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Abstract: Body condition score (BCS) in sheep (Ovis aries) is a widely used subjective measure of the
degree of soft tissue coverage. Body condition score and liveweight are statistically related in ewes;
therefore, it was hypothesized that BCS could be accurately predicted from liveweight using machine
learning models. Individual ewe liveweight and body condition score data at each stage of the annual
cycle (pre-breeding, pregnancy diagnosis, pre-lambing and weaning) at 43 to 54 months of age were
used. Nine machine learning (ML) algorithms (ordinal logistic regression, multinomial regression,
linear discriminant analysis, classification and regression tree, random forest, k-nearest neighbors,
support vector machine, neural networks and gradient boosting decision trees) were applied to
predict BCS from a ewe’s current and previous liveweight record. A three class BCS (1.0–2.0, 2.5–3.5,
>3.5) scale was used due to high-class imbalance in the five-scale BCS data. The results showed
that using ML to predict ewe BCS at 43 to 54 months of age from current and previous liveweight
could be achieved with high accuracy (>85%) across all stages of the annual cycle. The gradient
boosting decision tree algorithm (XGB) was the most efficient for BCS prediction regardless of season.
All models had balanced specificity and sensitivity. The findings suggest that there is potential for
predicting ewe BCS from liveweight using classification machine learning algorithms.

Keywords: accuracy; predictor; models; classification

1. Introduction

Body condition score (BCS) in sheep (Ovis aries) is a widely used subjective measure of
the degree of soft tissue coverage (predominantly fat and muscle) of the lumbar vertebrae
region [1,2]. Body condition score is based on a 1–5 scale using half units or quarter units
and is conducted by palpation of the lumbar vertebrae immediately caudal to the last rib
above the kidneys [2]. Unlike liveweight (LW), BCS is not affected by fluctuations in gut-fill,
fleece weight and frame size, which confound liveweight as a measure of animal size to
give an indication of body condition [3]. BCS can be easily learned and is cost-effective
and requires no specialist equipment [2]. The optimal BCS range for ewe performance is
2.5 to 3.5 [2]; outside this range performance is either adversely affected or it is inefficient
in terms of performance per kilogram of feed eaten [4]. Farmers can use targeted feeding
based on this optimal range to optimize overall performance.

Despite the advantages of using BCS over liveweight (LW) for flock management,
many farmers in extensive farming systems do not regularly do so. For instance, only 7%
and 40% of the farmers indicated that they conducted hands-on BCS in Australia and
New Zealand, respectively [5,6]. Farmers often rely on visual inspection—a method which
is inaccurate—or they only use liveweight measure [7], which is influenced by factors
including gut fill variation, frame size, physiological stage and fleece weight [2]. The low
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uptake of BCS among farmers may in some part be due to challenges such as assessor
subjectivity and extra labor requirements [2]. Attempts to increase the uptake of BCS
among farmers—including use of promotional training workshops and regular training—
have not yielded the desired outcome, likely because they do not directly alleviate the labor
burden related to hands-on BCS [2]. Therefore, accurate and reliable alternative methods
to estimate body condition score with less hands-on measurement would be advantageous
and would likely improve the uptake of BCS technology, especially for large flocks.

Ewe BCS and LW are correlated [2,8,9]. This relationship varies by age, stage of the
annual cycle and breed of animal [8,9]. Semakula et al. [9] reported that in Romney ewes,
both LW and BCS plateaued after they reached 43–54 months of age, thereby establishing a
stable base BCS–LW relationship. This means that, as a ewe ages, future liveweights, based
on BCS–LW prediction equations, could potentially be used to predict a BCS with a degree
of accuracy and reduce the need for hands-on BCS measurement.

Modern automated weighing systems with individual electronic identification offer an
opportunity to collect lifetime data relatively easily and quickly. With such large datasets,
it has become possible to process and extract valuable information. Semakula et al. [10]
applied multivariate regression models to predict ewe BCS from lifetime liveweight data
as a ewe aged from eight to sixty-seven months. At best, these multivariate models
explained 49% and 21% of the variability in BCS using the five-scale (nine points) and
three-scale (three points), respectively. Further, BCS was skewed with little variability
due to the limited nature of the BCS scale used (1–5, in increments of 0.5). Using only
discrete values such as BCS can lead to the heaping or grouping of all possible values (i.e.,
noncontinuous) at isolated points, affecting the resolution and ultimately the accuracy of
any prediction model.

Approaches that circumvent the challenges of considering discrete as continuous data
are required for BCS prediction. Classification-based models are recommended for discrete
and categorical data analysis [11–14]. Among these classification approaches, machine
learning (ML) classification models have been used with greater success compared to
traditional statistical methods in sheep production for early estimation of the growth
and quality of wool in adult Australian merino sheep [15] and sheep carcass traits [16]
from early-life data. Machine learning utilizes algorithms whose logic can be learned
directly from unique patterns in the data or inexplicitly through pre-programmed classical
statistical methods [17]. The successful use of ML algorithms in various fields of science
warrants their application in animal production problem solving [18,19]. Ideally, it should
be possible to install this computer-acquired intelligence into modern weighing systems
to automatically explore patterns in lifetime liveweights and predict BCS. The aim of this
study was to investigate the use of machine learning algorithms to predict ewe BCS from
current and previous liveweight data. In the present study, ewe BCS was predicted for the
ewes in their fourth year of life (43–54 months) at four stages of the annual system using
previous liveweight measurements.

2. Materials and Methods
2.1. Farms and Animals Used and Data Collection

The current study was a follow-up of the previous two studies [9,10]. In their study,
Semakula et al. [9] only determined the nature of the relationship between LW and BCS
(linear) and the factors affecting their relationship (ewe age, stage of annual cycle and
pregnancy rank). In the subsequent study, Semakula et al. [10] demonstrated the potential
of predicting ewe BCS as a continuous variable from liveweight and previous BCS records.
The resulting linear models had high prediction error (>10%), and a greater part of the
variability in BCS (from 39 to 89%) remained unexplained. The current study attempts to
predict BCS from LW records in a more precise way, using machine learning algorithms.
The details on how the animals were managed and data was collected were reported in
Semakula et al. [9].
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2.2. Statistical Analyses

Data were analyzed using R program version 4.3.4 [20] with caret package exten-
sions [21]. Data were initially explored to identify completeness and were summarized by
BCS to determine class distribution. Missing values (n = 26) were imputed using the bagim-
put function from the caret package. This method constructs a “bagging” model for a given
variable based on regression trees, using all other variables as predictors while maintaining
the original data distribution structure [21]. Liveweight data were normalized and centered
during analysis using the pre-process function from the caret package. The distribution
of BCS at all stages of the annual cycle showed that on a full BCS scale (1–5), there were
high-class imbalances (more than 1:50 for any two classes). The average ratios of the class
frequencies (minimum: maximum) were 1:216, 1:1336, 1:498 and 1:97 for pre-breeding,
pregnancy diagnosis, pre-lambing and weaning, respectively (Figure 1A). The high-class or
extreme imbalance was due to too few extreme BCS cases with the majority of individual
BCS measurements ranging from 2.5 to 3.5.
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Figure 1. Distribution of ewe body condition scores by stage of the annual cycle from 18,354 individual records of 5761 ewes
during their fourth year (43–54 months) of age. Bar colors (grey, yellow, blue and green) indicate BCS proportions at
pre-breeding, pregnancy diagnosis, pre-lambing and weaning respectively. In (A), a BCS of 1–4-point scale was used and in
(B), 1–3 scale (BCS 1.0–2.0: 1, 2.5–3.5: 2 and >3.5: 3).

Triguero et al. [22] categorized class imbalances above 50:1 for any two outcomes as
high-class imbalance. Body condition score data is both discrete and ordered in nature,
which makes multiclass classification regression approaches more suitable for its anal-
ysis. However, when the underlying assumptions are grossly violated or when classes
are extremely imbalanced [23], classification statistical methods become less accurate [24].
Strategies to overcome the challenge of class imbalance may include resampling tech-
niques such as oversampling, undersampling and synthetic minority oversampling [25].
Such methods of circumventing class imbalances hold in cases below 50:1 imbalance. In the
case of high-class imbalance, the samples generated become less representative of the true
sample distribution leading to underfitting or overfitting the model.

To improve the balance of the BCS class distribution, a new but narrower three-class
BCS scale was devised (BCS 1.0–2.0: 1, 2.5–3.5: 2 and >3.5: 3) (Figure 1B). The selection of a
new scale was guided by literature, where BCS of 2.5 to 3.5 is considered to be the range
for optimal performance [2]. Below this BCS range, there is reduced performance; above
this range, energy is used inefficiently. In addition, the resulting classes were resampled
through minority class oversampling to create “synthetic” data, a method popularly known
as SMOTE [25] using the SmoteClassif function in the UBL package [26]. Resampling
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improves the class-level distribution (balances the number of per class observations) of a
categorical variable so that the assumptions of classification models can hold.

2.2.1. Variable Selection and Model Building

The best variable combinations for prediction of BCS (1, 2 or 3) at each stage of
the annual cycle using liveweight were selected through the regularization and variable
selection technique utilizing the elastic net method in the glmnet extension [27] in the caret
package [21]. The elastic net method combines the power of two penalized-regularization
methods (ridge and lasso regression) to search for significant predictors and handling of
collinearity [28].

All models were fitted and validated using four steps as described by Semakula et al. [9].
The steps included: (i) data partitioning, (ii) resampling, (iii) model training and (iv)
validation. Data were partitioned with stratification into training and testing datasets
in a ratio of 3:1, with replacement. Resampling was done using the bootstrapping and
aggregation [29] procedures in the caret package [21]. During resampling, 10 equal-sized
subsamples, repeated three times, were selected from the dataset. Prediction models were
trained on nine subsample sets which were used to compute the parameters, and the
10th was used to evaluate the model as well as compute the error. The procedure was
run 30 times (10-folds repeated three times), and the average parameter values and their
probabilities were computed as described by Semakula et al. [9].

The algorithms used for this work were selected from a range of probabilistic and
nonprobabilistic methods in order to cover the most commonly used machine learning
algorithms [17,30]. A summary of the concepts, advantages and disadvantages of each
algorithm is given in Table A1 in Appendix A. Further, the criteria for selecting these
methods included (i) successful application in other animal science studies [16,19,20] and
(ii) ability to handle multiclass categorization [24]. Three traditional (ordinal logistic,
multinomial regression [31,32] and linear discriminant analysis (LDA) [33]) statistical
models (white box or low-level machine learning models), two low-level black models
(random forest (RF) [34] and classification and regression trees (CART) [35]) and four
high-level black box models (support vector machines (SVM) [36] and k-nearest neighbors
(K-NN) [37,38], neural networks (ANN), and gradient boosting decision trees (XGB) [39])
were compared. Machine learning models can be categorized in two main ways: (i) whether
data provides labels that classify variables (supervised) or not (unsupervised) [40]; and
(ii) if a clear description of the analysis detailing how covariates and the target variable
are related (classical statistical methods or white boxes), a partial description blue print
(low-level or semiblack boxes) or no description can be given (high-level black boxes) [17].
All algorithms were implemented in R package using several caret package extensions
(nnet, multinom, polr, lda, rpart, svmLinear, xgblinear, rf and knn (http://topepo.github.
io/caret/index.html, accessed on 19 January 2021)). A chart summarizing the model
building and evaluation procedures is given as in the appendices (Figure A1).

2.2.2. Model Performance Evaluation

Using a three-class BCS scale (1.0–2.0, 2.5–3.5, >3.5), model fit and ranking between
models were assessed using overall accuracy, balanced accuracy, precision, F-measure,
sensitivity, and specificity. The metrics were computed from the number of true positive
(TP), true negative (TN), false positive (FP) and false negative (FN) predictions as described
by Tharwat [24]. In addition, Cohen’s kappa statistic [41]—a common measure to calcu-
late agreement between the classification of qualitative observations was calculated as
described by McHugh [42] and Botchkarev [43]. To evaluate the power of the algorithms to
correctly classify ewe BCS, measures of the balance (authenticity and prediction power)
between sensitivity and specificity were computed. These indicators of model power and
authenticity (positive likelihood ratio, negative likelihood ratio and Youden’s index) com-
bine sensitivity and specificity to emphasize how well a model can predict the outcome [44].

http://topepo.github.io/caret/index.html
http://topepo.github.io/caret/index.html
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A detailed description of the metrics (accuracy and authenticity) used in model assessment
is given in Table 1.

Table 1. Model performance evaluation metrics.

Model Definition Formula

Balanced accuracy The proportion of correctly classified subjects for each
class. Useful especially when there is class imbalance. Accuracy =

TP
TP+FN + TN

TN+FP
2

Precision The proportion of correctly classified subjects for a given
class given that they truly belonged to that class Precision = TP

TP+FP

F-measure
The harmonic mean of the precision and sensitivity best

if there is some sort of balance between precision
and sensitivity.

F − measure =
2 ∗ (sensitivity ∗ precision)

sensitivity+precision

Sensitivity The proportion of correctly classified subjects for a given
class to those who truly belong to that class. Sensitivity = TP

TP+FN

Specificity
The proportion of subjects correctly classified as not
belonging to a given class to those that truly do not

belong to that class.
Specificity = TN

TN+FP

Positive likelihood rate (PLR) The ratio between the true positive and the false positive
rates for “positive” events that are detected by a model. PLR =

Sensitivity
1−Specificity

Negative likelihood rate (NLR)
The ratio between the false negative and true negative

rates and mirrors the probability for “negative” events to
be detected by a model.

NLR =
1−Sensitivity

Specificity

Youden’s index (YI) The sum of sensitivity and specificity minus one YI = (Sensitivity + Specificity)− 1

Cohen’s kappa (κ) Measures the degree of agreement between two raters or
ratings (inter-rater or interrater reliability) κ = po−pe

1−pe

Where: TP = true positive, TN = true negative, FP = false positive, FN = false negative, κ = Cohen’s kappa statistic, po = actual observed
agreement, and pe represents chance agreement.

The analysis generated a dataset of 108 records (4 time points, 3 BCS classes and
9 models of two groups of model performance evaluation metrics firstly, the indicators
of accuracy: balance accuracy, precision and F-measure, and secondly measures of model
authenticity: sensitivity and specificity). To obtain a holistic picture of the overall model
performance, the two groups of performance metrics were examined. Initially, each group
of variables was explored using principal component analysis (PCA) to determine the
appropriate number of components of dimensions where the Eigen values associated with
each component were compared with those generated through a probabilistic process
based on Monte Carol PCA for parallel analysis simulation [45,46]. Monte Carlo PCA
simulated Eigen values allow comparisons based on the same sample size and number of
variables. If the Eigen value of a component from real data is greater than the simulated one,
then that component is important. Otherwise, if equal to or less than, such components are
considered not important. Consequently, one component was considered important from
each group of variables (indicators of accuracy: explained variance = 87%; indicators of
sensitivity–specificity: explained variance = 61%) having explained most of the variability
in the group data.

Principal component analysis is limited to continuous data. In order to decipher
the patterns in the relationship between the categorical variable (BCS) and each model
regarding their overall performance, a correspondence analysis was required. Therefore,
the FAMD function in the FactoMiner package [47] was used to analyze both groups of vari-
ables. The FAMD extension combines PCA and multiple correspondence analysis (MCA)
to conduct factor analysis. Each group of variables then resulted in a single dimension
(latent variable). A scatterplot of accuracy and sensitivity–specificity latent variables was
constructed for each of the four stages of the annual sheep weighing cycle. Models were
ranked on a scale of 1 to 9 (where 1 is best and 9 is the poorest) at each stage of the annual
cycle, to obtain the overall performance rank.

3. Results
3.1. Overall Performance of Machine Learning Models

This section presents results for the accuracy in a broad sense, sensitivity and speci-
ficity of nine models in predicting ewe BCS based on the testing dataset (Tables 2 and 3).
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Additionally, Table A2 is supplied in the appendix, which show the comparisons between
model accuracy across stages of the annual sheep weighing cycle in New Zealand.

Table 2. Accuracy and kappa statistics of nine predictive models for ewe BCS at 43–54 months of age at different stages of
the annual cycle. Values in parenthesis denote the minimum and maximum accuracy, in ascending order.

Pre-Breeding Pregnancy Diagnosis Pre-Lambing Weaning

Model Accuracy Kappa (κ) Accuracy Kappa (κ) Accuracy Kappa (κ) Accuracy Kappa (κ)

XGB 89.5(85.6–97.5) 3,1 79.6 91.2(88.5–93.4) 3,1 82.3 90.6(88.8–91.4) 2,1 82.9 91.7(90.1–93.2) 1,3 83.4
RF 89.0(84.7–96.6) 2,1 78.0 90.0(87.5–92.9) 3,1 78.0 89.2(86.6–91.6) 2,3 78.5 88.6(88.2–89.6) 1,3 77.1

K-NN 87.0(81.2–95.7) 2,1 75.5 86.8(84.7–89.8) 3,1 75.5 86.2(83.0–89.7) 2,3 66.0 86.4(84.6–88.8) 2,3 77.7
SVM 86.7(78.8–96.6) 2,1 75.9 88.5(84.8–93.1) 2,1 73.7 73.8(72.0–74.7) 2,1 71.7 88.8(85.3–91.2) 2,3 72.7
ANN 85.2(79.0–94.2) 2,1 72.2 82.0(80.5–85.1) 2,1 65.6 78.9(75.5–82.4) 1,3 69.5 84.0(82.0–86.9) 1,3 68.0

Multinorm 82.7(76.4–91.7) 2,1 66.8 77.6(73.8–80.0) 3,1 56.1 73.5(71.8–75.1) 1,3 48.8 75.9(74.4–78.1) 3,2 51.8
LDA 81.2(73.8–91.1) 2,1 63.6 77.1(72.2–79.6) 3,1 54.6 73.8(71.5–75.5) 1,3 49.5 75.9(74.4–78.7) 1,2 51.7

Ordinal 79.6(70.7–88.4) 2,1 48.4 72.7(67.6–75.8) 2,1 47.7 68.4(58.7–74.8) 2,3 37.0 72.4(67.8–76.2) 2,1 44.9
CART 72.6(58.6–85.1) 2,1 47.3 69.8(64.0–73.3) 3,1 40.5 67.5(62.8–71.1) 1,2 41.8 66.6(61.4–70.1) 2,1 33.2

Model: (XGB: Gradient boosting decision trees model, RF: random forest, K-NN: k-nearest neighbors, SVM: support vector machines,
ANN: neural networks, Multinorm: multinomial regression, LDA: linear discriminant analysis, Ordinal: ordinal logistic regression, CART:
classification and regression tree). The superscripts 1,2,3 where 1: 1.0–2.0, 2: 2.5–3.5 and 3: >3.5 indicate the BCS class from which the value
was observed. The first superscript indicates the class from which the minimum estimate was observed, while the second value indicates
the class from which the maximum estimate was achieved). All models were significant (p < 0.05) and better than a random guess (i.e.,
accuracy = 33.3%). All ewe BCS predictions were based on current and previous liveweight.

Table 3. Indicators of authenticity (sensitivity and specificity) of nine predictive models for ewe BCS at 43–54 months of age
at different stages of the annual cycle. Values in parenthesis denote the minimum and maximum sensitivity or specificity,
in ascending order.

Pre-Breeding Pregnancy Diagnosis Pre-Lambing Weaning

Model Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

XGB 86.0(79.7–96.3)
3,1

93.1(89.1–98.9)
2,1

88.2(83.7–90.4)
3,1

94.2(93.1–96.3)
2,1

87.5(85.9–88.8)
1,3

93.8(89.7–97.5)
2,1

89.0(84.8–92.3)
1,2

94.5(91.6–96.5)
2,3

RF 85.3(80.0–95.3)
2,1

92.8(89.3–97.9)
2,1

86.7(80.9–90.3)
3,1

93.4(90.5–95.5)
2,1

85.6(82.6–88.6)
1,3

92.8(87.5–96.4)
2,1

84.8(82.5–87.6)
1,2

92.4(88.9–93.4)
2,3

SVM 82.6(74.8–93.8)
2,1

91.4(87.5–97.5)
2,3

82.3(75.3–84.2)
3,2

91.2(84.2–95.4)
2,1

81.5(73.5–86.1)
1,3

90.8(81.1–98.1)
2,1

81.9(77.6–85.6)
3,2

90.9(83.5–95.1)
2,3

K-NN 82.2(66.8–96.2)
2,1

91.2(85.9–97.0)
3,1

84.7(75.5–91.8)
2,1

92.3(88.4–94.5)
3,1

65.0(63.0–67.3)
1,2

82.5(76.8–86.4)
2,1

85.1(78.6–88.9)
2,3

92.6(91.9–93.6)
2,3

ANN 80.2(71.3–91.7)
2,1

90.2(86.7–96.7)
2,1

76.0(73.2–78.0)
3,1

88.0(84.3–92.2)
2,1

71.8(56.5–80.2)
1,3

85.9(78.8–94.4)
2,1

78.7(70.5–84.1)
1,2

89.3(82.4–93.5)
2,1

Multinom 76.8(68.5–89.0)
2,1

88.5(84.4–94.5)
2,1

70.0(62.7–71.4)
3,2

85.1(81.8–88.7)
2,1

64.7(58.6–68.7)
1,3

82.4(80.6–84.9)
2,1

67.9(63.3–76.2)
3,1

83.9(80.1–86.2)
2,1

LDA 74.9(64.7–87.7)
2,1

87.6(82.8–94.4)
2,1

69.4(57.1–82.7)
3,2

84.8(76.6–90.7)
2,1

65.0(56.3–69.4)
1,3

82.5(79.2–86.8)
2,1

67.8(61.5–79.8)
3,2

83.9(77.6–87.4)
2,3

Ordinal 72.7(61.6–82.4)
2,1

86.5(79.7–94.5)
2,1

63.6(60.7–67.9)
2,3

81.7(73.1–90.9)
2,1

57.9(41.4–69.3)
2,3

79.0(76.1–80.8)
2,1

63.2(58.3–68.5)
3,1

81.6(72.8–88.2)
2,3

CART 63.3(37.0–82.5)
2,1

81.9(77.6–87.8)
3,1

59.7(41.1–77.3)
3,2

80.0(67.1–86.0)
2,3

56.7(37.9–72.3)
1,2

78.3(71.2–87.7)
2,1

55.4(39.2–62.9)
2,1

77.7(72.4–83.6)
3,2

Model: (XGB: Gradient boosting decision trees model, RF: random forest, K-NN: k-nearest neighbors, SVM: support vector machines,
ANN: neural networks, Multinorm: multinomial regression, LDA: linear discriminant analysis, Ordinal: ordinal logistic regression, CART:
classification and regression tree). The superscripts 1,2,3 where 1: 1.0–2.0, 2: 2.5–3.5 and 3: > 3.5 indicate the BCS class from which the value was
observed. In their sequence, the first superscript indicates the class from which the minimum estimate was observed, while the second value
indicates the class from which the maximum estimate was achieved). All ewe BCS predictions were based on current and previous liveweight.

Results showed that there were significant (p < 0.05) differences in model prediction
performance based on the Boniferroni p-value adjustment method for pairwise comparisons
(Table A2, Appendix A). The gradient boosting decision tree algorithm (XGB) had the
highest (p < 0.05) accuracy (average = 90.3%) and kappa statistic (κ = 82.1%) at pre-breeding,
pregnancy diagnosis, pre-lambing and weaning, making it the most accurate algorithm
for ewe BCS prediction on the one to three (1.0–2.0; 2.5–3.5; >3.5) scale (Table 2). The RF
(Figure A2, Appendix A) algorithm had a slightly lower but still good accuracy, making
it the best alternative to XGB. The multinorm, LDA, ordinal and CART algorithms had
moderate to fair accuracies. Pre-lambing, XGB and RF were comparable and had the
highest accuracies. The random forest and k-nearest neighbors (K-NN) in decreasing order
were also considered good prediction models, having scored above 80% accuracy and
70% kappa statistics at all times of the year. The CART algorithm consistently gave the
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lowest (p > 0.05) accuracy except pre-lambing where its accuracy was (p = 0.047; Table A1)
comparable to that of ordinal logistic regression. The lowest average accuracy was 66.6%
seen for the CART model at weaning (Table 2, parenthesis). Overall, all algorithms had
greater accuracy than a random guess (i.e., accuracy = 33.3%) in classifying BCS.

In terms of overall authenticity, models were biased towards being more specific
than sensitive (Table 3). The ranking of model authenticity followed a trend like that of
accuracy. The gradient boosting decision tree algorithm (XGB) had the highest sensitivity
(average = 87.7%) as well as specificity (average = 93.9%) across all stages of the annual
sheep weighing cycle, making it the most authentic and powerful algorithm for categorizing
ewe into the correct BCS classes on three-point scale (1.0–2.0; 2.5–3.5; >3.5) (Table 3).
The XGB model was closely followed by RF (average sensitivity = 85.5%, average specificity:
92.8%) while CART (average sensitivity: 58.7%, average specificity: 79.5%) was the poorest.

In the following section we present results for the construct or latent variables which
are representative of the three specific measures of model accuracy (class-level or bal-
anced accuracy, precision and F-measure) together with two indicators of predictive
power/authenticity (sensitivity, specificity) across four stages of the annual sheep weigh-
ing cycles (Figures 2–5). A summary of the indicators of accuracy and authenticity was
provided in Tables 2 and 3. Additionally, Table A3 provides two extra measures of accu-
racy (precision and F-measure) used in the construction of the accuracy latent variable.
The results show the patterns in the relationship between the latent variables with BCS
class prediction for each model. The CART model had the lowest accuracy and power
measures across all stages of the annual sheep weighing cycle and was selected as the
reference for comparisons.

Agriculture 2021, 11, x FOR PEER REVIEW 9 of 24 
 

 
Agriculture 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/agriculture 

 

 
Figure 2. A plot of the accuracy and sensitivity–specificity latent variables from their first dimension/component obtained 
through a factor analysis of mixed variables (a combination of principle component and multiple correspondence anal-
yses) procedure on measures of performance for the prediction of ewe BCS during pre-breeding. Dots (red sphere: model, 
blue square: BCS class). Dotted diagonal line indicates a balance between accuracy and sensitivity–specificity. If dot is 
above, then model or BCS class was more accurate than sensitive–specific, while the reverse indicates that the model was 
more sensitive than accurate. The further and more positive a model is along the diagonal line, the greater and better its 
prediction power. The variance explained by each extracted first dimension for each latent variable (accuracy, sensitivity–
specificity) is given in parenthesis along the axes. 

3.1.2. Pregnancy Diagnosis 
At pregnancy diagnosis, the models had a clear-cut hierarchy in performance, with 

XGB being the best and CART the poorest (Figure 3). The multinom and LDA models 
were closely juxtaposed indicating that they had comparable performance. The XGB was 
the best algorithm with 21% more accuracy than CART, which was the least accurate in 
predicting ewe BCS (Table 2). The best balance between accuracy and authenticity was 
observed in the ANN model. The XGB, RF, SVM and K-NN models were biased towards 
accuracy while the multinom, LDA, ordinal and CART were biased towards authenticity 
(Figure 3). In terms of BCS, the best accuracy was achieved in the 1.0–2.0 class and the 
lowest in the >3.5 class for all models except for SVM, ANN and ordinal which were least 
accurate in the 2.5–3.5 class. The highest accuracy (93.4%) was achieved using the XGB in 
the 1.0–2.0 BCS class and the lowest (64.0%) was observed using the CART algorithm in 
either the >3.5 class (Table 2, parenthesis).  

There was no clear pattern in class-level model sensitivity at pregnancy diagnosis. 
The XGB was the best algorithm with 29% more sensitivity than CART, which was the 
least sensitive in predicting ewe BCS (Table 3). The highest BCS classification sensitivity 
was observed using K-NN models (91.8%) in the 1.0–2.0 BCS class while CART (41.1%) 
had the lowest in the >3.5 class (Table 3, parenthesis). All models had the highest specific-
ity observed in the 1.0–2.0 BCS class except for CART which had the its highest in the >3.5 
class. The XGB was the best algorithm with 14% more specificity than CART, which had 
the least specificity in predicting ewe BCS (Table 2). The highest specificity (96.3%) was 
observed in the 1.0–2.0 class for XGB and the lowest (67.1%) in the 2.5–3.5 class for CART 
model. 

XGBRF

SVMKNN
ANN

Multinom
LDA

Ordinal

CART

1.0-2.0

2.5-3.5

>3.5

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

A
cc

ur
ac

y 
la

te
nt

 v
ar

ia
bl

e 
(3

0.
35

%
)

Sensitivity-Specificity latent variable (23.48%)

Figure 2. A plot of the accuracy and sensitivity–specificity latent variables from their first dimension/component obtained
through a factor analysis of mixed variables (a combination of principle component and multiple correspondence analyses)
procedure on measures of performance for the prediction of ewe BCS during pre-breeding. Dots (red sphere: model,
blue square: BCS class). Dotted diagonal line indicates a balance between accuracy and sensitivity–specificity. If dot is above,
then model or BCS class was more accurate than sensitive–specific, while the reverse indicates that the model was more
sensitive than accurate. The further and more positive a model is along the diagonal line, the greater and better its prediction
power. The variance explained by each extracted first dimension for each latent variable (accuracy, sensitivity–specificity) is
given in parenthesis along the axes.
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Figure 3. A plot of the accuracy and sensitivity–specificity latent variables from their first dimension/component obtained
through a factor analysis of mixed variables (a combination of principle component and multiple correspondence analyses)
procedure on measures of performance for the prediction of ewe BCS during pregnancy diagnosis. Dots (red sphere:
model, blue square: BCS class). Dotted diagonal line indicates a balance between accuracy and sensitivity–specificity.
If dot is above, then model or BCS class was more accurate than sensitive–specific while the reverse indicates that the
model was more sensitive than accurate. The further and more positive a model is along the diagonal line, the greater and
better is its prediction power. The variance explained by each extracted first dimension for each latent variable (accuracy,
sensitivity–specificity) is given in parenthesis along the axes.
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Figure 4. A plot of the accuracy and sensitivity–specificity latent variables from their first dimension/component obtained
through a factor analysis of mixed variables (a combination of principle component and multiple correspondence analyses)
procedure on measures of performance for the prediction of ewe BCS at pre-lambing. Dots (red sphere: model, blue square:
BCS class). Dotted diagonal line indicates a balance between accuracy and sensitivity–specificity. If dot is above, then model
or BCS class was more accurate than sensitive–specific while the reverse indicates that the model was more sensitive than
accurate. The further and more positive a model is along the diagonal line, the greater and better is its prediction power.
The variance explained by each extracted first dimension for each latent variable (accuracy, sensitivity–specificity) is given
in parenthesis along the axes.
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Figure 5. A plot of the accuracy and sensitivity–specificity latent variables from their first dimension/component obtained
through a factor analysis of mixed variables (a combination of principle component and multiple correspondence analyses)
procedure on measures of performance for the prediction of ewe BCS at weaning. Dots (red sphere: model, blue square:
BCS class). A plot of the accuracy and sensitivity–specificity latent variables from the first dimension/component obtained
through a factor analysis of mixed variables (a combination of Principle Component Analysis and Multiple Correspondence
Analysis) procedure on measures of performance for the prediction of ewe BCS at weaning. Dots (red sphere: model,
blue square: BCS class). Dotted diagonal line indicates a balance between accuracy and sensitivity–specificity. If dot
is above, then model or BCS class was more accurate than sensitive–specific while the reverse indicates that the model
was more sensitive than accurate. The further and more positive a model is along the diagonal line, the greater and
better is its prediction power. The variance explained by each extracted first dimension for each latent variable (accuracy,
sensitivity–specificity) is given in parenthesis along the axes.

3.1.1. Pre-Breeding

At pre-breeding, the models had a clear-cut hierarchy in performance, with XGB being
the best and CART the poorest (Figure 2). The XGB was the best algorithm with 17% more
accuracy than CART, which was the least accurate in predicting ewe BCS (Table 2). The best
balance between accuracy and authenticity (points along or touching the diagonal line)
was observed in the moderate performing models including ANN, multinom, LDA and
ordinal (Figure 2). The best performing models (XGB, RF, SVM and K-NN) were biased
towards accuracy while the poorest (CART) was biased towards authenticity. In terms of
BCS, the best accuracy was achieved in the 1.0–2.0 class and the lowest in the 2.5–3.5 class
for all models except for XGB which was least accurate in the >3.5 class. The best accuracy
(97.5%) was achieved using the XGB in the 1.0–2.0 BCS class, and the lowest (58.6%) was
observed using the CART algorithm in the 2.5–3.5 class (Table 2, parenthesis).

All models were most sensitive to the 1.0–2.0 class and least sensitive to the 2.5–3.5 class
except XGB which was least sensitive to the > 3.5 class. The XGB was the best algorithm,
being 23% more sensitive than CART, which was the least sensitive in predicting ewe
BCS (Table 3). The highest BCS classification sensitivity was observed using XGB and
K-NN models (96.3%) in the 1.0–2.0 BCS class while CART (37.0%) had the lowest in the
2.5–3.5 class (Table 3, parenthesis). All models had the highest specificity observed in the
1.0–2.0 BCS class except for SVM which had the highest specificity in the >3.5 class and both
K-NN and CART which had their lowest in the >3.5 class. The XGB was the best algorithm
with 12% more specificity than CART, which had the least specificity in predicting ewe
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BCS (Table 2). The highest specificity (98.9%) was observed in the 1.0–2.0 class for XGB and
the lowest (72.6%) in the >3.5 class for CART model (Table 3, parenthesis).

3.1.2. Pregnancy Diagnosis

At pregnancy diagnosis, the models had a clear-cut hierarchy in performance, with XGB
being the best and CART the poorest (Figure 3). The multinom and LDA models were
closely juxtaposed indicating that they had comparable performance. The XGB was the best
algorithm with 21% more accuracy than CART, which was the least accurate in predicting
ewe BCS (Table 2). The best balance between accuracy and authenticity was observed in
the ANN model. The XGB, RF, SVM and K-NN models were biased towards accuracy
while the multinom, LDA, ordinal and CART were biased towards authenticity (Figure 3).
In terms of BCS, the best accuracy was achieved in the 1.0–2.0 class and the lowest in the
>3.5 class for all models except for SVM, ANN and ordinal which were least accurate in the
2.5–3.5 class. The highest accuracy (93.4%) was achieved using the XGB in the 1.0–2.0 BCS
class and the lowest (64.0%) was observed using the CART algorithm in either the >3.5 class
(Table 2, parenthesis).

There was no clear pattern in class-level model sensitivity at pregnancy diagnosis.
The XGB was the best algorithm with 29% more sensitivity than CART, which was the least
sensitive in predicting ewe BCS (Table 3). The highest BCS classification sensitivity was
observed using K-NN models (91.8%) in the 1.0–2.0 BCS class while CART (41.1%) had
the lowest in the >3.5 class (Table 3, parenthesis). All models had the highest specificity
observed in the 1.0–2.0 BCS class except for CART which had the its highest in the >3.5 class.
The XGB was the best algorithm with 14% more specificity than CART, which had the least
specificity in predicting ewe BCS (Table 2). The highest specificity (96.3%) was observed in
the 1.0–2.0 class for XGB and the lowest (67.1%) in the 2.5–3.5 class for CART model.

3.1.3. Pre-Lambing

At pre-lambing, the models had a clear-cut hierarchy in performance, with XGB being
the best and CART the poorest (Figure 4). It was worth noting that the K-NN model, which
had been among the best four models at pre-breeding and pregnancy diagnosis, was down-
graded into a moderate model. The K-NN, multinom and LDA models had overlapping
overall performance. The XGB was the best algorithm with 23% more accuracy than CART,
which was the least accurate in predicting ewe BCS (Table 2). All models were biased with
XGB, RF, SVM and ANN inclined towards accuracy, while K-NN, Multinon, LDA, ordinal
and CART were inclined towards authenticity (Figure 4). The best overall accuracy was
achieved in the >3.5 BCS class and the lowest in the 2.5–3.5 class (Table 2, parenthesis).
Regarding BCS class-level model accuracy, there was no clear pattern. The majority of the
models (RF, K-NN, ANN, multinom, LDA and ordinal) were most accurate in the >3.5 BCS
class and least accurate in the 2.5–3.5 class. The least accuracy for majority of the models
(XGB, RF, K-NN, SVM and ordinal) was observed in the 2.5–3.5 class. The highest accuracy
(92%) was achieved using the RF model in the >3.5 BCS class and the lowest (63%) was
observed using the CART algorithm in either the 1.0–2.0 class (Table 2, parenthesis).

All models were most sensitive to the >3.5 class and least sensitive to the 1.0–2.0 class
except K-NN and CART with the highest sensitivity in the 2.5–3.5 class and ordinal with
the lowest sensitivity in the 2.5–3.5 class. The XGB was the best algorithm with 31%
more sensitive than CART, which was the least sensitive in predicting ewe BCS (Table 3).
The highest BCS classification sensitivity was observed using XGB models (88.8%) in
the >3.5 BCS class while CHART (37.9%) had the lowest in the 1.0–2.0 class (Table 3,
parenthesis). All models had the highest specificity observed in the 1.0–2.0 BCS class.
The XGB was the best algorithm with 16% more specificity than CART, which had the least
specificity in predicting ewe BCS (Table 2). The highest specificity (97.5%) was observed
in the 1.0–2.0 class for XGB and the lowest (71.2%) in the 2.5–3.5 class for CART model
(Table 3, parenthesis).
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3.1.4. Weaning

At weaning, the models had a clear-cut hierarchy in performance, with XGB being
the best and CART the poorest (Figure 5). The RF and K-NN models had overlapping
overall performance. The XGB was the best algorithm with 33% more accuracy than CART,
which was the least accurate in predicting ewe BCS (Table 2). The majority of the models
were biased towards accuracy, except for multinom, LDA, ordinal and CART, which were
inclined towards authenticity (Figure 5). The best overall accuracy was achieved in the
>3.5 BCS class and the lowest in the 2.5–3.5 class. Regarding the BCS level model accuracy,
there was no clear pattern. However, the majority of the models (XGB, RF, SVM, K-NN
and ANN) were most accurate in the >3.5 BCS class. The least model accuracy was equally
observed in the 1.0–2.0 and 2.5–3.5 BCS classes, across models. The highest accuracy
(93.2%) was achieved using the RF model in the >3.5 BCS class, and the lowest (61.4%) was
observed using the CART algorithm in either the 2.5–3.5 class (Table 2, parenthesis).

There was no clear pattern in class-level model sensitivity at weaning. The XGB was
the best algorithm with 34% more sensitivity than CART, which was the least sensitive
in predicting ewe BCS (Table 2). The highest BCS classification sensitivity was observed
using XGB models (92.3%) in the 2.5–3.5 BCS class while CHART (39.2%) had the lowest in
the 2.5–3.5 class (Table 3, parenthesis). All models had the highest specificity observed in
the >3.5 BCS class and the least in the 2.5–3.5 class, except for the CART, whose specificity
arrangement was the opposite, and for ANN and multinom, which had their highest
specificity in the 1.0–2.0 class. The XGB was the best algorithm with 17% more specificity
than CART, which had the least specificity in predicting ewe BCS (Table 3). The highest
specificity (96.5%) was observed in the 1.0–2.0 class for XGB and the lowest (72.4%) in the
2.5–3.5 class for CART model (Table 3, parenthesis).

3.1.5. The Balance between Sensitivity and Specificity

The data showed that the overall specificity 86% (67–98%) was higher than sensitivity
74% (37–96%) values across all algorithms (Table 3). An assessment of the indicators of the
balance between sensitivity and specificity was undertaken and the indices are summarized
in Table 4. The positive likelihood ratio (PLR) for all models were greater than 1.0 while the
negative likelihood ratio (NLR) was less than 1.0 across stages of the annual cycle. The XGB
model had the highest PLR and lowest NLR, while CART had the lowest PLR and highest
NLR across stage of the annal cycle. Similarly, Youden’s index, YI, was consistently highest
for XGB model and lowest for the CART model.

Table 4. Measures of the balance between sensitivity and specificity of the BCS prediction models by stage of the annual cycle.

Pre-Breeding Pregnancy Diagnosis Pre-Lambing Weaning

Model PLR NLR YI PLR NLR YI PLR NLR YI PLR NLR YI

XGB 33.41 0.15 0.79 16.48 0.13 0.82 19.39 0.13 0.81 18.32 0.12 0.83
RF 20.49 0.16 0.78 14.45 0.14 0.80 15.33 0.16 0.78 12.25 0.16 0.77

SVM 16.88 0.19 0.74 12.13 0.19 0.74 18.48 0.20 0.72 11.79 0.20 0.73
K-NN 15.21 0.20 0.73 12.3 0.17 0.77 3.90 0.42 0.48 11.64 0.16 0.78
ANN 13.04 0.22 0.70 6.94 0.27 0.64 6.32 0.32 0.58 8.66 0.24 0.68

Multinom 8.65 0.27 0.65 4.87 0.35 0.55 3.69 0.43 0.47 4.28 0.38 0.52
LDA 8.16 0.29 0.62 5.12 0.36 0.54 3.78 0.42 0.48 4.37 0.38 0.52

Ordinal 7.66 0.32 0.59 4.20 0.45 0.45 2.83 0.54 0.37 3.83 0.45 0.45
CART 3.92 0.46 0.45 3.27 0.49 0.40 2.70 0.54 0.35 2.49 0.57 0.33

Models: (XGB: Gradient boosting decision trees model, RF: random forest, K-NN: k-nearest neighbors, SVM: Support Vector Machine,
ANN: neural networks, multinorm: multinomial regression, LDA: linear discriminant analysis, Ordinal: ordinal logistic regression, CART:
classification and regression tree). Measures of the balance between sensitivity and specificity (PLR: Positive likelihood rate, NLR: Negative
likelihood rate and YI: Youden’s index). A good model (PLR value > 1.0 and the larger PLR is the better, NLR value less than 1.0 and the
smaller the better, YI ranges from 0 to 1.0 and values that approach 1.0 show higher authenticity and prediction power).



Agriculture 2021, 11, 162 12 of 20

3.1.6. Overall Model Ranking

Overall, black box models were better than low-level white box models (Table 5).
The XGB was consistently the best performing while CART was the poorest model. There
was change in model ranking across stages of the annual cycle except for XGB, LDA, ordinal
and CART.

Table 5. Model ranking by stage of annual cycle and overall.

Model Pre-Breeding Pregnancy
Diagnosis Pre-Lambing Weaning Overall

XGB 1 1 1 1 1(1.0)
RF 3 2 2 2 2(2.3)

SVM 4 3 4 3 3(3.5)
K-NN 2 6 3 4 4(3.8)
ANN 5 4 5 5 5(4.8)

Miltinom 6 5 6 6 6(5.8)
LDA 7 7 7 7 7(7.0)

Ordinal 8 8 8 8 8(8.0)
CART 9 9 9 9 9(9.0)

Overall (overall rank with means in parenthesis). The lower the rank the greater the BCS prediction performance.

4. Discussion

The present study utilized machine learning classification algorithms to explore the
possibility of predicting BCS from current and previous liveweight in mature ewes (at
approximately 43–54 months of age). Body condition score was treated as a categorical
variable with three levels (1.0–2.0, 2.5–3.5; >3.5). Nine of the most recognized machine
learning models (XGB, ANN, RF, K-NN, SVM, ordinal, multinom, LDA and CART models)
were applied to preprocessed datasets.

We applied a strategy to reduce the accuracy and authenticity measures into two
dimensions in order to generate latent variables or constructs that were plotted to give a
visual summary of model performance. This technique gave a visual display (a holistic
picture) of overall model performance which made it easier to decipher the patterns in the
relationship between the accuracy and authenticity of models in BCS prediction. Previous
studies have suggested the use of several metrics to give an indication about a model’s
accuracy and authenticity [24,43,48,49]. These have, however, been piecemeal with no
unifying interface. By bringing together both accuracy and authenticity measures in a
single display, we appear to have cracked that enigma. This innovation could serve as a
platform for interrogating even better ways of model performance evaluation.

4.1. Overall Accuracy

The findings suggest that ewe BCS prediction from current and previous liveweight
can be achieved using machine learning classification algorithms within the limited BCS
range used in the present study. The results indicated that XGB was the most efficient
and robust model (overall accuracy = 87.6%; sensitivity = 87.7%; specificity = 93.9%).
Other good alternatives to XGB for predicting ewe BCS were three algorithms (K-NN,
RF and SVM) with accuracies > 80% and kappas > 70%, while the remaining four (CART,
ordinal, LDA and multinomial) were weak algorithms (accuracies < 70%, kappas < 60%).
All models performed better than a random guess, with the most efficient models giving
prediction errors as low as 11% and 38%. According to Galdi and Tagliaferri [50], a perfect
classifier has a rate of 100%, while a random guess would give a 33.3% error for three-
level classifiers [50,51]. The weakest algorithms outperformed a random guess by only 8,
11, 15 and 20%, respectively, using the current study data. Whereas accuracy measures
can be interpreted arbitrarily, Cohen’s kappa statistic has been classified [42,52] into six
different categories, no agreement (values ≤ 0), none to slight (0.01–0.20), fair (0.21–0.40),
moderate (0.41–0.60), substantial (0.61–0.80) and almost perfect agreement (0.81–1.00).
Further, Fleiss et al. [53] suggested that kappa values greater than 0.75 may be taken to
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represent excellent agreement beyond serendipity, values below 0.40 as poor agreement
and values between 0.40 and 0.75 as fair to good agreement. The findings in this study
suggest that using the top performing algorithms (XGB and RF), ewe BCS can be predicted
with high accuracy across four phases of the annual cycle.

4.2. Class-Level Accuracy

Results also showed that at the accuracy-related class level, metrics including accuracy,
precision and F-measure were highest for XGB, making it the most efficient and robust
model for ewe BCS prediction. Further, there appeared to be variability in all metrics across
stages of the annual sheep weighing cycle and BCS class. This variation in accuracy across
the stages of the annual cycle suggests that with the exception of XGB, different models
may be required to predict BCS at different stages of the annual cycle. Similarly, different
models may be required if there is need for greater accuracy in one BCS class than others.
This is especially important when great accuracy is required for management decisions
with far reaching consequences such as when limited resources must be allocated to only
target classes. Further, results indicated that the higher-level (black box) machine learning
models such as XGB and RF were better at separating BCS into distinct classes than the
lower-level (white box) models such as multinomial or ordinal logistic regression.

In the current study, the best balance between accuracy and authenticity (sensitivity–
specificity) was achieved during pre-breeding compared to other stages of the annual
cycle. This observation could have been due to the “relative ease” to condition score ewe
pre-breeding than other stages of the annual cycle [2,54]. Prior to breeding, most farmers
enhance ewe feeding in a process known as flushing [55,56], which likely resulted in
uniform tissue (fat and muscle) distribution around the body. In addition, the weight
measurements recorded pre-breeding are not confounded by the conceptus mass which
is the case at pregnancy diagnosis and pre-lambing. The conceptus mass influences the
ewe liveweight from pregnancy through the pre-lambing stage [54,57], which coincides
with the two time-point weight measurements during those stages of the annual cycle.
Further, during lactation a ewe has its greatest nutrient requirements for energy and
protein [58], and at weaning a ewe is drained by the lactation process, leading to variability
in fat deposition around the body; consequently, the ewe are lighter. Using the same ewe
population, we have previously reported a decreasing trend in ewe BCS as a ewe aged,
plateauing after 43–54 months [9]. This was attributed to a likelihood that farmers were
underfeeding their aging ewes at certain stages or periods of the annual cycle. Lactation
period could be one of such periods, resulting in failure to meet ewe dietary energy and
protein requirements and consequently leading to thinner animals. The management
conditions at pregnancy diagnosis, pre-lambing and weaning, therefore, could lead to
differences in fat deposition around the body, resulting in variability in BCS.

4.3. Class-Level Model Authenticity

Among the indicators of model authenticity, the models had apparently greater speci-
ficity than sensitivity, which could point to unbalanced distinguishing power to make
predictions. An examination of three indicators of balance between sensitivity and speci-
ficity or model authenticity/power (PLR and YI) indicated that all models had values
within acceptable authenticity and power (PLR > 1.0, NLR < 1.0 and YI > 1.0) across stage
four stages of the annual cycle, indicating that all models had balanced sensitivity and
specificity. Results also showed that XGB had the highest PLR and YI and the lowest NLR.
Combined with the results from the measures of accuracy, these results rank XBG as the
most robust model for BCS prediction. Sensitivity is defined as the proportion of individu-
als or items who belong to a given BCS class and are correctly identified, while specificity
is the proportion which do not belong to a given class and are excluded by the test. There
exists an inverse relationship between sensitivity and specificity of a test or prediction
model [59,60]. If a model has high sensitivity, it is capable of detecting “real” BCS classes,
but it also faces losses from consuming more resources due to mandatory confirmatory
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tests (to rule out the false positives) or when the limited resources have to be given to only
the right candidates. However, if a model has high specificity, the system benefits from
a significant reduction in the consumption of resources and time, but it has a decreased
capacity to detect “real” BCS classes, which can lead to failure to detect many events of
importance [44]. The higher specificity would not be advantageous, as failure to detect
ewes inside or outside the BCS range (2.5–3.5) for optimum productivity would affect
management decisions negatively. Therefore, a good model needs to achieve a balance
between sensitivity and specificity [55].

This study suggests that ewe BCS prediction from current and previous liveweight can
usefully be achieved using machine learning classification algorithms within a limited BCS
range used in the present study. This study used unadjusted liveweight (i.e., confounded by
factors such as fleece length variations and fetal mass from pregnancy to lambing) records
alone to achieve accuracies up to 89% in order to assign BCS to one out of three classes.
It is likely that if adjusted liveweights were used together with other key variables that
affect BCS, optimum accuracy would be achieved from these BCS prediction algorithms.
Semakula et al. [10] suggested that the accuracy of BCS prediction could be improved if
all key variables affecting the relationship between liveweight and BCS were accounted
for. If this was the case, the efficiency of the machine learning models tested could also
be enhanced.

Although not directly comparable, having used different scale ranges and different
measures of model performance, the best ML model (XGB) in the current study had great
efficiency (based on liveweight predictors, alone and achieved greater than 90% accuracies)
and was stable (accuracy: 86–93%) across stages of the annual cycle. In their previous study
based on linear regression models, Semakula et al. [10] achieved only weak to moderate
wellness of fit (R2 = 50%) using more resources (both LW and BCS records combined).
Further, the model wellness of fit and accuracy varied greatly (R2: 28–64%) across stages
of the annual cycle, making the linear regression models less stable. When combined,
therefore, this suggests that machine learning models would offer better BCS predictions
than the linear regression models.

5. Conclusions

The results of the present study showed that ewe BCS (grouped) can be predicted
with great accuracy on a narrow BCS (1.0–2.0, 2.5–3.5, >3.5) scale from a ewe’s current and
previous liveweight using machine learning algorithms. The gradient boosting decision
trees algorithm was the most efficient for ewe BCS prediction. The results of this study,
therefore, support the hypothesis that BCS can be accurately predicted from a ewe’s current
and previous liveweights. The algorithms, having been trained on a large representative
dataset, should be able to give accurate ewe BCS predictions. These algorithms (acquired
intelligence) could be incorporated into weighing systems to easily and quickly give farmers
ewe BCS without the need for the hands-on burden. Future studies should investigate
how to ameliorate the accuracy of BCS prediction and the possibility of individual BCS
prediction on a full range (1–5).
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Appendix A

Table A1. Key model performance characteristics of common machine learning algorithms (selecting the most appropri-
ate algorithms).

Model 1 Concept 2
Parameter and

Processes
Required 3

Sample Size and
Data

Dimensionality

Assumptions
and Data Re-
quirements

Covariate
Pools 4

Computational
Time

Interpretability
5

Prone to
Overfitting References

Ordinal Probabilistic
regression

No
hyperparameters

Affected by small
sample sizes

proportional
odds,

linearity
No Fast White box Yes [32,56,58]

Multinom Probabilistic
regression

No
hyperparameters Yes

proportional
odds,

linearity
No Fast White box Yes [32,58,61]

LDA

Dimension
reduction +
separability

between
classes

No
hyperparameters

Affected by small
sample sizes,

Good for high
dimension data

Normality,
linearity &
continuous

independent
variables

No Fast White box Yes [62–64]

CART
Decision
trees and

regression
Hyperparameters

Performs well
with large
datasets

numerical or
categorical
outcome

can remove
redundant
covariates

Fast Low-level
black box No [65,66]

RF

Decision
trees,

regression
and bugging

Up to three
hyperparameters

Performs well on
small & high

dimensionality
data

numerical or
categorical
outcome

can remove
redundant
covariates

Decreases
with sample

size

Low-level
black box No [17,67]

XGB

Regression
trees +

gradient
boosting

Hyperparameter Require large
datasets

numerical or
categorical
outcome

can remove
redundant
covariates

Very fast High-level
black box

Yes,
if large

number of
trees

[68,69]

K-NN

Regression
curve +

hyperparam-
eter
(k)

One
hyperparameter

Not good for
large & high

dimensionality
data

No
assumptions
but requires
scaled data

No
Decreases

with sample
size

Fairly
interpretable Yes [17,70]

SVM

Maximal
margins +

kennel
functions

Two
hyperparameters

Not good for
high dimension

data

No
assumptions No

Decreases
with sample

size

High-level
black box Yes [71,72]

ANN
Nodes

(artificial
neurons)

Up to seven
hyperparameters

Sensitive to
sample size and

data
dimensionality

numerical or
categorical
outcome

No

computationally
very

expensive
and time

consuming

High-level
black box Yes [73]

1 Model (Ordinal: ordinal logistic regression, multinorm: multinomial regression, LDA: linear discriminant analysis, CART: classification
and regression tree, RF: random forest, XGB: Gradient boosting decision trees model, K-NN: k-nearest neighbors, SVM: support vector
machines, ANN: neural networks). 2 Concept: How the algorithm works. 3 Parameter and processes: Tuning parameters for the algorithm.
4 Covariate pools: Intrinsic ability to remove redundant variables or to select important variables. 5 Interpretability: White box: clear model
structure with parameters: black boxes: model structure and the relationship between variables is unknown. NB: The criteria used to
summarize the key model performance characteristic was a modified version of a 5-point criteria by Khaledian and Miller [17].
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Table A2. A pairwise comparison (Bonferroni p-value adjustment) of overall performance accuracy
of nine predictive models for BCS, at different stages of the annual cycle (PB: pre-breeding, PD:
pregnancy diagnosis, PL: pre-lambing, W: weaning) in 43–54-month-old ewes. p-value > 0.05 indicates
no significant difference between models. All ewe BCS predictions were based on liveweight record 2.

Model A Model B PB PD PL W

XGB K-NN 0.011 0.000 0.000 0.000
RF 1.000 0.000 0.245 0.007

SVM 0.010 0.000 0.000 0.000
ANN 0.000 0.000 0.001 0.000

Multinorm 0.000 0.000 0.000 0.000
LDA 0.000 0.000 0.000 0.000

Ordinal 0.000 0.000 0.000 0.000
CART 0.000 0.000 0.000 0.000

K-NN RF 0.003 0.281 0.000 0.041
SVM 1.000 1.000 0.000 1.000
ANN 0.231 0.000 1.000 0.000

Multinorm 0.000 0.000 0.779 0.000
LDA 0.000 0.000 1.000 0.000

Ordinal 0.000 0.000 0.000 0.000
CART 0.000 0.000 0.004 0.000

RF SVM 0.203 0.014 0.008 0.002
ANN 0.002 0.000 0.002 0.000

Multinorm 0.000 0.000 0.000 0.000
LDA 0.000 0.000 0.000 0.000

Ordinal 0.000 0.000 0.000 0.000
CART 0.000 0.000 0.000 0.000

SVM ANN 0.563 0.000 0.021 0.000
Multinorm 0.000 0.000 0.000 0.000

LDA 0.000 0.000 0.000 0.000
Ordinal 0.000 0.000 0.000 0.000
CART 0.000 0.000 0.000 0.000

ANN Multinorm 0.002 0.000 1.000 0.000
LDA 0.000 0.000 1.000 0.000

Ordinal 0.002 0.000 0.000 0.000
CART 0.000 0.000 0.903 0.000

Multinorm LDA 0.019 1.000 1.000 1.000
Ordinal 0.004 0.000 0.000 0.000
CART 0.000 0.000 0.023 0.000

LDA Ordinal 0.019 0.000 1.000 0.006
CART 0.000 0.000 0.032 0.000

Ordinal CART 0.000 0.002 0.047 0.008
Model: (XGB: Gradient boosting decision tree model, RF: random forest, K-NN: k-nearest neighbors, SVM:
support vector machines, ANN: neural networks, multinorm: multinomial regression, LDA: linear discriminant
analysis, Ordinal: ordinal logistic regression, CART: classification and regression tree).

Table A3. Accuracy measures (precision, F-measure) of nine predictive models for ewe BCS at 43–54 months of age pre-
breeding at different stages of the annual sheep weighing cycle (PB: pre-breeding, PD: pregnancy diagnosis, PL: pre-lambing
and W: weaning). Values in parenthesis indicate the minimum and maximum.

PB PD PL W

Model Precision % F-Measure % Precision % F-Measure % Precision % F-Measure % Precision % F-Measure %

XGB 86.1(78.2–97.7) 86.0(80.1–96.9) 87.9(80.8–94.5) 87.6(84.1–90.0) 87.9(80.8–94.5) 87.6(84.1–90.0) 89.1(84.2–92.8) 89.0(87.5–91.3)
RF 85.3(78.1–95.9) 85.3(79.0–95.6) 86.9(83.2–91.1) 86.7(83.6–90.7) 86.1(77.0–91.7) 85.7(81.0–89.0) 84.9(79.3–88.8) 84.7(83.2–86.4)

SVM 82.7(74.1–95.1) 82.7(74.5–94.4) 83.4(74.6–90.3) 82.6(80.0–87.2) 83.5(68.7–95.0) 81.8(76.0–86.4) 82.8(71.6–89.4) 82.0(78.0–85.7)
K-NN 82.3(75.0–94.4) 82.0(71.8–95.3) 84.7(77.5–89.5) 84.5(80.9–90.6) 64.5(58.1–68.6) 64.1(61.8–65.5) 84.9(79.3–88.8) 85.1(80.5–88.1)
ANN 80.3(71.9–93.4) 80.3(71.6–92.6) 76.3(72.1–83.7) 76.1(73.2–80.7) 73.5(64.5–83.3) 71.5(67.4–76.2) 79.5(70.0–85.0) 78.7(76.4–82.6)

Multinom 76.8(67.7–89.3) 76.8(68.1–89.1) 70.2(65.6–76.4) 70.0(64.1–73.8) 64.8(62.8–65.9) 64.6(62.1–67.1) 68.1(65.0–70.7) 67.7(65.7–70.2)
LDA 75.0(64.3–89.0) 74.9(64.5–88.3) 70.5(65.1–79.0) 69.3(61.8–73.3) 65.3(61.9–67.9) 64.9(61.5–67.7) 68.3(63.4–70.8) 67.6(65.8–70.7)

Ordinal 73.2(59.2–88.5) 72.9(60.4–85.3) 64.9(55.0–77.4) 63.8(58.4–68.1) 57.3(45.8–64.2) 57.5(43.5–66.7) 64.2(52.9–70.9) 63.4(57.4–68.7)
CART 62.1(47.3–77.7) 62.3(41.5–80.0) 61.1(55.5–68.9) 59.2(48.5–64.6) 57.3(55.1–60.5) 55.7(46.6–62.5) 55.4(53.4–59.0) 54.8(45.3–60.9)

Model: (XGB: Gradient boosting decision tree model, RF: random forest, K-NN: k-nearest neighbors, SVM: support vector machines,
ANN: neural networks, multinorm: multinomial regression, LDA: linear discriminant analysis, Ordinal: ordinal logistic regression, CART:
classification and regression tree).
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Figure A1. Machine learning flow chart for ewe BCS prediction using their current and previous liveweights. 
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Figure A2. Random forest-based multidimensional score (MDS) plots for BCS prediction in 43–54-month-old ewes at 
different stages of the annual cycle ((a) pre-breeding, (b) pregnancy diagnosis, (c) pre-lambing, (d) weaning). Red, blue 
and green circles represent single data points from BCS of 1.0–2.0, 2.5-3.5 and >3.5, respectively. 
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Figure A2. Random forest-based multidimensional score (MDS) plots for BCS prediction in 43–54-
month-old ewes at different stages of the annual cycle ((a) pre-breeding, (b) pregnancy diagnosis,
(c) pre-lambing, (d) weaning). Red, blue and green circles represent single data points from BCS of
1.0–2.0, 2.5-3.5 and >3.5, respectively.
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