Fig. 3-4, the simulations were repeated 3 times and the results 

of each simulation were shown.  

A clear difference between the one-way and two-way competition models can be observed. The 

results obtained from the model simulations in Fig. 3-3 and Fig. 3-4 were consistent with the 

assumptions of the one-way and two-way competition models developed in van der Glas et al. (1992). 

The number of selected particles for larger particle sizes was higher when the one-way competition 

model was used because it favours the selection of larger particles because they are selected first 

because of their height advantage. These larger particles will occupy the breakage sites which are not 
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available for smaller particles (van der Glas et al., 1992, 2018). Smaller particles can still be selected 

during jaw closing but have less area available to them.  The smallest particles have the least area and 

therefore the least chance of selection (van der Glas et al., 1992, 2018). On the other hand, the two-way 

competition model recognises that the increase of the number of smaller particles, particularly later in 

the chew cycle, can cause piling of small particles which can compete with the larger particles (van der 

Glas et al., 1992, 2018).   

Thus, van der Glas et al. (2018) explains that the one-way model is likely to be more applicable 

in the early stages of chewing but that the two-way model is more appropriate in the later stages of 

chewing. This is evident from the results, where the one-way model better selects more large particles 

at 15 and 30 chews (more particles between 2-4 mm selected) in Fig. 3-4, which was the reason why 

the volume fraction of selected particles was higher than when the two-way model was applied. The 

two-way model better selects small particles at 15 and 30 chews where it was evident from the higher 

number of particles less than 1 mm selected, hence the reason why the volume fractions of selected 

particles were much smaller than predicted using the one-way model.  

It was interesting to observe the small difference in the volume fraction of selected particles 

between the two different models at 1 chew (Fig. 3-3). Van der Glas et al. (2018) postulated that because 

of a higher number of large particles in the first initial cycles, the difference between one-way and two-

way model regarding selection of large particles will be small because of a small affinity for small 

particles. Therefore, small particles will not one-way model or hardly two-way model when they are 

initially present in small numbers. Thus, as the large particles were preferentially selected in both 

models during the initial stage of mastication, the results showing the small difference of the volume 

fraction of selected particles in Fig. 3-3 was expected.  
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Fig. 3-3 Volume fraction of particles selected at 1 chew, 15 chews and 30 chews between one-way and two-

way competition models. The simulation was run three times. 
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Fig. 3-4: Examples of one-way and two-way competition model predictions using real peanut bolus PSD data. Black diamond marker represents the real PSD chewed peanuts data 

used as the model input for the selection models. A cumulative percentage number of particles is used here to show selected particles. For instance in a. selected particles make up 

around 10% of the total number of particle from the input data. Red X marker, prediction after one simulation. Black round marker, prediction after the second simulation. Blue 

diamond marker, prediction after the third simulation. a, One-way competition model when implemented on a 1 chew data. b, Two-way competition model when implemented on a 1 

chew data. c, One-way competition model when implemented on a 15 chew data.  d, Two-way competition  model when implemented on a 15 chew data.  e, One-way competition 

model when implemented on a 30 chew data. f, Two-way competition model when implemented on a 30 chew data.
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3.2.1.3 Occlusal area and number of breakage sites 

As described above, both one-way and two-way competition models require the number of breakage 

sites as one of the model inputs. Usually, this is obtained by performing a number of single chew 

experiments. Differing numbers of the same size particle are served, subjects are asked to expectorate 

the bolus after a single chew. The selected particles are then differentiated from the non-selected 

particles by visual inspection. A detailed review of the single chew experiment has been described 

previously in Chapter 2 (section 2.5.3). While this method has been proven successful for an artificial 

test food such as Optosil®, it can be difficult to perform such experiments with real foods in a repeatable 

and consistent manner. Therefore, there is a need to develop a new approach to experimentally measure 

the number of breakage sites of a subject. Because the number of breakage sites is defined as the number 

of particles to saturate on the occlusal area, the number of breakage sites might be able to be determined 

by dividing the projected occlusal area and a projected area of a single food particle. The following 

section describes the procedure to obtain the number of breakage sites from the occlusal area. 

3.2.1.3.1 Measurement of occlusal area using chewing gum 

To test the hypothesis that the number of breakage sites can be determined from the projected occlusal 

and particle area, four subjects were asked to participate in a session where they were asked to chew a 

piece of chewing gum on the preferred side of their mouth to obtain the projected occlusal area by biting 

down on the gum in one action before expectorating it. The chewed gum was then placed on a petri dish 

(diameter: 140 mm) and the image of the chewed gum and the petri dish was scanned using a scanner 

(Epson Perfection, 3490) at 800 dpi. Following scanning, the portion of the chewing gum showing the 

bite marks was cropped (Fig. 3-5) and the projected area was measured through image analysis using 

ImageJ (version 1.52a, National Institutes of Health, USA) to give an approximation of the occlusal 

area.  
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Fig. 3-5: Scanned image of chewing with bite marks (circled in red). The projected area of the occlusal 

area was then measured using ImageJ. 

A single chew calibration experiment was also performed by a single subject to determine the 

suitability of the new fast method. Two different sizes of white rice (21.4 ± 1.2 mm2 and 10.6 ± 0.5 

mm2 projected area) and Orzo pasta (54± 4 mm2 and 29 ± 2 mm2) were used. For each particle size, four 

different number of particles were used: 5, 20, 64, and 128. After the particles were chewed, they were 

transferred into a glass petri-dish where damaged and undamaged particles were separated by visual 

inspection. The number of selected particles vs the number of offered particles was then plotted and the 

number of breakage sites was assumed to be the number of selected particles when the curve started to 

level-off (van der Glas et al. 2018).  

3.2.1.3.2 Occlusal area results 

The total occlusal area (from one side of the mouth (the person’s preferred side)) measured from the 

image analysis for all four subjects ranged from 133.71 mm2 to 241.01 mm2 respectively (Fig. 3-6). The 

results obtained were within the range reported in literature (Sumonsiri et al. 2019). The median of the 

occlusal area, when measured using ImageJ for 40 subjects (15 men and 25 women), was 166.3 mm2 

(Sumonsiri et al., 2019). 
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Fig. 3-6: Projected occlusal area (mm2) measured from the scanned image of the bite marks on a chewing 

gum for four subjects. Dashed line is the median value observed in Sumonsiri et al. (2019). 

The results of the single chew calibration experiments for the single subject is shown in Fig. 

3-7. Fig. 3-7 shows the plot of the number of selected particles vs number of offered particles for two 

types of food (rice and pasta) and sizes (whole and halves).    

 

 

Fig. 3-7: Number of selected particles against the number of offered particles for Whole Orzo (Black X 

marker), Halved Orzo (red  round marker), Whole Rice (blue triangle marker) and Halved Rice (green  

square marker).  The error bar represents the standard deviation of a triplicate measurement. 

 

For all of the food particles tested, it can be observed that the number of selected particles 

increases as the number of offered particles increases until a plateau is reached where the number of 

offered particles is sufficient to saturate the occlusal area. The number of breakage sites is the number 
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of selected particles when it first enters a plateau. The halved rice which was the smallest (10.6 ± 0.5 

mm2) had the most breakage sites of 20 whereas whole Orzo pasta which was the largest (54 ± 4 mm2) 

had the smallest with 10 breakage sites. The number of breakage sites for whole rice and halved Orzo 

pasta was in between with the number of breakage sites of 14 and 13 respectively.  

The results obtained here were consistent with the findings from van der Glas et al. (1992, 

2018) who found that the number of breakage sites increases as the particle size decreases. Using a 

cubic-form of Optosil® particles, the number of breakage site obtained for an edge size of 6.8 mm was 

5.3 compared to 77.6 for an edge size of 1.7 mm (data from Subject no. 01, (van der Glas et al., 2018). 

Particles with a larger projected area (X2) such as for the whole Orzo pasta would not fit on the occlusal 

surface of the teeth, contributing to a smaller number of sites available for breakage. Furthermore, 

smaller particles also can pile at the initiation of breakage, which may explain the higher number of 

breakage sites (van der Glas et al., 2018).  

To assess the viability of using the measured occlusal area to predict the breakage sites the 

number of selected particles was multiplied by the mean projected area of the particle tested and plotted 

against the number of offered particles (Fig. 3-8). The projected occlusal area (mm2) determined from 

the image of the bite marks in the chewing gum was also indicated in the plot for comparison. Results 

showed that the total projected area of the selected particles when the breakage sites were exceeded was 

significantly higher than the measured occlusal area 225 mm for the whole and halved Orzo (540 ± 62.1 

mm2 , 377 ± 34.8 mm2 )  and the whole rice (353.1 mm2 ± 34.03) respectfully. However, the halved rice 

was close to the projected occlusal area of 225 mm2. These results indicate that the fast optical method 

using the chewing gum is perhaps not suited for larger particles that could not fit on the occlusal area 

for breakage.  
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Fig. 3-8: Projected area of selected particles against the number of offered particles for Whole Orzo 

(Black X marker), Halved Orzo (red  round marker), Whole Rice (blue triangle marker) and Halved Rice 

(green  square marker).  Dotted black line shows the projected occlusal area for the particular subject. 

The error bar represents the standard deviation of a triplicate measurement. 

 

The total projected area of the whole Orzo pasta when it started to level off was four times 

greater than the total occlusal area.  This is interesting and indicates that either piling or pinning is 

occurring, where piling is explained above and pinning is the tendency to catch part of a particle while 

a significant overlap remains outside the occlusal plane.  Both would tend to suggest the two-way 

competition model is the most appropriate here.  It also suggests that single chew calibration 

experiments may need to be performed for particles with a large projected area such as the whole pasta. 

Such calibration experiments on larger particles are rapid, e.g., Fig. 3-7 shows that pasta gives 10 

breakage sites from 20 offered particles. The saturation number for small particles is more difficult to 

determine because the numbers are larger.  In the limit, the maximum possible number of particles that 

can saturate the occlusal plane is obtained by dividing the total occlusal area by the mean projected area 

of the particle.  
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3.2.2 Breakage model equations 

The breakage models used in previous mastication studies were the breakage models used by Lucas & 

Luke (1983b) (Eq. 2.8 and Eq. 2.9) for carrots, van der Glas et al. (1987) (Eq. 2.10) for Optosil, Gray-

Stuart (2016), (Eq. 2.11) for rice and peanuts (Eq. 2.12). The breakage functions are reinstated here for 

clarity.  

Lucas & Luke (1983b) an empirical breakage function to carrot: 

For an initial particle size of 𝑋𝑂, the percentage of particles undersize by volume can be plotted for 

different sieve size 𝑋𝑖 and can be given by a power law model 

 

𝐵(𝑋𝑖, 𝑋𝑜) = 𝑏(
𝑋𝑖
𝑋𝑜
)𝑟 

 

                                     (2.8) 

   

where 𝐵(𝑋𝑖, 𝑋𝑜) is the weight or volume fraction of particles of size 𝑋𝑜 which break into particles 

smaller than size class 𝑋𝑖, and r and b are the fitted variables. A larger value of r and a smaller value of 

b in Eq.2.8 would show less fragmentation. 

Lucas & Luke (1983b) a mechanistic breakage function to carrot: 

 

𝐵(𝑋𝑖, 𝑋𝑜) = 1 − 𝑠(1 −
𝑋𝑖
𝑋𝑜
)𝑟 

 

                                     (2.9) 

   

where s and r are constants. Both s and r indicate the degree of fragmentation of the selected particle 

where larger values indicate higher degree of fragmentation. 

Van der Glas et al. (1987) applied the modified Austin (1972) breakage function to Optosil®: 

 

𝐵(𝑋𝑖 , 𝑋𝑜) = 1 − (1 + 𝑟
𝑋𝑖
𝑋𝑜
) . (1 −

𝑋𝑖
𝑋𝑜
)𝑟 

 

(2.10) 

where r is the degree of fragmentation and a larger value indicate higher degree of fragmentation.  
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Gray-Stuart (2016) applied the modified Austin with pasting to brown rice: 

 

 

𝐵(𝑋𝑖 , 𝑋𝑜) = (1 − 𝑃) ∗ (1 − (1 + 𝑟
𝑋𝑖
𝑋𝑜
) . (1 −

𝑋𝑖
𝑋𝑜
)𝑟) 

 

(2.11) 

   

where r is the degree of fragmentation and a larger value indicate higher degree of fragmentation. P is 

the pasted fraction which refers to the volume fraction of daughter particles which are pasted after 

breakage.   

Gray-Stuart (2016) applied the modified Austin to peanuts, which form a bimodal 

distribution after breakage: 

𝐵(𝑋𝑖 , 𝑋𝑜) = 𝑌 ∗ (1 − (1 + 𝑟1
𝑋𝑖
𝑋𝑜
) . (1 −

𝑋𝑖
𝑋𝑜
)𝑟1  ) ∗ (1 − 𝑌) ∗ (1

− (1 + 𝑟2
𝑋𝑖
𝑋𝑜
) . (1 −

𝑋𝑖
𝑋𝑜
)𝑟2  )) 

 

 

(2.12) 

   

where 𝑌 is the portion of particle 𝑋𝑜 being distributed with fragmentation variable 𝑟1 and  

1 − 𝑌 of 𝑋𝑜 are distributed with 𝑟2. Similarly as above, r is the degree of fragmentation and a larger 

value indicate higher degree of fragmentation. 

Other than the breakage functions described above for mastication, there is also potential to explore 

other breakage models particularly the ones used in the milling industry. A summary of some common 

breakage functions can be found in Rozenblat et al. (2012) and a modified version of the breakage 

functions are described in Table 3-1 below. 
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Table 3-1 Summary of breakage models commonly used in milling industry 

Breakage model Application References 

𝐵 = 1 − [1 − (
𝑥
𝑥𝑜
)
𝑎

]

𝑏

 
Milling Harris (1968) 

𝐵 = 1 − 𝑒𝑥𝑝 [−(
𝑥
𝑎
)
𝑏

] 
Impact milling Cheong et al. (2004) 

𝐵 = (
𝑥
𝑎
)
𝑏

 
Jaw milling Schumann (1940) 

𝐵 = 1 − (1 − 𝑡10𝑗)

(
9

𝐷0
𝐷𝑖
−1
)

𝛼

 

Ball milling Tavares (2004) 

𝐵 = ∅(
𝑥

𝑦
)
𝑟

+ (1 − ∅) (
𝑥

𝑦
)
𝛽

 
Ball milling Austin (1972) 

𝐵 = (
𝑥

𝑦
)
𝑞 1

2
(1 + tanh (

𝑥−𝑥′

𝑥′
)) Impact milling Vogel and Peukert (2002) 

 

These breakage models however are applied to scenarios, which could be significantly different 

than the breakage mechanism during a chewing process. For example, in ball milling, breakage is 

achieved through impact and attrition of a rotated hollow cylindrical shell that is partially filled with 

steel balls (Kumar et al., 2018). Impact milling such as the model by Vogel and Peukert (2002) was 

fitted to the PSD of particles which were comminuted from a single particle impact device. In the device, 

single particles are first transported from a vibrational feeder into a disk-shaped rotor. Particles are then 

accelerated in one of four radial channels by the centrifugal force in the rotor. The particles then leave 

the rotor and hit the target ring at an angle of 90o. In their study, minor damages to the particles in the 

form of broken edges or abrasion were also found.  

The breakage mechanisms such as abrasion and attrition as described above cannot be 

compared to chewing due to the vertical and lateral chewing trajectories, which ensures particles are 

either fractured or cut. The teeth used their cusps to fracture food particles if a vertical chewing motion 

is used and the teeth use sharp edges to function as blades to cut up food particles (Xu et al., 2008). 

In addition, as these models have not been applied to mastication studies, they need to be 

validated against in vivo experimental data. To do so, subjects will be required to perform chewing 

experiments where they will be asked to chew a food (or several) food particles once, and the broken 
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particles size distribution will be measured. The single chew experiment, however, is tedious and a 

time-consuming process, as they have to be repeated at least 100 times to obtain a reliable fit with the 

breakage model as shown in the study of van der Bilt et al. (1987) for an 8 mm cube Optosil®. In 

addition, these breakage models often consist of more than two input parameters, which increases the 

degree of freedom for fitting the models to data compared to the modified Austin (1972) model that 

only requires one parameter (r). It is notable that overfitting may lead to irrelevant models (Frank, 

2005). Thus, for the reasons stated above, this work will focus on using the breakage equations pertinent 

to the mastication literature.  

3.2.2.1 Conservation of volume during breakage  

Generating a discrete distribution of daughter particles to fit a continuous breakage function while 

conserving the volume of the occluded particle is a modelling challenge. Experimentally, this is 

obtained by a sieving procedure (Lucas & Luke, 1983a, 1983b; van der Glas et al. 1987; Peyron et al., 

2004), but for modelling, most literature methods apportion daughters to mean bin sizes (Lucas & Luke 

1983b, Gray-Stuart, 2016). After breakage, volume fractions of the parent particle are apportioned to a 

23/2 volume series (√2 particle diameter series) where the size and the number of particles within each 

size class are calculated. Conservation of volume is achieved if the size of particle is somewhere within 

the size class range. But, if the volume apportioned to a size class (after breakage) is less than the 

volume of a minimum sized particle within that size class, then modifications need to be made to ensure 

the distribution generated matches the distribution given by the breakage function.  

Two approaches were developed to address this modelling challenge. The first approach is 

summarised in Fig. 3-9. To generate daughter particles, a breakage model (Eq. 2.8 – 2.12) is applied to 

the selected parent particle, Vi which apportions the total volume of daughter particles in each size class 

(Vbirths,j,i). If the apportioned volumes are less than the minimum sized volume a particle within the size 

class, then they will be added to the adjacent sieve below. This conditional statement ensures the 

apportion volumes are always greater than the minimum sized volume of a particle within the size class. 

The particles generated from the allocated volume fraction in X have sizes between two adjacent sieve 

aperture sizes. To generate the daughter particles, a function called randfixedsum in MATLAB (2019a 
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version, The MathWorks; www.mathworks.com) was used (the MATLAB code can be referred in 

Appendix A). The function can create, n particles (in random sizes) between two size limits that sum 

up to a fixed volume. 

The following describes the procedure to use the randfixedsum function to generate particles of 

a specific size class. Firstly, the number of particles must be specified. To do so, the total volume of 

particles in a size class has to be divided by the minimum volume of a single particle on the size class. 

A size class, 𝑋𝑗, is the mean size of two size limits (Eq.3.3), thus, the minimum volume of a particle on 

a size class is assumed to be the geometric mean of the minimum volumes from the two size limits. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 𝑜𝑛 𝑠𝑖𝑒𝑣𝑒 𝑋�̅� = (𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒 𝑜𝑓 𝑠𝑖𝑒𝑣𝑒 𝑋𝑗 ∗ 𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒 𝑜𝑓 𝑠𝑖𝑒𝑣𝑒 𝑋𝑗+1)
1
2 (3.3) 

The number of particles occupying the jth sieve,  𝑁𝑗, was then calculated from the actual volume 

generated from the breakage function. 

 𝑁𝑖 =
𝐴𝑝𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑒𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑛 𝑠𝑖𝑒𝑣𝑒, 𝑉𝑗

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑉𝑋𝑖̅̅ ̅ 
 (3.4) 

Each particle volume generated will always be greater than the minimum volume of its size 

class and less than the minimum volume of particle from size class above. The total volume of the 

daughter particles when summed, will always be the same to the total volume of apportioned particles 

within the size class (Vbirths,j,i), ensuring the conservation of volume.  
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Fig. 3-9 Schematic diagram showing one of the two approaches used to address the conservation of occluded particles volume during breakage, which is a 

modelling challenge.  
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3.2.2.2 Numerical approach to generate daughter particles from breakage function 

The second approach is a numerical approach to generate daughter particles without the use of bins by 

maintaining a fully discretised population until they reach a lower limit size where particles are assigned 

to the liquid suspension phase (pasted fraction) and no longer participate in selection or breakage (the 

MATLAB code can be referred in Appendix A). This section will describe the new numerical approach 

which is summarised in Fig. 3-11.  

Assume a particle of size Xo follows a cleave and paste breakage mechanism according to Gray-

Stuart (2016). This involves a large particle that is caught between antagonistic teeth, which, upon 

occlusion, is cleaved in two. Then, one part breaks free into the oral cavity and the other part is pasted, 

meaning it is immediately reduces to a size below the small-size limit.  Assuming an ellipsoid shape, 

the volume of the particle, Vo is calculated. Firstly, a random number of daughter particles will be 

generated from a large number of simulations (e.g. n=1000) until the sum of all the daughter particles 

is equivalent to Vo. In each simulation loop, if Xo is less than a pasted threshold size (e.g. 0.355 mm), 

the daughter particles will be part of the pasted fraction and will not undergo further breakage. To 

calculate the daughter particle size, Xi, a breakage function value (values from 0 to 1) is randomly 

generated. This random breakage function value is then interpolated linearly against the breakage 

function from Eq. (2.8-2.12). This gives the X/X0 value. The initial size of the particle Xo is then 

multiplied with this ratio to obtain the size of the potential daughter particle. 

1. The potential daughter particle generated will need to pass several conditions before it is 

regarded as part a daughter particle for particle Xo. The conditions are described as below: Is 

the size of the daughter particle less than the pasted size threshold (e.g. 0.355 mm)?  

a. The first condition is whether this daughter particle is less than the pasted size threshold 

or not. If it is less than the size threshold then this particle will be recorded as part of 

the pasted volume for the particle Vo. If the daughter particle size is larger than the size 

threshold than the particle will go through to the next condition. 
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2.  Is the potential daughter particle volume larger than the unallocated original particle 

volume? Mathematically this is 𝑉𝑝 >  𝑉𝑜 − ∑ 𝑉𝑝
𝑛
𝑖 -∑ 𝑉𝑝𝑎𝑠𝑡𝑒

𝑛
𝑖 ? where 𝑉𝑝 is the potential daughter 

particle volume, Vo is the initial particle volume, Vpaste is the pasted particle volume, i refers to 

the initial number of loop and n is the final number of loop.  

a. This condition is important to ensure volume is conserved.  If the volume of the 

potential daughter particle is greater than the sum of the daughter and pasted particles 

from the previous loops then the particular loop will be skipped and the simulation is 

repeated. If the opposite occurred, the volume of the daughter particle in this loop is 

recorded. The simulation runs until the sum of all daughter and pasted particles are 

equivalent to Vo or after n=1000 simulations has been reached.  If the maximum 

iterations is reached and the sum of all daughter particles is not equivalent to Vo  then 

the remaining unallocated volume will be assigned to one additional daughter particle. 

  The advantage of using the new method is that it does not require bin for the apportioned 

particles therefore; it does not require the number of particles to be fixed to generate particles like the 

randfixedsum function as described in 3.2.2.1. A comparison of the daughter particles generated that 

followed the breakage function of Eq.2.10 for a single particle, Xo of 4 mm using the two different 

methods (bins and without bins) is displayed in Fig. 3-10. For the simulation using bins, the following 

sieves was used: 4.0 mm, 2.8 mm, 2.0 mm, 1.4 mm, 1.0 mm, 0.71 mm, 0.5 mm, 0.355 mm. An r value 

of 0.8 was used in both methods. As observed in Fig. 3-10, the daughter particles that were generated 

using the randfixedsum function have more particles on the lower size classes, whereas the new 

numerical approach had a single daughter particle with X/Xo = 0.97 and a few between 0.1 and 0.35, 

hence fewer particles were produced in the lower size classes. The method which implemented the 

breakage function using bins (randfixedsum) assumes that the same daughter distribution is produced 

in every chew, therefore is not computationally expensive. While the randfixedsum approach ensures 

conservation of volume, the downside of using this approach is that it does not match the theoretical 

breakage function where more small particles are generated because of shifting the volume of particles 

in the smaller sieve size. In contrast, the new numerical approach is stochastic, thus, a large number of 
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simulations is required to show that the distribution matched the breakage function. This is the trade-

off of using the new numerical approach, as it is more computationally expensive therefore will result 

to a longer simulation time. However, the numerical approach will more closely follow the chewing 

process, as food particle breakdown is highly variable as shown by the data collected here and in the 

literature. As such, the new numerical approach will be used to apply the breakage function for the 

subsequent case studies explored in this thesis.  

 

 

Fig. 3-10: Comparison between generating daughter particles using bins and without bins for a single 

particle. Black round with black face colour, breakage of a particle with bins. Black round with white 

face colour, breakage of a single particle without bins. Red line, breakage function, Eq. 2.10. The 

simulation was run once. 
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Fig. 3-11 Schematic model diagram showing the processes required to generate daughter particles after 

breakage using the second numerical approach.  
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Fig. 3-12: Daughter particles distribution as a function of the number of selected particles. Black round 

marker, volume distribution of daughter particles. Red line, breakage function using Eq. 2.10. 

3.2.3 Model implementation using the population balance model 

A discretised population balance model developed by Gray-Stuart (2016) can be applied to predict the 

PSD of a food particle during mastication. This approach allowed individual particles to be tracked. If 

a parent particle was selected, that particle would ‘die’ and be reborn into a discrete number of 

‘daughter’ particles. A schematic flow diagram showing the general processes involved during the 

comminution of a food particle based on the population balance model is shown in Fig. 3-13 (the 

MATLAB code can be referred in Appendix A). The population model has been described previously 

in section 2.4.8 but will be restated here for clarity. The implementation part of the selection model has 

also been described in sections 3.2.1.1 and 3.2.2.2.  

Based on Fig. 3-13, a population of an initial distribution of particles can be described 

mathematically by an array, Vp, where the elements are individual particles with some volume, Vi 
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where  𝑉𝑝

= 

[
 
 
 
 
 
 
 
𝑉1
𝑉2
⋮

𝑉𝑖−1
𝑉𝑖
𝑉𝑖+1
⋮

𝑉𝑚𝑎𝑥]
 
 
 
 
 
 
 
 

The particles in 𝑉𝑝 are sorted into size classes, 𝑖 where 𝑖 ranges from the minimum threshold size to the 

maximum size class used to describe the PSD. The PSD is given by the array 𝑁𝑘 ,whose elements are 

the number of particles in each size class, and 𝑘, denotes the chew number.  

𝑁𝑘

= 

[
 
 
 
 
 
 
 
𝑛1,𝑘
𝑛2,𝑘
⋮

𝑛𝑖−1,𝑘
𝑛𝑖,𝑘
𝑛𝑖+1,𝑘
⋮

𝑛𝑚𝑎𝑥,𝑘]
 
 
 
 
 
 
 
 

During occlusion, all particles in the same size class are assumed to have the same chance of 

being selected. This selection chance is calculated from either the size dependent power law (Eq. 2.2), 

the one-way (Eq. 2.4) or two-way competition selection model (Eq. 2.5). From the array of particles 𝑉𝑝, 

another array is generated with the corresponding chance of selection for each particle 𝑉𝑖. A particle is 

selected when a random number (generated from a random distribution) is less than the theoretical 

selection chance.  

These selected particles ‘die’ and undergo breakage producing daughter particles. Breakage is 

then approximated by a continuous breakage function B (X, Xi) of ‘cumulative fraction less than’ where 

the particle undergoing breakage has characteristic dimension Xi and the function gives the cumulative 

fraction less than size X. Common breakage functions used in mastication are Eq. 2.8- Eq. 2.12. To 

discretize this, the volume fraction falling within the bin of a single size class is calculated by finding 

the difference of B(Xj,Xi)- B(Xj-1,Xi) where the subscript j refers to the size classes from j=1 to j=i, after 

occlusion of a particle of size Xi. For a particle in size class Xi, the volume of births in size class Xj is 

given by 
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𝑉𝑜𝑙𝑢𝑚𝑒𝑏𝑖𝑟𝑡ℎ𝑠,𝑗,𝑖 = 𝑉𝑖(𝐵(𝑋𝑗,𝑋𝑖) − 𝐵(𝑋𝐽−1,𝑋𝑖))  2.18 

For each j from j=1 to j=max, the array of birth volume for all size classes for particle Xi is given by, 

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒,𝑏𝑖𝑟𝑡ℎ𝑠= 𝑉𝑏𝑖𝑟𝑡ℎ𝑠 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∑ 𝐵(𝑋1, 𝑋𝑖) − 𝐵(0, 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1

∑ 𝐵(𝑋2, 𝑋𝑖) − 𝐵(𝑋1, 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1

⋮

∑ 𝐵(𝑋𝑗−1, 𝑋𝑖) − 𝐵(𝑋𝑗−2, 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1

∑ 𝐵(𝑋𝑗 , 𝑋𝑖) − 𝐵(𝑋𝑗−1, 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1

∑ 𝐵(𝑋𝑗+1, 𝑋𝑖) − 𝐵(𝑋𝑗 , 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1

⋮

∑ 𝐵(𝑋𝑚𝑎𝑥, 𝑋𝑖) − 𝐵(𝑋𝑚𝑎𝑥−1, 𝑋𝑖))𝑉𝑖

𝑖=𝑚𝑎𝑥

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.19 

This matrix allows the number of birth particles in each size class to be calculated. The breakage process 

described by Eq. 2.19 above is applied to all the selected particles. To ensure the conversation of 

volume, the approach described in 3.2.2.1 or 3.2.2.2 is applied. If particles less than the threshold size 

are created from occlusion, their volume is summed and added to saliva, which becomes the liquid 

phase of the bolus. The newly created particles are combined with the unselected particles and a new 

array, Vp, is obtained.  
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Fig. 3-13 Schematic flow diagram showing the general process involved to apply the discretised 

population model 

3.3 Chapter conclusion 

 
This chapter describes the development of the chewing model which forms the basis of the subsequent 

case studies in the remaining chapters. The first part of the chapter describes the conceptual model, 

followed by a discussion of model assumptions. The selection and breakage models form the basis of 

the chewing model. The difference in mechanism for the one-way and two-way competition models 

was demonstrated in real foods, using peanut bolus PSDs expected at different stages of chewing as an 

example. Both models have not been extensively applied in the literature, despite being the most 

comprehensive models developed to date. An alternative, but faster optical approach was also 

developed to determine selection model input parameters which is a notoriously time-consuming 

process. However, the method did not accurately determine the input parameters for the model, as it 

was shown that the occlusal area did not translate to larger size particles such as the whole Orzo and 

whole rice where portions of the particles can be caught on the edges of the teeth (and damaged), rather 



 

 

75 

 

than the whole area. Further experiments for a larger number of subjects will be needed in the future to 

support the findings. 

Other breakage models also exist in the milling literature however the breakage mechanisms 

may not be adapted to chewing. In addition, the experimental process to fit the breakage model can be 

laborious and time-consuming. The breakage models from the mastication literature consists of one to 

two parameters which reduces the degrees of freedom required for model fitting. Because of the 

requirement for conservation of volume in the distribution of daughter particles during breakage, for 

modelling, most literature methods apportion daughters to mean bin sizes. This could result in less 

accurate model predictions when compared against experimental data as the size of the daughter 

particles generated is limited to the average between two bin sizes. A numerical approach was 

developed to generate daughter particles without the use of bins by maintaining a full-discretised 

population of particles with liquid suspension phase where particles below a threshold size are assigned 

and not individually tracked. The new approach also provides insights that a large number of single 

chew experiments are required to ensure a good fit to the breakage function.  

The selection and breakage functions are then applied using a discretised population balance to 

predict the bolus PSD. In the next few chapters, the models developed in this chapter will be applied in 

a series of case studies to demonstrate the model and then integrated with models for aroma release.  
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Chapter 4 Predicting the PSD of peanuts using different selection 

and breakage models 
 

4.1 Introduction 

Chapter 3 presented the model development for chewing based on selection and breakage functions 

adapted from the literature. Before implementing the models to a novel food system to link mastication 

to digestion and flavour release, it was first important to test the models against a food system, which 

has been extensively applied in the mastication literature. Thus, this chapter aimed to test the models 

developed in Chapter 3 to predict the PSD of peanuts during chewing and compare their predictive 

outcomes. In addition to the power-law model which is commonly used to describe selection in previous 

mastication related studies (Lucas & Luke, 1983a, 1983b; van der Bilt et al., 1987; Prinz & Lucas, 

1997), the one-way and two-way competition models (van der Glas et al., 1992, 2018) were 

investigated. The competitive selection models in particular, have not been extensively applied to real 

foods. Similarly, different breakage functions are explored by applying the models to published 

literature data in two case studies. Both case studies are applied to a data set collected by Flynn (2012) 

for human subjects chewing peanuts. 

4.2. The model 

The model consists of selection and breakage models. Each will be discussed in the sections below.  

4.2.1 Selection model equations 

The selection model used in this chapter was either the power-law model (Eq. 2.2), the one-way 

competition model (Eq. 2.4), or the two-way competition model (Eq. 2.5). The selection model 

equations and examples of the model implementations have been described previously in section 3.2.1.  

4.2.2. Breakage model equations 

 
For the case studies in this chapter, the breakage models of Eq. 2.8-2.10 will be used (section 3.2.2 in 

chapter 3).  

4.2.3 Discretised population model 

The PSD will be predicted using the discretised population balance model as described in section 3.2.3. 
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4.3 Model application 

4.3.1 Food system and data source 

Flynn (2012) collected PSD data for subjects chewing peanuts. The data was presented as mass fraction 

of expectorated bolus particles collected on a series of sieve size classes, which provided the PSD for 4 

g portions of peanuts chewed for various numbers of chews (1, 2, 4, 6, 8, 10, 15, 20, 25, 30 (swallow 

point) and 35 chews). A single subject (male, age =27 years old) was used with three replicates for each 

stage of chewing. The raw data which included the standard error of the three replicates can be found 

in Appendix D.   

This food system and data source make a good first application for the particle breakage model. 

Although peanuts have been widely used in mastication studies, there are few examples where particles 

size changes are monitored and reported at regular stages during chewing. In her study, Flynn (2012) 

found that the total recovered solids was between 50-90% throughout the chewing sessions. In addition, 

when compared with other food types investigated in the study, such as muesli bars, the amount of 

recovered solids for peanuts was significantly higher, particularly in the first five chews (60-90% for 

peanuts vs 40-50% for muesli bars). Therefore, the assumption of negligible particle losses in the model 

is reasonable in this case. In addition, because of the high fat content of peanuts, it is not expected that 

breakage behaviour will change due to moisture absorption over the period of chewing. In order to 

apply the model to predict particle size changes in this system, there was no need to model saliva 

inclusion and bolus saturation. 

Because the model used a discretised population balance approach, it was necessary to convert 

the mass fraction data into a population of particles to allow the model to be fitted to the experimental 

data. The sieve sizes used in (Flynn, 2012) were 4.0 mm, 2.8 mm, 2.0 mm, 1.4 mm, 1.0 mm, 0.71 mm, 

0.5 mm, 0.355 mm, 0.25 mm, 0.18 mm, 0.125 mm, and the pan. The sieves were a good starting point 

for discretisation; however, as some of the peanut bolus was retained on the 4.0 mm sieve, an additional 

size class above 4.0 mm was added (5.7 mm). In the model, particles below 0.354 mm were not tracked, 

and their masses were summed and regarded as suspended solids in the liquid phase (Gray-Stuart, 2016). 

Gray-Stuart found that particles smaller that this critical size were not broken down any further in 
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subsequent chewing. This assumption is also practical as it avoids the model simulation being 

computationally expensive with the generation of thousands of particles in the lower size range.  

The particles generated from the allocated mass fraction in X have sizes between two adjacent 

sieve aperture sizes. These peanut particles were generated using a similar methodology used to 

generate particles in section 3.2.2.1. A function called randfixedsum in MATLAB (2019a version, The 

MathWorks; www.mathworks.com) was used (the MATLAB code can be referred in Appendix A). 

Some of the equations required to use to the function are restated here for clarity. The randfixedsum 

function requires the number of particles to be specified to generate particles of a specific size class. In 

order to do so, the total mass of particles in a size class (which was obtained from the mass fraction 

data) has to be divided by the minimum mass of a single particle on the size class. A size class, 𝑋𝑖, is 

the mean size of two size limits (Eq.3.1), thus, the minimum mass of a particle on a size class is assumed 

to be the geometric mean of the minimum masses from the two size limits. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑖𝑧𝑒 𝑜𝑛 𝑠𝑖𝑒𝑣𝑒 𝑋�̅� = (𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒 𝑜𝑓 𝑠𝑖𝑒𝑣𝑒 𝑋𝑖 ∗ 𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒 𝑜𝑓 𝑠𝑖𝑒𝑣𝑒 𝑋𝑖+1)
1
2 (3.1) 

The minimum mass of a peanut particle on a size class can be calculated by multiplying the 

minimum volume of a peanut particle from an assumed halved ellipsoid shape (Eq. 4.1) by the density 

of a peanut particle of 0.00112 g/mm3 (Hutchings, 2011). The minimum volume of a halved peanut 

particle on 𝑋𝑖 can be described as 

𝑉𝑋𝑖 =
1

2
(
4

3
. 𝜋. 𝑎. 𝑏. 𝑐) (4.1) 

 

𝑎 is the major axis, 𝑏 is the minor axis and 𝑐 is the vertical axis radius. If the minor and vertical axes 𝑏 

and 𝑐 are assumed to be related to 𝑎 by a shape factor, sf, thus    

𝑉𝑋𝑖 =
1

𝑠𝑓
(
2

3
. 𝜋. 𝑎3) (4.2) 

where 𝑎 is assumed to be the mean diameter or the size class, 𝑋�̅�. It was found from the experimental 

data that even in the 25th chew, some volume of particles was on the 4 mm sieve.  This mass was 

between the expected mass for one and two particles.  This enabled the shape factor sf to be calculated 

using Eq.4.2. The sf value was 2.03. Thus, 
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𝑉𝑋𝑖̅̅ ̅ =
1

2.03
(
2

3
. 𝜋. 𝑋�̅�

3
) (4.3) 

The number of particles occupying the ith sieve,  𝑁𝑖, was then calculated from the actual mass 

determined from the data. 

 𝑁𝑖 =
𝑀𝑎𝑠𝑠 𝑜𝑛 𝑠𝑖𝑒𝑣𝑒,𝑀𝑖

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝜌𝑝𝑒𝑎𝑛𝑢𝑡𝑠𝑉𝑋𝑖̅̅ ̅ 
 (4.4) 

Fig. 4-1 shows the generated PSD for the 4 g halved peanuts using the randfixedsum function. The 

function was run once, and the generated distributions are saved to be used in subsequent simulations. 

Each PSD in the represents different mastication stage of a single subject. 

 

Fig. 4-1 Discrete Particle Size Distribution (PSD) of 4 g of peanuts generated from Flynn (2012). The 

dotted markers (connected with line) show the sieve data from Flynn (2012).  The rest are the generated 

particles. The randfixedsum approach allows a population of particles to be generated from the sieve data. 

4.3.2 Model inputs 

To apply the model to predict the data set from Flynn (2012), several model inputs were required. 

Specifically, the initial mass and PSD, the selection and breakage model input parameters (depending 

on which model was applied). 

4.3.2.1 Input 1: PSD after a single chew as model input 

Because the data set from Flynn (2012) does not have the initial PSD, the PSD of the peanut bolus after 

a single chew from the experimental data (which is the closest to the initial) was used as the initial 
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distribution input to predict the PSD after 35 chewing cycles for the 4 g peanuts. However, it can be 

observed in Fig. 4-1 that after the 1st chew, there were few particles of sizes 5.6 mm. The mass of a 

single halved peanut particle of size 5.6 mm calculated using Eq. 4.3 multiplied by the density gives 

0.2 g. Therefore, if these particles were assumed to be the original peanuts then this gives around 20 

particles to make up the 4 g portion size. In this study, the predicted PSD using the 1st chew PSD as 

input will be fitted to the data set from Flynn (2012). In order to test the reliability of the fitted 

parameters using the 1st chew input, the fitted parameters will be used to predict the PSD using the 

assumed original PSD of peanuts as inputs. The model predictions using this new input will then be 

compared against experimental data.  

4.3.2.2 Input 2: Selection and breakage model input parameters 

The input parameters required for the power-law selection model were a multiplication constant and an 

exponential constant. The input parameters were obtained by best fitting the PSD from the model 

predictions to the experimental data. For the one-way and two-way competition models, the input 

parameters required for calculating the number of selected particles were the number of particles, the 

number of breakage sites and the affinity factor.  Both models required particles to be apportioned into 

size classes. Once particles had been grouped into their respective size classes, the particles were 

counted. The method has been described previously in Chapter 3 (section 3.2.1.1).   

The number of breakage sites and the affinity factor as a function of size class can be described 

in a power-law equation (see Eq 2.6 & Eq. 2.7 in Chapter 2). The multiplication factor and the exponent 

value were the two input parameters required in both power-law models that described the number of 

breakage sites and the affinity factor. As explained in Chapter 2 (Section 2.4.4), the two input 

parameters are obtained by fitting the theoretical model describing selection of single-sized particles as 

a function of their number (van der Glas et al., 1992, 2018). The fitting required offering subjects with 

a different number of particles and sizes (to the point until the occlusal area is saturated with particles) 

where the subjects are asked to chew once and the number of selected particles is determined through 

manual inspection. The same process applies for the breakage model where the volume distribution of 

the daughter particles after a single chew cycle are fitted to obtain the fragmentation variable, r.  
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However, because as these experiments were not performed by the subject in Flynn (2012), the model 

inputs were acquired by fitting the coupled selection and breakage model predictions with the 

experimental PSD data. 

4.3.3 Model fitting 

To allow the residuals to be calculated, ten percentile diameters were selected (d10 to d90 - where for dx, 

d is diameter and x is the percentile) from the cumulative volume distributions after each chewing cycle 

prediction was obtained. The model was fitted to the experimental data by minimising a normalised 

sum of squares residual between the model predictions and the experimental data. By normalising 

against the experimental percentile diameter, the model fitting was balanced across the whole PSD. 

This is described as Eq 4.5 below. 

𝑆𝑆𝑟𝑒𝑠(𝑛𝑜𝑟𝑚) =∑∑(
𝑦𝑝𝑟𝑒𝑑𝑖,𝑗 − 𝑦𝑑𝑎𝑡𝑎𝑖 ,𝑗

𝑦𝑑𝑎𝑡𝑎𝑖,𝑗
)

𝑛

𝑗=1

𝑛

𝑖=1

2

 (4.5) 

 

where 𝑦𝑝𝑟𝑒𝑑𝑖,𝑗 refers to the predicted diameter of an ith percentile intercept (i = 1 means 10%, i = 2 

means 20% of the PSD) and jth chew number and  𝑦𝑑𝑎𝑡𝑎𝑖 ,𝑗 refers to the experimental diameter.  

To determine the goodness of the fit of the model, the R-squared value was calculated as 

follows. 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡𝑎𝑙

(4.6) 

and 

𝑆𝑆𝑟𝑒𝑠 =∑∑(𝑦𝑝𝑟𝑒𝑑𝑖,𝑗 − 𝑦𝑑𝑎𝑡𝑎𝑖 ,𝑗 )

𝑛

𝑗=1

𝑛

𝑖=1

2

 (4.7) 

 

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 =∑∑(𝑦𝑑𝑎𝑡𝑎𝑖 ,𝑗− 𝑦𝑚𝑒𝑎𝑛𝑑𝑎𝑡𝑎)

𝑛

𝑗=1

𝑛

𝑖=1

2

(4.8) 
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where 𝑆𝑆𝑟𝑒𝑠 refers to the sum of squares residuals between the model and the experimental data.  𝑆𝑆𝑡𝑜𝑡𝑎𝑙 

refers to the total sum of squares residuals between the data and the 𝑦𝑚𝑒𝑎𝑛𝑑𝑎𝑡𝑎. 𝑦𝑚𝑒𝑎𝑛𝑑𝑎𝑡𝑎 is the mean 

of all experimental diameter percentiles that were used for the model fitting (𝑦𝑑𝑎𝑡𝑎).  

4.3.4 Optimisation method used to fit the experimental data 

As the input parameters for the PSD model were not known, an optimisation technique was required to 

fit the model to the experimental data. A derivative-free optimisation method called the Particle Swarm 

Optimisation (PSO) was used due to the inability to choose a good starting value for the model input 

parameters. PSO is a stochastic search method inspired by the social behaviour of birds flocking or fish 

schooling (Kennedy et al., 1942). The PSO algorithm contains particles that describe possible solutions 

to the optimisation problem using their positions and velocities (Lim et al., 2013). Mathematically 

speaking, particle swarm optimisation can be used to solve optimisation problems of the form (Ebbesen 

et al., 2012) 

𝑚𝑖𝑛
𝑥
: 𝑓(𝑥) (4.9) 

Subject to: 𝐴. 𝑥 ≤ 𝑏 

𝐴𝑒𝑞 . 𝑥 ≤ 𝑏𝑒𝑞 

𝑐(𝑥) ≤ 0 (4.10) 

𝑐𝑒𝑞(𝑥) ≤ 0 

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 

where 𝑏, 𝑏𝑒𝑞, 𝑙𝑏, and 𝑢𝑏 are vectors, and 𝐴 and 𝐴𝑒𝑞 are matrices. The functions 𝑓(𝑥), 𝑐(𝑥) and 𝑐𝑒𝑞(𝑥) 

can be nonlinear functions. The fitness function 𝑓(𝑥) quantifies the performance of 𝑥.  

The PSO algorithm used to fit the model to the experimental data was obtained from the MATLAB file-

exchange server (Chen, 2009-2018). The function was called ‘Constrained Particle Swarm 

Optimization’. The formulation implemented in the PSO algorithm in MATLAB is shown in Appendix 

B-1.   

4.3.4.1 Default values used in the PSO algorithm 

The default values used in the PSO algorithm implemented by Chen (2009-2018) were used to solve 

the model (see Appendix B-1 for full details). However, an additional MATLAB code was written for 
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the output function called the ‘OutputFcns’ so the state of the swarm can be recorded after each 

generation. This is important to ensure the swarm can be recovered should the algorithm be terminated 

prematurely due to some extraordinary event. Thus, the swarm can be recovered at an intermediate state 

rather than restarting the optimisation. The MATLAB code can be found in Appendix B-2.  

To confirm if the default swarm size (40) used in the algorithm was sufficient, the PSO 

algorithm was run using three different swarm sizes, and the model predictions and the global best 

fitness value were compared.  The swarm size used were 20, 40 and 60 particles.  

The PSO algorithm, was applied to determine the parameters for selection and breakage which, 

when used, allowed the selection and breakage function to best fit the experimental data (4 g peanuts 

data). To begin with, the PSD model was implemented with the one-way competition model as the 

selection function and Austin’s (1971) breakage model as the breakage function. Clearly, selection and 

breakage function parameters have to be realistic. The selection function has four unknown variables 

(number of breakage sites = f(k,m) and affinity factor = f(p,q)) and a breakage function with another 

unknown parameter (r). It was explained previously in Chapter 2 that the k variable for the number of 

breakage sites power-law function is related to the occlusal area. The m variable, which is the power 

for the function denotes the degree of particle piling at the initiation of breakage. If such piling is 

involved, the absolute value of the power-law relationship between the number of breakage sites and 

particle size would be expected to be larger than or equal to 2 (van der Glas et al., 2018). The affinity 

factor, which is defined as the average chance of a single particle being selected divided by the number 

of breakage sites is a function of p and q.  

To ensure the selection function parameters solved by the PSO algorithm were realistic, the 

upper and lower bounds were chosen based on the range of values found in van der Glas et al. (2018). 

The r variable in the breakage function denotes the degree of fragmentation; larger r values mean a 

higher degree of fragmentation. Similarly, the upper and lower bounds for the breakage function 

parameter were chosen from the range of values found in previous studies (van der Glas et al., 1987; 

Gray-Stuart, 2016). Table 4-1 shows the range of the input parameters chosen (upper and lower bounds) 

to solve the selection and breakage function parameters.  
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Table 4-1: The range of the input parameters was chosen based on the range of values found when single 

chew experiments were performed among five subjects in (van der Glas et al., 2018) for the selection 

model input parameters and in (van der Glas et al., 1987) for the breakage model input parameter, r. 

 

Parameter 

 

Selection model inputs Breakage model input 

 Number of breakage sites  Affinity factor  

Multiplication 

factor, k 

Power, 

m 

Multiplication 

factor, p 

Power, 

q 

Fragmentation 

variable, r 

Upper 

bound 

90 1 0.007 1 0 

Lower 

bound 

500 3 0.004 3 3 

 

4.3.4.2 Model convergence 

Mastication involves a discrete number of particles which, in any one chew, may or may not be selected 

for breakage.  Therefore, both selection and breakage are probabilistic and, because mastication 

involves only a small number of particles at the beginning of mastication, and usually fewer than forty 

chews, the outcome will also differ in a probabilistic way.  The selection-breakage model has been 

constructed, as described, to match this probabilistic process.  Therefore, this means that even with the 

same adjustable parameters for selection and breakage, many different mastication outcomes will be 

obtained.  Therefore, optimising for the most representative set of adjustable parameters, requires a 

progressive optimisation method.  In the particle swarm method that was adopted, the parameters are 

adjusted slowly by limiting the rate of their change from one iteration to another. They are also bounded 

to upper and lower limits as described above.  Within these boundaries, it is necessary to determine the 

appropriate number of iterations for each set of input parameters. This is called simulation convergence. 

To determine the convergence point, the simulation was run for 100 times for any set of input 

parameters. The upper bounds and the lower bounds as described in Table 4-1 were used as the input 

parameters for the model to observe if a different range of parameters will reach the same convergence 

point. The model outputs that delivered the PSD representing early (10 chews), middle (20 chews) late 

(35 chews) mastication stages were recorded.  Three d-values (d90, d50 and d10) were then retrieved from 
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the recorded PSD output. The mean of the d-values in each simulation following the first simulation 

was then calculated to identify the convergence point. The calculation can be described as 

𝑑𝑥𝑛=
∑ 𝑑𝑥𝑖
𝑛
𝑖=1

 𝑛
(4.11) 

where n refers to the current simulation number, 𝑑𝑥 refers to the d-value (d90, d50 or d10). 

The calculated mean d-value was then normalised against the mean d-value after 100 

simulations. The normalised mean d-value was then plotted against the simulation number where the 

convergence point was identified. Fig. 4-2, Fig. 4-3 and Fig. 4-4 show the normalised mean, the 

normalised standard deviation and the normalised standard error of the d-values after 100 simulations 

for three different chewing numbers when the lower bound set of input parameters was used. A 

normalised mean d-value of 1 indicates that it was close to the value achieved after 100 simulations.  

At the 10th chew, from Fig. 4-2, the mean of the d-value is already close to one even after only 

a few simulations. The same can be observed with the standard deviation for the d50 and d10. However, 

the normalised standard deviation for the d90 value is close to one only after fifty simulations. The 

standard error has the same trend across all d-values, where the error is higher in the first five 

simulations but decreases immediately after. The standard error then becomes constant from around 30-

50 simulations across all d-values. A similar trend can be observed in Fig. 4-3 at the 20th chew, where 

the normalised mean d-values stay constant throughout all simulations and the normalised standard 

deviation of the d-values stay constant after approximately 40-50 simulations. The normalised standard 

error also had the same trend as observed in Fig. 4-2 where it becomes constant after around 40-50 

simulations. At 35 chews, which is at swallow point for the experimental subject (Fig. 4-4), the 

normalised mean was also constant throughout all simulations. The normalised standard deviation, 

however, starts to become constant from 15-20 simulations onwards. The normalised standard error 

also had the same trend in Fig. 4-2 and Fig. 4-3 where it becomes constant from 40-50 simulations 

onwards.  

 It was also important to check the trend in the model simulations when the upper bound values 

are used as the input parameters. Fig. 4-5, Fig. 4-6, and Fig. 4-7 show the normalised mean, normalised 

standard deviation and the normalised standard error for the first 100 simulations. In general, the trend 
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followed, by in large, the trend observed when the lower bound values were used as input parameters. 

The normalised mean was constant throughout all number of simulations and the normalised standard 

deviation and the normalised standard error starts to become constant from approximately 20-50 

simulations. Based on these observations, it was concluded that the simulation had to be repeated for at 

least 50 times and the average of all the recorded d-values after 50 simulations were then used to 

calculate the sum of squares residuals for the optimisation.  

The observation where model convergence is reached after 50 simulations can tell us that 

perhaps 50 chewing trials are needed to get a reliable statistics on the PSD data. Depending on the 

particle size parameters of interest, only a few trials or sometimes numerous trials would be needed. 

For example, it was observed that standard deviation and standard error of d10 results become constant 

after a few simulations but to achieve reliable d90 data needed at least 50 simulations. If the distribution 

variance is not of interest, then perhaps only a few trials are sufficient as the mean values are basically 

steady after a few simulations.  

4.3.4.3 Comparison of model predictions and global best fitness value when different 

swarm sizes were used 

The model predictions and the global best fitness value (the sum of squares residual value at 

the optimised input parameters) at a different swarm sizes were compared. Table 4-2 shows a summary 

of the fitted model parameters and fitting statistics. Fig. 4-8, Fig. 4-9, and Fig. 4-10 shows the d90, d50 

and d10 model predictions compared against the experimental data at various chew numbers for when 

the swarm size was 20, 40 and 60 respectively. Fig. 4-11 shows comparison between all the fitted d-

values against experimental data when presented in a cumulative form. Because the original bolus 

peanuts PSD data used here from Flynn (2012) were based of sieve size classes (section 4.3.2), the 

model predictions were also compared in this form (Fig. 4-12, Fig. 4-13 and Fig. 4-14). There was no 

noticeable difference in the model predictions when a different swarm size was used. 



 

 

87 

 

 

Fig. 4-2: The normalised mean, standard deviation and standard error at 25% of the swallow point (10th chew) using lower bound values as input parameters. 
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Fig. 4-3: The normalised mean, standard deviation and standard error at 50% of the swallow point (20th chew) using lower bound values as input parameters. 
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Fig. 4-4: The normalised mean, standard deviation and standard error at 100% of the swallow point (35th chew) using lower bound values as input parameters. 
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Fig. 4-5: The normalised mean, standard deviation and standard error at 25% of the swallow point (10th chew) using upper bound values as input parameters. 
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Fig. 4-6: The normalised mean, standard deviation and standard error at 50% of the swallow point (20th chew) using upper bound values as input parameters. 
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Fig. 4-7: The normalised mean, standard deviation and standard error at 100% of the swallow point (35th chew) using upper bound values as input parameters. 
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The model fits particularly well for the d90 values in the first 15 chews, and the d50 and d10 values 

after the first 15 chews. There is a small difference between the model fitting parameters and the global 

best fitness value for different swarm sizes (Table 4-2). The R-squared values for all swarm sizes were 

> 0.9, which indicated that the model was a good fit. The sum of squared residuals was the lowest at 60 

swarm, but it only differed by 1% with the sum of squared residuals at 20 and 40 swarms respectively. 

In general, because of the small difference in the sum of squared residuals and the high R-squared value, 

the default swarm size of 40 in the PSO algorithm was implemented. Additionally, 40 is also a standard 

swarm size used in the literature. For example, when comparing between 15, 30 and 60 particles per 

swarm used to optimise five benchmark functions, the best results were found when an average number 

of particles was used (Trelea, 2003). Too few particles gave a meagre success rate and required more 

iterations but using too many particles required too many function evaluations per iteration (Trelea, 

2003). However, a noticeable difference can be seen in the simulation time where a larger swarm size 

took longer to solve. As the model fitting requires the simulation to be repeated 50 times where the 

results are averaged, it took about 41 minutes to complete one iteration when 40 swarm size was used. 

This means if the maximum iterations is reached (200 iterations), it can take about 136 hours (6 days) 

to complete the entire simulations.  

Table 4-2: Model input parameters solved by the PSO algorithm when the swarm size (number of 

particles) in the PSO algorithm was varied. 

 

 

 

Swarm 

size 

 

Fitting 

simulation 

time per 

iteration 

(minutes) 

Selection model inputs Breakage 

model input 

 

Global best 

fitness value 

(Normalised 

SS residuals) 

  

 

SS  

 

 

R2 

Number of breakage 

sites, nb 

Affinity factor, o1 

Multiplication 

factor, k 

Power, 

m 

Multiplication 

factor, p 

Power, 

q 

Fragmentation 

variable, r 

20 28 145.62 1.83 0.0019 1.51 2.41 3.07 16.9 0.94 

40 41 179.06 2.22 0.0013 2.01 2.91 3.09 16.1 0.94 

60 55 185.38 1.29 0.0009 1.25 2.58 2.95 15.8 0.94 
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Fig. 4-8: Swarm fitted (black marker) and experimental (red marker) d90, d50 and d10 values across 

various chew numbers using 20 swarm.  

 

 
Fig. 4-9: Swarm fitted (black marker) and experimental (red marker) d90,d50 and d10 values across various 

chew numbers using 40 swarm size.   
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Fig. 4-10: Swarm fitted (black marker) and experimental (red marker) d90, d50 and d10 values across 

various chew numbers using 60 swarm size.  
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Fig. 4-11 Swarm fitted (line) and experimental (coloured dot markers) in cumulative PSD form across 

various chew numbers of 20, 40 and 60 swarm size.
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Fig. 4-12 Swarm fitted (dot markers with face colour) and experimental (dot markers with no face colour) when presented in terms of volume fraction vs sieve size 

classes in across various chew numbers of 20 swarm size. 
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Fig. 4-13 Swarm fitted (dot markers with face colour) and experimental (dot markers with no face colour) when presented in terms of volume fraction vs sieve size 

classes in across various chew numbers of 40 swarm size. 
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Fig. 4-14 Swarm fitted (dot markers with face colour) and experimental (dot markers with no face colour) when presented in terms of volume fraction vs sieve size 

classes in across various chew numbers of 60 swarm size.
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4.4 Model results and discussions 
 
The particle breakdown model was successfully applied to chewing of peanuts, showing good 

agreement between measured and predicted PSDs. In those predictions the one-way competition 

selection model (Eq. 2.4) and Austin (1971) breakage model (Eq.2.10) were used. Two case studies 

were carried out to explore the predictive behaviour of different selection (case study 1) and breakage 

(case study 2) models.  

4.4.1 Case study one: Comparing model fittings when the selection model is 

varied, and the breakage model is fixed 

This section compares the predicted PSDs to the experimental PSDs when the selection model was 

varied while keeping the breakage function fixed. The PSD model uses either the one-way competition, 

two-way competition or the power-law model as the model for selection. The breakage function of 

Austin (1971) was used for all simulations. The PSO algorithm was used to fit the input parameters to 

the model. The model was repeated for 50 times to account for the probabilistic nature of the model 

predictions as described in section 4.2.6.1.1 and the average of the d-values after 50 simulations were 

used to calculate the sum of squares residuals with the experimental data. The one-way competition 

model combined with Austin (1971) breakage model was fitted first, where all five (4 selection and 1 

breakage model) of the fitting parameters are tabulated in Table 4-3. Following that, the k parameter 

which was related to the occlusal area (discussed in section 3.2 in Chapter 3) obtained from the one-

way model fitting (179.06 in Table 4-3) was kept the same as the bolus data was from the same subject. 

The r input parameter in the breakage function was also kept the same (2.91 in Table 4-3) as the same 

type of food (peanuts) was tested.  Therefore, for the two-way competition model, the PSO algorithm 

was only solved for three parameters, m, p and q.  

Fig. 4-15 shows the model predictions compared to the experimental data. Overall, all selection 

models seem to provide a good fit to the experimental data, as shown by their high R-squared values 

(R2 > 0.9). The one-way competition model under-predicted the d90 values after 15 chews, whereas the 

two-way competition model had a better fit. This can be explained by the fact that the one-way 
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competition model preferentially selects larger particles during selection whereas the two-way 

competition model can also select smaller particles as chewing progresses. Because the one-way 

competition model selects more large particles, it is expected that as chewing number increases, the 

number of larger particles will also decrease. This explains why it under-predicts the d90 value but fits 

d50 and d10 values quite well.  

In contrast, the two-way competition model fits the d90 values quite well towards the latter 

stages of mastication but under-predicts the d10 values in the first few chews as smaller particles can 

also be selected for breakage. Comparing the fitting parameters between the one-way and two-way 

competition model in Table 4-3, the obvious difference can be seen in the p and q parameters that 

describes the affinity factor power-law model.  The p and q values were higher in the two-way 

competition model than it is in the one-way competition model. This suggests that for any particle size, 

X, in the absence of any larger particles, the probability that it is selected is higher according to the two-

way competition model. This makes sense because, in the two-way competition model, small particles 

can also compete for the breakage sites because of their ability to pile. Therefore, small particles will 

have a higher chance of selection than they would with the one-way competition model. In contrast, 

according to the one-way model, larger particles are hugely favoured to occupy breakage sites than 

smaller particles. This explains why, for the same particle size, the affinity value is higher in the two-

way competition model than the one-way competition model.   

A comparison with the power-law model was included because this is the simplest model, first 

proposed by researchers (Lucas and Luke, 1983b; van der Bilt et al., 1987; van der Glas et al., 1987), 

which does not discriminate between selection and breakage. It overestimates the breadth of the PSD, 

with smaller d50 and d10 values especially in the first few chewing cycles. As it does not describe a 

mechanism, it cannot really be compared, except to conclude that mastication is better described by 

assuming some competition rules for selection.   

The reliability of using the one chew PSD data as the input distribution is tested when the fitted 

parameters in Table 4-3 for the one-way and two-way competition models were applied to an assumed 

original PSD of peanuts, which had a uniform particle size of 5.6 mm (section 4.3.2.1). Fig. 4-16 shows 

the model fits against experimental data where both had R-squared values > 0.9. The model predictions 
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seem to over predict the d90 and under predict the d10 in the first few chews, but in general the predictions 

produced the same trend with the fits in Fig. 4-15. The result is interesting as there was evidence in a 

previous study where the chewing side patterns of peanuts remained unchanged when it was observed 

twice (Paphangkorakit et al., 2006). The authors surmise that because of the reproducibility of the 

chewing side patterns for brittle foods such as peanuts then the breakage can be easily reproduced. As 

chewing progresses and the peanuts became softer and more dissociated, they found that subjects tend 

to use less lateral movement. Therefore as more lateral movements are used in the first few chews and 

less towards the late stage, it is expected that the breakage could change in the early phase of mastication 

but remains constant as the food softens towards the late stage of mastication. This explains why the 

model predictions seem to over and under predict when the fitted values in Table 4-3 but agree well 

with the experimental data at the later stages of mastication. Based on these observations, it can be 

concluded that the fitted parameters using the 1st chew PSD as the starting distribution gave reliable 

predictions except over and under predicting the d90 and d10 values in the early phases of mastication.  

Table 4-3: Selection model input parameters optimised by the PSO algorithm, for a constant breakage 

model.   

 

 

Selection 

model 

 

Selection model inputs Breakage 

model input 

 

 

Global best 

fitness value 

(Normalised 

SS) 

 

 

 

SS 

  

 

 

R2 

Number of breakage 

sites, nb 

Affinity factor, o1 

Multiplication 

factor, k 

 

Power, 

m 

Multiplication 

factor, p 

Power, 

q 

Fragmentation 

variable, r 

One-way 

competition 

179.06 2.22 0.0013 2.01 2.91 3.09 16.1 0.94 

Two-way 

competition 

179.06 2.25 0.0019 2.62 2.91 2.72 34.4 0.87 

Power law - - 0.14 0.16 2.91 2.15 21.6 0.92 
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Fig. 4-15: Swarm fitted (black marker) and experimental (red marker) d90,d50 and d10 values at various 

chew numbers when different selection models and a fixed breakage function were used. a. Model fits of 

one-way competition and the Austin (1971) breakage model. b. Model fits of two-way competition and 

Austin (1971) breakage model. c. Model fits of power law model and Austin (1971) breakage model.  
 

 

 
Fig. 4-16 Model predictions when the assumed initial PSD is used as the input distribution using the 

swarm fitted of one-way and two-way competition models in Table 4-3.  
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Comparison of the predictions of the one-way and two-way competition models and due to 

their underlying assumptions, it could be said that in the early stages of mastication, the one-way model 

is most appropriate, but after some time, the two-way model applies. This idea was then tested. 

4.4.2 Model fitting using a combined one-way and two-way competition model  

 
Van der Glas et al. (2018) proposed that selection will occur according to the one-way competition 

model in the first few cycles, after which selection then shifts into the two-way competition model. 

Therefore, here a combined one-way and two-way competition selection model along with the Austin 

(1971) breakage model was fitted to the experimental PSD data for the 4 g portion size peanut particles 

at various numbers of chews. The k parameter which was related to the occlusal area obtained from the 

one-way model fitting (179.06 in Table 4-3) was kept the same as the bolus data was from the same 

subject. The r input parameter in the breakage function was also kept the same (2.91 in Table 4-3) as 

the same type of food (peanuts) was tested.  Therefore, the only additional term here (besides the 

selection function parameters, m, p and q) to be solved by PSO was the chew number when the selection 

model switches from one-way to two-way competition. Fig. 4-17 shows the model fitted against the 

experimental data when the combined one-way and two-way competition model was used. Table 4-4 

shows the fitted parameters, the final sum of squared residuals value and the R-squared.  

Table 4-4: Selection model input parameters optimised by the PSO algorithm, for a fixed fragmentation 

index used in the Austin (1971) breakage model.   
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Fragmentation 

variable, r 

Combined 

one and 
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model 

 

 

179.06 

 

 

2.08 

 

 

0.002 

 

 

1.67 

 

 

2.91 

 

 

18 

 

 

1.92 

 

 

22.9 

 

 

0.91 
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Fig. 4-17: Predicted (black marker) and experimental (red marker) d90,d50 and d10 values at various chew 

numbers when the one-way competition model was used to predict the selection for chew number less 

than an optimum chew number, here 18 chews, and  the two-way competition model for chew number 

greater than the optimum.  The Austin (1971) breakage model was used with a fixed fragmentation index. 

  After the 18th chew number, the one-way competition model shifted to the two-way 

competition model to describe the particle selection process. From the 20th chew number and beyond, 

the predicted d90 remained constant. The observation makes sense as the two-way competition model 

assumes that the number of breakage sites available for larger particles will be reduced due to an 

increase in competition with small particles which could pile. Therefore, less large particles will be 

selected for breakage and will remain unbroken. This explains why the d90 values remained constant 

once the selection model was shifted to the two-way competition model at the 18th chew number.  

Comparing the fits from the combined selection mechanisms and fits of Fig. 4-15, all models 

seem to under-predict the d50 values in the first few chewing cycles and d90 values at the later stages of 

mastication. A reason why the model was not a closer fit might be that the amount of bolus recovered 

in the data was quite low in the later stages of mastication. This mass balance including losses was not 

included in the modelling, which assumes 100% bolus recovery. In practice, the amount of food 

recovered reduces when subjects chew for longer (Flynn, 2012). Flynn (2012) studied this effect and 
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proposed a two-compartment model, where some food resides for some time within the buccal pouches 

and is only periodically cleared.  Such a mechanism has not been included here.  The selection model 

simply assumes all particles are always available.  It also assumes the bolus recovered, although an 

acknowledged fraction of the ingested food is representative of the non-recovered PSD.  However, this 

is not accurate.  Flynn (2012) found that in five different food types (including peanuts), the debris from 

all foods contained a significantly higher proportion of particles in the 0.5 – 1.0 mm range and a lower 

proportion of particles > 2.8 mm compared to the bolus (Flynn, 2012). The presence of more large 

particles in the recovered bolus combined with the fact that the d50 and d90 of the experimental data is 

calculated from a reduced volume than the portion size, it could be expected that the experimental d50 

and d90 values will be a lot larger than the predicted ones.   

4.4.3 Case study 2: Comparing model fittings when the selection model is fixed, 

and the breakage model is varied 

The second case study was to compare the fits when the selection model was fixed, and different 

breakage equations were used. The combined one-way and two-way competition model was chosen to 

model the selection process. The k parameter (which represents the occlusal area) for the selection 

model was taken from the fits obtained in section 4.3.2 (Table 4-3). Because Austin’s (1971) breakage 

model was used in previous sections, two additional breakage functions (one mechanistic, and the other 

empirical) used in previous mastication studies in Lucas and Luke (1983a, 1983b) were applied (Eq. 

2.8 and Eq. 2.9). Fig. 4-18 shows the model fits against the experimental PSD data. The model 

prediction gave good agreement with the experimental data when the empirical and mechanistic 

breakage functions were used (R2 > 0.9).  

The close fit to the experimental data when the breakage functions of Eq. 2.8 and Eq. 2.9 were 

interesting as they have been shown to characterise breakage well for carrots (Lucas & Luke, 1983a, 

1983b). The results were interesting because the main assumption of the breakage functions was that 

‘all particles must break into two fragments only’ but the results suggest that the same assumption can 

be applied to the breakage of a peanut particle. The breakage of peanuts seems to depend on the physical 

properties of the food where moist, soft peanuts break into larger pieces during contact with the teeth, 

whereas dry peanuts shatter into smaller pieces (Hutchings, 2011). Either way, a peanut particle does 
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not break to just two fragments during breakage. An improved version of Eq. 2.9 was the breakage 

function developed by Austin (1971) (Eq.2.10) which was shown to produce a good fit (R-squared >0 

.9) with the experimental data when implemented in section 4.3.2. This is interesting, as it seems that 

despite having more than one parameter in Eq. 2.8 and Eq. 2.9, they perform as well with Eq. 2.10, 

which only contains one parameter. Having only a single parameter in the model also prevents 

overfitting, which is defined as when a model includes more terms than necessary or procedures that 

use more complicated approaches than necessary (Hawkins, 2004). Overfitting is undesirable as it leads 

to wasting of resources (from measuring irrelevant parameters), makes worse predictions (as it adds 

random variation to other parameters) and not portable (meaning it can only be reproduced by reusing 

modeller’s software and calibration data) (Hawkins, 2004). 
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Fig. 4-18: Predicted (black marker) and experimental (red marker) d90, d50 and d10 values at various chew 

numbers when the combined one-way and two-way competition model was used to describe particle 

selection process. Two breakage models in Lucas and Luke (1983b), (a) empirical breakage function (Eq. 

2.8) and (b) mechanistic breakage function (Eq. 2.9) were applied and the model predictions were 

compared. 
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Table 4-5: Model input parameters optimised by the PSO algorithm, the global best fitness value (the sum of squared residuals minimised by the PSO algorithm) 

and the R-squared value when one-way and two-competition model were combined and the breakage model was varied. 

 

Breakage model 
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(1983b) (Eq. 2.8) 

 

179.06 

 

1.75 

 

0.002 

 

1.34 

 

1.07 

 

1.84 

 

18 

 

1.95 

 

18.7 

 

0.93 

Mechanistic 

breakage model 

in Lucas & Luke 

(1983b) (Eq. 2.9) 

 

179.06 

 

2.01 

 

0.003 

 

1.23 

 

1.41 

 

1.09 

 

22 

 

7.26 

 

19.9 

 

0.92 

 

Austin(1971) 

(Eq. 2.10) 
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4.5 Chapter conclusion 

 
In this chapter, the chewing models developed in Chapter 3 were applied to peanuts, to test the 

application of the models prior to applying them to a novel food system linking digestion and aroma 

release.   

Different selection and breakage models were applied to predict the PSD of peanuts during 

mastication as reported in the literature. The competitive selection models, despite mechanistic, are 

difficult to implement due to the complexity in obtaining input data. As such, a powerful optimisation 

algorithm, called the PSO, was used to obtain the input parameters of each model. The algorithm was 

used as there were no obvious starting values and a large number of parameters were required. 

When different selection models were compared, the combined one-way and two-way model 

were found to give the best fit.  However, because of the difference in the rate of bolus recovery between 

the model and the experimental data, large discrepancies between the model and experimental data 

occur, particularly towards the late mastication stages. Although not a focus of this research, it is 

recommended in future research to include a ‘bolus loss’ function in the model so the predictions can 

be more accurately compared to real-life particle size measurements.  

When different breakage models were compared, all models produced a good agreement with 

the experimental data, but the improved Austin (1971) breakage model, which consists of only one 

input parameter, may prevent overfitting, which is defined as when a model includes more terms than 

necessary.  

The chewing models developed in Chapter 3 were successfully applied to peanuts in Chapter 

4. The next step will be to test if the models can provide useful information to aid in food design. It is 

known that some processes such as heating, or moisture uptake can change the fracture behaviour of 

foods (Hutchings, 2011). Portion size is also known to impact on size reduction (Flynn 2012). The 

models which have been implemented here can be applied to these scenarios and will be explored in 

the next chapter. 
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Chapter 5 Chewing models as a tool for food design 
 

5.1 Introduction 

The physical properties of food are known to influence bolus PSDs before swallowing. For example, 

the toughness (Agrawal et al., 2000), hardness (Kohyama et al., 2004), rheological properties (Agrawal 

et al., 2000; Foster et al., 2006), portion size (Lucas & Luke, 1984; Flynn, 2012) and initial moisture 

content (Hutchings, 2011) all are known to affect food breakdown. The PSD of food boluses, which is 

a chewing outcome, is of growing interest to food manufacturers. This is because it has been related to 

digestibility (Hoebler et al., 1998; Ranawana et al., 2010; Bornhorst & Singh, 2012), texture perception 

(Peyron et al., 2004) and the extent of flavour and aroma release (Harrison et al., 1998; Chen, 2009; 

Bornhorst & Singh, 2012; Doyennette et al., 2014). Thus, understanding food structural breakdown 

during eating is essential not only for our basic understanding of the governing principles of eating and 

sensory perception but more importantly for better design and manufacturing of quality and tasty foods 

(Chen, 2015). 

However, it can be challenging to understand these observations, because of the complexity of 

the number of sub-processes and their interactions occurring during chewing. Mathematical modelling 

can be used as a tool to propose interactions and then to compare model predictions to observed 

masticatory, sensory and digestion outcomes. Models are also flexible and can be used to study a range 

of primary food properties that affect food breakdown. Models have been established for the selection 

and breakdown of particles during the mastication process and the PSD after chewing in the literature 

(Lucas & Luke, 1983; van der Bilt et al., 1992; Prinz & Lucas, 1997; Gray-Stuart, 2016).  Extension to 

these are the studies by Gray-Stuart et al. (2017), who developed a conceptual model of the decision-

making criteria for bolus properties needed to ensure safe swallows, and Ng et al. (2017), who 

investigated slip extrusion as a function of bolus properties in a simulated swallow. Despite these 

extensions, the next steps to use such models for better design of foods has not been made.  

 Therefore, the main objective of Chapter 5 was to demonstrate the application of the chewing 

models for food design through two simple case studies. The first was to understand the breakdown 

process when the initial portion size of peanuts is varied. An increase in portion size is known to increase 
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the median particle size at swallow point (Buschang et al., 1997; Flynn et al., 2012).  It will also affect 

the selection process during mastication.  Additionally, adapting the bite-size has been shown to affect 

satiety by increasing the extent of retro-nasal aroma release (Ruijschop et al., 2011). A second case 

study was carried out to understand the breakdown of food when the initial moisture content of peanuts 

is varied.  Moisture affects the physical properties of peanuts, which have been shown to influence the 

breakage function and the resulting particle size (Agrawal et al., 1997; Prinz & Lucas, 1997).       

5.2 Case study one: Understanding the effect of portion size on selection 
 
It is well-known that an increase in the initial portion size results in larger food particles being 

swallowed (Yurkstas, 1965). The study by Flynn (2012) showed that when two different portion peanut 

sizes (2 g vs 4 g) were masticated by 10 subjects, the 4 g portion size contained a significantly higher 

proportion of large particles (>2 mm) and a lower proportion of small particles (< 0.5 mm) as shown in 

Fig. 5-1 below. 

 

 

 

Fig. 5-1 Mean peanut bolus data of 2 g and 4 g portion sizes. Redrawn from Flynn (2012). The bolus data 

is a mean of 10 subjects at swallow point (17 and 26 chews for 2 g and 4 g respectively). The original 

figure of Flynn (2012) which consists the error bar can be referred in Appendix D. 

 
The reason there is a higher proportion of particles at swallow point when portion size increases 

can be hypothesised from the mechanisms of selection. As a larger portion size indicates higher particle 
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numbers, the selection chance of any individual particle will be smaller, particularly as the breakage 

sites of the teeth become more saturated with particles.  Thus, an increase in the number of non-selected 

particles can be expected. This could explain why more large particles are observed in the 4 g compared 

to the 2 g portion size.  

The competitive selection models developed by van der Glas et al. (1992) may be used to 

explain the observation as above because the equations are mechanistic. This case study therefore aims 

to interrogate selection model input parameters when the model is fitted to the PSD data of two portion 

sizes from Flynn (2012).   

5.2.1 The model 

 
The model consists of selection and breakage sub-models.  Each will be discussed. 

 

5.2.1.1 Selection equations  

 
The selection models used to fit the PSD of both portion sizes are the one-way (Eq.2.4) and the two-

way competition (Eq. 2.5) models as both models are mechanistic models, where the equations and 

examples for implementation were described in section 3.2.1. Also, both seem to have parts of the 

mastication cycle where they are best suited.  They allow investigation here of the selection process 

when the portion size of the food is varied.  

5.2.2 Breakage model equation 

 
In this case study, the Austin (1971) breakage model (Eq. 2.10) will be applied. The breakage model is 

the most widely used in previous mastication studies to predict PSD of various foods during mastication 

(Lucas & Luke 1983a, 1983b; van der Glas et al., 1987; Gray-Stuart, 2016). In addition, the breakage 

model also consists of one fitted parameter which reduces the degree of freedom of the optimisation.  

5.2.3 Discretised population model 

 
The PSD will be predicted using the discretised population balance model developed as described in 

section 3.2.3. 
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5.2.4 Model inputs 

 

5.2.4.1 Discretised PSD of the 2 g and 4 g peanut boluses  

The particle distribution of the peanut bolus data was obtained from Flynn (2012) for each reported 

chew number (e.g. Fig. 5-1). The data was presented as a mass fraction obtained on a series of sieve 

size classes, which provided the PSD for peanuts at two portion sizes, 2 g and 4 g respectively. For 4 g 

portions, the data was provided for the PSD at a range of chew numbers: one, two, four, six, eight, ten, 

fifteen, twenty, twenty-five, thirty and thirty-five chews as used before in Chapter 4 previously. 

However, for the 2 g portion, the data was only collected for the PSD at swallow point averaged across 

10 subjects (17 chews).  

Because the model (as outlined in Chapter 3) employs a discretised population balance, it was 

necessary to convert the data into a population of particles. The method to generate the PSD for the 4 g 

portion size at a various number of chews and the 2 g portion size at swallow point followed the 

numerical approach as described previously in Chapter 4 (see section 4.3.1), where a random and 

discrete number of particles were generated in each sieve size class from the experimental data. For the 

2 g peanuts, the data was only provided for the PSD at swallow point. Previously in Chapter 4, the PSD 

after a single chew of the 4 g peanuts was used as the model input. However, as the mass is different, 

the single chew data could not be used as the model input for the 2 g peanuts. Thus, it was necessary to 

develop a numerical approach to create the PSD after a single chew for the 2 g peanuts. 

 The PSD after a single chew for the 2 g peanuts were created under the assumption that the 

volume distribution followed the distribution of the 4 g peanuts. However, to ensure mass was 

conserved, a numerical algorithm was written to ensure that the total mass of all particles in the 

distribution does not exceed 2 g. A diagram, showing the steps in the process is shown in Fig. 5-2 (the 

MATLAB code can be referred to in Appendix A). 
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Fig. 5-2: Model flow chart to generate PSD after a single chew for the 2 g portion size. PS refers to 

portion size and n refers to the iteration number. Miss refers to the rejected particles which will not be 

accounted for in the simulation.  
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As can be seen from Fig. 5-2 above, from the top, the portion size (PS) was first set to a pre-

defined mass, which was 2 g. An initial zero value was also set for particles that did not satisfy the 

conditions in the model flow chart (Miss = 0). The initial mass of particles in the distribution was first 

set at 0 (accumulated mass = 0). A random number generator (rand function, 2019b version, The 

MathWorks; www.mathworks.com) was used to generate a random cumulative mass fraction from 0 – 

1. The random cumulative mass fraction value was then used to linearly interpolate (interp1 function, 

2019b version, The MathWorks; www.mathworks.com) the particle diameter from the single chew 

cumulative mass distribution of the 4 g portion size. The volume of the particle was then calculated 

using Eq. 4.3 assuming the peanut has a halved ellipsoid shape as described previously in Chapter 4. 

The mass of the particle was then determined by multiplying by the density, 0.00112 g/mm3 (Hutchings, 

2011). There are certain conditions that the solution must satisfy in order to conserve mass. Firstly, with 

each run of the simulation, the mass of particle generated must be less than the pre-defined portion size 

minus the accumulated mass of particles generated thus far (i.e. the unaccounted-for mass required). 

Mathematically, this can be described as 

𝑴𝒑 <  𝑴𝒐 −∑𝑴𝒑,𝒊

𝒏

𝒊

(5.1) 

where  𝑴𝒑 is the mass of the new particle generated,  𝑴𝒐 is the pre-defined required portion size, 

subscript i refers to the number of the existing simulation loop, n refers to the total number of loops.  

If the mass of the particle generated,  𝑴𝒑, was greater than the portion size minus the 

accumulated mass of particles, then the particle will be rejected, and it will be added as miss= miss + 

1. The simulation is then repeated. If the generated particle satisfied Eq. 5.1, the diameter of that particle 

would be recorded, and the mass of the particles would be added as Accumulated mass = Accumulated 

mass +  𝑴𝒑. The simulation stopped when the total mass of all recorded particles was greater than 2 g. 

Because the numerical method was stochastic, the simulation was set to run for 1000 simulations. The 

number was chosen as it was found from trial and error that the simulation needed at least 1000 

simulations to ensure the total mass will always be 2 g.  
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Fig. 5-3: Cumulative mass fraction vs particle size (mm) for 4 g and 2 g peanuts respectively. Red marker 

= 2 g PSD, Black marker = 4 g PSD. The simulation was run once.  

Fig. 5-3 shows the generated PSD after a single chewing cycle for the 2 g and 4 g peanuts. 

Because of the randomness introduced in the simulation, this figure clearly shows the difference in PSD 

after a single chew for the 2 g and 4 g peanuts after 1 simulation. For example, in the 4 g peanuts, there 

are more particles observed in the size range between 4 to 5 mm and between 0.354 mm and 2.5 mm 

respectively. However, when the simulation is repeated for different number of times (5 to 1000 times) 

and plotted in the same graph, it can be observed that the PSD of the 2 g peanuts on average does end 

up the same as the 4 g peanuts (Fig. 5-4). This gives the confidence to use the numerical approach 

described above to generate the new PSD for the 2 g portion size.   

Input 1: PSD after a single chew as a model input 

Following the generation of particles as described above, the PSD of the peanut bolus after a 

single chew from the experimental data was used as the initial PSD input to predict the PSD at swallow 

point for the 2 g and the 4 g peanuts in this case study (Fig. 5-3). 
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5 simulations 10 simulations 

  

100 simulations 1000 simulations 

  
Fig. 5-4 A comparison of 4 g and 2 g peanuts PSD, where the 2 g peanuts PSD is plotted for the number of 

times the simulation was run (5, 10, 100 and 1000 simulations).  

Input 2: Selection and breakage model input parameters 

The input parameters required for the one-way and two-way selection functions are the number of 

particles, the number of breakage sites and the affinity factor. The degree of fragmentation variable is 

required for the breakage function. The full details of the input parameters required for the selection 

and breakage functions have been discussed previously in Chapter 3.  

5.2.5 Model fitting 

 
Similarly, to as described in Chapter 4, as one-chew experiments (as described in van der Glas et al., 

1987, 1992, 2018) were not conducted to determine the selection and breakage model input parameters, 

the PSD outputs from the model were fitted to the experimental PSD data.  
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To calculate the residuals between the model outputs and the experimental data, 10 percentiles 

(d-values) for d10 - d90 of the cumulative volume distribution in both the model output and the 

experimental data were obtained. 

For the 2 g peanuts, the model was set to calculate the PSD after 17 chews, which was the 

average natural number of chews at swallow point of the 10 subjects in Flynn (2012). To be able to 

understand the effect of portion size on selection, the number of chews set for the 4 g peanuts was also 

set at a chew number which, in the experimental data, was the closest to 17 chews (the swallow point 

for the 2 g peanuts). This was at 15 chews. The fitted parameters were then obtained by minimising a 

normalised sum of squares residuals between the model predictions and the experimental data for the 2 

g (after 17 chews) and 4 g (after 15 chews) peanuts, which were run simultaneously. The PSO algorithm, 

as used in Chapter 4 (Section 4.3.4), was used to fit the model. The algorithm lower and upper bounds 

for the input parameters were also set the same as described in section 4.3.4. The fragmentation variable, 

r, an input parameter in the breakage function was also kept constant since the same type of peanuts 

were used. Thus, only the selection model input parameters were solved by the PSO algorithm, as 

described in Table 5-1 below. The model simulation was also repeated 50 times as the solution was 

shown to converge after 50 times previously in Chapter 4 (section 4.3.4.2). The R-squared coefficient 

was also calculated to determine the model goodness-of-fit. The full details of how the sum of squares 

residuals and the R-squared were calculated can be found in section 4.3.3. The model fitting provided 

two sets of input parameters related to each portion size studied. One set was the fitted model input 

parameters for the 2 g peanuts, and the other was the 4 g peanuts. A diagram, showing the steps in the 

process is shown in Fig. 5-5. 

5.2.5 Fitted input parameters  

This section outlines the results of the model input parameters to fit the PSD at swallow point 

at two portion sizes, 2 g and 4 g peanuts respectively. Because the focus of this section is to understand 

the different mechanisms of the selection process when the initial portion size is varied, the one-way or 

the two-way competition models were applied, and the model predictions were compared. 
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Table 5-1: Upper and lower bounds set in the PSO algorithm to fit the model to predict the PSD for 2 g 

and 4 g portion sizes. 

 

Parameter 

 

Selection model inputs Breakage model 

input 

 

Number of breakage sites  Affinity factor  

Multiplication 

factor, k  

Power, m Multiplication 

factor, p 

Power, q Fragmentation 

variable, r (2.91) 

Upper bound 90 1 0.007 1 - 

Lower  bound 500 3 0.004 3 - 

 

 

Fig. 5-5: The schematic diagram to take readers through the steps taken to minimise the sum of squares 

residuals to obtain the input parameters required to fit the particle size output for the 2 g and 4 g 

peanuts.  
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Table 5-2: Best fit model input parameters solved by the PSO algorithm to predict the PSD at swallow 

point for the 2 g and 4 g peanuts. The input parameters of 4 g peanuts when fitted with data of various 

number of chews in section 4.4.1 (Table 4-3) is also added for comparison. 

The fragmentation variable, r, in the breakage model was kept the same. The best-fit parameters for the 

two selection models are shown in Table 5-2. A comparison between the predicted and the experimental 

d-values is shown in Fig. 5-6. The results illustrated in Fig. 5-6 show that the model closely predicts the 

experimental data, with an R2 value of 0.99.  The model predicts the PSD at the 17th chew for the 2 g 

peanuts and the 15th chew for the 4 g peanuts. It is observed that the largest difference between the two 

portion sizes are the d50, d60, d70, d80 and d90 and these differences are larger for the 4 g peanuts. Both 

the one-way and two-way competition models fitted the experimental data well (R2 = 0.99). When fitted 

using the one-way competition model, the absolute value of the power m in the power function 

describing the number of breakage sites and particle size relationship for both portion size of peanuts 

was greater than 2. A value larger than 2 would be expected if the number of breakage sites is 

determined by a combination of projected area (X2) of individual particles and a degree of piling at the 

initiation of breakage (van der Glas et al., 2018). Therefore, the decrease in the number of breakage 

sites as particle size increases will be larger than 1/X2 (van der Glas et al., 1992). 

 

Selection 

model 

 

 

 

Portion 

size (g) 

Selection model inputs Breakage model 

input 

 

Global best fitness 

value (Normalised 

SS residuals) 

 

 

R-

squared 

Number of breakage 

sites, nb  

Affinity factor, O1 

Multiplication 

factor, k 

 

 

Power, 

m 

Multiplication 

factor, p 

Power, 

q 

Fragmentation 

variable, r 

 

 

One-way 

competition 

2 242.02 2.35 0.0009 2.21 2.91 0.002 0.99 

One-way 

competition 

4 242.02 2.39 0.0015 2.06 2.91 0.028 0.99 

Two-way 

competition 

2 236.58 1.64 0.0018 1.46 2.91 0.024 0.99 

Two-way 

competition 

4 236.58 1.96 0.0017 2.13 2.91 0.015 0.99 
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Fig. 5-6: A comparison between model predictions and experimental data of the PSD at swallow point for 

2 g and 4 g peanuts. The one-way competition model was used to predict particles that were selected.  An 

R2 value of 0.99 shows the goodness of fit of the model. 

The multiplication factor, p in the power-law model (describing the affinity factor and particle 

size relationship) was higher for the 4 g peanuts. The results are mainly caused by the fact that the 4 g 

peanuts would have contained a higher number of larger particles compared to the 2 g peanuts. The 

affinity factor is known to increase with particle size (van der Glas et al., 1992, 2018). It is also related 

to the ability of the teeth and the tongue to capture particles for breakage (van der Glas et al., 2018). 

The increase in the particle size, in principle, can give rise to increased effectiveness of the teeth and 

the tongue to select particles for breakage.  

There was no notable difference between the model input parameters between the 2 g and 4 g 

portion sizes when the two-way model was applied. The main difference between the two portion sizes 

will be the most different in the volume of larger particles than for the volume of smaller particles. 

However, since the two-way model assumes that the small particles can be selected as well as the large 

particles, the small difference between the two portion size is not surprising because the larger the 

particle size, the higher the affinity and the smaller the particles size, the higher the number of breakage 
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sites. Therefore, no size of particles (large or small) will be favoured according to the two-way 

competition model, hence the reason for the small difference in the model input parameters. 

 

 
Fig. 5-7: A comparison between model predictions and experimental data of the PSD at swallow point for 

2 g and 4 g peanuts. The two-way competition model was used to predict particles that were selected.  An 

R2 value of 0.99 shows the goodness of fit of the model. 

 

 

5.3 Case study two: Understanding the breakage function of peanuts with 

different initial moisture contents 
 
The second study aimed to understand if the differences in Particle Size Distribution (PSD) of peanuts 

of varying initial moisture content can be explained by differences in the breakage function. The study 

from Hutchings (2011) showed that the d50 of peanut bolus increases when initial moisture content 

increases when a 26 year old male had chewed five peanut variants of 1 g portion size. Four of the 

peanut variants were removed from food matrices (after moisture absorption had occurred) and one was 

a control (peanuts not prepared in a matrix). The aim of the study in Hutchings (2011) was to quantify 

the effect of preparation inside the matrices (gelatine gel, chocolate, scones and brownies) on the 

particle size outcome of the peanuts (because of the physical changes in the peanuts during baking or 
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setting inside the matrices). Nevertheless, in his preliminary experiments the peanuts also had different 

initial moisture contents. The parameters of mastication of the five peanut variants that were removed 

from matrices (prior to chewing) are shown in Table 5-3 below. 

The cumulative PSD of the peanut particles in the food bolus for the five peanut variants in 

Hutchings (2011) is shown in Fig. 5-8. The data in Fig. 5-8 was presented on a cumulative surface 

projected area fraction basis by imaging of the particles on a flatbed scanner. To allow comparison with 

modelling, the data was subjected to additional processing to convert it into a cumulative volume 

fraction basis (the MATLAB code can be referred in Appendix A). In order to demonstrate this, the 

cumulative area distribution from the 7.2% moisture peanuts is presented. 

Table 5-4 illustrates the original cumulative area distribution, F(s) data for all peanuts that were 

removed from different matrices, presented in terms of the initial moisture content from Hutchings 

(2011). The data was extracted from Fig. 5-8 using WebPlotDigitizer version 4.3 

(https://automeris.io/WebPlotDigitizer).  

 

Table 5-3: Mastication parameters for the five peanut variants from Hutchings (2011) 

Matrix 

(which the 

peanuts were 

removed 

from) 

Moisture 

content 

(gH20/100g 

total mass) 

Number of 

chews 

Chewing 

time (s) 

Mastication 

frequency  

(s-1) 

Volume of 

peanuts in 

bolus (mm3) 

Scone 7.2 ± 0.35 7.8 ± 0.4 5.04 ± 0.18 1.58 ± 0.03 1640 ± 70 

Gelatine gel  3.43 ± 0.10 7.5 ± 0.3 4.57 ± 0.10 1.64 ± 0.03 1350 ± 40 

Brownie 2.69 ± 0.32 7.5 ± 0.3 4.76 ± 0.15 1.58 ± 0.04 1270 ± 20 

Chocolate 1.94 ± 0.07 7.0 ± 0.4 4.57 ± 0.06 1.53 ± 0.02 1020 ± 40 

Peanuts only 1.99 ± 0.10 7.8 ± 0.2 5.00 ± 0.16 1.55 ± 0.05 980 ± 20 

 

 

https://automeris.io/WebPlotDigitizer


 

 

125 

 

 

Fig. 5-8: The cumulative PSD of peanut particles in the food bolus where peanuts were served after they 

were removed from food matrices. Light blue marker, peanuts removed from scone (7.8 chews); Orange 

marker, peanuts removed from gelatine gel (7.5 chews); Grey marker; peanuts removed from brownie 

(7.5 chews), Yellow marker, peanuts removed from chocolate (7 chews); Dark blue marker, peanuts with 

no matrix (7.8 chews). 1 g portion of peanuts. Figure from Hutchings (2011). 

Table 5-4: Cumulative area distribution data for the peanuts after being removed from different 

matrices, presented in terms of their varying moisture contents (MC) (Hutchings, 2011). 

 

diameter 

(mm) 

F(s) (%) 

       7.2% MC  

(Scone) 

 

 

3.4% MC 

(Gelatine 

gel) 

 

2.7% MC 

(Brownie) 

 

2.0% MC 

  (No matrix) 

 

1.9% MC 

(Chocolate) 

0.50 4.10 5.11 4.86 5.11 5.11 

0.72 20.90 23.19 26.49 29.29 26.75 

1.01 38.98 44.83 50.43 55.27 50.94 

1.43 58.59 64.95 70.81 75.13 70.29 

2.02 75.93 81.52 84.58 88.91 85.09 

2.85 88.18 93.01 94.79 96.32 94.54 

4.03 97.14 99.18 99.18 99.68 99.18 

5.70 100.00 100.00 100.00 100.00 100.00 

 

Two extra data points were then added in Table 5-4 so that the F(s) value will start at 0 %. Table 5-5 

shows the F(s) data with the added data points. Because the existing data is not sufficient for comparison 

against model predictions (all the percentiles used in fitting were not directly available), the intermediate 

F(s) values were calculated by simple linear and curved interpolation of a diameter series. A diameter 

series numbered between 0 and 6 with an increment of 0.05 was created. The F(s) values for the 

diameter between 0 and 0.47 mm were linearly interpolated, whereas the diameter between 0.47 to 6 
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mm was interpolated using a curve interpolation method. All interpolation was performed using the 

interp1 function from MATLAB. Fig. 5-9 shows the original and the newly interpolated cumulative 

area data for the peanuts in the scone matrix. 

Table 5-5: Cumulative area distribution data (with extra points) for the peanuts after being removed 

from different matrices, presented in terms of their varying moisture contents (MC). 

diameter 

(mm) 

F (s) (%) 

       7.2% MC  

(Scone) 

 

 

3.4% MC 

(Gelatine 

gel) 

 

 

2.7% MC 

(Brownie) 

 

 

2.0% MC 

  (No 

matrix) 

 

1.9% MC 

(Chocolate) 

 

0 0 0 0 0 0 

0.47 0 0 0 0 0 

0.50 4.10 5.11 4.86 5.11 5.11 

0.72 20.90 23.19 26.49 29.29 26.75 

1.01 38.98 44.83 50.43 55.27 50.94 

1.43 58.59 64.95 70.81 75.13 70.29 

2.02 75.93 81.52 84.58 88.91 85.09 

2.85 88.18 93.01 94.79 96.32 94.54 

4.03 97.14 99.18 99.18 99.68 99.18 

5.70 100.00 100.00 100.00 100.00 100.00 

 

The first step to convert into a cumulative volume fraction basis was to first change the F(s) data to a 

probability density function, f(s). This is done by calculating the derivative of F(s). After differentiation, 

the f(s) value was normalised with the total f(s) value to ensure the area under the curve value is equal 

to 1.  Fig. 5-10 shows the new f(s) plot. The f(s) data could now be converted to a volume fraction basis, 

f(v). This was done by multiplying the f(s) data with the diameter series data. The f(v) data was also 

normalised with the total f(v) value to obtain values under 1. Fig. 5-11 shows the f(s) and the newly 

computed f(v) data plotted in the same graph. The cumulative volume distribution function, F(v) can 

then be calculated from the probability density function by computing the cumulative sum. The 

computed F(v) data is shown in Fig. 5-12. The above shows the steps taken to convert the cumulative 

projected surface area data to a cumulative volume fraction data for the 7.2% moisture peanuts 

(recovered from the scone matrix). The same steps were employed for the other peanut chewing data. 

The cumulative volume fraction results for all of the peanuts is shown in Fig. 5-13  below. Using these 
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data (in cumulative volume fraction form), it was then possible to compare the model predictions to the 

experimental data.  

 

Fig. 5-9: The new interpolated F(s) data is denoted by the blue dotted lines, and the circle marker is the 

original data. 

 

 

 

Fig. 5-10: The probability density function, f(s).  
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Fig. 5-11: The probability density function for the projected surface area, f(s) and the volume, f(v). 

 

Fig. 5-12: The original F(s) data (blue round marker); The interpolated F(s), blue dotted line; The 

cumulative volume fraction F(v), red solid line.  
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Fig. 5-13: Cumulative volume (%) for peanuts after they were removed from matrices measured at 

swallow point.  

5.3.1 The model 

Similar to case study one, the model consisted of selection and breakage sub-models.  Each will be 

discussed. 

5.3.1.1 Selection equations  

 
The two-way competition model (Eq. 2.5) was used to describe the particle selection as it has been 

demonstrated to be sufficiently adequate to describe particle selection during an entire chewing 

sequence if chewing is started on a number of large particles (van der Glas et al., 2018). In addition, 

this case study aimed to understand the breakage functions of food, therefore using one selection model 

was sufficient as the different mechanisms of selection were not be explored. The peanuts were served 

in all cases with the same portion size and therefore selection should not vary. 

5.3.1.2 Breakage model equation 

 
Similar to case study one, the Austin (1971) breakage model (Eq. 2.10) was applied. Because the model 

is mechanistic, the fitted parameter from the model can also be used to explain the breakage properties 

of different food conditions during mastication (e.g. the effect of the initial moisture content on the 
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breakage properties of peanuts). In addition, the breakage model also consists of one fitted parameter 

which reduces the degree of freedom for the optimisation.  

5.3.1.3 Discretised population model 

 
The PSD was predicted using the discretised population balance model developed as described in 

section 3.2.3. 

5.3.2 Model inputs 
 

Input 1: PSD after a single chew as a model input 

The PSD of the peanut bolus after a single chew from the experimental data was used as the initial PSD 

input to predict the PSD at swallow point for the 2 g and the 4 g peanuts in case study one. In case study 

two, which was based on Hutchings (2011), the mass of the peanuts served was 1 g. The same method 

employed in section 5.2.1 was used to ensure the mass of peanuts was always 1 g. Fig. 5-14 below 

shows the generated 1 g distribution after a single chew from Hutchings (2011) when compared against 

the 4 g distribution after a single chew from Flynn (2012). 

Input 2: Selection and breakage model input parameters 

The input parameters required for the two-way competitive model are the number of particles, the 

number of breakage sites and the affinity factor. The degree of fragmentation variable is required for 

the breakage function. The full details of the input parameters required for the selection and breakage 

functions have been discussed previously in Chapter 3.  

5.3.2 Model fitting  

The same model-fitting approach that was taken in section 5.2.4 was employed to fit the model for the 

peanuts of different moisture contents which were removed from matrices from Hutchings (2011). The 

ten cumulative volume percentile diameters (dx-values) were extracted from the model output and the 

experimental data at swallow point, where the sum of squares residuals was minimised with a PSO 

algorithm to find the best-fit input parameters. Although a similar approach was taken in section 5.2.4, 

this work differs in the number of input parameters solved by the PSO algorithm. Because the subject 

in Hutchings (2011) is a different person to the subject in Flynn (2012), all of the selection input 

parameters including the multiplication constant, k, were solved by the PSO algorithm. It was thought 
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that the difference in breakage function of the peanuts in matrices was the reason for the difference in 

PSD at swallow point (Hutchings, 2011). For this reason, the PSO algorithm was set up in such a way 

to solve one set of selection model input parameters and five sets of input parameters relating to the 

breakage function. Fig. 5-15 presents a diagram to understand this process, where the algorithm is 

solved for one set of selection model input parameters (as it is based from the same person) and one 

fragmentation variable, r, for each peanut system.  

 

 

 

 

Fig. 5-14: Cumulative mass fraction vs particle size (mm) for 4 g and 1 g peanuts respectively. Red 

marker = 1 g PSD, Black marker = 4 g PSD. 
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Fig. 5-15: A schematic diagram showing the steps undertaken to solve model input parameters for 

peanuts with different moisture contents after being removed from matrices when chewed at swallow 

point. The algorithm solves for one set of selection input parameters and five sets of breakage input 

parameters. 
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5.3.3 Fitted input parameters  

Hutchings (2011) observed that higher moisture peanuts (after being removed in matrices), had 

a larger median particle size in the bolus at swallow-point. He proposed that the moisture content affects 

the physical properties of the peanut particles, which in turn influences the breakage function and the 

resulting particle size. The purpose of this section was to test this hypothesis. This is done by examining 

the input parameters which have been fitted to the observed data without bias and ask the question 

‘Does the model predict more breakage for drier peanuts?’on the role of breakage function in affecting 

the resulting particle size is tested in this section by model fitting.  

The model output was best-fit to the experimental particle size data to determine the breakage 

input parameters in each type of peanuts studied. The two-way competition model was used to describe 

particle selection as it has been demonstrated to be sufficiently adequate to describe particle selection 

during an entire chewing sequence if chewing is started on a number of large particles (van der Glas et 

al., 2018). No variable was kept constant in the selection function for this case study as the subject 

(Hutchings, 2012) was different from the subject in section 6.6.1 (Flynn, 2012) and therefore is likely 

to have had different occlusal area and chewing behaviour. The best-fit parameters for the five different 

peanuts at the swallow-point are shown in Table 5-6 below. Fig. 5-16 shows the comparison between 

the fitted-model and experimental data of the PSD at swallow point for the five peanuts of different 

moisture contents that were removed from matrices. 

Based on the best-fit results in Table 5-6, the following observations were made. The multiplication 

factor, k, in the power function describing the number of breakage sites and particle size relationship 

was 362.62, which is in good agreement with the range of values obtained in van der Glas et al. (2018). 

The power, m of the power function was greater than 2, which indicated that the number of breakage 

sites for all of the peanuts used in this study was dependent on a combination of projected area (X2) of 

individual particles and a degree of piling at the initiation of breakage. The multiplication factor, p and 

the power q in the power function describing the affinity factor found in this study corroborates with 

the range of values obtained in van der Glas et al. (2018). The results of the fragmentation variable, r, 

which is an input parameter in the breakage function was highest for the peanuts of 2.0% moisture 
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content (2.05) and lowest for peanuts of 7.2% moisture content (1.02). The result agrees to the 

hypothesis being tested, that dryer peanuts will fragment more (a larger value of r denotes a greater 

degree of fragmentation of a particle, effectively the size distribution of broken particles (van der Glas 

et al., 1992; Lucas and Luke 1983a)). The results obtained from this study helps justify that the physical 

properties of the peanuts affect the breakage function from the different values of r obtained as seen in 

Table 5-6.   

Table 5-6: Best fit model input parameters solved by the PSO algorithm to predict the PSD at swallow 

point for the five peanuts that were removed from matrices at different moisture contents. A good 

agreement between the model and data is found (R-squared > 0.96 for all peanuts) 

 

Selection 

model 

 

Moisture 

content 

of 

peanuts 

(%) 

Selection model inputs Breakage 

model input 

 

Global best 

fitness value 

(Normalised 

SS 

residuals) 

 

R-

squared 

Number of breakage 

sites, nb  

Affinity factor, o1 

Multiplication 

factor, k 

Power, 

m 

Multiplication 

factor, p 

Power, 

q 

Fragmentation 

variable, r 

Two-way 

competition 

7.2 362.62 2.34 0.0016 2.27 1.02 0.015 0.98 

Two-way 

competition 

3.4 362.62 2.34 0.0016 2.27 1.33 0.015 0.98 

Two-way 

competition 

2.7 362.62 2.34 0.0016 2.27 1.69 0.004 0.99 

Two-way 

competition 

2.0  362.62 2.34 0.0016 2.27 2.05 0.045 0.96 

Two-way 

competition 

1.9 362.62 2.34 0.0016 2.27 1.69 0.008 0.99 
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Fig. 5-16: A comparison between model predictions and experimental data of the PSD at swallow point 

for the five peanuts that were removed from matrices and have different moisture contents. Dotted lines 

are model predictions and open circles are the data. The error bar is the standard deviation of the model 

predictions after 50 simulations.  

5.4 Chapter conclusion 

 
In this chapter, two case studies were presented to test the application of the models developed in 

Chapter 3 in providing useful information for food design. The first aimed to understand which of the 

one-way or two-way competition models were more appropriate when the portion size of peanuts was 

varied.  The second aimed to interrogate the model parameters, which were optimised without bias, to 

see whether they self-adjusted to reflect the variation in the physical properties of the peanuts.  

The results of the first case study showed that the one-way competition model was sufficient to 

describe the particle selection for both the 2 g and 4 g peanuts. The 4 g portion had more peanuts, with 

a smaller fraction selected each chew, which was reflected by a higher power function describing the 

affinity factor when the one-way model was applied. The results of the second case study showed that 
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the value of the degree of fragmentation (r) varied to the changes in the initial moisture content, i.e., 

higher moisture content had lower r, hence coarser PSDs.  The findings of the study are important 

because they help justify that the physical properties of the peanuts affect the breakage function.  

The chewing models developed in Chapter 3 were successfully applied to peanuts to justify 

their application for food design. The next step will be to expand the models to account for a novel food 

system for which chewing influences digestion and sensorial outcomes. This aspect will be explored in 

the next few chapters.   
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Chapter 6 Influence of mastication on aroma release of rice 
 

6.1 Introduction 
 
During oral processing, the breakdown of particle size results in an increase in the surface area of food 

particles.  The creation of new surfaces exposes volatiles and so helps their release by volatilisation and 

diffusion along a vapour pressure gradient. Taste and aroma compounds are then detected by the 

olfactory receptors in the nasal cavity (Chen, 2015). Harrison et al. (1998) modelled in vivo aroma 

release during chewing of solid foods and showed that it is dependent on selection and breakage 

functions during mastication. However, the model was never validated with experimental data. The 

most comprehensive validated model of aroma release during oral processing of solid foods was 

developed by Doyennette et al. (2014) for cheese. In a sensitivity analysis, they showed that the air-

bolus contact surface area could affect aroma release, but the model was simplified by assuming that 

the bolus surface area increases linearly with time.  

To date, there is still a gap in the literature in developing a validated and comprehensive mechanistic 

model that couples both mastication and mass transfer principles to predict flavour release, particularly 

for starch-based food systems. The chewing models can be integrated with flavour release to predict 

time-intensity flavour release profiles. If successful, the simulations can be used to formulate foods with 

a specific flavour profile, accounting for individual or group differences in chewing behaviour (Harrison 

et al., 1998). 

 Before the model was formulated, it was important to conduct in vivo experiments to provide 

insights on the role of chewing on the flavour release of a starch-based food system. The results of the 

experiments will help to understand specific mechanisms in chewing that affects aroma release so that 

a robust conceptual model and its relevant assumptions can be developed. Furthermore, the 

experimental data will also be used to validate model predictions.  

Prior to the in vivo study, a series of experiments were conducted to select a novel starch-based 

food system for the model implementation. When the bolus properties of three different starch-based 

food systems were compared, it was found that cooked white rice was the most suitable food system as: 
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1. The bolus PSD and saliva content of cooked rice showed strong correlations with digestion in 

an in vitro study (see Appendix E for further details of this study). 

2.  It was found that the bolus saliva content increases linearly in all subjects with increasing 

mastication stages, which allowed a constant saliva flow rate to be assumed in the model (see 

Appendix F for further details of this study). 

3. Cooked rice forms a particulate bolus during chewing which allows the competitive selection 

models to be used.  

4. When the bolus losses were compared against two other starch-food systems, cooked rice had 

the highest bolus recovery (80-95%) (readers are referred to Appendix F for further details of 

this study). 

5. Cooked rice is an aromatic food system.  

The above reasons justified that the reasons why cooked rice was chosen as the food system for 

model application. Thus, the main objective of this chapter is to consider how the selection-breakage 

model could be adapted to the aroma release of cooked white rice. These factors could be identified by 

comparing the results of the physiological, oral processing, and aroma release parameters measured for 

five subjects against a conceptual model hypotheses. Hence, the study was divided into four sub-

objectives: 

1. To develop a conceptual model which links the subject’s physiological and oral processing 

parameters to aroma release. 

2. To measure the physiological variables for five subjects in vivo.  

3. To measure the dynamics of bolus formation during oral processing of white rice for five 

subjects in vivo;  

4. To measure the dynamics of aroma release during oral processing of white rice for five subjects 

in vivo.  
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6.2 Conceptual model relating the physiology and oral processing to aroma 

release 
 
To explore the link between aroma release and the causative factors of physiology and oral processing, 

the related work on this topic was briefly reviewed. The retronasal aroma release during food 

consumption has been shown to depend on the physical structure of food, the physiology of the subject 

and their oral processing in the mouth (Foster et al., 2011; Ruijschop et al., 2011; Frank et al., 2012; 

Feron et al., 2014; Labouré et al., 2014; Jourdren et al., 2016;). The velum openings, swallowing, aroma 

interactions with the oral mucosa, the volume of the nasal cavity and the breath air flow rate and 

frequency were shown to impact retronasal aroma release when liquid and semi-liquid foods were 

consumed during in vivo experiments (Buettner et al., 2002; Trelea et al., 2007). For dairy-based 

products such as cheese, subjects who had the highest chewing activity, mouth coating and velum 

opening had the highest level of aroma release (Feron et al., 2014; Labouré et al., 2014).  

Oral processing has been related to aroma release. For instance, the moisture content and the 

rheology of the bolus at swallow point have been shown to influence aroma release during consumption 

of model cheeses (Feron et al., 2014; Labouré et al., 2014; Guichard et al., 2017). However, for more 

semi-solid and solid-based products, the oral processing time is longer, requiring more chewing and 

tongue manipulation, and so these factors are also expected to be important to aroma release (Frank et 

al., 2012; Forde et al., 2017).  Indeed, the bolus particle size distribution, which dynamically changes 

during mastication, has been shown to affect aroma release through a mechanistic model (Harrison et 

al., 1998; Doyennette et al., 2014). Breakdown generates new surface area, which helps expose and 

release taste and aroma compounds from the food matrix that are then detected by the olfactory 

receptors in the nasal cavity (Chen, 2015). Harrison et al. (1998) predicted using their model that in-

vivo aroma release during chewing of solid foods is dependent on selection and breakage functions 

during mastication, but the model was never validated with experimental in vivo data. Similarly, 

Doyennette et al. (2014) developed a mathematical model of in vivo aroma release of cheese and showed 

that the air-bolus contact surface area is essential. Despite these inferences from theoretical analysis, 
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there have been few attempts to experimentally relate the bolus particle size distribution to aroma 

release (Foster et al., 2011; Bornhorst et al., 2013; Doyennette et al., 2014).  

 

Fig. 6-1: A diagram to demonstrate the possible factors that can influence aroma release.  Physiological 

parameters such as oral volume, pharynx volume and nasal volume can affect aroma release. Oral 

processing variables include the mastication efficiency, saliva flow rate, chewing frequency (rate) and the 

dynamics of the particle size distribution (PSD). 

The above discussion demonstrates the clear link between aroma release and the causative 

factors of physiology and oral processing (Fig. 6-1). The interaction between these factors forms the 

basis for a concept-model, explained below. 

 Physiologically, subjects who have a large oral volume will also have a correlated large saliva 

flow rate at rest (Jourdren et al., 2016).  Thus, it would be expected that these subjects perceive a low 

retronasal aroma release because the saliva will coat, absorb and dilute the flavour compounds as they 

release from the food matrix during mastication (Doyennette et al., 2014). A second factor is a nasal 

volume. In a computer simulation of aroma release from yoghurts, subjects with small nasal volumes 

gave high-intensity peaks followed by a sharp decrease in the volatile concentration, while subjects 

with large nasal volumes gave low-intensity peaks but longer signal duration (Trelea et al., 2007). The 

third factor is pharynx volume, but this has not been shown to influence the aroma release (Doyennette 

et al., 2014), although it is possible that the pharynx volume may have an effect if the velopharyngeal 

opening is enormous, allowing a larger volume of air to exchange between the oral and the pharynx 
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cavities. It is also possible that with a larger pharynx, a larger layer of food deposits may remain as food 

residues in the pharynx, allowing the further release of aroma after mastication.  

In terms of the effect of oral processing behaviour, three factors influence retronasal aroma 

detection.  First, subjects with high masticatory efficiency and a high chewing rate are expected to 

produce a broader and finer particle size distribution during mastication. Subjects who produce boluses 

with smaller particles will have created more surface area and so are expected to perceive a higher 

retronasal aroma release intensities due to a faster release and movement of the taste and aroma 

compounds from the food matrix into the saliva and vapour phases. Second, subjects who have high 

saliva production rates are expected to have a weak perception of aroma release because of the reasons 

explained earlier. Lastly, subjects who have more food residues remaining in the mouth might perceive 

a more intense and lingering aroma released after swallowing. This completes the simple concept-model 

which forms the hypotheses of expected behaviour to compare against experimental data. 

6.3 Materials and methods 
 

6.3.1 Choice of the food system  

 
No previous studies have looked at the influence of food oral processing on the retronasal aroma release 

of white rice. This study can be useful for parts of the population in the world that consume white rice 

in their diet, due to its impact on health issues when consumed excessively. For instance, white rice has 

been shown to significantly increase the risk of type 2 diabetes, especially among Asian (Chinese and 

Japanese) populations (Hu et al., 2012). In some parts of Asia, such as Malaysia and Singapore, rice is 

often flavoured with liquid products of high-fat content such as coconut milk and chicken broth or fried 

with a high amount of vegetable cooking oil, causing obesity issues (Nidhi et al., 2010; Lani et al., 

2015; Umachandran et al., 2018). As such, improved understanding on what effects chewing of rice 

and the resultant impact on aroma release is useful. 

6.3.1.1 Cooking recipe 

White Jasmine rice (Oryza sativa L.) was purchased from a local supermarket (Auchan, Plaisir, France). 

Rice was cooked using a 1:2 ratio (125 g rice in 250 g water (Evian)) in a Microwave rice steamer 
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(Sistema®, New Zealand) using a microwave (Samsung, Model: MS23F300EAW) at 900 W for 9 

minutes. A microwave rice steamer was used as rice can be cooked more quickly than using a standard 

rice cooker. The cooking recipe followed the manufacturer’s recommendation. The rice was also 

cooked in three batches to check the repeatability of the cooking method. The moisture content results 

showed that the rice samples in all batches were within ± 0.9% variation between batches. 

6.3.2 Subjects used 

 
Five healthy subjects (1 male and 4 female, aged from 24 to 40 years old) were recruited for the study. 

Each subject had good overall health, good natural dentition, and no dentures or prosthetic teeth. None 

of the subjects were taking any medication that could affect muscle function or saliva flow. Subjects 

gave their written informed consent to participate in the study (see Appendix C, for example of a consent 

form). They were asked not to eat or drink for at least one hour before the sessions.  The study was 

given ethical approval by Massey University’s Human Ethics Committees (4000020047) and was 

judged to be low risk. 

6.3.3 Physiological variables 

 

6.3.3.1 Oral cavity, pharynx and nasal cavity volume 

 
Each subject’s oral cavity, pharynx and nasal cavity volume were measured with an acoustic 

rhinopharyngometer from Eccovision® (Sleep Group Solutions, North Miami Beach, FL, USA). The 

volume was measured by asking subjects to breathe through their mouths. The rhinopharyngometer 

provided all the intermediate volume of compartments in the nasal cavity such as the left and right 

nostril compartments, the left and right anterior inferior turbinate compartments and the left and right 

posterior inferior turbinate compartments in cm3. The pharynx measurements included the oropharynx 

and the hypopharynx volumes. The total area of a compartment (oral cavity, pharynx and nasal cavity) 

was therefore the sum of all intermediate volumes that were measured by the rhinopharyngometer. 

(Doyennette et al., 2011). Three repetitions were made for each subject, and the average value was 

calculated.  

6.3.3.2 Stimulated salivary flow rate and salivary flow rate at rest 
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Salivary flow rate at rest (g.min-1) was measured according to the method by Gavião et al., (2004). 

Subjects were asked to not swallow and to collect saliva in their mouth at rest and spit it out every 30 

seconds into a pre-weighed cup for a total duration of 5 minutes. For the stimulated salivary flow (g 

min-1), subjects were asked to chew a piece of 0.5 g of Parafilm (American National Can Company, 

Menasha, WI, USA) also for 5 minutes and to spit their saliva into a pre-weighed vessel every 30 

seconds (Drago et al., 2011).  The salivary flow rate was the ratio between the mass of saliva that was 

spat out and the sampling duration. Three repetitions were made for each subject, and the average value 

was calculated.  

6.3.3.3 Individual masticatory index 

 
The individual masticatory index was measured for each subject by chewing standardised cylinders (3 

g; h: 1.8 cm; d: 1.4 cm) of Optosil dental silicone during 20 chewing cycles as described by Panouillé 

et al., (2014). The particles were expectorated and then dried in an oven for 1 hour at 75°C. The index 

was determined as the ratio of the amount of dried sample that passed through a 4 mm sieve and the 

amount of expectorated sample. Triplicate trials were performed for each subject, and the average value 

was calculated. 

6.3.3.4 Determination of the natural number of chews and oral processing time before 

swallowing 

 
Five grams rice samples were transferred into small containers and were kept warm in a water bath at 

60°C (Fig. 6-2). The rice was served to the subjects after cooling down to approximately 50°C, which 

is the temperature at which rice is usually consumed (Gray-Stuart, 2016; Trevan, 2018). A preliminary 

study with two subjects showed that the portion size per mouthful of rice using a tablespoon had a small 

range of 5.02 ± 0.03 g. The portion size per mouthful for the two subjects was determined by asking 

each subject to take rice using a tablespoon from a container as they would do under normal eating 

conditions; where the average in triplicate was the portion size per mouthful (Moongngarm et al., 2012). 

The rice in the container was weighed before and after the subject took a spoonful of rice to determine 

the portion size. Due to the small variation of the rice portion size between the two individuals, all five 

subjects were given 5 g of rice samples (wet basis) in the study.  
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The oral processing time before swallowing for all subjects was measured from the point when 

the 5 g rice sample was placed in the mouth and stopped when the subjects raised their hand to indicate 

they were ready to swallow. The number of chews taken to reach the swallowing point was counted by 

observing the upward and downward movement of the chin. Triplicate trials were performed for each 

subject, and the average value was calculated. 

 
Fig. 6-2: Rice kept warm in 60°C water bath. 

 

6.3.4 In vivo oral processing  

  

6.3.4.1 Bolus collection 
  
Each subject participated in two individual sessions of 30 minutes for bolus collection. One session was 

dedicated to particle size measurements and one session for the bolus moisture content, the amount of 

saliva incorporated, and the amount of residual bolus after expectorating. The bolus expectorated at 

25%, 50%, 75%, 100% of their average total number of chews before swallowing (this parameter was 

already pre-determined as described in section 6.3.3.4) were collected. The researcher counted the 

number of chews (by observing the upward and downward movement of the chin) and told the subjects 

to expectorate their bolus (Erlenmeyer flask for PSD analysis and aluminium dishes for bolus moisture 

content) once the specified number of chews was taken at each mastication stage. Triplicate trials were 
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performed for each subject and all analysis were performed in the same day. Altogether, there were 120 

boluses collected for the bolus properties analysis.      

6.3.4.2 Particle size distribution analysis 

 
The particle size distributions of the bolus samples were analysed by image analysis. Bolus samples 

were prepared as described by Le Bleis et al., (2013). Subjects were asked to expectorate their bolus in 

an Erlenmeyer flask and rinse their mouths with 30 mL of water (Evian) before and after chewing the 

rice. The rinsings were added to the Erlenmeyer flask. Each bolus sample was then diluted with 100 

mL of glycerol (Sigma-Aldrich, USA) at room temperature for 20 minutes under constant shaking at 

100 rpm (Fig. 6-3).  

 
Fig. 6-3: Rice bolus diluted in glycerol under constant shaking at 100 rpm. 

 

The high viscosity and density of glycerol aid in the separation of bolus particles (Le Bleis et 

al., 2013). After the dispersion of bolus particles in glycerol, solutions were poured into Petri dishes 

(diameter: 140 mm). To further aid the separation of bolus particles for image acquisition, the samples 

collected at higher oral processing times such as just prior to the swallow point (i.e., a chewing interval 

of 100%) were separated into 3 Petri dishes rather than 2 Petri dishes used for samples collected earlier 

in the mastication sequence. Particles that remained stuck together were gently separated with a plastic 

spatula prior to image acquisition (Fig. 6-4). Three replicates were performed for each chewing interval 

(25%, 50%, 75%, and 100%) of oral processing for all subjects. Before the in vivo experiments, the 

initial particle size distribution of the rice samples was also determined in triplicate.  Particle images 
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were acquired using a Canon EOS 700D camera (Canon Inc., Japan) and a ScanCube 308 (Altawak 

Technologie, France) that conferred a standardised brightness (Fig. 6-5). 

 

Fig. 6-4 Petri dish containing particles and glycerol which are gently separated using a plastic spatula 

prior to image acquisition.  

 

 

Fig. 6-5: Petri dishes containing the boluses were placed inside ScanCube 308 which conferred a 

standardised brightness. A camera is used to capture the image of the bolus. 
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The particle size distribution (PSD) analysis was performed using ImageJ software (version 1.52a, 

National Institutes of Health, USA). A black and white threshold was applied to the images, and the 

software provided the projected area (mm2) of individual particles. The data was then exported to Excel 

(2016, Microsoft Corporation, USA).  

6.3.4.2.1 Calculation of volume from projected area 

  
The volume of a single particle in the image was predicted by multiplying the projected area with an 

assumed height (Eq. 6.1). The height was calculated by multiplying a characteristic dimension of the 

projected area with a constant factor (Eq. 6.2). A circular shape was assumed to calculate the 

characteristic dimension of the projected area (diameter in mm). Thus, 

𝑉 = ℎ. 𝐴 (6.1) 

where V is the volume in mm3, h is the assumed height in mm, and A is the projected area of a single 

particle in mm2. h is calculated as 

ℎ = 𝑓. (
4. 𝐴

𝜋
)

1
2

(6.2) 

where f is a factor.  

The factor, f was obtained by minimising the residual sum of squares between the total predicted 

volume of particles calculated in Eq. 6.1 and the experimental recovered volume of bolus (Gray-Stuart, 

2016) (Fig. 6-6). As the recovered volume of the bolus used for the particle size analysis was not known 

due to the difficulty of separating the particles from the glycerol, it was assumed that the volume of the 

recovered bolus was the same as the recovered bolus determined from the moisture content analysis. 

The median equivalent diameter d50 (mm), the quartiles d75 (mm), d25 (mm) and the interquartile ratio 

d75/d25 (no unit) were obtained to describe the degree of degradation and the spread of the PSD 

respectively (Jourdren et al., 2017). According to Gray-Stuart (2016), particle size reduction of rice 

during oral processing follows a ‘cleave and paste’ breakage mechanism where a fraction of each 

particle undergoes fracture to break into a discrete number of daughter particles and the remaining 

fraction is pasted to become suspended solids within the liquid phase of the bolus. These pasted particles 

and any fractured daughter particles that are smaller than 0.355 mm were assigned to the suspended 
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solids phase and were no longer considered to participate in size reduction.  Following the analysis as 

above, the volume of the particles greater than the threshold size of 0.355 mm was summed and the 

difference with the total volume of bolus was determined to calculate the volume of bolus, which was 

considered pasted. The ratio of the volume of pasted particles to the total volume of particles measured 

after image analysis was deemed as the pasted fraction.  

6.3.4.3 Bolus moisture content, the amount of saliva incorporated and the amount of 

residual bolus after expectorating 

For the remaining bolus characterisation measurements, subjects were asked to expectorate their bolus 

into pre-weighed aluminium dishes (at the various mastication stages as described above). Subjects 

were also asked to rinse their mouths with 30 mL of water before and after chewing the rice. The 

moisture content of the expectorated bolus (g per 100 g of bolus) was determined in triplicate for each 

oral processing moment by drying the bolus samples in an oven at 110°C for a minimum of 15 hours 

(Jourdren et al., 2017). The amount of incorporated saliva in the bolus (g saliva per 100 g of dry matter) 

and the amount of rice remaining in the mouth after spitting (w/w % residues) were calculated as 

described by Drago et al., (2011) and Motoi et al., (2013).   

 

 

Fig. 6-6 The factor, f from Eq.6.2 to calculate the height of the particle at different mastication stages (3 replicates 

each), obtained by minimising the residual sum of squares between the total volume of particles calculated in Eq. 6.1 

and the experimental recovered volume of bolus. 
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6.3.5 Rice flavouring 

 

6.3.5.1 Selection of rice 

 
As described above, Jasmine rice was used in in vivo experiments in this study. Prior to making this 

selection, a comparison between Basmati and Jasmine rice was conducted.  A preliminary in vitro aroma 

release analysis was first performed to compare the differences in aroma compounds between the two 

types of rice.   

The first part of the in vitro test was conducted using a Dynamic Headspace (DHS) - Gas 

Chromatography (GC) coupled with a Mass Spectrometer (MS) (DHS : MPS autosampler from Gerstel, 

GC: Agilent 7890B, MS: Agilent 5977B MSD, Agilent Technologies, Santa Clara, USA). The 

experimental protocol was carried out as follows. Three grams of cooked rice sample were weighed in 

20 ml vial (Gerstel, Muihein an der Ruhr, Germany). Each sample was then incubated at 40°C for 3 

min with agitation at 500 rpm. The headspace was then purged with a constant flow of helium at 30 

ml/min for 10 min at 30°C and aroma compounds were trapped on an adsorption unit (Tenax TA). The 

trap was dried for 6 minutes under a stream of helium to remove traces of water. Then the trap unit was 

desorbed from 30°C to 270°C with a rate of 60°C /min and an isotherm of 7 min (270°C) in a cool 

injection system at -100°C.  The column head injection was carried out from -100°C to 270°C with a 

rate of 12°C /min and an isotherm of 5 min (270°C).  

The GC oven temperature was programmed from 40°C with an isotherm of 5 min, to 155°C 

with a rate of 4°C/min, then to 250°C with a rate of 20°C/min with a final isothermal stage of 5 min. 

The GC was equipped with an apolar capillary column (Agilent, DB-5MS, 60 m x 320 μm x 1 μm) and 

with a helium flow of 1.6 mL/min (carrier gas). A mass spectrometer was used to characterize aroma 

compounds. It was performed in the electron impact mode at 70 eV, in full scan from m/z 29 to 300 

U.M.A. (United Mass Atomic or Dalton). The ionisation source was set at 230°C and the quad at 150°C. 

The compounds were identified by comparison of their mass spectra with those of the NIST 2017 Mass 

Spectral Library. The retention times were also used for characterization. The data was reported as peak 

area for each molecule detected. Quantification data were obtained from the integration of the areas 

from the total ion current (TIC). 
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Table 6-1 Aroma compounds of Basmati and Jasmine Rice after measurement in DHS-GC-MS 

 

 

When comparing the two types of rice, as shown in Table 6-1 above, jasmine rice was more 

aromatic than basmati. This is because jasmine rice contains more aroma compounds than basmati. 

Although it was shown that rice possesses a distinct “pop-corn” like aroma (2-acetyl-1-pyrolline) in 

previous studies (Lin et al., 1990; Buttery et al., 1993), it was found that hexanal was present in the 

greatest amount in both types of rice from the DHS-GC-MS results (highlighted in red in Table 6-1). 

Because jasmine rice was more aromatic than basmati, it was used in the following in vitro test using 

the PTR-MS.  

6.3.5.2 In vitro and in vivo PTR-MS tests 

 
The second part of the in vitro test was conducted using a Proton Transfer Reaction Mass Spectrometry 

(PTR-MS). Ten-gram samples of cooked rice were stored at 37°C for 2 hours in 100 mL flasks that 

were equipped with valved caps (GL 45, Duran Group, Wertheim, Germany). The equilibration time 

was determined after observing the total concentration of hexanal in the rice (area under the curve) (m/z 

83) at three different periods (2 hours, 5 hours and 6 hours) in the headspace which it showed that the 

total concentration was smaller due to losses after 5 and 6 hours respectively (Fig. 6-7). These losses 

could be attributed to the dilution of room air slowly leaking into the flasks despite the valved caps 

being kept closed throughout the experiments. Another possible explanation may be due to the ability 
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of aroma compounds to partition with the wall of the flasks over time which could contribute to the 

losses (Matsunaga & Ziemann 2010). Thus, due to the losses associated with longer equilibration time, 

it was assumed that the optimum equilibration time was reached after 2 hours. It will be beneficial 

however to measure the concentration at intervals before 2 hours (e.g. 30 minutes and 1 hour) in the 

future to see if the concentration decreases after 2 hours. 

A highly sensitive PTR-MS apparatus (PTR-MS Control 2.7, Ionicon Analytik, Innsbruck, 

Austria) was operated at a drift tube temperature, voltage and pressure of 60°C, 600.1 (± 0.4) V and 2.0 

(± 0.01) mbar, respectively, resulting in a field density ratio (E/N) of  151.4 (± 1.4 Td) (Doyennette et 

al., 2014; Jourdren et al., 2017). The PTR-MS was used in a SCAN mode over a mass range of m/z 20-

200 with a response time of 100 ms per peak.  In the first five cycles of the measurement (90 s), the 

volatile compounds in the ambient air (i.e., the background signal) was measured. The next 15 cycles 

(290 s) were then dedicated to measuring the sample headspace (Jourdren et al., 2017). The volatile 

compounds present in the sample headspace were then introduced into the system through a capillary 

line heated to 110°C at a flow rate of 100 mL/min.  

a. Intensity (a.u)  vs number of cycles  b. Area under the curve 

 

 

Fig. 6-7 Data showing the intensity vs number of measurement cycles (a) and area under the curve (b) of 

PTR-MS results of hexanal (m/z 103) in cooked rice at different equilibration time which was measured 

in vitro.  
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Fig. 6-8: In vitro set up to measure aroma compounds in rice using the PTR-MS 

In all three batches of rice, two fragmented protonated molecular ions that represented hexanal 

(m/z 55 and m/z 83) were observed as the top two protonate molecular ions that were detected. Previous 

studies have also shown that hexanal is an aroma compound typically found in cooked rice (Buttery et 

al., 1983; Wei et al., 2017; Dias et al., 2019). Although 2-acetyl-1-pyrroline is the aroma compound 

that gives the rice its distinct flavour (Buttery et al., 1983; Wei et al., 2017; Dias et al., 2019), it was 

difficult to trace the protonated molecular ion that belonged to 2-acetyl-1-pyrolline (m/z 112). 2-acetyl-

1-pyrolline is an unstable chemical compound in the presence of oxygen and moisture (Pico et al., 

2018), therefore once protonated, the compound breaks into smaller fragmented protonated ions when 

PTR-MS is used. The presence of smaller fragmented ions resulting from the reaction in PTR-MS made 

it challenging to classify ions that belong to 2-acetyl -1-pyrroline. As a result, it was decided that the 

protonated molecular ion representing hexanal was used for monitoring in multiple ion detection (MID) 

mode in the following in vivo trial. However, before conducting in vivo experimental trials with the five 

subjects, it was essential to run a preliminary trial with a smaller number of subjects (i.e. two subjects) 

to be certain that hexanal could be detected in the PTR-MS during in vivo.   

Two subjects were recruited for the preliminary in vivo trial. The presence of aroma compounds 

available in the cooked rice was measured online in a SCAN mode using the PTR-MS.  The PTR-MS 

instrument was operated in similar conditions to as described previously in the in vitro test. Both 
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subjects were served with 10 g of rice. The experiment was run in duplicate for each subject. Fig. 6-9 

shows the top 20 area under the curves for various protonated molecular ions for the two subjects. The 

results show that during in vivo conditions, a lot of fragmented protonated molecular ions were formed, 

which made it challenging to choose ions for monitoring. 

Additionally, comparing the results obtained between in vivo and in vitro tests, the AUC (area 

under the curve) values obtained during in vivo were much lower. There are several reasons why this 

may happen. It was shown during in-mouth conditions that aroma compounds could interact with the 

oral-pharyngeal-nasal mucosa layers (Déléris et al., 2016). The interaction between the starchy 

components of rice with the mucosa layers could reduce the intensity of the targeted aroma compounds 

when measured in the nose air-space. Additionally, it is also possible that the aroma compounds were 

diluted with an increased amount of saliva during oral processing. Thus, because of the difficulty to 

choose a specific aroma compound for monitoring, it was decided to cook the white rice with water 

spiked with food-grade chemical compounds that were known to be detectable during in vivo 

conditions.  

 

 

Fig. 6-9: The 20 highest protonated molecular ion (AUC) during experimental in vivo trial of two subjects 

when measured in SCAN mode of the PTR-MS 

6.3.5.3 Flavouring the rice with food-grade aroma compounds 
 
The cooked rice was spiked with 2-nonanone and ethyl propanoate. Both are chemical compounds that 

had been shown to be detectable in previous in vivo studies using PTR-MS (Doyennette et al., 2011; 

Labouré et al., 2014; Déléris et al., 2016). Moreover, 2-nonanone was also observed to be one of the 
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aroma compounds in the cooked rice when measured in the DHS-GC-MS as described in section 

6.3.5.1. A mixture of 300 ppm of 2-nonanone and ethyl propanoate concentration (300 ppm each) was 

prepared by diluting the stock aroma solution with mineral water (Evian).  Between the two chemical 

compounds, 2-nonanone has a lower solubility limit than ethyl propanoate with 371 mg/L for 2-

nonanone at 25°C (PubChem, 2020) and 19,200 mg/L for ethyl propanoate at 25°C (Yalkowsky and 

Dannenfelser, 1992). Because the rice was cooked in a microwave, it was essential to choose the highest 

concentration possible (in this case, it was the solubility limit of 2-nonanone (371 mg/L)) to reduce the 

amount of volatile compounds that were lost during the cooking process. The boiling point of ethyl 

propanoate is 102.3°C and 2-nonanone is 184.65°C (estimated with EPI SuiteTM programme), and 

therefore significant losses of both volatile compounds were expected during the cooking process 

because of the high temperature of the microwave.  

The conditions to cook the rice was the same as described earlier for the non-flavoured rice, 

except the aroma solution was used to substitute the water. The concentrations of the cooked rice after 

cooking were 4.8 mg/L for 2-nonanone and 0.15 mg/L for ethyl propanoate which means over 98% of 

the aroma compounds were lost during the cooking process. The aroma compound was not added to the 

cooked rice after cooking as it would be a challenge to have the samples in a consistent and repeatable 

manner. A separate preliminary study was made to check if the flavoured samples prepared in different 

cooking batches were repeatable. The compounds, 2-nonanone and ethyl propanoate, in the newly 

flavoured rice samples prepared from three different batches, were tested in a Gas Chromatography 

Mass-Spectrometry (GC-MS) and the moisture content of the rice sample (by drying in the oven for a 

minimum of 15 hours) was also measured from each batch. The results showed that the coefficient of 

variation (CV) of the Total Ion Chromatogram (TIC) for all the samples were ± 10.4% for 2-nonanone 

and ± 18% for ethyl propanoate respectively. The moisture content results showed that the rice samples 

between all batches were within ± 0.9% of the variation.  

6.3.6  In vivo aroma release during oral processing 

 
The dynamic release of aroma compounds during in vivo experiments was measured online 

using a PTR-MS (PTR-MS Control 2.7, Ionicon Analytik, Innsbruck, Austria).  The PTR-MS 
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instrument was operated in similar conditions, as described in section 6.3.5.2.  Measurements were 

performed with the MID mode on specific masses with a dwell time of 100 ms per mass. 2-nonanone 

was monitored with m/z 143 (protonated molecular ion) and ethyl propanoate m/z 103 (protonated 

molecular ion) and 75 (protonated molecular fragment ion) respectively. Acetone (m/z 59) was also 

monitored as a breath marker with a dwell time of 50 ms as described by (Doyennette et al., 2011). 

Masses m/z 21 (signal for H3
18O+) and m/z 37 (signal for water clusters H2O-H3O+) were monitored to 

check the instrument performances and cluster ion formation (Jourdren et al., 2017).  

6.3.6.1 Temperature of served cooked rice 

The partition coefficient of aroma compounds that were flavoured in the cooked rice (2-nonanone and 

ethyl propanoate) can vary with temperature. For instance, when the temperature dependence of the 

water-air partition coefficients (Henry’s constants) of 2-nonanone was investigated between 20-49°C, 

the Henry constant varied from 0.008 to 0.033 respectively (Avison et al., 2015). Thus, to minimise the 

changes of the partition coefficient due to the changes in temperature once the cooked rice is placed 

inside the mouth, it was decided to serve the rice at the body temperature of 37°C.  

After cooking, flavoured rice samples were transferred into glass Schott vials (5 g in each vial), 

equipped with caps. The glass vials, which now contained the flavoured rice samples, were placed in a 

warmer held at 50°C (Fig. 6-10). The flavoured rice samples were then moved to a metallic tablespoon 

and served to subjects after cooling down to approximately 37°C. The temperature of the rice was 

examined using a digital thermometer. 

6.3.6.2 In vivo experiments with five subjects 

For each subject, air from the nose space was sampled by two inlets of a stainless steel 

nosepiece, inserted into the subject's nostrils (Fig. 6-11). The gas produced from the samples was 

transferred from the nosepiece to the PTR-MS through a capillary line with a mean flow rate of 100 

mL/min, heated at 110°C. 
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Fig. 6-10: Rice samples in Schott Vials placed inside warmer that was set at 50°C. 

A minimum of five replicates were performed for all in vivo measurements. Between each sample, 

subjects were asked to clean their mouth with 30 mL of mineral water (Evian). Each in vivo analysis 

started with 10 s measurement of ambient air. The subjects were then asked to breathe normally for the 

next 30 s before they were instructed to put the samples into their mouths. For data analysis, the release 

curves were divided into three periods: (i) the phase before the sample was introduced (phase 0); (ii) 

the phase before the first swallow (phase 1); (iii) the phase after the first swallow (phase 2). For each 

sample, the mean PTR-MS signal from phase 0 was subtracted from phases 1 and 2 (Déléris et al., 

2016). From each subject’s release curve in phases 1 and 2, the following quantitative release 

parameters were extracted: (i) maximal intensities indicating the maximum concentration reached by 

the aroma compound (Imax1 and Imax2); (ii) areas under the curve, related to the total amount of aroma 

molecules released (AUC1 and AUC2); and (iii) the time at which Imax occurred (Tmax1 and Tmax2) to 

reflect temporal release parameters (Déléris et al., 2016).  

To study the dynamics of aroma release during oral processing, AUC and intensity values (I) 

were also extracted at 25%, 50%, 75% and 100% of the subjects first swallowing point time.  

6.3.7 Statistical Analysis 

All statistical analysis was carried out with XLStat software (Version 2019.2.2, Addinsoft, New 

Zealand). A Kruskal-Wallis non-parametric test (p < 0.05) was performed with a multiple comparison 

test (Dunn test) to determine if the change in bolus properties during oral processing and the difference 

between the measured properties were statistically significant. 
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Fig. 6-11: Measuring in vivo aroma release using the PTR-MS. 

 

Fig. 6-12: Aroma release curve profile. The total amount of aroma released (AUC 1 & AUC 2), the 

maximum intensity (Imax1 & Imax2), the time at which Imax occurred (Tmax1 & Tmax2) as well as the intensity 

and AUC during multiple stages during mastication (25%, 50%, 75% and 100% of the time when first 

swallow occured) were determined from the aroma release curve (Image redrawn from Déléris et al. 

(2016)). 

 

A Principal Component Analysis (PCA) was performed on the bolus properties and aroma release 

parameters to differentiate the oral breakdown pathways and aroma release dynamics between all five 
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subjects. The principal components from the PCA analysis of bolus properties and aroma release were 

also compared to gain a qualitative insight into the relationship of the two groups of variables.  

6.4 Results and discussions 

6.4.1 Subject’s physiological parameters 

 
Fig. 6-13 compares the physiological volumes for all subjects. Because only five subjects were 

used, there are no apparent trends. When compared to the values found in the literature measured among 

8 to 10 subjects (Jourdren et al., 2016; Molfenter, 2016), the oral cavity volume results represent the 

values at the top end of the range. The pharynx volume results lie at the bottom end to the range of 

values of 10 subjects in Molfenter (2016).  The nasal volume results seem to be higher to the study by 

Landa et al. (2010) who measured 55 Caucasian subjects.  The point to note is that the mouth volume 

is 5-7 times larger than either the pharynx or nasal cavity. 

 
 

Fig. 6-13: Physiological volumes (Oral cavity, Pharynx and Nasal volume) of all subjects.  

Fig. 6-14 shows the saliva flowrates at rest and during stimulation while chewing parafilm.  The 

most obvious result is the large difference between the rest and stimulated states.  No trend is apparent 

between the two saliva flows rate for the subjects.  The results compare well to those obtained by Gavião  

et al. (2004) and Jourdren et al. (2016).  
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Fig. 6-14: Saliva flowrates of all subjects.  

Fig. 6-15 shows the masticatory efficiency results of all subjects. These figures are at the lower 

end of the range found in the literature (24% to 77% efficiency) using the same method to determine 

the masticatory efficiency (Jourdren et al., 2016).  

 

Fig. 6-15: Masticatory efficiency of all subjects 

The above physiological parameters results highlight that wide variation occurs within a 

population. The focus of this work is not about developing population statistics, but to investigate 

whether models of mastication enhance the model predictive capability for the aroma release models 

developed by (Doyennette et al., 2014).  Here, the models will be coupled.  Therefore, because these 

same five individuals are also the subjects for the aroma release measurements, the mastication model 

will be tailored to each subject.  In this way, the applicability of the combined mastication-aroma release 
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model will be established for the design of foods that deliver targeted digestion and sensory outcomes. 

The next step to make the models truly efficacious, which is outside the scope of the project here, is to 

establish the population range of input parameters that are needed for both the mastication model and 

the aroma release model. 

6.4.2 Bolus characteristics 

 

Fig. 6-16 compares the number of chews and time taken to swallow point. While chewing time and the 

number of chews are correlated, they show substantial variation between the small number of subjects 

but are within the ranges found in other studies involving mastication of rice (Moongngarm et al., 2012). 

 

 

Fig. 6-16: Number of chews and chewing time (s) required to reach swallow point for all subjects. 

Fig. 6-17 shows the percentage recovery of solids at the end of chewing, and the ratio of saliva 

mass to solids mass at the end of chewing for each subject. The unrecovered solids have probably 

fallen into the buccal pouches which are not cleared at expectoration (Flynn et al., 2011). Again, the 

results show wide variation between subjects.  
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Fig. 6-17: The percentage recovery of solids and the ratio of saliva mass to solids mass (g saliva/100 g 

solids) at swallow point for each subject. 

 
The bolus properties are interrogated with more detail in Table 6-2, where measurements were 

also made at 25, 50 and 75% of the mastication cycle.  Each is discussed below in the order as presented 

in the table.  Bolus moisture content increases with time (p<0.05) although not by much, as the cooked 

rice already has a significant amount of moisture.  This increase indicates some further absorption as 

the rice is disintegrated.   

Table 6-2: Bolus properties at four stages of mastication (25%, 50%, 75% and 100%) for all five subjects 

(A1-A5). Each trial was performed three times, N=3. M is the mean of the bolus characteristic measured, 

and SE is the standard error. O/all is the overall mean and standard error for all subjects. Significance 

levels were encoded as follows: *: p<0.05; **: p < 0.01; ***: p < 0.001.   

   Initial 
 

 25%  50%  75%  100%  

Parameter Unit  M SE  M SE M SE M SE M SE 

Bolus 

moisture 

content 

g /100 g bolus ** 61.0 1.0 O/all 65.2 2.6 65.3 1.4 66.5 1.1 67.7 0.9 

    A1 62.9 2.2 64.8 1.3 66.7 1.4 66.9 1.0 

    A2 67.5 6.2 65.4 3.5 64.7 0.6 67.6 0.9 

    A3 63.6 1.6 64.3 0.1 66.2 1.2 66.8 0.35 

    A4 68.0 1.7 68.6 0.6 70.5 1.8 71.7 1.1 

    A5 63.8 1.4 63.3 1.25 64.3 0.57 65.4 1.1 

Saliva 

incorporated 

g /100 g dry 

matter 
** - - O/all 14.3 7.8 13.9 3.5 18.1 3.3 22.4 2.8 

    A1 5.5 5.1 10.9 3.3 17.2 3.9 18.0 2.9 

    A2 23.3 21.3 13.6 9.2 10.5 1.6 20.5 2.7 

    A3 10.0 3.8 12.1 0.2 18.3 3.5 20.1 0.9 

    A4 24.8 5.2 27.0 2.0 35.1 6.3 40.4 4.5 

    A5 7.9 3.4 6.3 3.0 9.3 1.4 12.9 2.8 
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Amount of 

residues 

% * - - O/all 13.8 3.6 17.3 3.9 16.3 4.3 20.3 3.8 

    A1 33.9 6.4 48.2 2.6 32.8 3.4 31.3 5.8 

    A2 4.8 1.0 1.0 3.8 3.1 4.5 5.2 3.3 

    A3 4.5 2.2 4.6 0.7 13.2 4.1 22.3 0.1 

    A4 13.0 6.2 17.5 5.8 19.5 5.8 22.5 5.1 

    A5 12.5 2.1 15.1 6.7 12.8 3.8 20.2 4.8 

d75 mm * 6.64 0.13 O/all 5.31 0.31 5.04 0.17 4.82 0.17 4.47 0.19 

    A1 5.26 0.09 5.22 0.05 5.05 0.06 5.13 0.06 

    A2 5.01 0.08 4.97 0.17 4.89 0.06 4.63 0.28 

    A3 5.45 0.08 4.99 0.20 4.75 0.17 4.36 0.09 

    A4 5.69 0.31 5.23 0.21 4.51 0.11 4.09 0.09 

    A5 5.13 0.07 4.81 0.20 4.88 0.43 4.13 0.44 

d50 mm *** 6.48 0.11 O/all 4.76 0.14 4.24 0.21 3.98 0.10 3.62 0.12 

    A1 4.95 0.16 4.81 0.25 4.49 0.04 4.29 0.07 

    A2 4.64 0.10 4.24 0.29 4.08 0.06 3.72 0.15 

    A3 4.69 0.13 4.08 0.09 3.89 0.20 3.51 0.02 

    A4 5.07 0.19 4.15 0.17 3.62 0.06 3.31 0.05 

    A5 4.46 0.10 3.91 0.27 3.80 0.16 3.29 0.29 

d25 mm *** 6.29 0.11 O/all 3.90 0.18 3.33 0.23 3.05 0.06 2.67 0.15 

    A1 4.35 0.27 3.96 0.22 3.56 0.09 3.42 0.20 

    A2 3.80 0.17 3.44 0.25 3.20 0.04 2.91 0.11 

    A3 3.78 0.16 3.13 0.07 2.97 0.13 2.42 0.04 

    A4 4.16 0.17 3.17 0.17 2.71 0.01 2.26 0.11 

    A5 3.40 0.14 2.95 0.42 2.81 0.05 2.33 0.27 

d75/d25 - ** 1.06 0.01 O/all 1.39 0.04 1.57 0.07 1.63 0.04 1.74 0.08 

    A1 1.21 0.04 1.32 0.05 1.42 0.02 1.50 0.07 

    A2 1.32 0.06 1.45 0.04 1.53 0.03 1.59 0.03 

    A3 1.44 0.05 1.60 0.07 1.60 0.01 1.80 0.04 

    A4 1.37 0.02 1.65 0.02 1.66 0.03 1.81 0.06 

    A5 1.62 0.02 1.81 0.19 1.94 0.12 2.02 0.19 

Pasted 

fraction 

ml paste/100 ml 
bolus 

*** - - O/all 0.41 0.10 0.75 0.15 0.71 0.10 1.10 0.19 

    A1 0.07 0.01 0.48 0.06 0.10 0.07 0.28 0.22 

    A2 0.64 0.27 1.01 0.05 1.07 0.22 1.17 0.14 

    A3 0.43 0.04 0.60 0.08 0.65 0.08 1.25 0.08 

    A4 0.23 0.11 0.64 0.08 0.68 0.05 1.34 0.23 

    A5 0.70 0.07 1.02 0.48 1.05 0.10 1.47 0.28 

 

As expected, the saliva content increases steadily for each subject (significance, p<0.05) although, as 

noted above, the final saliva contents at swallow point are quite different between subjects.  To 

determine the saliva flow rate and the initial saliva volume in the mouth (prior to ingesting the food), 

these figures are plotted in Fig. 6-18 for all repeats at each stage of chewing.  While the repeats show 

significant variability, the slope shows increasing saliva with mastication progress, varying from 0.012 

to 0.043 g saliva/chew, which aligns with that found by Motoi et al. (2013).    
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A1 A2 

  
A3 A4 

 
A5 

Fig. 6-18: Saliva content as a function of chew number for subjects A1-A5, showing the variation in both 

saliva rate and apparent initial saliva present.  The initial quantity of 5 g rice was at 61.0% moisture 

content. 
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The amount of residue is the unrecovered fraction of the 5 g sample of rice given to subjects.  

This varies for each trial but appears to be relatively consistent for each subject; for example, subject 

A1 always had the highest unrecovered fraction and A2 the lowest.  The change in rice bolus residue is 

significant over time (p < 0.05), and so some mechanism for residue accumulation must be taking place.  

It is likely that lubricated rice particles are not adhesive enough to clump and so remain in the main oral 

cavity during chewing but fall and lodge in interproximal spaces. The extent to which particles are 

retained in these subsidiary compartments is influenced by their physical properties such as size, 

tribology, adhesion and cohesion characteristics and viscoelasticity (Flynn et al., 2011).   

The bolus particle size distribution across all mastication stages, reported in Table 6-2 are also 

plotted in Fig. 6-19 as the fraction of the total volume of particles that were less than a specified sieve 

aperture of size for a range of sieve sizes from 5.7 down to 0.354 mm (followed a 21/2 size series). The 

fraction that passed the 0.354 mm sieve are called the pasted fraction and are assumed to be suspended 

in the liquid phase. The particle size parameters d75 (p<0.05), d50 (p<0.01), d25 (p<0.01) and d75/d25 

(p<0.01), pasted fraction (p<0.01)) all changed significantly with increasing mastication stage.  

Generally, the subject that chewed for more chews reduced the particle size distribution the most.   

It is interesting to interrogate just the 4 and 5.7 mm sieves. At the beginning, these sizes 

represent almost all the particles and therefore can be assumed to be the whole rice particles. Plotting 

the sum of these sieves versus chew number gives a measure of the breakdown of the rice without 

needing to consider the fracture mechanism, i.e., it represents the surviving whole rice grains. Fig. 6-20 

shows two things; (i), the breakage of whole rice progresses approximately with chew number, meaning 

that the subject with the least number of chews to the swallow-point (A1) also produced the least 

breakdown; and (ii), all subjects exhibited more whole rice breakage in the first few chews than in later 

chewing.  Indeed, at four chews (calculated using the trendline formulae), between 18-37% of whole 

rice had been broken down, or 4.66-9.36% loss of grains per chew.  After the fourth chew, the breakage 

rate decreases to between 2 to 2.67% loss per chew (the trendline slopes), with subject A4 having the 

greatest loss rate. Interestingly, this subject also chewed for the longest.  In seeking a reason for the 

variation between subjects, the saliva addition rate was explored with the hypothesis that higher saliva 

rate aids breakdown. Fig. 6-21 shows the salivation rates. Trend lines have been added and are here 
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constrained to pass through the origin, which assumes that subjects had zero initial saliva content.  This, 

of course, will not be true if they had been salivating prior to the food being placed in the mouth.  The 

figure shows that prior salivation must occur for subject A4 (who has far higher overall saliva levels 

than the other subjects), and somewhat haphazardly for subject A2.  For subject A4, the slope of the 

later extents of chewing yield a salivation rate of 1.83 ml/100 g dry matter, which is the highest 

compared to the rest of the subjects. Interestingly, subject A4 also had the greatest loss rate as shown 

in Fig. 6-20. Therefore, the hypothesis of the higher the saliva rate the higher the breakdown can be 

accepted for subject A4.  

 

 

  
A1, N100%=15 A2, N100%=17 

 
 

A3, N100%=23 A4, N100%=25 
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A5, N100%=20 

Fig. 6-19: Bolus particle size distribution results for all subjects. The plotted curves are to guide the eye. 

Subject A1 and A4 clearly have a different number of chews to completion, N100%, which means 25% of 

completion in subject A1 is about 4 chews while in subject A4 it is 6 chews. 

 

 

Fig. 6-20: Reduction in whole particles with chew number (with (0,100) point removed). 
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Fig. 6-21: Saliva addition rate. It is assumed that if the trend line is constrained to pass through (0,0) this 

will draw out the salivating effects of elevating the initial saliva content 

 
The above discussion considers only the breakage of whole rice grains, assuming simplistically 

that all particles captured on the 4 and 5.7 mm sieves were whole grains of rice.  The above discussion 

does not consider the mechanism of rice breakage. The mechanism of size reduction was interrogated 

for cooked brown rice by Gray-Stuart (2016). He discovered that the particle size distribution, when 

plotted as a frequency distribution of mass versus sieve size, became bimodal.  This, he proposed, was 

because the rice particles were cleaved into one or several large particles and the remaining were pasted 

into small particles during occlusion.  Gray-Stuart then suggested the concept of ‘cleave and paste’ 

mechanism applies for all starch-based foods.  This is not as apparent here, because the bimodality is 

not seen in Fig. 6-19, even for subject A2 who consistently expectorated most of the rice with little loss 

and so therefore is the closest to achieving a mass balance. Here, the pasted fraction did increase over 

time, although it was still low (ranging from 0.28 to 1.47% at swallow point across five subjects) in 

comparison to ~15% observed at swallow point for brown rice when studied from a single subject 

(Gray-Stuart, 2016). However, the high pasted fraction obtained in the brown rice study are disputable 

for two reasons. Firstly, the author calculated the pasted fraction by back calculating from the 

unrecovered solids remained in the pan after wet sieving but did not include the quantity of bran layer 
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fragments which were seen to present in chewed brown rice (Bornhorst et al., 2013). Secondly, due to 

the soft nature of cooked rice, the wet sieving method used by the author to quantify the particle size 

distribution may cause further breakdown of the rice, yielding more pasted particles when recovered in 

the pan. In conclusion, the reduced pasted fraction seen here compared to that of Gray-Stuart (2016), 

provide support for breakdown to be more weighted to breakage than cleave-and-paste, although both 

are likely to occur to some extent.   

6.4.2.1 The breakdown pathway of rice taken by subjects 

The above discussion demonstrates that the breakdown mechanism of rice during mastication remains 

unclear. Here, this study has a limited number of subjects, where the reason for collecting individual 

data was to use them as case studies for the combined breakdown-aroma release model.  Models require 

input parameters that relate to the physiology of the subjects and adjustable parameters relating to the 

food portion. Therefore, within the subject studies, it is important to look for relationships between 

these input parameters and the measured breakdown variables.  As a first step in doing this, a PCA 

analysis was conducted to reduce the number of variables into a two-dimensional plot. Fig. 6-22 (a) 

portrays the factor loadings of the top two principal components describing the bolus characteristics in 

all subjects. Fig. 6-22 (b) shows the breakdown pathway taken for each subject with increasing 

mastication stages from left to right. By using Fig. 6-22 (b) as a guide, the differences in the rice 

breakdown pathway taken by each subject can be explained. For example, plots on the left of Fig. 6-22 

(a) show bolus parameters during early mastication stages featuring large particle size (high d75, d50 and 

d25), low moisture and saliva content, narrow particle size distribution (low d75/d25), low pasted fraction 

and low amount of residues remaining in the mouth.  

Moving towards the right side of the figure shows the plots of bolus properties towards the later 

stages of mastication where with smaller particle size, higher bolus moisture and saliva content, broader 

particle size distribution (high d75/d25), and an increased amount of pasted fraction and residues.  

The variation of breakdown pathways between the subjects could also be investigated from the PCA 

plot. For example, Subject A1 who took the smallest number of chews and oral processing time to reach 

the swallowing point had a large bolus particle size and the lowest bolus moisture content at swallow 

point (see also Table 6-2), indicating a large particle size and low lubricating bolus threshold for safe 
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swallow. Subject A1 also had the largest amount of residue among all subjects (the lowest amount of 

bolus recovered), suggesting that the subject may need further chews to clear the remaining debris in 

the mouth. As the particles generated by the subject were large even towards the later stages of 

mastication, these particles may lodge in interproximal spaces of the teeth (Flynn et al., 2011). 

Comparatively, Subject A4 had a larger particle size at the early stages of chewing than others but had 

the smallest particle size at swallowing point. The subject had low mastication efficiency, which could 

explain why the particle size was quite large at the start, but also had the most prolonged duration of 

mastication that explained the small size of particles at swallowing point. Consequently, because of the 

prolonged duration of mastication, Subject A4 also had the highest bolus saliva content at the later 

chewing stages (Table 6-2). Subjects A3 and A5 had about the same level of factors for the percentage 

of residues, due to the same trend of their bolus particle size breakdown and moisture content increase 

during oral processing. Subject A2 being the least efficient chewer had a large particle size, even at 

swallowing point. 

The influence of oral physiology on bolus properties could be further explored in Fig. 6-22 (a). 

Subject A4 who took the longest oral processing time and had the most substantial amount of saliva 

from the start had the highest amount of saliva incorporated in the bolus, a broad particle size 

distribution, smallest d25 and d75 and had a significant amount of pasted fraction compared to other 

subjects. Subject A1, being the opposite, had the largest particle size and low amount of saliva and 

pasted fraction at swallow point as the subject took the shortest time to chew. It was quite interesting to 

note that Subjects A3 and A5, despite being efficient chewers, both had a low amount of saliva 

incorporated in the bolus as their saliva flowrate was quite small at rest, contrary to subject A2. Due to 

the high amount of saliva flow at rest, Subject A2 had the lowest amount of residue in the mouth across 

all chews, as the bolus was highly lubricated, ensuring minimum losses when the bolus was spat out. 
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Fig. 6-22: Breakdown pathways of rice during oral processing from PCA analysis. (a) shows the plot 

when PC 1 and PC 2 of the bolus properties between subjects were compared. (b) shows the plot of the 

factor loadings of the bolus variables measured for all subjects and provides a guide for the breakdown 

pathway plot, in (a). Arrows are drawn from left to right to illustrate the breakdown pathway from the 

time when samples were introduced in the mouth (initial) to the swallowing point. The points between the 

initial and swallow point of each subject were the bolus properties at 25%, 50% and 75% of the subject’s 

total oral processing time.  

6.4.3 In vivo aroma release during oral processing 

 
The aroma release parameters for all subjects are shown in Table 6-3 (the release of 2-nonanone, m/z 

143) and Table 6-4 (the release of ethyl propanoate, m/z 103). A fragment ion belonging to ethyl 

propanoate, m/z 75, is not displayed as it followed a similar trend to m/z 103. In general, comparing the 

two aroma compounds studied, 2-nonanone seemed to have a higher intensity and AUC values for all 

subjects during chewing and after the first swallowing point than ethyl propanoate. The initial 

concentration of 2- nonanone in the cooked rice was 4.8 mg/L and for ethyl propanoate was 0.15 mg/L 

(data not shown here, but the calculations to estimate the initial concentration are shown in the next 

chapter). The boiling point of ethyl propanoate is 102.3°C in comparison to 2-nonanone, at 184.65°C 

(estimated with EPI SuiteTM programme) therefore, losses of ethyl propanoate compound would have 

been more pronounced than 2-nonanone during the cooking process of rice. However, it may also be 

worthwhile to check the Henry’s law constants for the two compounds as the losses could also be 

associated to the affinity of the chemical compounds to the air phase. The Henry’s law constant for each 

aroma compound studied at 37°C was estimated using the following equation 
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𝐻𝑖 = 𝐻𝑖,𝑟𝑒𝑓𝑒𝑥𝑝 [
−∆𝑠𝑜𝑙𝑛,𝑤𝐻

𝑅
 (
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)] (6.3) 

where 𝑅 is the universal gas constant = 8.314 J/mol.K, −∆𝑠𝑜𝑙𝑛,𝑤𝐻 = 61.0 kJ/mol for 2-nonanone 

(Heynderickx et al., 2014) and 10.25 kJ/mol for ethyl propanoate (Fenclová et al., 2014) . 𝐻𝑖,𝑟𝑒𝑓 is the 

Henry’s law constant at 25°C for 2-nonanone which is 3.67 x 10-4 atm-m3/mol and ethyl propanoate at 

2.51 x 10-4 atm-m3/mol (estimated from EPI SuiteTM programme).  

The Henry’s law constants calculated using the equation above at 37°C for 2-nonanone was 1.42 x 10-

4 atm-m3/mol and 2.14 x 10-4 for ethyl propanoate. Both compounds have Henry’s law constants lower 

than the ‘rule of thumb’ suggested by the United States Environmental Protection Agency, 1996 (Katyal 

& Morrison, 2007); where compounds with a Henry’s law constant greater than 10-3 atm-m3/mol are 

considered volatile. This means that both compounds are more attracted to water than the air phase. 

Thus, the drop of the concentration of the aroma compounds in the cooked rice after cooking would be 

explained by the losses of the aroma solution during the cooking process.     

6.4.3.1 The dynamics of aroma release during oral processing  

To illustrate the dynamics of aroma release during multiple stages of oral processing, the aroma 

release parameters, specifically the AUC and Imax values at 0%, 25%, 50% and 100% of each subject 

swallowing point were plotted in a PCA diagram (Fig. 6-23) The PCA plot summarises in just two-

dimension plots the evolution of a large number of variables (5 variables) to visually differentiate 

between all subjects. Comparing between all subjects, as also observed through the aroma release 

parameters in Table 6-3 & Table 6-4, Subjects A4 and A1 are separated from other subjects with a 

higher aroma release parameters compared to other subjects who had fairly similar values. The 

differences in the aroma release parameters for all subjects during oral processing and after swallowing 

is further discussed below.  
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Fig. 6-23: The dynamics of aroma release parameters (AUC and I values) during oral processing between 

subjects. Subject A1 and A4 were differentiated from other subjects with higher I and AUC values while 

other subjects had similar I and AUC values during oral processing. 

6.4.3.2 Influence of the dynamics of bolus properties during chewing on aroma release 

The principal components of the bolus properties (PC 1 and PC 2 in Fig. 6-22) were compared with the 

principal components of the Imax and AUC values measured at several stages of oral processing (PC 1 

and PC 2 in Fig. 6-23) to provide a qualitative explanation on the effect of oral processing parameters 

on aroma release (Fig. 6-24). Previous studies on linking aroma release and mastication of solid foods 

have mostly looked at the effect of the bolus properties at swallow point on aroma release (Feron et al., 

2014; Labouré et al., 2014) but since oral processing is a dynamic process, the bolus properties 

measured at different stages during oral processing should be taken into account as the impact of early 

and later stages of mastication on aroma release may be different. The generation of new surface area 

over time (measured from the bolus particle size distribution at several time points in this study) when 

masticating solid foods may be of importance as this will impact the rate of transfer of aroma 

compounds from the food product to the saliva phase as shown in model simulations of flavour release 

(Harrison et al., 1998; Wright & Hills, 2003; Doyennette et al., 2014). Although the generation of new 

surface area of food particles during oral processing was shown to affect aroma release from a 

mechanistic point of view, the effect of the particle size reduction due to the dynamics process of 

mastication is still poorly understood.  
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Table 6-3: Aroma parameters extracted from subject's aroma release curve for m/z 143 (2-nonanone).  

 

 

Table 6-4: Aroma parameters extracted from subject's aroma release curve for m/z 103 (Ethyl 

propanoate).  

Parameter Ethyl propanoate  Subjects 

  (m/z 103)  A1 A2 A3 A4 A5 

Imax1 x 102 (a.u.) Mean 1.69 0.63 0.36 0.88 0.52 

 S.E. 0.35 0.18 0.08 0.28 0.09 

AUC1 x 103 (a.u.) Mean 1.04 0.39 0.23 1.01 0.43 

 S.E. 0.27 0.16 0.12 0.40 0.19 

Tmax1 (s) Mean 12.3 18.7 19.3 19.7 21.0 

 S.E. 3.0 9.2 5.2 8.2 4.3 

Imax1/Tmax1 Mean 14.5 4.2 1.9 5.0 2.6 

 S.E. 4.8 2.9 0.3 2.3 0.9 

Imax2 x 102 (a.u.) Mean 0.52 0.53 0.49 1.09 0.46 

 S.E. 0.16 0.26 0.18 0.41 0.15 

AUC2 103 (a.u.) Mean 0.32 0.32 0.46 1.01 0.40 

 S.E. 0.13 0.09 0.21 0.36 0.21 

Tmax2 Mean 18.9 27.1 54.9 40.8 39.6 

 S.E. 1.7 3.8 24.6 15.8 4.2 

Imax2/Tmax2 Mean 2.7 2.0 1.1 3.0 1.1 

  S.E. 0.7 1.0 0.5 1.5 0.3 
 

 

Parameter 2-nonanone Subjects 

  (m/z 143)  A1 A2 A3 A4 A5 

Imax1 x 102 (a.u.) Mean 6.32 1.73 1.04 4.10 1.50 

 S.E. 0.56 0.69 0.34 1.57 0.47 

AUC1 x 103 (a.u.) Mean 4.76 2.17 1.26 6.72 2.06 

 S.E. 1.2 0.88 0.49 3.2 0.86 

Tmax1 (s) Mean 14.4 21.5 25.4 26.8 24.3 

 S.E. 1.3 3.3 4.9 3.4 6.0 

Imax1/Tmax1 Mean 44.1 7.9 4.2 15.2 6.2 

 S.E. 6.3 2.1 1.8 4.8 0.9 

Imax2 x 102 (a.u.) Mean 5.28 2.31 2.21 5.92 1.95 

 S.E. 1.45 0.29 0.83 2.35 0.68 

AUC2 x 103 (a.u.) Mean 8.33 5.62 9.80 16.70 5.70 

 S.E. 2.18 1.80 3.70 9.90 2.60 

Tmax2 Mean 19.1 30.0 51.8 44.7 41.2 

 S.E. 3.3 5.6 9.3 17.9 10.1  

Imax2/Tmax2 Mean 29.1 7.9 4.3 15.4 4.9 

  S.E. 12.5 1.8 1.5 7.9 1.8 
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Fig. 6-24: Principal components of bolus properties compared with the principal components of intensity 

and AUC values of aroma release measured during several mastication stages. (a) shows the plot of PC 1 

aroma release vs PC 1 bolus properties which explained most of the variation between subjects whereas 

(b) showed the impact of bolus residues on aroma release. No lines were drawn on (c) and (d) as both 

provided little information on the aroma release parameters. 

6.4.3.2.1 Effect of physiological factors 

The physiological variables measured in this study were the oral cavity volume, nasal cavity volume, 

saliva flow rate at rest and saliva flow rate when mechanically stimulated, masticatory efficiency and 

lastly the number of chews and the total time taken to reach swallow point. It can be observed in Fig. 

6-24 (a) as well as in Fig. 6-23 that Subjects A4 and A1 were differentiated from other subjects with a 

high amount of aroma release (Imax and AUC values). Thus, it seems reasonable to explain the 

association between the physiological variables and aroma release from these subjects.  

Subject A4, had the highest number of chews and took the longest time to swallow the rice 

samples. The effect of oral processing time had been observed to affect aroma release, as shown in the 

literature. Studies with cheese (Tarrega et al., 2008; Labouré et al., 2014), confectioneries (Blissett et 

al., 2006) and custard (Ruijschop et al., 2011) have all shown that a longer duration of oral processing 

results in a higher amount of aroma release. A longer duration of oral processing would lead to an 

increased number of velum openings, allowing the more frequent renewal of the air phase in the oral 
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cavity, hence a larger amount of aroma would be extracted from the food matrix to the nasal cavity 

(Labouré et al., 2014). Additionally, the longer duration of oral processing is also related to a longer 

time for the transport of aromas to the headspace in the mouth. The concentration increases up to an 

equilibrium concentration. The Henry’s law constants as described in section 6.4.3 for 2-nonanone and 

ethyl propanoate show that the compounds have a high affinity towards water, therefore it could be 

expected that it would take a longer time for the compounds to be released into the air phase. 

Subject A4 also had the largest oral volume among all subjects, and the highest saliva flow rate 

at rest. Because both flavour compounds are attracted to the water phase more than the air phase, 

theoretically, it is expected that an increase in saliva flow rate will dilute the aroma concentration, 

therefore a smaller amount of aroma release parameters (compared to other subjects) should be expected 

in Subject A4. This is interesting because instead of diluting the flavour compounds, saliva may have a 

different role for starch-based food matrices such as rice. Previous studies have shown that the linear 

amylose fraction of starch can form inclusion complexes with flavour compounds during gelatinization 

which reduces the free flavour available for release (van Ruth & King, 2003; Conde-Petit et al., 2006). 

The presence of more saliva could weaken the physico-chemical interactions between starch and flavour 

compounds, resulting in a higher aroma release. Besides interactions with starch, the presence of mucins 

in saliva could also interact with aroma compounds, resulting in lowered retention of highly volatile 

compounds and increased retention of less volatile, hydrophobic compounds (van Ruth et al., 2001). 

This could also be a possible explanation to the observed results, although further studies with larger 

number of subjects will be required to confirm the speculation.  

The nasal cavity and the pharynx volumes were observed to be the largest in Subject A1. It can 

also be observed from the aroma release results in Fig. 6-23 and Fig. 6-24 (a) that this subject had one 

of the highest aroma release parameters (Imax and AUC values). The theoretical analysis showed that 

from previous studies, subjects with small nasal volumes gave high-intensity peaks followed by a sharp 

decrease in the volatile concentration, while subjects with large nasal volumes gave low-intensity peaks 

but longer signal duration (Trelea et al., 2007). It is possible that the pharynx volume may have an effect 

if the velopharyngeal opening is large, allowing a larger volume of air to exchange between the oral 
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and the pharynx cavities. The large nasal cavity and pharynx volumes of Subject A1 may explain the 

high aroma release parameters (Imax and AUC values) observed.  

Lastly, subject A3 who was the most efficient chewer had the lowest aroma release values as observed 

in Table 6-3 and Table 6-4 respectively. The theoretical analysis explained that a more efficient chewer 

would have produced boluses with smaller particles during mastication. This will have created more 

surface area and so are expected to perceive higher retronasal aroma release intensities due to a faster 

release and movement of the taste and aroma compounds from the food matrix into the saliva and air 

phases. However, this subject also had the smallest nasal cavity and pharynx volumes, as well as a low 

salivary flow rate at rest. It could be that these variables are more dominant than the surface area of the 

particles in influencing the aroma release.  

6.4.3.2.2 Effect of bolus saliva content 

As chewing time increases, the amount of saliva incorporated in the bolus also increases. From 

the theoretical analysis, an increase in saliva content would have diluted the flavour, causing a decrease 

in maximum flavour concentration, as also seen in other studies (Harrison et al., 1998; van Ruth & 

Roozen, 2000; Feron et al., 2014; Jourdren et al., 2017). Interestingly, Subject A4 who had the highest 

amount of saliva incorporated in the bolus (see Table 6-2) had the largest aroma release values (see 

Table 6-3 and Table 6-4) whereas subject A3, who had the lowest amount of saliva (Table 6-2) had the 

smallest aroma release values (see Table 6-3 and Table 6-4). In the previous section it was suggested 

that a possible reason for this is because saliva weakens the physico-chemical interactions between 

starch and the flavour compounds, resulting in a higher aroma release. 

6.4.3.2.3 Effect of bolus particle size distribution and bolus residues 

The theoretical analysis showed that subjects who produce boluses with smaller particles will have 

created more surface area and so are expected to perceive a higher retronasal aroma release intensities 

due to a faster release and movement of the taste and aroma compounds from the food matrix into the 

saliva and air phases. The particle size parameters (i.e. d75, and d25) of Subject A4 were the smallest at 

swallow point between all subjects (Table 6-2). The pasted fraction for this subject was also among the 

highest in all subjects (Table 6-2). As chewing progressed, particle size would reduce, resulting in an 



 

 

177 

 

increased surface area available for flavours to diffuse from the food matrix into the surrounding saliva 

and from the bolus to air (Harrison et al., 1998; Doyennette et al., 2014). The increase in surface area 

of particles would have also increased the rate of hydration of saliva, resulting in a faster dilution effect 

of saliva to the starch components in rice, as explained earlier. Starch-based food systems such as rice 

produce a portion of significantly small particles (pasted fraction) with every chew, which means not 

only that it provided a large surface area for transfer of aroma, but a lot of the starch components that 

interacted with the aroma compounds would have been diluted instantaneously with saliva. The findings 

of Subject A4 who had a high aroma release agreed with the theoretical analysis regarding the effect of 

particle size distribution on aroma release.  

In contrast, Subject A1, who had the largest bolus particle size parameters (d75, d50, and d25) had 

the second-highest aroma release. The findings from Subject A1 contradict the theoretical analysis on 

the role of particle size on aroma release. However, Subject A1 had the highest amount of rice bolus 

residues remaining in the mouth. What this means is that although Subject A1 had indicated (by raising 

hand to signal) he or she has swallowed, there were still a large portion of rice residues remaining in 

the mouth that could still be responsible for further release post-swallowing. However, having a larger 

amount of rice bolus residues does not guarantee there will be further release if starch does have the 

ability to retain the flavour compounds as explained previously for Subject A4. In a study looking at 

the influence of starch and amylopectin for 20 volatile flavour compounds in aqueous model food 

systems, it was found that increasing starch concentrations did not have any profound effect on volatile 

release under mouth conditions (van Ruth & King, 2003). The authors explained that although flavour 

compounds can bind with starch to reduce free flavour available for release, under mouth conditions, 

kinetic factors emerge as the primary factors determining the flavour release for their starch model 

systems. This is interesting because the driving force for transfer of volatile aroma compounds across 

the interface is the difference in flavour concentration between the food/saliva mixture and air phase 

under mouth conditions (van Ruth & King, 2003). Perhaps a higher amount of remaining rice bolus 

residues allowed diffusion from the rice-saliva mixture to the gas phase by the concentration gradients.  

Subjects A2, A3 and A5 all possessed similar dynamic behaviour for aroma release (Fig. 6-23), 

which followed the trend of breakdown pathways as described in Fig. 6-22. The combined effect of 
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particle size and saliva content as explained for Subject A1 might explain their aroma release behaviour. 

Subjects A3 and A5, both efficient chewers, would have smaller particle size in the bolus resulting in a 

high transfer of aroma release but as they also had low saliva parameters (saliva flow at rest, stimulated 

saliva and saliva content in bolus), a lot of the aroma compounds would stay bound with the starch 

components as less was released into saliva. Similarly, Subject A2, despite being the least efficient 

chewer, had similar dynamics of aroma release with subjects A3 and A5 due to a high amount of saliva 

parameters that overruled the effect of particle size on aroma release.  

The data obtained to link oral processing and aroma release agreed with the theoretical analysis 

in some ways. In particular, it was observed that Subject A4, who had the smallest particle size 

parameters had the highest aroma release behaviour. However, although in theory saliva can reduce 

flavour release through dilution, for starch-based matrices, it is suspected that this may be due to the 

role of saliva that could weaken the physico-chemical interactions between the flavour compounds and 

starch, thus, increases flavour release. Further study however would be needed to understand the effect 

of saliva on the flavour release of starch-based foods as it seems that during in mouth conditions, flavour 

release is governed by both thermodynamic and kinetic factors (van Ruth & King, 2003).  

While the number of subjects used in this chapter is small, the aim of this chapter was not to 

justify flavour release from inter-individual differences in a population but rather to provide preliminary 

insights upon factors that can influence aroma release from an oral processing and physiology point of 

view. The theoretical analysis developed, and experimental data obtained in this study will be used as 

a basis for the development of a mathematical to predict aroma release in the subsequent chapter(s). 

Additionally, the experimental data obtained here will also be used to validate the model. By testing the 

implemented model against the real data, its underlying assumptions can be evaluated while considering 

the interactions between particle breakage, physiological parameters and saliva addition. 

6.5 Chapter conclusion 

Cooked white rice was chosen as a food system to further expand the application of the chewing models 

developed in Chapter 3, linking oral processing and sensorial outcomes. In this chapter, a series of 

experiments were conducted to understand the physiological and oral processing variables that affect 
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aroma release. The experimental data will also be used to provide model inputs and for model validation 

in the subsequent chapters.  

A conceptual model was first developed to understand the role of subject’s physiological and 

oral processing variables on aroma release of cooked white rice. The reliability of the conceptual model 

was then tested by comparing against the experimental in vivo aroma release data of five subjects with 

different physiology and oral processing behaviour. Results showed that the dynamic behaviour of 

aroma release for all subjects followed a similar trend with the breakdown pathways taken for each 

subject. Subjects with smaller particle size in their bolus had higher aroma release. This agrees with the 

theoretical analysis about the influence of a larger surface area of particles on increasing the rate of 

mass transfer of flavour compounds. In contrast, while the role of saliva should in theory reduce aroma 

release through dilution, experimentally, a conflicting result was observed because subjects who had 

high salivary flow rate seemed to have higher aroma release.  

Because aroma release is influenced by many physiological factors which may have contrary 

effects it is difficult to identify which one had the dominant effect for a given individual to explain their 

release. A larger number of individuals could help to identify these trends more clearly because various 

combinations of physiological and release parameters would be statistically present in the database. A 

statistical model directly relating physiology and release could be built with a larger database. The 

development of a mechanistic model allows the theoretical basis to be tested directly. 

Although preliminary, the chapter provides insights on the role of oral processing dynamics on 

flavour release from solid starch-based food products. The next chapter will aim to develop a 

mathematical model to predict the aroma release of rice using the theoretical analysis developed here 

as a basis. The experimental data will then be used for validation against the developed mathematical 

model.  
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Chapter 7 A mathematical model for in vivo aroma release 

 

7.1 Introduction 

During mastication, aroma compounds that are initially present in the food matrix have to reach the 

olfactory epithelium by the retronasal pathway in order to be perceived by a consumer (Trelea et al., 

2007). However, the relationship between the release of the aroma compounds and the perception is 

complex and not well understood due to poorly understood mechanisms and their interactions (Trelea 

et al., 2007; Doyennette et al., 2011; Doyennette et al., 2014).  

Mechanistic models can be a useful tool to predict aroma release and therefore are a key step 

in understanding, for example, the role of the product (e.g. composition and structure), the consumer 

(e.g. physiological parameters and individual experience) in the perceived flavour (Harrison et al., 1998; 

Trelea et al., 2007; Doyennette et al., 2011; Doyennette et al., 2014; Déléris et al., 2016). Additionally, 

they can also be used to understand the role of oral processing in flavour release, as well as to help 

design food products taking into account physiological characteristics of individuals (e.g. young or 

older people, or a people with clinical pathologies such as dysphasia) (Trelea et al., 2007). 

Consequently, the development of mathematical models can constitute a useful tool to predict aroma 

release and thus to identify the most essential physiochemical, anatomical and physiological parameters 

responsible for this release (Trelea et al., 2007). 

Mathematical models predicting the aroma release of different food matrix types have been 

developed in the literature. The first model that predicts the aroma release of solid and semisolid foods 

was proposed by Harrison et al., (1998). The model was proposed on the basis of mass transfer theory; 

however, the models did not include experimental validation. Additionally, strong simplifying 

assumptions were made for the proposed model such as constant breath airflow and foods that were 

disintegrated during chewing did not further disintegrate and mix with saliva (Harrison et al., 1998; 

Trelea et al., 2007). Based on the model proposed by Harrison et al. (1998), improvements have been 

made by integrating a more realistic description of physiological mechanism; such as for mastication 

of semisolid products (Trelea et al., 2007; Wright & Hills, 2003; Wright et al., 2013), liquid products 
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(Rabe et al., 2004; Doyennette et al., 2011; Le Révérend et al., 2013) and for solid products (Doyennette 

et al., 2014; Harrison et al., 2014).   

The most comprehensive model to predict aroma release during oral processing of solid foods 

to date was developed by Doyennette et al. (2014). The model was constructed using one-dimensional 

differential equations for mass transfer and flavour release and was validated against experimental in 

vivo data using cheese as the food system. A sensitivity analysis performed on the mathematical model 

showed that the air-bolus contact surface area could affect aroma release; however, the model did not 

include the coupling to any food breakdown model to predict the air-bolus contact surface area. Instead, 

the model assumes that the contact area between the solid product and the liquid bolus during 

mastication evolves linearly with time, which may not be true for pasty products such as cheese. The 

limitation of the model was acknowledged by the authors as the lack of coupling to a food breakdown 

model, stating that this would require complex experimental protocols which are challenging to 

implement (e.g. bolus spitting after a variable number of bites).  

The main aim of Chapter 7 is, therefore, to develop a mechanistic model to predict in vivo 

aroma release using cooked white rice as a case study. The novelty aspect of this model is that it includes 

the food breakdown model developed in the previous chapters (a combined selection and breakage 

model) to predict the air-bolus contact area. In addition, the model would have to consider the 

mechanisms for mass transfer between the solid particles and liquid content of the bolus and how the 

interfacial area between the bolus and air phases change during mastication. This is the first study that 

uses cooked white rice as the food system to predict in vivo aroma release, developing the model based 

on the experimental study summarised in Chapter 7. This chapter will present the development of the 

mathematical model to predict in vivo aroma release of cooked white rice that was spiked with two 

aroma compounds (2-nonanone and ethyl propanoate).  

7.2 Conceptual model development 

7.2.1 Principles of the model 

The aroma release model developed in this chapter is an extension to the model developed for solid 

products (cheese) developed by Doyennette et al. (2014). The extension of the model is the coupling 
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with the food breakdown model (selection and breakage function) to predict the air-bolus contact area 

during mastication. The model developed here only predicts the aroma release during the chewing step, 

i.e. the aroma release after the swallowing step is not considered as the particle size distribution of the 

rice that remains in the mouth were not measured in Chapter 6 to validate the food breakdown model. 

Fig. 7-1 shows the conceptual diagram for the interconnected compartments that are involved in flavour 

release during the consumption of cooked white rice. All variables and parameters of the interconnected 

compartments required for the model simulation are specified in Fig. 7-1. 

From Fig. 7-1, the compartments that were involved in flavour release during food consumption 

were denoted as follows: the oral cavity (index O), the pharynx (index F), the nasal cavity (index N) 

and the trachea (index T). The model used here is an adaptation from a chemical engineering approach 

where the various parts of the upper respiratory tract are viewed as interconnected reactors, containing 

an air phase (index A) and the saliva phase, index (S). To take the retention effect of lubricated mucosa 

(index M) into account, the lubricated mucosa layers were also included in each compartment (oral 

cavity, pharynx and nasal cavity). The compartments were included as one of the aroma compounds 

used to spike the cooked white rice, 2-nonanone, was known to interact with the lubricated mucosa 

(Doyennette et al., 2014; Déléris et al., 2016).  

The airflow rates (QNa, QTa, QOa), were considered to be positive if their direction is the one indicated 

by the arrows in Fig. 7-1 (inhalation) and negative when in the opposite case (exhalation). Aroma 

concentrations in all compartments (oral cavity, pharynx and nasal cavity) were calculated using mass 

transfer equations and mass balances. The mass balances include the flavour release at the saliva – 

product (rice) interface, air-saliva interface and the air and lubricated mucosa layer interface. In general, 

when two phases are in contact (e.g. air and saliva), volatile transfer occurs across the interfacial layers. 

At each side of the interface, the driving force is the concentration difference between the bulk phase 

and the interface. At the infinitely thin interface, local equilibrium is expressed via the partition 

coefficient between phases. The released volatile flux will depend on the contact area between phases 

and the transfer resistance in each phase, expressed via mass transfer coefficients. Other than the 

interfacial release, bulk flow may also occur between the various compartments. The volatile mass 

balances for this case involve the bulk concentrations and the bulk flow rates.  
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Fig. 7-1: Conceptual diagram of the interconnected compartments and the mechanisms involved in flavour release during the consumption of cooked white rice. 
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7.2.2 Assumption of the contact area between the rice and saliva phase 

During mastication, the surface area of the food increases dramatically, allowing a greater proportion 

of the flavour to be released from the food matrix to the surrounding saliva (Harrison et al., 1998). The 

breakdown of a cooked rice particle follows a ‘cleave and paste’ mechanism (Fig. 7-2) where when a 

rice kernel is occluded, one or a few large particles are produced, and a fraction of the original kernel 

is pasted into very fine particles (paste) which become part of the liquid phase of the bolus (Gray-Stuart, 

2016). It was found in the study by Gray-Stuart (2016) that during the mastication of rice from a single 

person, the rice bolus forms a bimodal particle size distribution when measured using a laser diffraction 

method. The size when particles become pasted were particles that have a size less than 0.355 mm. 

Pasting involves swelling of granules and it is known that normal rice starches have a granule size range 

of 1.9-26 µm (Desam et al., 2020) and that the granules can swell to a maximum of 2-48 times of their 

initial size when heated to various temperatures (Lii et al., 1996). Other than temperature, the swelling 

of starch granules can be enhanced with increasing shear rate (Svegmark & Hermansson, 1991) and the 

presence of excess water (Rao et al., 1997). Therefore due to the conditions during oral processing 

which involves a combination of vertical and lateral shearing of the teeth, heating and addition of saliva, 

the pasting size threshold of 0.355 mm as assumed here is a good starting point for the model 

development.  

 

 

Fig. 7-2: ‘Cleave and paste’ mechanism during mastication of cooked rice 

 

Therefore, during mastication of rice, two simultaneous phenomena can occur: 
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 the transfer of aroma compounds from the non-pasted daughter particles into the liquid phase 

of the bolus, particularly from newly exposed surface area generated during a chewing cycle, 

and  

 the release of the aroma compounds contained in the pasted particles into the liquid phase of 

the bolus, where it was assumed because of their small size, that once transferred, the 

concentration of the aroma compounds in the pasted and liquid phases reach equilibrium 

instantaneously. 

The direct transfer of aroma compounds from the solid surfaces into the air phase was assumed 

negligible as after ingestion there will be at least a thin layer of saliva/moisture present between these 

two phases and therefore aroma transfer always takes place through the liquid phase. 

Because of the challenge to distinguish between the relative contributions of each mechanism, it 

was assumed initially that the release of the aroma compounds is dominated by the transfer of the aroma 

compounds from the pasted particles into the liquid phase of the bolus. This is a reasonable assumption 

as the surface area to volume ratio of the pasted particles will be significantly larger than the surface 

area to volume ratio of the particles that are greater than 0.355 mm. Similarly, the distances for diffusion 

in the pasted particles is very small. Thus, it is expected that the transfer of the aroma compounds from 

the pasted particles to the liquid phase of the bolus is significantly faster compared to the transfer from 

the larger particles.  

Once in the liquid phase of the bolus, the concentration of the aroma compounds will be diluted by 

saliva flow into the oral cavity (Harrison et al., 1998). At the same time, volatiles partition from the 

saliva into the air phase, which then transports them to the pharyngeal compartment. During 

mastication, some aroma release to the pharynx and further to the nasal cavity is possible for panellists 

with imperfect velopharyngeal closure (Trelea et al., 2007). In the model, it is assumed that all subjects 

possess an imperfect velopharyngeal closure if the concentration of aroma compounds increases after 

food ingestion and continues to do so during the mastication period (i.e. the period before swallowing).  
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7.3 Model assumptions 

Further to some of the main assumptions that were described in section 7.2.1 above, the   following 

additional assumptions were made to develop the model equations. 

 When a rice kernel is occluded, one or a few large particles are produced, and a fraction of the 

original kernel is pasted, which becomes part of the liquid (suspension) phase of the bolus. 

 Isothermal conditions were assumed. That is, the temperature of the cooked rice which was 

served at 37oC, was constant throughout the duration of mastication. This is a reasonable 

assumption, considering the body temperature is at 37oC. This assumption also ensures the 

partition coefficient of aroma compounds will not change with temperature and avoids the need 

to include a heat transfer model.  

 The air coming from the trachea (i.e. from the lungs) is assumed to be aroma free. This is 

because the contact area between the air and lungs is very large (~100 m2) (Trelea et al., 2007; 

Doyennette et al., 2011), thus it is reasonable to assume that the aroma compounds are quickly 

absorbed into the lungs.  

 The transfer resistance on the air side (1/kOa) was assumed to be negligible compared to the 

transfer resistance on the liquid bolus side (1/kOs). This is a reasonable assumption as the 

magnitude of the mass transfer coefficients representing the reciprocal of the resistances are 10-

2 and 10-6 m/s, respectively (Doyennette et al., 2014). 

 The ambient air coming during inhalation (QNa ≥ 0) is assumed to be aroma free.  

 The flow rate of saliva (QOs) is assumed to be constant over time. 

 It is assumed that the food particles in the mouth were immediately coated with saliva at time 

zero. 

 It is also assumed that at zero time, the concentration of flavour in both the liquid and air phases 

in all compartments is zero. 

 The mass transfer coefficient is constant for all volatiles. 

 The aroma compound concentration in the rice particles (non-pasted) remains constant over 

time.  
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 The release of aroma from the saliva to the mucosa layers in the oral cavity and pharynx is 

assumed negligible. This is because the volume of the saliva is significantly smaller than the 

volume of the mucosa layers in both compartments.  

 Complete mixing is assumed when aroma is released in the air phases. 

 The volume of air in nasal cavity and pharynx compartments are constant with time but the air 

volume in the oral cavity can change with time due to chewing movements which can create a 

cyclic variation of the air volume from the opening of velopharnx (Doyennette et al., 2014).  

 Saliva residue can escape the oral cavity through the velopharynx during chewing and coats the 

pharyngeal wall.     

 The partitioning of the aroma compounds in the air and liquid bolus/saliva phase follows 

Henry’s law. This means it is assumed that the aroma compounds are not affected with the 

bolus composition due to interactions with the food components and/or saliva components 

(mucin) which can cause changes to the partition coefficient. This assumption is valid as the 

volume of pasted particles is significantly smaller than the volume of saliva.  

7.4 Mathematical model formulation 

In the previous section, the assumptions required in the model have been described in detail. While it 

was speculated in Chapter 6 that the interactions between the aroma compounds and the components in 

rice or mucins in saliva could affect aroma release, addressing these aspects lies beyond the scope of 

this model. To begin with, the model will not include such interactions to predict aroma release, but it 

could be an aspect to be revisited should the predictions disagree with the experimental data.  

7.4.1 Air/bolus interfacial conditions in the oral cavity 

Because the volume of the liquid bolus is largely composed of saliva compared to the pasted particles, 

the subscript ‘s’ which denotes saliva will be used to describe the liquid bolus phase while keeping in 

mind that the liquid bolus includes both saliva and suspended pasted particles. As the mass transfer 

resistance on the air side 1/kOa was assumed to be negligible when compared to the mass transfer 

resistance on the liquid bolus side 1/kOs as described above, the interfacial concentration of the aroma 

compound at the liquid bolus side is given as 
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𝐶𝑂𝑠(𝑡) =
𝐶𝑂𝑎(𝑡)

𝐾𝑂𝑎𝑠
(7.1) 

7.4.2 Liquid bolus in the oral cavity 

The liquid bolus compartment is initially composed of pure saliva and is progressively flavoured by the 

addition of rice particles which were pasted. The volume increases by the addition of saliva (salivary 

flow rate) and with the addition of pasted particles.  

The volume of the liquid bolus VOl(t) can then be divided into two parts: 

𝑉𝑂𝑙(𝑡) = 𝑉𝑂𝑠(𝑡) + 𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑(𝑡) (7.2) 

where 

𝑑𝑉𝑂𝑠(𝑡)

𝑑𝑡
= 𝑄𝑂𝑠 (7.3) 

 

7.4.3 Concentration of aroma compounds in the saliva phase  

After each chewing cycle, new volumes of pasted particles are formed. This is then added to saliva, 

which becomes the liquid bolus phase. The concentrations of the aroma compounds in the saliva phase 

and pasted particles were assumed to reach equilibrium instantaneously. Therefore, after each chewing 

cycle, the mass of the aroma compounds in the saliva phase is a combination of the initial mass (before 

chewing) and the new mass of aroma being added from the pasted particles. The following word balance 

describes the mass balance of the aroma compounds in the saliva phase between a single chewing step.  

 

And the balance was expressed mathematically as 

𝑉𝑂𝑠𝑖𝐶𝑂𝑠𝑖 + 𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑𝑖𝐶𝑂𝑝𝑎𝑠𝑡𝑒𝑑𝑖 + (𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑𝑖+1 − 𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑𝑖)𝐶𝑜𝑝 = 𝑉𝑂𝑠𝑖+1𝐶𝑂𝑠𝑖+1 + 𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑𝑖+1𝐶𝑂𝑝𝑎𝑠𝑡𝑒𝑑𝑖+1 

+ 

= 

Mass of aroma compounds in the liquid bolus 

phase (mass in saliva and pasted particles) before 

chew 

New mass of aroma compounds in 

new pasted particles formed in next 

chew 

Mass of aroma compounds in the liquid bolus 

phase (mass in saliva and pasted particles) after 

the chew 
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                 …(7.4) 

  

The volatile concentration on the pasted particles side, using the partition conditions at the interface, is 

given by 

𝐶𝑂𝑝𝑎𝑠𝑡𝑒𝑑 =
𝐶𝑂𝑠
𝐾𝑂𝑠𝑝

(7.5) 

After rearranging, the concentration of the aroma compound in the saliva after a single chew can be 

described as 

𝐶𝑂𝑠𝑖+1 = 

(𝑉𝑂𝑠 +
𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑
𝐾𝑂𝑠𝑝

)𝑖𝐶𝑂𝑠𝑖 + (𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑𝑖+1 − 𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑𝑖)𝐶𝑂𝑝

(𝑉𝑂𝑠 +
𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑
𝐾𝑂𝑠𝑝

)𝑖+1

(7.6) 

This step change in aroma concentration occurs instantaneously with each chew and then changes 

dynamically due to dilution with the addition of saliva or losses to the oral airspace. This is described 

in the word balance below.  

 

 
 
 
 
 

And the balance was expressed mathematically as 

𝑑(𝑉𝑂𝑠(𝑡)𝐶𝑂𝑠(𝑡) + 𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑(𝑡)𝐶𝑂𝑝𝑎𝑠𝑡𝑒𝑑(𝑡))

𝑑𝑡
 =  −𝐴𝑂𝑏(𝑡)𝑘𝑂𝑠 (𝐶𝑂𝑠(𝑡) −

𝐶𝑂𝑎(𝑡)

𝐾𝑂𝑎𝑠
) 

𝑑(𝑉𝑂𝑠(𝑡)𝐶𝑜𝑠(𝑡) +
𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑(𝑡)𝐶𝑂𝑠(𝑡)

𝐾𝑂𝑠𝑝
)

𝑑𝑡
 =  −𝐴𝑂𝑏(𝑡)𝑘𝑂𝑠 (𝐶𝑂𝑠(𝑡) −

𝐶𝑂𝑎(𝑡)

𝐾𝑂𝑎𝑠
) 

𝑑 (𝑉𝑂𝑠(𝑡) +
𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑(𝑡)

𝐾𝑂𝑠𝑝
)𝐶𝑂𝑠(𝑡)

𝑑𝑡
 =  −𝐴𝑂𝑏(𝑡)𝑘𝑂𝑠 (𝐶𝑂𝑠(𝑡) −

𝐶𝑂𝑎(𝑡)

𝐾𝑂𝑎𝑠
) 

Applying the product rule on the left-hand side 

𝑉𝑂𝑠(𝑡)
𝑑𝐶𝑂𝑠(𝑡)

𝑑𝑡
+ 𝐶𝑂𝑠(𝑡)

𝑑𝑉𝑂𝑠(𝑡)

𝑑𝑡
+ 𝐶𝑂𝑠(𝑡)

𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑(𝑡)

𝐾𝑂𝑠𝑝
 =  −𝐴𝑂𝑏(𝑡)𝑘𝑂𝑠 (𝐶𝑂𝑠(𝑡) −

𝐶𝑂𝑎(𝑡)

𝐾𝑂𝑎𝑠
) 

After rearranging, 

rate of accumulation of mass of 

aroma compound in the liquid 

bolus 

= - Rate of mass loss to air caused 

by the concentration difference 

between the saliva 

concentration and the 

interfacial concentration. 
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𝑑𝐶𝑂𝑠(𝑡)

𝑑𝑡
 =  

−(𝑄𝑂𝑠𝐶𝑂𝑠(𝑡) + 𝐴𝑂𝑏(𝑡)𝑘𝑂𝑠 (𝐶𝑂𝑠(𝑡) −
𝐶𝑂𝑎(𝑡)
𝐾𝑂𝑎𝑠

))

(𝑉𝑂𝑠(𝑡) +
𝑉𝑂𝑝𝑎𝑠𝑡𝑒𝑑(𝑡)

𝐾𝑂𝑠𝑝
)

… (7.7) 

7.4.4 The bolus surface area, 𝑨𝑶𝒃 

The following derivation shows the steps required and assumptions made to calculate the bolus surface 

area. 

For example, if each particle is assumed as a sphere (to provide clarity spherical shape is used here but 

the equations will be adaptable to other particle shapes as well), the volume of a particle is 

𝑉𝑝 =
4

3
𝜋𝑟3 (7.8) 

If it was assumed that each particle has an amount of fluid volume, 𝑉𝑓𝑙𝑢𝑖𝑑 associated with it, the volume 

fraction of the fluid with respect to the volume of particle is 

𝑎 =
𝑉𝑓𝑙𝑢𝑖𝑑

𝑉𝑝
(7.9) 

Therefore the 𝑉𝑓𝑙𝑢𝑖𝑑 is  

𝑉𝑓𝑙𝑢𝑖𝑑 = 𝑎
4

3
𝜋𝑟3 (7.10) 

Assuming that each particle has an even and the same coating thickness, x (independent of size), the 

total volume of the particle and the fluid can be described as 

𝑉𝑡𝑜𝑡 =
4

3
𝜋(𝑟 + 𝑥)3 (7.11) 

where the 𝑉𝑓𝑙𝑢𝑖𝑑 can also be calculated by subtracting 𝑉𝑡𝑜𝑡 with 𝑉𝑝. Hence,  

𝑉𝑓𝑙𝑢𝑖𝑑 = 
4

3
𝜋(𝑟 + 𝑥)3 −

4

3
𝜋𝑟3 (7.12) 

Equating Eq.7.10 and Eq. 7.12, x can be described as 

𝑥 = 𝑟(1 + 𝑎)3 − 𝑟 (7.13) 

Therefore, the surface area of a particle with a coating thickness can be described as 

𝐴𝑝 = 4 𝜋 (𝑟 + 𝑥)
2 (7.14) 

Substituting Eq. 7.13 into Eq. 7.14 

𝐴𝑝 = 4 𝜋 𝑟
2(1 + 𝑎)

2
3 (7.15) 
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If np is the total number of particles, the total surface area of all particles (before they coalescence due 

to saliva bonding) can be described as 

4𝜋(1 + 𝑎)
2
3∑𝑟𝑖

2

𝑛𝑝

𝑖

(7.16) 

  

The bolus surface area can be predicted by emulating the concept of a sintering mechanism. In 

a sintering mechanism, the total surface area of the particles is reduced by growing bonds (bridges) 

between contacting particles during a heating process. The same concept can be applied here. As the 

number of chews increases, the amount of saliva incorporated in the bolus also increases. This also 

increases the number of saliva bridges among the particles in the bolus, which promotes the coalescence 

of the particles. For the sintering mechanism, a linear relationship was proposed between the surface 

area and the packing density where the surface area declines as the density increases (German, 2016). 

Thus, the surface area of a bolus can be described as 

𝐴𝑂𝑏 = 𝑏∅ + 𝑐 (7.17) 

Assuming that the initial packing density is ∅𝐸, the initial surface area of the bolus is therefore 

𝑆𝐴𝐸 = 𝑏∅𝐸 + 𝑐 (7.18) 

Assuming that the bolus forms a perfect sphere when the voidage between particles is 100% saturated 

with saliva (∅ = 1), the surface area of the bolus when at 100% saturation is 

𝑆𝐴𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑏 + 𝑐 (7.19) 

Substituting Eq 7.19 into Eq. 7.18 

𝑆𝐴𝐸 = 𝑏(∅𝐸 − 1) +  𝑆𝐴𝑠𝑝ℎ𝑒𝑟𝑒 (7.20) 

Rearranging Eq. 7.20, the b constant can be described as 

𝑏 =  
𝑆𝐴𝑠𝑝ℎ𝑒𝑟𝑒 −  𝑆𝐴𝐸

1 − ∅𝐸
 (7.21) 

Substituting Eq. 7.21 to Eq. 7.19, the c constant can be described as 

𝑐 = 𝑆𝐴𝑠𝑝ℎ𝑒𝑟𝑒 − 
𝑆𝐴𝑠𝑝ℎ𝑒𝑟𝑒 −  𝑆𝐴𝐸

1 − ∅𝐸
(7.22) 

Substituting Eq. 7.21 and Eq. 7.22 to Eq. 7.17, the surface area of the bolus can be described as 
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𝐴𝑂𝑏 = 
𝑆𝐴𝑠𝑝ℎ𝑒𝑟𝑒 −  𝑆𝐴𝐸

1 − ∅𝐸
 (∅ − 1) + 𝑆𝐴𝑠𝑝ℎ𝑒𝑟𝑒 (7.23) 

The initial surface area of the bolus, 𝑆𝐴𝐸, can be estimated using equation 7.16. Thus,  

𝑆𝐴𝐸 =  4 𝜋 (1 + 𝑎)
2
3∑𝑟𝑖

2

𝑛𝑝

𝑖

(7.24) 

where 

𝑎 =
𝜀

1 − 𝜀
. 𝑆 (7.25) 

The total volume of particles can be described as below 

𝑉𝑝𝑡𝑜𝑡𝑎𝑙 = 
4

3
𝜋∑𝑟𝑖

3

𝑛𝑝

𝑖

(7.26) 

The total volume of the bolus is therefore 

𝑉𝑏𝑜𝑙𝑢𝑠 =
𝑉𝑝𝑡𝑜𝑡𝑎𝑙
1 −  𝜀

(7.27) 

If R is the radius of the bolus, the volume of the bolus can also be described as 

𝑉𝑏𝑜𝑙𝑢𝑠 = 
4

3
𝜋𝑅3 (7.28) 

Equating Eq.7.27 and Eq. 7.28, the radius of the bolus can be calculated as follows 

𝑅 = (
∑ 𝑟𝑖

3𝑛𝑝
𝑖

1 − 𝜀
)

1
3

(7.29) 

Therefore, the surface area of the bolus when at 100% saturation (assuming spherical shape) is  

𝑆𝐴𝑠𝑝ℎ𝑒𝑟𝑒 = 4 𝜋 𝑅
2
3 (7.30) 

Finally, the packing density of the bolus in Eq. 7.23 can be estimated as described below 

∅ = (1 −  𝜀) +  𝑆. 𝜀 (7.31) 
 

where the saturation of the bolus, 𝑆 is calculated using the equation below 

𝑆 =
𝑉𝑜𝑝𝑎𝑠𝑡𝑒𝑑 + 𝑉𝑠
𝑉𝑝𝑡𝑜𝑡𝑎𝑙

. (
1 − 𝜀

𝜀
) (7.32) 

 

The saturation of the bolus decides when Eq. 7.23 is used to estimate the bolus surface area. 

For any saturation value less than 1, Eq. 7.23 will be used to estimate the bolus surface area. For the 

bolus when the saturation surpasses the value of 1, the bolus surface area was estimated by evaluating 
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the radius of the bolus (assuming the bolus is spherical) using Eq. 7.28. The radius was then used to 

calculate the bolus surface area assuming the bolus is of a spherical shape. 

7.4.5 Aroma compound retention by the lubricated mucosa in the oral cavity 

The reservoir effect of the lubricated mucosa was also taken into account as one of the aroma 

compounds used in the study, 2-nonanone, was known to interact with the mucosa compartments 

(Doyennette et al., 2014; Déléris et al., 2016). It is assumed that the air in the mouth was in contact with 

the lubricated oral mucosa layer. Therefore, the rate of loss of volatile from the mucosa to the air phase 

is given by:  

𝑉𝑂𝑚
𝑑𝑂𝑚(𝑡)

𝑑𝑡
= −𝑘𝑂𝑚𝐴𝑂𝑎𝑚 (𝐶𝑂𝑚(𝑡) −

𝐶𝑂𝑎(𝑡)

𝐾𝑂𝑎𝑚
) (7.33) 

7.4.6 Air in the oral cavity 

The mass balance of aroma compounds in the air phase contained in the oral cavity involves the addition 

from the aroma compound flux of the liquid bolus, the volatile flux from the oral mucosa and the aroma 

compounds from the air in the pharynx (for QOa (t) ≥ 0), which means that the air flows in the direction 

shown by the arrows in Fig. 7-1. The jaw movements during mastication induce velopharynx opening 

and cyclic air flow between the pharynx and the mouth (Marion Doyennette et al., 2014; Matsuo, 

Metani, Mays, & Palmer, 2010).  

𝑉𝑂𝑎 (𝑡)
𝑑𝐶𝑂𝑎(𝑡)

𝑑𝑡
= 𝐴𝑂𝑏𝑘𝑂𝑠 (𝐶𝑂𝑠(𝑡) −

𝐶𝑂𝑎(𝑡)

𝐾𝑂𝑎𝑠
) + 𝑘𝑂𝑚𝐴𝑂𝑎𝑚(𝐶𝑂𝑚(𝑡) −

𝐶𝑂𝑎(𝑡)

𝐾𝑂𝑎𝑚
) 

 

                                  + {
𝑄𝑂𝑎(𝑡)(𝐶𝐹𝑎(𝑡) − 𝐶𝑂𝑎(𝑡))  𝑖𝑓 𝑄𝑂𝑎(𝑡)  ≥ 0

0                                  𝑖𝑓 𝑄𝑂𝑎(𝑡)  < 0 
            

….(7.34) 

Because little information was known on the real change in Voa, it was assumed that the chewing 

movements create a cyclic variation of the air volume Voa around a mean value  

Voa mean (Matsuo et al., 2010; Doyennette et al., 2014).  

𝑉𝑂𝑎 (𝑡) = 𝑉𝑂𝑎 𝑚𝑒𝑎𝑛 + ∆𝑉𝑂𝑎 sin (2𝜋𝑓𝑟𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑡) (7.35) 

Hence, the air flow rate coming from the mouth is calculated as follows: 

𝑄𝑂𝑎(𝑡) =
𝑑𝑉𝑂𝑎(𝑡)

𝑑𝑡
= 2𝜋𝑓𝑟𝑜𝑝𝑒𝑛𝑖𝑛𝑔∆𝑉𝑂𝑎 cos(2𝜋𝑓𝑟𝑜𝑝𝑒𝑛𝑖𝑛𝑔𝑡)                                                                      (7.36) 
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where ∆𝑉𝑜𝑎 was estimated to be 20% of 𝑉𝑜𝑎 𝑚𝑒𝑎𝑛 (Doyennette et al., 2014). The highest opening 

frequency 𝑓𝑟𝑜𝑝𝑒𝑛𝑖𝑛𝑔, was coordinated with the chewing frequency, 𝑓𝑟𝑐ℎ𝑒𝑤 and that the lowest opening 

frequency was coordinated with the breathing frequency, 𝐹𝑏𝑟𝑒𝑎𝑡ℎ. 

7.4.7 Bolus in the pharynx 

The volatile release for the residual bolus in the pharynx to the adjacent air is given by: 

 

𝑉𝐹𝑠
𝑑𝐶𝐹𝑠(𝑡)

𝑑𝑡
=  −𝑘𝐹𝑠𝐴𝐹𝑎𝑠(𝐶𝐹𝑠(𝑡) −

𝐶𝐹𝑎(𝑡)

𝐾𝐹𝑎𝑠
)  (7.37) 

7.4.8 Aroma compound retention by the lubricated mucosa in the pharynx  

The rate of loss of volatile from the mucosa in the pharynx to the air phase is given by: 

𝑉𝐹𝑚
𝑑𝐶𝐹𝑚(𝑡)

𝑑𝑡
= −𝑘𝐹𝑚𝐴𝐹𝑎𝑚 (𝐶𝐹𝑚(𝑡) −

𝐶𝐹𝑎(𝑡)

𝐾𝐹𝑎𝑚
) (7.38) 

 

7.4.9 Air in the pharynx 

The air in the pharynx receives aroma compounds from the residual bolus in the pharynx, the mucosa 

layer in the pharynx, as well as the air flow rates from the other compartments. This include the air 

flow from the mouth (𝑄𝑂𝑎(𝑡)), the nose (𝑄𝑁𝑎(𝑡)) and the trachea (QTa(t)). 

The air balance in the pharynx is given by: 

𝑄𝑁𝑎(𝑡) =  −𝑄𝑇𝑎(𝑡) + 𝑄𝑂𝑎(𝑡) (7.39) 

The mass balance of the aroma compound in the air phase of the pharynx gives the following 

equation: 

𝑉𝐹𝑎 
𝑑𝐶𝐹𝑎(𝑡)

𝑑𝑡
= 𝑘𝐹𝑠𝐴𝐹𝑎𝑠(𝐶𝐹𝑠(𝑡) −

𝐶𝐹𝑎(𝑡)

𝐾𝐹𝑎𝑠
) + 𝑘𝐹𝑚𝐴𝐹𝑎𝑚 (𝐶𝐹𝑚(𝑡) −

𝐶𝐹𝑎(𝑡)

𝐾𝐹𝑎𝑚
) 

+

{
 
 

 
 −𝑄𝑂𝑎(𝑡)(𝐶𝑂𝑎(𝑡) − 𝐶𝐹𝑎(𝑡))  𝑖𝑓 𝑄𝑂𝑎(𝑡)  < 0

𝑄𝑁𝑎(𝑡)(𝐶𝑁𝑎(𝑡) − 𝐶𝐹𝑎(𝑡))  𝑖𝑓 𝑄𝑁𝑎(𝑡)  ≥ 0

𝑄𝑇𝑎(𝑡)(𝐶𝑇𝑎(𝑡) − 𝐶𝐹𝑎(𝑡))  𝑖𝑓 𝑄𝑇𝑎(𝑡)  ≥ 0
                                   

 

                …(7.40) 

7.4.10 Aroma compound retention by the lubricated mucosa in the nasal cavity 

The rate of loss of volatile from the mucosa in the nasal cavity to the air phase is given by: 

𝑉𝑁𝑚
𝑑𝐶𝑁𝑚(𝑡)

𝑑𝑡
= −𝑘𝑁𝑚𝐴𝑁𝑎𝑚 (𝐶𝑁𝑚(𝑡) −

𝐶𝑁𝑎(𝑡)

𝐾𝑁𝑎𝑚
) (7.41) 
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7.4.11 Air in the nasal cavity 

The mass balance of the aroma compound in the air phase in the nasal cavity is given by: 
 

𝑉𝑁𝑎
𝑑𝐶𝑁𝑎(𝑡)

𝑑𝑡
= 𝑘𝑁𝑚𝐴𝑁𝑎𝑚 (𝐶𝑁𝑚(𝑡) −

𝐶𝑁𝑎(𝑡)

𝐾𝑁𝑎𝑚
) + {

𝑄𝑁𝑎(𝑡) (0 − 𝐶𝑁𝑎(𝑡)) 𝑖𝑓 𝑄𝑁𝑎(𝑡) < 0

𝑄𝑁𝑎(𝑡) (𝐶𝐹𝑎(𝑡) − 𝐶𝑁𝑎(𝑡)) 𝑖𝑓 𝑄𝑁𝑎(𝑡) ≥ 0

. . . (7.42)

 

7.4.12 The initial conditions 

The initial concentration of aroma compounds in all compartments for the when the product was 

introduced in the mouth up to the first chewing cycle (chew 0 to chew 1), is zero. The initial volume of 

saliva to solve Eq. 7.3 was set as the volume of saliva at rest. Thus, the initial conditions from chew 0 

to chew 1 are: 

𝑉𝑂𝑠(𝑡0) = 𝑉𝑂𝑠𝑟𝑒𝑠𝑡 

𝐶𝑂𝑠(𝑡0) = 𝐶𝑂𝑎(𝑡0) = 𝐶𝑂𝑚(𝑡0) = 𝐶𝐹𝑠(𝑡0) = 𝐶𝐹𝑚(𝑡0) = 𝐶𝐹𝑎(𝑡0) = 𝐶𝑁𝑚(𝑡0) = 𝐶𝑁𝑎(𝑡0) = 0 

After the 1st chew, rice will break into smaller particles, and some will be pasted which dissolves in the 

liquid bolus. The volatiles from the pasted particles are then transferred into the liquid bolus, and an 

instant equilibrium was assumed (see section 7.4.2, Eq. 7.6). Thus, the initial conditions are: 

                                            𝐶𝑂𝑠(𝑡0) = 𝐶𝑂𝑠(𝑡𝑐ℎ𝑒𝑤=1)   calculated from Eq. 7.6 

𝑉𝑂𝑠(𝑡0) = 𝑉𝑂𝑠(𝑡𝑐ℎ𝑒𝑤=1) 

 𝐶𝑂𝑎(𝑡0) = 𝐶𝑂𝑎(𝑡𝑐ℎ𝑒𝑤=1) 

𝐶𝑂𝑚(𝑡0) = 𝐶𝑂𝑚(𝑡𝑐ℎ𝑒𝑤=1) 

𝐶𝐹𝑠(𝑡0) = 𝐶𝐹𝑠(𝑡𝑐ℎ𝑒𝑤=1) 

𝐶𝐹𝑚(𝑡0) = 𝐶𝐹𝑚(𝑡𝑐ℎ𝑒𝑤=1) 

𝐶𝐹𝑎(𝑡0) = 𝐶𝐹𝑎(𝑡𝑐ℎ𝑒𝑤=1) 

𝐶𝑁𝑚(𝑡0) = 𝐶𝑁𝑚(𝑡𝑐ℎ𝑒𝑤=1) 

𝐶𝑁𝑎(𝑡0) =  𝐶𝑁𝑎(𝑡𝑐ℎ𝑒𝑤=1) 

7.5 Numerical solution 

The model was solved numerically using MATLAB program version R2019a using the ode45 

function with a default relative error tolerance value of 0.001 which was shown to produce negligible 
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numerical error. The MATLAB code that was developed to numerically solve the ODE equations can 

be referred in Appendix A. 

7.6 Coupling of the food breakdown model and the aroma release model  

As described before, the food breakdown model developed in Chapter 3 was coupled with the ODE 

equations developed above to predict aroma release (quantified by the concentration of aroma 

compound in the nasal cavity). Fig. 7-3 shows a schematic model diagram describing the steps required 

to couple the models. The input parameters required for the selection and breakage models and the 

implementations have been described previously in Chapter 3. Once the selection and breakage models 

were applied to the initial PSD, the new PSD outputted the pasted daughter particles (diameter < 0.355 

mm) and the non-pasted particles which were essentially particles with sizes that were greater than 

0.355 mm. The simulation was repeated after the specified number of chews was completed. Once the 

PSD was predicted, the predictions were compared against experimental data, this was the in vivo bolus 

PSD data collected in Chapter 6. Since the model input parameters were not known, the PSO fitting 

approach developed in Chapter 4 was applied to solve the input parameters. The validated PSD model 

was then coupled to the aroma release models developed in this chapter (section 7.4). The pasted and 

non-pasted PSD outputs from the chewing model were used to calculate the bolus surface area, bolus 

saturation and the concentration of aroma compounds in the saliva phase. These consequential variables 

were needed to solve the mass transfer ODE equations in the various physiological compartments 

developed in section 7.4.  

Finally, as the ODE equations could not be solved analytically, they were solved numerically 

using MATLAB. The concentration of aroma compound predicted in the nasal cavity was then 

compared against in vivo data (e.g in vivo aroma release data measured in Chapter 6) to test the validity 

of the model.  

7.7 General model results 

Fig. 7-4 shows the predicted time variations of 12 variables for the release of ethyl propanoate 

during the mastication of the cooked rice to demonstrate the model solutions.  
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Fig. 7-3 Schematic diagram showing the model flow chart to couple the particle size reduction model developed in Chapter 3 and the models describing flavour 

release developed in this chapter
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Fig. 7-4: Results of 12 model variables for the release of ethyl propanoate during the consumption of cooked white rice: (a) volume of pasted particles in the oral cavity, VOpasted, (b) 

volume of saliva in the oral cavity, VOs, (c) liquid bolus saturation, S, (d) Surface area of bolus, AOb, (e) Concentration of aroma in the liquid bolus of the oral cavity, COs, (f) 

Concentration of aroma in the mucosa layer in the oral cavity, COm, (g) Concentration of aroma in air phase in the oral cavity, COa, (h) Concentration of aroma in the liquid bolus in 

the pharynx, CFs (i) Concentration of aroma in the air phase in the pharynx, CFa, (j) Concentration of aroma in the mucosa layer in the pharynx, CFm, (k) Concentration of aroma in 

the mucosa layer in the nasal cavity, CNm, (l) Concentration of aroma in the air phase in the nasal cavity, CNa
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The values of physiological parameters were fixed to the values from one of the subjects used in Chapter 

6 (Subject A4). The volume of pasted particles in the oral cavity, VOpasted, increases with time, due to 

chewing which breaks the rice particles into paste and some larger daughter particles. The volume of 

saliva, VOs started at the volume of saliva at rest (the y-intercept of the subject’s bolus saliva content 

and chew number) and then increases in time as mastication progresses. The increase in the volume of 

saliva is dependent on QOs (the slope of the subject’s bolus saliva content). Thus, the longer the chewing 

period, the larger the volume of saliva. The liquid bolus saturation, S, increases sharply after the first 

chew as pasted particles are formed and combine with the volume of saliva.  

The increase in bolus saturation is dependent on the saliva flow rate, QOs as the volume of the pasted 

particles is relatively smaller than the volume of saliva (about 10 times higher). The bolus surface area, 

AOb also increases with time and seem to follow the increasing trend of the bolus saturation. This is 

consistent with the model assumption which uses the bolus saturation to calculate the bolus surface 

area. The concentration of the aroma in the liquid bolus in the oral cavity, COs increases at every chew 

due to the breakdown of rice which produce pasted particles which release their aroma into the liquid 

bolus. Between chews it decreases slowly due to the release into the air. At the end of chewing less rice 

is pasted, therefore less aroma is transferred to the liquid bolus phase and the dilution from saliva 

becomes dominant. 

This explains the decrease in aroma compound concentration in the liquid phase of the bolus towards 

the end of chewing.  The concentration of aroma in the air phase in the oral cavity, COa increases due to 

mass transfer from the liquid bolus to the air. The increase in COa is also contributed to by the desorption 

of aroma from the mucosa layer, COm. The velopharynx opening causes small cyclical depressions as it 

receives air from the pharynx. The concentration of aroma in the mucosa layer in the oral cavity, COm 

increases with time as it tries to reach equilibrium with COa.  

The concentration of aroma in the air phase in the pharynx, CFa gets pulses due to Qoa which transport 

the aroma. CFa also receives aroma from the mucosa layer, CFm. The concentration of aroma in the liquid 
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bolus in the pharynx, CFs follows the trend of CFa as it tries to reach equilibrium. The concentration of 

aroma in the mucosa layer of the pharynx CFm follows the trend of CFs, to reach equilibrium with CFa.  

The concentration of aroma in the air phase in the nasal cavity follows the pattern of CFa during 

exhalation and goes to zero during inhalation as the aroma compounds are swept out by the freshly 

inhaled air. Finally, the concentration of aroma in the mucosa layer of the nasal cavity, CNm increases 

with time as it tries to reach equilibrium with CNa. 

7.8 Chapter summary 

A mathematical model describing the aroma release during the mastication of rice had been 

conceptualised and mathematically formulated. The ODE equations developed were numerically solved 

using MATLAB. The model was checked by comparing the solutions using different time steps and 

was shown to contain no significant numerical error. The next steps in the modelling process were to 

determine or estimate the best values and uncertainties of the input parameters before the model could 

be validated against the experimental data. 
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Chapter 8 Validation of the aroma release model 
 

8.1 Introduction 

In Chapter 7, conceptual and mathematical models to predict the aroma release of foods (applied to a 

starch-based food model - cooked white rice) were developed.  It has been shown in the literature that 

mechanistic models describing aroma release from masticated foods have not been coupled to chewing 

due to the complexity of describing how the number and size of particles change as a function of time 

and the number of chews (Doyennette et al., 2014). In a previous study for cheese which the aroma 

release models of Chapter 7 were built on, the contact area between the solid and liquid phase of the 

bolus during mastication was assumed to evolve linearly with time (Doyennette et al., 2014). Indeed, 

the authors acknowledge that due to the challenges in quantifying the rate of change of contact area for 

pasty products like cheese, the assumption of linearly increasing contact area with time seems 

reasonable as long as some solid product is present in the mouth and a regular mastication behaviour 

was considered.  

The key novelty of the model developed in Chapter 7 to predict aroma release is the coupling 

with the chewing model developed in Chapter 3. Through a combined model, aroma release can be 

predicted from selection and breakage behaviour of particles that could be measured independently. 

Because of the complexity of the combined model its application to the experimental data was 

developed in a staged manner.  

The chewing behaviour and particle size distribution were measured at regular intervals for the 

same subjects that aroma release was monitored. This enables the application of the aroma release 

model on its own using the experimental bolus characteristics as inputs. By decoupling in this way, 

more direct exploration of the predictive capability of the aroma release model could be carried out. 

Similarly, the size reduction models developed in Chapter 3 could independently applied to predict the 

size distribution data. After validating the two separate components of the model, the combined model 

could then be validated against the experimental data. Consequently, this chapter was partitioned into 

three aims. The first objective was to validate the aroma release models developed in Chapter 8 where 

the chewing-related input parameters of the model was taken directly from the bolus PSD in vivo 
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experimental data. In addition, the physiological and physicochemical measurements conducted in 

Chapter 6 were used to predict the model. The second goal was to validate the aroma release models 

using the model coupling approach developed in Chapter 7. The final goal was to investigate the 

predictive capability of the combined model to predict aroma release.  

8.2 Objective 1: Aroma model validation using in-vivo experimental bolus 

properties 

The first validation stage aimed to validate the model predictions by directly taking the in vivo chewing 

experimental data conducted in Chapter 6 and using them as model inputs in the aroma release model. 

The input parameters required in the mathematical model were divided into three groups. These are the 

subject’s chewing related parameters, the subject’s physiological parameters, and aroma compound 

physicochemical parameters.  

8.2.1 Subject’s chewing parameters 

The bolus PSD of each panellist during the consumption of cooked rice is required to predict aroma 

release. Two input parameters are required from the model developed in Chapter 7 to predict aroma 

release. Firstly, the volume of pasted rice particles at each chewing number as these particles are 

assumed to release most of the aroma compound. The volume of pasted particles is calculated by 

evaluating the total volume of particles, which have a size less than a specific size threshold (e.g. 0.354 

mm) from the experimental data. The second input parameter required from the model is the total 

surface area of particles (particles that were greater than the pasted size threshold, mm2). This is required 

to calculate the bolus surface area as described in section 7.4.4, Chapter 7. 

The bolus PSD data used in the model were the bolus PSD after 1 chew, 2 chews, 25%, 50%, 

75% and 100% of each subject’s swallow point. This is the same experimental data as shown in section 

6.4.2 of Chapter 6, but the boluses were collected at two extra chew intervals in the early stages of 

mastication (1 and 2 chews) so the model could be provided with accurate PSD during the early stages 

of chewing. Fig. 8-1 shows the bolus PSD data for all subjects used in the model. 

To uncouple the particle breakage and aroma release models, the total surface area of particles 

and the pasted volume inputs were directly obtained from the experimental data. As described in 
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Chapter 6 (refer section 6.3.4.2), image analysis method was used to measure the bolus PSD. The 

volume of a single particle was predicted by multiplying the measured projected area with an assumed 

height assuming it was a short cylinder (Eq. 6.1). The height was determined by minimising the residual 

sum of squares between the total predicted volume of particles and the experimental recovered volume 

of bolus (Eq. 6.2).  

𝑉 = ℎ. 𝐴 (6.1) 

where V is the volume in mm3, h is the assumed height in mm, and A is the projected area of a single 

particle in mm2. h is calculated as a fraction (f) of the diameter, given by 

ℎ = 𝑓. (
4. 𝐴

𝜋
)

1
2

(6.2) 

 The mean f value across all mastication stages and their replicates (including the 1 chew and 2 chew 

data) for each subject measured in Chapter 6 is shown in Fig. 8-2. Due to the small variation of the f 

value between all chew numbers and replicates, it was assumed that the f value used to calculate the 

surface area of particles was constant (at the mean value) across all chew numbers specific to each 

subject.  

Therefore, the total surface area of all particles assuming each particle is of cylindrical shape is given 

by 

𝑆𝐴𝑡𝑜𝑡𝑎𝑙 = ∑𝜋𝐷𝑝𝑛(ℎ +
𝐷𝑝𝑛
2
)

𝑛

𝑛=1

(8.1) 

where 𝑆𝐴𝑡𝑜𝑡𝑎𝑙 is the total surface area of particles in mm2 and 𝐷𝑝𝑛is the characteristic 

dimension of the projected area of a single particle (diameter in mm).  

As the experimental pasted particles volume and the total surface area of particles consists of 

the data at 1 chew, 2 chews, 25%, 50%, 75% and 100% of the subject’s swallowing point, a linear 

model was fitted to the data so the inputs can be interpolated at each intermediate chew number. Fig. 

8-3- Fig. 8-7 shows the interpolated model against the experimental data. With the exception of subject 

A1, the model fits the experimental data well for all subjects (from the high R2 value (R2 > 0.5)). 

Potentially subject A1 had an intermediate swallow after about 5-6 chews as this break in the trend does 

not occur in the other four subjects where the linear fits were reasonable. 
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A1, N100%=15 A2, N100%=17 

  
A3, N100%=20 A4, N100%=25 

 
A5, N100%=23 

Fig. 8-1: Bolus particle size distribution results for all subjects. The line curves were plotted to guide the 

reader. 
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Fig. 8-2 The mean and standard deviation of the fraction, f of diameter across all mastication stages 

(measured in Chapter 7) to calculate the height of the particle in Eq. 6.2 obtained by minimising the 

residual sum of squares between the total volume of particles calculated in Eq. 6.1 and the experimental 

recovered volume of bolus. 

 

 

Fig. 8-3: Volume of pasted particles and total surface area of particles data for subject A1. A linear model 

(red line) was fitted to the data. The model does not fit the data well for subject A1 as demonstrated by 

the low R2 value. 
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Fig. 8-4: Volume of pasted particles and total surface area of particles data for subject A2. A linear model 

(red line) was fitted to the data. The model fit the data well for subject A2 as demonstrated by the high R2 

value. 

 

Fig. 8-5: Volume of pasted particles and total surface area of particles data for subject A3. A linear model 

(red line) was fitted to the data. The model fit the data well for subject A3 as demonstrated by the high R2 

value. 
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Fig. 8-6: Volume of pasted particles and total surface area of particles data for subject A4. A linear model 

(red line) was fitted to the data. The model fit the data well for subject A4 as demonstrated by the high R2 

value. 

 
Fig. 8-7: Volume of pasted particles and total surface area of particles data for subject A5. A linear model 

(red line) was fitted to the data. The model fit the data well for subject A5 as demonstrated by the high R2 

value. 

The linear equations as a function of chew number as displayed in the above figures were then 

used to calculate the volume of the pasted particles and the total surface area of particles at each chew 

number. Additionally, during the in vivo aroma release experiment, each subject was video recorded 

(with permission) in which their number of chews and the time taken to swallow were analysed to 

compare with the ones measured during the PSD measurement (Table 8-1).  



 

 

208 

 

As can be seen from the table below, the number of chews and the time taken to reach swallow 

point were higher during the in vivo aroma release experiments for almost all subjects (except subject 

A1).  The fitted linear model as obtained above allows the volume of pasted particles and the total 

surface area of particles to be calculated at the chew number obtained from the in vivo aroma release 

experiments.   

Table 8-1: Number of chews and time taken to swallow of all subjects determined from the PSD and in 

vivo aroma release experiments.  

 

Subject 

 

Number of chews Time taken to swallow (s) 

PSD experiment 

 

In vivo aroma 

release 

PSD experiment In vivo aroma 

release 

A1 15 ± 2 15 ± 2 11 ± 3 12 ± 2 

A2 17 ± 2 25 ± 6 14 ± 1 21 ± 5 

A3 23 ± 1 38 ± 3 14 ± 1 21 ± 3 

A4 25 ± 3 35 ± 10 16 ± 3 24 ± 3 

A5 20 ± 1 26 ± 6 14 ± 1 20 ± 5 

 

8.2.2 Subject’s physiological parameters 

The physiological characteristics are critical input parameters required to predict aroma release. The 

input parameters were determined from the experimental measurements made in Chapter 6 or from the 

information found in the literature. Table 8-2 below summarises the physiological parameters required 

for the model, the values used and their source. The physiological input values, as described in Table 

8-2 above, were determined through experiments and where they could not be measured due to 

limitation of resources, the values were obtained from the literature. The oral cavity volume, VOamean, 

the volume of air in the pharynx, VFa and the volume of air in the nasal cavit, VNa were measured using 

the rhinopharyngometer as described in section 6.3.3.1 in Chapter 6. The volume of saliva at rest, VOsrest  

and the saliva flow rate, QOs  were obtained from the y-intercept and the slope of the subject’s bolus 

saliva content and chew number relationship as previously described in section 6.4.2. The number of 

chews required to reach swallow point, nchews, the chewing frequency, frchew and the time taken to 
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swallow, tswallow for each subject during the in vivo aroma release experiment were determined according 

to the protocol as previously described in section 6.3.3.4.  

Table 8-2 Subject’s physiological input values used in the model 

Symbol Unit Description Reference 

value 

Range of 

variation 

Source 

AO mm2 Total area in oral 

cavity 

11600 5800-

23200 

(Déléris et al., 

2016; 

Doyennette et 

al., 2014) 

AF mm2 Total area of the 

pharynx 

6500 3250-

13000 

(Déléris et al., 

2016; 

Doyennette et 

al., 2014) 

AOam mm2 air/lubricated 

mucosa contact area 

in the oral cavity 

= 0.1 x AO 0.1 x AO - 
AO 

(Déléris et al., 

2016) 

AFam mm2 air/lubricated 

mucosa in the 

pharynx 

= 0.1 x AF 0.1 x AF – 
AF 

(Déléris et al., 

2016) 

AFas mm2 air/saliva contact 

area in the pharynx 
= AF - AFam / (Déléris et al., 

2016) 

ANam mm2 air/lubricated 

mucosa in the nasal 

cavity 

15 x 103 7.5 x 102 

- 3 x 104 

(Déléris et al., 

2016)  

eOam mm Thickness of wetted 

mucosa in the oral 

cavity 

5 x 10-2 5 x 10-3- 

5 x 10-1 

(Déléris et al., 

2016) 

eFam mm Thickness of wetted 

mucosa in the 

pharynx 

5 x 10-2 5 x 10-3- 

5 x 10-1 

(Déléris et al., 

2016) 

eNam mm Thickness of 

mucosa in nasal 

cavity 

5 x 10-2 5 x 10-3- 

5 x 10-1 

(Déléris et al., 

2016) 

Fbreath number of 

cycles/s 

breathing frequency 0.26 0.25-0.33 Experimental 

values 

frchew number of 

chews/s 

chewing frequency 1.3 1.2-1.4 Experimental 

values 

fropening occurrence 

number/s 

opening frequency 

of the velopharynx 
= Fbreath  or 

frchew  

/ (Doyennette 

et al., 2014) 

Vc mm3 current breath 

volume 

8 x 105 8 x 105 -

16 x 105 

(Déléris et al., 

2016; 

Doyennette et 

al., 2014) 

VOsrest mm3 volume of saliva at 

rest in the oral 

cavity 

362 100-871 Experimental 

values 

VOm mm3 volume of mucosa 

in the oral cavity 
= eOam x 

AOam 

/ (Déléris et al., 

2016) 

VOamean mm3 volume of air in the 

oral cavity 

63720 56830-

68100 

Experimental 

values 

VFa mm3 volume of air in the 

pharynx 

33610 28500-

41655 

Experimental 

values 
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VFs mm3 volume of saliva in 

the pharynx 

2 x 102 102 – 4 x 

102 

(Déléris et al., 

2016) 

VFm mm3 volume of mucosa 

in the pharynx 
= eFam x AFam / (Déléris et al., 

2016) 

VNa mm3 volume of air in the 

nasal cavity 

14470 10320-

19480 

Experimental 

values 

VNm mm3 volume of mucosa 

in the nasal cavity 
= eNam x 

ANam 

/ (Déléris et al., 

2016) 

QOs mm3/s saliva flow rate in 

the oral cavity 

40 18-60 Experimental 

values 

tswallow s  time taken to 

swallow 

20 12-20 Experimental 

values 

nchews  number of chews 

required to reach 

swallow point 

28 15-38 Experimental 

values 

 

The breathing frequency of the panellists during the consumption of the cooked rice was 

estimated from the acetone signal (m/z 59) measured in the nasal cavity which was recorded 

synchronously with the concentration of the target aroma compounds (Trelea et al., 2007). When 

ambient air is inhaled, the acetone concentration in the nasal cavity decreases due to dilution, whereas 

during exhalation, the concentration increases due to the contribution of the air coming from the lungs 

(Trelea et al., 2007). Fig. 8-8 below shows a single replicate of the acetone signal measured in one of 

the panellists. The breathing frequency was determined by measuring the time it takes to complete one 

breathing cycle. This was determined by identifying the point when the signal decreases and increases, 

as it symbolises when the subject inhales and exhales. The breathing frequency used in the model is the 

average of several breathing frequencies measured in all five replicates in the in vivo aroma release 

experiments.  
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Fig. 8-8: An example to illustrate the dynamics of acetone signal during chewing. Data shown above is a 

single replicate from one of the panellists. The arrow in the figure shows the length of time in (s) for one 

breathing cycle, which determines the breathing frequency. For instance, it takes about 3-4 s for the 

subject to finish a breathing cycle. The breathing frequency used in the model is the average of several 

breathing frequencies measured in all five replicates in the in vivo aroma release experiments. 

Other physiological variables including the area of the mucosa in all compartments (oral cavity, 

pharynx and nasal cavity), the thickness of the mucosa layer, and the breath volume/tidal volume were 

determined from the literature.  

8.2.3 Physico-chemical input parameters 

Other input parameters required for the model include the physico-chemical properties of the aroma 

compound that was spiked in the cooked rice, such as the partition coefficient between different phases. 

The mass transfer coefficient and the initial concentration were also required to predict aroma release. 

Table 8-3 below summarises the remaining parameters required for the model. 

Table 8-3: Model input parameters which include the mass transfer coefficient, partition coefficient and 

the initial concentration of the aroma compounds that were spiked in the cooked white rice. 

Symbol Unit Description Reference 

value 

Range of 

variation 

Source 

kOs mm/s mass transfer 

coefficient in the 

saliva phase in the 

oral cavity 

 

10-3 

 

10-5-10-1 

 

(Déléris et al., 

2016) 

kFs mm/s mass transfer 

coefficient in the 

saliva phase in the 

pharynx 

 

10-3 

 

10-5-10-1 

 

(Déléris et al., 

2016) 

kOm mm/s mass transfer 

coefficient in the 

 

10-3 

 

10-5-10-1 
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lubricated mucosa in 

the oral cavity 

(Déléris et al., 

2016) 

kFm mm/s mass transfer 

coefficient in the 

lubricated mucosa in 

the pharynx 

 

10-3 

 

10-5-10-1 

 

(Déléris et al., 

2016) 

kNm mm/s mass transfer 

coefficient in the 

lubricated mucosa in 

the nasal cavity 

 

10-3 

 

10-5-10-1 

 

(Déléris et al., 

2016) 

 
KOas 

  

air/saliva partition 

coefficient in the 

oral cavity at 37oC 

12.9 x 10-3 

(Ethyl 

propanoate) 

 

/ 

 

 

(Déléris et al., 

2016) 9.7 x 10-3 (2-

nonanone) 

 
KOsp 

 saliva/product(rice) 

partition coefficient 

in the oral cavity at 

37oC 

2.14 (Ethyl 

propanoate) 

 

/ 

 

Experimental 

values 0.245 (2-

nonanone) 

KOam  air/lubricated 

mucosa partition 

coefficient in the 

oral cavity 

 

10-3 

 

10-5-10-1 

(Déléris et al., 

2016) 

KFas  air/saliva partition 

coefficient in the 

pharynx 

5 x 10-3 5 x10-4- 5 

x 10-2 

(Déléris et al., 

2016) 

KFam  air/lubricated 

mucosa partition 

coefficient in the 

pharynx 

 

10-3 

 

10-5-10-1 

(Déléris et al., 

2016) 

KNam  air/lubricated 

mucosa partition 

coefficient in the 

nasal cavity 

 

10-3 

 

10-5-10-1 

(Déléris et al., 

2016) 

 
COp 

g/mm3 aroma concentration 

in the product (rice) 

in the oral cavity 

1.5 x 10-10 

(ethyl 

propanoate) 

 

 

/ 

 

 

Experimental 

values 4.8 x 10-9 (2-

nonanone) 

 

8.2.3.1 Partition coefficient determination 

The air/rice partition coefficient at 37oC was determined using the phase ratio variation (PRV) method 

by headspace chromatography (Atlan et al., 2006; Doyennette et al., 2011). The method to determine 

the air/rice partition coefficient was adopted from (Doyennette et al., 2011). A known amount of rice 

(50 mg, 200 mg, 500 mg or 2000 mg) was placed in vials (20.5 cm3, Chromacol, France) and incubated 

at 37oC for 2.5 hours. The length of time was selected after preliminary experiments (measurements 
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every 30 min from 0 to 5 h) to ensure thermodynamic equilibrium was achieved. The temperature was 

selected as it was close to the body temperature (Doyennette et al., 2011).  

After the equilibration time, 2 cm3 of the headspace above the rice was sampled and injected 

with an automatic HS CombiPal sampler (CTC Analytics, Switzerland) into a gas chromatograph HP 

(GC-FID HP6890, Germany) equipped with an HP-INNOWax polyethylene glycol semi capillary 

column (30 m x 0.53 mm, with a 1 µm-thick film) (J&W Scientific) and a flame ionisation detector 

(Doyennette et al., 2011). The temperatures of the gas chromatograph injector and detector (GC-FID 

HP6890, Germany) were set at 250oC. The oven program was 12 min, starting at 40oC for 5oC/min up 

to 60oC, then for 10oC/min up to 120oC, and 2 min for 120oC. Helium was used as the carrier gas at 8.4 

cm3/min flow rate (corresponding to 57 cm/s average velocity at 50oC). The peak areas were measured 

using Hewlett-Packard Chemstation integration software. Three replicates were done for each amount 

of rice tested.  

The basic PRV equation 

The air to rice partition coefficient (𝐾𝑎𝑝) of an aroma compound is defined as the ratio between 

the air and the rice concentrations of the compound at thermodynamic equilibrium: 

𝐾𝑎𝑝 =
𝐶𝑎
𝐶𝑝

(8.2) 

In the PRV procedure, the target volatile compound (2-nonanone & ethyl propanoate) is first spiked in 

the rice matrix at initial concentration 𝐶𝑝
𝑂. As described previously, various volumes of rice are then 

introduced in closed vials until thermodynamic equilibrium is reached. The GC peak areas are the 

experimental measurements, which are proportional to the concentration of the target aroma compound 

in the air phase.  

Based on mass balance, it was theoretically shown that the GC peak areas (A) are given by (Ettre et al., 

1993): 

𝐴 =  
𝐹𝐶𝑝

𝑂

𝐾𝑎𝑝
−1 + 𝛽

(8.3) 

 
where 𝐹 is the response factor of the detector and 𝛽 is the volume ratio of the air and rice matrix phases 

in the vial: 
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𝛽 =
𝑉𝑎
𝑉𝑝

(8.4) 

The PRV equation (Eq. 9.3) can be rearranged to be linear with respect to the phase ratio, 𝛽: 

1

𝐴
= 𝑥1𝛽 + 𝑥2 (8.5) 

Where the slope and intercept are; 

𝑥1 =
1

𝐹𝐶𝑃
𝑂

(8.6) 

𝑥2 =
1

𝐹𝐶𝑃
𝑂𝐾𝑎𝑝

(8.7) 

𝐾𝑎𝑝 is then evaluated by dividing 𝑥1 by 𝑥2.  

The experimental results for the spiked aroma compounds (2-nonanone and ethyl propanoate) are 

shown in Fig. 8-9 and Fig. 8-10 respectively. The volume of the air inside the vial was determined from 

the difference of the volume of the vial and the volume of the rice (density of 1.27 g/cm3, determined 

by the water displacement method (Gray-Stuart, 2016)).  

8.2.3.2 Determination of the initial concentration of aroma compounds 

Another input that is required for the model is the initial concentration of the target aroma compounds 

in the rice matrix. The following describes how the initial concentrations of 2-nonanone and ethyl 

propanoate were evaluated.  

For a given volume of rice in a vial that is in thermodynamic equilibrium, the mass of aroma 

compound in the rice matrix is given by the following mass balance: 

𝑉𝑝𝐶𝑜𝑝 = 𝑉𝑎𝐶𝑎𝑒𝑞 + 𝑉𝑝𝐶𝑝𝑒𝑞 (8.8) 

where 𝑉𝑝 is the volume of rice matrix in the vial (L), 𝐶𝑜𝑝 is the initial concentration of the aroma 

compound (mg/L), 𝑉𝑎 is the volume of air in the vial (L), 𝐶𝑎𝑒𝑞 is the concentration of the aroma 

compound in the air phase when in thermodynamic equilibrium and 𝐶𝑝𝑒𝑞 is the concentration of the 

aroma compound in the rice matrix when in thermodynamic equilibrium.  
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Fig. 8-9:  1/A vs β plot of 2- nonanone. The ratio of the slope and the y-intercept is 𝑲𝒂𝒑. 

 

Fig. 8-10: 1/A vs β plot of ethyl propanoate. The ratio of the slope and the y-intercept is 𝑲𝒂𝒑. 
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Using 2 g of rice as a reference value, the values of 𝑉𝑝 and 𝑉𝑎 can be evaluated. 𝐶𝑎𝑒𝑞 and 𝐶𝑝𝑒𝑞 

were determined by linear interpolation from the equilibrium concentrations when the aroma compound 

is in a liquid phase (H2O). For a given volume of aroma solution in a vial that is in thermodynamic 

equilibrium, the mass of aroma compound in the liquid phase is given by the following mass balance: 

𝑉𝑙𝐶𝑜𝑙 = 𝑉𝑎𝐶𝑎𝑒𝑞 + 𝑉𝑙𝐶𝑙𝑒𝑞 (8.9) 

where 𝑉𝑙 is the volume of liquid in the vial (L), 𝐶𝑜𝑙 is the initial concentration of the aroma compound 

(mg/L) in the liquid, 𝐶𝑙𝑒𝑞 is the concentration of the aroma compound in the liquid when in 

thermodynamic equilibrium. 

The partition coefficient of the air/liquid phase is the ratio of the concentrations of the aroma compound 

in the air and the liquid phase: 

𝐾𝑎𝑙 =
𝐶𝑎𝑒𝑞

𝐶𝑙𝑒𝑞
(8.10) 

Using the information from Table 8-4 below and substituting Eq.8.10 to Eq. 8.9, 𝐶𝑎𝑒𝑞 and 𝐶𝑙𝑒𝑞 can be 

evaluated.  

Table 8-4: Physico-chemical characteristics of the target aroma compounds 

 

 

 

 

 

 

 Using the GC peak areas (A) of the aroma compounds in both the liquid and rice matrix phases 

and the 𝐶𝑎𝑒𝑞 value in the liquid phase as calculated above, the 𝐶𝑎𝑒𝑞 value in the rice matrix was 

calculated using linear interpolation. The A values for both aroma compounds when in 2 mL of water 

(30 ppm concentration each compound) were measured using the same conditions as described in 

section 8.2.3.1. Five replicates of samples were measured and the average was determined. The 𝐶𝑝𝑒𝑞 

value in the rice matrix was then calculated from the partition coefficient of air to rice matrix that was 

Aroma 

compound 

Volume 

of 

solution, 

𝑉𝑙 (L) 

Initial 

Concentration 

of aroma 

solution, 𝐶𝑜𝑙 
(mg/L) 

Volume 

of vial 

(L) 

Volume 

of air 

phase, 𝑉𝑎 

(L) 

Air/Solution 

Partition 

coefficient 

at 37oC, 𝐾𝑎𝑙 

2-

nonanone 0.002 30 0.020498 0.018498 1.96 x 10-2 

ethyl 

propanoate 0.002 30 0.020498 0.018498 1.49 x 10-2 
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previously determined in section 8.2.3.1.  The following table shows the GC peak area values for both 

the liquid and rice phases, as well as the concentrations of the aroma compounds in the liquid/rice/air 

phases when in thermodynamic equilibrium.  

Table 8-5: GC peak areas and the concentration of aroma compounds in the liquid/rice/air phase when in 

thermodynamic equilibrium 

Aroma 

compound 

GC peak 

area, A, 

(liquid) 

𝐶𝑎𝑒𝑞(liquid) 

(mg/L) 

GC peak 

area, A, 

(rice) 

𝐶𝑎𝑒𝑞(rice) 

(mg/L) 

𝐶𝑝𝑒𝑞(rice) 

(mg/L) 

ethyl 

propanoate 
2219 0.393 17.7 0.003 1.14 x 10-1 

2-nonanone 3466.85 0.498 77.03 0.011 4.67 

 

Now that 𝐶𝑎𝑒𝑞 and 𝐶𝑝𝑒𝑞 values in the rice matrix have been determined, the initial concentration of 

the aroma compounds in the rice matrix could be calculated using Eq. 8.8. 

8.2.4 Validation of the aroma release model 

In the previous section, the input parameters information required for the model were established. In 

this section, the model was compared against the experimental data reported in Chapter 6 to test the 

validity of the model.  

 

8.2.4.1 Comparison of model results and experimental data 

 
In previous studies involving the modelling of aroma release, the model prediction is compared against 

experimental measurements by representing the data as a peak line (Doyennette et al., 2011; Doyennette 

et al., 2014). This is done by smoothing the breath-by-breath aroma release profiles by plotting a curve 

linking the maxima of the sinusoids (Doyennette et al., 2011). However, the nature of the in vivo aroma 

release experimental data collected in Chapter 6 makes it challenging to compare the peak curves. Fig. 

8-11 below shows typical in vivo experimental data results for 2-nonanone during mastication 

(measured using PTR-MS).  
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Fig. 8-11: Typical in vivo experimental data results of 2-nonanone that was measured using PTR-MS 

(single replicate).  

Two issues arise from the experimental data (Fig. 8-11) above that makes it challenging to 

compare with the model. The first problem is the long sampling time of the experimental data. When a 

subject exhales, the person will bring aroma to his/her nasal cavity (this corresponds to the rising part 

of the sinusoid pattern of the aroma release curve) and when the subject inhales fresh air which is aroma 

free, the signal of concentration in the nasal cavity decreases to zero (Doyennette et al., 2011). However, 

looking at Fig. 8-11 above, particularly during inhalation, the concentration does not drop completely 

to zero. This is because the samples were taken every 0.622 s, which is the sum of the dwell time of all 

molecular ions that were tracked during the in vivo experiment. Specifically, these are m/z 21 (50 ms), 

m/z 32 (50 ms), m/z 37 (50 ms), m/z 59 (50 ms), m/z 83 (100 ms), m/z 143 (100 ms), m/z 103 (100 

ms), m/z 75 (100 ms). An example to show the high sampling time effects the experimental data is 

shown in Fig. 8-12 below.  
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Fig. 8-12: Subplots to demonstrate the effect of different sampling time on the experimental data. The black symbol in the subplot refers to the original model 

results, while the other coloured curves referred to the curves that were taken at different sampling times. 
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To demonstrate the effect of different sampling times on the experimental data, the model 

results from Subject A4 were used as an example. The model results used here are the relative 

concentration in the nasal cavity (Cna), which is the ratio of the concentration and the maximum 

concentration observed experimentally. These are plotted as the black dashed line in Fig. 8-12 above. 

Each subplot in the above figure shows the effect when different sampling time was used, i.e. the sample 

was taken at every 0.05 s, 0.1 s, 0.3 s and 0.6 s respectively. The curve which was derived from different 

sampling rates (symbols) was then compared with the original model results (the black dashed line).  

It can be observed from the above figure that the longer the sampling time, the more it deviates 

from the original model results. This shows the importance of having a faster sampling time so that the 

experimental data can be compared with the model results. The issue stems from the fact from the high 

number of molecular ions that were tracked in the PTR-MS measurement (the equipment can only track 

8 molecular ions at a time). Because of that, it increases the sampling time as the Quadrupole-Ion-

Detection System in the PTR-MS cannot measure all ions at the same time, but has to switch its filter 

(quad) between different ions (this is where the dwell time comes in) (Lindinger et al., 1998; Rndirk, 

2017). Other instruments to measure in vivo aroma release such as Selected Ion Flow Tube Mass 

Spectrometry (SIFT-MS) (e.g. SIFT-MS developed by syft™ Technologies 

https://www.syft.com/high-selectivity-real-time/)  might be useful as it has very high selectivity in real-

time due to near-instant switching of the quadrupole. 

The second issue stems in the fact to the time when sampling was initiated (t=0) relative to 

breathing. The chosen starting time was when the food product (rice) was introduced inside the mouth, 

but this was not coordinated with breathing or chewing frequency. As the starting time for the panellists’ 

during the experiment was recorded by manual observation, it could be off by a few seconds. Fig. 8-13 

below shows an example of how a difference in the starting time can be a challenge for the model 

validation. 

https://www.syft.com/high-selectivity-real-time/


 

 

221 

 

 
Fig. 8-13: Plot to demonstrate the effect of the different starting time of the experimental data. The blue 

curve in the plot refers to the original model results, while the other coloured curves referred to the 

curves that started at different time. 

Similar to the data in Fig. 8-12, the model results from Subject A4 was used to demonstrate the 

effect of starting time offsets. As can be seen from Fig. 8-13 above, starting the plots at a different 

starting time (e.g. tstart=0.15 s and 0.25 s) causes the aroma release curve to desynchronise with the 

original data. Due to the two issues as highlighted above, it is a challenge to compare the experimental 

data with the model predictions from their peak curves. Therefore, a potential solution to this difficult 

problem was to compare the cumulative area under the curves as a function of time.  

Fig. 8-14 shows the data when presented as the cumulative area the curve with different sampling times. 

Comparatively, it can be observed that presenting the results in terms of the cumulative area under the 

curve seems to match the original model results better although being sampled at different rates. This 

is a slightly unconventional way of solving this issue but is better than comparing the peak curves. 

Therefore, for model validation, the cumulative aroma release curve from both the model results and 

the experimental data are compared.  
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Fig. 8-14: Subplots to demonstrate the cumulative area the curve with different sampling time. The black dashed curve in the subplot refers to the original model 

results, while the other coloured curves referred to the curves that were taken at different sampling time.
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8.2.4.2 Comparison of model predictions and experimental data 

This section describes the comparison between the model predictions and the experimental data. The 

input parameters as described in the previous sections were applied. The physiological parameters that 

were specific to each subject were used in the model predictions for comparison against the in vivo 

aroma release data. The model predicts the concentration of 2-nonanone (m/z 143) and ethyl propanoate 

(m/z 103) in the nasal cavity in g/mm3. The concentration of the aroma compounds in the experimental 

data however was described as an intensity from the PTR-MS measurement, which is an arbitrary unit. 

Therefore, for comparison, the concentration of aroma compounds from both the model prediction and 

experimental data were normalised against the maximum concentration. The cumulative area under the 

curve were then obtained for the normalised concentrations and were then compared.  

The main assumption of the model is that during chewing, aroma compounds are transferred to 

the saliva phase from the pasted rice particles instantaneously. The size threshold for when rice particles 

are pasted was set as 0.354 mm by Gray-Stuart (2016) in his work. Here, the model was predicted using 

different pasted size thresholds (0.2 mm, 0.354 mm, 0.5 mm and 1 mm) and compared against the 

experimental data to see if the difference in the threshold has a pronounced effect on the prediction. The 

five replicates of the experimental data were compared against the model prediction. It should be 

considered that for the particle breakdown model the threshold was set to describe particles that become 

too small to be actively broken down by occlusion. In terms of aroma release, the pasted particle 

threshold corresponds to particles that are assumed to instantaneously equilibrate their aroma compound 

with the liquid portion of the bolus. 

Fig. 8-15 to Fig. 8-19 below shows the comparison of the model predictions against the experimental 

data for the five subjects.  
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Fig. 8-15: Model prediction against experimental data of 2-nonanone (m/z 143) and ethyl propanoate (m/z 

103) for Subject A1. Rel. AUC refers to the relative cumulative area under the curve, where the 

cumulative area under the curve was normalised against the total area under the curve. The model was 

also predicted using different pasted size threshold (0.2 mm, 0.354 mm, 0.5 mm and 1 mm) and compared 

against the five replicates of the experimental data. 
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Fig. 8-16: Model prediction against experimental data of 2-nonanone (m/z 143) and ethyl propanoate (m/z 103) for Subject 

A2. Rel. AUC refers to the relative cumulative area under the curve, where the cumulative area under the curve was 

normalised against the total area under the curve. The model was also predicted using different pasted size threshold (0.2 

mm, 0.354 mm, 0.5 mm and 1 mm) and compared against the five replicates of the experimental data.  
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Fig. 8-17: Model prediction against experimental data of 2-nonanone (m/z 143) and ethyl propanoate (m/z 103) for Subject 

A3. Rel. AUC refers to the relative cumulative area under the curve, where the cumulative area under the curve was 

normalised against the total area under the curve. The model was also predicted using different pasted size threshold (0.2 

mm, 0.354 mm, 0.5 mm and 1 mm) and compared against the five replicates of the experimental data.  
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Fig. 8-18: Model prediction against experimental data of 2-nonanone (m/z 143) and ethyl propanoate (m/z 103) for Subject 

A4. Rel. AUC refers to the relative cumulative area under the curve, where the cumulative area under the curve was 

normalised against the total area under the curve. The model was also predicted using different pasted size threshold (0.2 

mm, 0.354 mm, 0.5 mm and 1 mm) and compared against the five replicates of the experimental data. 
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Fig. 8-19: Model prediction against experimental data of 2-nonanone (m/z 143) and ethyl propanoate (m/z 103) for Subject 

A5. Rel. AUC refers to the relative cumulative area under the curve, where the cumulative area under the curve was 

normalised against the total area under the curve. The model was also predicted using different pasted size threshold (0.2 

mm, 0.354 mm, 0.5 mm and 1 mm) and compared against the five replicates of the experimental data. 

 
As can be seen from Fig. 8-15 to Fig. 8-19, the model predictions agreed reasonably well with 

the experimental data across all subjects, except for 2-nonanone for Subject A1. This could be due to 

the lack of fit of the saliva flow rate and the volume of pasted particles input parameters for the subject. 

It can also be observed that the pasted size threshold has little impact on the predictions when the 

normalised concentrations were presented as the cumulative area under the curve. It should be noted 
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that the magnitude of the concentrations were different with greater concentrations being predicted 

when using the larger critical size used to determine the pasted fraction. 

8.3 Objective 2: Validation using coupled chewing-aroma release models 

This second case study aims to validate the aroma release model using the predicted bolus PSD from 

the chewing model developed in Chapter 3. As described above, two input parameters are required from 

the PSD model to predict aroma release. These are the volume of pasted particles at each chewing 

number and the total surface area of particles. Similarly, as previously done in Chapter 4 and 5, the 

input parameters for the chewing model were determined by best fitting the model to the experimental 

data. 

8.3.1 The PSD model  

 
The chewing model consists of selection and breakage sub-models.  Each will be discussed. 

8.3.1.1 Selection equations  

The one-way and two-way competition selection models (Eq. 2.4 & 2.5) were applied and compared to 

identify which model was a best fit for the experimental data. 

8.3.1.2 Breakage model equation 

 
The breakage function used in the PSD model was as described in Eq. 2.11 below which was previously 

applied to brown rice (Gray-Stuart, 2016). The equation assumes that the pasted fraction is constant.  

 

𝐵(𝑋, 𝑋0) = (1 − 𝑃). [1 − (1 + 𝑟.
𝑋

𝑋0
) . (1 −

𝑋

𝑋0
)
𝑟
] (2.11) 

8.3.1.3 Discretised population model 

 
The PSD was predicted using the discretised population balance model developed as described in 

section 3.2.3. 

8.3.1.4 Model inputs 

Input 1: Initial PSD 

The 5 g initial PSD measured in Chapter 6 was used as the starting distribution in the model. Fig. 8-20 

shows the initial PSD used in the model where most of the particles were between 5-6.5 mm in diameter. 
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Fig. 8-20 Initial PSD used in the model (5 g).  

 

Input 2: Selection and breakage model input parameters 

The input parameters required for the one-way and two-way selection functions are the number of 

particles, the number of breakage sites and the affinity factor. The degree of fragmentation variable and 

the pasted fraction are required for the breakage function. The full details of the input parameters 

required for the selection and breakage functions have been discussed previously in Chapter 3.  

9.3.1.5 Model fitting 

Using the initial PSD as described above as the input to the model, the PSD after 1 chew, 2 chew, 25%, 

50%, 75% and 100% of swallow point was determined for each subject. The PSO algorithm (as 

described in Chapter 4) was used to solve the model input parameters by minimising the normalised 

sum of squares residuals between the model and the experimental data. The residual was calculated 

from 10 dx-values that were the intercepts for 10% (d10), 20% (d20) 30% (d30), 40% (d40), 50% (d50), 

60% (d60), 70% (d70), 80% (d80), 90% (d90) of the cumulative volume distribution of the model and the 

experimental data. The algorithm was also solved to minimise the normalised residual of the pasted 

fraction (defined as the volume fraction for particles less than 0.354 mm) of the model and experimental 

data. Due to the probabilistic nature of the way the selection and breakage models were implemented, 
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the model was repeated 50 times (see section 4.2.4 for the reason this number was chosen) and the 

average was determined to calculate the residual for the model fitting.    

8.3.2 PSD model validation 

Table 8-6 below shows the comparison of the best-fit input parameter results when the breakage 

function of Eq.2.11 was fixed, and when the one-way or two-way competition selection models were 

applied. The R-squared was calculated from equation 4.2 in section 4.2.3. Comparisons between the 

fitted d-values and pasted fraction against experimental data for all of the five subjects are shown in 

Fig. 8-21 to Fig. 8-25.  The top images are for when the one-way competition selection model and a 

fixed breakage model were applied (Eq.8.1). The images at the bottom are for when the two-way 

competition model was used as the selection model. The plot on the left of the image is the comparison 

of the d-values of the best fit model and the experimental data whereas the plot on the right shows the 

comparison of the pasted fraction values. The error bar of the model is the standard deviation of 50 

simulations.  All 3 replicates of the measured data (three different markers) were plotted for comparison.  

For most of the subjects, a better fit was achieved when the two-way competition model was 

used as the selection model. This is supported by the higher R-squared values when the two-way 

competition model was used across most subjects in Table 8-6 (except subject A1 and A2). Subject A1 

had a better fit when the one-way competition model was used as it had a greater number of larger 

particles (particles between 4-5.7 mm) compared to other subjects even at the later stages of mastication 

(Fig. 8-1).  

Therefore, the question of whether the one-way model or two-way model can describe the 

particle selection of the entire chewing sequence may be influenced on the person itself. Van der Glas 

et al., (2018) in their study, discussed that the two-way competition model may be sufficient to describe 

particle selection during the whole chewing sequence. 
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Fig. 8-21: Best-fit model against experimental data for Subject A1.  
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Fig. 8-22: Best-fit model against experimental data for Subject A2.  
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Fig. 8-23: Best-fit model against experimental data for Subject A3.  
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Fig. 8-24: Best-fit model against experimental data for Subject A4.  
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Fig. 8-25: Best-fit model against experimental data for Subject A5. 
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Table 8-6: Best fit input parameters of the PSD model evaluated from the PSO algorithm.  

 

 

Van der Glas et al., (2018) explained that during the first few initial chewing cycles, when 

chewing is started on a batch of large particles, the difference between the one-way model and the two-

way model regarding selection of large particles will be small because of a small affinity for small 

particles. Then after the initial phase of chewing, as more smaller fragments are produced, particle piling 

will occur extensively, which follows the two-way competition model. However, as seen here for 

subject A1 who chewed the shortest time at swallow point, particle selection followed the one-way 

competition model better because of the presence of larger particles at the later stages of mastication 

 

 

Subject 

 

Selection 

model 

 

Selection model inputs Breakage model input 

 

 

 

Normalised 

SS 

residuals 

 

 

 SS 

 

 

R2 

Number of breakage 

sites, nb  

Affinity factor, o1 

Multiplication 

factor, k 

Power, 

m 

Multiplication 

factor, p 

Power, 

q 

Fragmentation 

variable, r 

Pasted 

fraction, p 

 

A1 

One-way 

competition 

165.4 1.01 0.0016 1.77 0.16 0.001 
2.49 13.3 0.92 

Two-way 

competition 

133.1 1.25 0.0035 1.43 0.95 0.004 2.41 16.1 0.89 

A2 

 

One-way 

competition 

237.6 2.25 0.0025 2.99 1.41 0.01 
3.05 36.4 0.75 

Two-way 

competition 

370.1 2.18 0.0015 2.97 2.43 0.011 
3.45 36.4 0.75 

A3 

 

One-way 

competition 

175.1 1.18 0.0036 2.17 0.26 0.002 
1.42 13.8 0.92 

Two-way 

competition 

331.65 1.81 0.0022 2.38 0.82 0.004 1.28 10.6 0.94 

A4 

 

One-way 

competition 

163.3 1.87 0.0018 1.53 1.28 0.005 
1.62 10.3 0.95 

Two-way 

competition 

184.6 1.64 0.0029 2.44 1.41 0.005 
0.91 5.32 0.97 

A5 

 

One-way 

competition 

447.5 2.63 0.0015 2.96 1.72 0.01 
2.38 30.9 0.82 

 Two-way 

competition 

169.9 1.02 0.0027 1.61 0.92 0.006 0.59 7.94 0.95 
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(e.g. at the swallow point). The presence of some number of larger particles even towards the end of 

the chewing sequence could be explained through the fact that rice is a high moisture food (61 g 

water/100 g bolus as explained in section 6.4.2), therefore the existence of a few large particles in the 

bolus will not be an issue as they are lubricated enough to be swallowed safely.  

 The main conclusion that can be observed from the results above is that model fitting may give 

insights on the selection behaviour for different subjects and could be dependent on the type of food 

they consume. This could then provide opportunity for food manufacturers to design foods that are 

exclusively favourable for the behaviour described by the one-way or two-way model (Hutchings, 2011; 

van der Glas et al., 2018).   

8.3.2.1 Lack of fit of the model 

 
Although the two-way selection model provided a better fit than the one-way selection model in almost 

all of the subjects, based on the above figures (Fig. 8-21- Fig. 8-25), the model still does not fit the 

experimental data perfectly. For example, the model did not fit particularly well for the lower range of 

d-values (d10-d50) during the initial phase of chewing (1, 2 and 6 chews). The pasted fraction also did 

not fit particularly well for the number of chews at the early mastication stages for subject A1 and A2.  

The model fit particularly well using the two-way model for subject A3 but did not fit the experimental 

data well when the one-way model was used. Both one-way and two-way models fit reasonably well 

for subject A4, but not in the first few chewing cycles. The two-way model fitted the experimental data 

reasonably well for subject A5 but overestimated the breadth of the PSD when the one-way model was 

used. The lack of fit especially in the first few chewing cycles is to be expected as the selection and 

breakage functions are the most probabilistic during this stage. The study from Paphangkorakit et al. 

(2006) showed that as chewing progressed and as foods became softer and more dissociated, they found 

that subjects tend to use less lateral movement. Therefore as more lateral movements are used in the 

first few chews and less towards the late stage, it is expected that selection and breakage could change 

in the early phase of mastication but remains constant as the food softens towards the late stage of 

mastication. Furthermore, it was also observed in Chapter 4 to get a reasonable consistency in the model 

predictions, that at least 50 simulations were required. The PSD data used to fit the model here was 
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based on the mean of three bolus replicates, therefore if the experiment was to be repeated where another 

3 bolus replicates were measured we may expect the mean PSD data to be quite different. In this manner, 

it seems sensible that the lack of fit was seen in the early phases of mastication.  

In addition, the lack of fit of the model for some of the subjects may be explained due to the 

uncertainty of the range of the model input parameters used to be solved by the PSO algorithm. The 

range of parameters used was based on the data of five subjects who participated in one-chew 

experiments of Optosil® from van der Glas et al. (2018), which were different subjects to the ones 

participated in this study. Therefore, future studies involving coupling the PSD model and aroma release 

will require performing single chew experiments that are specific to the model food used to obtain the 

input parameters for the selection model. However, as mentioned previously in Chapter 2, single chew 

experiments are time-consuming, and it can be difficult to perform such experiments with real foods in 

a repeatable and consistent manner. The measurement of the occlusal area of the tested subjects with a 

chewing gum may be an alternative way to obtain some of the input parameters in the selection model 

in a fast and simple manner (see section 3.2.2.4.1, Chapter 3).  

8.3.3 Validation of the coupled PSD-aroma release models 

Despite the lack of fit of the PSD model, the model predictions were used as inputs to predict aroma 

release to observe the difference in the model validation compared to when it was taken directly from 

the experimental data. The PSD outputs from the PSD model were used to calculate the volume of the 

pasted particles and the total surface area of particles as described in section 8.2.1 previously. Both PSD 

outputs derived from the fittings of the one-way and two-way competition models were applied. 

Similarly, the physiological input parameters of each subjects and the physicochemical parameters as 

described in the previous sections were applied. The cumulative area under the curve were then obtained 

for the normalised concentrations of 2-nonanone (m/z 143) and ethyl propanoate (m/z 103) in the nasal 

cavity. The model was also predicted using different pasted size thresholds (0.2 mm, 0.354 mm, 0.5 

mm and 1 mm) and compared against the experimental data to see if the difference in the threshold has 

a pronounced effect on the prediction. Fig. 8-26 to Fig. 8-30 shows the comparison of the model 

predictions against the experimental data for the five subjects.  
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Fig. 8-26 Model prediction against experimental data of 2-nonanone (m/z 143) and ethyl propanoate (m/z 103) for Subject A1. Rel. AUC refers to the relative 

cumulative area under the curve, where the cumulative area under the curve was normalised against the total area under the curve. The model was also predicted 

using different pasted size threshold (0.2 mm, 0.354 mm, 0.5 mm and 1 mm) and different selection models (one-way and two-way competition) and compared 

against the five replicates of the experimental data. 
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Fig. 8-27 Model prediction against experimental data of 2-nonanone (m/z 143) and ethyl propanoate (m/z 103) for Subject A2. Rel. AUC refers to the relative 

cumulative area under the curve, where the cumulative area under the curve was normalised against the total area under the curve. The model was also predicted 

using different pasted size threshold (0.2 mm, 0.354 mm, 0.5 mm and 1 mm) and different selection models (one-way and two-way competition) and compared 

against the five replicates of the experimental data. 
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Fig. 8-28 Model prediction against experimental data of 2-nonanone (m/z 143) and ethyl propanoate (m/z 103) for Subject A3. Rel. AUC refers to the relative 

cumulative area under the curve, where the cumulative area under the curve was normalised against the total area under the curve. The model was also predicted 

using different pasted size threshold (0.2 mm, 0.354 mm, 0.5 mm and 1 mm) and different selection models (one-way and two-way competition) and compared 

against the five replicates of the experimental data. 
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Fig. 8-29 Model prediction against experimental data of 2-nonanone (m/z 143) and ethyl propanoate (m/z 103) for Subject A4. Rel. AUC refers to the relative 

cumulative area under the curve, where the cumulative area under the curve was normalised against the total area under the curve. The model was also predicted 

using different pasted size threshold (0.2 mm, 0.354 mm, 0.5 mm and 1 mm) and different selection models (one-way and two-way competition) and compared 

against the five replicates of the experimental data. 
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Fig. 8-30 Model prediction against experimental data of 2-nonanone (m/z 143) and ethyl propanoate (m/z 103) for Subject A5. Rel. AUC refers to the relative 

cumulative area under the curve, where the cumulative area under the curve was normalised against the total area under the curve. The model was also predicted 

using different pasted size threshold (0.2 mm, 0.354 mm, 0.5 mm and 1 mm) and different selection models (one-way and two-way competition) and compared 

against the five replicates of the experimental data.
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A common trend can be seen from Fig. 8-26 to Fig. 8-30 is that the model predictions 

satisfactorily agreed with the experimental data well for ethyl propanoate (m/z 103) compared to 2-

nonanone (m/z 143). However, when compared using the fitted PSD outputs from two different 

selection models, the two-way competition model seems to give closer predictions with the 

experimental data (e.g. subject A3, A4 and A5), although the difference is not eminent. This is mainly 

because the model assumed the aroma release to be largely contributed by the increase in the volume 

of pasted particles (particles < 0.354 mm) and both one-way and two-way models satisfactorily fitted 

the pasted particles experimental data as seen above. When the one-way competition fitted values were 

used, the model appears to slightly over-predict the data, for example subject A3 for m/z 143 and m/z 

103 respectively. This makes sense as it is observed in section 8.3.2 for subject A3 that the PSD model 

over anticipated the size of particles when the one-way competition model was used, therefore resulted 

to a higher number of particles and hence, the sum of the surface area of particles. Therefore, a higher 

concentration of aroma release was to be expected in the model predictions. Nonetheless, overall, it 

appears that the model predictions find good agreement with subjects who had a validated PSD model. 

For example, subject A4 fitted the PSD data reasonably well in section 8.3.2 and compares well with 

the in vivo aroma release data seen above (Fig. 8-29).  

For any case, it seems that using the PSD inputs taken directly from experimental data found a 

better agreement with the in vivo aroma release data compared to when the model was coupled with the 

PSD model. Thus, if one is only interested get the aroma release models validated then perhaps 

assuming that the PSD variables increases linearly with time seems reasonable particularly as the PSD 

model requires measurements of input parameters which can be time-consuming (from long simulation 

time and/or additional experimental protocols). However, the coupling with the mechanistic PSD model 

allows one to understand the role of chewing on aroma release more comprehensively, therefore provide 

opportunities to food scientists to design foods, which could influence the underlying chewing 

mechanisms and subsequently aroma release. For example, it was shown that the model fits were better 

when the one-way competition model was used. Therefore, if foods contain a mixture of particles with 
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various sizes, larger particles are preferentially selected for breakage. It may then be possible to 

maximise aroma release by adding aroma compounds to just the large particles. In terms of controlling 

the breakage function, perhaps the cooking method can be adjusted by adding more water to promote 

the swelling of rice granules therefore increases the chance of particles to be pasted. Anyhow, it was 

shown that the subject who had a well-fitted PSD model found a good agreement with the in vivo aroma 

release data. In the next chapter, the effect of each group of input parameters of the model will be 

discussed through one of the validated subjects (Subject A4) to demonstrate model application for food 

design.  

8.4 Chapter conclusion 

The objective of Chapter 8 was to validate the aroma release models developed in Chapter 7 with in 

vivo experimental data. Two different approaches were used to validate the model. The first approach 

was when the PSD outputs required for the model were taken directly from the experimental data. The 

second approach obtained the PSD outputs from the chewing model developed in Chapter 3. Other input 

parameters required for the model such as the physiological and physicochemical parameters were 

measured experimentally and those that could not be measured were obtained from the literature.  

Due to issues related to the measurement of the experimental data, the model prediction for 

each subject was compared against the data in terms of its cumulative area under the curve. In the first 

approach, the model predictions satisfactorily agreed with the experimental data for all subjects except 

for 2-nonanone for Subject A1. The second approach showed that the model predictions compared well 

with the experimental data, particularly for subjects who found good agreement with the PSD data. The 

first approach appears to be a more sensible approach if the aroma release model only needs to be 

validated, however the downside is it does not give insights into the role of chewing on aroma release 

in a mechanistic way.  Hence, to provide mechanistic insights of the aroma release of solid foods and 

to demonstrate model application for food design, the effect of each group of input parameters of the 

coupled PSD-aroma release model will be discussed through one of the validated subjects (Subject A4) 

in the next chapter. 
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Chapter 9 Application of the aroma release model 
 

9.1 Introduction 
 
In Chapter 7 models have been developed to predict the aroma release in food during mastication. The 

model to validate against experimental data for chewing white rice as described in Chapter 8. This 

builds on previous studies in the development of mechanistic models of flavour release of solid foods 

during mastication (Harrison et al., 1998; Wright & Hills, 2003; Doyennette et al., 2014). The ultimate 

aim of these developments is to be able to mathematically predict the effect of varying food 

composition, food structure, and mastication behaviour on the perceived time-intensity flavour release 

profile (Harrison et al., 1998).  

In this chapter, the application of the models developed in Chapter 7 and Chapter 8 is 

demonstrated and discussed. Using the validated PSD model and the input parameters from one of the 

subjects (Subject A4), the aroma release of 2-nonanone in cooked rice (defined as the concentration of 

the aroma compound in the nasal cavity) was predicted. Input parameter values were then adjusted to 

demonstrate the application of the models in various situations which may interest food 

technologists/food manufacturers.  

 

9.2 Using the model to provide insights for food design 
 

9.2.1 The validated PSD model  

 
The PSD model consists of selection and breakage sub-models.  Each will be discussed. 

 

9.2.1.1 Selection equations 

  
The two-way competition model was applied as it was shown to provide a better fit with the PSD 

experimental data for subject A4 as described in Chapter 8 previously. 

9.2.1.2 Breakage model equation 

 
The breakage function used in the PSD model was as described in Eq. 2.11 below which was previously 

applied on brown rice (Gray-Stuart, 2016). The equation assumes that the pasted fraction is constant.  
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𝐵(𝑋, 𝑋0) = (1 − 𝑃). [1 − (1 + 𝑟.
𝑋

𝑋0
) . (1 −

𝑋

𝑋0
)
𝑟
] (2.11)

9.2.1.3 Discretised population model 

The PSD will be predicted using the discretised population balance model developed as described in 

section 3.2.3. 

9.2.1.3 PSD model inputs 

Input 1: PSD after a single chew as a model input 

Similar to the case study in Chapter 8, the 5 g initial PSD measured in Chapter 6 was used as the starting 

distribution in the model. 

Input 2: Selection and breakage model input parameters 

The input parameters required for the two-way competition model is the number of particles, the number 

of breakage sites and the affinity factor. The degree of fragmentation variable and the pasted fraction 

are required for the breakage function. The reference input parameters for subject A4 is shown in Table 

9-1 below. 

Table 9-1 PSD model input parameters which was previously fitted in Chapter 8. 

 

 

 

 

Subject 

 

Selection 

model 

 

Selection model inputs Breakage model input 

 

 

Number of breakage sites, nb  Affinity factor, o1 

Multiplication 

factor, k 

Power, m Multiplication 

factor, p 

Power, q Fragmentation 

variable, r 

Pasted 

fraction, p 

 

A4 

 

Two-way 

competition 184.6 1.64 0.0029 2.44 1.41 0.005 
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9.2.2 Physiological and physicochemical input parameters 

The remaining input parameters required for the model were the physiological parameters of the subject 

and the physicochemical parameters of 2-nonanone. The reference input values used are outlined in 

Table 9-2 and Table 9-3 below.  

Table 9-2 Reference physiological parameters of subject A4. 

Symbol Unit Description Reference 

value 

AO mm2 Total area in oral 

cavity 

11600 

AF mm2 Total area of the 

pharynx 

6500 

AOam mm2 air/lubricated 

mucosa contact area 

in the oral cavity 

= 0.1 x AO 

AFam mm2 air/lubricated 

mucosa in the 

pharynx 

= 0.1 x AF 

AFas mm2 air/saliva contact 

area in the pharynx 
= AF - AFam 

ANam mm2 air/lubricated 

mucosa in the nasal 

cavity 

15 x 103 

eOam mm Thickness of wetted 

mucosa in the oral 

cavity 

5 x 10-2 

eFam mm Thickness of wetted 

mucosa in the 

pharynx 

5 x 10-2 

eNam mm Thickness of 

mucosa in nasal 

cavity 

5 x 10-2 

Fbreath number of 

cycles/s 

breathing frequency 0.25 

frchew number of 

chews/s 

chewing frequency 1.5 

fropening occurrence 

number/s 

opening frequency 

of the velopharynx 
= Fbreath  or 

frchew  

Vc mm3 current breath 

volume 

8 x 105 

VOsrest mm3 volume of saliva at 

rest in the oral 

cavity 

871 

VOm mm3 volume of mucosa 

in the oral cavity 
= eOam x 

AOam 

VOamean mm3 volume of air in the 

oral cavity 

78300 

VFa mm3 volume of air in the 

pharynx 

32000 

VFs mm3 volume of saliva in 

the pharynx 

2 x 102 
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VFm mm3 volume of mucosa 

in the pharynx 
= eFam x AFam 

VNa mm3 volume of air in the 

nasal cavity 

16000 

VNm mm3 volume of mucosa 

in the nasal cavity 
= eNam x 

ANam 

QOs mm3/s saliva flow rate in 

the oral cavity 

38 

tswallow s  time taken to 

swallow 

24 

nchews  number of chews 

required to reach 

swallow point 

35 

 

 
Table 9-3 Reference physicochemical parameters used in the simulation 

Symbol Unit Description Reference 

value 

kOs mm/s mass transfer 

coefficient in the 

saliva phase in the 

oral cavity 

 

10-3 

kFs mm/s mass transfer 

coefficient in the 

saliva phase in the 

pharynx 

 

10-3 

kOm mm/s mass transfer 

coefficient in the 

lubricated mucosa in 

the oral cavity 

 

10-3 

kFm mm/s mass transfer 

coefficient in the 

lubricated mucosa in 

the pharynx 

 

10-3 

kNm mm/s mass transfer 

coefficient in the 

lubricated mucosa in 

the nasal cavity 

 

10-3 

 
KOas 

  

air/saliva partition 

coefficient in the 

oral cavity at 37oC 

 

9.7 x 10-3  

(2-nonanone) 

 
KOsp 

 saliva/product(rice) 

partition coefficient 

in the oral cavity at 

37oC 

 

0.245  

(2-nonanone) 

KOam  air/lubricated 

mucosa partition 

coefficient in the 

oral cavity 

 

10-3 
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KFas  air/saliva partition 

coefficient in the 

pharynx 

5 x 10-3 

KFam  air/lubricated 

mucosa partition 

coefficient in the 

pharynx 

 

10-3 

KNam  air/lubricated 

mucosa partition 

coefficient in the 

nasal cavity 

 

10-3 

 
COp 

g/mm3 aroma concentration 

in the product (rice) 

in the oral cavity 

 

4.8 x 10-9  

(2-nonanone) 

 

Food manufacturers are interested in aroma release as it has been shown to be an important 

factor driving food acceptance (Ployon et al., 2017) and satiation (Ruijschop et al., 2009). Modelling 

can help to improve the understanding of the limiting mechanisms of aroma release by pointing out the 

most important parameters related to the product and to the individual. In this way, models can help to 

design food products that are targeted towards specific consumer groups such as the elderly, young 

children or people with specific disorders (Doyennette et al. 2014). 

Fig. 9-1 shows the effects of some parameters related to the product and to the individual on 

the aroma release (concentration of aroma compound in the nasal cavity, Cna) which could be of interest 

to a food manufacturer and Table 9-4 shows the parameters varied in the simulation. It can be observed 

when the portion size increased (Fig. 9-1a), Cna increased. This is expected as the higher the portion 

size, the higher the volume of particles which will be broken into pasted particles during mastication. 

This is consistent with the main model assumption which assumes mass transfer of aroma compounds 

had only occurred from the paste to the saliva phase.  Therefore, the higher the volume of particles that 

are pasted, the higher the Cna. The same trend can be observed when the initial particle size is varied 

(Fig. 9-1b). The larger the particle size, the higher the volume of a particle. Thus, the higher the volume 

of pasted particles will be formed, which results in a higher Cna. A higher Cna can also be observed when 

the initial aroma concentration is increased as to be expected (Fig. 9-1c).  
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Fig. 9-1: Effect of parameters related to the product and individual which may be of interest to a food manufacturer. Using the physiological parameters of Subject 

A4, Cna of 2-nonanone was predicted.a. Aroma release (Cna) when portion size is varied (2.5 g, 5 g and 10 g of rice),  b. Aroma release (Cna) when initial particle size 

is varied (halved, original and doubled size) for 5 g of rice c. Aroma release (Cna) when the initial concentration is varied for 5 g of rice, d. Aroma release (Cna) when 

the breakage function (represented by the fragmentation variable, r) is varied for 5 g of rice, e. Aroma release (Cna) when saliva flow rate is varied for 5 g of rice, f. 

Aroma release (Cna) when the initial liquid volume iis varied for 5 g of rice, g. Aroma release (Cna) when the breakage function (represented by the pasted fraction, 

p) is varied for 5 g of rice, h. Aroma release (Cna) when the chewing rate (0.7 chew/s, 1.5 chew/s and 2 chew/s)  is varied for 5 g of rice
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Table 9-4 Product related and chewing parameters which may of interest to a food manufacturer 

Parameters  Unit Values simulated 

Portion size  g 2.5, 5.0 and 10 

Initial size mm ½ original size, original size 

and 2x original size 

Initial concentration g/mm3  2.4 x 10-9, 4.8 x 10-9 and 9.2 x 

10-9 

Breakage function (degree of 

fragmentation) 

- 0.2, 1.4 and 2.5 

Breakage function (pasted 

fraction) 

 0.0027, 0.0054 and 0.011 

Saliva flow rate (rate constant 

of saliva vs chew number) 

g/chew 0.014, 0.027 and 0.054 

Initial liquid volume  (y-

intercept of saliva vs chew 

number) 

g 0.44, 0.87 and 1.74 g 

Chewing rate Chew/s 0.7 chew/s, 1.5 chew/s and 2 

chew/s 

 

The fragmentation variable, r was also varied to test the effect of the breakage function of foods 

on Cna. It can observed from Fig. 9-1 d that the higher the r value, the higher the Cna. A higher r-value  

corresponds to a higher degree of fragmentation (faster breakdown) (Van der Glas et al., 1987). 

Therefore, a higher r value will produce a greater number of smaller daughter particles. It should be 

noted that in this model, when a particle is broken, some are produced into a number of larger daughter 

particles and some are pasted, which become part of the liquid bolus phase. The r value of the breakage 

function used in this model determines how much volume of the larger daughter particles will be 

produced whereas the pasted fraction, p determines how much are pasted. The bolus surface area is then 

calculated from the total surface area of the larger daughter particles. Therefore, with higher r value, 



 

 

 254 

one may expect there will be more daughter particles being formed compared to a smaller r value. We 

will then have larger bolus surface area as there are more area of individual daughter particles. 

Therefore, the observation of a higher Cna when the food is highly fracturable (from higher r value) is 

expected.  

As to be expected, the magnitude of Cna is also higher when p is larger, consistent with the main 

model assumption (Fig. 9-1 g). The higher the saliva flow rate (represented by the rate constant of the 

bolus saliva content data), the smaller the magnitude of Cna (Fig. 9-1 e), which is to be expected due to 

the renewal of fresh saliva present in the mouth and pharynx (Doyennette et al., 2014). The volume of 

saliva also determines the bolus saturation, which is a parameter required to calculate the bolus surface 

area. A higher salivary flow rate will result in the bolus reaching saturation faster, and therefore may 

decrease the surface area of the bolus. This results in a slower rate of transfer of aroma from the bolus 

to the air phase of the mouth, and hence explains the smaller Cna value. Thus, a food manufacturer may 

avoid the addition of additional chemical/components (such as citric acid) that may increase the saliva 

flow rate during mastication. The same trend can also be observed when the initial volume of liquid in 

the mouth is varied, where a higher initial liquid volume results in a smaller magnitude of Cna (Fig. 9-1 

f). This example was used to demonstrate that when rice is served with liquid such as curries or soup 

which will reach bolus saturation immediately and will therefore have smaller bolus surface area. 

Finally, it is also interesting to test the effect of the chewing rate on Cna as it is dependent on the food 

structure (e.g. soft vs hard foods). Comparing the magnitude of Cna in the first 15 seconds in Fig. 9-1 h, 

chewing faster has a higher magnitude of aroma release as it takes a shorter time to swallow for the 

same initial mass of aroma compounds.  

Besides the product, aroma release is also influenced by the physiological parameters of 

humans. This is a challenge for food technologists as humans show wide variation in these parameters 

and in the way they consume food (Taylor, 2002). Mathematical modelling can provide insights into 

understanding the role of individual physiological parameters as these parameters are defined in the 

model to predict aroma release. In this way, the model can be a tool to design food that can tailor to 

individual physiological characteristics.  
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9.3 Effect of physiological parameters on model predictions 

Some of the physiological parameters that are used as the model inputs in Table 9-2 were 

manipulated to observe their effects on the aroma release predictions (Table 9-5). For clarity, only the 

impact of the most sensitive parameters on aroma release were shown in Fig. 9-2.  

Table 9-5 Physiological values manipulated in the simulations. 

Parameters  Unit Values simulated 

Breathing frequency  cycle/s 0.12, 0.25 and 0.32  

Volume of oral cavity mm3 20000, 60000 and 100000 

Volume of pharynx mm3 15000, 32000 and 60000 

Volume of nasal cavity mm3 12000, 16000 and 40000 

Thickness of oral mucosa mm 5 x 10-3, 5 x 10-2 and 5 x 10-1 

Thickness of pharynx mucosa mm 5 x 10-3, 5 x 10-2 and 5 x 10-1 

Thickness of nasal mucosa mm 5 x 10-3, 5 x 10-2 and 5 x 10-1 

Tidal volume mm3 250000, 500000 and 1000000 

Area of oral cavity mm2 5800, 11600 and 23200 

Area of pharynx mm2 3250, 6500 and 13000 

Air/mucosa contact area in nasal 

cavity (nose) 

mm2 7500, 16000 and 30000 

Volume of saliva in pharynx mm3 100, 200 and 400 
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Fig. 9-2: Effect of physiological parameters on aroma release (Cna). Using the physiological parameters of Subject A4 as a reference value, Cna of 2-nonanone was 

predicted. a. Effect of breathing frequency on aroma release (Cna)  (0.12 cycle/s, 0.25 cycle/s, 0.32 cycle/s),  b. Effect of the oral cavity volume on aroma release (Cna) 

(20,000 mm, 60,000 mm3, 100,000 mm3) c. Effect of the pharynx volume on aroma release (Cna) (15,000 mm, 32,000 mm3, 60,000 mm3 ), d. Effect of the nasal cavity 

volume on aroma release (Cna) (12,000 mm, 16,000 mm3, 40,000 mm3 )
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Aroma release was mostly impacted by the breathing frequency, the volume of pharynx, the 

volume of oral cavity and the volume of nasal cavity while the rest of the parameters seem to have a 

negligible effect. A higher breathing frequency reduces aroma concentration as it increases the removal 

of the aroma compound from the mouth. A higher aroma concentration is also observed with a larger 

oral cavity and it becomes more apparent towards the later stages of mastication. A larger volume of 

oral cavity indicates a larger volume of aroma-rich air in the oral cavity. Due to this, a higher 

concentration of aroma will be observed in the nasal cavity as it takes longer for the aroma-rich air in 

the oral cavity to be depleted during the course of breathing (for the same breath flow rate). The 

variation of the volume of pharynx gives a higher Cna when the volume is smaller. The same trend can 

be observed with the variation of the volume of nasal cavity. The effects can be explained from the 

combination of an aroma-rich air from the oral cavity/pharynx with aroma-free ambient air in the course 

of breathing. A lower pharynx/nasal cavity volume implies higher renewal rate; therefore it leads to a 

quicker increase and decrease of the aroma concentration (Trelea et al., 2007). The remaining 

physiological parameters seem to have a negligible effect on the simulated nasal aroma concentration. 

This indicates that the accurate knowledge of these parameters is not essential for running the model.  

The substantial effects of some of the physiological parameters on the aroma concentration can 

provide knowledge to food manufacturers to design foods to a specific group of consumers. For 

example, race and gender and known to be the important factors affecting the oral and nasal structures 

(Xue & Hao, 2006). A study by Xue & Hao (2006) compared the vocal tract dimensions of 120 healthy 

adult subjects with equal numbers of men and women of three races (White American, African 

American and Chinese). The results showed that the men have a larger vocal tract dimensions (e.g. oral 

and pharynx volume) compared to women. Chinese people seem to have the largest oral and pharynx 

volume, followed by White American and African American. Thus, the physiological parameters of the 

subjects need to be considered by a food manufacturer in the food designing process. If a subject 

possesses a large oral volume, perhaps only a small initial concentration of aroma compound is required 

in the food to be able to perceive the ‘right amount of flavor’. 

Besides the physiological parameters, it is also known that other factors such as the nature of 

the food matrix and physicochemical factors can affect aroma release. It can be challenging to identify 
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the parameters that have the most effect on a subject through a series of lab experiments as these are 

time-consuming and expensive. Therefore, development of mechanistic models linking oral processing 

and aroma release provides tools to explore these interactions and can lead to the development of foods 

for sensorial and digestive outcomes. 

9.4 Effect of physico-chemical parameters on model predictions 

Physico-chemical factors such as partitioning, interfacial mass transport and diffusion are 

factors that can affect aroma release (Taylor, 2002).  Food technologists are interested in this area as 

upon mastication, flavour components are released and the overall sensory appreciation is influenced 

by the way the components are distributed over the different phases (that make up the food 

microstructure) and the diffusion kinetics of flavor release and transport of the volatiles to the olfactory 

epithelium in the nasal cavity (Bruin, 1999).  The manipulated parameters are shown in Table 9-6.  

Table 9-6 Physicochemical parameters manipulated in the simulations.  

Parameters  Unit Values simulated 

Saliva to rice partition 

coefficient  

- 0.0245, 0.245 and 2.45  

Air to saliva partition 

coefficient 

- 9.7 x 10-4, 9.7 x 10-3 and 9.7 x 

10-2 

Air to oral mucosa partition 

coefficient 

- 1 x 10-5, 1 x 10-3 and 1 x 10-1 

Air to pharynx mucosa 

partition coefficient 

- 1 x 10-5, 1 x 10-3 and 1 x 10-1 

Air to nasal mucosa partition 

coefficient 

- 1 x 10-5, 1 x 10-3 and 1 x 10-1 

Air to saliva in pharynx 

partition coefficient 

- 5 x 10-4, 5 x 10-3 and 5 x 10-2 

Mass transfer coefficient in 

saliva in oral cavity 

mm/s 10-5, 10-3 and 10-1 



 

 

 259 

Mass transfer coefficient in 

saliva in pharynx 

mm/s 10-5, 10-3 and 10-1 

Mass transfer coefficient in 

oral mucosa in oral cavity 

mm/s 10-5, 10-3 and 10-1 

Mass transfer coefficient in 

mucosa of pharynx 

mm/s 10-5, 10-3 and 10-1 

Mass transfer coefficient in 

mucosa of nasal cavity 

mm/s 10-5, 10-3 and 10-1 

 

Almost all of the physico-chemical parameters have negligible effect on the simulated aroma 

concentration in the nasal cavity except the mass transfer coefficient for aroma transport from the saliva 

to air in the oral cavity (). This parameter was also pointed out to be one of the key factors governing 

the release of aroma compounds when a sensitivity analysis was carried out in the aroma release 

mechanistic model developed for cheese (Doyennette et al., 2014). The mass transfer coefficient could 

be influenced by the viscosity of the saliva and the stirring rate (tongue and cheek movements), both of 

which determine the thickness of the stagnant layer (Nahon et al., 2000). Increasing the viscosity of the 

surrounding fluid by addition of thickeners can therefore decrease the mass transfer coefficient and the 

rate of flavour release (Nahon et al., 2000). The rest of the physico-chemical parameters all seem to 

have a negligible effect on the aroma concentration, which indicate that their accurate knowledge is not 

essential to run the model. It is likewise intriguing to know the impacts of the partition coefficients of 

other aroma compounds on aroma release. Some compounds may have a higher affinity to water, 

therefore will not be released into the air phase as much. 

Fig. 9-4 shows comparisons in the aroma release of three different aroma compounds with different 

partition coefficients. For example, ethyl buthanoate which has a partition coefficient between the air 

and water phase of 1.83 x102 (Le Thanh et al., 1993), shows the highest aroma release because of the 

higher affinity to the air phase. Ethyl butanoate has a fruity odour similar to pineapple and a key 

ingredient used as flavour enhancer in processed orange juices (Barba et al., 2018). In contrary, 
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Carvacrol, a spicy odour more attracted to water (partition coefficient of 5.95 x 10-5) (Abdul Rahman, 

2015) and had the lowest aroma release as expected.  These predictions show higher concentrations 

would be seen for aroma compounds that partition more favourably in the air phase. However, this may 

not necessarily translate into greater perception of the flavours as that would depend on the mechanism 

of sensory receptors in the nasal cavity (Buettner & Schieberle, 2000). 

 

 

Fig. 9-3: Effect of mass transfer coefficient in saliva in oral cavity on aroma release (Cna) (0.00001 mm/s, 

0.001 mm/s, 0.1 mm/s) 
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Fig. 9-4 Release of aroma compounds with different partition coefficients of air to saliva phase. 
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9.5 Chapter conclusion 

The final chapter aimed to demonstrate the usage of the model to potentially provide insights for food 

technologists/manufacturers to design food. The first section summarises the list of parameters which 

are related to the product and individual which could provide clues for food manufacturers to design 

foods that could improve sensorial outcome. Factors that have the most impact on the aroma 

concentration include the portion size, initial concentration, initial liquid volume and the pasted fraction. 

Other than product related parameters, food technologists are also interested to understand the effects 

of individual physiological parameters so that food can be tailored to individual’s specific needs. The 

model showed that the oral cavity volume, pharynx volume, nasal cavity volume and the breathing 

frequency were the factors that affect aroma concentration the most. Additionally, it was shown that the 

mass transfer coefficient of saliva has the most significant effect on the aroma release among all 

physico-chemical parameters. Depending upon the need, food technologists may add thickeners (to 

increase viscosity) or design foods that could influence the tongue and cheek movements in the mouth 

to influence the mass transfer coefficient. Finally, the effects of different aroma compounds of different 

partition coefficients were also investigated. As expected, the release of aroma compound which 

partition stronger into the air phase had the most elevated release compared to aroma compounds which 

had a higher affinity to water.   
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Conclusions and Recommendations for Future Work 

Conclusions 

Chewing is the first unit of the gastrointestinal tract but is often assumed less important as the total time 

spent chewing is relatively shorter compared to other digestive processes. However, studies have shown 

evidence that chewing has a huge impact on digestion and flavour release (Tarrega et al., 2008; 

Ranawana et al., 2010; Feron et al., 2014; Labouré et al., 2014; Ranawana et al., 2014). Despite these 

findings, due to the number of sub-processes occurring during chewing and their interactions, it can be 

difficult to explain experimental observations. Mathematical modelling can be a tool to explore these 

interactions and can lead to the development of foods to influence sensorial and digestive outcomes.  

Chewing models have been developed in the literature to predict bolus PSD as a function of 

chewing number and have been adapted from selection and breakage functions applied in industrial 

comminution processes. In Chapter 3, selection and breakage models were used as a basis of the 

chewing model developed in this thesis. The chapter started with the development of a conceptual model 

and a discussion of assumptions to provide a comprehensive understanding of the underlying 

mechanisms and important processes involved to predict the bolus PSD during chewing. Examples were 

then provided to show how these models can be implemented using a discretised population model 

approach.  

Chapter 4 and Chapter 5 aimed to test the implementation of the models developed in Chapter 

3 on peanuts, which is a common food system used in the mastication literature. The input parameters 

of the models were determined using a powerful optimisation tool called the particle swarm 

optimization (PSO), which is useful when there are no obvious starting values and a large number of 

parameters are required. Because of the probabilistic nature of the selection models, it needs to be 

repeated for at least 50 times to obtain a reasonable consistency for model fitting.   

In Chapter 4, the competitive selection models were combined to account for different stages 

of chewing, for instance, one-way selection model to describe the first few chews and two-way 

competition for the later stages of chewing, which have not been done in previous studies. However, 

because of the difference in the rate of bolus recovery between the model and experimental data, poor 
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fit was observed towards the late mastication stages. In addition, it was also found that when different 

breakage models were compared, all breakage models gave a good agreement with the experimental 

data. The advantage of using the most improved Austin (1971) breakage function were highlighted. Not 

only is the model mechanistic, but it also consists of only one parameter, therefore is highly portable 

(i.e. it can be easily reproduced in the future without the need to reuse modeler’s software and 

calibration data).    

The extension to the development of mechanistic models of chewing in the literature is whether 

they are useful to provide information for food design. This aspect is explored in Chapter 5 in two case 

studies. The first aimed to understand which of the competitive selection models were more appropriate 

when the portion size of peanuts was varied.  The second aimed to interrogate the model parameters, 

which were optimised without bias, to see whether they self-adjusted to reflect the variation in the 

physical properties of the peanuts. Both the one-way and two-way competition models were shown to 

sufficiently described particle selection for both the 2 g and 4 g peanuts. A higher power function 

describing the affinity factor was observed for the 4 g peanuts when the one-way model was used. But 

no notable difference was observed when the two-way model was applied. This provides insight into 

the differences in particle selection when the food portion size is varied. The results of the second case 

study showed that the value of the degree of fragmentation of the breakage function varied according 

to the trend in moisture content as expected. The findings of the modelling study justify that the physical 

properties of the peanuts affect the breakage function.  

The chewing model developed in Chapter 3 was shown to work and useful for peanuts through 

Chapter 4 and 5. This provided confidence for its application to a different food system which is known 

to have strong linkage with digestion and flavour release. Cooked white rice was chosen the bolus 

expectorated by each subject investigated in a preliminary experiment was consistent with the model 

assumptions described in Chapter 3. In addition, white rice is also aromatic, and the food bolus PSD 

and saliva content showed strong correlations with in vitro glucose release. These aspects made white 

rice a perfect food system to be studied in the subsequent chapters.   
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A series of experiments were conducted in Chapter 6 to understand the role of physiological 

and chewing parameters on aroma release of five subjects when chewing white rice. In addition, the 

data were also used as input parameters for the model and model validation. A conceptual model was 

developed to relate aroma release with an individual physiological and chewing variables. The 

conceptual findings were then compared against the experimental in vivo aroma release data of the 

subjects. Interestingly, the dynamic behaviour of aroma release for all subjects followed a similar trend 

with the breakdown pathways taken by each subject where subjects with smaller particle size in their 

bolus had higher aroma release. However, a conflicting result was also observed for subjects who had 

high salivary flow rate, where they possessed higher aroma release. Despite the interesting results, due 

to the small number of subjects in the study, it was challenging to identify which physiological and 

chewing effects that had the most dominant effect on aroma release. However, the study paved the first 

step in understanding the role of chewing on flavour release of solid starch rich food products. 

The results obtained in Chapter 6 were used as basis for the model development relating 

chewing and physiological variables with aroma release. In Chapter 7, the model developed by 

Doyennette et al. (2014) was adapted to predict the aroma release of rice, where the models in Chapter 

3 were incorporated to describe the chewing process. The added chewing model, how aroma compounds 

interact between phases (solid, saliva and air) and the type of food used (rice) were the novelties of the 

study. The main assumptions and equations required to predict aroma release were described in the 

chapter.  

Chapter 8 described the validation of the models developed in Chapter 7. Two different 

approaches were used to validate the model. The first approach was when the PSD outputs required for 

the model were taken directly from the experimental data. This was done by fitting a linear model to 

the experimental particle size input parameters to calculate the total surface area of particles and the 

total volume of pasted particles which were needed for the model. The second approach obtained the 

PSD outputs from the chewing model developed in Chapter 3. Other input parameters required for the 

model such as the physiological and physicochemical parameters were measured experimentally and 

those that could not be measured were obtained from the literature.  



 

 

266 

 

Finally, Chapter 9 then demonstrated how the flavour release model, when coupled with a 

chewing model, can aid in the design of foods which meet the unique demands of consumers. The model 

application was showed using a validated coupled chewing-aroma release model from one of the 

subjects in Chapter 8. The product characteristics, the physiology of consumers and the flavour 

compound physico-chemical parameters can all influence flavour release. Among the product related 

parameters studied, it was shown that the portion size, initial concentration of aroma, initial liquid 

volume and the pasted fraction have the most impact on the aroma concentration. Physiologically, the 

model showed that the oral cavity volume, pharynx volume, nasal cavity volume and the breathing 

frequency were the variables that affect aroma concentration the most. The mass transfer coefficient of 

saliva has the most significant effect on the aroma release among all physico-chemical parameters 

studied in the model. The effects of the partition coefficient of different aroma compounds were also 

explored where aromas that had the highest affinity in air showed the highest aroma release. All in all, 

this thesis provides the first step upon the development of mechanistic models that can lead to the 

development of foods for sensorial and digestive outcomes. 

 

Recommendations for Future Work 
 

The following aspects need to be considered in future studies to improve the models developed 

in this study and to further strengthen the knowledge in understanding the role of chewing on digestion 

and aroma release.  

The limitation of the chewing model developed in Chapter 3 is that it does not take into account 

for mass flow between the main bolus and buccal pouches (losses). The study from Flynn et al. (2011) 

showed that during mastication, a significant proportion of solids remained in the oral cavity after 

swallowing or expectoration. In addition, the particle size distribution of the expectorated boluses and 

the solids remaining in the mouth in her study were significantly different suggesting a recirculation of 

particles between the active bolus and residue compartments. It is recommended in further research to 

include a ‘bolus loss’ function in the model so the predictions can be more accurately compared to real-

life particle size measurements. To do so, the mechanisms of losses and their dependence on particle 

size and saliva will need to be fully understood through a structured experimental investigation.  
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One of the main assumptions of the model is a constant breakage function, therefore the study 

was limited to foods that are around physiological temperature and resist moisture uptake by being high 

fat or already saturated in moisture. Therefore, this research can be expanded to foods that can change 

its breakage function during occlusion. For example, a dry and brittle food such as a rice cracker will 

fracture in the first few chewing cycles but loses its structural integrity relatively quickly as chewing 

progresses due to the increasing absorption of saliva. Studies as such can be useful to design foods that 

can meet demands of elderly consumers or dysphagia patients who need foods with a certain 

texture/consistency at a specific mastication stage or swallow point. 

Another aspect which needs improvement is the simple method developed to obtain one of the 

selection model input parameters by measuring the occlusal area using a chewing gum. Although the 

method has the potential to reduce the number of time-intensive experiments, more investigations 

involving a larger number of subjects will be needed before conclusive evidence can be obtained. In 

addition, future research should also include subjects that chew both sides of the occlusal area as the 

study was only limited to subjects who had a preferred side (e.g. left or right). This is because it has 

been shown that chewing was more efficient on the side where there was a greater occlusal area 

(Wilding, 1993). 

Another aspect that could be improved is the starting PSD used in the chewing simulations. In 

this thesis, the PSD after the 1st chew was used because the experimental data used to fit the model 

which was obtained from literature did not include details of the starting PSD. However, in Chapter 4, 

it was shown that the model predictions compared well with the data when an assumed uniform-sized 

initial PSD was used from the fits of the 1st chew PSD data. Nevertheless, using the original PSD as the 

starting PSD in the future will ensure more accurate model predictions.      

Model fitting using the particle swarm optimization (PSO) algorithm is an efficient way to 

obtain input parameters of the selection and breakage model as it reduces the time required to perform 

experiments. In the current study, five to six input parameters of the selection and breakage models 

were solved by the PSO algorithm. It is recommended that to reduce the number of degrees of freedom 

for the optimization. The input parameter(s) of the breakage model should be evaluated as the 

experiments are relatively faster compared to the one-chew experiments to obtain the input parameters 
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of the competitive selection model. Indeed, the degree of freedom of the optimization was also 

constrained by an upper and lower-bound values obtained from a published study by (van der Glas et 

al., 2018). However, the upper and lower-bound values were based on the data of five subjects, therefore 

the fitted parameters may not accurately represent the input parameters for the subjects used in this 

thesis. In the future, although laborious and time-consuming, one-chew experiments which are 

conventionally done to evaluate selection model input parameters in the literature will need to be 

performed to the foods studied in this thesis to validate against the fitting method. Alternatively, if 

conducting one-chew experiments prove a challenge on real foods, then it should be done with an 

artificial test food that mimics the physical properties of the food (such as Optosil® as used in the 

literature) but to a larger number of subjects. This will allow the optimization to solve input parameters 

from a larger database, which may increase the accuracy of the solved parameters. 

The weakness of the in vivo experiments conducted in this thesis to relate chewing and aroma 

release is that they were performed on a small number of subjects (n=5), therefore future experiments 

should be conducted in a larger number of subjects to provide a more convincing evidence. Furthermore, 

measurements performed on a larger number of subjects will enhance the model reliability and has the 

potential to allow the definition of classes of consumers, representative of a population using the model 

input parameters. For example, chewing motion (lateral, vertical) could be parameterized with the 

breakage function parameter ‘r’. Selection behaviour could be trapped by the number of breakage sites 

(‘k’ and ‘m’ parameters) and affinity factors (‘p’ and ‘q’ parameters).  

Future studies can also include other starch rich food products such as pasta or other rice types 

such as basmati. To date, previous studies linking oral processing and aroma release have mostly 

focused on bread (Jourdren et al., 2016; Jourdren et al., 2017a, 2017b; Pu et al., 2019). Additionally, 

the long sampling time of the instrument used in the study to measure aroma release (PTR-MS) made 

it difficult to compare against model predictions. Future studies of in vivo aroma release could be 

conducted in instruments with a short sampling time such as the Selected Ion Flow Tube Mass 

Spectrometry (SIFT-MS) developed by syft™ Technologies https://www.syft.com/high-selectivity-

real-time/). Furthermore, the input parameters used in the model describing aroma release can also be 

improved. Parameters such as the mass transfer coefficient, tidal volume and the breathing frequency 

https://www.syft.com/high-selectivity-real-time/
https://www.syft.com/high-selectivity-real-time/
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can be determined experimentally. For some foods (e.g. cheese), the partition coefficient and mass 

transfer coefficients of 2-nonanone and ethyl propanoate (which are the same aroma compounds studied 

in this thesis) are shown to depend on the bolus saliva content (Doyennette et al., 2011). It will be 

interesting to see the relationship between saliva and the partition and mass transfer coefficients when 

different food matrices are used (such as rice used in this study).  Another aspect of the model that can 

be improved is in predicting the aroma release post-swallowing especially as it has been shown in the 

literature that some aroma compounds (e.g. 2-nonanone) tend to release more during post-swallowing 

especially for high-fat foods such as cheese products (Frank et al., 2012; Repoux et al., 2012; Feron et 

al., 2014; Labouré et al., 2014). 

The current aroma release model assumes the pasted rice particles as the dominant mechanism 

in contributing the release of aroma to the liquid bolus phase in the mouth can also be improved. The 

model can include the changes in the surface area of the whole particle distribution where the 

predictions can be compared against the model simulations from the current assumption. In addition, in 

Chapter 10, it was also observed there were many parameters (product, physiological and physico-

chemical) that have profound effects on aroma release. However, further in vivo experiments will be 

required to validate the observations from the model simulations.  

This thesis demonstrated how a chewing model can be coupled successfully into a different 

model that describes aroma release. Besides aroma release, the chewing model can also be coupled to 

digestion models in the proximal regions of the stomach to further expand the work to relate chewing 

and digestion.  

The models developed in this work provide a sound platform for these extensions discussed 

above. Future improvements will improve the utility of the models, but they can already provide useful 

functionality for food design. By working and applying these models with food product developers, the 

value of the modelling approach can be realised and clear priorities for which areas future model 

development should focus on will become apparent.  
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Appendices 

Appendix A: MATLAB codes used in the thesis 

1. General MATLAB code used to apply the selection and breakage model 

developed in Chapter 3 

%% Initial PSD   

%Single chew data from Christine 

thedata=load('Christineallchewsdata.mat'); %4g portion size 

Dp=thedata.d_onechew; 

 

%% Generate size classes   

sieve=thedata.sieve; 

sieve=sieve(1:8); 

numclass=thedata.numclass; 

 

%% Choose selection models    

% Competition model Input parameters  

k=54.85; 

g=0.5358; 

h=0.001055; 

let=0.8277; 

 

vanDerGlas=[k,g,h,let]; 

    

%Power law model Input parameters  

v=0.1; 

w=0.1; 

lucas=[v,w]; 

 

% Selection function 

  

% Model 1: Two-way competition model (k,g,h,let) 

% Model 2: One-way competition model (k,g,h,let) 

% Model 3: Power law model (v,w) 

% Model 4: Single-sized model (k,g,h,let) 

  

%Params=vanDerGlas (Van der glas models)  

%Params=lucas (Lucas and luke models)  

  

modelS=2; 

  

ParamS=vanDerGlas; 

  

chew=35; 

  

%% Choose Breakage function 

% model 1 is B=(1-p)*1-(1+r*xf).*(1-xf).^r where params=[r,p] 

% model 2 is B=(1-p)*s*(1/xf).^r where params=[r,p,s] (Lucas & Luke, 1983) 

% model 3 is B=(1-p)*1-s*(1-1/xf).^r where params=[r,p,s] (Lucas & Luke, 

% 1983) %mechanistic 

% model 4 is B=(1-exp(1/xf)/(1-exp(-1)) where params =p (B &C 1956) 

 

modelB=1; 

% r=0.8; 

params=[r]; %fragmentation variable 

  

Paste=0; 
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for countchewloop=1:chew 

  

Vp=(1/2.03)*(2/3)*pi().*Dp.^3; 

  

if modelS==1||2||4 

  

%% Implement selection model 

np=zeros(numclass,1); 

    for i=1:numclass %  

        np(i)=numel(find(Dp>sieve(i))); 

    end  

np(2:end)=np(2:end)-np(1:end-1);  

     

S=selectionfuncs(sieve,np,modelS,ParamS); 

 

Sizeclass=ones(size(Dp));  

 

Sel=zeros(size(Dp));   

        for i=1:numclass 

            j=numclass+1-i; %9:1 

            Sizeclass(Dp>=sieve(j))=j; %  

            Sel(Dp>=sieve(j))=S(j); 

        end  

elseif modelS==3 

S=selectionfuncs(Dp,[],modelS,ParamS); 

Sel=S;  

else     

S=[];  

end 

  

% Applying the selection function to the Particle Size Distribution 

    RollDice=rand(size(Dp));%create random probability for  every particle 

    IsSel=RollDice<=Sel; 

    SelDp=Dp(IsSel==1); %Selected diameter of particles 

    SelVp=Vp(IsSel==1); %Selected diameter of particles 

    UnSelDp=Dp(IsSel==0); %UnSelected diameter of particles 

    UnSelVp=(1/2.03)*(2/3)*pi().*UnSelDp.^3;%Unselectedvolumes 

    TotalV=sum(SelVp)+sum(UnSelVp); %check volume is conserved or not 

  

%% Apply Breakage function 

   

Daughters1=[];  
Pastevol=[]; 

  
 for i=1:size(SelDp,1)    
[Daughters NewPaste]=NewDaughters(SelDp(i),modelB,params,10); 
Daughters1=[Daughters1,Daughters]; 
Pastevol=[Pastevol,NewPaste]; 
 end 

   
Daughters1=sort(Daughters1'); 
daughters=(1/2.03)*(2/3)*pi().*Daughters1.^3; 
Pasted_stuff=sum(Pastevol);                                                   

  

  
NewVp=sort([UnSelVp;daughters;]); 

  
NewVp=NewVp(~isnan(NewVp)); 
NewVp=NewVp(NewVp~=0); 
NewDp=((3.*NewVp*2.03)/(2.*pi)).^(1/3); 
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NewDp1=NewDp; 

 
Cumulative=cumsum(NewVp./sum(sum(NewVp)+Pasted_stuff)); 

  
%% Parameters 
% d90 
n=0.9; 
dist    = abs(Cumulative-n); 
minDist = min(dist); 
idx     = find(dist==minDist); 
d90=NewDp1(idx); 
if isempty(d90) 
    d90=sieve(end); 
end 

  
% d80 
n1=0.8; 
dist1    = abs(Cumulative-n1); 
minDist1 = min(dist1); 
idx1     = find(dist1==minDist1); 
d80=NewDp1(idx1); 
if isempty(d80) 
    d80=sieve(end); 
end 
% d75 
n2=0.70; 
dist2    = abs(Cumulative-n2); 
minDist2 = min(dist2); 
idx2     = find(dist2==minDist2); 
d70=NewDp1(idx2); 

  
if isempty(d70) 
    d70=sieve(end); 
end 

  
% d60 
n3=0.6; 
dist3    = abs(Cumulative-n3); 
minDist3 = min(dist3); 
idx3     = find(dist3==minDist3); 
d60=NewDp1(idx3); 

  
if isempty(d60) 
    d60=sieve(end); 
end 

  
% d50 

  
n4=0.5; 
dist4    = abs(Cumulative-n4); 
minDist4 = min(dist4); 
idx4     = find(dist4==minDist4); 
d50=NewDp1(idx4); 
if isempty(d50) 
    d50=sieve(end); 
end 

  
 

% d25 
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n5=0.4; 
dist5    = abs(Cumulative-n5); 
minDist5 = min(dist5); 
idx5     = find(dist5==minDist5); 
d40=NewDp1(idx5); 
if isempty(d40) 
    d40=sieve(end); 
end 
% d10 
n6=0.3; 
dist6   = abs(Cumulative-n6); 
minDist6 = min(dist6); 
idx6     = find(dist6==minDist6); 
d30=NewDp1(idx6); 
if isempty(d30) 
    d30=sieve(end); 
end 

  
n7=0.2; 
dist7   = abs(Cumulative-n7); 
minDist7 = min(dist7); 
idx7     = find(dist7==minDist7); 
d20=NewDp1(idx7); 
if isempty(d20) 
    d20=sieve(end); 
end 

  
n8=0.1; 
dist8   = abs(Cumulative-n8); 
minDist8 = min(dist8); 
idx8     = find(dist8==minDist8); 
d10=NewDp1(idx8); 

  
if isempty(d10) 
    d10=sieve(end); 
end 

  
ParameterS=[d90;d80;d70;d60;d50;d40;d30;d20;d10];%Paste_fraction 
 

Dp=NewDp; 
 

DpRecord{countchewloop}=Dp; 
Selected_record(countchewloop)=sum(SelVp); 
Total_record(countchewloop)=sum(NewVp); 
ParameterRecord{countchewloop}=ParameterS; 
CumulativeRecord{countchewloop}=Cumulative; 

  
end 

  
Allparameters=[ParameterRecord{:,:}]; 

  
Model=[Allparameters(:,1),Allparameters(:,3),Allparameters(:,5),Allparamete

rs(:,7),Allparameters(:,9),Allparameters(:,14),Allparameters(:,19),Allparam

eters(:,24),Allparameters(:,29),Allparameters(:,34)]; 
 

Model=transpose(Model); 

end 
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2. Matlab script for the randfixedsum function used in Chapter 3 

function [x,v] = randfixedsum(n,m,s,a,b) 

  
% [x,v] = randfixedsum(n,m,s,a,b) 
% 
%   This generates an n by m array x, each of whose m columns 
% contains n random values lying in the interval [a,b], but 
% subject to the condition that their sum be equal to s.  The 
% scalar value s must accordingly satisfy n*a <= s <= n*b.  The 
% distribution of values is uniform in the sense that it has the 
% conditional probability distribution of a uniform distribution 
% over the whole n-cube, given that the sum of the x's is s. 
% 
%   The scalar v, if requested, returns with the total 
% n-1 dimensional volume (content) of the subset satisfying 
% this condition.  Consequently if v, considered as a function 
% of s and divided by sqrt(n), is integrated with respect to s 
% from s = a to s = b, the result would necessarily be the 
% n-dimensional volume of the whole cube, namely (b-a)^n. 
% 
%   This algorithm does no "rejecting" on the sets of x's it 
% obtains.  It is designed to generate only those that satisfy all 
% the above conditions and to do so with a uniform distribution. 
% It accomplishes this by decomposing the space of all possible x 
% sets (columns) into n-1 dimensional simplexes.  (Line segments, 
% triangles, and tetrahedra, are one-, two-, and three-dimensional 
% examples of simplexes, respectively.)  It makes use of three 
% different sets of 'rand' variables, one to locate values 
% uniformly within each type of simplex, another to randomly 
% select representatives of each different type of simplex in 
% proportion to their volume, and a third to perform random 
% permutations to provide an even distribution of simplex choices 
% among like types.  For example, with n equal to 3 and s set at, 
% say, 40% of the way from a towards b, there will be 2 different 
% types of simplex, in this case triangles, each with its own 
% area, and 6 different versions of each from permutations, for 
% a total of 12 triangles, and these all fit together to form a 
% particular planar non-regular hexagon in 3 dimensions, with v 
% returned set equal to the hexagon's area. 
% 
% Roger Stafford - Jan. 19, 2006 

  
% Check the arguments. 
if (m~=round(m))|(n~=round(n))|(m<0)|(n<1) 
 error('n must be a whole number and m a non-negative integer.') 
elseif (s<n*a)|(s>n*b)|(a>=b) 
 error('Inequalities n*a <= s <= n*b and a < b must hold.') 
end 

  
% Rescale to a unit cube: 0 <= x(i) <= 1 
s = (s-n*a)/(b-a); 

  
% Construct the transition probability table, t. 
% t(i,j) will be utilized only in the region where j <= i + 1. 
k = max(min(floor(s),n-1),0); % Must have 0 <= k <= n-1 
s = max(min(s,k+1),k); % Must have k <= s <= k+1 
s1 = s - [k:-1:k-n+1]; % s1 & s2 will never be negative 
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s2 = [k+n:-1:k+1] - s; 
w = zeros(n,n+1); w(1,2) = realmax; % Scale for full 'double' range 
t = zeros(n-1,n); 
tiny = 2^(-1074); % The smallest positive matlab 'double' no. 
for i = 2:n 
 tmp1 = w(i-1,2:i+1).*s1(1:i)/i; 
 tmp2 = w(i-1,1:i).*s2(n-i+1:n)/i; 
 w(i,2:i+1) = tmp1 + tmp2; 
 tmp3 = w(i,2:i+1) + tiny; % In case tmp1 & tmp2 are both 0, 
 tmp4 = (s2(n-i+1:n) > s1(1:i)); % then t is 0 on left & 1 on right 
 t(i-1,1:i) = (tmp2./tmp3).*tmp4 + (1-tmp1./tmp3).*(~tmp4); 
end 

  
% Derive the polytope volume v from the appropriate 
% element in the bottom row of w. 
v = n^(3/2)*(w(n,k+2)/realmax)*(b-a)^(n-1); 

  
% Now compute the matrix x. 
x = zeros(n,m); 
if m == 0, return, end % If m is zero, quit with x = [] 

  
                   rt = rand(n-1,m); % For random selection of simplex type 

               
rs = rand(n-1,m); % For random location within a simplex 

  

  
s = repmat(s,1,m); 
j = repmat(k+1,1,m); % For indexing in the t table 
sm = zeros(1,m); pr = ones(1,m); % Start with sum zero & product 1 
for i = n-1:-1:1  % Work backwards in the t table 
 e = (rt(n-i,:)<=t(i,j)); % Use rt to choose a transition 
 sx = rs(n-i,:).^(1/i); % Use rs to compute next simplex coord. 
 sm = sm + (1-sx).*pr.*s/(i+1); % Update sum 
 pr = sx.*pr; % Update product 
 x(n-i,:) = sm + pr.*e; % Calculate x using simplex coords. 
 s = s - e; j = j - e; % Transition adjustment 
end 
x(n,:) = sm + pr.*s; % Compute the last x 

  
% Randomly permute the order in the columns of x and rescale. 

  

  
rp = rand(n,m); % Use rp to carry out a matrix 'randperm' 

  
[ig,p] = sort(rp); % The values placed in ig are ignored 
x = (b-a)*x(p+repmat([0:n:n*(m-1)],n,1))+a; % Permute & rescale x 

  
return 
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3. Matlab script for the second numerical approach to address the conservation of 

volume developed in Chapter 3. 

 
function [Daughters NewPaste]=NewDaughters(Dp,model,Params)  

 
Vp=4/3*pi().*(Dp/2).^3; 
Pasted=0; 
j=1; 
vTot=0; 
miss=0; 

  
for i=1:1000 
    if (Vp-Pasted-vTot)<(4/3*pi()*(0.354/2)^3) %if particle is a pasted 

particle, it doesnt need breakage 
        Pasted=Pasted+(Vp-Pasted-vTot); 
        i=1001; % stop the loop as it doesnt need breakage 
    end 

     
    d=ItBreak(rand(),model,Params)*Dp; 
    vP=4/3*pi()*(d/2)^3; 

     

    
    if d<0.354 
        Pasted=Pasted+vP; 

  
    elseif  vP>(Vp-Pasted-vTot) 
        miss=miss+1; 
    else 
        dP(j)=d; 
        vTot=vTot+vP; 
        j=j+1; 
    end 

     
    if (vTot+Pasted)>=Vp 
        i=1001; 
    end 

     
end 

  
NewPaste=Pasted; 

  
if ~exist('dP','var') 
  Daughters=[]; 
else 
  Daughters=dP; 
end 
end 
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function xf=ItBreak(B,model,params) 

  
xfin=[0:0.01:1]; 
Bin=BreakIt(xfin,model,params); 
Bin(isinf(Bin)|isnan(Bin)) = 0; 
xf=interp1(Bin,xfin,B); 

 

function B=BreakIt(xf,model,params) 
%% Breakage function 
% returns cumulative breakage function for input xf = x/xo 
% model 1 is B=1-(1+r*xf).*(1-xf).^r where params=r 
% model 2 is B=(1-exp(xf)/(1-exp(-1)) where params =[] 
if model==1 
    r=params(1); 
    B=1-(1+r*xf).*(1-xf).^r; 
elseif model==2 
    B=(1-exp(-xf))/(1-exp(-1)); 
elseif model==3 
    r=params(1); 
    b=params(2); 
    B=b.*(xf).^r; 
elseif model==4 
    r=params(1); 
    b=params(2); 
    B=1-b.*((1-(xf)).^r); 
else 
    B=0; 
end 
end 

 

4. Matlab script to generate discrete number of particles from sieve data in Chapter 4 
 

%% Data 

%Mass fraction for the 1st chew 
christine=load('differentchewsfinal.mat'); 

  
noofchews=11; 

 
numclass=8; 
sieve=christine.all(1,:); 

  
i=1:length(sieve); 
j=length(sieve):-1:1; 

  
%Reorder sieve from largest to smallest 
sieve(i)=sieve(j); 

  
%Mass in each size class 
real_mass=[3.36;3.13;2.7;2.3;1.95;1.7;1.46;1.67;1.15;1.27;0.9]; 

  
mass_inclass=christine.all(2:end,:).*real_mass; 

  
%Convert to volume 
density=1.12/1000; %(g/mm3) 

  
%volume on sieves 
Pvols=mass_inclass./density; 
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Pvols(:,i)=Pvols(:,j); 

  
sized=[4,2.80000000000000,2,1.40000000000000,1,0.710000000000000,0.50000000

0000000,0.355000000000000]; 

  
Pvols=Pvols(:,1:8); 

  
%Min volumeMinVols 
MinVols=(1/2.03)*(2/3*pi().*sieve(1:8).^3); 

  
%Adjust 
for i=1:size(Pvols,1)%Number of rows 
        for j=1:(size(Pvols,2)-1) %Numberofcolumns 

             
            if Pvols(i,j)==0 

                 
            elseif Pvols(i,j)< MinVols(:,j) 

             
            a=Pvols(i,j); 
            b=Pvols(i,j+1); 
            Pvols(i,j+1)=a+b; 
            Pvols(i,j)=0; 

            
            end 
        end 

             
end 

  

  
%% Generate particles 
%Volume of a halved peanut particle 
sieve_top=sieve(1)*(2.^(1/2)); 
Volume=(1/2.03)*(2/3)*pi().*sieve_top.^3; 

  
%All particles 
all_P=cell(noofchews,numclass); 

  
 Numberofparticlesrequired=zeros(size(Pvols,1),numclass); 

  
        for ii=1:size(Pvols,1) %Number of rows 

  
        Average=zeros(1,numclass); 
%         Average(1,numclass+1)=mean(Pasteparticles); 

  
                    for i=2:numclass 
                    Average(1,i)=(MinVols(i)*MinVols(i-1))^(1/2); 
                    end 

  
                    Average(1,1)=(Volume*MinVols(1))^(1/2); 

  
                    Average = repmat(Average,size(Pvols,1),1); 

                     
                        for j=1:numclass                                            
                                  

Numberofparticlesrequired(ii,j)=Pvols(ii,j)./Average(ii,j);  

  
                        end 
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        end 

  
Numberofparticlesrequired(Numberofparticlesrequired==0) = NaN; 
Number=round(Numberofparticlesrequired); 

  
Number(isnan(Number)) = 0; 
Number=abs(Number); 
daughters=cell(size(Pvols,1),numclass); 

  
for j=1:size(Pvols,1)  

  
                        for i=1:numclass   

                             
                            if Pvols(j,i)==0 

                            
                                daughters{j,i}=0; 
                            elseif Number(j,i)==0 
                                daughters{j,i}=0; 
                            elseif i==1 
                            daughters{j,i} = 

randfixedsum(Number(j,i),1,Pvols(j,i),MinVols(i),Volume); 
                            else 

  
                             daughters{j,i} = 

randfixedsum(Number(j,i),1,Pvols(j,i),MinVols(i),MinVols(i-1));  
                            end 

                         

                         
                        end                              
end 

  
 %Volume of particles 
 daughter_onechew=sort(cat(1,daughters{1,:})); 
 s_1=sum(daughter_onechew); 

    
  daughter_twochew=sort(cat(1,daughters{2,:})); 
  daughter_fourchew=sort(cat(1,daughters{3,:})); 
  daughter_sixchew=sort(cat(1,daughters{4,:})); 
  daughter_eightchew=sort(cat(1,daughters{5,:})); 
  daughter_tenchew=sort(cat(1,daughters{6,:})); 
  daughter_fifteenchew=sort(cat(1,daughters{7,:})); 
  daughter_twentychew=sort(cat(1,daughters{8,:})); 
  daughter_twentyfivechew=sort(cat(1,daughters{9,:})); 
  daughter_thirtychew=sort(cat(1,daughters{10,:})); 
  daughter_thirtyfivechew=sort(cat(1,daughters{11,:})); 

   
  %Diameter of particles 
 d_onechew=((3.*daughter_onechew(1:end)*2.03)/(2.*pi())).^(1/3); 
  d_twochew=((3.*daughter_twochew(1:end)*2.03)/(2.*pi())).^(1/3); 
 d_fourchew=((3.*daughter_fourchew(1:end)*2.03)/(2.*pi())).^(1/3); 
  d_sixchew=((3.*daughter_sixchew(1:end)*2.03)/(2.*pi())).^(1/3); 
  d_eightchew=((3.*daughter_eightchew(1:end)*2.03)/(2.*pi())).^(1/3); 
  d_tenchew=((3.*daughter_tenchew(1:end)*2.03)/(2.*pi())).^(1/3); 
  d_fifteenchew=((3.*daughter_fifteenchew(1:end)*2.03)/(2.*pi())).^(1/3); 
  d_twentychew=((3.*daughter_twentychew(1:end)*2.03)/(2.*pi())).^(1/3); 
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d_twentyfivechew=((3.*daughter_twentyfivechew(1:end)*2.03)/(2.*pi())).^(1/3

); 
  d_thirtychew=((3.*daughter_thirtychew(1:end)*2.03)/(2.*pi())).^(1/3); 
  

d_thirtyfivechew=((3.*daughter_thirtyfivechew(1:end)*2.03)/(2.*pi())).^(1/3

); 

   

   
  % check volume conserved 
  sumPvols=sum(Pvols,2); 

   
   %Volume fraction 
 volfrac_onechew=cumsum(daughter_onechew./sumPvols(1)); 
 volfrac_twochew=cumsum(daughter_twochew./sumPvols(2)); 
 volfrac_fourchew=cumsum(daughter_fourchew./sumPvols(3)); 
 volfrac_sixchew=cumsum(daughter_sixchew./sumPvols(4)); 
 volfrac_eightchew=cumsum(daughter_eightchew./sumPvols(5)); 
 volfrac_tenchew=cumsum(daughter_tenchew./sumPvols(6)); 
 volfrac_fifteenchew=cumsum(daughter_fifteenchew./sumPvols(7)); 
 volfrac_twentychew=cumsum(daughter_twentychew./sumPvols(8)); 
 volfrac_twentyfivechew=cumsum(daughter_twentyfivechew./sumPvols(9)); 
 volfrac_thirtychew=cumsum(daughter_thirtychew./sumPvols(10)); 
 volfrac_thirtyfivechew=cumsum(daughter_thirtyfivechew./sumPvols(11)); 
 

5. Matlab script to generate discrete number of particles from sieve data of different 

portion size in Chapter 5 
 

 %% Data 
%Convert mass distribution to volume distribution 
 

christine=load('differentchewsfinal.mat'); 

  
sieve=christine.all(1,:); 
sieve=[0,sieve]; 
sieve(end)=5.7; 

   
real_mass=[3.36;3.13;2.7;2.3;1.95;1.7;1.46;1.67;1.15;1.27;0.9]; 

  
mass_inclass=christine.all(2:end,:).*real_mass; 

  
Paste_mass=[0.0112;0.02;0.06;0.08;0.145;0.19;0.27;0.39;0.25;0.33;0.20];  

  
Exp_mass=real_mass+Paste_mass; 

  
ratios=4./Exp_mass; 

 
All_mass=[Paste_mass,mass_inclass]; 
Mass_frac=All_mass./Exp_mass; 

  
%single chew 
cum_singlechew=cumsum(Mass_frac(1,:)); 
cum_singlechew1=cum_singlechew; 

  
%15 chews 
cum_fifteenchew=cumsum(Mass_frac(7,:)); 

  
%30 chews 
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cum_thirtychew=cumsum(Mass_frac(10,:)); 

  
%Convert to volume 
density=1.12/1000; %(g/mm3) 

  
j=1; 
Mp=Exp_mass(1); %portion size 
mTot=0; 
miss=0; 

  
for i=1:1000 

  
[cum_singlechew, index] = unique(cum_singlechew);  
dparticle = interp1(cum_singlechew, sieve(index), rand()); 

  
    vP=(1/2.03)*(2/3)*pi().*dparticle.^3; 
    mP=vP*density; 
    if  mP>(Mp-mTot) 
        miss=miss+1; 
    else 
        dP(j)=dparticle; 
        mTot=mTot+mP; 
        j=j+1; 
    end 

     
    if mTot>=Mp 
        i=1001; 
    end 

     
end 

  
Newdist=dP; 
NewvP=(1/2.03)*(2/3)*pi().*Newdist.^3; 
NewmP=sort(NewvP*density);  
Newcum=cumsum(NewmP./nansum(NewmP)); 

  

6. MATLAB script to convert sieve data of different peanuts moisture content in 

Chapter 5. 

Scone matrix spreadsheet. 

data=[0 0 
    0.47   0 
    0.5 4.1 
0.72 20.9 
1.01 38.98 
1.43 58.59 
2.02 75.93 
2.85 88.18 
4.03 97.14 
5.7 100.0]; 
data(:,2)=data(:,2)./100; 

Note the added the first two lines.  

 Line 1 is the 0,0  
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 Line 2 is where the data would cross the x-axis. This is crucial as below they will 

be interpolated linear between these two points and then using a curved 

interpolation between the other points. 

Now create a series and interpolate values for Fs from them 

The nomenclature  

 F = cumulative 

 f = probability density function 

 subscripts (s=surface area, v=volume, n=number) 

d=[0:0.05:6]'; 
i=find(d>=data(2,1),1); 
Fs=zeros(size(d)); 
Fs(1:i)= interp1(data(:,1),data(:,2),d(1:i),'linear'); 
Fs(i:end)= interp1(data(:,1),data(:,2),d(i:end),'pchip'); 

Plot this as a graph 

F=figure; 
plot(d,Fs,':') 
hold on 
plot(data(:,1),data(:,2),'ob') 
xlabel('diameter (mm)') 
ylabel('F') 
legend('data','interpolated') 

Find the derivative as fs=d/dx(Fs) 

fs=gradient(Fs,d); 
fs=fs/sum(fs); 
% normalise so area under curve = 1 
f=figure; 
plot(d,fs) 
xlabel('diameter (mm)') 
ylabel('f') 

convert to volume fraction as probability distribution function 

fv=d.*fs; 
fv=fv/sum(fv); 
% normalise so area under curve = 1 
hold on 
plot(d,fv) 
legend('fs','fv') 

convert to cumulative volume distribution function 

Fv=cumsum(fv); 
figure(F); 
plot(d,Fv,'r') 
legend('Fs','Fs data','Fv') 

convert area to number probability distribution function just in case it is needed 
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fn=fs./d; 
fn(1)=0; 
fn=fn/sum(fn); 
figure(f) 
plot(d,fn,'g') 
legend('fs','fv','fn') 

convert to number cumulative distribution 

Fn=cumsum(fn); 
figure(F) 
plot(d,Fn,'g') 
legend('Fs','Fs data','Fv','Fn') 

The converted data as a cumulative volume distribution 

OutputData=[d,Fv] 
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7. General Matlab script to use the PSO in chapter 4, 5 and 9 

  
%% Fitted data 
 

helo1=load('Christineallchewsdata.mat'); 
helo2=load('realmassdata.mat'); 

  

  
data=helo1.alldata; %1 chew to swallow point 
data=data(2:11,:); % 2 chew to swallow point 

  
%% Fitness function  
fitnessfcn=@(x0)sse(x0,data); 

  
lbound=[90;1;0.0007;1;0]; 
ubound=[500;3;0.004;3;2]; 
nvars=length(y); 
 

initial_values=[100.89,2.57,0.0018,2.85,0.76]; 

  
options=psooptimset('Generations',200,'PopulationSize',40,'PlotFcns',{@psop

lotbestf,@psoplotswarmsurf},'InitialPopulation',initial_values); 
dbstop if error 
tic 
[ypso,fval,exitflag,output,population,scores]=pso(fitnessfcn,nvars,[],[],[]

,[],lbound,ubound,[],options); 
toc 

 
%% Sum of Squares Fitness function  
 function[ss]=sse(x0,data1) 

  
%Model predictions 
[MeanC]=modelmeanruns(x0); 

  
%Normalised residuals 

residuals=(MeanC-data1)./data1; 
 

ss=sum(sum((residuals.^2))); 

  
end 

 
%% Mean of 50 simulations function  
 function [MeanC,stdC]=modelmeanruns(x0) 
count=50; 
Allop=cell(1,count); 

  
for i=1:count 
Allop{1,i}=thelatestmodel(x0); 
end 

   
MeanC = mean(cat(3, Allop{:}), 3); 
stdC = std(cat(3, Allop{:}),[], 3); 

  

 
end 
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8. General MATLAB script to solve ODE equations developed in Chapter 8. 

 
  
%% chewing input parameters 

 
k=y(1); 
g=y(2); 
h=y(3); 
let=y(4); 
r=y(5); 
pfrac=y(6); 

  
%% Input parameters 
InitialPSD=load('initialnewPSD.mat'); 
Factor=[0.169 0.158 0.148 0.237 0.185 0.229 0.258 0.263 0.261 0.221 0.2020 

0.2016 0.164 0.211 0.245 0.262 0.245 0.253 0.24657 0.22857 0.16837]; 
 

Meanf=mean(Factor); 
Dp=sort(InitialPSD.Dp); 

  
%Size class classification for model that requires size class 
biggestsieveclass=5.742; 
smallestsieveclass=0.354; 
numclass=9; 

  
vanDerGlas=[k,g,h,let]; 

  
ParamS=vanDerGlas; 

  
params=r; %r  

 
Paste_vols=0; 

 
for countchewloop=1:chew 
 Vp=(pi().*Meanf.*Dp.^3)./4; 

  
chks=sum(Vp); 

  

  
if modelS==1||2||4 

  
sieve=logspace(log10(biggestsieveclass),log10(smallestsieveclass),numclass)

; %Size in each sieve in mm; 

  
%Count number of particles on sieves 
np=zeros(numclass,1); %np means number of particles %Create array of zeros, 

10 rows, 1 column 
    for i=1:numclass 
        np(i)=numel(find(Dp>sieve(i 
    end 

  
np(2:end)=np(2:end)-np(1:end-1); 

     
S=selectionfuncs(sieve,np,modelS,ParamS); 
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    Sizeclass=ones(size(Dp));  
    Sel=zeros(size(Dp));  
        for i=1:numclass 
            j=numclass+1-i; %9:1 
            Sizeclass(Dp>=sieve(j))=j;  
            Sel(Dp>=sieve(j))=S(j); 
        end 

  
elseif modelS==3 
S=selectionfuncs(Dp,[],modelS,ParamS); 
Sel=S; 

  
else 

     
S=[]; 

  
end 

 
    RollDice=rand(size(Dp));%create random probability for every particle 
    IsSel=RollDice<=Sel; 
    SelDp=Dp(IsSel==1); %Selected diameter of particles 
    SelVp=Vp(IsSel==1); %Selected diameter of particles 
    UnSelDp=Dp(IsSel==0); %UnSelected diameter of particles 
    UnSelVp= (pi().*Meanf.* (UnSelDp.^3))./4; %Unselected volumes 

 
% Pasted particles 
Pparticles=pfrac.*SelVp; 

  

  
%Unpasted particles volume 
NewParticles=SelVp-Pparticles; 

  
%Unpasted particles diameter 
NewDps=((4.*NewParticles)./(pi()*Meanf)).^(1/3); 

    

  
%daughters of unpasted 
Daughters1=[];  
Pastevol=[]; 

  
for i=1:size(NewDps,1)    
[Daughters , NewPaste]=NewDaughters(NewDps(i),modelB,params,10,Meanf); 
Daughters1=[Daughters1,Daughters]; 
Pastevol=[Pastevol,NewPaste]; 
 end 

  
Daughters1=sort(Daughters1'); 
daughters=(pi().*Meanf.*(Daughters1.^3))./4; 

                                                 
%All new particles 
NewVp=sort([UnSelVp;daughters;]); 

  
NewVp(isnan(NewVp))=[]; 

  
Pastevol(isnan(Pastevol))=0; 
Pparticles(isnan(Pparticles))=0; 
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%sum of new particles generated 
sumnew=sum(NewVp)+sum(Pastevol)+sum(Pparticles); 

  
%check vol conserved or not 
balV=chks-sumnew; 

  
%New particles diameter 
NewDpchew=((4.*NewVp)./(pi()*Meanf)).^(1/3); 
RealDp=NewDpchew; 
RealVp=NewVp; 

  
%Find if there is pasted 
NewDppasted=NewDpchew(find(NewDpchew<pasted_size)); 
VolDppasted=(pi().*Meanf.*(NewDppasted.^3))./4; 
sumRemainingpasted=sum(VolDppasted); 

  
%Deletethepastedones 
NewDpchew(NewDpchew<pasted_size)=[]; 
NewVp(NewVp<(pi().*Meanf.*(pasted_size.^3))./4)=[]; 

  
%Pasted vols 
Paste_volume=Paste_vols+sum(Pastevol)+sum(Pparticles)+sumRemainingpasted; 

%combine paste from inputs and new paste  
Paste_fraction=Paste_volume./chks; 

  

  
if isempty(Paste_fraction) 
    Paste_fraction = 0; 
 end 
 if isnan(Paste_fraction) 
    Paste_fraction = 0; 
 end 

  
chiki=sum(NewVp)+Paste_volume; 

  
Cumulative=cumsum(RealVp./chks); 

  
NewDp1=RealDp; 

 
newarea=pi().*NewDpchew.*(NewDpchew.*Meanf+NewDpchew./2); 
total_area=sum(newarea); 
Dp=NewDpchew; 
Paste_vols=Paste_volume; 

  
% ParameterRecord{countchewloop}=ParameterS; 
Paste_record(countchewloop)=Paste_volume; 
pastedfracrecord(countchewloop)=Paste_fraction; 
AreaRecord(countchewloop)=total_area; 
Total_record(countchewloop)=chiki; 
Nonpastedvol(countchewloop)=chiki-Paste_volume; 

  
end 
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%% Outputs from The PSD model 
 

[AreaRecord,Total_record,paste_new]=modeldata1(y,chew,modelS,modelB,pasted_

size); 

  
Nonpastedvol=Total_record-paste_new; 

  
%Saliva volume 

  
a=0.027; %g/chew (gradient constant of linear model) 
c=0.8714;  %g (vol saliva at rest) 

  
[Volsaliva]= salivamodel(a,chew,c); %in ML 
Volsaliva=Volsaliva*1000; %in mm3 

  
%Volume of liquid bolus (mm3) (Vol pasted + Vol saliva) 
Liquidvol=paste_new+Volsaliva; 

  
%Volume of bolus 
Volumeofbolus=Liquidvol+Nonpastedvol; 

  
%Saturation 
Saturation=(Liquidvol./Total_record).*((1-Voidfraction)/Voidfraction); 

  
%% Calculate surface area of bolus  
rcubed=(3.*Nonpastedvol)./(4*pi());  %work out from volume of particles 
PhiE=0.50; 
por=1-PhiE; 
S=Saturation; 
Phi=(1-por)+por*S; 
pors=por*S/(1-por); 

  
SaExp=((1+pors).^(2/3)).*AreaRecord; %Surface area of outer layer 

%mm24.*pi().* 
SaSph=4.*pi().*(rcubed./(1-por)).^(2/3); %surface area of bolus  
SaBol=((SaSph-SaExp).*Phi+SaExp-PhiE*SaSph)./(1-por);%mm2 

  
% IF SATURATION GREATER THAN 1 ASSUME SPHERICAL BOLUS- WORK OUT FROM BOLUS 
% VOLUME 
S_m1=find(S>=1); 
SaBol(S_m1)=4*pi()*((3.*Volumeofbolus(S_m1))./(4*pi())).^(2/3);  

  
%% Global variables 

 
global ks 
global Kas 
global Ksr 
global kom 
global koeq 
global kfeq 
global kfs 
global Afas 
global eom 
global Kam 
global Kfas 
global Kfam 
global frmasticatory 
global fr 
global Voamean 
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global Vfa 
global Vna 
global kfm 
global efm 
global knm 
global enm 
global tdeg 
global tlag 
global Vt 
global Qs 
global Aoam 
global Afam 
global Anam 
global Vfs 
global Koam 
global Knam 

  
Kas=Kasi; 
Ksr=Ksri; 

  
frmasticatory=chewingrate; %Chewing frequency %chew/s 
tlag=0; %swallowingtime (s) 
tdeg=33/chewingrate; 
ks=1e-3;% Mass transfer coefficient of liquid bolus (mm/s) 
Kas=12.9e-3;% Partition coefficient of air to saliva for 2-nonanone at 37oC 

(9.7+/-1.39 e-3) Ethyl propanoate, 12.9+/-5.5 e-3 
Ksr=2.14; %Partition coefficient of saliva to rice for 2-NONANONE,0.245 at 

37oC Ethyl propanoate, 2.14 
kom=1e-3;% Mass transfer coefficient of oral mucosa %mm/s 
eom=5e-2; %Thickness of oral mucosa mm 
Kam=1e-3; %Partition coefficient of air to oral mucosa 
fr=0.25; %Respiratory frequency %cycle/s 0.240.240.25 
Voamean=78300; %mean oral volume (mm3) 
Vfa=32000; %mean pharynx volume (mm3) 
Vna=16000; %mean nasal cavity volume (mm3)20000 
% e=0.0342; %Residual thickness layer of liquid bolus in pharynx (mm) 
kfm=1e-3; %mass transfer coefficient of pharynx mucosa (mm/s) 
efm=5e-2; %thickness of pharynx mucosa (mm) 
knm=1e-3;%mass transfer coefficient of cavity mucosa  (mm/s) 
enm=5e-2; %thickness of nasal cavity mucosa (mm) 
Vt=470000; %tidal volume (mm3)800000 
Qs=37.8;%mm3/s34.63228.842.12 
Cop=0.1512e-9;%g/mm3 %Initial concentration of particles4.8e-9 %2-nonanone  

ethyl %0.1512 
Vsalrest=c*1000; %mm3 
Koms=Kas/Kam; 
koeq=1/ks+Koms/kom; 
kfs=1e-3; 
Kfms=Kfas/Kfam; 
kfeq=1/kfs+Kfms/kfm; 
Af=6500; %mm2 
Afam=0.1*Af; 
Afas=Af-Afam; 
Kfas=5e-3; 
Kfam=1e-3; 
Koam=1e-3; 
Knam=1e-3; 
Ao=11600; 
Aoam=0.1*Ao; 
Anam=16000; 
Vfs=200; 
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%% Get simulation time information 
chewtime=zeros(1,chew); 

  
for n=1:chew 
    chewtime(n)=n/chewingrate; 
end 

  
tstep=1/frmasticatory; 
Initialconditions=[Vsalrest,0,0,0,0,0,0,0,0]; 
Ab=0; 
Vpaste=0; 
opts = odeset('RelTol',1e-3); 
[t,y]=ode45(@(t,y)Newmodel1(t,y,Ab,Vpaste),0:tstep:chewtime(1),Initialcondi

tions); %integrate from 0 to 1 chew 

  
% integrate 1st chew until end of chew 
for n=1:chew-1 
Vsal=y(end,1); 
Csold=y(end,2); 
Csnew=((Vsal+paste_new(n)/Ksr)*Csold+(paste_new(n+1)-

paste_new(n))*Cop)/(Vsal+paste_new(n+1)/Ksr); 
Ab=SaBol(n); 
Vpaste=paste_new(n); 
[tn,yn]=ode45(@(t,y)Newmodel1(t,y,Ab,Vpaste),chewtime(n):tstep:chewtime(n+1

),[y(end,1),Csnew,y(end,3),y(end,4),y(end,5),y(end,6),y(end,7),y(end,8),y(e

nd,9)],opts); 
t=[t;tn(2:end)]; 
y=[y;yn(2:end,:)]; 
end  

  
Vs=y(:,1); 
Cs=y(:,2); 
Coa=y(:,4); 
% Cfa=y(:,7); 
Cna=y(:,9); 
maxCna=max(Cna); 
relCna=Cna./maxCna; 

  
end 

 
%% ODE equations 

 
function [ode]=Newmodel1(t,y,Ab,Vpaste) 

  
global ks 
global Kas 
global Ksr 
global kom 
global kfs 
global Afas 
global eom 
global Koam 
global Knam 
global Kfas 
global Kfam 
global frmasticatory 
global fr 
global Voamean 
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global Vfa 
global Vna 
global kfm 
global efm 
global knm 
global enm 
global tdeg 
global tlag 
global Vt 
global Qs 
global Aoam 
global Afam 
global Anam 
global Vfs 

  
%% Calculate new values for dependent variables 
Vs=y(1); 
Cos=y(2); 
Com=y(3); 
Coa=y(4); 
Cfs=y(5); 
Cfm=y(6); 
Cfa=y(7); 
Cnm=y(8); 
Cna=y(9); 

  
%% Oral cavity 
fropening=fr;%or frrespiratory %frmasticatory 
Voa=Voamean*(1+0.2*sin(2*pi()*fropening*t)); %Volume of air in oral cavity 
Qoa=0.4*pi()*Voamean*fropening*cos(2*pi()*fropening*t); %Oral cavity air 

flow rate 
Vom=eom*Aoam; 
Vnam=enm*Anam; 
Vfam=efm*Afam; 

  
%Consequential variables pharynx 
Qna=-pi()*fr*Vt*sin(pi()*2*fr*(t-tlag)); %Nasal cavity air flow rate-tdeg 
Qta=Qoa-Qna; 

  
% Liquid bolus (saliva)phase 

%Dilution by saliva 
%Loss of aroma to the air phase 
ode=zeros(9,1); 

   
%Saliva flow rate 
ode(1)=Qs; 

  
if t>tdeg 
    ode(1)=0; 
end 
% Mass balance in saliva phase 
ode(2)=(-(Ab*ks*(Cos-Coa/Kas))-Vs*Cos)/(Vs+Vpaste/Ksr); 

  
%Mass balance in oral mucosa 
ode(3)=-(kom*Aoam*(Com-Coa/Koam))/Vom; 

  
%Air phase 
%From liquid bolus,lubricated mucosa and air from pharynx 
    if Qoa<0 
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    ode(4)=((Ab.*ks*(Cos-Coa/Kas))./Voa)+(((kom*Aoam)*(Com-

Coa/Koam))./Voa); 
    else 
    ode(4)=((Ab.*ks*(Cos-Coa/Kas))./Voa)+(((kom*Aoam)*(Com-

Coa/Koam))./Voa)+((Qoa*(Cfa-Coa))./Voa); 
    end 

     
%% Pharynx 

  
%Liquid bolus phase 
ode(5)=-(kfs*Afas*(Cfs-Cfa/Kfas))./Vfs; 

 
%Lubricated pharynx mucosa 
ode(6)=-(kfm*Afam*(Cfm-Cfa/Kfam))./Vfam; 

  
% Air phase 
if Qoa<0 
ode(7)=((kfs*Afas*(Cfs-Cfa/Kas))./Vfa)+(((kfm*Afam)*(Cfm-Cfa/Kfam))./Vfa)-

((Qoa/Vfa)*(Coa-Cfa)); 
elseif Qna>0 
ode(7)=((kfs*Afas*(Cfs-Cfa/Kas))./Vfa)+(((kfm*Afam)*(Cfm-

Cfa/Kfam))./Vfa)+((Qna/Vfa)*(Cna-Cfa)); 
elseif Qta>0 
ode(7)=((kfs*Afas*(Cfs-Cfa/Kas))./Vfa)+(((kfm*Afam)*(Cfm-

Cfa/Kfam))./Vfa)+((Qta/Vfa)*(0-Cfa)); 
end 

  
%% Nasal cavity 

  
% Nasal cavity mucosa 

  
ode(8)=-(knm*Anam*(Cnm-Cna/Knam))/Vnam; 

  
%Air phase in nasal cavity 

  
if Qna<0 
ode(9)=(((knm*Anam)*(Cnm-Cna/Knam))./Vna)-((Qna/Vna)*(Cfa-Cna));%/Vna 
elseif Qna>0 
ode(9)=(((knm*Anam)*(Cnm-Cna/Knam))./Vna)+((Qna/Vna)*(0-Cna));%/Vna 
end 
end 
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 Numerical error checking 

1. The figure below shows a comparison of model predictions when different relative tolerances were used to numerically solved the ODE 

equations developed in Chapter 8. Cos, Coa and Cna were compared where when relative tolerance of 1 x10-6 was used it is denoted as the 

blue dot marker and 1x10-3 as the black line.  
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Appendix B: PSO algorithm formulation 
 

B-1 Formulation and the default parameters that were implemented in the PSO algorithm 

 
The following formulation was implemented in the PSO algorithm of Chen (2009) in Matlab.  

𝑣𝑖
𝑘+1 = ∅𝑘𝑣𝑖

𝑘 + 𝛼1[𝛾1,𝑖(𝑃𝑖 − 𝑥𝑖
𝑘)] + 𝛼2[𝛾2,𝑖(𝐺 − 𝑥𝑖

𝑘)] (𝐴 − 1) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (𝐴 − 2) 

The vectors, 𝑥𝑖
𝑘 and 𝑣𝑖

𝑘 are the current position and the velocity of the ith particle in the kth 

generation. 𝑃𝑖 refers to the personal best position of each individual, and 𝐺 is the global best 

position observed among all the particles up to the current generation. The parameters 𝛾1,2 ∈

[0,1] are uniformly distributed random values and 𝛼1 and 𝛼2  are acceleration constants. The 

function ∅ is the particle inertia which gives rise to a certain momentum of the particles. 

The PSO algorithm also implemented the following to ensure the stability of the swarm. 

These conditions guarantee convergence to a stable equilibrium.  

The conditions are 

𝛼1 + 𝛼2 < 4 (𝐴 − 3) 

and 

𝛼1+𝛼2

2
− 1 < ∅ < 1 (𝐴 − 4)

      

The input and output arguments of the PSO function in MATLAB can be described in Table 

B- and Table B-, respectively.  
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Table B-1 Input arguments used in the MATLAB function. For instance, fitnessfcn refers to the sum of 

squares residuals, nvars refers to the number of parameters being solved, lb and ub refers to the upper 

and lower bound that were set in the algorithm for the solved parameters.  

fitnessfcn:Function handle of fitness function 

nvars: Number of design variables 

Aineq: A matrix for linear inequality constraints 

bineq: b vector for linear inequality constraints 

Aeq: A matrix for linear equality constraints 

beq: b vector for linear equality constraints 

lb: Lower bound on x 

ub: Upper bound on x 

nonlcon: Function handle of nonlinear constraint function 

options: Options structure created by calling pso with no inputs and a single output 

 

Table B-2 Output arguments of the PSO algorithm implemented in MATLAB. For example, x refers to 

the parameters that are being solved, fval refers to the sum of squares residual. 

x:Variables minimising fitness function 

fval: The value of the fitness function at x 

exitflag: Integer identifying the reason the algorithm terminated 

output: Structure containing output from each generation and other information about the performance of 

the algorithm 

 

The pso function is called in MATLAB using the syntax as described in Table B-.  

Table B-3 PSO syntax 

[x, fval,exitflag,output] = pso(fitnessfcn,... 

     nvars,A,b,Aeq,Beq,lb,ub,nonlcon,options) 

 

The options structure controls the behaviour of the PSO function. The default options 

structure is described in Table B-.  
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Table B-4 Default options structure in the PSO function. Empty bracket is denoted as [] where not default 

value is used. 

Option structure Definition Default values 
PopInitRange Range of random initial 

population 
0;1 

PopulationSize Number of particles in swarm 

 
40 

Generations Maximum number of generations 

 
200 

TimeLimit Maximum time before pso 

terminates 

 

Inf 

FitnessLimit Fitness value at which pso 

terminates 

 

-inf 

StallGenLimit Terminate if fitness value changes 

less than TolFun over 

StallGenLimit 

 

50 

StallTimeLimit Terminate if fitness value changes 

than TolFun over StallTimeLimit 

 

Inf 

TolFun Tolerance on fitness value 

 
1e-6 

TolCon Acceptable constraint violation 

 
1e-6 

HybridFcn Function called after pso 

terminates 

 

[] 

Display Display output in command 

window.  

 

‘final’ 

OutputFcns User specified output function 

called after each generation. 

 

- 

PlotFcns User specified plot function called 

after each generation 

 

- 

Vectorised Specify whether fitness function is 

vectorised. 

 

‘off’ 

InitialPopulation Initial position of particles 

 
[ ] 

InitialVelocities Initial velocities of particles. 

 
[ ] 

CognitiveAttraction Attraction towards personal best 

 
0.5 

SocialAttraction Attraction towards global best. 

 
1.25 

VelocityLimit Limit absolute velocity of 

particles. 

 

[ ] 
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BoundaryMethod Set method of enforcing 

constraints. 
‘penalize’ 

 

B-2 MATLAB code to record the state of swarm after each generation 

 
function [state,options,changed,str] = SaveOut(options,state,flag) 
        file_name = 'SaveBest.mat'; %File name 
        if strcmp(flag,'init') 
            var = state.Population; %Parameters in the specified population 
            var2=state.Generation; %Number of generations, e.g. 200 
            var3=state.Score; %Fitness value for each parameter 
            var4=state.fGlobalBest; %Best fitness value 
            var5=state.xGlobalBest; %Parameters at best fitness value 
            save(file_name, 'var','var2','var3','var4','var5')  
        elseif strcmp(flag,'iter') 
            ibest = state.fGlobalBest(end); %Best objective function 

(Global best) 
            ibest = find(state.Score == ibest,1,'last'); % Personal bests  
            bestx = state.Population(ibest,:); 
            bestx2=state.Generation; 
            bestx3=state.Score; 
            bestx4=state.fGlobalBest; 
            bestx5=state.xGlobalBest; 
            bestx6=state.Population;  

             
            previous = load('SaveBest.mat'); 
            var = [previous.var;bestx];% Read Previous Results, Append New 

Value 
            var2 = [previous.var2;bestx2]; 
            var3 = [previous.var3;bestx3]; 
            var4 = [previous.var4;bestx4]; 
            var5 = [previous.var5;bestx5]; 
            var6=[previous.var;bestx6]; 
            save(file_name, 'var','var2','var3','var4','var5','var6')                                       

% Write ‘Best Individual’ To File 
        end 
        changed = true;                                                 %  
    end 

 

 

B-3 MATLAB code used to implement the PSO algorithm 

 

Files were obtained from http://www.mathworks.com/matlabcentral/fileexchange/25986 

 
 
  

http://www.mathworks.com/matlabcentral/fileexchange/25986
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Appendix C: Information sheet and consent forms 
 

 
 

 
 
 

Rice Chewing Studies 
You are invited to take part in a study investigating the breakdown of white rice and 
during chewing.   
If you are aged between 18 and 30 years, have a healthy and complete set of teeth, 
are happy to have your chewed food analysed, and would like to find out more 
about the study, please contact: 

 
Muhammad Syahmeer How 

PhD student 
School of Food and Advanced Technology 

Massey University, Palmerston North 
Email: M.How@massey.ac.nz 

 
Subjects will be compensated for participating 

 
 

 
 
 
 
 
 
 
 
 
"This project has been evaluated by peer review and judged to be low risk. Consequently it has not 
been reviewed by one of the University's Human Ethics Committees.  
 
If you have any concerns about the conduct of this research that you want to raise with someone 
other than the researcher(s), please contact Professor Craig Johnson, Director (Research Ethics), 
email humanethics@massey.ac.nz. " 

 
 

 
  

 
 

mailto:humanethics@massey.ac.nz
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Measuring the bolus properties and in vivo aroma release of 

chewed white rice during chewing 
 

INFORMATION SHEET 

 
Hello, 

 
My name is Muhammad How; I am a PhD student in the School of Food and Advanced 

Technology, Massey University, New Zealand. I will be working with Prof Isabelle Souchon 

in this lab for 3 months. My PhD is about modelling the breakdown and the aroma release of 

rice during oral processing. I wish to obtain in-vivo experimental data during my stay here in 

order to validate the mathematical model that was developed during my PhD. 

 

This study is divided into three parts. First the study aims to measure the properties of 

expectorated boluses, to obtain data to validate the particle breakdown model. The second part 

is to obtain in-vivo data to validate the aroma release model. The final part includes measuring 

the oral physiology of the subjects. This will include the saliva flow rate, mastication efficiency 

and the oral, nasal and pharynx volumes. 

 
Participant involvement 

 

Bolus collection  

The trials will involve you chewing on cooked white rice; the samples will consist of a specific 

mass prepared by the researcher. The samples will be served to you, and you will be required 

to chew the samples naturally and expectorate the chewed samples in a container. The 

expectorated samples will be collected and analysed by the researcher.  

 

Saliva collection 

This will involve you chewing on a piece of parafilm for several minutes and to spit the saliva 

in a container. The saliva sample will be collected and analysed by the researcher. 

 

Oral, nasal and pharynx volume 

This will involve you to breathe through an acoustic device in order to measure your oral, nasal 

and pharynx volumes. 

 

 

 

In-vivo aroma release 

This will involve you to breathe in a nose-piece which will be inserted into your nostrils while 

chewing cooked white rice samples.  

To protect your privacy, all of your data will be placed under a code so that you will not be 

identified in any publications, and a summary of the findings will be posted to you after data 

analysis and writing up. 
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You are under no obligation to accept this invitation. If you decide to participate, you have the 

right to: 

 decline to answer any particular question 

 withdraw from the study at anytime 

 ask any questions about the study at any time during participation; 

 provide information on the understanding that your name will not be used unless you 

give permission to the researcher 

 be given access to a summary of the project findings when it is concluded. 

 

If you are interested in taking part, or have any further questions about the project, please do 

not hesitate to contact any of the researchers listed below. Your interest will be greatly 

appreciated. A screening questionnaire will be given to see if you’re eligible to take part. 

 
Project Contacts: 

 

Muhammad How 

M.How@massey.ac.nz 

 

Prof John Bronlund 

J.E.Bronlund@massey.ac.nz 

 

Prof Isabelle Souchon 

isabelle.souchon@inra.fr 

 

List of the ingredients that will be used in the test foods 

 

Rice (White) 

May contain traces of nuts 
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Measuring the bolus properties of chewed white rice and 

aroma release during chewing 

. 
Primary questionnaire 

Thank you for expressing interest in this study. Prior to your participation, please 

answer the following questions. 

Thank you for expressing interest in this study. Prior to your participation, please answer the 

following questions. 

 

1. Is your age between 18 and 30? 

     Y    N 

2. Do you have 8 post canine teeth? 

     Y  N 

3. Do you experience any pain/discomfort while chewing? 

     Y  N 

4. Have you suffered any serious jaw injuries in the past? 

    Y  N 

5. Do you currently wear tooth braces? 

    Y  N 

6. Do you have a problem with dry mouth or salivary flow? 

    Y  N 

7. Do you wear dentures? 

    Y  N 

8. Do you currently take any medication that might affect saliva flow, such as oxybutynin 

or amitriptyline? 

   Y  N 

9. Do you have a disorder of the mouth? 

   Y  N 

10. Do you currently have any significant problems with tooth decay or gum disease? 

  Y  N 

11. Have you noticed any tooth grinding or excessive tooth clenching while chewing? 

 Y  N 

12. Are you aware of any other health problems that may inhibit your ability to take part in 

this study or put your health at risk in any way? 

 Y  N 

13. Do you suffer from any blood-borne infectious disease? 

 Y  N 

14. Are you allergic to any of the ingredients that will be used in this study? (Listed in 

information sheet) 

 Y  N 

 

 

 

If you are able to answer YES to Q1 and NO to all other questions above, you are invited to 

come and look at the laboratory where the experiments will take place and discuss the project 

and the role of a participant in more detail. 
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Measuring the bolus properties and in vivo aroma release of 

chewed white rice during chewing 

 
PARTICIPANT CONSENT FORM - INDIVIDUAL 

 

 

I have read the Information Sheet and have had the details of the study explained to me. My 

questions have been answered to my satisfaction, and I understand that I may ask further 

questions at any time. 

 

 

I agree to participate in this study under the conditions set out in the Information Sheet. 

 
 
 
 
 
 
 
 
 
 
Signature: …………………………………………………………………  Date:…………………………………… 

Full Name –printed …………………………………………………………………………………………………… 
 
 

 



 

 

322 

 

Appendix D: Data used in Chapter 4, 5 and 6. 
  

1. 4 g peanut bolus data from Flynn (2012) used in Chapter 4, 5 and 6 

Fig. D-1 4 g peanut bolus data from Flynn (2012). 
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2. Peanut bolus data of 2 g and 4 g portion sizes from Flynn (2012) used in Chapter 

6.  

 
Fig. D-2 Peanut bolus data of 2 g and 4 g portion sizes from Flynn (2012). 

3. Peanut bolus data embedded in various matrices (and removed) from Hutchings 

(2011) used in Chapter 6. 

 
Fig. D-3 Cumulative particle size distribution of peanut particles in the bolus where peanuts which were 

embedded in matrices were removed. 
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Appendix E: Effect of chewing on in vitro digestion of brown rice  
 

E.1 Introduction 

Chewing is known to influence digestion and sensory outcomes. For instance, the PSD of a food bolus, 

which is an outcome of chewing, is known to influence the breakdown of starch-based foods during in 

vitro digestion (Ranawana et al., 2010; Bornhorst & Singh, 2012; Gao et al., 2020). The increase of 

bolus saliva content during chewing increases the bolus disintegration rate, which influences the 

breakdown of bread during simulated gastric digestion (Bornhorst & Singh, 2013). Furthermore, for 

starch-based foods, the amount of saliva added in the bolus plays a significant role in the breakdown in 

the proximal regions of the stomach due to the increased presence of α-amylase (Hoebler et al., 1998; 

Woolnough et al., 2010; Bornhorst & Singh, 2012). The bolus PSD also influences sensory outcomes 

by increasing the surface area exposure for release of volatiles from the food matrix (Harrison et al., 

1998; Wright & Hills, 2003; Wright et al, 2003; Foster et al., 2011; Doyennette et al., 2014). 

Chapter 4 and 5 showed how the chewing model developed in Chapter 3 can be applied to a real food 

system (peanuts). Due to the benefits of chewing on digestion and flavour release, the next step was to 

test if the model can be applied to a food system which has a direct influence on digestion and that 

possesses aromatic compounds. If successful the model can be further expanded to include other 

digestive and/or flavour release models. In order to link such models with chewing, an understanding 

of the effects of chewing on digestion and flavour release is required. The understanding will help to 

decide with certainty the inputs and outputs required for the chewing model.  

Therefore, Appendix E was aimed at understanding the effects of chewing on digestion of starch 

rich foods, using brown rice as the model food system. A series of experiments were carried out by a 

fellow collaborator in Plant and Food Research, Lincoln, New Zealand where 29 subjects were asked 

to chew cooked brown rice, and their boluses were collected and acidified (to arrest salivary amylase 

activity). In the study, the bolus PSD and bolus moisture content were measured. In addition, each 

subject’s oral physiological parameters such as the basal saliva flow rate and salivary amylase activity 

were also measured. To account for digestibility outcomes, the amount of sugar released after an in-
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vitro digestion was also investigated. The first part of this chapter will therefore aimed to discuss the 

results of this study in terms of the requirements a chewing model needs to have for starch-based foods.  

E.2 Influence of mastication of rice on digestion (An experiment conducted by Plant and Food 

Research, Lincoln, New Zealand) 

E.2.1 Methodology 

This section presents a brief description of the experimental methodology conducted by a team of 

researchers from Plant and Food Research, Lincoln, New Zealand to determine the influence of 

mastication on digestion. For a more detailed description of the experiments conducted, readers are 

referred to Kim et al. (2020).  In the study, 29 participants (17 female and 12 male, mean age of 26.8 ± 

8.4 years, mean BMI of 25.4 ± 3.9) were selected. The subjects were asked to chew cooked brown rice 

(at their average mouthful volume) at their average chewing time and then expectorate the bolus into a 

pre-weighed 70 mL plastic screw-cap container (or aluminium drying dish). Three replicates were 

collected from each subject for bolus particle size, bolus moisture content and in vitro digestion (9 

samples altogether).   

The bolus particle size was analysed using wet sieving and laser diffraction. The proportion of 

particles bigger (or smaller) than 2 mm (%) was determined from wet sieving. Meanwhile the PSD of 

the particles smaller than 2 mm, which were suspended in wash water, was measured using a laser 

diffraction particle size analyzer (Mastersizer 2000, Malvern Instruments Ltd, Malvern, UK). The PSD 

was described by surface area (µm2) and the d50, which is the diameter of particle below which 50% of 

the sample lies. The moisture content of the expectorated bolus on a wet basis (g per 100 g of bolus) 

was then determined in triplicate. The bolus moisture content was then used to calculate the amount of 

saliva added to the bolus (g/g dry rice). Lastly, digestion outcomes were investigated by measuring the 

sugar released after in vitro gastric digestion followed by a pancreatic digestion. The acquired data was 

expressed as mg glucose/g dry bolus sample. 

Other than bolus measurements, physiological characteristics of the subjects were accounted for by 

measuring the subject’s basal saliva flow rate and salivary α-amylase activity. Below shows a diagram 

that briefly describes the experimental setup. Full details of the experiments can be referred in Kim et 

al. (2020).  
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Fig. E-1: A diagram showing the experimental set up to study the influence of oral processing on 

digestion. Oral processing was accounted for by measuring the bolus particle size and saliva content. 

Boluses were also used in an in vitro digestion where the amount of sugar released was measured. 

Figure from Kim et al. (2020). 

E.2.2 Results and discussion 

While some data analysis of the results was carried out in Kim et al (2020), the analysis reported in 

the remainder of this chapter was carried out as part of this work to explore how chewing links to 

digestive outcomes. The mean and standard deviation of all of the variables measured for the 29 

subjects are described in Table E-1. 

Table E-1: Mean and Standard Deviation of oral processing parameters and the amount of sugar 

released after 120 minutes of in vitro digestion for all 29 subjects. Data from Kim et al. (2020) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table E-2 displays the correlation values of all the measured variables. As can be seen from Table E-2, 

only a few variables have significant correlation values (p < 0.05). The bolus moisture content and the 

amount of saliva added in the rice bolus (which was derived from the bolus moisture content) were both 

positively correlated with the amount of sugar released after in vitro digestion (p < 0.05, r > 0.4).  The 

Variable Mean Std. deviation 

d50 of the particles smaller than 2 mm (µm) 212.12 43.78 

Surface area (µm2) 0.12 0.03 

Bolus moisture content (g water/ g wet bolus) 0.65 0.03 

Saliva added (g/g dry food) 0.63 0.30 

Chew time (s) 22.35 8.42 

Proportion of particles smaller than 2 mm (%) 27.63 15.15 

Proportion of particles bigger than 2 mm (%) 72.37 15.15 

Salivary amylase activity (U/mL) 84.95 79.48 

Saliva flow rate at rest (g/min) 0.72 0.30 

Sugar released after 120 minutes of in vitro digestion 

(mg/g dry sample) 682.04 49.09 
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chewing time was also positively correlated with the amount of sugar released (p < 0.05, r > 0.4). The 

proportion of particles greater than 2 mm (%) was negatively correlated with the amount of sugar 

released but was not significant. The percentage of particles less than 2 mm (%) was positively 

correlated with the amount of sugar released. Particle size parameters that were derived from particles 

that were less than 2 mm, such as the surface area (µm2) and d50 (µm) were negatively correlated with 

the amount of sugar released. Lastly, the saliva flow rate at rest (g/min) and the salivary amylase activity 

(U/mL) were positively correlated with the amount of sugar released.  

Several inferences can be made from the results obtained.  Saliva specific parameters such as 

the amount of saliva added in the bolus, saliva flow rate at rest, the amylase activity and the bolus 

moisture content all positively correlated with the amount of sugar released. An increase in the amount 

of saliva would mean there would be an increase in the amount of salivary amylase that can hydrolyse 

the rice particles in the oral phase or during in vitro digestion. This agrees with a previous study which 

examined the role of salivary amylase during oral processing (Hoebler et al. 1998). They had subjects 

consume white wheat bread and the bread boluses had more saliva (g/g food) incorporated than the 

pasta at swallow point and significantly more starch (50%) in the bread bolus was hydrolysed and 

transformed into molecules of smaller molecular mass compared to pasta (25%) (Hoebler et al., 1998). 

The authors argued that the lubrication of bread required greater volumes of saliva to coat particles, so 

a greater amounts of salivary amylase were likely to hydrolyse food starch. However, the authors also 

mentioned that during mastication, about 31% of starch granules were released from the gluten network, 

so they were more accessible to amylase compared to spaghetti.  

Particle size parameters such as the proportion of large particles % (particles > 2 mm), the 

surface area of particles that were less than 2 mm (µm2) and d50 (µm) were negatively correlated with 

the amount of sugar released. This makes sense as larger particles would have a smaller specific surface 

area; therefore, less surface area will be available for enzymatic hydrolysis relative to their volume. 

This was also supported with the findings that the proportion of particles less than 2 mm (%) was 

positively correlated with the amount of sugar released after 120 minutes of in vitro digestion. The 

proportion of particles that were smaller than 500 µm was also found to be significantly correlated with 

subjects in vitro glucose response.  
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The finding here is comparable with results from published studies looking at the effect of masticated 

particle size on starch hydrolysis. Hoebler et al. (1998) found that white bread that was masticated into 

smaller particles than pasta had 50% of the initial starch content hydrolysed and transformed into 

smaller molecular masses compared to pasta (25% hydrolyses as described above). The author 

discussed that because the masticated pasta particles were relatively large and the salivary impregnation 

was relatively low, starch hydrolysis was not significant as it only occurred at the surface of the pasta 

particles. In another study involving mastication of white Basmati rice, Ranawana et al. (2010) found 

that subjects who masticated rice to smaller particles showed a higher percentage of rapidly digested 

starch content in their boluses. Additionally, it was also found that the degree of mastication (15 vs 30 

chews) affects the total glycemic response; where the glycemic response when chewing longer was 

significantly higher (Ranawana et al., 2014). Moreover, in a recent study investigating the impact of 

different in vitro mastication methods (i.e. cutting, cut-and-pestle, blending and grinding) and bread 

structures (i.e. baked bread, steamed bread and baguette), it was found that the in vitro mastication 

method has significant impact on digestion (smaller particle size has higher starch hydrolysis) while the 

bread type had no impact (Gao et al., 2020).  

The findings as above showed the importance of particle size and saliva to influence digestion. This 

strengthens the need to predict the PSD and saliva/amylase incorporation when developing models for 

starch-based food systems.  

E.3 Conclusion 

Appendix E aimed to identify the main bolus properties that influence digestion from 29 subjects who 

masticated brown rice. It was found that both particle size and saliva content had significant correlation 

with the amount of sugar released after in vitro digestion, which strengthens the need to model these 

parameters when oral processing is accounted for to model the overall digestion process. 
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Table E-2: Pearson correlations between bolus properties (particle size and saliva parameters) and key digestion measures (sugar release after in vitro 

digestion). Values in bold are significant (p< 0.05). 

Variables 
Saliva flow rate at 

rest (g/min) 

Salivary 

amylase 

activity 

(U/mL) 

d50 

(µm) 

 

Specific 

surface 

area 

(µm2) 

Saliva 

added 

(g/g dry 

food) 

Bolus MC 

wet          (g 

water/g wet 

bolus) 

Proportion 

of particles 

bigger 

than 2 mm 

(%) 

Proportion 

of particles 

smaller 

than 2 mm 

(%) 

Chew 

time      

(s) 

Sugar release                  

(mg/g dry 

sample) 

Saliva flow rate at rest (g/min) 1 -0.376 

-

0.093 0.171 0.213 0.232 -0.087 0.087 

-

0.255 0.085 

Salivary amylase activity (U/mL) -0.376 1 0.035 -0.265 0.040 0.040 0.153 -0.153 0.032 0.339 

 d50 (µm) -0.093 0.035 1 -0.908 0.406 0.395 -0.240 0.240 

-

0.119 -0.029 

Specific surface area (µm2) 0.171 -0.265 

-

0.908 1 -0.514 -0.513 0.301 -0.301 

-

0.040 -0.103 

Saliva added (g/g dry food) 0.213 0.040 0.406 -0.514 1 0.988 -0.732 0.732 0.361 0.409 

Bolus MC wet (g water/ g wet 

bolus) 0.232 0.040 0.395 -0.513 0.988 1 -0.738 0.738 0.376 0.433 

Proportion of particles bigger than 

2 mm (%) -0.087 0.153 

-

0.240 0.301 -0.732 -0.738 1 -1.000 

-

0.556 -0.219 

Proportion of particles smaller 

than 2 mm (%) 0.087 -0.153 0.240 -0.301 0.732 0.738 -1.000 1 0.556 0.219 

Chew time (s) -0.255 0.032 

-

0.119 -0.040 0.361 0.376 -0.556 0.556 1 0.421 

Sugar release (mg/g dry sample) 0.085 0.339 

-

0.029 -0.103 0.409 0.433 -0.219 0.219 0.421 1 
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Appendix F: A comparison of the bolus properties of starch-based food systems 
 

Appendix F was aimed at selecting a food system for the model by investigating the bolus properties of 

three different types of starch-based foods: white rice, Orzo pasta and rice crackers. Parameters such as 

particle size, bolus moisture content, saliva added, and bolus loss were measured and to help decide the 

most suitable food system to focus model development on. The food system needs to have a minimal 

bolus loss to be consistent with the assumptions made in the particle breakdown model described in 

Chapter 3. In addition the bolus properties data have to be reliable to allow a valid comparison against 

the model predictions. In this study, white rice was chosen rather than brown rice as it is a more popular 

consumer choice globally (Mohan et al, 2017; Saleh et al.,2019). In addition, it has also been shown to 

significantly increase the risk of type 2 diabetes, especially among Asian (Chinese and Japanese) 

populations (Hu et al., 2012). Thus, greater understanding of the role of mastication on this food system 

can be useful for parts of the population in the world that consume white rice in their diet. Orzo was 

chosen as it has not been featured prominently in the literature on oral processing. Additionally, both 

white rice and Orzo foods form a particulate bolus, and therefore they can be applied to the mechanistic 

competition models for selection developed by van der Glas et al. (1992). Rice crackers were chosen 

for preliminary investigation as they may have the potential to break down differently (than rice and 

Orzo) due to their shape and therefore could be an interesting system to test the model against and/or 

rethink the breakage function, at least for the first few chews. Therefore, the results from this 

investigation help determine if the foods chosen are suitable for validating the mathematical models 

developed in this thesis.   

F.1 The bolus properties of starch-based foods: a preliminary study 

This section aimed to investigate the bolus properties of different types of starch-based foods in a 

preliminary study by measuring parameters such as PSD, bolus moisture content, saliva added, and 

bolus loss among four subjects chewing three starch based food systems. The results from this 

investigation would help determine if the foods chosen were suitable for validating the mathematical 

models developed in this thesis. Three starch-based foods differing in their physical structure were used 

in this study; cooked white rice, cooked orzo pasta and plain rice crackers. Cooked rice and orzo pasta 
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generally have a soft texture (Kohyama et al., 2005; Drechsler & Bornhorst, 2018) while rice crackers 

are hard, crispy and brittle (Kohyama et al., 2001).  

F.1.1 Preparation of cooked white rice 

White Medium Grain rice (Calrose variety, SunRice, Australia) was purchased from a local supermarket 

(Pak n Save, Palmerston North, New Zealand). Rice was cooked using a 1:2 ratio (125 g rice in 250 g 

tap water (25oC) in a 2.6 L microwave rice cooker (Sistema®, New Zealand) at 1000 W for 8 minutes 

using a microwave (Panasonic, Model: NN-7852). After cooking, cooked rice was transferred into a 

separate container, covered and cooled to room temperature (~ 21oC) prior to in vivo trials. Cooked rice 

is commonly served at approximately 40-50°C in previous studies (Moongngarm, 2012; Gray-Stuart, 

2016) however, as the study was preliminary and because the focus of this work was not about 

developing population statistics, it was acceptable to serve the cooked rice at room temperature. 

Moreover, it is challenging to maintain the cooked rice at a specific temperature of 40-50°C as heat 

from the rice would have been lost immediately after the rice was transferred inside the container for 

serving. Heating the cooked rice with a microwave or warmer would have resulted in further moisture 

loss from the rice which could potentially affect the texture.  

Rice cooked with different amounts of water has been shown to exhibit different textures; 

impacting the chewing behaviour of subjects (Kohyama et al., 2005). To evaluate the repeatability of 

the cooking procedure, rice was cooked in three batches. In each batch, 10 g of cooked rice was taken 

for moisture content measurement in triplicate. The moisture content measurement followed the 

methodology as described in section E.1.1 where samples are dried at 105°C in an air-dried oven for a 

minimum of 16 hours. The moisture content results showed that the rice samples between all batches 

were within 5% (0.57 ± 0.03 g water/g wet sample) of variation.  

F.1.2 Preparation of cooked Orzo pasta 

Orzo pasta (Riscossa, Italy) was purchased from a local supermarket (Countdown, Palmerston North, 

New Zealand). Orzo pasta was cooked according to the method given by Drechsler and Bornhorst 

(2018). 500 mL of water was brought to boil on a laboratory hot plate set at 400oC. Once boiled, the 

hot plate temperature was adjusted to 200°C and 200 g orzo pasta was added and cooked for 9 minutes. 

After cooking, the Orzo pasta was drained using a sieve and transferred into a separate container, 
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covered and cooled to room temperature (~ 21°C) prior to in vivo trials. Orzo pasta was also cooked in 

three batches and the moisture content measured to monitor sample consistency. The moisture content 

measurement followed the methodology as described above for white rice. The batches showed 5% of 

variation (0.58 ± 0.03 g water/g wet sample).  

F.1.3 Rice crackers 

Rice crackers (Original flavour, Peckish, New Zealand) were purchased from a local supermarket (Pak 

n Save, Palmerston North, New Zealand). The average mass of the rice crackers (15 rice crackers) was 

1.96 ± 0.16 g. The moisture content measurement followed the methodology as described above. The 

variation of moisture content between three rice crackers showed 3 % variation (0.0335 ± 0.0009 g 

water/g wet sample).  

F.1.4 Recruitment of subjects 

Four healthy subjects (one male and three females, aged from 22 to 28 years old) were recruited for the 

study. All of the subjects had good overall health, good natural dentition, and no dentures or prosthetic 

teeth. None of the subjects were taking any medication that could affect muscle function or saliva flow. 

Subjects gave their written informed consent to participate in the study. They were asked not to eat or 

drink for at least one hour before the sessions. The study was given ethical approval by Massey 

University’s Human Ethics Committees (4000020047) and was judged to be low risk.  

F.1.5 Determination of the number of chews and oral processing time before swallowing for all 

foods studied 

For the cooked rice, 10 g of samples were transferred into small containers in triplicate to determine the 

number of chews and oral processing time before swallowing. A preliminary study with all four subjects 

showed that the portion size per mouthful of rice using a tablespoon had a range of 10 ± 2.9 g. The 

portion size per mouthful for all subjects was determined by asking each subject to take rice using a 

tablespoon from a container as they would do under normal eating conditions; where the average of 

three portions was the portion size per mouthful (Moongngarm et al., 2012). The rice in the container 

was weighed before and after the subject took a spoonful of rice to determine the portion size. Due to 

the small variation of the rice portion size between all individuals, all four subjects were given 9.98 ± 

0.35 g of rice samples (average and standard deviation of 60 samples) in the study.  
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A similar methodology was employed to obtain the number of chews required to swallow orzo 

pasta. The portion size per mouthful for all subjects consuming orzo pasta was 8.5 ± 2.0 g. All subjects 

were then served with 8.68 ± 0.29 g (average and standard deviation of 60 samples) of pasta to determine 

the number of chews required to swallow.  

All subjects took only a single rice cracker when asked to take naturally from a bowl filled with 

rice crackers. All of them put the whole rice cracker in their mouth for mastication. Because of that, a 

whole rice cracker was then used to determine the number of chews required to swallow.   

The oral processing time before swallowing for all subjects and all foods were measured from 

the point when the food sample was placed in the mouth and stopped when the subjects raised their 

hand to indicate they were ready to swallow. The number of chews taken to reach the swallowing point 

was counted by observing the upward and downward movement of the chin. Triplicate trials were 

performed for each subject, and the average value was calculated.  

F.1.6 Bolus collection 

Each subject participated in three sessions (one session for each food type) of 1 hour in the morning, to 

avoid any circadian variation, on three separate days. They were asked not to eat any food or drink 

(except water) for at least 1 hour before the sessions. Subjects were asked to chew and expectorate 

boluses at different stages of the mastication time. These stages were determined according to the 

number of chews needed to form a bolus of each food type ready for swallowing as described in F.1.5 

previously. The number of chews needed to reach the swallowing point was considered to have a 

mastication stage of 100%. Three data points were selected before the swallowing point by calculating 

the number of chews that corresponded to 25, 50 and 75% of the total number of chews. One data point 

was selected after the swallowing point by asking the subjects to hold the food in the mouth and continue 

to chew for a chew number 25% beyond the swallow point (125% mastication stage). The subjects 

produced three replicates for each stage of the mastication in each food type. The samples were collected 

in a randomised order for each participant. A total of 180 boluses corresponding to different mastication 

stages for the three food types studied were analysed for moisture content, and 15 boluses were analysed 

for particle size for one of the subjects.   

F.1.7 Bolus moisture content, the amount of saliva added and the percentage of recovered bolus  
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Subjects were asked to expectorate their bolus in pre-weighed aluminium dishes and then asked to rinse 

their mouths with 30 mL of water before and after chewing the rice to ensure the oral cavity was clean 

before each sample. The rinsings (remaining particles dispersed in the mouth) were not collected.  The 

moisture content of the expectorated bolus (g per g of bolus) was determined in triplicate for each oral 

processing moment by drying the bolus samples in an oven at 110°C for a minimum of 15 hours 

(Jourdren et al., 2017). The moisture content was calculated as MCwet = (m0 − m1)/m0, where m0 is the 

mass before drying (g) and m1 is the mass after drying (g). The moisture content on a dry basis was 

calculated using the formula: MCdb = MCwet/(1 − MCwet). The amount of saliva added to the bolus (g) 

was calculated as (MCdb, bolus ─ MCdb, food) x m1 where MCdb, bolus represents the moisture content of the 

collected bolus on a dry basis and MCdb, food represents the dry basis food moisture content before 

chewing. The percentage of recovered bolus were calculated by subtracting the initial dry weight of the 

food from the dry weight of the bolus (Drago et al. 2011; Motoi et al., 2013).  

F.1.8 Preliminary particle size measurements 

A preliminary study was conducted to measure the PSDs of the bolus samples by image analysis to 

check if the measurements provided for the three foods were reliable enough for model validation. 

Because particle size analysis is a laborious process, a single subject was first asked to chew a single 

replicate of each food type as an ‘instrumental’ measure. The image analysis method was adapted from 

Hutchings et al. (2011). The bolus and debri washings sample were sieved across a 355 µm sieve with 

warm water for 30 seconds, which caused the bulk of the food matrix to be washed through the sieve. 

The retained food particles (rice, Orzo and rice crackers) were then placed onto two plastic Petri dishes 

(140 mm diameter) (Biolab, Auckland, New Zealand) and 30 mL of absolute ethanol (Thermo Fisher 

Scientific New Zealand, Albany, New Zealand) was added (in each petri dish) to disperse the particles. 

Particles in the Petri dish were then scanned at 800 dpi using a flatbed desktop scanner (Epsom 

Perfection V30). The scanned images were then analysed using ImageJ® (version 1.52a, National 

Institute of Health, USA). A black and white threshold was applied to the images to convert to binary 

where the number of particles and projected area were measured using a nucleus counter. The particle 

size measurements from ImageJ were saved in Microsoft Excel files. The projected area of each particle 

was then assumed circular, and the area-based diameter was derived.  
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The representative images of the scanned bolus particles at 25% and 100% mastication stage 

for the studied subject are shown in Fig. F-1 to provide clarity to the reader. The PSDs (diameter vs 

cumulative projected area fraction) across all mastication stages is shown in Fig. F-3. Comparing 

between the food types visually (Fig. F-1), there were many small particles present in the rice crackers 

bolus, followed by rice and Orzo respectively. The presence of these small particles present several 

issues to the particle size measurements. Firstly, these small particles abutted, and were difficult to 

separate even after dispersion with ethanol (Fig. F-2). The presence of these agglomerated particles will 

affect the reliability of the particle size results. For instance, the d50 (diameter of particles at the 50th 

percentile) for rice is 2.8 mm at 25% mastication stage and 4.2 mm at 100% mastication stage Fig. F-

3) which clearly suggests particle agglomeration. For Orzo pasta which possess the least amount of 

small particles, the particle size reduction is to be expected with increasing chewing number. For some 

food, the washing process prior to scanning and dispersion in ethanol seem to dissolve some of the 

bolus significantly, as can be observed in rice crackers especially at the swallow point (Fig. F-1). This 

is certainly an issue for this study as more bolus will be lost, therefore the assumption of negligible 

bolus losses in the model cannot be valid should rice cracker was used as the model food system.  

 Because of the challenges to characterise PSD using the method above, particle size was not measured 

for the rest of the subjects. Clearly, for the foods used in this study, modifications need to be made to 

the particle size method above to obtain a reliable and valid data to validate the model developed in this 

thesis. The bolus will need to be pre-processed to separate the abutting particles prior to image analysis. 

For example, in the literature, particle size measurements on a starch-based food (bread) boluses were 

dispersed in a highly viscous medium (glycerol) and put under constant shaking to aid in separation of 

particles prior to image analysis (Le Bleis et al., 2013; Jourdren et al., 2016; Gao et al., 2020).   

F.1.9 Results and discussions 

F.1.9.1 Bolus moisture content, amount of saliva added and % of bolus recovered during 

mastication of starch-based foods 

The number of chews conforming to all subjects 25, 50, 75% and 125% of the total number of chews 

(100%) and their corresponding chewing time are summarised in Table F-1. The total number of chews 

required to swallow for all three foods were pre-determined as described in section F.1.5. In general, 
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cooked white rice required a greater number of chews compared to Orzo pasta and rice crackers in all 

subjects (except subject D who chewed Orzo the greatest). 

Table F-1: Number of chews and mastication time corresponding to the subjects 25, 50, 75 and 125% 

of the total number of chews (100%) for all foods. 

 

      

Parameter  Unit   25% 50% 75% 100% 125% 

Number of chews (rice) 

- 

A 9 17 26 34 43 

B 5 11 16 21 26 

C 6 11 17 22 28 

D 8 15 23 30 38 

Number of chews (Orzo) 

A 8 16 24 32 40 

B 5 9 14 18 23 

C 5 10 14 19 24 

D 9 17 26 34 43 

Number of chews (cracker) 

A 7 13 20 26 33 

B 3 5 8 10 13 

C 8 16 24 32 40 

D 5 11 16 21 26 

Mastication time (rice) 

s 

A 7.3 ± 0.5 14.3 ± 0.5 20.0 ± 0.8 27.7 ± 1.7 35.7 ± 1.3 

B 2.6 ± 0.2 5.4 ± 0.1 6.9 ± 1.1 11.1 ± 0.8 12.4 ± 0.5 

C 6.0 ± 0.0 11.0 ± 0.8 15.7 ± 0.5 23.7 ± 4.6 25.0 ± 0.0 

D 5.3 ± 0.1 10.5 ± 0.9 15.7 ± 0.5 18.6 ± 0.6 23.4 ± 0.3 

Mastication time (Orzo) 

A 5.7 ± 0.0 12.1± 0.5 17.9 ± 0.5 23.3 ± 0.5 29.9 ± 0.6 

B 2.6 ± 0.2 4.4 ± 0.2 6.6 ± 0.1 8.4 ± 0.0 10.7 ± 0.3 

C 5.3 ± 0.3 9.8 ± 0.5 12.9 ± 1.9 18.2 ± 1.3 22.4 ± 0.9 

D 6.0 ± 0.8 9.7 ± 0.5 14.3 ± 0.9 20.0 ± 0.8 24.7 ± 0.5 

Mastication time (cracker) 

A 4.5 ± 0.4 10.8 ± 1.8 14.9 ± 0.2 20.5 ± 1.7 25.5 ± 1.1 

B 1.2 ± 0.1 2.2 ± 0.4 3.5 ± 0.1 4.4 ± 0.4 5.7 ± 0.3 

C 6.2 ± 0.9 11.3 ± 0.3 17.6 ± 0.4 25.5 ± 1.0 29.2 ± 0.6 

D 2.9 ± 0.4 6.5 ± 0.7 8.4 ± 0.2 10.6 ± 0.6 13.1 ± 0.5 



 

 

337 

 

 

 

 

 

Fig. F-1 Representative scanned images of rice, Orzo and rice cracker boluses at 25% and 100% MS (mastication stages) (single replicate). The two pictures 

in each MS and food type represent the two petri dishes used to analyse the bolus. The subject’s swallow point (100% MS) for rice is 30 chew, Orzo, 34 chew 

and rice cracker, 21 chew.  
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Fig. F-2 Images to show the effect of abutting rice particles on the particle size analysis. Image on the 

left is before analysis and on the right is after analysis by ImageJ. It can be seen from the figure that 

because the particles are close to each other, ImageJ considers the particles as a single particle. This 

will result to an erroneous PSD output, which makes it challenging to compare against model 

predictions. 
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Fig. F-3 PSD presented as diameter (mm) vs cumulative projected area fraction for rice, orzo and rice 

cracker (single replicate). The subject’s swallow point (100% MS) for rice is 30 chew, Orzo, 34 chew 

and rice cracker, 21 chew. 
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In general, the amount of saliva addition increased with increasing numbers of chews for all 

three foods, although they were not as pronounced for subjects B and C. Using a regression model to 

fit linear slopes to each food, saliva addition was reasonably linear over the number of chews for 

subjects A and D  (R2 > 0.5) (Fig. F-4). For these two subjects, the increase in saliva addition with 

mastication stages was more correlated with the rice crackers (A, R2=0.69, D, R2=0.76) followed by 

rice (A, R2=0.65, D, R2=0.61) and Orzo (A, R2=0.53, D, R2=0.55). When the slopes between different 

foods were compared for subject A, the change was somewhat similar for cooked white rice and Orzo 

pasta, but the gradient for rice crackers was two times higher.  
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Fig. F-4: Saliva addition vs chew number for all subjects. 

 

Similar work has also been reported by others in the literature, in particular for rice. When studying the 

effect of chew number on saliva secretion in 10 subjects using three varieties of rice, it was shown as 

the number of chews increased, saliva continued to increase linearly (Liu et al., 2020).  

Fig. F-5 shows the bolus moisture content results in all subjects. In general, the bolus moisture 

content of the rice crackers was the lowest when comparing between all foods. The moisture content of 

the rice crackers increases sharply as chewing number increases and was reasonably constant for rice 

and Orzo due to the difference in serving sizes (rice cracker ~ 2.0 g, rice ~ 10.0 g, Orzo ~ 9.0 g). The 

percentage of bolus recovered % for all subjects is shown in Fig. F-6.  

As shown in Fig. F-6, in general, rice crackers had the lowest percentage of bolus recovered 

when comparing with all foods. The loss could be attributed to a mixture of processes such as the 

dissolution of soluble components in the foods during oral processing, the melting and extraction of 

fats, transport of the bolus to the oropharynx prior to swallowing and intermediary swallows (Flynn et 

al., 2011).    
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Fig. F-5: Bolus moisture content vs chew number for all subjects. 

 

 

Fig. F-6: Percentage of bolus recovered for all subjects. 
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F.1.9.2 Selection of food for modelling study   

This work investigated the bolus properties of three starch-based foods to gain insights into selecting a 

model food to validate the models developed in this thesis. Because of the assumption of negligible 

bolus losses in the chewing model, the food needed to have minimal bolus losses after mastication. The 

model also requires a saliva addition function, and this is normally obtained from the slope of the saliva 

added vs chew number where a linear model is fitted (Doyennette et al., 2014; Gray-Stuart, 2016). In 

this way, the model can approximate saliva addition with a constant saliva flow rate. Thirdly, the food 

also needs to be aromatic if the chewing model is coupled with model that describes flavour release. 

Preliminary studies on the bolus PSD showed that the rice cracker bolus was dissolved during analysis, 

causing further loss of the bolus. When the amount of saliva addition in the bolus of all food types were 

explored, it increased linearly for all foods but was more pronounced in rice cracker. However, the 

moisture content experiment revealed the rice cracker had the highest bolus losses, therefore the 

assumption of negligible bolus losses is not valid should rice crackers be used. The bolus losses of rice 

and Orzo were relatively smaller compared to rice cracker, however the increase in saliva with chew 

number seems to fit the linear model better for rice compared to Orzo. This finding is also backed up 

with the results in the literature on mastication of rice of 10 people who found that the amount of saliva 

added increases linearly with chew number (Liu et al., 2020). In addition, some rice varieties such as 

basmati and jasmine rice are aromatic (Bryant & McClung, 2011; Routray & Rayaguru, 2018), therefore 

rice was selected as the model food system to test against a coupled chewing and aroma release model.  

F.2 Conclusion 

Appendix F aimed to investigate the bolus properties (e.g. PSD, bolus moisture content, saliva added 

and bolus losses) among three potential model foods to help identify which food was the most suitable 

for applying the mathematical models developed in this thesis.  

The PSD results showed that due to presence of abutting particles during analysis, the method 

needs to be modified to obtain a reliable data for modelling. In addition, it was also observed from 

scanned images that rice cracker boluses had significant losses during the bolus pre-processing stage. 

Therefore, the assumption of negligible bolus losses of the chewing model cannot be applied should 

rice cracker be used. When the bolus moisture content results were compared, all foods increased 
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linearly with chew number but this was more obvious in rice crackers for two of the subjects. Rice 

cracker also had the highest bolus losses when the amount of recovered solids were measured. The 

increase in saliva addition also increases reasonably linearly for white rice, followed by Orzo for two 

of the subjects studied.  

In view of these results, white rice was chosen because it had low bolus losses, a constant saliva 

flow rate during chewing and aromatic properties.  
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