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Abstract 

The aim of this thesis was to unveil the potential of proximal hyperspectral sensing 

for measuring herbage nutritive value in a pasture based-dairy farm system. Hyperspectral 

canopy reflectance and herbage cuts as well as data on herbage and supplement allocation, 

and milk production were collected regularly from Dairy 1 farm at Massey University 

during the 2016-17 and 2017-18 production seasons. Milk, fat and protein yields and body 

condition score of cows were measured at monthly herd tests while live weights were 

recorded daily. Calibration equations determining herbage the nutritive value traits 

digestible organic matter in dry matter, metabolisable energy (ME), crude protein, neutral 

detergent fibre and acid detergent fibre from hyperspectral canopy reflectance data were 

developed and validated using partial least squares regression. Canopy reflectance 

calibration models were able to determine the various herbage nutritive value traits with 

R2 values ranging from 0.57 to 0.78. Variation of herbage nutritive value traits were 

mostly explained by month within production season (42.7% of variance among traits) 

followed by random error (33.4%), production season (13.1%) and paddock (10.7%). The 

relative importance of herbage nutritive value and other herbage quantity and climate-

related variables in driving performance per cow in the herd was determined using 

multiple linear regression. Herbage metabolizable energy explained 20% to 30% of milk, 

fat and protein production per cow while herbage quantity and climate- related factors 

were relatively less important (below 15%). Random regression models were used to 

model lactation curves of milk, fat, protein and live weight to estimate daily ME 

requirements of individual cows. The daily ME estimated requirements was nearly a fifth 

above or below the daily mean ME supplied. The deviation of the daily ME estimated 

requirements of a cow from the actual ME supplied per cow in the herd was mostly 

explained by the observations made within a cow rather than between cows or breeds. 

Variation in herbage nutritive value in addition to the within and between cow variation 

of ME estimated requirements were high enough to justify the use of proximal 

hyperspectral sensing as measurement tool to assist with feed allocation decision-making. 

However, the potential of this technology could be further enhanced using more precise 

technologies to allocate herbage to individual cows or groups of cows. The potential 

benefits of more precise feed allocation will result in more efficient grazing management 

and thus improved utilisation of herbage and hence milk production.  

Key words: proximal hyperspectral sensing, pasture-based dairy farm system, herbage 

nutritive value, variation 
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Dairy farming is an important pillar of the New Zealand economy. In 2017-18, the 

dairy industry processed around 20.7 billion litres of milk (3% of the milk produced 

globally) produced on 1.76 million hectares (DairyNZ 2019). Export revenue earned by 

the industry was $15.1 billion NZD (28% of total exports) generating jobs for 46,000 

people. This success has been driven partly by the intensification of pasture-based dairy 

farm systems that over recent decades have held production costs low (Ma et al. 2018; 

Clay et al. 2019). However, intensification has also bought about environmental issues 

placing concerns about the increased use of resources as a means of controlling costs in 

a highly competitive industry. Thus, a focus towards improving efficiency of use of 

resources has been proposed as an alternative to intensification. 

Precision agriculture technologies have the potential to improve the technical 

efficiency of dairy farm systems while keeping costs low. Some authors (French et al. 

2014; Shalloo et al. 2018) have suggested that developments in the field of rapid herbage 

nutritive value (NV) measurement present an important opportunity to improve pasture 

utilisation in pasture-based dairy systems. Rapid herbage NV measurements can help 

management make more precise daily herbage and supplement allocation decisions by 

shifting from a dry-matter to a nutritional-based decision making. However, to date, 

research aimed at the development of rapid herbage NV measurement tools for their 

specific use in pasture-based dairy farm systems has been neglected. 

Research involving proximal hyperspectral sensing (Kawamura et al. 2009; 

Pullanagari et al. 2012; Adjorlolo et al. 2015) has been successful in predicting the NV 

of herbage from canopy reflectance, offering a potential tool for rapid herbage NV 

measurement in the field. However, the research undertaken to date has provided limited 

evidence of the potential of proximal hyperspectral sensing for assisting with herbage and 

supplement allocation decision-making in pasture-based dairy farm systems. Primarily 

because previous research has not considered that NV decreases with canopy height and 

that only a limited portion is available to the grazing cow. In addition, reflectance from 

the lower canopy strata can influence the spectral signature obtained from the surface of 

canopy swards (Asner 1998) affecting the accuracy of proximal hyperspectral sensing for 

predicting NV from a limited portion of herbage. For proximal hyperspectral sensing to 

be potentially useful to support herbage and supplement allocation decision-making, then 

its ability to provide measurements that are representative of the herbage NV available to 

the grazing cows needs to be determined. 
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Moreover, it is unclear if rapid herbage NV measurement has potential for 

managing daily herbage and supplement allocation. Although herbage NV is a significant 

driver of the performance of grazing cows (Kolver 2003, Walker et al. 2004), herbage 

quantity (Dillon 2007, Baudracco et al. 2010, Pérez-Prieto and Delagarde 2013) and 

climate related (Bryant et al. 2007) factors can also influence cow performance, limiting 

the potential of herbage NV measurement in field-like conditions. For proximal 

hyperspectral sensing to be a useful tool for assisting with feed allocation, then the extent 

by which herbage NV varies and its importance on influencing cow performance in a 

pasture-based dairy farm system needs to be determined. Precise allocation of herbage 

and supplements to the herd on the basis of the nutrients supplied daily would also require 

estimates of the daily nutritional requirements of cows in the herd, which has proven 

challenging (Hills et al. 2015). Addressing all these issues would unveil the potential of 

proximal hyperspectral sensing for measuring the nutritive value of herbage in a pasture-

based dairy farm system. 

The hypothesis of this thesis is that proximal hyperspectral sensing has potential for 

measuring the nutritive value of herbage in a pasture-based dairy farm system. 

The aim of this thesis was to investigate the potential of proximal hyperspectral 

sensing for measuring the nutritive value of herbage in a pasture-based dairy farm system. 

In order to achieve this aim, four specific objectives were determined: 

1. To develop and validate calibration models for hyperspectral canopy reflectance 

data that are useful to determine herbage NV traits metabolisable energy (ME), 

crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and 

organic matter digestibility in dry matter (DOMD) of the vertical portion of mixed 

ryegrass-white clover swards  made available to the grazing cow in accordance 

with good grazing management practice. 

2. To assess variation of herbage NV offered to lactating cows in time and space in 

a pasture-based dairy farm system using proximal hyperspectral sensing.  

3. To determine the influence of herbage NV and other herbage quantity and climate 

related factors on the physical performance of a pasture-based dairy farm system 

on a per cow basis. 
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4. To determine the extent to which the deviation of the energy required by a cow 

from the energy supplied per cow to the herd throughout the production season in 

a pasture-based dairy farm varies. 

1.1 Thesis outline 

This thesis consists of seven chapters. The first two chapters are the introduction 

and the literature review. Chapter 3 studies the development and validation of calibration 

models for hyperspectral canopy reflectance data that are useful to determine herbage NV 

traits metabolisable energy (ME), crude protein (CP), neutral detergent fibre (NDF), acid 

detergent fibre (ADF) and digestible organic matter in dry matter (DOMD) of the vertical 

portion of mixed ryegrass-white clover  swards that should be made available to the 

grazing cow in accordance with good grazing management practice.  Chapter 4 

determines the variation in time and space of the NV of mixed herbage offered daily to 

milking cows in a pasture-based dairy farm system measured using proximal 

hyperspectral sensing. It also addresses the relevance of rapid herbage NV measurement 

by discussing the implications of herbage NV variation to dairy cow performance and 

grazing management. Chapter 5 investigates the relative importance of daily variation of 

herbage NV and other herbage quantity and climate related factors on driving the physical 

performance in a pasture-based dairy farm system on a per cow basis. The results from 

this chapter determine the extent by which herbage NV measurement in field-like 

conditions can be relevant for informing decision making around the daily allocation of 

feed to cows. Chapter 6 determines the extent by which estimated requirements for ME 

of individual cows vary throughout the production seasons in a pasture-based dairy farm 

system and quantifies how such variation differs from the dietary ME supplied per cow 

in the herd. Finally, Chapter 7 discusses the overall findings of the thesis in terms of their 

implication to different aspects of grazing management and feed allocation decision-

making, and identifies research opportunities to further study the topic before reaching 

the overall conclusion. 
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2.1 New Zealand pasture-based dairy farm systems  

New Zealand milk production is based on outdoor grazing of fresh mixed ryegrass 

(Lolium perenne L.) and white clover (Trifolium repens L.) herbage (Holmes 2007; Wales 

and Kolver 2017). Such reliance on fresh herbage has resulted in pasture-based dairy farm 

systems that produce milk seasonally as opposed to European or North American indoor 

feeding systems where milk production is sustained throughout the year (Hofstetter et al. 

2014). The main philosophy driving milk production in New Zealand is to keep 

production costs low by transforming as much herbage into milk as possible (Holmes 

2007). To do this, pasture-based dairy farm systems are designed to calve cows in spring 

so that the seasonal herbage growth pattern is matched with herd feed requirements.  

Although most pasture-based dairy farm systems in New Zealand use spring 

calving, some production systems have been adapted to produce milk during winter by 

implementing either autumn calving, split calving (spring and autumn), or a year-round 

calving (Holmes 2007). Changing the calving pattern allows these production systems to 

obtain premium prices for the milk produced during winter which contributes to the 

higher costs associated with the use of higher levels of supplements during winter. 

Besides seasonality, other pasture-based dairy farm systems in New Zealand include 

organic milk production (Raedts et al. 2017; Le Heron 2018), A2 milk (i.e. milk with a 

low ratio of A1:A2 β-casein proteins) or the adoption of once a day milking throughout 

the production season (Edwards 2019).  

DairyNZ (2017) suggests that New Zealand dairy farms can be characterised by 

five coexisting production systems defined on 1) the level of imported feed and 2) dry 

cows grazing off farm as: System 1: no imported feed is used, and supplements fed to the 

herd harvested from the effective milking area. Dry cows also graze within the effective 

milking area; System 2: between 1 to10% of imported feed is used as either supplement 

or dry cows grazing during winter; System 3: between 11 to 20% of imported feed is used 

to extend lactation (typically autumn feed) and for wintering dry cows; System 4: between 

21 to 30% of imported feed is used at both ends of lactation and for wintering dry cows; 

System 5: more than 31% of imported feed is used throughout lactation. 
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2.2 Grazing management decisions in seasonal pasture-based dairy farm systems 

To be able to consistently produce as much milk as possible from herbage, seasonal 

pasture-based dairy farm systems require a series of strategic, tactical, and operational 

grazing management decisions. Strategic, tactical, and operational refer to three 

management levels that resemble a hierarchical structure as conceptualised in Figure 2.1. 

In this hierarchy, long-term goals set by higher level strategic planning (> 1 year planning 

horizon) drive plans and goals of shorter-term lower level tactical (within a year planning 

horizon) and operational planning (1 to 30 days planning horizon) (Parker et al. 1997; 

Shadbolt and Bywater 2005; Cowan et al. 2013).  

 

 

Figure 2.1 Conceptualisation of a hierarchy of plans and goals derived from management 

levels. Source: adapted from Cowan et al. (2013).  

 

2.2.1 Strategic grazing management decisions 

The overarching goal of strategic grazing management in a seasonal pasture-based 

dairy farm system is to closely match the seasonal herbage growth pattern with herd feed 

requirements. Key strategic grazing management decisions include definitions on the 

stocking rate (i.e. the number of cows per unit area), the conservation/supplementation 

policy, and calving and dry-off dates (Parker et al. 1997). Figure 2.2 illustrates the 

synchronisation of a conceptual pasture-based dairy farm system throughout a year. 
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Figure 2.2 Synchronisation between herbage growth and herd feed requirements 

throughout a year in a conceptual spring calving pasture-based dairy farm system. Source: 

adapted from Holmes (2007). 

 

Calving and dry-off dates determine the pattern of feed requirements of the herd 

throughout the year and thus the length of the milk production season. Calving date is 

based on the mating date of the previous year while dry-off date is determined by the 

body condition of cows and the availability of feed. Ideally, all cows in the herd must be 

mated within a short period of time so that cows calve in spring in a tight pattern. A tight 

calving pattern for cows has 88% of the herd calved by week 6 while a tight calving 

pattern for first calvers has 75% of heifers calved by week 3, and 92% calved by week 6 

(DairyNZ 2019). After calving, a cow will be on average 240 days in milk before dry-off. 

As feed requirements increase after calving until the peak of milk production, calving of 

all cows should be synchronised so that the feed requirements of the herd coincide with 

the increasing rate of herbage growth. At times when the availability of herbage exceeds 
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herd requirements, the feeding policy of a farm can use conservation of herbage in the 

form of silage or hay to be used to feed cows at times of deficit. In addition, other 

supplements can be strategically grown or brought into the farm depending on the overall 

feed demand of the herd, which is dictated by the stocking rate and if heifers are reared 

on or off farm. Some authors (Moller et al. 1996; Burke et al. 2002; Litherland and 

Lambert 2007) also highlight that, in addition to the seasonal herbage growth pattern, 

strategic grazing management of pasture-based dairy farm systems should also consider 

the seasonal variation of herbage nutritive value. For instance, Burke et al. (2002) suggest 

that excess protein in ryegrass-based diets during spring can be balanced if the production 

system incorporates planting of forages in adjacent strips, grazing separate paddocks or 

cutting and carrying herbage based on protein content to balance the diet. 

2.2.2 Tactical grazing management decisions 

Tactical grazing management refers to planning, implementing and controlling 

decisions when deviations from the strategic goals occur. Chapman et al. (2013) suggest 

that a major challenge for feed management in seasonal pasture-based dairy farm systems 

is to account for the inter-annual variability of herbage availability. Differences between 

expected and actual herbage growth rates within a year might signify that the plans for a 

year may change. Tactical grazing management deals with any shortcoming or over-

supply of herbage availability (Cowan et al. 2013). Decisions about drying off date, 

selling cattle, and application of fertilisers are examples of tactical management decisions 

that can be used to cope with inter-annual variability in herbage growth rates as well as 

variation in expected input or output prices (Parker et al. 1997; Holmes 2007; Cowan et 

al. 2013; Field and Ball 1978; Macdonald et al. 2010). One of the most important 

decisions to undertake in a rotational grazing system is the adjustment of the grazing 

rotation length (i.e. grazing frequency) (Holmes 2007). Rotation length is used to control 

inter-annual variation of herbage availability by manipulating the amount of herbage 

consumed each day and this decision is considered an interface between tactical and 

operational planning (McCarthy et al. 2014).  
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2.2.3 Grazing rotation length  

Regular monitoring the average herbage mass available at a farm (AHM) is an 

important metric for deciding grazing rotation length. Achieving AHM targets at selected 

times of the year will ensure there will be enough herbage in quantity and quality terms 

to meet production targets. Based on extensive research and farmer experience, 

Macdonald et al. (2010) describe a series of decision rules that have proven effective in 

managing grazing rotation across seasons. For instance, in early spring achieving an 

AHM target of 1800 kg DM/ha at balance date (i.e. the date when the expected herbage 

growth rate equals to herd feed demand) is important to ensure enough high-quality 

herbage at peak milk production months. If AHM is below target, cows will be underfed 

relative to requirements. Conversely, if AHM is above target, herbage quality and growth 

will decline, and milk production will be reduced. In most pasture-based dairy farm 

systems, rotation length varies from 1/20th of the area grazed each day in spring when 

herbage growth rate is high to 1/100th in winter when growth rates are low (Macdonald 

et al. 2010; Macdonald and Penno 1998). Reducing the length of the spring grazing 

rotation could be combined with making silage from excess herbage to maintain quality 

and transfer excess herbage to the summer (Macdonald and Penno 1998; Macdonald et 

al. 2010). In contrast, increasing grazing rotation length during autumn will help 

accumulate herbage mass to feed the herd after the next calving while ensuring cows 

reach a good body condition at calving. However, achieving AHM and body condition 

targets by managing grazing rotation during autumn might restrict herbage intake of cows 

and hence the use of supplementary feeds might also be required to achieve body 

condition score targets (Bryant 1990). 

2.2.4 Operational grazing management decisions 

Operational grazing management is responsible for daily allocation of herbage and 

supplements to the herd (McCarthy et al. 2014). Daily feed allocation has significant 

short-term consequences on animal performance and grazing efficiency, with the latter 

having longer-term consequences on herbage quality, regrowth and persistency 

(Fulkerson and Bryant 1993; Fulkerson and Donaghy 2001; Fulkerson et al. 2005). In 

pasture-based dairy farm systems where herbage is a significant component of the diet of 

cows, differences in herbage dry matter availability between paddocks is a major 
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challenge to operational decision making. A paddock can be defined as a sub-division of 

a grazing management unit that is enclosed and separated from other areas by a fence or 

a barrier (Allen et al. 2011). The availability of herbage in a paddock can vary depending 

on a range of factors including farm infrastructure, topography or climate (McCarthy et 

al. 2014). Macdonald et al. (2010) describe that efficient grazing involves three key 

management decisions that managers must perform regularly: 1) when to graze herbage, 

which determines grazing frequency; 2) how hard to graze herbage, which determines 

grazing severity; and 3) how long to graze herbage, which determines grazing duration. 

These decisions are heavily dependent on having accurate estimates of herbage mass. 

However, herbage allocation can also involve monitoring other indicators such as day 

rotations, sward height, or grass leaf-stage (Sheath and Clark 1996; Mayne et al 2000; 

Fulkerson and Donaghy 2001; McCarthy et al. 2014). 

2.3 The relationship between information and grazing management  

The support of strategic, tactical and operational grazing management decisions 

requires information in accordance to the level of management (Chapman et al. 2013). 

For example, to support of strategic decisions, management would require the mean 

monthly estimate of the overall feed profile (i.e. feed supply and demand) in a farm 

throughout a year. This would either require having historical data or simulation tools that 

would allow the forecast of future scenarios. In contrast, deciding how much herbage to 

allocate to cows at any day requires information on the herbage available in the paddock 

to graze that day and an estimate of the feed demand of the herd.  

In a simulation study by Beukes et al. (2015), the potential benefit of allocating 

feeds in a pasture-based dairy farm system based on accurate information on herbage 

mass availability was quantified. Beukes et al. (2015) found that precisely allocating 

herbage to cows daily can potentially improve farm profits by up to $525/ha by improving 

grazing efficiency and herbage production and by reducing costs associated with 

supplements use. The authors recognise that their study does not account for the impact 

of grazing on herbage quality nor variation of herbage quality in the model. Moller et al. 

(1996) suggested that the existing variation of herbage quality across New Zealand dairy 

farms could be further exploited to improve feed management decision making. However, 

there is no clarity whether variation of herbage quality consumed daily across the 



Chapter 2 

 

17 

 

paddocks is enough to justify measurement nor if such variation would be an important 

driver of farm performance in a non-experimental setting. Most importantly, to date there 

is no commercially available tool that would provide rapid measurements of herbage 

quality on farms. More recently, some authors (French et al. 2014; Shalloo et al. 2018) 

suggested that developments in the field of rapid herbage nutritive value measurement 

presents an important opportunity to improve daily feed allocation decision-making in 

pasture-based dairy farm systems. In addition to rapid herbage nutritive value 

measurement, the adoption of individualised feeding and virtual fencing technologies has 

been proposed to improve efficiency of grazing of heterogeneous resources (French et al. 

2014; Hills et al. 2016). However, Hills et al. (2015) suggest that addressing the variation 

of daily nutritional requirements of individual cows in the herd is a major limitation to 

the adoption of technologies aimed at feeding cows individually.  

2.4 Defining herbage quantity and quality  

The literature on pasture production and grazing management is inundated with 

definitions in relation to herbage quantity and quality that might lead to confusion and 

need clarification.  

2.4.1 Herbage quantity 

Herbage quantity is usually described in terms of herbage mass (HM). Herbage 

mass refers to the amount of green and dead plant material present in a delimited area cut 

at a given height (usually ground level height) and is most often expressed in kilograms 

of dry matter per hectare (kg DM/ha) (Allen et al. 2011; Kallenbach 2015). The term 

pasture cover is frequently used as a synonym for HM and is the herbage quantity term 

most widely adopted in the non-scientific community (Allen et al. 2011). Herbage mass 

is determined by height, density and water content. However, because herbage water 

content is highly variable, expressing herbage mass in dry matter (DM) over wet content 

is preferred. Lastly, herbage allowance (HA), defined as the herbage mass allocated to 

livestock (kg DM/cow/d), is another common term used to characterise herbage quantity.  
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2.4.2 Herbage quality 

Herbage quality can refer either to the nutrient composition of herbage, the 

interaction between herbage nutrient composition and animal intake or to herbage 

morphological attributes associated with the selective grazing behaviour of the grazing 

animal that are associated with herbage quality.  

Nutritive value (NV) refers to the concentration of energy and nutrients (e.g. water, 

proteins, fats, vitamins, minerals, and carbohydrates) available to the grazing animal that 

is contained in herbage tissue (Lambert and Litherland 2000). In practice, digestibility 

and metabolisable energy (ME) are the two NV traits most commonly used to assess 

quality in New Zealand pastures (Lambert and Litherland 2000). However, other NV 

traits such as crude protein (CP) and neutral detergent fibre (NDF) and acid detergent 

fibre (ADF) are also used to a lesser extent (Lambert and Litherland 2000).  

The interaction between herbage NV and herbage intake is defined as feeding value 

(FV) and is a direct response measure of animal performance to herbage (Ulyatt 1970; 

Ball et al. 2001; Waghorn and Clark 2004). Herbage FV is determined by chemical 

analyses and animal feeding trials and is thus considered an indirect indicator of herbage 

quality. Expressing herbage quality as FV is a more complete metric of herbage quality 

compared to NV because it incorporates the effect of grazing selectivity on animal 

performance which is not accounted by NV. 

Another way of defining herbage quality is in terms of the species and 

morphological composition of herbage (Lambert and Litherland 2000; Waghorn and 

Clark 2004). These two factors are associated with the selective grazing behaviour of 

animals and can also be used as a field indicator of herbage quality (Lambert and 

Litherland 2000). In general terms, animals tend to prefer leaf over stems, legumes over 

grasses, new green material on the top of the canopy over the less accessible dead material 

placed at the bottom of the canopy. 

2.4.3 Herbage available 

The term ‘available’ is often used to denote assumptions on herbage structural 

characteristics or harvesting procedures (Allen et al. 2011). In this thesis, herbage 

available is used to describe the quantity or quality of herbage above a grazing height 
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threshold of 4 cm in height, which is defined as the top portion of the canopy that should 

be made available to the grazing cows according to good grazing management practice 

(Macdonald et al. 2010). 

2.5 Herbage measurement tools 

There are various tools or methods available for measuring quantity or quality of 

herbage. Common herbage quantity measures include mass, height and density of plants 

or tillers while herbage quality is most commonly assessed by herbage chemical 

composition, plant morphological composition, and species composition (Kallenbach 

2015). However, given the large variation in herbage quantity and the importance of 

having this information for managing grazing in pasture-based dairy farm systems, more 

effort has been placed on the development of tools for measuring herbage quantity than 

quality (Dalley et al. 2009; Shaloo et al. 2018).  

2.5.1 Herbage quantity measurement  

On-farm herbage quantity can be measured by visual assessment, rising plate 

meters, sward sticks or electronic probes (Stockdale and Kelly 1984; Sanderson et al. 

2001; Kallenbach 2015; Dalley et al. 2009). All these tools have proven reliable but time 

consuming or require experienced users for improved accuracy (Dalley et al. 2009). For 

instance, early work by Campbell and Arnold (1973) tested the accuracy of HM visual 

assessment of trained and untrained independent observers against actual measurements 

of HM. In their study, Campbell and Arnold (1973) found that untrained observers over-

estimated the effects of height and under-estimated the effects of density in HM. 

However, in most cases (89%), visual assessment was able to predict HM with high 

accuracy (R2 > 0.70). O’Donovan et al. (2002) quantified the effect of the level of HM on 

the accuracy of its assessment using the visual method and found that the ratio of actual 

to estimated HM decreased from 0.20 to 0.12 with HM increasing from 1000 kg DM/ha 

to 3000 kg DM/ha. 

The C-Dax pasture meter (Lawrence et al. 2007) has recently been introduced to 

the market as a new tool to speed up the process of herbage mass assessment. C-Dax is a 

towed-behind attachment that can be used in any all-terrain vehicle. It comprises a series 

of light beams that create an accurate profile of herbage height as the sward breaks the 
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light path as the vehicle moves (Lawrence et al. 2007). C-Dax can take a large number of 

measurements per time unit, incrementing the reliability of the instrument. Moreover, 

later versions of C-Dax have a Global Positioning System (GPS) that has been proven 

useful to map the spatial variation of herbage mass (Dennis et al. 2015). Alternative 

herbage mass mapping options to C-Dax include the addition of a GPS to a rising plate 

meter in combination to a smartphone (French et al. 2014). King et al. (2010) compared 

the accuracy C-Dax pasture meter with rising plate meter concluded that both tools have 

similar accuracies and that both benefit from the use of different seasonal calibration 

equations, specific to the region in which they are used. 

More recently, the ability of predicting herbage mass of mixed swards from data 

collected using ultrasonic (Fricke et al. 2011) and a combination of ultrasonic and optical 

sensors (Fricke and Wachendorf 2013; Moeckel et al. 2017) was determined. Fricke et al. 

(2011) found that ultrasonic sensors can predict herbage mass with a R2 of 0.78 and that 

predictions can be further improved if legume-specific mixtures (R2= 0.79) and pure 

swards (R2= 0.81) calibrations are developed. Fricke and Wachendorf (2013) found that 

combining ultrasonic and optical sensor data improves predictions of herbage mass (R2 

values of 0.83 for mixed swards and R2 values of 0.88 to 0.90 for species-specific 

calibrations). However, using a similar approach to Fricke and Wachendorf (2013) but 

with data collected in field-like conditions, Moeckel et al. (2017) found that the accuracy 

of herbage mass from mixed swards could be predicted with R2 values ranging from 0.42 

to 0.52. Such lower accuracies when compared to studies performed under controlled 

conditions (e.g. Fricke et al. 2011; Fricke and Wachendorf 2013) suggest that further 

improvements of the technology must be made before it can be adopted for use in farm 

practice.  

2.5.2 Herbage quality measurement  

Field herbage quality assessment mostly consists on the evaluation of sward 

morphological characteristics such as leaf to stem ration, species composition and colour 

(Kallenbach 2015). However, the need for actual measurements of herbage NV is still 

reliant on collecting, preparing and analysing samples in a laboratory. This whole process 

is expensive and time consuming. Consequently, much effort has been placed on 

assessing the ability of optical sensors to determine herbage NV in the field (e.g. 
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Kawamura et al. 2008; Pullanagari et al. 2012a; Pullanagari et al. 2012b; Pullanagari et 

al. 2013; Adjorlolo et al. 2015).  

Progress in sensor development has resulted in increased spectral and spatial 

resolutions and the possibility of studying herbage NV with greater accuracy and at 

different spatial and temporal scales (Ortenberg 2016; Godinho et al. 2018). For the 

purpose of field herbage NV measurement, a number of researchers have studied the 

relationships between canopy spectral features and herbage NV using proximal- optical 

(Roberts et al. 2015), multispectral (Pullanagari et al. 2012a; Pullanagari et al. 2013) and 

hyperspectral (Kawamura et al. 2008; Kawamura et al. 2009; Pullanagari et al. 2012b; 

Adjorlolo et al. 2015) sensors with varying success.  

Overall, predictions of herbage NV from hi-resolution hyperspectral sensor data 

were found to be more accurate (Kawamura et al. 2008; Pullanagari et al. 2012b) than 

those using multispectral sensing (Pullanagari et al. 2012a; Pullanagari et al. 2013), and 

accuracies improve if an active lighting system is used (Pullanagari et al. 2012b). 

Proximal hyperspectral sensing has the potential for measuring herbage NV for use in 

farming. However, research to date has failed to address the relevance of proximal 

hyperspectral sensing for assessing herbage NV for their use in grazing management. 

2.6 Relationship between herbage quality and canopy depth  

There is a relationship between canopy depth and herbage quality, which 

determines the nutrient content in herbage that could potentially be consumed by the 

grazing cow. As canopy depth increases, the quality of herbage decreases as the leaf:stem 

ratio decreases and there is higher content of dead material (Delagarde et al. 2000; Nave 

et al. 2014). In a study involving ryegrass-dominant swards, Delagarde et al. (2000) 

quantified the variation of herbage NV with canopy height. In their study, Delagarde et 

al. (2000) measured the NV content from herbage samples cut at four heights (0 to 5, 5 

to 10, 10 to 15 and >15 cm) collected for three months during three seasons (spring, 

summer and autumn) and for three regrowth ages (21, 28 and 35 days). The results 

showed that NDF concentration increased from 42 to 67.4% and CP decreased from 23.9 

to 13.2% with decreasing heights. The vertical distribution of herbage NV was, on 

average, more affected by regrowth age than by season. However, the decrease of CP 
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with regrowth age was more marked in the upper than the bottom stratum of the canopy. 

In contrast, the vertical gradient of NDF was unaltered by season or regrowth age.  

The decrease in herbage NV was also described for ryegrass-white clover herbage 

by Cosgrove et al. (1998). In their study Cosgrove et al. (1998) noted at a single regrowth 

age and during autumn that content of ME decreased from 13.4 to 11.4 MJ/kg DM, CP 

from 31.2 to 20.4% and NDF increased from 37.8 to 50.9% from top quarter to the bottom 

quarter of the canopy. However, the author acknowledges that the influence of season on 

the vertical variation of herbage NV should be considered when designing a sampling 

strategy aimed at characterising herbage NV. 

2.7 Fundamentals of vegetation spectral sensing  

Spectral sensing refers to the measurement of reflected or emitted radiation of a 

targeted body (Lillesand et al. 2015; Campbell and Wynne 2011; Govender et al. 2007). 

Bodies reflect or absorb radiation in different ways depending on the material they are 

made of, their physical and chemical composition, the roughness their surface as well as 

geometry. Like any object, vegetation has its own characteristics which are reflected into 

spectral signatures. The property that is usually used to quantify these spectral signatures 

is known as spectral reflectance, which is defined as the ratio of the reflected energy to 

incident energy as a function of wavelength (Govender et al. 2007).  

2.7.1 Canopy reflectance 

In green vegetation, chlorophyll and other plant chemical and morphological 

structures determine reflectance in the visible portion of the electromagnetic spectrum 

(Figure 2.3). Chlorophyll is strongly related to absorption of energy in the blue and red 

regions (450 and 670 nm, respectively) but not in the green where reflectance is high 

(Gitelson and Merzlyak 1997). Chlorophyll levels are an indicator of health and 

nutritional status of plants due to its influence on plant growth (Gitelson and Merzlyak 

1997). Reflectance values in the near infrared (NIR) portion of the spectra are related with 

structural properties of cells. Beyond the 1300 nm waveband, there are three major water 

absorption bands at 1400, 1900 and 2500 nm and there are also some minor absorption 

features associated with chemical bonds that are found in many organic compounds such 

as nitrogen, lignin, lipid and fibre at different wavelengths.  
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Figure 2.3 Spectral signatures for green grass, dry yellow grass, a walnut tree canopy and 

a fir tree. Source: adapted from Govender et al. (2007) 

 

Canopy structural variables such as leaf area and leaf angle have a large influence 

on canopy reflectance (Asner 1998). Several studies (Asner 1998; Asner and Heidebrecht 

2002; Numata et al. 2008) have demonstrated that non-photosynthetic plant tissue at the 

bottom of grass swards and soil background exposure can also influence canopy 

reflectance. This is of relevance when attempting to use canopy reflectance to study 

herbage characteristics of a limited portion of the vertical strata of the sward. Asner 

(1998) described that even at a high leaf area index (LAI) (LAI > 5), the lower strata of 

grass swards can influence canopy reflectance in the NIR region. Since the LAI of 

ryegrass-dominant swards of properly managed herbage is expected to reach between 4 

and 6 at pre-grazing (Korte et al. 1984), the findings described by Asner (1998) suggest 

that predictions of herbage characteristics from a limited top portion of might be affected. 

Pullanagari et al. (2012b) also suggest that soil background and dead material can induce 

error in the prediction of herbage NV of mixed herbage from canopy reflectance. 

2.7.2 Spectral data analysis  

Many of the techniques used in the analysis of spectral data have been extensively 

reviewed by Pullanagari (2011). The analysis of spectral data is highly dependent on the 

type of data that is acquired by the sensor. For instance, hyperspectral sensors provide 

continuous reflectance data across wavelengths in the spectrum while multispectral 

sensors offer data on a reduced number of wavelength ranges (Govender et al. 2007). As 
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a consequence, multivariate or machine learning techniques are most common in the 

analysis of hyperspectral data. Conversely, given a reduced number of wavelength ranges 

is available, relationships between spectral data and biophysical and biochemical 

characteristics of vegetation can be successfully established by using univariate 

regression methods that involve the development of indices such as the normalized 

difference vegetation index (Yule and Pullanagari 2009). 

2.8 Principles driving grazing management  

In rotational grazing, grazing management is driven by the idea that herbage 

defoliation must be beneficial for both plants and animals. In this sense, defoliation must 

promote herbage regrowth without altering persistency of the desirable species. In 

addition, harvested material must provide the grazing animal with an adequate source of 

feed in quantity and quality to satisfy their requirements to achieve production targets.       

2.8.1 Optimising herbage production and quality: managing the plant 

Understanding how herbage grows after defoliation is important to define grazing 

frequency since regrowth has significant consequences on herbage production and quality 

(Fulkerson and Donaghy 2001). After defoliation, grass-dominant swards accumulate 

mass following a sigmoidal pattern (Figure 2.4a). Regrowth is initiated by a slow growth 

rate phase (phase 1: the lag phase) in which photosynthetic activity is low due to reduced 

leaf area and regrowth is sustained by the mobilisation of non-structural carbohydrate 

reserves in the stubble (Figure 2.4b). As leaf area increases, increased photosynthetic 

activity results in the replenishment of carbohydrate reserves, with more energy being 

partitioned to growth of leaf, roots and the origination of new tillers. The consequence is 

an increment in the rate at which herbage grows (phase 2: the linear phase). However, as 

herbage grows in height, canopy closure prevents light penetration to the lower areas of 

the plant that result in less photosynthetic activity, with a consequent reduction in net 

growth due to respiration of shaded tissue (phase 3: ceiling yield). In addition to the 

reduction in herbage net growth, the accumulation of senescent tissue and plant decay 

that occurs after phase 3 results in a decrease of herbage quality and reduced number of 

tillers potentially affecting the persistence of ryegrass (Ong et al. 1978; Carton et al. 

1989).  
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Figure 2.4 Regrowth cycle of ryegrass-dominant herbage plots defoliated by leaf stage 

or their day equivalent in the Waikato region of New Zealand from July to September. 

Herbage mass (a) and stubble water-soluble carbohydrate (WSC) reserves (b). Source: 

adapted using data from Lee et al. (2010) (            ) and DairyNZ (2017) (- - -).  

 

Grazing frequency  

To maximise production of high quality herbage over the year, herbage must 

spend a greater proportion of time at the end of the linear phase of the regrowth curve and 

be grazed before losing quality. In ryegrass-dominant swards, if defoliation frequency is 

too high, there will not be enough leaf area to sustain high growth rates and ryegrass 

persistence will be negatively affected due to depletion of energy reserves. In contrast, if 

grazing frequency is too low, accumulation of dead material will result in less efficient 

photosynthetic activity and reduced herbage quality.  
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Grazing frequency can be determined by monitoring herbage mass, day rotations, 

sward height, or grass leaf regrowth stage. According to Fulkerson and Donaghy (2001) 

the grass leaf regrowth stage method is the most precise indicator of grazing frequency. 

This is because the grass leaf stage method is grounded on a sound understanding of the 

physiological processes involved in grass regrowth. In contrast, the other three methods 

depend on establishing empirical relationships with herbage growth rate that are subject 

to variation from climate (Lowe et al. 2008), soil moisture (Langworthy et al. 2019), soil 

fertility, species composition (Cullen et al. 2008; Lowe et al. 2008) and genetic variation 

within species (Fulkerson et al. 1994; Tozer et al. 2017) that lead to a less precise 

assessment of grazing frequency. 

The relationship between herbage growth rate and herbage mass can be 

mathematically described by a quadratic function (Woodward et al. 1993; Woodward 

2018) that is the derivative of the logistic function of accumulated herbage mass depicted 

in Figure 2.4a. In this quadratic function, herbage growth rate increases with herbage 

mass until reaching a growth peak indicating the herbage mass that would maximise 

growth rate. Thereafter, increasing herbage mass would result in reduced growth rates. 

Empirical research has shown that the optimum herbage growth rate in New Zealand 

pastures can be achieved with herbage mass ranging from 1087 to 3901 kg DM/ha 

(Brougham 1956; Bluett et al. 1998). Bluett et al. 1998 suggested that the optimum growth 

rate that maximises net herbage production in winter and early spring in New Zealand is 

32.3 kg DM/ha/d and that this rate can be obtained with an herbage mass of 2500 kg 

DM/ha. 

In ryegrass-dominant swards, the leaf-stage method is supported by the idea that 

ryegrass can only sustain three live leaves per tiller at a time, once a fourth leave emerges 

the first one dies (Davies 1960; Fulkerson and Donaghy 2001). Leaf stage is thus 

considered a genetically driven indicator of tissue turnover that can be used to indicate 

when grass is ready to be grazed (Fulkerson and Donaghy 2001). The interval for each 

ryegrass leaf to appear and expand mostly depends on temperature (Silsbury 1970) and 

to a lesser extent soil moisture availability (Van Loo 1992). In general, ryegrass grows at 

a rate of 10 to 20 kg DM/ha/d when defoliated at 1-leaf stage, 30 to 60 kg DM/ha/d at 2-

leaf stage, and 90 to 110 kg DM/ha/d at 3-leaf stage. Fulkerson (1994) found that over 

the length of a year, defoliating ryegrass at 1 fully emerged leave produced less herbage 

(7673 kg DM/ha) compared to defoliating at 3 fully emerged leaves (10905 kg DM/ha). 
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Studies relating ryegrass leaf-stage defoliation and herbage NV (Fulkerson et al. 1998; 

Donaghy et al. 2008) show that changing defoliation frequency from leaf-stage 1 to 3 

decreased ME from 11 to 8 MJ/kg DM and CP from 25% to 15%. Moreover, Lee et al. 

(2010) describes that consistently defoliating before the 2-leaf stage will reduce tiller 

initiation and thus ryegrass persistence. 

Grazing severity and duration  

The height or mass to which herbage is defoliated (i.e. post-grazing residual height 

or mass) is a function of the severity and duration of grazing. Grazing severity and 

duration influence regrowth, persistence and quality of herbage. According to Parsons et 

al. (1988), maximum production per hectare is achieved in a sward maintained at a 

relatively low sward height. This is because although at low height photosynthesis and 

gross tissue production may be reduced, there is an optimum balance between gross tissue 

production, herbage intake and leaf death and tiller initiation. Research shows that to 

optimise regrowth, persistence and quality of ryegrass-dominant swards while allowing 

adequate intake of herbage by dairy cows, herbage should be grazed to a height of 4 to 5 

cm (Lee et al. 2008) or a mass of 1500 to 1600 kg DM/ha (Holmes and Roche 2007).  

Korte et al. (1984) compared the effect of two grazing severity regimes (lax or 

hard grazing) on the production and quality of a ryegrass dominant swards over the length 

of 38 weeks. Grazing severity regimens were defined in terms of residual leaf area index 

(LAI), with more severe grazings leaving low residual leaf (LAI= 0 to 0.7) and less severe 

grazings leaving high residual leaf (LAI= 0.8 to 2.2). The experiment found no significant 

differences in herbage production between treatments (p > 0.05), which averaged 12.7 t 

DM/ha. However, swards subject to the more severe grazing regime had a higher 

proportion of leaf, a lower proportion of stem and accumulated more dead material than 

swards subject to the less severe grazing treatment, resulting in overall higher herbage 

quality. These results contrast a more recent study by Lee et al. (2008), who found that 

increasing defoliation severity by decreasing defoliation height from 100 to 20 mm did 

not alter the composition of leaf, stem and dead matter of ryegrass. Despite finding no 

differences in the morphological composition of ryegrass swards subject to different 

defoliation severities, Lee et al. (2008) found that increasing defoliation severity 

increased herbage CP concentration from 19.2 to 21.2%, linearly decreased NDF from 

47.4 to 45.8% and ADF from 21.1 to 19.2% (p < 0.01). Moreover, the relationship 
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between defoliation height and ME was nonlinear with the peak of 12.3 MJ/ kg DM being 

reached at a defoliation height between 60 to 70 mm (p < 0.05). This study also found 

that ryegrass tiller density was maximised when herbage was defoliated to a height 

ranging between 40 to 80 mm and found little influence of defoliation height on herbage 

production. 

Fulkerson and Donaghy (2001) describe that the effect of grazing duration on 

herbage regrowth and persistence is like that of an extremely high grazing frequency. 

Using a controlled experiment involving mini swards of perennial ryegrass, Fulkerson et 

al. (1994) simulated the effect of three high defoliation frequencies (3, 6 and 3 + 6 days) 

on stubble (i.e. the basal portion of stems and leaves of plants left standing after harvest) 

water-soluble carbohydrates (WSC), ryegrass growth following regrowth to 3-leaf 

stage/tiller, and plant death. This study reported that redefoliating ryegrass at 3 days 

compared to 6 days resulted in lower WSC (60 vs. 106 mg/plant) lower regrowth (1.5 to 

3.7 g DM/plant) and plant death (8 vs. 11%). However, results also showed that 

combining defoliation frequencies of 3 plus 6 had the most negative effects (15 mg/plant, 

0.5 g DM/plant and 22% plant death). As described in section 2.8.1.1, the negative effects 

of increasing defoliation frequencies can be explained by the depletion of energy reserves 

that are used to grow new leaf area and the reduced net photosynthetic activity of this new 

leaf due to frequent defoliation, which ultimately leads to plant death.   

2.8.2 Satisfying herd feed requirements: managing the cow  

The main principle to maximise milk production for the whole production season 

in a pasture-based dairy farm system is to feed cows enough feed to satisfy their daily 

requirements (Macdonald et al. 2010). Offering cows too much or too little feed can be 

detrimental to the performance of the pasture-based dairy farm system as loss of 

efficiency and productivity are derived from below optimum post-grazing residual targets 

and increased wastage (Beukes et al 2015; Wilkinson et al. 2020).  

Herbage allocation 

Research has shown that when cows are given unrestricted access to herbage in 

quantity and quality, ME intake is the most limiting factor to milk production from 

herbage (Kolver and Muller 1998). Intake of ME is dependent on the ME content of 

herbage and on the amount of herbage (i.e. dry matter intake, DMI) grazing cows can 
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consume. According to Hodgson and Brookes (1999), there are three factors influencing 

the potential DMI of a cow: 1) the nutrient requirements of the cow; 2) the physical 

limitations imposed by the distension of the organs in the digestive tract; and 3) the 

combination of herbage and animal factors affecting grazing behaviour. In an extensive 

review of literature on the topic, Bargo et al. (2003) concluded that the potential DMI of 

dairy cows fed only herbage sits at a range between 3.25 to 3.5% of their body live weight 

(LW). However, to achieve their potential herbage DMI cows must be given high herbage 

allowances.  

The relationship between HA and herbage DMI is curvilinear and so is the 

relationship between milk yield and HA (Poppi et al. 1987; Moate et al. 2000; Baudracco 

et al. 2010; Pérez-Prieto et al. 2011). In a meta-analysis summarising data from various 

grazing experiments, Pérez-Prieto et al. (2011) describes that grazing cows herbage DMI 

response to HA increases from 0 to 12 kg DM/cow/d with HA increasing from 0 to 20 kg 

DM/cow/d. However, when HA increases beyond the 20 kg DM/cow/d threshold, the 

marginal response of DMI is relatively lower, with DMI increasing from 12 to 16 kg 

DM/cow/d with HA increasing from 20 to 60 kg DM/cow/d. These results indicate that 

while increasing HA can be used to maximise MY (Baudracco et al. 2010; Pérez-Prieto 

and Delagarde 2013), in practice, achieving the levels of herbage DMI required to 

maximise MY of cows would imply decreasing marginal responses to HA, and thus, 

decreasing grazing efficiencies because more herbage would be left uneaten. To 

maximise grazing efficiency and keep post-grazing residuals at target, cows must be 

allocated herbage below their potential DMI intake (Baudracco et al. 2010). Although 

such an approach would result in MY being lower than the potential, it is the basis of 

profitability in pasture-based dairy farm systems as it aims at optimising herbage 

utilisation and milk production per hectare rather per cow (Bargo et al. 2003; Baudracco 

et al. 2010). 

Herbage DMI is a function of the time an animal spends grazing, the rate at which 

it takes a bite, and the size of the bite (Gordon and Lascano 1993). Herbage DMI is most 

sensitive to bite size, which depends on herbage height (Gordon and Lascano 1993). A 

short herbage signifies low herbage DMI because the animal cannot compensate a lower 

amount of herbage gathered in a single bite by increasing its bite rate and/or by grazing 

for a longer time. This situation usually happens at low HA or when herbage mass is too 

low (Gordon and Lascano 1993; Holmes 2007). Holmes (2007) suggests that daily intakes 
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of dairy cows cannot be maintained with herbage heights below 8 to 10 cm. In such 

situations, animal performance is greatly limited by intake. However, when availability 

of herbage is not limiting, animal performance may be limited by herbage NV. Herbage 

of high NV have a rapid speed of passage through the digestive tract resulting in greater 

potential DMI (Lambert and Litherland 2000). In contrast, the speed of passage of low 

NV herbage is slow, constituting a physical limitation to intake (Poppi et al. 1987). 

Supplement allocation 

The main objective of supplementing grazing dairy cows is to increase total DMI 

and energy intake relative to that achieved with herbage-only diets (Stockdale 2000; 

Peyraud and Delagarde 2013;). However, when supplements are fed to grazing cows, 

substitution of supplements for herbage is likely to exist (Dillon 2007). The rate at which 

herbage is substituted (i.e. substitution rate) depends on type and level of supplement 

utilised and on herbage characteristics. There is a positive relationship between herbage 

quality and substitution rate (Bargo et al. 2003). Moreover, substitution rate is one of the 

main factors explaining MY response to supplementation, as high MY responses to 

supplementation can be achieved when herbage DMI is restricted and substitution rate is 

low (Bargo et al. 2003).  

A literature review by Baudracco et al. (2010) suggests that the limits to MY 

response to supplements is likely to be set between 4 and 5 kg DM/cow/d, with higher 

levels of supplements resulting in declining marginal responses in MY. Marginal MY 

response to supplements also depends on animal factors such as genetic merit, genetics 

(New Zealand vs overseas) and physiological stage (Kolver et al. 2000; Dillon 2007; 

Bargo et al. 2003). Cows of high genetic merit for producing milk or cows with North 

American genetics that experience nutritional deficits when fed pasture-based diets 

experience greater responses to supplementary feeds compared to cows of low genetic 

merit or New Zealand genetics cows (Kolver et al. 2000; Berry et al. 2003). Moreover, 

cows in late lactation are also described to partition less nutrients to milk and more to 

weight gain, resulting in low MY responses to supplements (Kellaway and Harrington 

2004). However, Penno (2002) argues that the effect of stage of lactation on MY response 

to supplements may be masked on New Zealand farms due to the lower herbage quality 

experienced in late lactation. 
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2.9 Gaps in research knowledge 

The literature review has revealed that although herbage quality is a relevant 

factor influencing the performance of grazing cows, there are currently no available rapid 

herbage quality measurement tools that could be used to inform daily grazing 

management decisions in pasture-based dairy farm systems. The review also identified 

that daily herbage NV measurement could potentially improve grazing management by 

allowing a better match between pasture supply and herd feed demand. However, to 

ensure this happens, several gaps in research knowledge need to be bridged.   

Proximal hyperspectral sensing can potentially be useful for measuring herbage 

NV in the field. There is plenty of research addressing the relationships between field 

canopy reflectance and herbage NV (e.g. Kawamura et al. 2008; Pullanagari et al. 2012b; 

Adjorlolo et al. 2015). However, no study to date has focused on the specific needs of 

grazing management. A conflict between reflectance from the lower canopy strata and 

the need to determine NV from the top portion of the canopy that is available to the 

grazing cow, signifies a potential limitation to the use of proximal hyperspectral sensing 

for measuring herbage NV. Research is required to investigate the ability of proximal 

hyperspectral sensing for predicting herbage NV from the top portion of the canopy that 

is available to the grazing cow. 

In addition, the potential of proximal hyperspectral sensing for measuring herbage 

NV is also dependent on the daily variation of NV in the herbage supplied in a pasture-

based dairy farm system. Research undertaken to study the variation of herbage NV in 

pasture-based dairy farm systems has mostly focused on collecting data to aid grazing 

management at the strategic level (Moller et al. 1996; Litherland and Lambert 2007). 

However, rapid assessment of herbage NV is likely to be of most value for aiding daily 

feed allocation decisions. Furthermore, while the relationships between herbage NV and 

the performance of grazing cows are well known (Kolver and Muller 1998; Bargo et al. 

2003), no study has attempted to quantify the relative importance of these relationships 

with data collected under field-like conditions. 

Having accurate estimates of herd feed requirements in addition to feed supply is 

important to precisely match daily feed supply and demand. The accuracy of the estimates 

of feed requirements at the herd level is dependent on individual cow variation in the 

herd. Moreover, researching the variation in feed requirements of individual cows has 
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been identified as an opportunity in the quest of determining the potential of 

individualised feeding in pasture-based dairy farm systems (Hills et al. 2015). However, 

no study to date has attempted to estimate the extent to which feed supply of ME and a 

range of nutrients for a herd at pasture vary daily, nor the extent to which this supply 

differs from the actual requirements of both individual cows in a herd, and the herd as an 

aggregate. 

Addressing the gaps in research knowledge identified in this literature review 

would lead to unveil the potential of proximal hyperspectral sensing for measuring 

herbage nutritive value and managing its allocation to best effect in a pasture-based dairy 

farm system. 
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3.1 Abstract 

Proximal hyperspectral sensing of dairy herbage canopies has been shown to be 

suitable for estimating the nutritive value of herbage in the field. However, despite the 

suitability of this technology, the work done to date is of limited use to grazing 

management. This is because all the work to date has focused on determining the nutritive 

value of tissue in the whole sward vertical profile, without considering that only a limited 

portion of the vertical profile of the sward should be made available to the grazing cow. 

This study focuses on calibrating and validating models for hyperspectral canopy 

reflectance data that are useful to determine the nutritive value of ryegrass-white clover 

mixed herbage available to the grazing cow. Hyperspectral measurements and herbage 

cuts were collected from 269 sampling plots from a dairy farm from July 2017 to May 

2018. Hyperspectral data were pre-treated by applying a Savitzky-Golay filter followed 

by a Gap–segment derivative algorithm. Herbage samples were analysed for 

determination of herbage nutritive value traits DOMD, ME, CP, NDF and ADF. Partial 

least squares regression was performed to calibrate the spectra against the five nutritive 

value traits. Results indicate that proximal hyperspectral measurements of dairy herbage 

canopies are useful to determine the nutritive value of the vertical portion of the sward 

that should be made available to the grazing cow. However, the accuracy of the models 

developed varied depending on the nutritive value trait. Relationships between the spectra 

and CP were stronger (R2=0.78) than the relationships obtained between the spectra and 

DOMD, ME, NDF and ADF (0.57< R2 <0.61). This study highlights that the 

characterisation of herbage nutritive value of a limited portion of the vertical strata of the 

canopy may come at the expense of a potential loss in accuracy of the calibration models. 

The possibility of being able to use proximal sensing for the estimation of herbage 

nutritive value in the field could contribute to more efficient grazing management with 

potential economic benefits for the farming business. 

Key words: proximal hyperspectral sensing, nutritive value measurement, dairy herbage, 

grazing management 

3.2 Introduction 

With increasing environmental concerns and the need to remain low-cost in a 

competitive industry, improving the efficiency with which herbage is converted into milk 
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remains the best strategy to maintain New Zealand’s competitive advantage in dairying. 

Research suggests that improved knowledge of herbage mass availability of the farm can 

increase dairy farm profits by increasing the precision of daily herbage allocation (Beukes 

et al. 2015). Nevertheless, allocating herbage with a sole focus on herbage mass 

measurement may not always result in the most optimal allocation decisions. This is 

because, given a desired level of performance, demand for herbage depends on the energy 

and nutrient content available in the herbage allocated to the animals (i.e. its nutritive 

value, NV) (Waghorn and Clark 2004). The decision on the amount of herbage to allocate 

to cows may therefore differ if herbage resources vary in their NV (Poppi 1996). Thus, if 

differences in herbage NV among the many herbage resources to graze on a farm are not 

considered in the allocation process, then differences between actual and expected 

herbage intakes should be expected. At any grazing event, different than expected, actual 

dry-matter intakes can result in daily animal performance, animal response to 

supplements and post-grazing residual targets not being met (Dillon 2007; Ganche et al. 

2013). In the long term, consistently defoliating herbages at suboptimal post-grazing 

residual heights will result in increased feed wastage, reduced herbage production, 

herbage persistence, herbage utilisation, NV and milk production at the farm level, 

ultimately reducing the potential profitability of the farm system (Lee et al. 2007; 

Macdonald et al. 2010; Beukes et al. 2015).   

Recently, Shalloo et al. (2018) and French et al. (2014) suggested that rapid, 

objective herbage NV measurement presents an important opportunity to improve grazing 

management on pasture-based dairy farm systems. Nevertheless, these authors argue that 

the lack of measurement tools available for their use on farms has limited the possibility 

of taking advantage of such opportunity. Objective measurement of herbage NV has 

traditionally involved grab sampling representative samples of herbage at the height 

grazed by the cows and sending these to a laboratory for analysis (Cosgrove et al. 1998). 

Analysis of samples for dairy cow nutrition usually involves determination of digestible 

organic matter in dry matter (DOMD), metabolisable energy (ME), crude protein (CP), 

neutral detergent fibre (NDF) and acid detergent fibre (ADF) (Waghorn and Clark 2004). 

Wet chemistry or near-infrared spectroscopy (NIRS) are the most common laboratory 

techniques used for the determination of herbage NV (Marten et al. 1989; Corson et al. 

1999). The whole process of collecting, preparing and analysing samples is expensive 

and time-consuming, making it impractical for their use in rapid decision-making. 
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Alternatively, field assessment of herbage quality indicators such as leaf stage of grass 

species (Fulkerson and Donaghy 2001), leaf to stem ratio, stage of growth, species 

composition and proportion of legume in the sward, can be used as surrogate measures of 

herbage NV (Bell 2006; Chapman et al. 2014). Although useful, these indicators fail to 

provide the actual objective measures required for precise diet formulations, because 

other factors such as soil moisture and fertility also affect herbage NV (Ball et al. 2001; 

Waghorn and Clark 2004; Muller 2011). 

Recently, increasing attention is being placed on sensing technology as a suitable 

tool for delivering rapid and objective measures of herbage NV (Shalloo et al. 2018). 

Spectral signatures of herbage canopies have unique features that are useful to 

characterise biochemical properties associated with their NV (Govender et al. 2007; 

Thenkabail and Lyon 2016). For instance, it is well established that canopy reflectance in 

the visible region of the electromagnetic spectrum is strongly determined by chlorophyll 

pigments (Thenkabail and Lyon 2016). Since most nitrogen in plant tissue is contained in 

chlorophyll-protein complexes, strong relationships between canopy reflectance in the 

visible wavelengths and CP content have been established (Mutanga et al. 2004; 

Pullanagari et al. 2012b).  

Progress in sensor development has resulted in increased spectral and spatial 

resolutions and the possibility of studying herbage NV with greater accuracy and at 

different spatial and temporal scales (Thenkabail and Lyon 2016; Godinho et al. 2018). 

Sensors mounted on satellites or unmanned aerial vehicles (UAVs) have been valuable 

for studying the spatial variation of NV of sown pastures and natural grasslands with 

detail and at large scales (Govender et al. 2007; Yule et al. 2015; Ali et al. 2016; 

Kawamura et al. 2017). Although useful for studying the spatial variation of vegetation, 

the challenges imposed by the weather (Von Bueren et al. 2015), cloud distortive effects 

(Ali et al. 2016) and the unavailability of satellite images on a regular basis (Ali et al. 

2016) pose a limit to the temporal scale at which remote tools can be used. Alternatively, 

proximal sensors offer a flexible alternative to the study of phenomena requiring regular 

and frequent spectral measurements.  

Proximal sensors can be carried by hand or mounted on vehicles for speed 

capability (Gebbers and Adamchuk 2010) and used in conjunction with active lighting 

systems to allow independence of ambient light (Sanches et al. 2009). A number of 
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researchers have studied the relationships between canopy spectral features and herbage 

NV using proximal- optical (Roberts et al. 2015), multispectral (Pullanagari et al. 2012a; 

Pullanagari et al. 2013) and hyperspectral (Kawamura et al. 2008; Kawamura et al. 2009; 

Pullanagari et al. 2012b; Adjorlolo et al. 2015) sensors with varying success. Overall, 

empirical models based on hi-resolution hyperspectral sensor data are more accurate than 

those using multispectral sensing, and accuracies improve if an active lighting system is 

used. Although much of the research on the topic has focused on establishing empirical 

relationships in relatively well-controlled conditions, recent research (Pullanagari et al. 

2012b; Adjorlolo et al. 2015) demonstrate that hyperspectral sensing is also suitable for 

measuring herbage NV in the field. These advances show the potential of sensing 

technology for their use in commercial farm management, but despite success, the work 

done so far is of limited use for their use in grazing management. 

To date, all of the work on the topic has focused on finding relationships between 

the spectra of canopies and the NV of tissue in the whole herbage profile, without 

considering that NV decreases with canopy depth (Cosgrove et al. 1998; Delagarde et al. 

2000; Nave et al. 2014) and that only a limited portion of the vertical profile of herbage 

should be made available to the grazing cow (Macdonald et al. 2010). Consequently, if 

hyperspectral sensing is to provide a useful tool to support grazing management, canopy 

spectra should be able to predict the NV of the portion of the herbage that should be 

grazed instead of the complete vertical profile. On the other hand, although proximal 

hyperspectral sensors measure the first surface they sense (Sanches 2009), there is 

evidence that, even at full closure, canopy spectral signatures of grass herbage can also 

be influenced by the lower strata not grazed by cows (Asner 1998). This could potentially 

affect the use of proximal hyperspectral sensing for predicting of herbage NV for grazing 

management, as sensed but ungrazeable material at the bottom of the canopy might affect 

the calibration of the instrument. Research is required to determine the capability of 

proximal hyperspectral sensing to measure herbage NV of the portion of herbage that 

should be made available to the grazing cow. If found useful, proximal hyperspectral 

sensors can provide a rapid NV measurement tool that could be useful to allocate herbage 

and supplements to cows with greater precision, with positive consequences to the overall 

efficiency of the farm system. 

This chapter focuses on calibrating and validating models for hyperspectral canopy 

reflectance data that are useful to determine herbage NV traits DOMD, ME, CP, NDF 
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and ADF from the vertical portion of the sward that should be made available to lactating 

dairy cows in accordance to good grazing management practice. 

3.3 Materials and method 

3.3.1 Study site 

This study was conducted at Dairy 1 (D1), a dairy farm owned by Massey 

University and located in Palmerston North, New Zealand. The annual mean rainfall at 

the location is 980mm, the mean annual temperature is 13.1°C and the mean low and 

mean high temperatures are 8.5 and 17.8°C, respectively (NIWA 2018). Herbage 

resources on the farm are mostly composed of perennial ryegrass (Lolium perenne L.) 

and white clover (Trifolium repens L.) mix, with some herbages also including red clover 

(Trifolium pratense) as part of the mix. Weeds such as buttercup (Ranunculus spp.) and 

annual poa (Poa annua) and herbs as chicory (Cichorium intybus L.) and plantain 

(Plantago lanceolata) are also likely to be found but in small abundance. Farm soils 

comprise a complex assemblage of free-draining alluvial soils including Rangitikei 

Loamy Sand, Manawatu Fine Sandy Loam, Manawatu Sand Loam/Gravelly phase, 

Manawatu Mottled Silt Loam and Karapoti Brown Sandy Loam, with these soils being 

well drained and naturally fertile. Irrigation is available on nearly 25% of the farm area 

and is used during summer when soil water deficits are likely to occur.  

3.3.2 Canopy spectral measurements 

Canopy spectral measurements were collected every two to three weeks from 31 

July 2017 to 10 May 2018 from paddocks at pre-grazing stage (herbage mass of 2600 kg 

DM/ha or more) using an ASD FieldSpec 4 High Resolution spectroradiometer 

(Analytical Spectral Devices Inc., Boulder, CO, USA). The spectroradiometer acquires 

spectra in a wavelength range from 350 to 2500 nm and has a spectral resolution of 3 nm 

in the VisNIR (350 – 1000 nm) and of 8 nm in the NIR-SWIR (1001–2500 nm) region of 

the spectrum. The spectral sampling interval of the instrument is factory set at 1.4 nm and 

1.1 nm for the VisNIR and NIR-SWIR wavelengths, respectively. This feature defines 

the interval, in wavelength units, between data points in the measured spectrum and is 

independent of the spectral resolution (Hatchell 1999). In order to simplify further data 
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analysis, wavelength units along the spectrum were standardised to 1 nm with the user 

interface software ASD RS3.  

Noise caused by changes in daylight and wind conditions was minimised by using 

the instrument in combination with a Canopy Pasture Probe (CAPP) system as developed 

by Sanches (2009). The CAPP consists of an inverted handled black plastic bin with a 50 

watt tungsten-quartz-halogen lamp (ASD Inc., Boulder, CO, USA) attached on top. The 

CAPP lamp was powered by a 12v, 8000 mA lithium polymer battery, which ensured a 

stable source of light at maximum intensity for a day of fieldwork. Factory-calibrated 

radiance units were converted to reflectance units by calibrating the instrument against a 

clean ceramic white tile that was used as a reflectance standard of 100% light reflectance 

(i.e. R=1) (Sanches et al. 2009). The field-of-view of the spectroradiometer is 25°, which 

resulted in a measured circled surface area of 316 cm2. 

Hyperspectral canopy reflectance measurements were collected from 286 plots that 

were situated in the field so as the maximum range of herbage quality conditions was 

covered. A sampling plot consisted of the area delimited by a 50 x 50 cm wooden quadrat 

within which canopy reflectance measurements were acquired. In order to maximise 

spectral characterisation of the herbage canopy within the area delimited in each sampling 

plot, two measurements were acquired from three adjacent points each (i.e. measurement 

points) (Figure 3.1), six spectral measurements per sampling plot in total. The six spectral 

measurements were later averaged in order to obtain a single canopy signature per 

sampling plot. After spectra from each plot were acquired, photos of the canopies were 

taken to be used as ancillary data. 

 

 

Figure 3.1 Canopy spectral measurement of a sampling plot. 
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3.3.3 Herbage cuts  

After canopy spectral measurements in each sampling plot were acquired, herbage 

was cut to 4 cm in height using hand electric grass clippers and with the aid of a sward 

stick for height determination. The decision on the cutting height was made upon agreed 

principles of efficient, profitable grazing management for pasture-based dairy systems as 

summarised by Macdonald et al. (2010). After cutting, herbage samples were stored in 

labelled clean plastic bags in a polystyrene box with freeze pads in order to avoid heat 

deterioration of samples. Once the day of fieldwork was completed, samples were 

weighed, oven dried at 70°C for 48hs following the standard recommendation by the 

USDA (Marten et al. 1989). Thereafter, dried herbage samples were ground to pass a 1 

mm sieve and stored in individual sealed plastic bags in a dark dry place for further 

determination of NV.  

3.3.4 Determination of the nutritive value of herbage samples 

Bench-top near-infrared spectroscopy (NIRS) was used to determine ME 

(MJME/kg DM) and percentages of DOMD, CP, NDF and ADF in DM of dried and 

ground herbage spectral samples. Details on the accuracy of the calibration models used 

for the determination of herbage NV of herbage samples are provided in Appendix A.  

3.3.5 Spectral data pre-treatment 

Processes of transformation and signal processing were used to reduce 

abnormalities in the spectral measurements before relationships between canopy spectra 

and their nutritional characteristics could be established. Abnormalities across spectra 

might occur at random or systemically due to instrument internal factors such as 

differences in calibration among detectors (ASD Inc., Boulder, CO, USA) or external 

factors such as light leakage, background noise or excess of humidity during data 

collection in the case of field sampling (Sanches 2009). Pre-treatment of hyperspectral 

data is important to enhance absorbance features of the measured object by reducing the 

incidence of these abnormalities. In this study, the main objective was to determine the 

energy and nutrient content of herbage available for the grazing cow from absorbance 

features of herbage canopies, for which the development of empirical models were 
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required. Benefits of pre-treatment include increasing the repeatability of the modelling 

method, model robustness and accuracy (Stevens et al. 2013).  

The first step of pre-treatment was to reduce the signal gaps between the domains 

of the detector arrays by applying a splice correction gap of five using VisuaSpectPro 

software version 6.2. Increased noise at both ends of the spectrum due to increased noise 

caused by ambient light leaking into the CAPP during data collection, resulted in spectra 

in wavelengths ranging from 350 to 500 nm and from 2400 to 2500 nm being removed. 

The first approach to noise removal was to average the spectral measurements 

corresponding to each sample. Stevens et al. (2013) describe that by performing n 

repetitions of the measurements and averaging individual spectra, noise can decrease by 

a factor of √n. Further transformation involved converting the spectra from reflectance 

units (R) to absorbance units (log (1/R)). Converting spectra to absorbance units is useful 

to reduce non-linearity and therefore improve the accuracy of spectral regression models 

based on numerous wavelengths (Burns and Ciurczak 2007).  

Residual noise caused by additive and multiplicative scattering effects unrelated to 

the chemical nature of the samples (Burger and Geladi 2007) were treated by applying 

the ‘gapDer’ function available in the package Prospectr for R software (Stevens et al. 

2013) to the converted spectra. This function applies the Savitzky-Golay filtering 

followed by a Gap–segment derivative algorithm to the data. The window size of the 

smoothing filter was set at 45 and the gap-derivative function calculated for a first order 

derivative of segment size 20. Further abnormalities such as the effects of variation in 

baseline shift and curvilinearity were corrected by de-trending the spectrum by fitting a 

2nd–order polynomial to the signal and then subtracting it (Barnes et al. 1989). The final 

transformation step was to standardise the spectra by centring each wavelength to a zero 

mean and scaling it to a variance of one. Standardisation of spectra is useful to reduce 

multicollinearity among wavelengths and to increase accuracy of prediction models 

(Stevens et al. 2013). From now on, the spectral data that resulted from the spectra pre-

treatment described above will be referred to as the first derivative of absorbance (FDA).  

A principal component analysis (PCA) was performed on the canopy reflectance 

data in order to explore the presence of outliers in the dataset. PCA converts a large 

number of possibly correlated variables (i.e. wavelengths) to a limited number of 

principal components that explain the most variance in a dataset (Jobson 2012). Outlier 
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identification was based on sample principal components scores and supported by 

ancillary photography data and their interpretation in light of the literature on the topic. 

Samples identified as outliers were excluded from further analyses. 

3.3.6 Calibration model development 

Hyperspectral calibration models were developed for predicting the selected NV 

traits from canopy spectral data using the partial least-squares (PLS) regression modelling 

technique implemented with the PLS package for R software (Mevik and Wehrens 2007). 

The general regression equation to describe the calibration models can be conceptualised 

using the following notation:  

y=b1x1+b2x2+…+bnxn+e 

where: y is the NV trait response variable of interest, x are independent latent variables 

obtained from reduced wavelengths, b are the partial regression coefficients, and e is the 

residual error that is not explained by the model.  

PLS is a multivariate regression technique that is useful in developing prediction 

models using data sets that contain many predictor variables (e.g. wavelengths) that are 

possibly correlated, and the number of samples is relatively few (Jobson 2012). This 

technique reduces the high number of wavelengths in hyperspectral data to few 

uncorrelated latent variables (LVs) and then regresses the scores of the LVs that account 

for the most variance to the response variable of interest.  

In this study, the optimal number of LVs to retain in the models was selected as 

that yielding the minimum root mean square error of leave-one-out cross-validation 

(RMSE-CV) during the modelling procedure. In the leave-one-out technique, calibration 

models are trained using all of the samples but one that is left out for internal accuracy 

assessment. The process of training and validating the model is performed iteratively until 

all samples in the dataset have been used for validation. Thereafter, the algorithm 

calculates the root mean square error (RMSE) using model predictions and the actual 

values set aside across all iterations. 

The contribution of each wavelength to the predictive capability of the models was 

interpreted by calculating the variable importance in projection (VIP) (Wold et al. 1993) 

and PLS regression coefficients (RC) (Haaland and Thomas 1988) using the VIP and RC 
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functions available in the package ‘plsVarSel’ for R software (Mehmood et al. 2012). The 

VIP measures the importance of each predictor variable (wavelength) based on a model 

with a defined number of factors (LVs) (Wold et al. 1993) whilst the PLS regression 

coefficients are a single measure of association between each wavelength and the 

response variable (Mehmood et al. 2012). 

3.3.7 Model accuracy assessment 

Model accuracy, defined as the overall distance between predicted and observed 

values (Zar 1999), was assessed by randomly splitting the spectral dataset into two 

independent sets: training and validation sets. The training set comprised 80% of all data 

and was used to calibrate the models as explained in Section 3.3.6. The validation set 

comprised the remaining 20% of all data and was used to test the capability of calibrated 

models of predicting a set of unknown samples. Data partitioning ratio was based on 

recommendation of Pullanagari (comm. Pers.).  

Metrics used for assessing goodness of fit measures of the calibration equations in 

the training and validation data sets are presented in Table 3.1. 

 

Table 3.1 Goodness of fit measures of the calibration equations applied to the training 

and validation data sets. 

Metric Equation  

Coefficient of determination R2= 
∑ (ŷ-y̅)

2n
i=1

∑ (y-y̅)
2n

i=1

 (a) 

Root mean square error RMSE=√
∑ (ŷ-y )

2n
i=1

n
 (b) 

Relative prediction error  RPE =
RMSE

y̅
x 100 (c) 

Bias Bias=
1

n
 ∑ ( ŷ-y )

n

i=1

 (d) 

Ratio of prediction to deviation RPD=
SD (y)

RMSE
 (e) 

ŷ = predicted value, y = measured value, y̅ = mean of measured values, n = number of 

observations, SD = standard deviation of measured values. 
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The coefficient of determination and the RMSE are the most common metrics used 

for model fit assessment. The R2 (a) indicates the proportion of the variance in the 

reference data that is accounted for by the regression model. RMSE (b) is the standard 

deviation of the residuals (prediction errors) and represents an absolute measure of model 

accuracy. The RPE is the RMSE expressed as a percentage of the mean of the measured 

values (c), resulting in a standardised measure that is useful to compare models predicting 

responses of different magnitudes and/or units. Bias (d), is the mean difference between 

the predicted and measured values and is useful to identify systemic errors in the models. 

Negative bias values indicate a generalised sub-estimation by the models, while positive 

values indicate over-estimation. Finally, RPD (e) (William 1987) is the factor by which 

prediction accuracy increases compared with using the mean of measured values. A RPD 

value greater than 2 indicates that the calibration equation has good prediction and a RPD 

value lower than 2 indicates that predicted values are of poor quality and the equation 

cannot be used in practice. 

3.4 Results 

3.4.1 Descriptive statistics of reference nutritive values and spectral data 

Descriptive statistics of herbage NV reference data used in the development and 

external validation of canopy spectral calibration models are summarised in Figure 3.2.  
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Figure 3.2 Boxplots, means (M), standard deviations (SD), and coefficients of variation 

(CV) of measured herbage NV traits for the training (n=217) and testing (n=52) datasets 

(Diamond shaped points indicate mean values). ME= metabolisable energy, CP= crude 

protein, NDF= neutral detergent fibre, ADF= acid detergent fibre, DOMD= digestible 

organic matter in dry matter. 

 

Crude protein was the most variable NV trait in both datasets (CV= 20% and 22% 

for the training and testing datasets, respectively) and DOMD was the least variable (CV= 

3% for both datasets). Dispersion of NV was sufficient to establish significant 

interrelationships between the traits measured (Table 3.2). 

  

Table 3.2 Correlation matrix of herbage nutritive value (NV) traits of training and 

validation herbage samples.  

  Training  Validation 

Trait  ME CP NDF ADF DOMD  ME CP NDF ADF DOMD 

ME  1.00      1.00     

CP  0.17** 1.00     0.21* 1.00    

NDF  -0.77*** -0.17* 1.00    -0.86*** -0.25* 1.00   

ADF  -0.78*** -0.16* 0.89*** 1.00   -0.87*** -0.20* 0.95*** 1.00  

DOMD  0.73*** 0.13* -0.89*** -0.75*** 1.00  0.82*** -0.16* -0.90*** -0.82*** 1.00 
* Significant at p < 0.05, ** Significant at p < 0.01, *** Significant at p < 0.001. 

ME= metabolisable energy, CP= crude protein, NDF= neutral detergent fibre, ADF= acid 

detergent fibre, DOMD= digestible organic matter in dry matter.    
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Significant and positive relationships (p < 0.05) were observed between fibre traits 

and among DOMD, CP and ME and, with traits in these two groups being negatively 

associated to each other (Table 3.2). The strength of the relationships varied among traits 

with stronger correlations being observed among DOMD, ME and NDF and weaker 

correlations between CP and NDF, ADF, ME and DOMD.  

3.4.2 Canopy spectra outliers  

A score plot summarising the results of the principal component analysis performed 

on the canopy reflectance data is shown in Figures 3.3. Spectral samples with score values 

close to the mean appear close to the origin of the score plot, while samples that are distant 

to the origin are far distant to the mean and can be considered outliers.  

 

 

Figure 3.3 Score plot of herbage canopy reflectance data. PC1= principal component 1, 

PC2= principal component 2. 

 

Results of the PCA indicated that the first two principal components explained 

63.76% of the variance in the dataset, with PC1 and PC2 being accounted for 43.8% and 

19.9% of the total variance, respectively. Score values in Figure 3.3 show that the optical 

features of canopy spectral samples collected in summer had a high influence on 
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explaining variation of PC1, as scores of these samples tend to vary along the horizontal, 

rather than the vertical axis of the plot. Conversely, samples collected in spring, autumn, 

and winter had the highest influence on determining PC2. A visual assessment of canopy 

photographs led to suggest that abundance of senescent leaves might explain variance 

associated with PC1 and that canopy structural features (i.e. leaf area index, LAI and leaf 

angle distribution, LAD) could be driving spectral variance associated with PC2 (example 

photos in Figure 3.3). Visual assessment of canopies associated with extremely high 

scores for PC1 indicated that seventeen of these samples with relatively high abundance 

of senescent leaves, standing litter and soil background exposure could be considered 

outliers and excluded from further analyses. The correlations between reflectance of each 

wavelength and the two main principal components (Figure 3.4) show that a higher 

number of VIS and far-SWIR wavelengths were correlated with PC1 while relatively 

more wavelengths in the NIR region of the spectrum were related to PC2. 

 

 

Figure 3.4 Component loadings of herbage canopy reflectance. The shaded area 

highlights wavelengths with loadings higher than 0.025 or lower than -0.025. PC1= 

principal component 1, PC2= principal component 2. 

 

3.4.3 Canopy spectra  

Descriptive statistics of herbage canopy spectral data are summarised in Figure 3.5. 
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Figure 3.5 Reflectance (a) and first derivative of absorbance (FDA) (b) of herbage 

canopies. The black solid line is the wavelength mean value and the blue shaded area 

represents the data within one standard deviation above and below the mean. The green 

solid line is the coefficient of variation expressed as a percentage (CV%) (n=269). 

 

As shown in Figure 3.5, canopy reflectance (a) exhibited the typical pattern 

associated with vegetation spectral signatures (Thenkabail and Lyon 2016). Canopy 

reflectance variation was higher in wavelengths ranging from 1200 to 1400 nm and from 

1500 to 1800 nm. After pre-treatment (b), spectra variation was higher in the waveband 

centred at 660 nm of the visible region, the waveband centred at 1200 nm, with higher 

variation being also observed in SWIR wavelengths ranging from 1600 to 1800 nm. 

3.4.4 Partial least squares 

Model accuracy  

The overall accuracy of PLS regression models was satisfactory (Table 3.3). 

Accuracy values for the trained and the validation data were consistent. Low RMSE, RPE 

and bias values and high R2 and RPD values indicated that the spectra of canopies were 

useful to predict the NV of the portion of the herbage that should be made available to 

the grazing cow. However, model accuracy varied depending on the NV trait modelled. 
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Table 3.3 Accuracy of partial least-squares regression calibration models built for 

determining the nutritive value (NV) traits of herbage available for grazing from canopy 

spectral measurements using the training and validation datasets.  

Dataset NV trait R2 RMSE RPE Bias RPD 

 Training 

ME 0.57 0.43 4.01 -6.71e-16 1.53 

CP 0.78 1.72 9.57 -2.75e-15 2.53 

NDF 0.59 3.13 7.79 -1.90e-15 1.58 

ADF 0.59 1.77 8.28 2.84e-15 1.56 

DOMD 0.61 1.52 2.35 4.19e-16 2.07 

 Validation 

ME 0.58 0.55 5.15 -7.27e-02 1.27 

CP 0.79 1.87 10.51 -8.44e-03 2.12 

NDF 0.60 3.08 7.59 -4.00e-01 1.21 

ADF 0.53 1.64 7.81 7.24e-02 1.34 

DOMD 0.66 1.44 2.22 -3.19e-01 1.79 

ME= metabolisable energy, CP= crude protein, NDF= neutral detergent fibre, ADF= acid 

detergent fibre, DOMD= digestible organic matter in dry matter. 

 

The results show that crude protein was predicted with the highest accuracy among 

all NV traits (R2= 0.78 and RPD = 2.53), with the accuracies of the remaining models 

being relatively lower (0.61 > R2 > 0.57 and 2.07 > RPD > 1.53).  

Wavelength contribution to the predictive capability of the calibration models 

The VIP scores and regression coefficients in Figure 3.6 illustrate the contribution 

of each wavelength to the predictive ability of the calibration models. As suggested by 

Chong and Jun (2005) a VIP threshold value of 1 was used to indicate the predictor 

variables that are of high importance for predicting the response variable of interest. 

Similarly, regression coefficients above or below zero indicate positive or negative 

relationships between wavelengths and the predicted variable of interest, respectively.  
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Figure 3.6 Variable of importance in projection (VIP) scores and regression coefficients 

(RC) of canopy spectral calibration models developed for the determination of herbage 

nutritive value traits. ME= metabolisable energy, CP= crude protein, NDF= neutral 

detergent fibre, ADF= acid detergent fibre, DOMD= digestible organic matter in dry 

matter. 

 

There were a number of wavelengths in the VIS (540–700 nm), NIR (750–800 

nm, 900–1000 nm and 1100–1400 nm) and SWIR (1820–1880 nm and 2125–2300 nm) 

regions of the spectrum (Figure 3.6) that were important and common predictors across 

models.  

Greater similarities in the VIP patterns were observed between the fibre 

calibration models, and between the fibre and DOMD and ME models. Wavelengths in 

the 2200 to 2240 nm range were particularly important for the calibration of ADF, NDF, 

DOMD and ME, with absorbance in these wavelengths being positively related with 
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fibres but negatively related with DOMD and ME. Other relevant wavelengths associated 

with these calibrations were located in the 580 to 635, 660 to 690 nm, 910 to 990 nm, 

1270 to 1330 nm, 1900 to 1980 nm, 2210 to 2280 nm and 2320 to 2350 nm ranges, with 

the 1820 to 1860 nm range being of particular relevance for ADF and NDF but not for 

DOMD or ME.  

The FDA in wavelengths ranging from 540–570 nm and from 730–780 nm was of 

high importance in the determination of CP. Likewise, absorbance in SWIR wavelengths 

ranging from 2140 to 2300 nm region was also an important determinant of CP.  

3.5 Discussion 

3.5.1 Usefulness of the calibrations for grazing management  

The mean herbage nutritive values of the samples used in the development and 

validation of canopy spectral calibration models for the determination of herbage NV 

were similar to benchmark values commonly used in the dairy industry (DairyNZ 2017). 

DairyNZ (2017) reports reference values for ryegrass-based herbages of ME=10.7 MJ/kg 

DM, CP= 16.8% and NDF= 47.3% for their use as a feed for dairy cows throughout the 

production season. Similar values for ME, CP, DOMD, NDF and ADF are found in 

Holmes (2007) and Moller (1997). These similarities indicate that the samples collected 

were an adequate standard with reference to the NV of the herbage available for grazing 

management, and therefore, suitable for the purpose of this study. Although the 

correlations between CP and any of the other NV trait measured were not very strong, 

correlations found here were consistent with previous research (Moller 1997) and are 

explained by the relative contribution of the chemical constituents of plant cells present 

on herbage samples and their relationship with the different measured herbage NV traits. 

3.5.2 Identification of spectral outliers  

Although this research did not set out to study the influence of soil background 

cover, litter or canopy structural attributes on canopy spectral signatures, the results of 

the PCA performed on canopy spectra sustained by the visual assessment of canopy 

samples led to suggest that these factors could be influencing acquired spectral data. 

Previous studies (Asner 1998; Asner and Heidebrecht 2002; Numata et al. 2008) 
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demonstrated that non-photosynthetic plant tissue and soil background exposure have a 

strong influence on determining canopy reflectance of grass swards in the VIS and far-

SWIR regions of the spectrum. Moreover, Asner (1998) describes that canopy structural 

variables such as LAI and LAD of green vegetation have a greater influence on canopy 

reflectance in NIR wavelengths. The fact that VIS and far-SWIR specific wavelengths 

that were relevant contributors to PC1 and were also related to non-grazeable attributes 

of canopy spectra (e.g. soil background exposure or abundance senescent plant tissue) by 

previous research was a useful guide to assess the cause of the differences among spectral 

samples and the identification of potential outliers. The exclusion of potential outliers 

from the development of spectral calibration models was useful to obtain calibrations that 

were more representative of the diet of the grazing cow, and therefore more suitable for 

the purpose of this study. 

3.5.3 Predictive capability of calibration models 

Model accuracy results are the summary of a combination of field, pre-treatment 

and analytical processes. Mathematical transformation of the spectra was useful to 

enhance the optical properties of biochemicals in the canopy and reduce the incidence of 

noise, allowing the replicability of results and robustness of the modelling method. 

Hyperspectral sensors provide with opportunities to develop a range of measurements 

given the richness of the data acquired by these systems (Numata 2012). In this study, the 

complete spectrum was used by applying a PLS regression statistical approach for the 

development of calibrations, but other approaches can be used. For instance, previous 

studies have built vegetation indices from hyperspectral data to study chemical 

composition of grasslands (Serrano et al. 2002; Fava et al. 2009) or used a continuum 

removal of normalised absorption features to identify and select specific wavebands 

associated with a response variable of interest (Serrano et al. 2002; Mutanga et al. 2004; 

Mutanga et al. 2005). The PLS approach used in this study allowed yielding predictive 

capability to wavelengths that would be most likely overlooked if only limited wavebands 

in the spectra were used. This is of particular relevance with data collected in field-like 

conditions, since the interaction between abiotic and biotic factors can influence optical 

features of canopies (Hill 2004), affecting the determination of biochemical attributes of 

plants from pre-established spectral features. Although using a full spectrum PLS 

regression approach is beneficial when dealing with spectra collected in variable 
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conditions, Biewer et al. (2009) describe that this approach can be further improved if the 

statistical method is coupled with a wavelength selection criteria. 

Consistency of accuracy for calibration and validation datasets across models 

indicated that the models were robust and therefore useful for predicting new samples 

(Biancolillo and Marini 2018). This finding was of relevance to this study since it 

signified that proximal hyperspectral sensing could potentially be used in an array of field 

conditions with confidence, with this attribute being a desirable characteristic of herbage 

measuring tools for farmers (Eastwood and Dela Rue 2017). However, as expected, the 

accuracies of the calibrations developed from field spectral measurements were much 

lower than the threshold values used in bench-top NIRS spectroscopy (Malley et al. 

2004). In NIRS-determined laboratory analyses for agricultural products, predictions are 

deemed ‘Inadequate’ with R2 < 0.70 and RPD < 1.75. According to these threshold 

values, only CP was determined with some degree of usefulness. Nevertheless, Biewer et 

al. (2009) suggest that field measurements reduce prediction accuracy of NIRS models 

and so therefore, accuracies lower than laboratory reference standards could also indicate 

‘good results’. 

There were inconsistencies among the various field studies linking herbage NV and 

the spectra of herbage canopies (Kawamura et al. 2008; Pullanagari et al. 2012b; 

Adjorlolo et al. 2015). Our models were able to predict CP, ME, NDF and ADF with 

lower R2 values than Pullanagari et al. (2012b) (R2= 0.82, R2= 0.83, R2= 0.75, R2= 0.82 

for CP, ME, NDF and ADF, respectively). The R2 value obtained for CP in this research 

was higher than Adjorlolo et al. (2015) (R2= 0.51) and Kawamura et al. (2008) (R2= 0.46). 

Results for the fibre models were similar to the models reported by Adjorlolo et al. (2015) 

(R2= 0.60 for NDF and ADF) but higher than the NDF model by Kawamura et al. (2008) 

(R2= 0.37) and lower than the ADF model (R2= 0.65). Despite the difference in the 

sampling method and differences in the pre-treatment of spectral data, all the models were 

developed using PLS on the first derivative of canopy reflectance. A major factor 

influencing model accuracy among studies (and between the models in this study), 

seemed to be associated with the variability of the reference NV data used in the 

calibrations, with better performing models being associated with higher coefficients of 

variation for any of the NV traits considered.  
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The effect of the variability of the dataset used on model accuracy can be illustrated 

by the following observation: Pullanagari et al. (2012b) were able to predict ME with a 

RMSE of 0.46 and a RPD of 2.46 using training data of mixed herbage with a SD of 1.16, 

while this study reports a similar RMSE (0.43) but a lower RPD (1.53) using a less 

variable dataset (SD=0.7). Because RPD is calculated as the ratio between RMSE and SD 

(Equation e in Table 3.1) and there were similar predictive errors between the models, the 

higher RPD found by Pullanagari et al. (2012b) compared to this study is likely to be 

associated with the higher variability of their dataset rather than in the methods used. 

Similar observations about the influence of the variability of the dataset on model 

performance were made by other authors (Biewer et al. 2009; Sanches 2009). The little 

variability of the data collected was most likely associated with the sampling strategy 

chosen, and thus the objective of this study. Because modelling of spectra aimed at 

characterising herbage NV of herbage to allocate to grazing cows (i.e. herbage at pre-

grazing stage), the variability of NV was expected to be low since it is the purpose of 

management to control the quality and quantity of herbage offered to the animals 

(Macdonald et al. 2010). In addition, because data were collected from a single farm, little 

variation of herbage NV influential factors including soil type, soil fertility, fertilisation 

and grazing policy have most likely contributed to the reduced variability of herbage NV 

samples.   

The fact that CP was predicted with higher accuracy than DOMD, ME, NDF and 

ADF (Table 3.3) may partially reflect the incidence of the herbage sampling method used. 

Asner (1998) describes that even when the leaf area index is high (LAI>5), the lower 

strata of a sward can influence the spectral signature of grass canopies. If nutrient content 

in the lower strata, consisting of tissue of low protein and high fibre content (thus, low 

digestibility and ME), had an influence on the spectral measurements, but was not 

considered in the calibrations, then such mismatch may partially explain the lower 

performance of the fibre, DOMD and ME models over the CP model. In this study, it was 

assumed that because herbage samples were collected at pre-grazing stage, the incidence 

of the lower strata on canopy reflectance would be minimal. However, it is not possible 

to assert if the lower strata had a significant influence on canopy spectra from the data 

collected in this research. 

The technique used to acquire spectra in the field might also have contributed to 

predictive error. This is because the characterisation of the optical properties of the 
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herbage confined to the area set by the wooden quadrat (Figure 3.1) may have not been 

adequate given the limited number and distribution of spectral measurements acquired 

within the sampling plot. The error associated with the determination of herbage NV of 

reference samples is also likely to have influenced the accuracy of the models. For 

instance, a lower error associated with the determination reference values for CP 

compared to NDF (Table A.1 in Appendix A), may partially explain the better predictions 

of CP over NDF by their respective canopy spectral models. The success of the NIRS 

calibration technique is dependent on good quality reference data (Corson et al. 1999). 

Thus, better predictions can be expected if models are built exclusively with wet 

chemistry determined reference data, as this is the standard procedure to determine the 

true value of nutrient content in animal feed samples (Marten et al. 1989). An example of 

the NV of fifty reference samples determined using wet chemistry, NIRS and proximal 

hyperspectral sensing of herbage canopies is available in Appendix B. 

3.5.4 Wavelength contribution for predicting herbage nutritive value 

The commonalities in the VIP patterns shown across calibration models in Figure 

3.6 can be explained by the overlapping absorption features associated with different plant 

materials. In this sense, reflectance of vegetation is primarily influenced by the optical 

properties of plant materials including proteins, lignin, cellulose, sugar and starch, which 

are mostly composed of C–O, O–H, C–H and N–H bonds (Clark and Lamb 1991). The 

vibrations of these bonds, image the absorptions of different plant materials. However, 

because different materials can have similar and overlapping absorption features, a single 

waveband cannot be directly related to the chemical abundance of one plant constituent. 

It is thus the relative response to the many wavelengths of the spectrum that is the feature 

that defines the determination of a plant material from their spectra. Materials that are 

similar in composition would exhibit similar reflectance patterns than those with 

completely different bonding structures. Such characteristic can be easily observed when 

comparing the VIP patterns for ADF and NDF (Figure 3.6). NDF and ADF are 

compounds of celluloses and lignin, with the absence of hemicelluloses in ADF (NRC 

2001) being the main biochemical difference between these fibres, so not surprisingly 

these models were influenced by almost the same wavelengths. 
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The relationships between FDA in the far-SWIR region and the four herbage NV 

traits can be associated with the absorption of C–H bends common in organic compounds. 

Clark and Lamb (1991) describes that digestibility of the fibrous portion of plants in 

highly related with absorbance in the 2300 nm. Moreover, Curran (1994) identifies that 

absorptions around 910 to 990 nm relate to oil and starch content, while absorptions at 

1200 nm and between 1900 to 1980 nm relate to starch, cellulose and lignin and at 1820 

nm with cellulose. The concentration of chlorophyll-protein complexes in plant tissue and 

their optical features can explain the relationship between VIS and red-edge wavelengths 

and CP. In this sense, chlorophyll pigments are good absorbers of electromagnetic energy 

in the visible region (Curran 1994) and the photosynthetic activity of chlorophylls is 

highly responsible of reflectance in the red-edge wavelengths (Curran 1994; Kokaly and 

Clark 1999; Pettai et al. 2005). Because chlorophylls are the major source of protein in 

vegetation, the relationships between VIS and red-edge wavelengths can explain content 

of CP in herbage tissue. At the far end of the spectrum, the relationships between canopy 

FDA and CP can be attributed to the ability of the sensor of detecting chemical bond 

activity linked to N. Curran (1994) identifies that the wavebands centred at 2130, 2180 

and 2300 nm are linked to the absorption mechanism of vibration of N–H and C–H stretch 

bonds in proteins. 

Many of the wavelengths that were relevant predictors of the calibrations developed 

here were also useful in previous studies linking the spectra of fresh canopies and their 

NV (Mutanga et al. 2004; Kawamura et al. 2008; Pullanagari et al. 2012b; Adjorlolo et 

al. 2015). For instance, visible wavelengths and wavelengths ranging from 2140 to 2300 

nm were consistently important in the determination of CP (Adjorlolo et al. 2015; 

Kawamura et al. 2008; Mutanga et al. 2004; Pullanagari et al. 2012b) while spectra around 

2220 to 2250 nm was consistently related to ADF (Kawamura et al. 2008; Pullanagari et 

al. 2012b). Interestingly, in this study a relatively large proportion of wavelengths in the 

NIR-plateau (800–1400 nm) were related to any of the NV traits compared to other 

studies. The NIR plateau is highly determinant of canopy health and structural features 

such as LAI and biomass (Thenkabail and Lyon 2016) and has a limited to null 

relationship with the concentration of biochemicals in plant tissue (Curran 1994). It is 

possible that reflectance in wavelengths in this region is acting as a covariate of herbage 

NV in our models, resulting these wavelengths in an indirect measure of the NV trait. For 

instance, it would be expected that at pre-grazing stage a vigorous canopy of high LAI 
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could be associated with a higher CP content than an unenergetic canopy of low LAI. 

Darvishzadeh et al. (2008) identified that LAI of grass canopies is strongly determined 

by reflectance at 1114 nm, because this wavelength has been related with CP in our 

modelling, then it is likely that the explanation suggested above be true. It is also possible 

that water absorption is acting as a confounding factor in the models, resulting in a 

relatively higher importance being attributed to NIR- over SWIR wavelengths. Kumar et 

al. (2002) describes that water absorption can overshadow biochemical features at 

wavelengths beyond 1400 nm and that this is the main reason of improved predictions 

from dried over fresh foliage in laboratory studies. The continuum removal method 

developed by Kokaly and Clark (1999) can reduce the influence of the water absorption 

bands on the determination of any attribute of interest up to 10% by selecting only the 

bands with absorption features that are relevant to these attributes. 

3.6 Conclusion 

This study shows that proximal hyperspectral measurements of dairy herbage 

canopies are useful to determine the nutritive value of the vertical portion of herbage that 

is available to the grazing cow. The PLS regression approach used in this research indicate 

that the relationships between the spectra and CP were stronger (R2= 0.78) than the 

relationships obtained between the spectra and DOMD, ME, NDF and ADF (0.57 < R2  

< 0.61). This study highlights that, although useful from a cow nutrition standpoint, the 

characterisation of the NV of a limited portion of the vertical strata of herbage may come 

at the expense of a potential loss in accuracy in the calibration of canopy spectra. This is 

because the lower strata of herbage may influence the optical features of canopies even 

at high biomass levels (pre-grazing stage). Being able to utilise proximal sensing for 

measuring the NV of the herbage available to the grazing cow in the field could lead to 

more efficient grazing management. Improved precision of herbage allocation at any 

single grazing event can lead to potential short- and long-term efficiency and productivity 

gains at the farm level. Despite potential benefits of rapid herbage NV measurement, 

further research is required to analyse the variation of herbage NV on a day-to-day basis 

and to discuss the potential relevance that such variation could have on the nutrition of 

the dairy cow.  
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4.1 Abstract 

A large volume of research has been undertaken to study variation of herbage 

nutritive value from dairy pastures but work to date has failed to provide the adequate 

level of detail required for its use in daily grazing management. This study describes 

temporal and spatial variation of herbage nutritive value offered daily to cows on a 

pasture-based dairy farm system using proximal hyperspectral sensing. It also determines 

the extent to which variation of nutritive value justifies daily nutritive value measurement. 

Hyperspectral data was collected from 12 sampling plots from four to six paddocks at 

pre-grazing every two to three weeks during production seasons 2016-17 and 2017-18 at 

Massey University’s Dairy 1 farm, Palmerston North, New Zealand. Nutritive value 

traits: metabolisable energy, crude protein, neutral detergent fibre, acid detergent fibre 

and digestible organic matter in dry matter were determined from hyperspectral samples 

using calibrations developed in chapter 3. Variation of herbage nutritive value offered 

daily to cows was analysed using descriptive statistics. Mixed linear models which used 

production seasons and months within production seasons as fixed effects and paddocks 

as random effects were used to compute multiple comparisons of least-squares means of 

herbage nutritive value. An ANOVA was performed with random linear models using 

production seasons, months within production seasons and paddocks as random effects 

in order to determine the extent to which herbage nutritive value measurement was 

justifiable in face of these sources of variance. Least-squares means comparisons results 

show that the nutritive value of herbage dropped during summer compared to spring or 

autumn months (p< 0.05), but also that the nutritive value of herbage offered from march 

onwards varied between production seasons (p< 0.05). Relative contribution of month 

within production season to nutritive value variance was higher than (42.7%) production 

season (13.1%) or paddock (10.7%). Random error accounted for an average of 33.4% of 

total variance across nutritive value traits, suggesting that there is potential use for 

nutritive value measurement. Day-to-day variation of herbage suggests that content of 

metabolisable energy can be a limitation to cow performance from grazed herbage, while 

crude protein is often found in excess to requirements. The implications of herbage 

nutritive value variation in time and space for grazing management are also discussed.  

Key words: spatial and temporal variation, herbage nutritive value measurement, 

proximal hyperspectral sensing, pasture-based dairy farm system  
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4.2 Introduction 

Rapid measurement of herbage nutritive value (NV) has been proposed as a 

potentially suitable means of improving efficiency in pasture-based dairy farm systems 

(French et al. 2014; Shalloo et al. 2018). This is because having information on the NV 

of herbage readily available for grazing could help farmers make more efficient daily feed 

allocation decisions (Shalloo et al. 2018). However, the high cost and time involved in 

sampling and the lack of commercially available rapid measurement tools have made such 

approach to management unfeasible in practice. More importantly, it is still not clear if 

having rapid measurements of herbage NV would be beneficial to improving the daily 

efficiency of grazing in pasture-based dairy farm systems. 

Research has been undertaken to study the temporal and spatial variation of NV of 

herbage on dairy pastures (Wilson et al. 1995; Moller et al. 1996; Cosgrove et al. 1998; 

Litherland and Lambert 2007; Bell et al. 2018), with temporal variation being understood 

as that arises when space is held constant and spatial variation as the one when time is 

constant (Chesson 1985). Few reports are found in the literature that provide the adequate 

level of detail required to understand the potential benefits of herbage NV variation for 

daily grazing management. Most research has focused on the study of variation of herbage 

NV over time (Moller et al. 1996; Bell et al. 2018) and space (Cosgrove et al. 1998; Bell 

et al. 2018) of a reduced number of paddocks, or variation obtained from data from 

multiple farms in order to draw generalisations of the seasonality of herbage NV (Wilson 

et al. 1995; Litherland and Lambert 2007). However, conditions of soil moisture, soil 

fertility, climate and grazing management factors can influence herbage NV (Ball et al. 

2001; Waghorn and Clark 2004). This creates the necessity of having a more detailed 

description of the variation of the NV of herbage offered at each farm in order to inform 

more precise grazing management. 

Recent advances in precision agriculture have made possible the use of spectral-

based tools for herbage NV measurement in the field (Kawamura et al. 2009; Pullanagari 

et al. 2012; Adjorlolo et al. 2015). On chapter 3 it was shown that proximal hyperspectral 

sensing can be specifically used for herbage NV measurement for dairy grazing 

management. Seems as this technological advancement has opened the possibility of 

studying variation of herbage NV at the level of detail that has not been studied before 

and that could be suitable to support operational grazing management. Information on the 
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NV of herbage offered daily to cows throughout the production season could also help 

clarify the extent to which herbage NV variation would justify the use of such a 

measurement tool by farmers. Moreover, a precise description of the variation of the NV 

of herbage offered to cows would also help to discuss the opportunities and challenges 

that such variation would bring to improving cow performance and grazing management. 

The objective of this chapter was to describe the spatial and temporal variation of the 

nutritive value of herbage offered to lactating dairy cows in a pasture-based dairy farm 

system using proximal hyperspectral sensing. A second objective was to determine the 

extent to which herbage NV variation justifies its measurement and to discuss the 

implications of such variation to dairy cow performance and grazing management. 

4.3 Materials and method 

4.3.1 Study site and herbage resources  

The farm selected for this study was Dairy 1 (D1), which is owned by Massey 

University and located in Palmerston North, New Zealand. The farm is operated as a 

commercial dairy farm, but also serves as a platform for teaching, research and extension. 

The farm is managed as a profitable, low input, sustainable pasture-based dairy farm with 

a once-a-day (OAD) milking, spring calving system.  

Climate in the location is temperate, with an annual rainfall of 980 mm, annual 

temperature of 13.1°C and low and mean high temperatures of 8.5 and 17.8°C, 

respectively (NIWA 2018). Farm soils comprise a complex assemblage of free-draining 

alluvial soils including Rangitikei Loamy Sand, Manawatu Fine Sandy Loam, Manawatu 

Sand Loam/Gravelly phase, Manawatu Mottled Silt Loam and Karapoti Brown Sandy 

Loam, with these soils being well drained and naturally fertile. Irrigation is available on 

nearly 25% of the farm area and is used during summer when soil water deficits are likely 

to occur. 

Herbage resources available on the farm are composed of perennial ryegrass 

(Lolium perenne L.) and white clover (Trifolium repens L.) mix, with some herbage 

resources also including red clover (Trifolium pratense) as part of the mix. Weeds such 

as buttercup (Ranunculus spp.) and annual poa (Poa annua) and herbs as chicory 

(Cichorium intybus L.) and plantain (Plantago lanceolata) are also likely to be found but 
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in small abundance. Other herbage resources in the farm include mixed herb crops 

comprising chicory (Cichorium intybus), red clover (Trifolium pratense) and plantain 

(Plantago lanceolata), and monocultures of turnip (Brassica campestris ssp. rapifera), 

rape (Brassica napus) and lucerne (Medicago sativa) that are grazed strategically to fill 

seasonal dry matter supply deficits but these were not part of this study. 

4.3.2 Data collection  

Nutritive value of herbage from selected paddocks at pre-grazing was measured 

every two to three weeks from 10 August 2016 to 21 May 2017 and from 31 July 2017 to 

19 May 2018. In each farm visit, between four to six paddocks in the farm manager’s 

weekly grazing plan were measured. Nutritive value traits ME (MJ/kg DM), percentages 

of CP, DOMD, ADF and NDF in DM of herbage were determined from canopy 

hyperspectral measurements using the calibrations developed in chapter 3. In each 

paddock, hyperspectral data were acquired from twelve sampling plots distributed 

following a “W” shaped pattern across the length of the paddock. Special care was taken 

while measuring in order to avoid dung and urine patches. The number of plots per 

paddock was defined following recommendation of Cosgrove et al. (1998) who suggested 

that twelve samples are required to determine the mean herbage NV of a paddock with 

accuracies of ± 0.5 MJ/kg DM for ME, and of ± 5% for CP, NDF and ADF. The 

spectrometer was calibrated against a clean ceramic white tile that was used as a 

reflectance standard of 100% light reflectance after measuring every three sampling plots. 

The description of the instrument used to acquire spectra, the definition of ‘sampling plot’ 

and the calibrations used to determine the different herbage NV traits are detailed in 

chapter 3 of this thesis. At the end of this study, samples corresponding to grazing events 

over 186 days were collected. 

4.3.3 Data analysis  

Descriptive statistics were used to describe the spatial and temporal variation of the 

nutritive value of herbage offered to cows. Daily data correspond to descriptive statistics 

on the number of samples collected from paddocks that were grazed on that day. Mean 

values were used to characterise the NV of herbage offered at each grazing day while 

spatial variation is presented as boxplots and coefficients of variation (CV%).  
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Analysis of variance for the different NV variables were performed using the ‘lmer’ 

function available in the ‘lme4’ package for R software (Bates et al. 2007) with the 

following mixed linear model, 

NVijk = µ + Yi + Mj:i + Pk + e  (equation 4.1) 

where: 

NVijk is the herbage NV variable (ME, CP, ADF, NDF or DOMD) measured in the i-th 

year, in the j-th month and in the k-th paddock; µ is the mean value of NV; Yj is the fixed 

of the i-th year (production season 2016-17 or 2017-18); Mj:i is the fixed effect of the j-th 

month (July, August, September, October, November, December, January, February, 

March, April or May) nested within the i-th year; Pk is the random effect of the k-th 

paddock (identification code of 52 paddocks); e is the random residual error. Least 

squares means were obtained and used for multiple mean comparisons using the least 

significance difference test as implemented in the ‘emmeans’ package (Lenth et al. 2018). 

P-values were adjusted using the Bonferroni method. 

The mixed model of equation 4.1 was converted into a random model considering 

all factors as random effects to obtain estimates of variance components for year (σ2
y), 

month nested within year (σ2
m:y), paddock (σ

2
p) and residual error (σ2

e). The total variation 

was calculated as the sum of all variance components (σ2
T = σ2

y + σ
2

m:y + σ
2

p + σ
2
e. The 

relative contribution of year, month, paddock and residual error for each of the herbage 

NV traits was expressed as the percentage of the total variation. 

4.4 Results 

Descriptive statistics of pooled samples of herbage NV are presented in Table 4.1 

and descriptive statistics depicting the temporal and spatial variation of herbage NV are 

presented in Figures 4.1 to 4.5. 
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Table 4.1 Descriptive statistics of herbage NV measured using proximal hyperspectral 

sensing at Dairy 1, Massey University, Palmerston North.  

Trait  N mean SD CV (%) min max 

ME, MJ/kg DM  2760 10.9 0.58 5.3 7.5 13.4 

CP, %DM  2760 18.3 2.95 16.2 5.9 30.4 

NDF, %DM  2760 39.2 3.73 9.5 16.7 59.1 

ADF, %DM  2760 20.6 2.55 12.4 9.4 33.1 

DOMD, %DM  2760 65.5 2.75 4.2 52.7 84.1 

ME= metabolisable energy, CP= crude protein, NDF= neutral detergent fibre, ADF= 

acid detergent fibre, DOMD= digestible organic matter content in the herbage. 

 

Descriptive statistics of pooled data used to define the daily offer of herbage NV 

indicate that concentration of CP was the most variable NV trait, while concentration of 

DOMD the least variable (Table 4.1).  

 

 

Figure 4.1 Temporal (linear extrapolation of means indicated by the solid line) and spatial 

(boxplots) variation in metabolisable energy (ME) of herbage offered daily to dairy cows 

during the 2016-17 and 2017-18 production seasons at Dairy 1, Massey University, 

Palmerston North. 
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Figure 4.2 Temporal (linear extrapolation of means indicated by the solid line) and spatial 

(boxplots) variation in crude protein (CP) of herbage offered daily to dairy cows during 

the 2016-17 and 2017-18 production seasons at Dairy 1, Massey University, Palmerston 

North. 

 

 

Figure 4.3 Temporal (linear extrapolation of means indicated by the solid line) and spatial 

(boxplots) variation in neutral detergent fibre (NDF) of herbage offered daily to dairy 

cows during the 2016-17 and 2017-18 production seasons at Dairy 1, Massey University, 

Palmerston North. 
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Figure 4.4 Temporal (linear extrapolation of means indicated by the solid line) and spatial 

(boxplots) variation in acid detergent fibre (ADF) of herbage offered daily to dairy cows 

during the 2016-17 and 2017-18 production seasons at Dairy 1, Massey University, 

Palmerston North. 

 

 

Figure 4.5 Temporal (linear extrapolation of means indicated by the solid line) and spatial 

(boxplots) variation in digestible organic matter in dry matter (DOMD) of herbage offered 

daily to dairy cows during the 2016-17 and 2017-18 production seasons at Dairy 1, 

Massey University, Palmerston North. 
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Trends depicted by means and the extrapolation of means between calendar days 

in Figures 4.1 to 4.5 show that the NV of herbage offered was relatively higher during 

spring and autumn days and lower in summer days (i.e. relatively higher ME, CP and 

DOMD and lower NDF and ADF in spring and autumn days vs. lower ME, CP and 

DOMD and higher NDF and ADF in summer days). Boxplots show that the spatial 

variation of any of the herbage NV traits was relatively higher for resources offered in 

summer days than those offered in spring or autumn days. Moreover, spatial dispersion 

of herbage NV was relatively higher for resources offered during 2017-18 production 

season (0.91% > CV > 35.45%) than resources offered during 2016-17 production season 

(0.52% > CV > 62.73%). In general, spatial dispersion of CP was greater (2.49% > CV > 

62.73%) than the spatial dispersion of ME, NDF, ADF and DOMD (0.52% > CV > 

23.20%). 

Comparisons of least-squares means of herbage NV available among months and 

years in which data were collected statistically confirm the seasonal trends described 

above (Figure 4.6). Differences of herbage NV during late winter and spring months (July 

to November) were not significant for any of the NV trait but for CP, which were non-

significant from July to October (Figure 4.6). During summer months (December to 

February), the NV of herbage offered significantly dropped, as ME, CP and DOMD 

decreased and fibres increased. The NV of herbage offered to cows increased from March 

onwards but there were significant differences between production seasons. In autumn, 

contents of ME, CP, NDF and ADF in herbage offered during 2016-17 production season 

were like those offered on spring but reported a higher NV than the herbage offered during 

autumn months of 2017-18 production season. Finally, LS mean differences between 

production seasons indicated that herbage offered during 2016-17 production season had 

0.34 MJ/kg DM more ME (t(2689)= 16.2, p <0.0001), 0.79% less CP (t(2689)= -6.25, p 

<0.0001) 3% less NDF (t(2689)= -22.71, p <0.0001), 2.1% less ADF (t(2689)= -30.32, p 

<0.0001) and 1.5% more DOMD (t(2689)= 11.34, p <0.0001) than 2017-18 production 

season.  
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Figure 4.6 Least-squares means of herbage nutritive value for two production seasons 

(2016-17 and 2017-18) across months (from July to May) measures using proximal 

hyperspectral sensing at Dairy 1, Massey University, Palmerston North. ME= 

metabolisable energy, CP= crude protein, NDF= neutral detergent fibre, ADF= acid 

detergent fibre, DOMD= digestible organic matter in dry matter. Error bars indicate a 

95% confidence interval for the LS mean.  
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Results from the random effects models in Table 4.2 show that DOMD was the 

herbage NV trait with the highest percentage of variance left unexplained (e2= 51.3%) 

while ADF was the trait which was better explained (e2= 16.6%). Month within the 

production season had the greatest influence on the determination of any of the herbage 

NV traits (m:y2= 42.7% on average across NV traits) while paddock the least (p2= 10.7% 

on average across NV components). Production season had greater influence on fibre 

traits but had no influence on CP. 

Table 4.2 Variance decomposition of herbage nutritive value traits assessed using 

proximal hyperspectral sensing at Massey University’s Dairy 1 farm during two 

production seasons (2016-17 and 2017-18) across months (from July to May).  

Trait σ2
y σ2

m:y σ2
p σ2

e σ2
T y2 m:y2 p2 e2 

ME 0.04 0.18 0.04 0.12 0.38 11.2 46.2 11.7 30.9 

CP 0.00 4.29 1.18 4.29 9.78 0 43.9 12.1 43.9 

NDF 3.74 8.13 2.08 4.45 18.34 20.3 44.2 11.3 24.2 

ADF 1.88 4.05 0.49 1.28 7.71 24.4 52.5 6.4 16.6 

DOMD 0.87 2.33 1.06 4.48 8.74 9.9 26.7 12.1 51.3 

σ2 y= variance explained by random effect of year, σ
2 m:y= variance explained by 

random effect of month nested within year, σ2 p= variance explained by random effect 

of paddock, σ2 e= variance explained by random error, σ
2 T= total variance. y2= variance 

explained by random effect of year expressed as a percentage of total variance, m:y2= 

variance explained by random effect of month nested within year expressed as a 

percentage of total variance, p2= variance explained by random effect of paddock 

expressed as a percentage of total variance, and e2= variance explained by random error 

expressed as a percentage of total variance. 

ME= metabolisable energy, CP= crude protein, NDF= neutral detergent fibre, ADF= 

acid detergent fibre, DOMD= digestible organic matter in dry matter. 

 

4.5 Discussion 

The aim of this study was to describe the variation of the nutritive value of herbage 

offered to lactating dairy cows in a pasture-based dairy farm system using proximal-

hyperspectral sensing technology. In addition, it also sought to determine if the extent 

variation in herbage NV traits would justify their measurement and to discuss the 

implications of herbage NV variation for dairy cow performance and grazing 

management. 
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4.5.1 Variation of herbage nutritive value 

Daily variation of mean values of ME, CP, NDF, ADF and DOMD of the herbage 

offered to cows throughout the two production seasons were within guideline ranges 

commonly used in the dairy industry (Holmes 2007; DairyNZ 2019), compiled from feed 

laboratory data (Litherland and Lambert 2007) or data obtained from research on specific 

dairy farms (Moller et al. 1996) (Table 4.3).  

 

Table 4.3 Ranges of mean herbage nutritive values obtained throughout a production 

season (from July to May) in four reference studies. 

  Reference 

  Holmes 

(2007) 

 DairyNZ 

(2017) 

 Litherland 

and Lambert 

(2007) 1 

 Moller et 

al. (1996) 

Trait  min max  min max  min max  min max 

ME, MJ/kg DM  9 12  8 12.5  9 13  - - 

CP, %DM  14 30  9 35  11 33  13 32 

NDF, %DM  35 60  35 65  25 63  25 60 

ADF, %DM  - -  - -  16 35  22 36 

DOMD, %DM  - -  - -  62 92  65 80 
1Data from 6300 herbage samples collected from dairy farms across New Zealand from 

2002 to 2005.  

ME= metabolisable energy, CP= crude protein, NDF= neutral detergent fibre, ADF= 

acid detergent fibre, DOMD= digestible organic matter in dry matter. 

 

Results also suggest that management was able to maintain a relatively stable 

herbage NV on offer to cows throughout both production seasons, as seasonality of data 

was much reduced compared to that reported in other studies (Moller et al. 1996; Holmes 

2007; Litherland and Lambert 2007). 

The range of coefficients of variation of herbage NV described in this study 

indicated that there were paddocks with either higher or lower herbage NV spatial 

variation than sampled paddocks in other studies (Cosgrove et al. 1998; Bell et al. 2018). 

Although data in previous studies were comparable to the data presented here, it is 

important to highlight that the studies by Cosgrove et al. (1998) and Bell et al. (2018) 

involved a reduced number of paddocks (1 and 2, respectively) and a limited timeframe 

for data collection, which may help explain the relatively higher range of herbage NV 

spatial variation observed in this study. Results also showed that the spatial variation of 
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CP across herbage resources was higher than the spatial variation of any other NV trait. 

Such finding was consistent with Cosgrove et al. (1998) who reported that the spatial 

variation of CP (CV= 13.6%) was higher than the spatial variation of ME, NDF or DOMD 

(CV ranging from 4.4 to 9.1%) and Bell et al. (2018) who also reported higher spatial 

variation for herbage CP (CV ranging from 18 to 23%) compared to ME, NDF and ADF 

(CV ranging from 2 to 13%).  

Variation of herbage NV across months within a production season and between 

production seasons is most likely the reflection of monthly (m:y2) and inter-seasonal (y2) 

effects associated with seasonality of temperature and rainfall. Temperature is a major 

contributor to herbage NV through its effect on plant phenology (Buxton and Fales 1994; 

Chapman et al. 2014). Rising temperature increases the rate of plant development, reduces 

leaf/stem ratio and hence NV of herbage decreases as plants enter maturity (Buxton and 

Fales 1994; Lambert and Litherland 2000; Litherland and Lambert 2007). Lower but 

increasing temperature from July onwards coincides with a higher NV of herbage 

observed from July to October whilst the peak of temperature in January-February 

coincides with lower NV of herbage offered during summer months (Figure 4.7). From 

summer onwards, herbage NV was dependent on the production season, which seemed 

to be associated with the effect of the interaction of temperature and rainfall on herbage 

NV as 2017-18 production season was warmer and dryer (mean temperature of 14.3°C 

and accumulated yearly rainfall of 1112.2 mm) compared to 2016-17 production season 

(mean temperature of 13.3°C and accumulated yearly rainfall of 933 mm) (NIWA 2018). 

These environmental differences could also help explain overall differences in herbage 

NV between production seasons. 
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Figure 4.7 Mean monthly temperature (lines) and accumulated monthly rainfall 

(columns) during the 2016-17 and 2017-18 production seasons. Source: based on data 

from NIWA (2018). 

 

Variation in soil nutrient content and soil moisture among the paddocks of the 

farm can also explain variation of herbage NV to the extent indicated by the random 

paddock effect. Although the effects of these factors on the NV of mixed herbage are 

described as being smaller than the effects of temperature (Buxton and Fales 1994; 

Buxton 1996), strong deficits of water or soil nutrients can significantly influence herbage 

NV at the plant or sward level (Buxton 1996; Kuchenmeister et al. 2013). For instance, 

experimental research by Kuchenmeister et al. (2013) found that the content of CP of 

white clover plants in a ryegrass-white clover mixture subject to severe water stress 

decreased by 18.9% compared to herbage subject to moderate or no water stress deficit 

while concentrations of NDF and ADF increased by 5.8 and 1.6%, respectively. In 

ryegrass, water deficit can trigger senescence of leaves and the mobilisation of nutrients 

and carbohydrates, resulting in herbage of low NV (Chapman et al. 2014). Water stress 

deficit can also affect the persistence of species in the sward, hence affecting the relative 

abundance of species and therefore the NV (Buxton 1996). Moreover, variation of soil 

nutrients, particularly N, can also influence concentration of CP in plant tissue, although 

in normal conditions this effect is relatively small (Buxton and Fales 1994; Shepherd and 

Lucci 2013). 
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Decisions affecting the severity, duration and frequency of grazing can have 

consequences on the temporal and spatial variation of the NV of herbage on offer and can 

help to explain such variation. Grazing intensity, determined by decisions affecting 

severity and duration of grazing, can influence the NV of herbage at successive grazing 

events due to the accumulation of dead material (Lee et al. 2008). Recent research has 

proved that consistently grazing herbage to an even residual mass of 1800 to 2000 kg 

DM/ha (high residual) compared to grazing to 1500 to 1600 kg DM/ha (target residual) 

can reduce CP in 3.5% and ME in 0.8 MJ/ kg DM (Burggraaf et al. 2018). Differences in 

the decision-making affecting the intensity of grazing among paddocks may be a reason 

for the greater daily variation of herbage NV during summer. Moreover, the stocking rate 

used in the pasture-based dairy farm system under study was low (2.1 cows/ha) compared 

to regional (2.7 cows/ha) and national (2.8 cows/ha) averages (DairyNZ 2019), which 

may indicate high herbage allowances and therefore relatively lax grazing events. In these 

situations, selectivity by cows is likely, and therefore uneven post-grazing residuals can 

result in increased spatial variation of herbage NV at successive grazing events. 

The literature on grazing management recommends that the frequency of grazing 

ryegrass-based herbage should be based on the assessment of the leaf stage of ryegrass 

tillers, since this would optimise regrowth and NV without affecting the persistency of 

the plant (Lee et al. 2008; Macdonald et al. 2010; McCarthy et al. 2014). However, 

anecdotical evidence (Hirst et al. 2014) suggest that farmers tend to overlook leaf stage 

for herbage mass monitoring or set a fixed date based on the time since last grazing to 

inform their decision-making. If this is the case in the study farm, then differences in the 

leaf stage at grazing can contribute to explaining the observed daily variation of herbage 

NV on offer (e2). Research shows that the NV of ryegrass tillers decreases as the number 

of emerged leaves increases, as younger leaves are of higher NV than the older ones 

(Turner et al. 2006; Chapman et al. 2012). For instance, Chapman et al. (2012) found that 

content of DOMD and CP in laminae from leaves in tillers appearing successively from 

first-leaf- to third-leaf stages decreased at a rate of about 10% while content of NDF and 

ADF increased at a similar rate. Similar findings were reported by Turner et al. (2006) 

who also describes that the overall drop in NV of laminae from third- to fourth-stage 

leaves is even higher (16%) and Fulkerson et al. (1998) who describes similar trends for 

NV measured at the whole-sward level. Although grazing at early leaf stages will 

maximise NV, grazing before the emergence of the second leaf will penalise regrowth 
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rates and threaten plant survival. Consequently, optimal timing for grazing ryegrass is 

recommended to be set between the second and third leaf stages. If paddocks in our study 

were grazed within a wider range leaf stages, that could partially explain short-term 

variation of herbage NV. 

4.5.2 Implications of herbage nutritive value variation to dairy cow performance  

Concentration of CP of herbage offered throughout spring, summer and autumn 

were mostly in excess of recommended values suggested by DairyNZ (2017) of 18%, 

16% and 14% for early, mid and late lactation, respectively to be required to sustain high 

levels of milk production on dairy farms. However, there was a period during December 

2017-18 when offer of CP was lower than requirements. Mean values for NDF throughout 

both production seasons were also above the minimum requirement range of 27 to 35%, 

while ADF fell within the recommended range of 19 to 21% across all periods of 

production except for the late 2017-18 production season when ADF was significantly 

high. These observations suggest that if sufficient herbage quantity is available, cow 

performance from the herbage offered on the farm would be most likely be limited by 

ME, which is consistent with much of the literature describing the nutritional limitations 

of herbage on New Zealand pasture-based dairy farm systems (Moller et al. 1996; Holmes 

2007; Litherland and Lambert 2007). Although variation of herbage CP across months 

was appropriate to sustain high levels of milk production, it is important to highlight that 

on 7% of the monitored days the minimum requirement of CP was not met.  

Deficits in CP observed for herbage offered during summer days might require 

supplementation (Moller et al. 1996). Excess CP in spring or autumn days can have 

negative consequences on cow performance. On the one hand, the process of synthesis 

and excretion of excess N in the form of urea requires energy that would otherwise be 

used for production processes. Tyrrell (1970) estimated the costs of excretion in 3.05 MJ 

of ME per 100g of N synthesised. On the other hand, excess CP was also associated with 

poor reproductive performance (McCormick et al. 1999; Ipharraguerre and Clark 2005). 

There were no days when NDF values were below minimum threshold values required to 

sustain ruminal and cow health. Concentration of NDF varied in a range from 29.8% to 

52.6%, values which were associated with normal values of ruminal ph on cows fed 100% 

herbage diets (Kolver and De Veth 2002). However, high values of NDF might pose 
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limitation to cow performance by limiting herbage intake due to rumen fill, particularly 

in summer, when herbage ME is low. For instance, using an example by Nicol and 

Brookes (2007) in which a dairy cow of 450 kg of live weight producing 15 litres of milk 

and gaining 0.5 kg of live weight would require 180 MJ of ME/day or 16.4 kg DM/day 

of herbage at 11 MJ/kg DM to satisfy their ME requirements, the same cow would need 

to eat 20.7 kg DM/day if fed the paddock of the lowest NV in our study (ME= 8.7 MJ/kg 

DM and NDF= 52.6%). However, such estimation is unrealistic if the effect of NDF on 

herbage intake is accounted for in the estimation of intake. In this sense, using the 

equation of Mertens (1987), which considers the effect of NDF on rumen fill, the 

maximum intake achievable by the example cow grazing the low NV paddock would be 

14.1 kg DM/day.  

Spatial variation of the NV of herbage within a paddock can influence the nutrition 

of cows by altering energy costs associated with grazing activity. Research has shown 

that cows tend to prefer green leafy herbage associated with high NV over brown dead 

material of low NV (Chapman et al. 2007). Increased time spent on the processes of 

walking, searching and handling preferred feeds when exposed to heterogeneous 

resources might signify higher energy costs and less energy therefore destined to 

production processes (NRC 2001). Nevertheless, the energy costs associated with high 

spatial variation are most likely to be low. For instance, following Nicol and Brookes 

(2007) recommendation for energy requirements of dairy cattle, a 450 kg Jersey x Friesian 

cow producing 2 kg MS/day would require 1.2 MJ of ME per extra km walked 

horizontally during grazing or 1.8 MJ of ME/km in an easy hilly terrain. Considering that 

the average distance walked by a cow while grazing is about 0.5 km (Oudshoorn et al. 

2008), then the energy required by the cow in the example above walking twice the 

average distance would still be relatively low compared to their total energy required for 

maintenance and production in a day (193 MJ/day).  

4.5.3 Implications of herbage nutritive value variation to grazing management 

In this study, variation of herbage NV traits were assessed through the effects of 

production season, months within a production season and day, which denote differences 

at temporal scales and thus implications at different management levels. Although the 

hyperspectral tool used in this research was not intended to forecast NV for their use in 
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strategic or tactical planning, data presented here can be used retrospectively to draw 

some discussion on the implication of herbage variation on grazing management. In this 

sense, the high variation of herbage NV during the production season indicates that such 

seasonality can influence strategic decision-making. Having a detailed profiling of the 

feed available on a farm on an energy and nutrient content basis can help management 

better adjust supply and demand of feed throughout the production season by influencing 

key strategic decisions like stocking rate, calving date, conservation/supplementation 

policy and drying off date. Differences of herbage NV between production seasons from 

summer onwards, for all NV traits except CP, indicate that tactical adjustments to farm 

strategy based on herbage NV content might have been required. Lower levels of ME and 

high fibre content of herbage offered in the summer of the 2017-18 production season 

would have required extra supplementary feeds to meet demand, assuming the pasture-

based dairy farm system had such feed at hand. 

Results suggest that having accurate measurements of the NV of herbage offered 

daily to cows can potentially help management consistently achieve cow performance 

and post-grazing residual targets through more efficient pasture allocation planning of 

each grazing event. This is because rapid NV measurement can be used to exploit up to 

31% of variance of ME that were not attributed to differences between paddocks, months 

or seasons and which is most likely limiting cow performance from herbage. As 

mentioned, suboptimal post-grazing residuals would result in a loss of NV of herbage at 

subsequent grazings, lower herbage utilisation and productivity in the long term. 

Following up on the example in section 4.5.2, the cow would have to increase her intake 

of herbage by 6.6 kg DM/cow if fed herbage of lower ME (8.7 MJ/kg DM) compared to 

herbage of higher ME (11 MJ/kg DM) in order to sustain the required performance level. 

Thus, assuming a homogenous mob on a 100% herbage diet grazing two paddocks at the 

same allowance and mass but either low or high ME content, differences in intake 

resulting from differences in ME and rumen fill constraints imposed by NDF, would 

signify different grazing intensities between paddocks. Consequently, residual herbage 

masses after grazing will most likely differ from preestablished targets if NV differences 

are not accounted for while budgeting daily herbage allocation. Alternatively, farmers can 

plan daily allocation of herbage by balancing diets considering alternate paddocks with 

herbage of different NV. Nevertheless, although this example emphasises the implication 

of herbage NV measurement on efficient daily herbage allocation planning, it is important 
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to highlight that, in practice, farmers can also adjust their herbage allocation plans 

according to milk yield (Macintosh and McNae 2001) or the residuals after allocation 

(Hirst et al. 2014).  

Given tactical constraints, perhaps the most relevant implication of daily herbage 

NV measurement to operational grazing management relates to the use of supplements 

when nutritional deficits or excess from herbage are identified. As discussed in section 

4.5.2 in this chapter, ME content is likely to be a major constrain to animal nutrition from 

herbage, particularly during summer where greater variation exists. In this situation better 

adjustment of grazing due to more efficient feed allocation might help increase harvesting 

efficiency of herbage and reduce substitution of herbage for supplements, improving 

utilisation of herbage in the long term. Similarly, excess herbage CP levels can be 

balanced with other feeds to perhaps minimise the impact of N leaching on the 

environment.  

If the level of nutrition available from paddocks of high spatial variation can sustain 

adequate levels of cow nutrition, then higher spatial variation of herbage NV might 

signify that management will have to reduce the incidence of selectivity by cows. When 

faced with spatial heterogeneity cows will tend to graze preferred species of high NV in 

detriment of low NV species (Chapman et al. 2007). This effect would lead to uneven 

post-grazing residuals and deterioration of pasture, particularly during summer when 

heterogeneity is higher. In order to control this, mowing before or after grazing (i.e. 

topping) was found to increase herbage NV and milk yield (Kolver et al. 1999). 

Alternatively, the use of herbage mapping combined with virtual fencing technologies 

has been proposed to improve efficiency of grazing of heterogeneous resources (French 

et al. 2015). Although work in this line was proposed with focus on herbage mass 

mapping, the concept could be further expanded to include herbage NV. Finally, the 

sampling strategy used in this study signifies that paddocks of high herbage NV spatial 

variation (e.g. summer herbage) might require a higher number of samples to obtain mean 

estimates with the same level of confidence that estimations for paddocks of low variation 

(e.g. spring herbage). This sampling issue can be solved with the use of aerial spectral 

imaging, which can be used to estimate herbage NV of relatively large areas at high 

spatial resolution (Yule et al. 2015; Shorten et al. 2019). However, weather conditions 

can pose significant challenges to the use of this technology for regular monitoring of 
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herbage in the field (Von Bueren et al. 2015), posing limitations for their use for 

operational grazing management. 

4.6 Conclusion 

Proximal hyperspectral sensing technology was useful to characterise daily and 

spatial variation of the NV of herbage offered to lactating cows in a pasture-based dairy 

farm system. The study farm exhibited normal values for ME, CP, NDF, ADF and DOMD 

consistent with seasonal pasture-based dairy farm systems. The proportion of variance 

that was not accounted for by differences between paddocks, months and production 

seasons which ranged from 16.6 to 51.3% across NV traits partially justifies the use of 

their measurement from a NV variation standpoint. From the herbage offered, CP was in 

excess of the requirements of lactating dairy cattle while ME seemed to be the most 

limiting factor to animal performance. High spatial variation of paddocks fed during 

summer signify that a larger number of samples would be required in order to obtain a 

precise estimation of the mean values of herbage NV. Using real-time accurate 

measurements of herbage NV can help farmers plan their operational grazing 

management in order to accurately allocate herbage and feed to achieve more precise 

grazing and animal performance targets. Further research is required to quantify the extent 

to which this daily variation of herbage NV can influence the performance of the herd in 

a pasture-based dairy farm system.  
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5.1 Abstract 

Including a measure of nutritive value to support daily allocation of herbage to cows 

has been proposed as an opportunity to improve efficiency of grazing in pasture-based 

dairy farm systems. However, it is not clear the extent to which knowing the variation in 

nutritive value of the herbage on offer would be beneficial to control the performance per 

cow in the herd since animal performance can be affected by other herbage quantity and 

climate related factors that are not easier to control. The objective of this chapter was to 

determine the relative importance of the nutritive value of herbage, and other herbage and 

climate related factors on the performance per cow in a pasture-based dairy farm system. 

Data on milk production, live weight, body condition score, weather, herbage nutritive 

value and herbage quantity were collected every two to three weeks from August 2016 to 

May 2017 and from July 2017 to May 2018 from Dairy 1, Massey University, Palmerston 

North. Data were analysed using multiple linear regression, principal components 

regression and partial least squares regression. Results indicated that herbage 

metabolizable energy explained from 20% to 30% of the production of milk, fat and 

protein per cow. Herbage quantity and climate factors were relatively less important than 

herbage nutritive value in defining performance per cow in the herd. Developing feeding 

strategies aimed at improving the efficiency of feeding of cows by exploiting daily 

variation of herbage nutritive value to better match daily supply of nutrients animal 

nutritional requirements may be useful to improve the overall performance per cow of 

pasture-based dairy farm systems. 

Key words: herbage nutritive value measurement, herbage quantity, climate, herd 

performance per cow, pasture-based dairy farm system 

5.2 Introduction 

Daily allocation of herbage to cows in pasture-based dairy farm systems has 

traditionally focused on monitoring the quantity of herbage available over the nutritive 

value (NV). The dairy industry encourages the use of herbage quantity measurement tools 

and monitoring of the leaf stage of ryegrass to promote good grazing management 

practices that would optimise NV and regrowth of herbage, while satisfying demand by 

animals (DairyNZ 2017). This suggest that by implementing good grazing management 

practices there would be relatively little need for herbage nutritive value measurement, as 
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such an approach would anyways result in optimal NV. However, there is evidence that 

farmers are not always able to make the optimal grazing management decisions to achieve 

the potential productivity of their farms (McCarthy et al. 2014). There are also other 

factors than grazing management, including species composition, soil moisture, soil 

fertility and climate, that also affect the NV of herbage (Ball et al. 2001; Waghorn and 

Clark 2004; Muller 2011). 

Regardless of the cause, and as shown in chapter 4, variation of the NV of herbage 

offered to dairy cows is likely to exist. Daily variation of herbage NV could result in times 

at which the supply and demand of nutrients required by cattle are not matched and that 

therefore, the actual performance per cow is different from that expected by farmers, 

resulting in inefficient grazing management. It is well known that herbage intake, which 

is controlled by the allowance of herbage offered, is a major factor determining marginal 

performance of grazing dairy cows (Bargo et al. 2003; Dillon 2007; Baudracco et al. 

2010; Pérez-Prieto and Delagarde 2013). However, other climate factors such as 

temperature (West 2003; Bryant et al. 2007) and herbage related factors such as the NV 

of herbage also plays a significant role in influencing performance per cow (Kolver 2003; 

Walker et al. 2004). Herbage of high NV has more energy and nutrients available per unit 

of dry matter available for production and maintenance functions (Waghorn and Clark 

2004). In addition, nutritious herbage passes more rapidly through the animal’s digestive 

tract allowing greater intakes, and therefore higher performances (Poppi et al. 1987; 

Lambert and Litherland 2000).  

Including a measure of NV to support daily allocation of herbage has been proposed 

as an opportunity to improve efficiency of grazing in pasture-based dairy farm systems 

(Shalloo et al. 2018). Such inclusion would allow a more precise match between demand 

and supply of herbage by extending the focus from adequate quantity to adequate 

nutrition. The lack of commercial tools that would allow farmers to rapidly measure 

herbage NV in a timely fashion has most likely contributed to the lack of the adoption of 

such practice. However, increasing advances have been made in the development of tools 

to measure the NV of herbage in the field for pasture management (French et al. 2014; 

Shalloo et al. 2018), with chapter 3 being specifically intended to address this issue for 

the context of dairy grazing management.  
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The possibility of being able to quantify herbage NV in the field could be beneficial 

to improve the efficiency of grazing management and enhance the performance of 

pasture-based dairy fam systems. However, it is not clear the extent to which knowing 

the daily variation of the nutritive value of herbage could be used to control the 

performance per cow in pasture-based dairy farm systems. Although the influence of 

herbage NV on animal performance is well known (Kolver and Muller 1998), much of 

the research on this topic was performed in experimental-like conditions where animals 

have controlled access to pastoral resources. For rapid measurement of herbage NV to be 

useful for farmers, field data is required to determine the extent to which daily variation 

of herbage NV could influence performance per cow in a pasture-based dairy farm 

system. By determining the extent to which herbage NV can drive performance of grazing 

milking cows in field-like conditions, this study can contribute to the discussion of the 

importance that should be given to monitoring herbage NV and to the design of feeding 

strategies that account for the variation of herbage NV. The objective of this chapter was 

to determine the influence of herbage NV, and other herbage and climate related factors 

on the daily performance of a pasture-based dairy farm system on a per cow basis.  

5.3 Materials and method 

5.3.1 Description of the pasture-based dairy farm system 

This study was conducted at Dairy 1 (D1) at Massey University, Palmerston North, 

New Zealand during the 2016-17 and 2017-18 production seasons. Dairy 1 is a low-input 

pasture-based dairy farm system with spring calving and where all the cows in the herd 

are milked once a day (OAD) for the full production season.  

During the 2016-17 and 2017-18 production seasons, the dairy herd consisted of 

260 and 255 cows, respectively, which were allocated to an effective area of 119.7 ha, 

resulting in a stocking rate of about 2.1 cows/ha. The herd consisted of 25.4% Holstein-

Friesian, 22.4% Jersey and 52.4% Holstein-Friesian x Jersey crossbreed. All the 65 

paddocks in the milking platform have race access and irrigation is available to 35.4 ha 

and replacement heifers are grazed off-farm. 

The diet offered to cows is mostly composed of home-grown feed. Forage resources 

grown at D1 are: 1) grass/legume herbage mix (ryegrass/white and red clover) (76% of 
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farm effective area), 2) herb/legume herbage mix (plantain, chicory, white clover, red 

clover) (12%) and 3) crops (lucerne and maize) (12%). Excess herbage growth during 

spring and crops are made into silage or hay and fed to cows at times when feed is in 

deficit.  

Further description of the herbage resources available on the farm as well as an 

overall description of the climate and soils of the farm can be found in section 4.3.1.  

5.3.2 Data collection  

Herbage 

  Herbage mass (HM) and NV of herbage from paddocks at pre-grazing were 

measured every two to three weeks from August 2016 to May 2017 and from July 2017 

to May 2018. At each measurement period, between four to six paddocks in the farm 

manager’s weekly grazing plan were measured.  

Herbage mass was estimated using a C-Dax pasture meter with auto lift (C-Dax 

2019) towed behind an All-Terrain Vehicle. The pasture meter determines average 

herbage height as the sward breaks the light path of a light emitting and sensing 

photodiode array at 20 mm spacing. The instrument can take up to 200 measurements per 

second or 18,500 readings over single 500 m run. In order to have a good characterisation 

of herbage within a paddock, runs were made following a “W” shaped pattern across the 

length of the paddock. Data collected within each paddock were averaged and converted 

to herbage mass using the following equation developed by D1 technical staff:  

HM (kg DM/ha) = 752 + 16.3 x Height (mm)        (equation 5.1) 

Nutritive value traits DM, ME, CP, ADF and NDF of each paddock were 

determined from canopy hyperspectral measurements acquired from twelve sampling 

plots distributed along the runs performed with the pasture meter. The number of plots 

was defined following recommendation of Cosgrove et al. (1998) who suggest that twelve 

samples are required to determine the mean herbage NV of a paddock with accuracies of 

± 0.5 MJ/kg DM for ME, and of ± 5 % for CP, NDF and ADF. The description of the 

instrument used to acquire spectra, the definition of sampling plot and the calibrations 

used to determine the different herbage NV traits are detailed in chapter 3.  
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At each grazing event, the paddock identification number, date and area allocated 

to the animals were recorded. When there was more than one paddock being grazed in a 

day, the mean HM and NV of the herbage on offer for the day was determined by 

weighting the area of the paddocks allocated to the herd. The amount of herbage on offer 

on a day-to-day basis was calculated by multiplying HM by the daily area allocated to the 

cows. Herbage allowance (HA) was calculated by dividing the amount of herbage on 

offer for the day by the number of grazing cows.  

Climate 

Weather data (mean, max and min air temperatures, relative humidity, wind speed 

and rainfall) for the days in which the grazing events took place were obtained from the 

national climate database (NIWA 2018) (Station: Palmerston North Ews, latitude= -40° 

22' 55.02", longitude= 175° 36' 32.94"). Weather data was used to calculate a temperature 

humidity index (Davis et al. 2003) and a cold stress index (Donnelly 1984) as follows: 

THI = 0.8 Tmax + [RH (Tmax – 14.4)] + 46.4           (equation 5.2) 

where THI is temperature humidity index, Tmax is daily maximum temperature (°C) and 

RH is mean daily percent relative humidity divided by100. 

CSI = [11.7 + (3.1 WS0.5)] (40 – T) + 481 + 418 (1-e-0.04 R)           (equation 5.3) 

where CSI is cold stress index (kJ/m2/h), WS is mean daily wind speed (m/s), T is mean 

daily temperature (°C), e is Euler’s number (mathematical constant) and R is total daily 

rainfall (mm). 

Pasture-based dairy farm system performance per cow 

Milk production at the farm was monitored using the dairy company actual milk 

return records. Records for daily milk, milksolids, fat, protein and milk urea obtained at 

the vat were divided by the number of cows milked that day. Daily live weights (LW) of 

cows identified with a radio frequency electronic identification system (Allflex New 

Zealand Ltd., Palmerston North, New Zealand) were automatically measured every 

morning after milking using an automatic race walkover scale situated in the exit of the 

milking shed (WoW xR-3000, Tru-Test Ltd., Auckland, New Zealand). The body 

condition score (BCS) of all cows in the herd was assessed once every month using a 10-

point scale by a research technician. In order to account for missing data and to allow the 
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daily characterisation of LW and BCS, these parameters were modelled for each of the 

cows as a function of their days in milk using Legendre polynomials of 3rd order over the 

two production seasons. These models were used to generate LW and BCS data for each 

day in which the cows were present in the milking shed. For each calendar day, LW and 

BCS generated data were averaged in order to obtain single daily values representative of 

the herd. The average change in live weight (LWC) of the herd was calculated as the 

difference in LW between successive days. Calculated performance per cow in the herd 

data were paired with herbage and weather data from the day after the grazing event took 

place.  

Total number of observations 

At the end of the study 178 daily observations containing complete information on 

herbage, weather and animal performance data were obtained. Subsequently, data 

gathered after day 250 of the beginning of milking in both production seasons were 

discarded from further analyses. It was considered that the quantity of herbage offered to 

animals in this latter period was limited and that the performance of cows would most 

likely be driven by the physiological stage of the animals rather than as a response to 

herbage NV. 

5.3.3 Development of overall performance indicators 

A principal component analysis (PCA) was performed on the performance per cow 

data to develop two overall performance per cow indicators. Prior analysis, data were 

scaled to a zero mean and a standard deviation of one. The PCA was performed using the 

‘prcomp’ function available in R software (R Development Core Team 2011). This 

function uses the single value decomposition factorisation method to transform a set of 

correlated variables into a set of uncorrelated principal components (PC) that better 

expose the various relationships among the original variables. Loadings of the first (PC1) 

and second (PC2) principal component were interpreted in light of the original variables 

and PC1 and PC2 were thereafter termed Performance Indicator 1 (PI1) and Performance 

Indicator 2 (PI2), respectively. Scores of each observation were used as overall indicators 

of daily performance per cow. The sign of the scores were rescaled based on the 

interpretation of the principal components to a minimum of zero and a maximum of one 

hundred. 
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5.3.4 Statistical analysis 

In order to determine the influence of grazing management decisions on the 

quantity of herbage offered to cows, herbage NV and the climate on the variation in daily 

performance per cow, three statistical modelling approaches were used: multiple linear 

regression (MLR), principal components regression (PCR) and partial least squares 

regression (PLS). The variables used in the modelling are summarised in Table 5.1.  
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Table 5.1 Variables used in the models  

Variable 

ID 
Description Units 

X-Explanatory variables 

HM herbage mass kg DM/ha 

HA herbage allowance kg DM/cow/d 

AH area of herbage offered ha/d 

PD proportion of herbage in diet % of dietary DM 

ME herbage metabolisable energy MJ/kg DM 

CP herbage crude protein % DM 

NDF herbage neutral detergent fibre % DM 

ADF herbage acid detergent fibre % DM 

Fibre NDF + ADF % DM 

DM herbage dry matter % FM 

T daily mean temperature ◦C 

THI temperature humidity index index 

CSI cold stress index kJ/m2/h 

Rain rainfall mm/d 

POP period of production:  

Early= between day 1 and day 90 

from the  beginning of milk 

production;  

 Mid= 91 to 180 days;  

 Late= 181 to 250 days. 

Coded as dummy variable 

Y production season: 

 2016= 2016-17 production season; 

 2017= 2017-18 production season.  

Coded as dummy variable 

Y-Dependent variables 

MYpc milk yield per cow in the herd L/cow 

MSYpc milksolids yield per cow in the herd kg MS/cow 

MSPpc milksolids percentage per cow in the herd % MY  

FPpc milk fat percentage per cow in the herd % MY 

PPpc milk protein percentage per cow in the herd % MY 

FYpc milk fat yield per cow in the herd kg F/cow 

PYpc milk protein yield per cow in the herd kg P/cow 

PFRpc milk protein to fat ratio per cow in the herd Ratio 

MUpc milk urea per cow in the herd kg MU/cow 

LWpc live weight per cow in the herd kg LW/cow 

LWCpc live weight change per cow in the herd kg LW/cow 

BCSpc body condition score per cow in the herd index (1–10 scale) 

PI1* performance indicator 1  index (0–100 scale) 

PI2* performance indicator 2  index (0–100 scale) 

* PI1 and PI2 correspond to Principal Component 1 and Principal Component 2, 

respectively. 

FM= herbage fresh matter (kg) 
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Multiple linear regression 

Multiple linear regression was used to determine the relationship between a 

dependent variable and several independent explanatory variables as described by the 

following equation: 

y= X β + ε          (equation 5.4) 

where y is a vector of responses for n observations, X is a matrix of explanatory variables 

for n observations, β is a matrix of regression parameters and ε is a vector of random 

errors.  

The objective of MLR is to find the estimate of β so that the sum of the squares of the 

differences between the observed dependent variable those predicted by the multiple 

linear function is minimised. Such objective is achieved by calculating the ordinary least 

squares estimator of β as: 

β̂ = (X' X)
-1

 X' y          (equation 5.5) 

MLR modelling was implemented with the package ‘caret’ available for R software 

(Kuhn 2015). A key assumption in MLR modelling is that all the explanatory variables 

to include in a model are independent of each other. This is important to reduce the 

incidence of multicollinearity, which can lead to increased variance of the coefficient 

estimates and make these estimates very sensitive to minor changes in the model. In order 

to avoid the problems associated with multicollinearity, highly correlated variables were 

excluded from the models by setting a cut-off value for pair-wise correlations of 0.9. The 

MLR algorithm used a step-wise variable selection criteria based on the computation of 

the Akaike information criterion (AIC). The AIC deals with the trade-off between the 

goodness of fit of the model and the simplicity of the model. In step-wise regression, 

variables are included and excluded iteratively from the set of explanatory variables with 

the AIC being calculated with each iteration. Once all the possible combinations of 

variables are considered, the model with the lowest AIC value is selected. 

Principal components regression 

Principal components regression can be described as a two-step process in which 

the explanatory variables are decomposed into principal components and then the 

dependent variable is regressed on the resultant principal component scores. The general 

https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Goodness_of_fit
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PCR model can be conceptualised using a similar notation than equation 5.4, but replacing 

the matrix of explanatory variables for a matrix of scores that result from the matrix 

decomposition described by the following equation:  

X= T P' + E          (equation 5.6) 

where X is a matrix of n observations described by p explanatory variables, T is a score 

matrix for the n observations, P is a matrix of component loadings that correspond to a 

combination of linear relationships of the original variables and E is a matrix of random 

errors. 

The principal component model is defined by the matrix product  T P', with the 

first principal component  t p' being obtained by singular value decomposition, where t 

is a vector of scores and p' is a transposed vector of component loadings. Similar to MLR, 

the PCR algorithm uses the least squares to regress y onto the vector corresponding to the 

first component t1 to estimate β̂1. Thereafter, the following components are defined with 

respect to their orthogonality to the previous one, and estimations of their corresponding 

β̂ coefficients are obtained. Because principal components are orthogonal to one another, 

PCR easily overcomes the problem of multicollinearity.  

Data were also analysed using the principal components regression (PCR) 

algorithm available in the package ‘caret’ for R software (Kuhn 2015). Prior to data 

analysis, explanatory variables were standardised to a mean equal to zero and a variance 

of one. 

The PCR algorithm was combined with a leave-one-out cross-validation procedure, 

which was used to identify and determine the optimal number of components to retain in 

the model. The criterion on the number of components to retain was based on the 

‘onesigma’ criterion for variable selection (Hastie et al. 2005). According to this criterion, 

starting from a model including all the components ordered from PC1 to the PC exhibiting 

the least variation, the optimal model is the first model where the RMSE-CV is within 

one standard error of the absolute minimum. 

Partial least squares regression 

Alternatively to MLR and PCR, a PLS regression modelling approach was 

performed also using the package ‘caret’ for R software (Kuhn 2015).  
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Similar to PCR, PLS aims at explaining a dependent variable from the scores of the few 

components resulting from the decomposition of a matrix of explanatory variables. The 

main difference between PLS and PCR is that PLS uses the variation of the dependent 

variable to guide the decomposition of the matrix of explanatory variables. Consequently, 

at a given level of accuracy, PLS models usually require fewer components to explain a 

response compared to PCR models.  

In PLS terminology, the principal components that result from the decomposition of 

matrices are termed latent variables and follow a similar notation to that introduced in 

equation 6. Because PLS decomposes X onto TP structures guided by y, loading weights 

w define the direction in the space spanned by Xa−1 of maximum covariance with y. The 

underlying PLS model for a single dependent variable is therefore defined as:  

y = T q' + e           (equation 5.7) 

where y is a vector of responses for the n observations, T is a score matrix for the n 

observations, q is a vector of latent variable loadings and e is a vector of random errors. 

Considering equations 6 and 7, the system of equations can be rearranged as: 

y = X P q' + e           (equation 5.8) 

and the matrix of β̂ coefficients that result from fitting a linear regression model as the 

one described in equation 5.4 are defined in the PLS method by establishing the 

relationship between P and q as conceptualised in the following equation: 

β̂ = 
y

X
= P q'            (equation 5.9) 

where q is found by least squares regression of y on T. 

The ‘caret’ package uses the modified kernel algorithm 1 published by Dayal and 

MacGregor (1997) to compute PLS scores and loading vectors. Like the method 

described for PCR, data were standardised prior to the analysis. Likewise, the optimal 

number of components to retain in the PLS model was chosen following the onesigma 

criterion based on the calculation of the RMSE-CV that resulted from applying a leave-

one-out cross-validation procedure. 

Model assessment and determination of the importance of explanatory variables 
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The performance of the developed models was assessed by calculating the 

coefficient of determination (R2) and the root mean square error (RMSE). Based on these 

metrics, the MLR modelling approach, which resulted in overall higher R2 values and 

lower RMSE values compared to PCR and PLS models was used to further investigate 

the relationships and importance of explanatory variables on cow performance.  

MLR coefficients were used to investigate the relationships between explanatory 

and response variables. Furthermore, the relative importance of the explanatory variables 

on defining the final MLR models was expressed in terms of their relative contribution to 

the overall R2. The relative importance metric was calculated using the method described 

by Lindeman (1980) and implemented with the function ‘calc.relimp’ available in the 

package ‘relatimpo’ for R software (Groemping and Matthias 2013). 

5.4 Results 

5.4.1 Overall per cow performance indicators 

Two principal components: PC1 and PC2, were accountable for 50% and 20% of 

the variance of the data, respectively. The PCA was used to summarise the structure of 

the response dataset. In further analyses, the scores corresponding to PC1 and PC2 are 

termed Production Index 1 and Production Index 2, respectively and their interpretation 

is based on the component loadings in Table 5.2. As indicated by their loadings, the 

component that captured the most variability (PC1) was closely associated with yields of 

milk, milksolids, milk fat and milk protein. Conversely, the relatively less variable PC2 

was associated with body condition score, live weight, change in live weight, milk urea 

and the percentages of milk fat and milk protein.  
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Table 5.2 Principal component loadings for the principal components 1 and 2 (PC1 and 

PC2, respectively).  

Variable PC1 (50%)1 PC2 (20%)1 

MYpc -0.40 0.04 

MSYpc -0.37 0.17 

MSPpc 0.32 0.34 

PFRpc 0.05 0.02 

FPpc 0.28 0.31 

PPpc 0.30 0.31 

FYpc -0.37 0.16 

PYpc -0.36 0.18 

MUpc -0.04 0.31 

LWpc 0.25 0.32 

LWCpc 0.11 -0.43 

BCSpc -0.23 0.44 
1Variance explained for by the components within brackets. 

MYpc= milk yield per cow in the herd, MSYpc= milksolids yield per cow in the herd, 

MSPpc= milksolids percentage per cow in the herd, FPpc= milk fat percentage per cow 

in the herd, PPpc= milk protein percentage per cow in the herd, FYpc= milk fat yield 

per cow in the herd, PYpc= milk protein yield per cow in the herd, PFRpc= milk protein 

to fat ratio per cow in the herd, MUpc= milk urea per cow in the herd, LWpc= live 

weight per cow in the herd, LWCpc= live weight change per cow in the herd, BCSpc= 

body condition score per cow in the herd 
 

5.4.2 Descriptive statistics 

Descriptive statistics of the variables used in the models are summarised in Table 

5.3. Production indices 1 and 2, milk urea, and yields for milk, milksolids, protein and fat 

were the response variables that varied the most (68.2% > CV > 11.1%), while the most 

variation of explanatory variables was observed for the area of herbage allocated daily to 

the cows, herbage allowance, proportion of herbage in the diet and temperature (34.7% > 

CV > 25.7%). Relatively little variation was found for any of the measured NV traits. 

However, the variation of DM and CP was relatively higher (19.8% and 12.3%, for DM 

and CP, respectively) than the variation of herbage ME and fibre (8.5% and 4.7%, 

respectively).  
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Table 5.3 Descriptive statistics of modelling variables.  

Variable N Mean SD CV% Min Max 

X-Explanatory variables       

HM, kg DM/ha 140 2908 204 7.0 2514 3487 

HA, kg DM/cow/d 140 29.50 8.54 28.9 10.89 46.28 

PD, % DM 140 77.32 27.4 27.3 23.0 100.0 

AH, ha/d 140 2.29 0.79 34.7 0.50 4.04 

ME 140 10.86 0.52 4.7 9.36 11.66 

CP, % DM 140 17.49 2.15 12.3 10.77 21.89 

Fibre, % DM 140 60.12 5.15 8.57 51.56 77.70 

DM, % FM 140 21.80 4.32 19.8 15.38 35.78 

T, ◦C 140 15.02 3.86 25.7 6.39 23.32 

THI 140 66.18 7.02 10.6 51.69 81.04 

CSI, kJ m-2/h 140 1199 78.4 6.5 1085 1495 

Rain, mm/d 140 2.76 4.82 - 0.00 25.40 

Y-Response variables       

MYpc, L/cow/d 140 16.08 2.13 13.25 9.53 19.77 

MSYpc, kg MS/cow/d 140 1.47 0.16 11.1 0.90 1.76 

MSPpc, % MY 140 9.06 0.38 4.2 8.57 10.47 

FPpc, % MY 140 5.20 0.23 4.5 4.77 6.00 

PPpc, % MY 140 3.96 0.19 4.91 3.63 5.51 

FYpc, kg F/cow 140 0.83 0.09 11.41 0.52 1.00 

PYpc, kg P/cow 140 0.63 0.07 11.18 0.38 0.78 

PFRpc, ratio 140 0.76 0.03 4.2 0.65 0.84 

MUpc, kg MU/cow 140 0.06 0.02 32.7 0.03 0.13 

LWpc, kg LW/cow 140 479.1 4.03 0.84 474.0 492 

LWCpc, kg LW/cow 140 0.03 0.41 - -1.57 1.33 

BCSpc, (1–10 scale) 140 4.61 0.18 3.8 4.42 5.02 

PI1, (1–100 scale) 140 67.05 22.68 33.83 0 100 

PI2, (1–100 scale) 140 28.13 19.18 68.17 0 100 

HM= herbage mass, HA= herbage allowance, AH= area of herbage offered, PD= 

proportion of herbage in diet, ME= herbage metabolisable energy, CP= herbage 

crude protein, DM= herbage dry matter, FM= herbage fresh matter, T= daily mean 

temperature, THI= temperature humidity index, CSI= cold stress index, Rain= 

rainfall, MYpc= milk yield per cow in the herd, MSYpc= milksolids yield per cow 

in the herd, MSPpc= milksolids percentage per cow in the herd, FPpc= milk fat 

percentage per cow in the herd, PPpc= milk protein percentage per cow in the herd, 

FYpc= milk fat yield per cow in the herd, PYpc= milk protein yield per cow in the 

herd, PFRpc= milk protein to fat ratio per cow in the herd, MUpc= milk urea per cow 

in the herd, LWpc= live weight per cow in the herd, LWCpc= live weight change per 

cow in the herd, BCSpc= body condition score per cow in the herd, PI1= performance 

indicator 1, PI2= performance indicator 2. 

 

The variability observed in the data yielded the correlations presented in Table 

5.4. There were significant relationships among most performance per cow variables (-

0.5 ≥ r ≥ 0.5 and p < .05). Yields for milk, milksolids, fat and protein were positively 



Chapter 5 

 

121 

 

related to each other but negatively related to the percentages of fat and protein in milk 

and live weight.  

As expected, negative relationships were observed between contents of ME and 

of DM and fibre in herbage (-0.78 ≥ r ≥ -0.85). There were also significant relationships 

between CP and any other herbage NV trait, but the strength of these relationships was 

relatively weak (0.62 ≥ r ≥ -0.33).  

Herbage allowance was positively related to HM, the proportion of herbage in 

diet, as well as with the area of herbage allocated to the animals and the ME content of 

herbage (0.88 ≥ r ≥ 0.51). Although there were significant relationships between the 

determinants of herbage quantity and the various performance per cow variables, the 

strength of these relationships was not strong (r ≤ 0.46). Herbage ME was positively 

related to yields for milk, milksolids, fat and protein, BCS and the production index 1 

(0.72 ≥ r ≥ 0.66). Moreover, content of CP in herbage was positively related to BCS. 

Temperature and the temperature-humidity index were negatively related with 

yields for milksolids, milk fat, milk protein, BCS and production index 2 (0.83 ≥ r ≥ 0.51). 

The relationships between the period of production and all the cow performance 

indicators were significant. The amount of milk, milksolids, milk fat and milk protein 

produced on a day to day basis, as well as the average condition score of the cows in the 

herd decreased as production progressed from early to late stages. 

 



 

 

1
2
2
 

   Table 5.4 Pearson correlation coefficient (r) matrix for herbage, climate and per cow performance variables (n= 140).     
Variable HM HA AH PD ME CP Fiber DM T THI CSI Rain MYpc MSYpc MSPpc PFRpc FPpc PPpc FYpc PYpc MUpc LWpc LWCpc BCSpc PI1 PI2 POP Y 

HM 1                                                       

HA 0.51*** 1                                                     

AH 0.28*** 0.86*** 1                                                   

PD 0.49*** 0.88*** 0.73*** 1                                                 

ME 0.31*** 0.54*** 0.35*** 0.47*** 1                                               

CP 0.15 0.25** 0.05 0.2* 0.45*** 1                                             

Fiber -0.16 -0.48*** -0.28*** -0.44*** -0.85*** -0.33*** 1                                           

DM -0.41*** -0.54*** -0.39*** -0.47*** -0.78*** -0.62*** 0.53*** 1                                         

T -0.28*** -0.4*** -0.06 -0.36*** -0.58*** -0.32*** 0.62*** 0.4*** 1                                       

THI -0.24** -0.44*** -0.12 -0.39*** -0.56*** -0.35*** 0.59*** 0.4*** 0.9*** 1                                     

CSI -0.08 0.04 0.12 0 -0.12 -0.08 0.11 0.07 0.09 0.08 1                                   

Rain -0.1 0.04 0.06 0.01 -0.04 0.01 0.04 0.01 0.02 0.08 0.8*** 1                                 

MYpc 0.31*** 0.39*** 0.23** 0.37*** 0.66*** 0.14 -0.49*** -0.51*** -0.47*** -0.42*** -0.2* -0.13 1                               

MSYpc 0.31*** 0.41*** 0.19* 0.39*** 0.69*** 0.17* -0.57*** -0.51*** -0.57*** -0.51*** -0.16 -0.08 0.97*** 1                             

MSPpc -0.22* -0.16 -0.21* -0.19* -0.34*** 0.02 0.07 0.31*** -0.01 0.01 0.28*** 0.26** -0.73*** -0.55*** 1                           

PFRpc -0.24** -0.41*** -0.45*** -0.33*** -0.34*** -0.07 0.21* 0.29*** 0.18* 0.2* -0.18* -0.14 -0.09 -0.1 0.03 1                         

FPpc -0.1 0.02 -0.01 -0.04 -0.17* 0.05 -0.02 0.17* -0.07 -0.06 0.33*** 0.3*** -0.64*** -0.47*** 0.91*** -0.38*** 1                       

PPpc -0.3*** -0.34*** -0.4*** -0.32*** -0.45*** -0.01 0.16 0.4*** 0.07 0.09 0.14 0.14 -0.66*** -0.52*** 0.87*** 0.52*** 0.58*** 1                     

FYpc 0.34*** 0.46*** 0.26** 0.43*** 0.72*** 0.18* -0.59*** -0.54*** -0.58*** -0.53*** -0.11 -0.05 0.96*** 0.99*** -0.54*** -0.25** -0.4*** -0.58*** 1                   

PYpc 0.25** 0.32*** 0.09 0.31*** 0.62*** 0.15 -0.52*** -0.44*** -0.53*** -0.46*** -0.2* -0.12 0.95*** 0.97*** -0.55*** 0.13 -0.56*** -0.4*** 0.93*** 1                 

MUpc 0.01 0.21* 0.01 0.15 0.29*** 0.48*** -0.21* -0.29*** -0.38*** -0.43*** 0.02 0.05 0.08 0.11 0.05 -0.03 0.05 0.04 0.11 0.11 1               

LWpc -0.18* -0.05 -0.11 -0.09 -0.19* -0.06 -0.13 0.24** 0.03 0.05 0.18* 0.2* -0.52*** -0.4*** 0.74*** 0.2* 0.6*** 0.72*** -0.42*** -0.36*** 0.07 1             

LWCpc -0.03 0.02 0.33*** -0.02 -0.28*** -0.12 0.32*** 0.09 0.45*** 0.39*** 0.13 0.04 -0.26** -0.35*** -0.06 -0.04 -0.04 -0.08 -0.33*** -0.36*** -0.21* -0.06 1           

BCSpc 0.26** 0.39*** -0.03 0.37*** 0.69*** 0.53*** -0.69*** -0.51*** -0.83*** -0.78*** -0.14 -0.03 0.58*** 0.67*** -0.12 -0.13 -0.06 -0.15 0.67*** 0.64*** 0.46*** -0.11 -0.56*** 1         

PI1 0.32*** 0.36*** 0.2 0.36*** 0.65*** 0.17 -0.44*** -0.51*** -0.45*** -0.41*** -0.23** -0.17* 0.98*** 0.93*** -0.8*** -0.13 -0.69*** -0.74*** 0.92*** 0.9*** 0.11 -0.64*** -0.28** 0.58*** 1       

PI2 0.02 0.18* -0.19 0.14 0.34*** 0.35*** -0.52*** -0.17* -0.64*** -0.59*** 0.06 0.15 0.07 0.27** 0.53*** 0.04 0.47*** 0.48*** 0.25** 0.27** 0.48*** 0.51*** -0.67*** 0.69*** 0 1     

POP -0.26** -0.4*** -0.1 -0.37*** -0.7*** -0.34*** 0.63*** 0.5*** 0.71*** 0.66*** 0.15 0.04 -0.8*** -0.82*** 0.44*** 0.17* 0.34*** 0.45*** -0.82*** -0.78*** -0.34*** 0.38*** 0.42*** -0.85*** -0.81*** -0.39*** 1   

Y -0.19* -0.32*** -0.39*** -0.29*** -0.3*** -0.04 0.34*** 0.23** 0.12 0.12 -0.13 -0.14 0.05 0.01 -0.17* 0.14 -0.21* -0.08 -0.02 0.04 0.06 -0.04 0 -0.07 0.06 -0.1 0.01 1 

Bold numbers indicate -0.5 ≥ r ≥ 0.5. 

* Significant at p < 0.05, ** Significant at p < 0.01, *** Significant at p < 0.001.    

HM= herbage mass, HA= herbage allowance, AH= area of herbage offered, PD= proportion of herbage in diet, ME= herbage metabolisable energy, CP= herbage crude protein, DM= herbage dry matter, T= daily mean temperature, THI= 

temperature humidity index, CSI= cold stress index, Rain= rainfall, MYpc= milk yield per cow in the herd, MSYpc= milksolids yield per cow in the herd, MSPpc= milksolids percentage per cow in the herd, FPpc= milk fat percentage per 

cow in the herd, PPpc= milk protein percentage per cow in the herd, FYpc= milk fat yield per cow in the herd, PYpc= milk protein yield per cow in the herd, PFRpc= milk protein to fat ratio per cow in the herd, MUpc= milk urea per cow 

in the herd, LWpc= live weight per cow in the herd, LWCpc= live weight change per cow in the herd, BCSpc= body condition score per cow in the herd, PI1= performance indicator 1, PI2= performance indicator 2, POP= period of production, 

Y= production season.                 
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5.4.3 Model results 

Model fit metrics indicate that for any response variable, the three modelling 

approaches resulted in similar R2 and RMSE values (Table 5.5). Most response variables 

were explained with high R2 values (0.93 ≥ R2 ≥ 0.68) and only milk fat percentage, milk 

urea, milk protein to fat ratio and live weight change were explained with relatively lower 

R2 values (0.34 ≥ R2 ≥ 0.54). 

 

Table 5.5 Metrics of fit for multiple linear regression (MLR), principal components 

regression (PCR) and partial least squares regression (PLS) models.  

  MLR  PCR  PLS 

Response 

variable 

 R2 RMSE No. 

vars 

 R2 RMSE No. 

Cmps 

 R2 RMSE No. 

LVs 

MYpc  0.80 0.95 9  0.83 0.98 9  0.83 1.00 3 

MSYpc  0.76 0.08 4  0.77 0.09 6  0.74 0.08 2 

MSPpc  0.73 0.20 10  0.61 0.23 14  0.69 0.22 6 

PFRpc  0.34 0.03 9  0.32 0.03 1  0.33 0.03 1 

FPpc  0.54 0.16 7  0.58 0.16 9  0.55 0.17 3 

PPpc  0.76 0.09 10  0.75 0.10 15  0.70 0.11 7 

FYpc  0.79 0.04 7  0.82 0.05 8  0.79 0.05 2 

PYpc  0.68 0.04 5  0.69 0.04 7  0.70 0.04 2 

MUpc  0.38 0.02 7  0.44 0.02 2  0.44 0.02 1 

LWpc  0.70 2.20 10  0.63 2.47 14  0.60 2.50 7 

LWCpc  0.47 0.28 6  0.43 0.31 12  0.44 0.31 4 

BCSpc  0.96 0.04 10  0.97 0.04 15  0.96 0.04 9 

PI1  0.84 9.05 9  0.82 9.85 9  0.83 10.23 4 

PI2  0.78 8.95 10  0.73 9.56 15  0.68 9.75 9 

MYpc= milk yield per cow in the herd, MSYpc= milksolids yield per cow in the herd, 

MSPpc= milksolids percentage per cow in the herd, FPpc= milk fat percentage per cow 

in the herd, PPpc= milk protein percentage per cow in the herd, FYpc= milk fat yield 

per cow in the herd, PYpc= milk protein yield per cow in the herd, PFRpc= milk protein 

to fat ratio per cow in the herd, MUpc= milk urea per cow in the herd, LWpc= live 

weight per cow in the herd, LWCpc= live weight change per cow in the herd, BCSpc= 

body condition score per cow in the herd, PI1= performance Indicator 1, PI2= 

performance Indicator 2. 
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The number of explanatory variables retained by the MLR models ranged from 4 

to 10, whereas the optimal number of principal components retained by the PCR models 

ranged from 1 to 15 and those retained by the PLS regression models from 1 to 9. 

Regression coefficients for the different MLR models are shown in Table 5.6 and 

regression coefficients for PCR and PLS models are shown in Tables C.1 and C.2 of 

Appendix C, respectively. The relative importance of the linear regressors that were 

estimated for the different response variables is shown in Table 5.7.  
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 Table 5.6 Estimated multiple linear regression coefficients.  
 Explanatory variable  

Response 

variable 
Intercept HM HA AH PD ME CP DM Fibre T THI CSI Rain 

POP: 

Early 

POP: 

Mid 

Y: 

2016 

MYpc -8.59 0.00089† -0.077* 0.82*  1.67***   0.07*   -0.0021†  3.98*** 3.04*** -0.64** 

MSYpc 0.28     0.09***        0.27*** 0.21*** -0.03** 

MSPpc 15.84 -0.00029* 0.032*** -0.34***  -0.39***   -0.03*** -0.03***  0.0010***  -0.74*** -0.58*** 0.15** 

PFRpc 1.44 -0.00003* 0.002* -0.03***  -0.04**  -0.001† 0.001† 0.001†  -0.0001*    0.01† 

FPpc 7.69  0.004†   -0.16**   -0.02*** -0.02***  0.0008***  -0.43*** -0.37***  

PPpc 9.22 -0.00025*** 0.021*** -0.26***  -0.30***  -0.006† -0.02*** -0.01†  0.0002†  -0.30*** -0.22*** 0.11*** 

FYpc -0.25   0.01†  0.09*** -0.005†  0.002†     0.16*** 0.11*** -0.02* 

PYpc 0.36     0.03*      -0.0001†  0.12*** 0.09*** -0.01† 

MUpc -0.04 -0.00003** 0.001** -0.01*  0.01† 0.003***  0.001*  -0.001**      

LWpc 604.49  0.416*** -3.29*** -0.03† -5.46*** -0.471** -0.159† -0.85***    0.15*** -8.56*** -6.56*** -1.18* 

LWCpc -0.15 0.00060*** -0.057*** 0.74***  -0.14*         -0.16** -0.16** 

BCSpc 5.10 -0.00008*** 0.014*** -0.16***   0.005† -0.003† 0.003*** -0.01** -0.002†   0.19*** 0.06*** 0.02** 

PI1 -273.23 0.00830† -0.879** 8.81**  22.05***   1.53***   -0.0305**  45.59*** 33.53*** -5.72** 

PI2 227.24 -0.02630*** 2.877*** -31.05***  -5.97†   -1.40*** -1.35***  0.0333**  -11.80** -11.61*** 5.02** 
†Significant at p < 0.1, * Significant at p < 0.05, ** Significant at p < 0.01, *** Significant at p < 0.001 

MYpc= milk yield per cow in the herd, MSYpc= milksolids yield per cow in the herd, MSPpc= milksolids percentage per cow in the herd, FPpc= milk fat percentage per cow 

in the herd, PPpc= milk protein percentage per cow in the herd, FYpc= milk fat yield per cow in the herd, PYpc= milk protein yield per cow in the herd, PFRpc= milk protein 

to fat ratio per cow in the herd, MUpc= milk urea per cow in the herd, LWpc= live weight per cow in the herd, LWCpc= live weight change per cow in the herd, BCSpc= body 

condition score per cow in the herd, PI1= performance indicator 1, PI2= performance indicator 2 

HM = herbage mass, HA= herbage allowance, AH= area of herbage offered, PD= proportion of herbage in diet, ME= herbage metabolisable energy, CP= herbage crude 

protein, DM= herbage dry matter, T= daily mean temperature, THI= temperature humidity index, CSI= cold stress index, Rain= rainfall, POP:Early= period of production 

defined between day 1 and day 90 from the beginning of milk production, POP:Mid= period of production defined between day 91 and day 180 from the beginning of milk 

production,Y:2016= 2016-17 production season. 
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Table 5.7 Relative importance of multiple linear regressors.   

 Explanatory variable   

Response 

variable 
HM HA AH PD ME CP Fibre DM T THI CSI Rain 

POP: 

Early 

POP: 

Mid 

Y: 

2016 
R2 

MYpc 0.03 0.04 0.02  0.20  0.08    0.02  0.21 0.18 0.03 0.80 

MSYpc     0.30        0.30 0.15 0.01 0.76 

MSPpc 0.02 0.03 0.04  0.12  0.05  0.03  0.06  0.11 0.22 0.05 0.73 

PFRpc 0.02 0.06 0.11  0.05  0.02 0.02 0.01  0.03    0.01 0.34 

FPpc  0.01   0.05  0.04  0.04  0.09  0.10 0.21  0.54 

PPpc 0.04 0.06 0.10  0.15  0.06 0.05 0.02  0.01  0.07 0.16 0.04 0.76 

FYpc   0.03  0.24 0.03 0.12      0.24 0.11 0.02 0.79 

PYpc     0.22      0.02  0.28 0.14 0.01 0.68 

MUpc 0.02 0.04 0.03  0.03 0.14 0.02   0.10      0.38 

LWpc  0.03 0.03 0.01 0.08 0.02 0.18 0.04    0.04 0.13 0.15 0.01 0.70 

LWCpc 0.02 0.11 0.24  0.08         0.02 0.01 0.47 

BCSpc 0.02 0.07 0.06   0.05 0.11 0.05 0.17 0.14   0.25 0.04 0.00 0.96 

PI1 0.03 0.04 0.02  0.21  0.08    0.03  0.23 0.18 0.03 0.84 

PI2 0.02 0.09 0.13   0.04   0.12   0.17   0.02   0.09 0.10 0.01 0.78 

MYpc= milk yield per cow in the herd, MSYpc= milksolids yield per cow in the herd, MSPpc= milksolids percentage per cow in the herd, FPpc= milk fat percentage per 

cow in the herd, PPpc= milk protein percentage per cow in the herd, FYpc= milk fat yield per cow in the herd, PYpc= milk protein yield per cow in the herd, PFRpc= milk 

protein to fat ratio per cow in the herd, MUpc= milk urea per cow in the herd, LWpc= live weight per cow in the herd, LWCpc= live weight change per cow in the herd, 

BCSpc= body condition score per cow in the herd, PI1= performance indicator 1, PI2= performance indicator 2 

HM= herbage mass, HA= herbage allowance, AH= area of herbage offered, PD= proportion of herbage in diet, ME= herbage metabolisable energy, CP= herbage crude 

protein, DM= herbage dry matter, T= daily mean temperature, THI= temperature humidity index, CSI= cold stress index, Rain= rainfall, POP:Early= period of production 

defined between day 1 and day 90 from the beginning of milk production, POP:Mid= period of production defined between day 91 and day 180 from the beginning of milk 

production,Y:2016= 2016-17 production season. 
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The relative importance of herbage related variables on explaining any of the 

responses was higher than the importance of the climatological variables (Table 5.7). 

Moreover, herbage quantity defining variables namely herbage area, herbage mass, 

herbage allowance and proportion of herbage in diet were relatively less important on 

explaining the various responses than the differences in herbage NV.  

Most responses in performance per cow, except for milk urea and milk protein to 

fat ratio were significantly (p < 0.001) influenced by the period of production (Table 5.6). 

Herbage ME was significantly related with all performance per cow variables (0.001 > p 

> 0.1) except for BCS. Variation of herbage ME accounted for as much as 30% of the 

variation of milksolids and as little as 3% of the variation of the of milk urea. Moreover, 

regression coefficients in Table 5.6 indicate that herbage ME was positively related to 

milk, milksolids, fat, protein, milk urea, BCS and PI1 and negatively related to the 

percentages of milk constituents, live weight, live weight change and PI2.  

Fibre influenced performance per cow in the same way herbage ME did. However, 

the influence of fibre on any performance per cow response variable was of a lower 

magnitude compared to ME, as indicated by the lower regression coefficients and the 

lower relative importance of fibre on explaining the various responses in terms of their 

R2. Fibre was more important in explaining LW than ME (18% vs 8% of the variation of 

LW for fibre and ME, respectively), with higher levels of fibre resulting in lower LW.  

Crude protein was of high relative importance in explaining variation of milk urea 

(14% of R2) and of relatively less importance to explain BCS, milk fat yield and LW (5%, 

3% and 2% of R2, respectively). Higher levels of crude protein in herbage were associated 

with higher levels of urea in milk and BCS but lower milk fat yield and LW. DM was a 

significant factor explaining milk protein to fat ratio, milk protein yield, LW and BCS, 

but the relative importance of DM was relatively low (< 5% of R2).  

Herbage quantity variables were significant predictors of most of the performance 

per cow response variables measured (p <0.05). However, as mentioned above, the 

relative importance of herbage quantity associated variables on performance per cow was, 

in general, relatively small (1 < % of R2 < 24) compared to the importance of herbage of 

NV (3 < % of R2 < 24). Changes in the area of herbage allocated to cows were responsible 

for explaining 24% of the variation of live weight change, 13% of production index 2, 

11% of milk protein to fat ratio and 10% of milk protein percentage, with higher areas 
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being related with higher changes in live weight, but lower milk fat to protein ratio, milk 

protein percentage and PI2. Interestingly, the influence of herbage allowance on 

performance per cow responses was opposite to that observed for herbage mass and area, 

as indicated by the opposite sign of their regression coefficients (Table 5.6). Although 

HM significantly explained many of the performance per cow variables, its importance 

was relatively small (from 2 to 4% of R2).   

Temperature and cold-stress index were significantly related to the highest number of 

performance per cow variables. Temperature was particularly important for explaining 

BCS (17% of R2) and PI2 (17% of R2), with these two variables decreasing with higher 

temperatures. CSI was important in explaining the variation in the percentages of protein 

(9% of R2) and milksolids (6% of R2), with higher CSI being related to percentages of 

protein and solids in milk. 

5.5 Discussion 

This chapter was set out to determine the influence of the nutritive value of herbage 

and other herbage and climate related factors on the performance of a pasture-based dairy 

farm system on a per cow basis. The following sections discuss the findings of this study 

in light of the existing literature on the topic. 

5.5.1 Pasture-based dairy farm system performance per cow 

An interesting feature in this research was the development of performance indices 

based on a multivariate analysis of the data. Such analysis allowed the synthesis of the 

assessment of the various performance per cow metrics used in this study into two 

indexes: PI1 and PI2. PI1 was associated with yields of milk, milksolids, fat and protein 

in milk produced per cow in the herd, which are important determinants of net profit in 

pasture-based systems (Hanrahan et al. 2018). On the other hand, PI2 was more closely 

related with milk urea, live weight, live weight change and BCS per cow. Urea in milk is 

a useful indicator of appropriateness of the ratio of crude protein to energy in the diet of 

dairy cows (Moller et al. 1993). Excess crude protein in the diet of grazing dairy cows 

was associated with reduced milk production (Moller et al. 1993) and reduced 

reproductive performance (McCormick et al. 1999). Moreover, live weight, live weight 

change and BCS are also relevant for defining feeding targets for maintenance, production 
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and reproductive functions of dairy cows (AFRC 1993). Changes in a cow’s body 

condition score and live weight provide information about the cow’s current nutrient 

intake relative to their requirements (Roche et al. 2009).  

It is important to highlight that there was no relationship between PI1 and PI2 since 

the principal components resulting from the PCA are orthogonal. However, this does not 

mean that relevant variables defining the components are not related since principal 

components are the result of a combination of linear relationships of the original variables 

(Abdi and Williams 2010) and loadings in Table 5.2 indicate that all the original 

performance variables yielded, to some extent, to the two most relevant principal 

components. Consequently, relationships between PI1- and PI2-related variables exist as 

supported by the correlations in Table 5.4. In this sense, although energy stored as BCS 

(Roche et al. 2007) and live weight (Berry et al. 2006) have a close relationship with milk 

production, a comprehensive literature review by Roche et al. (2009) describes that there 

are inconsistencies in the associations between BCS and milk production, with published 

data indicating both positive and negative relationships. 

5.5.2 Seasonality of the farm system influence on performance per cow 

The fact that any performance per cow metric was highly dependent on the period 

of production can be explained by the characteristic seasonality of low-cost pasture-based 

dairy farm systems. In these systems, milk production, and thus cow performance, are 

driven by availability of herbage, which is dependent on seasonal factors such as rainfall 

and temperature (Holmes 2007). In practice, the system is managed to ensure that cows 

calve in a tight pattern before spring and are dried-off in autumn so as the requirements 

of the herd are matched with the typical temperate herbage growth pattern (Parker et al. 

1997). By doing this, the physiological stage of the cows in the herd is synchronised so 

as the earlier stages of the milk production process result in cows producing higher yields 

of milk, milksolids, fat and protein compared to the later stages in the production process.  

The physiological stage of a cow is a relevant factor driving milk production and 

composition (Bargo et al. 2003; Kolver 2003; Walker et al. 2004). The increment in the 

percentages of fat and protein in milk in the later stages of the production process are a 

consequence of higher yields for fat and protein relative to milk volume. Similar to milk 
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production, live weight and BCS are also affected by the physiological status of the cows, 

with both live weight and BCS profiles being similar to an inverted lactation curve.  

Loss of live weight and BCS mobilisation in the early stage of lactation are most 

likely to be genetically driven (Roche et al. 2009). However, the literature is not 

conclusive on the reason for the increase of these parameters after nadir (between 40 to 

100 days after calving); with studies (Berry et al. 2006; Roche et al. 2007) suggesting that 

nutrition plays the most significant role at these stages. Because herbage NV, herbage 

quantity and some climate factors were controlled for in the analysis of the data, there 

might be other factors other than herbage NV associated with the seasonality of the farm 

system that were not considered in this study that might be influencing animal 

performance (e.g. proportion of legumes in the herbage mix).   

5.5.3 Herbage nutritive value and quantity influence on performance per cow 

A relevant finding in this research is that the ME of the herbage available to the 

animals was able to explain a large proportion of the variability of the performance per 

cow of the pasture-based dairy farm system. Metabolisable energy is a well-known factor 

limiting milk production in pasture-based dairy farm systems (Kolver and Muller 1998; 

Kolver 2003; Wales and Kolver 2017). In these systems, herbage ME is a relevant driver 

of animal performance, particularly when the amount of herbage available to cows does 

not limit dry matter intake. Higher ME signifies more energy per unit of DM being 

available for processes of milk production and can also signify higher intakes of herbage, 

resulting in increased milk production (Waghorn and Clark 2004).  

Dry matter intake is understood to be the single most important factor driving 

performance of grazing dairy cows and is mostly controlled by HA (Dillon 2007; Poppi 

et al. 1987). In this study, the importance and level of significance of HA on explaining 

animal performance were relatively lower than those of herbage ME, indicating that HA 

posed less limits to milk yield than herbage ME. This is an important finding because it 

means that measuring herbage NV in addition to herbage quantity may be beneficial to 

devise strategies to optimise milk production. 

The relationship between HA and milk yield is curvilinear, with the marginal 

response of milk yield decreasing as HA increases, hence management is concerned with 

controlling HA in order to optimise grazing efficiency while ensuring a level of dry matter 
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intake to sustain a desired level of milk yield. Bargo et al. (2003) describes that a practical 

guide to optimise herbage utilisation is to define a HA of 25 kg DM/cow/d when cows 

are also fed supplements. Moreover, a meta-analysis on the effect of HA on milk 

production on dairy cows, Pérez-Prieto and Delagarde (2013) identified that the response 

of milk yield to HA is low (0.003 lts kg/HA) when HA increased from 40 to 60 kg 

DM/cow/d. The mean HA in this study was 29.5 kg DM/cow/d. This value suggests that, 

in the light of the existing literature, the cows in the study were, on average, offered 

enough herbage to not limit DMI and thus animal performance. Hence, the higher 

relevance of herbage ME over HA for explaining any of the animal performance 

indicators.  

Interestingly, herbage ME was negatively related with milk protein percentage. 

This is possibly caused by a shortfall in the supply of CP relative to ME, which may result 

in insufficient amino acids being available to satisfy the needs for milk protein synthesis. 

Walker et al. (2004) reported that CP in excess of requirements have variable (negative 

to positive response) effects on the percentage of protein in milk, but usually increase the 

yield of protein when the protein source is balanced for milk protein synthesis. Excess 

protein in herbage relative to the requirements of the cows may also be a reason for 

explaining the positive relationship between CP and milk urea (Sinclair et al. 2014).  

The negative relationship between fibre content and live weight may be the 

consequence of reduced rumen fill, resulting from reduced dry matter intakes associated 

with higher fibre content. Fibre increases chewing time and reduces rate of passage of 

herbage through the digestive system of cows (Waghorn et al. 2007). Chewing is 

necessary to break fibre to increase rate of digestion of the cellulose and hemicellulose 

and to enable undigested residues to pass out of the rumen (Dado and Allen 1995; Allen 

1996). Consequently, higher levels of fibre in herbage reduced DMI which may explain 

the negative relationship between fibre and live weight. 

The area of herbage offered to the cows was the herbage quantity defining variable 

that was of most importance for explaining performance per cow, and it was of particular 

relevance for the case of live weight change and PI2. It is likely that controlling the area 

of herbage has provided the farm manager with more accurate allocation than controlling 

HA. This may be because measuring area is more accurate than measuring herbage mass, 

as seasonal changes in the structure and species composition of mixed swards might have 

required changes in the estimation of HM with the rapid pasture meter (King et al. 2010) 
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5.5.4 Climate influence on performance per cow 

The THI, which combines the effects of temperature and humidity relative to a 

standard level of thermal stress had a significant negative influence on BCS. When cows 

are heat stressed, heat gained exceeds heat lost triggering physiological, anatomical or 

behavioural changes in the attempt to maintain heat balance (West 2003). Davis et al. 

(2003) proved that as THI increases dairy cows tend to reduce their intake of DM in order 

to control heat stress. In New Zealand, work by Bryant et al. (2007) describes that THI 

values above 68, 69 and 75 reduce milk production of Holstein, Jersey and Holstein x 

Jersey cows, respectively arguably due to the negative effect of heat stress on DMI. 

Although THI values calculated in this study were, on average, lower than threshold 

values described by Bryant et al. (2007) there were 56 days in which cows were exposed 

to conditions of heat stress of THI above 68. It is possible that due to heat stress, cows 

restrict intake of dry matter and that this is reflected in higher mobilisation of energy from 

body condition to milk production, explaining the negative relationship between THI and 

BCS. 

In accordance to Gao et al. (2017), this study found a negative relationship between 

THI and milk urea. Interestingly, THI had no significant effect on milk production or milk 

composition traits. However, there were significant negative relationships between 

temperature and percentages of protein and fat in milk and their ratio. Negative 

relationships between temperature and milk fat and protein percentages were also 

identified by Yano et al. (2014). The fact that THI and temperature are related to different 

animal performance metrics may relate to differences in the accuracies of temperature 

and humidity data. The mechanisms regulating concentration of protein in milk during 

heat stress are largely unknown (Amamou et al. 2019). Possible regulation of milk protein 

may involve increased protein turnover and competition for amino acids for other 

functions (Bequtte and Backwell 1997) and limitations in the precursor supply caused by 

the reduction in mammary blood flow (Gao et al. 2017). Moreover, milk fat percentage 

may be explained by reductions in proportions of acetate in the rumen (Bandaranayaka 

and Holmes 1976).  

The relative importance of cold temperature on performance per cow was low 

compared to high temperatures. Similar to this study, Bryant et al. (2007) found positive 

linear relationships between CSI and percentages of fat and protein in milk. Bryant et al. 
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(2007) argues that a CSI of 1300 kJ/m2/h should be treated as a tentative upper threshold 

at which cow performance is reduced due to cold temperatures, a condition that is not 

usual in seasonal farm systems where cows are not milked during winter.  

5.5.5 Chosen strategy for data analysis  

Although three modelling approaches were used to analyse the data, the MLR 

approach was preferred over PCR or PLS. Both PCR and PLS have many advantages 

over MLR, including the ability to robustly handle a large number of non-orthogonal 

descriptor variables while providing good predictive accuracy and a much lower risk of 

chance correlation. However, major limitations of PCR and PLS include a higher risk of 

overlooking real correlations and sensitivity to the relative scaling of the descriptor 

variables, which limit the interpretation of results in the light of the objectives set by this 

research. In addition, because there were not large differences among the performance of 

the various models, the option of choosing MLR over the other two approaches was 

justified.  

5.5.6 Opportunities to improve farm management 

 Results in this study suggest there were opportunities that could be considered by 

management to improve performance per cow in the pasture-based dairy farm system 

under scrutiny. Given that performance per cow was highly influenced by herbage ME, 

having rapidly available information of both performance per cow and herbage ME could 

potentially be useful to improve feed allocation by allowing a more precise match 

between supply and demand of energy, potentially resulting in more efficient grazing and 

feed use. Similarly, having rapidly available information on the CP content of herbage 

could be useful to define feeding strategies to reduce the negative effect excess N could 

have on cow performance and the environment. Excess dietary CP in Dairy 1, as inferred 

from the positive relationship between herbage CP and milk urea, can be controlled by 

feeding cows with a diet balanced for energy and CP content (Nousiainen et al. 2004; 

Maltz et al. 2013). This can be done, for example, by replacing herbage of high CP with 

maize or cereal silage of low CP content (Klein et al. 2002; Ledgard et al. 2006). By doing 

this, the risk of negatively affecting the reproductive performance of cows (McCormick 

et al. 1999) or excreting high levels of N-urine that could leak into waterways (De Klein 
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et al. 2002) could be reduced. Furthermore, supported by the evidence in this study, a 

future scenario of climate change characterised by increasing temperature suggest that 

the diet offered to the herd could also be formulated to account for the negative effect of 

increasing temperature on BCS. Previous studies have identified that bentonite clay 

supplementation can improve ruminal fermentation or performance of lactating dairy 

cows during stressful conditions that can compromise ruminal function, such as heat 

stress (Zhu et al., 2016; Acharya et al., 2017; Jiang et al. 2018). The use of cattle heat 

stress monitors or weather stations could then complement the use of rapid NV 

measurement to define feeding strategies and improve pasture-based feeding to mitigate 

the negative effects of heat stress of cow performance. 

5.6 Conclusion 

This study shows that day-to-day variation of herbage nutritive value in a pasture-

based dairy farm system is a relevant driver of performance on a per cow basis. Results 

indicated that the daily variation of herbage ME explained from 20% to 30% of the 

production of milk, milk fat and milk protein per cow. Herbage quantity and 

climatological factors were relatively less important than herbage NV in defining 

performance per cow. These results indicate that measuring herbage NV is potentially 

relevant for informing decision making around the daily allocation of feed to cows. 

Maintaining or improving the NV of the herbage offered to cows is thus a key challenge 

for the dairy farm management. Developing feeding strategies aimed at improving the 

efficiency of feeding of cows by exploiting the variation of herbage NV to better match 

daily supply of nutrients animal nutritional requirements may be useful to improve the 

overall performance of pasture-based dairy farming systems. In order to achieve this, 

further research is required to investigate the extent at which daily variation of herbage 

NV would influence requirements of individual grazing cows in the herd.  
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6.1 Abstract 

The objective of this study was to determine the extent to which the deviation of 

the daily metabolisable energy estimated requirements of a cow from the actual ME 

supplied per cow in the herd throughout the production season in a pasture-based dairy 

farm varies. Data from herd tests, milk production, herbage and feed allocation were 

collected during production seasons 2016-17 and 2017-18 at Dairy 1, Massey University, 

New Zealand. Orthogonal polynomials of third order were used to model lactation curves 

for yields of milk, fat, protein and live weights of each cow in the milking herd for every 

day during both production seasons. Linear extrapolation was used to impute missing data 

for herbage metabolisable energy, pre- and post-grazing herbage mass, area of herbage 

offered to cows and allocation of feeds other than herbage. Daily dietary metabolisable 

energy supplied to and required by cows for maintenance, lactation, changes in live 

weight and pregnancy were calculated using the AFRC (1993) energy system. A repeated 

measures ANOVA for the deviation of the daily metabolisable energy estimated 

requirements of a cow from the actual energy supplied per cow in the herd was performed 

using a linear model that included the random effects of breed and cow. Results show that 

daily estimated requirements for metabolisable energy of cows varied (CV= 18.8%) and 

that this variation was higher in earlier than in later stages of the production season. The 

estimated energy required daily by the milking herd was, on average, nearly a fifth above 

or below the daily mean energy supplied. Moreover, the mean deviation of the estimated 

energy requirements of a cow from the energy supplied per cow in the herd 14.39 

MJ/cow/d (SD= 39.02 MJ/cow/d) and this deviation was mostly explained by 

observations made within a cow rather than between cows or breeds. The potential of 

managing the variation of energy requirements of individual cows in pasture-based dairy 

farm systems is also discussed. 

Key words: daily metabolisable energy balance, pasture-based dairy farm, cow variation, 

modelling.  

6.2 Introduction 

Supply of metabolisable energy (ME) from herbage has been identified as a major 

factor limiting performance of cows in pasture-based dairy farms (Holmes 2007, Nicol 

and Brookes 2007). In most pasture-based dairy farms, allocation of herbage and other 
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feeds is calculated on a dry-matter basis, where assumptions are made about the ME 

content of the diet and the total ME requirements of the herd in order to achieve 

performance targets while maintaining low costs (Waghorn 2007). This is the opposite to 

the approach used in intensive indoor dairy farms where a total mixed ration (TMR) 

feeding system is used to feed animals on an individual animal basis and costs are diluted 

by improving productivity of cows and enhancing feed conversion efficiency (Tozer et 

al. 2004; Bargo et al. 2002). 

The use of recent technological advances in herbage mass (HM) and herbage 

nutritive value (NV) measurement has been proposed as a means of improving the 

efficiency of grazing and the use of feeds on extensive pasture-based dairy farm systems 

(Shalloo et al. 2018; French et al. 2014). It is believed that efficiency gains would arise 

from shifting from a dry-matter basis to a nutrition centred allocation basis. This shift in 

focus would suggest a change in the management approach towards the likes of the TMR 

system. However, for such an approach to be operational in practice, precise knowledge 

on the nutritional demand of cows in the milking herd is required.  

Climate, diet and animal factors are responsible for changes in the feed demand of 

a milking herd (Bargo et al. 2003). Within a milking herd, daily demand for nutrition, and 

in particularly energy, of individual lactating cows depends on the level of milk produced, 

live weight, mobilisation of body tissue, and stage of gestation all of which are 

characterised by typical lactation curve patterns that are a function of the day since a cow 

started producing milk (Macciotta et al. 2011). Lactation curve models can be mechanistic 

or empirical. Mechanistic models are theoretical representations and underlying 

assumptions of the processes driving lactation while empirical models correspond to 

statistical representations of the reality being modelled (Macciotta et al. 2011). When 

herd test data is available, fitting Legendre orthogonal polynomials using random 

regression is a flexible option to obtain a good characterisation of individual lactation 

curves and allow variation of curves among cows. 

 In addition to lactation curve modelling, the choice of the energy feeding system 

is important to define the energy requirements of individual cows. Various energy feeding 

systems are currently adopted in Europe (INRA 1989; AFRC 1993) and North America 

(NRC 2001), being the AFRC (1993) also widely used to estimate energy requirements 

of grazing dairy cows in New Zealand. Yan et al. (2003) assessed the performance of the 

AFRC, NRC and INRA feeding systems using data from long-term feeding studies and 
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found no major differences in the estimation of energy requirements among systems 

except for the energy required for live weight change; where the NRC outperformed the 

INRA and AFRC systems. More recently, a review by Tedeschi et al. (2014) has 

concluded that simpler feeding systems, such as the AFRC (1993), are more resilient to 

variation in conditions among studies and robust enough to characterise milk production 

around the world. 

 Although several researchers (Auldist et al. 2019; Heard et al. 2011; Doyle et al. 

2006) have determined the relationships between the ME content of diets and their 

influence on the nutrition and performance of milking cows, these studies have been 

carried out under controlled conditions or involved few animals, making conclusions 

from such studies unscalable to the actual farm situation. Moreover, given the intrinsic 

dynamics of seasonal farming, it is unclear the extent to which individual requirements 

for ME of cows in a milking herd would vary given also the variation of the energy 

content supplied daily in the diet. Knowing the extent to which requirements for ME of 

individual cows in a pasture-based dairy farm vary will contribute to the discussion of 

how such variation could potentially be used to improve efficiency on pasture-based dairy 

farm systems. 

The objective of this study was to determine the extent to which the deviation of 

the energy required by a cow from the energy supplied per cow to the herd throughout 

the production season in a pasture-based dairy farm varies. This study also sought out to 

discuss pathways of improving the efficiency of managing herbage and supplements 

given variation of requirements for ME of individual cows. 

6.3 Materials and method 

This study was conducted at Dairy 1 farm at Massey University, Palmerston North, 

New Zealand during 2016-17 (starting August 2016 to May 2017) and 2017-18 (from 

July 2017 to May 2018) production seasons. The farm is characterised for being a low 

input pasture-based system with spring calving in which all cows are milked once daily 

throughout the production season. The main source of feed available on the farm is freshly 

grazed ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) herbage mix. 

Mixed herb crops comprising chicory (Cichorium intybus), red clover (Trifolium 

pratense) and plantain (Plantago lanceolata), and monocultures of turnip (Brassica 
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campestris ssp. rapifera), rape (Brassica napus) and lucerne (Medicago sativa) are also 

grazed strategically to fill deficits in seasonal dry matter supply. Periodically, maize and 

herbage silages and other supplements are also used. During 2016-17 and 2017-18 

production seasons, the dairy herd consisted of 260 and 255 cows, respectively, which 

were allocated an effective area of 119.7 ha. The herd breed composition was 25% 

Holstein-Friesian (F), 14% Holstein-Friesian crossbred (FX), 26% Holstein-Friesian-

Jersey crossbred (FJ), 12% Jersey crossbred (JX) and 22% Jersey (J) based on the breed 

grouping criteria proposed by Handcock et al. (2019).  

6.3.1 Data collection  

Daily yields of milk (MY), fat (FY) and protein (PY) from cows in the herd were 

obtained from herd tests for fat and protein percentages and somatic cell counts performed 

monthly during the two production seasons. Live weights (LW) of individual cows 

identified with a radio frequency electronic identification system (Allflex New Zealand 

Ltd., Palmerston North, New Zealand) were automatically measured every morning after 

milking using a race walkover scale (WoW xR-3000, Tru-Test Ltd., Auckland, New 

Zealand). Calving dates, dry-off dates and dates of withholding periods for milk due to 

medicinal treatment were also documented. Volume of milk and kilograms of milk solids, 

fat and protein produced daily by the herd were monitored using the dairy company actual 

milk vat return records. 

Herbage mass (HM) and metabolisable energy content (ME) of herbage from 

paddocks pre-grazing were measured every two to three weeks. At each measurement 

period, between four to six paddocks in the farm manager’s weekly grazing plan were 

measured. Herbage mass was estimated using a C-Dax pasture meter with auto lift (C-

Dax 2019) towed behind an All-Terrain Vehicle following a “W” shaped pattern across 

the length of the paddock. C-Dax herbage height data collected within each paddock were 

averaged and converted to herbage mass by calculating HM (kg DM/ha) = 752 + 16.3 

Height (mm). Metabolisable energy was determined from canopy hyperspectral 

measurements acquired from twelve sampling plots distributed along the runs performed 

with the pasture meter. The number of plots was defined following recommendation of 

Cosgrove et al. (1998) who suggested that twelve samples are required to determine the 

mean herbage ME of a paddock with accuracies of ± 0.5 MJ/kgDM. A detailed 

description of the instrument and calibration used to determine herbage ME and the 
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definition of sampling plot can be found in chapter 3. At each grazing event, the area of 

herbage allocated to the cows was recorded. Post-grazing HM was measured using the 

same method as the one used to quantify HM at pre-grazing. 

Daily allocation of feeds other than herbage were obtained from records from the 

farm. The ME and gross energy (GE) content of the various feeds supplied to the cows 

was assumed and obtained from the studies presented in Table 6.1.  

 

Table 6.1 Assumptions on metabolisable energy (ME) and gross energy (GE) of feeds 

other than fresh herbage offered to cows during the 2016-17 and 2017-18 production 

seasons at Dairy 1, Massey University. 

Feed source ME 

(MJ/kgDM) 

 GE1 

(MJ/kgDM)  

Reference 

Herbage silage 9.5  19 DairyNZ (2017) 

Herbage baleage 10.2  19 DairyNZ (2017) 

Chicory 12.5  18.4 DairyNZ (2017) 

Rape 12.9  18.4 Westwood and Mulcock (2012) 

Turnips 12.0  18.4 DairyNZ (2017) 

Lucerne 11.0  18.4 DairyNZ (2017) 

Maize silage 10.3  19 DairyNZ (2017) 

Tapioca 12.8  18.8 DairyNZ (2017) 

Dried distillers grains 12.5  18.8 DairyNZ (2017) 
1all GE values were assumed following recommendations of AFRC (1993) 
 

6.3.2 Data editing  

In order to obtain a complete description of the feed offered daily at the farm during 

the two production seasons, days with missing data for HM, area of herbage offered to 

cows, post-grazing HM, herbage ME and allocation of feeds other than herbage were 

imputed using linear extrapolation. 

The amount of herbage DM consumed by the herd at any paddock in any day was 

calculated as: 

HC= (HMpre-grazing - HMpost-grazing) AH 

where HC is the herbage consumed by the herd (kg DM), HMpre-grazing is the herbage mass 

at pre-grazing (kg DM/ha), HMpost-grazing is the herbage mass at post-grazing (kg DM/ha) 

and AH is the area of herbage allocated to cows (ha). 
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6.3.3 Modelling of cow lactation curves and validation of milk production at farm 

level 

Orthogonal polynomials of third order were used to model lactation curves for MY, 

FY, PY and LW for each individual cow in each production season. Regression models 

for each trait were defined as a polynomial function of a cow’s days in milk after calving 

as:  

Yt(c:y)= (β0P0+ β 1P1 + β 2P2+ β 3P3) + (α0P0+ α1P1 + α2P2+ α3P3) +et(c:y) 

where Yt(c:y) is the trait measured at day t after calving of cow c within production season 

y, β0 to β3 are fixed regression coefficients for the polynomial functions P0 to P3 that 

denote the effect of the population mean on Y, α0 to α3 are random regression coefficients 

for the polynomial functions P0 to P3 that denote the effect of cow nested within each 

production season on Y, P0 to P3 are Legendre polynomial functions of orders 0 to 3 as 

defined below, and et(cy) is the random residual error. Coefficients of the orthogonal 

polynomial were calculated as: 

P0(t)= 1; P1(t)= x; P2(t)= 
1

2
 (3x2-1); and P3(t)= 

1

2
 (5x3-3x) 

where x is the number of days after calving standardised to a maximum lactation length 

of 270 days and calculated as: x= -1 + 2 ((t - 1) / (270 - 1)). 

Estimates of the fixed and random regression coefficients were obtained by 

solving the mixed model equations using the restricted maximum likelihood procedure as 

implemented in the R software package ‘lme4’ (Bates et al. 2007). 

The models developed here were used to predict MY, FY, PY and LW for each cow 

in the herd for every calendar day of the 2016-18 and 2017-8 production seasons. At any 

given day, a cow was assumed to be in the milking herd if the day was one week after 

their calving date or before their drying-off date and there were no records of the cow 

being withhold from milking. Modelled yields of milk, fat and protein of individual cows 

were added by calendar day and daily totals were validated against actual milk production 

obtained in the milk vat. Modelled lactation curves were then used to estimate 

requirements for ME of each of the cows in the milking herd at every calendar day along 

production seasons as described in the following section.  
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6.3.4 Metabolisable energy requirements of cows and energy balance at the herd 

level 

The metabolisable energy content in the diet supplied daily to the herd was 

calculated as the weighted average of the ME content of the feed source in relation to the 

quantity of feed supplied in dry matter (DM). Likewise, metabolicity of the diet (qm), 

calculated as the quotient ME/GE, was also based on the weighted average of the energy 

contents of feeds, where the value for GE of fresh herbage was assumed at 18.4 MJ/kg 

DM and values for ME and GE of the remaining feeds were also assumed and presented 

in Table 6.1. 

Efficiency of ME use for the various animal functions were calculated following 

AFRC (1993) equations: 

Efficiency for maintenance:     km = 0.35 qm + 0.503  

Efficiency for lactation:    kl = 0.35 qm + 0.420 

Efficiency for live weight gain:    kg = 0.95 kl  

Efficiency for live weight loss:    kt = 0.84  

Efficiency for growth of conceptus:   kc = 0.133  

The amount of ME required for maintaining (MEm) a cow at any given calendar 

day was calculated as the addition of the energetic requirements for their fasting 

metabolism (Fm) and an activity allowance (Ac) that assumed a constant walking distance 

of 3 km as: MEm (MJ/d) = (Fm + Ac) / km, where Fm (MJ/d) = 1 (0.53 (LWd / 1.08)0.67, 

Ac (MJ/d) = 0.0016 LWd, and LWd is the modelled live weight of a cow at calendar day 

d. 

Cow ME requirement for lactation (MEl) was calculated as MEl (MJ/d) = EVl  

MY 1.03 / kl where EVl is the energy value of a kilogram of milk calculated as EVl 

(MJ/kg) = 0.376 F + 0.209 P + 0.948, 1.03 is a factor assuming the density of milk at 1.03 

kg/l and F and P are concentrations of milk fat and protein expressed as percentages of 

milk yield, respectively. 

Metabolisable energy requirement for live weight change (MEg) was calculated 

as MEg (MJ/d) = EVg LWC / kg if a cow was gaining weight or as MEg (MJ/d) = EVg 

LWC kt / kl if a cow was losing weight, where EVg is the energy value of a kilogram of 
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live body tissue assumed constant at 19 MJ/kg (AFRC 1993) and LWC is the daily live 

weight change of a cow as determined by the first derivative of modelled daily live 

weights.  

The level of ME required to sustain the growth of the conceptus (MEc) was 

calculated as EVc / kc where EVc is the energy retained by the fetus at any given day after 

conception and calculated as EVc (MJ/d) = 1 / 40 Wc (Et 0.0201 e-0.0000576t), where Et (MJ) 

was derived from log10 (Et) = 151.665 – 151.64e-0.0000576t and is the total energy retained 

by the fetus at day t after conception and Wc is the calf weight at birth calculated as Wc 

(kg) = (LWm
0.73 – 28.89) / 2.064, where LWm is a cow’s averaged live weight between 

days 100 and 200 after calving. Conception date of each cow was calculated by 

subtracting 283 days to the date of calving at the subsequent production season. It was 

assumed that cows not present in the herd in the subsequent production season were 

empty with an EVc equal to zero.  

The total cow requirements for ME (MEt) were adjusted for feeding level as:   

MEt (MJ/d) = [ 1 + 0.018 (FL – 1) ] (MEm + MEl + MEg + MEc) 

where FL is the feeding level calculated as a multiple of MEm. 

Estimated requirements for MEt of individual cows were added by calendar day 

to determine the daily ME estimated requirements of the herd. Then, herd energy 

requirements were contrasted with daily ME supplied at the farm. The difference between 

the amount of ME estimated requirements of the herd and the amount of ME supplied 

daily was calculated considering a ±5% tolerance on the ME supply. This tolerance was 

based on the error associated with the herbage ME sampling method (±5 MJ/kg DM) in 

relation to the mean ME value of the diet. 

Descriptive statistics were used to visualise variation of estimated requirements 

for MEt of individual cows along with the actual ME supplied per cow in the herd (MEs; 

MJ/cow/d). Variation of daily MEt estimated requirements of cows within calendar days 

was represented by boxplots, while averaged daily MEt estimated requirements grouped 

by breed were used to represent daily energy required by each of the five breeds in the 

herd.  
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The difference between a cow’s daily MEt estimated requirements and MEs was 

calculated and defined as the deviation of the daily MEt estimated requirements of a cow 

from the actual ME supplied per cow in the herd (DME; MJ/d).  

6.3.5 Statistical analysis 

A repeated measures analysis of variance for DME was performed using the ‘lmer’ 

function available in the ‘lme4’ package for R software (Bates et al. 2007) with the 

following linear model, 

DMEij = µ + Bi + Cj + e 

where: 

DMEij is the deviation of the daily total metabolisable energy estimated requirements of 

cow i of breed j from the metabolisable energy supplied per cow in the herd, µ is the mean 

value of DME, Bj is the random effect of the j-th breed (either F, FX, FJ, JX or J), Ci is 

the i-th cow in the herd (318 different identification classes) and e is the random residual 

error associated with each observation. 

Estimates of variance components for breed (σ2
b), cow (σ

2
c) and residual error (σ

2
e) 

were used to calculate total variance (σ2
T) as σ

2
T = σ2

b + σ
2

c + σ
2

e. The contribution of 

breed, cow and residual error were also expressed as the percentage of the total variance. 

6.4 Results 

Descriptive statistics on cow variables collected via herd tests, cow live weights, 

daily yields of milk, fat and protein per cow calculated from milk vat records as well as 

data collected on herbage and feeds supplied to the herd during 2016-17 and 2017-18 

production seasons at Massey University’s Dairy 1 are presented in table 6.2. 
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Table 6.2 Descriptive statistics of variables describing daily yields of milk, fat, protein 

and live weights of individual cows, daily yields of milk, fat and protein per cow 

calculated from milk vat records, herbage measurements and feed allowances measured 

at Dairy 1, Massey University, Palmerston North. 

 Production season 

 2016-17  2016-17 

Variable 
N mean SD CV 

(%) 

  N mean SD CV 

(%) 

Daily yields of individual cows                   

    Milk, L 2296 15.6 6.05 38.8   1933 16.3 6.4 39.3 

    Fat, kg 2296 0.81 0.26 32.1   1932 0.84 0.3 35.7 

    Protein, kg 2296 0.63 0.19 30.2   1933 0.65 0.21 32.3 

    Live weight, kg 34646 493.9 69.5 14.1   33064 491.9 65.2 13.3 

Daily yields per cow calculated 

from milk vat records 

                  

    Milk, L 300 14.4 3.21 22.3   302 14.7 3.42 23.2 

    Fat, kg 300 0.78 0.13 16.7   302 0.77 0.15 19.5 

   Protein, kg 300 0.59 0.10 16.9   302 0.60 0.10 16.7 

Herbage                   

    Pre-grazing HM, kg DM/ha 66 2960.7 208.6 7.0   111 2920.1 211.2 7.2 

    Post-grazing HM, kg DM/ha 66 1798.8 147.8 8.2   111 1702.5 119.7 7.0 

    ME, MJ/kg DM 66 11.2 0.31 2.8   111 10.7 0.53 5.0 

    Area of herbage, ha/d 66 2.4 0.83 34.6   111 1.92 0.81 42.2 

Feed allowances                    

    Herbage silage, kg DM/cow/d 66 1.13 1.63 -   111 1.31 2.41 - 

    Herbage bailage, kg DM/cow/d 66 0 0 -   111 0.12 0.33 - 

    Chicory, kg DM/cow/d 66 1.26 1.74 -   111 1.56 2.07 - 

    Rape, kg DM/cow/d 66 0 0 -   111 0.25 0.97 - 

    Turnips, kg DM/cow/d 66 0.15 0.87 -   111 0.54 1.37 - 

    Lucerne, kg DM/cow/d 66 0.55 1.32 -   111 0 0 - 

    Maize silage, kg DM/cow/d 66 0 0 -   111 0.1 0.56 - 

    Tapioca, kg DM/cow/d 66 0 0 -   111 0.32 0.66 - 

    DDG, kg DM/cow/d 66 0 0 -   111 0.53 1.04 - 

HM= herbage mass, ME=metabolisable energy, DDG= dried distillers grains. 

 

Validation of modelled milk, fat and protein produced daily by the milking herd 

against actual milk production obtained at the milk vat are presented in Figure 6.1. 

Modelling of individual cow milk traits upscaled to the herd level was able to explain 

variability of milk obtained at the milk vat with high R2 and low RPE values (R2 > 0.95 

and RPE < 9%).  
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Figure 6.1 Validation of modelled milk (a), fat (b) and protein (c) produced daily by the 

milking herd against actual milk production measured in vat at Dairy 1, Massey 

University, Palmerston North. (            ) linear regression line, (- - -) reference line with 

intercept of 0 and slope of 1. y= dependent variable of the linear regression equation 

denoting modelled daily milk production, x = independent variable of the linear 

regression equation denoting actual daily milk production measured in the milk vat, R2= 

coefficient of determination, RMSE= root mean squared error, RPE: relative prediction 

error. 

 

Composition of the ME of the diet consumed daily by the cows in the milking 

herd throughout the production seasons is shown in Figure 6.2.  
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Figure 6.2 Metabolisable energy (ME) composition of feed allocated daily to the milking 

herd during the 2016-17 and 2017-18 production seasons at Dairy 1, Massey University, 

Palmerston North. 

 

Herbage supplied an average of 73% of the ME consumed daily by the milking 

herd in the farm. However, as shown in Figure 6.2, the supply of ME from herbage in 

relation to the many feeds offered varied within and between production seasons. Early 

on in the seasons, the ME in the diet was composed of about 80% herbage and 20% 

herbage silage, reaching to 100% herbage on most spring days. As the production season 

unfolded, crops such as chicory, turnips and rape became available and supplied cows 

with a source of ME during summer and into the autumn. However, the use of these crops 

occurred earlier in 2017-18 than in 2016-17. From February onwards in 2017-18, lucerne 

and herbage silage were replaced with herbage baleage, maize silage, tapioca and DDG 
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and there was a decrease in the use of herb crops as sources of ME compared to the 2016-

17 production season. 

There were significant relationships (p < 0.001) between the amount of ME 

supplied daily by management to the milking herd and the daily ME estimated 

requirements of the herd on both production seasons, with both production seasons 

exhibiting similar R2, RMSE and RPE values (Figure 6.3).  

 

 
Figure 6.3 Relationship between daily metabolisable energy (ME) supplied and ME 

estimated requirements of the milking herd at Dairy 1, Massey University, during 

production seasons 2016-17 and 2017-18 (a), 2016-17 only (b) and 2017-18 only (c). (            

) linear regression line, (- - -) reference line with intercept of 0 and slope of 1. y= 

dependent variable of the linear regression equation denoting estimated requirements for 

ME of the milking herd, x = independent variable of the linear regression equation 

denoting actual ME supplied to the milking herd, R2= coefficient of determination, 

RMSE= root mean squared error, RPE: relative prediction error. 

 

The amount of ME supplied daily to the milking herd throughout production 

seasons matched the estimated requirements of the milking herd on 25% of the days. 

Conversely, ME was under-supplied by about 30 MJ/cow/d on 64% of the days and over-

supplied by 4.3 MJ/cow/d on 11% of the days. The depiction of daily supply and demand 

for ME in Figure 6.4 shows that most of the days in which intake of ME was below the 

estimated requirements for ME of the herd to sustain modelled performance levels were 

at the start of the production seasons. However, there were also various days during 

summer in which the energy balance was also negative (daily ME supplied below ME 

estimated requirements).   
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Figure 6.4 Daily metabolisable energy (ME) supplied to the milking herd and ME 

estimated requirements of the milking herd at Dairy 1, Massey University, during the 

2016-17 and 2017-18 production seasons. 

 

Variation of the estimated requirements for MEt of individual milking cows 

throughout production seasons was high (CV= 18.8%). Results in Figure 6.5 show that 

the variation of daily MEt estimated requirements of individual cows in the milking herd 

per calendar was greater at earlier than at mid to later stages of the production seasons, as 

denoted by the higher ranges and interquartile ranges of the boxplots from August to late 

December compared to those from January onwards. Holstein-Friesian was the breed 

whose estimated requirements for MEt varied the most (CV= 18.7%) while Jersey the 

least (CV= 16.9%). Figure 6.5 also shows that the average level of ME supplied per cow 

in the herd was at most days below the level required by F or FX cows but higher than 

that required by J cows.   
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Figure 6.5 Daily variation of dietary metabolisable energy (ME) supplied per cow in the herd, mean ME estimated requirements per cow in the 

herd, mean ME estimated requirements per cow grouped by breed, and dispersion of ME estimated requirements of individual cows (boxplots) 

during the 2016-17 and 2017-18 production seasons at Dairy 1, Massey University, Palmerston North. F= Holstein-Friesian, FX= Holstein-

Friesian crossbred, FJ= Holstein-Friesian-Jersey crossbred, JX= Jersey crossbred, J= Jersey.
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The mean DME calculated throughout productions seasons was 14.39 MJ/cow/d 

and the standard deviation was 39.02 MJ/cow/d. Results of the analysis of variance 

performed on DME in Table 6.3 show that the relative contribution of breed and cow total 

variance was relatively low compared to the error associated with observations within 

cows indicated by the random error term (e2). Moreover, differences in DME between 

cows were nearly four times greater than differences between breeds. 

 

Table 6.3 Variance decomposition of the deviation of the daily total metabolisable energy 

estimated requirements of a cow from the actual metabolisable energy supplied per cow 

in the herd (DME) at Dairy 1, Massey University, during 2016-17 and 2017-18 production 

seasons. 

 σ2
c σ2

b σ2
e σ2

T c2 b2 e2 

DME 471.5 120.2 1027.0 1618.7 29.1 7.4 63.4 

σ2
b= variance explained by the random effect of breed, σ

2
c= variance explained by the 

random effect of cow, σ2
e= variance explained by the random error, σ

2
T= total variance, 

b2= variance explained by the random effect of breed expressed as a percentage of total 

variance, c2= variance explained by the random effect of cow expressed as a percentage 

of total variance, e2= variance explained by random error expressed as a percentage of 

total variance. 

 

6.5 Discussion 

Mean values of daily yields per cow of milk, fat and protein obtained from herd 

tests were slightly higher than yields calculated from milk vat records. Moreover, mean 

yields reported here were, on average, about 46%, 50% and 51% higher than the yields 

of milk, fat and protein, respectively reported in other comparable studies (Clark et al. 

2006; Tong et al. 2002; Holmes et al. 1992) using once a day milking and performed on 

similar conditions but using higher stocking rates (> 3 cows/ha). Despite the differences 

in yields, mean live weights used here were within the ranges of live weights reported in 

the studies mentioned before (375–511 kg LW). Mean and standard deviation values of 

herbage ME indicated that this variable was within the normal values commonly found 

in the literature (DairyNZ 2017; Holmes 2007; Litherland and Lambert 2007). Likewise, 

herbage mass measures at pre-grazing were within normal ranges observed for ryegrass 

dominant herbage swards (2200–3700 kg DM/ha) (Pérez-Prieto and Delagarde 2013; 

Holmes 2007) while herbage mass measures obtained at post-grazing were slightly higher 
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than the most frequent measures observed by McCarthy et al. (2014), which ranged from 

1480 to 1760 kg DM/ha. Higher than normal post-grazing residuals might help explain 

the higher yields measured in this study compared to those reported in other comparable 

studies (Clark et al. 2006; Tong et al. 2002; Holmes et al. 1992). 

Modelling of lactation curves of individual cows throughout production seasons 

was able to capture the production of milk in the vat. However, the negative offsets and 

slopes greater than one in the linear regression equations in Figure 6.1 indicate that 

modelling tended to overestimate production as measured in the milk vat at days with 

high levels of production and to underestimate production at lower levels of production, 

but that although significant (p<0.001), the magnitude of these effects was minimal. It is 

important to highlight however that milk vat records might not be an accurate 

representation of the actual milk produced daily at the farm, since milk produced at the 

farm was used to rear calves and was not included in the milk vat records, also the milk 

from any cow on medication was not included in the vat. Because demand for milk by 

calves is high when milk production levels are high, the differences between herd tests 

and milk vat records can explain the differences between yields measured at herd tests 

and yields calculated from milk present in the vat (Table 6.2), and therefore, the slight 

overestimation by the modelling approach. The underestimation of milk produced at 

lower levels of production by modelling might be the consequence of underestimating the 

number of cows being milked at the beginning of the production seasons when production 

is low, as this number was set by a fixed milk withholding period of seven days, which 

might have been lower than the actual number of cows milked at that stage. Moreover, 

while orthogonal polynomial functions are appropriate to accurately model lactation 

curves, it is well established that this approach tends to introduce errors at both ends of 

the lactation curves (Silvestre et al. 2006; Brotherstone et al. 2000), and these errors can 

also help explain the differences between modelled and actual milk produced at the vat, 

particularly at both ends of the production seasons.  

Accuracy and bias metrics describing the relationship between the daily ME 

supplied and estimated requirements of the herd (Figure 6.3) indicated that there were 

opportunities in the farm to further improve the balance between supply and demand of 

energy. An RPE value of 18.9% means that the daily ME estimated requirements of the 

herd were, on average, nearly a fifth above or below the daily mean ME supplied. 

Moreover, there was a slight systematic tendency to under supply ME as denoted by the 
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slope greater than one in the equation regression in Figure 6.3. The profile of the ME 

supplied against that required daily by the herd shows that most of the undersupplied days 

were at early stages in the production seasons. This is consistent with theoretical 

representations of dry matter supply and demand in seasonal pasture-based dairy farm 

systems (Holmes 2007). The relative undersupply of dietary ME at early stages in the 

production seasons is well known and is explained by cows entering a stage of negative 

energy balance postpartum that is characterised by physical constrain of intake and weight 

loss to support metabolic functioning (Ingvartsen and Andersen 2000). In order to support 

this idea, daily live weight of cows grouped by breed can be found in Figure D.1 in 

Appendix D. Although feeding strategies can be developed to overcome the effects of the 

negative energy balance at early lactation, allowing for the physiological capability of 

cows to rapidly mobilise energy from fat tissue instead of incorporating sources of energy 

in the diet is perhaps the most profitable strategy for managing feed at this stage. 

Oversupply of energy during most days from October onwards signifies that supplements 

could have been saved if allocation of feeds was made based on rapid measurements of 

herbage ME. However, this would have not only required rapid ME measurement tools 

but also precise forecasting tools that were able to accurately assist with tactical planning 

and budgeting for the season.  

Greater dispersion of individual cow daily MEt estimated requirements at early 

stages of the production seasons can be explained by greater variation of peak yields than 

in persistency of lactations of individual cows in the herd. This can be supported by the 

high levels of ME supplied per cow that occurred after January in both production seasons 

(Figure 6.5) that are most likely to have contributed to sustain persistency of lactation 

after peak yields. If daily variation of estimated requirements for MEt is grouped by breed 

and compared against the mean dietary ME supplied per cow in the herd, then results 

show that the energy required by F cows was below the mean energy supplied per cow 

on 49% of the days studied, while this metric was only 17% for J cows. Holstein-Friesian 

cows must have a different grazing behaviour (i.e. bite rate, bite mass and/or grazing time) 

compared to J cows in order to achieve greater intakes to satisfy their energy demands. 

The contribution of within cow variation on explaining variance of DME can be 

partially explained by the fact that daily estimated requirements for MEt of individual 

cows throughout lactations varied more than the variation of the supply of ME per cow 

at the herd level throughout the production seasons. Because of this, the differences of 
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DME within individual cows were greater than the differences of DME between cows or 

breeds. This finding stresses on the importance of performing regular monitoring of a 

cow’s energy requirements to inform daily allocation of energy to cows. Most pasture-

based dairy farm herds are managed as a single mob, where all cows have access to the 

same feed resources and thus a precise fit between energy demand and supply of each 

individual cow is unlikely to be easily implemented. However, having accurate estimates 

of the energy requirements of individual animals and the energy content of the diet on 

any given day can potentially help management to achieve a more precise balance 

between demand and supply of energy though improved decision-making without having 

to bring significant changes to the production system or management. 

The potential of managing variation of energy requirements of individual cows in 

pasture-based dairy farm systems requires controlling cows on herbage. Hills et al. (2016) 

identified virtual fencing and individualised feeding as suitable technologies to 

implement precise feeding of grazing cows in pasture-based systems. The main idea 

behind these technologies is to provide cows with restricted access to resources based on 

their energy and nutritional needs, so that the farm system is more efficient. Cows with 

low requirements for energy can be grouped and given access to herbage of lower ME 

and supplements according to their individualised requirements levels, while cows 

requiring higher energy levels can be allocated to herbage of higher energy content and 

fed supplements accordingly. Similarly, controlled access of cows to herbage can be 

based on the genetic merit of cows so that cows of higher milk production genetic 

potential are fed to maximise milk responses to herbage and supplements while cows of 

lower genetic merit are fed to minimise costs. 

6.6 Conclusion 

This study found that the daily MEt estimated requirements of individual milking 

cows grazing in a pasture-based dairy farm varied to a great extent (CV= 18.8%). This 

variation was higher in the earlier than later stages of the production season. The daily 

MEt estimated requirements of the herd were, on average, nearly a fifth above or below 

the daily ME supplied at the farm. The deviation of the daily MEt estimated requirements 

of a cow from the actual ME supplied per cow in the herd was mostly explained by the 

observations made within a cow rather than between cows or breeds as lactation has the 
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greater influence on the total MEt requirements of cows. Having accurate estimates of the 

daily MEt requirements of individual cows can potentially improve the efficiency of the 

farm system by allowing a more precise fit between supply and demand for feed. 

However, for such information to be useful, changes to the farm system are most likely 

to be required. Experimental research is required to determine the actual benefit of having 

accurate estimates of MEt requirements of individual cows for managing feed in pasture-

based dairy farm systems. 
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This thesis identified the need to bridge the research gap that exists between the 

development and potential proximal hyperspectral sensing as a rapid herbage nutritive 

value (NV) measurement tool to inform grazing management and feed allocation 

decisions in a pasture-based dairy farm system. In order to fill this gap in research, this 

thesis achieved four outcomes: 

1. This thesis developed and validated calibration models for hyperspectral canopy 

reflectance data that were useful to determine the herbage NV traits metabolisable 

energy (ME), crude protein (CP), neutral detergent fibre (NDF), acid detergent 

fibre (ADF) and digestible organic matter in dry matter (DOMD) of ryegrass-

white clover mixed herbage available to the grazing cow . 

2. Proximal hyperspectral sensing was used to assess the extent by which the NV of 

herbage offered daily to lactating cows in a pasture-based dairy farm varied in 

time and space during two production seasons. A measure of the proportion of 

variance that was not accounted for by differences between paddocks, months and 

production seasons was used to determine the relevance of herbage NV 

measurement. 

3. The relative importance of daily variation of herbage NV traits and other herbage 

quantity and climate related factors on driving the physical performance  on a per 

cow basis was determined, and findings were used to justify the extent by which 

variation of herbage NV can drive the performance per cow of the pasture-based 

dairy farm. 

4. Finally, a modelling approach was used to determine the extent by which 

estimated requirements for ME of individual cows varied and how such variation 

differed from the dietary ME supplied per cow in the herd.  

Findings related to the outcomes listed above were presented in chapters 3 to 6, 

respectively, where results were also discussed in terms of their implication to different 

aspects of grazing management and feed allocation decision-making. This chapter brings 

together major challenges and opportunities found throughout the thesis and discusses 

how findings could be valuable to aid daily grazing management and feed allocation 

decisions in a pasture-based dairy farm system.  Further research opportunities are 

identified to advance study the topic. 
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7.1 Overall discussion 

7.1.1 On the accuracy of proximal hyperspectral sensing and the determination of 

herbage nutritive value at the paddock level  

To be valuable for rapid assessment of herbage NV in a pasture-based dairy farm 

system, firstly, proximal hyperspectral sensing of canopies needed to provide predictions 

that were a true representation of actual herbage NV available at the sampling units (i.e. 

sampling plot). Canopy reflectance calibration models built using data obtained from 

proximal hyperspectral sensing were able to determine various NV traits of herbage with 

R2 values ranging from 0.78 to 0.57 (chapter 3). The accuracies of the canopy spectral 

calibration models developed in this study were lower than the accuracies reported by 

Pullanagari et al. (2012) (0.83 > R2 > 0.75) but higher than the accuracies reported by 

Kawamura et al. (2008) (0.65 > R2 > 0.37) and Adjorlolo et al. (2015) (0.60 > R2 > 0.51). 

Despite differences in the spectral pre-treatment methods used among these studies, a 

major factor contributing to the differences in accuracies was the variability of the 

datasets used in the development of the calibration models, with the studies that used 

more variable datasets reporting the most accurate models. More importantly, different 

from any other study in the literature, this thesis only measured NV from the vertical 

portion of herbage that is available to the grazing cow (Macdonald et al. 2010; DairyNZ 

2017) instead of the NV of the whole canopy vertical profile. Because NV decreases with 

canopy depth (Delagarde et al. 2000; Nave et al. 2014), but spectra from lower strata can 

influence reflectance measured at the surface of the canopy even at high herbage mass 

(i.e. canopy closure) (Asner 1998), having a more appropriate characterization of the NV 

of herbage available to cows might have been at the expense of a potential loss of accuracy 

of canopy spectral calibration models. 

In addition to the accuracies with which field herbage NV measurements were 

determined, the characterisation of the NV of herbage available at the grazing 

management unit (i.e. the paddock) was also potentially affected by the sampling strategy. 

In this thesis, the mean value of herbage NV of a paddock was determined from 

hyperspectral measurements taken from about twelve sampling plots distributed 

following a ‘W’ pattern to systematically cover the area of the paddock. If the distribution 

of sampling plots within a paddock was scattered into well-defined patches that were not 
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measured while sampling, then the sampling pattern used could potentially result in mean 

values of herbage NV that were not representative of the paddock. Furthermore, it is also 

important to highlight that animals grazing spatially heterogenous herbage mixtures tend 

to select for preferred species (Chapman et al. 2007), which might lead to differences 

between the NV of herbage offered in paddocks and that is actually consumed by cows if 

selectivity is not controlled by management. If paddocks were to be grazed laxly so that 

cows can select herbage patches in order to maximise performance, then the sampling 

strategy used to characterise the NV of herbage available to cows should consider such 

behaviour. On the other hand, given spatial variation of herbage NV within paddocks 

(chapter 4) and time constraints imposed by the operability of proximal hyperspectral 

sensing instruments in the field, the number of sampling plots measured per paddock in 

this study could have also influenced the characterisation of herbage NV at the paddock 

level. 

The choice of the number of sampling plots was based on Cosgrove et al. (1998), 

who determined that twelve herbage samples collected from the top ¾ of the canopy 

height are required to determine the mean NV of a ryegrass-white clover mix during 

autumn at the paddock level with standard errors of ± 0.5 MJ/kg DM for ME, and of ± 

5% for CP, NDF and ADF. However, the standard error with which the NV of a paddock 

is determined is highly dependent on the number of samples used, which also depends on 

how much herbage NV varies in space. Chapter 4 identified that the spatial variation of 

herbage NV within anyone paddock varied highly depending on the season, and therefore, 

different sample sizes would be required to characterise herbage NV of paddocks in 

different seasons with the same level of precision (i.e. standard error). For example, 

Figure 7.1 illustrates how the standard error of the mean of herbage ME decreases 

exponentially as sample size increases. Moreover, the figure also shows that, given a pre-

determined standard error of the mean, more samples are required in summer or autumn 

compared to spring or winter. 
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Figure 7.1 Standard error of the mean (SEM) of herbage metabolisable energy assessed 

by proximal hyperspectral sensing as a function of sample size by season. Source: built 

with data collected in this study. 

 

The NV of the herbage offered to cows in this study varied significantly between 

production seasons and between months within production seasons (chapter 4). This 

variation was most likely associated with differences in temperature and rainfall through 

their influence on plant phenology and abundance of species, and therefore NV (Chapman 

et al. 2014; Buxton and Fales 1994). The extent to which herbage NV varies seasonally 

is well documented (Bell et al. 2018; Litherland and Lambert 2007; Moller et al. 1996), 

however, different from previous studies, this thesis provided with more detailed 

description on the extent to which herbage NV varied in a particular pasture-based dairy 

farm system. Because herbage NV data were collected from multiple paddocks over a 

lengthy period, this research was able to differentiate the effects of the paddock from the 

effects of production seasons and months within production season on the various herbage 

NV traits measured. This was useful to quantify the extent by which herbage NV could 

be determined from factors considering different temporal scales (i.e. production seasons 

and/or months) or paddock-specific attributes, and more importantly, it provided a basis 

to justify herbage NV measurement from a daily NV variation standpoint.  
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7.1.2 On the importance of herbage nutritive value on cow performance and the 

potential value of its measurement in a pasture-based dairy farm system 

In addition to the capability of delivering rapid measurements, the potential value 

of using proximal hyperspectral sensing for measuring herbage NV is also dependent on 

the importance herbage NV has on driving performance per cow in the pasture-based 

dairy farm system, as this would partially justify the use of the tool for practical purposes. 

Chapter 5 showed that the relative importance of herbage ME content on determining 

yields of milk, fat and protein per cow in the herd (20–30% of R2) was higher than any 

other NV trait, herbage or environmental related factor analysed in this study (0–24% of 

R2). Supply of ME has been identified as the most limiting factor of milk production of 

cows grazing herbage of high NV compared to cows fed a full nutrient positive control 

ration (total mixed ration, TMR) (Kolver and Muller 1998; Kolver 2003). It has been 

described that under normal management conditions, milk production from herbage is 

driven by herbage intake which is mainly controlled by herbage allowance (HA) (Dillon 

2007; Holmes 2007). However, this study found that ME content in herbage was more 

important than HA on driving performance per cow, for which it was argued that herbage 

fed to cows varied more in ME than in quantity, hence the higher importance of herbage 

ME. This is an important finding since no study to date has reported data obtained in 

field-like conditions where no control other rather than regular management is 

considered, moreover such finding suggests that ME measurement can be potentially 

valuable for controlling performance of cows through better managing supply of ME in 

relation to ME requirements. 

Although it is well established that lactating cows require energy for maintenance, 

activity, pregnancy, milk production and gaining weight (INRA 1989; AFRC 1993; NRC 

2001), no study to date has attempted to quantify the extent by which daily total 

requirements for ME of individual cows (MEt) in a pasture-based dairy farm system 

varies throughout the production season. Likewise, there is no evidence in the literature 

of studies estimating how the difference between daily MEt requirements of cows and the 

amount of ME supplied per cow in the herd varies. Based on the modelling of lactation 

curves of individual cows and herbage ME measurements, chapter 6 showed that daily 

MEt estimated requirements of individual cows varied throughout the two production 

seasons under consideration (CV= 18.8%) and that these requirements were, on average, 
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nearly a fifth above or below the daily average ME supplied per cow in the herd. It is 

important to notice however, that this imbalance was unlikely to be as high if the actual 

amount of ME consumed by individual cows was considered, as competition between 

cows has most likely resulted in high energy requirements cows having higher energy 

intakes and low energy requirements cows having lower intakes.  

At the herd level, daily supply of ME matched the estimated requirements of the 

herd on 25% of the days, while an under-supply of ME of about 30 MJ/cow/d occurred 

on 64% of the days and an over-supply of 4.3 MJ/cow/d occurred on 11% of the days. 

Such finding signified that during days when energy supply was short, cows were unlikely 

to be able to fulfil their MEt estimated requirements, potentially affecting cow 

performance. In contrast, when supply was in excess to requirements, cow performance 

would be higher than expected or post-grazing residuals would be higher than targets. 

This suggests that having information about the ME content of the diet in addition to 

information about the performance of cows can be valuable to improve allocation of 

herbage and supplements to cows as a result of a better matching between daily supply 

and demand of ME at the herd level. A better match between daily supply and demand 

for ME at the farm level could potentially lead to consistently achieving grazing targets 

and cow performance targets, which would then lead to improved growth, utilisation and 

NV of herbage while ensuring sustainable levels of milk production in the longer term 

(Macdonald et al. 2010; Beukes et al. 2015). Moreover, high MEt estimated requirements 

variation within and between cows (chapter 6) suggested that practices aiming at 

exploiting individual cow variation potentially beneficial for the farm system.  

The content of CP from herbage measured at Dairy 1 throughout 2016-17 and 2017-

18 production seasons was at various times in excess of protein requirements as 

established by dairy industry guidelines (chapter 4). Excess CP has also been noticed in 

other studies on dairy pastures across New Zealand (Litherland and Lambert 2007; Moller 

et al. 1996). Despite anecdotal evidence suggesting that CP is supplied in excess in New 

Zealand, no study to date has been able to quantify the extent by which dietary CP exceeds 

protein requirements of dairy cows. Chapter 5 provided further evidence of such excess 

as results showed that herbage CP and the amount of milk urea produced per cow in the 

herd were significantly related (p>0.001). Cows fed CP in excess tend to increase 

production of ruminal ammonia, which is toxic to the cow and needs to be synthesised 

into urea and excreted via urine or milk (Moller et al. 1993; Kebreab et al.2002). Because 
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there is a positive relationship between milk urea and urea in blood, monitoring milk urea 

has been proposed as a useful indicator of excess dietary CP (Moller et al. 1993; 

Nousiainen et al. 2004).  

Excess dietary CP has negative consequences for the cow and the environment. 

Excess dietary CP been negatively related to cow fertility (Ferguson and Chalupa 1989; 

McCormick et al. 1999; Ipharraguerre and Clark 2005) due to the toxic effects of 

ammonia and its metabolites on gametes and early embryos, through deficiencies of 

amino acids, and by exacerbations of negative balances of energy (Ferguson and Chalupa 

1989). The metabolic process of synthesis and excretion of N in the form of urea leaves 

less energy available for animal functioning (Tyrrell et al. 1970), with this cost being 

significant in terms of total energy requirements (Reed et al. 2017). On the other hand, 

nitrogen losses due to excess CP in pasture-based dairy farm systems has been shown to 

result in increased N leaching to surface and ground waters as well as N emissions to the 

atmosphere in the form of nitrous oxide (N2O) (Chapman and Parsons 2017). 

As mentioned above, the negative effects of excess dietary CP can be controlled by 

supplying cows with more balanced diets. This is an area where the determination of 

herbage CP using proximal hyperspectral sensing can be particularly valuable. Having 

actual measurements of herbage CP can be useful to allocate herbage and other feeds so 

as the negative impacts of excess CP on both cows and environment are minimised. For 

instance, levels of herbage CP up to 30% in autumn as measured at Dairy 1 (chapter 4) 

are well above the 14% recommended by DairyNZ (2017) and in such situations, herbage 

CP measurement provides an objective measure to lower the CP content of the diet by 

replacing herbage with alternative feeds of lower CP. Replacing herbage with maize or 

cereal silage could reduce N leaching losses and N2O emissions per unit of milk by 20 to 

30% (De Klein et al. 2002; Ledgard et al. 2006). Alternatively, the fact that about 44% of 

the variation in herbage CP offered at Dairy 1 was not related to either production season, 

month within the season, or paddock (chapter 4) suggests that measuring the content of 

CP of paddocks readily available for grazing could be potentially useful to formulate diets 

involving the mixture of herbage from different paddocks. 
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7.1.3 Using proximal hyperspectral sensing nutritive value measurement to allocate 

herbage and supplements 

Rotational grazing is widely adopted to control herbage allocation in New Zealand 

pasture-based dairy farm systems (Holmes 2007). Under rotational grazing, herbage from 

a proportion of the grazeable farm area is allocated daily to the milking herd based on 

current estimations of the average dry matter requirements of cows and availability of 

herbage mass as well as future expectations of herbage growth, herbage utilisation and 

milk production. Based on plans for the whole season and current grazing and cow 

performance targets, the herbage area to allocate each day is controlled with fixed and 

mobile electric fences. When the amount of dry matter from herbage is insufficient to 

satisfy herd dry matter requirements, supplements can be used. Conversely, excess 

herbage can be stored for its use at times of deficit. As discussed in sections 7.1.1 and 

7.1.2, because the NV of herbage offered to cows varied over time even in the short-term, 

and because nutritional requirements of cows in the herd also varied, it was argued that 

allocation decisions can potentially be improved if the NV of herbage, and ME in 

particular, in addition to quantity is considered. Such approach would allow a more 

precise match between supply and demand for feed at the farm level. However, for 

decisions based on herbage NV measurement to be more useful, changes to farm system 

might be required. 

As suggested in section 7.1.2, high variation of MEt estimated requirements 

between and within cows signifies that measurement of herbage ME can serve as the basis 

for individualised feeding. In pasture-based dairy farm systems, supplementation of cows 

is usually determined by the average nutritional requirements of the herd, rather than by 

those of individual cows (Little et al. 2016). Research conducted to compare flat-rate and 

individualised feeding strategies (Leaver, 1988; Gill and Kaushal, 2000) have shown no 

production advantage of individualized feeding over flat-rate feeding of concentrate 

supplements. However, these experiments were conducted with all cows having ad 

libitum access to herbage and do not represent actual practice on farms. A recent random 

survey involving 500 farmers in New Zealand shows that 29% of respondents had 

computer-controlled in-shed feeding systems, 24% had automatic drafting systems, 23% 

had electronic animal-identification readers, 8% had electronic milk meters and 7% had 

automatic animal weighing installed in their farms (Dela Rue et al. 2019). The adoption 
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of all these technologies by New Zealand farmers show that that despite a lack of 

scientific evidence there might be benefits to be gained from individualised feeding in 

pasture-based dairy farm systems. 

The assessment of herbage ME by proximal hyperspectral sensing can serve as the 

basis to define strategies aimed at optimising individualised feeding responses of cows 

grazing herbage (Hills et al. 2015). Under individualised feeding, cows with higher MEt 

estimated requirements could potentially be fed more ME than lower MEt estimated 

requirements cows, leading to a more efficient use of ME. Such approach could be further 

enhanced if data on the genetic merit for milk production of individual cows were used 

to inform individual feeding. Cows of high genetic merit partition more energy towards 

milk and less towards body tissue than low genetic merit cows (Agnew and Yan, 2000), 

and thus, their milk production response to supplements is relatively low (Kennedy et al. 

2003). Savings of feed should be expected if the genetic merit of cows is considered for 

the decision of allocating feed individually, as less feed could be potentially allocated to 

high genetic merit cows without altering milk production. Moreover, recent research by 

Fischer et al. (2020) proved that restricting dry matter intake of cows that are less efficient 

compared to cows that are more efficient in converting feed and milk energy can 

significantly narrow the differences between cows, suggesting that overconsumption 

could be a driver of inefficiency and that controlling it could be a suitable strategy for 

reducing methane emissions without altering productivity of dairy farms.  

 Spatial variation of herbage NV can be exploited by controlling the movement of 

the grazing cow on the farm (Hills et al. 2016). Virtual fencing is a technology that can 

be used for this purpose. Virtual fencing controls the movement of the grazing cow by 

using a combination of GPS, movement sensors, and wireless technologies without the 

need for an actual fence. Using information on the spatial variation of herbage NV and 

quantity as well as the nutritional requirements of cows, can allow specific areas of 

herbage to be allocated to individual cows or groups of cows according to their energy 

and nutritional requirements. By doing this, more efficient grazing can be achieved as the 

effect of selectivity by cows is diminished. However, the use of proximal hyperspectral 

sensing as part of this set of technologies poses some challenges as it is limited by its 

operational capability as a mapping tool. Alternatively, aerial spectral imaging can be 

used to determine herbage NV of relatively large areas at high spatial resolution (Yule et 

al. 2015; Shorten et al. 2019). However, weather conditions create significant challenges 
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to the use of this technology for regular monitoring of herbage in the field (Von Bueren 

et al. 2015), particularly for their use in daily grazing management. As discussed earlier 

in this section, virtual fencing can also be combined with individualised feeding systems 

to feed cows to yield or genetic potential for milk production. Although the most 

commonly used individualised feeding systems are located in the milking shed (Dela Rue 

2019), alternative feeders currently in the market such as Zeedy (Zeedy 2020) allow 

bringing individualised feeding to the paddocks.  

7.2 Limitations of the thesis and suggestions for further research 

This thesis has provided evidence that justifies the use of proximal hyperspectral 

sensing as a rapid herbage NV measurement tool in a pasture-based dairy farm system. 

However, the results obtained suggest some limitations for using this technology and 

hence the need to consider further research to enhance this technology for use in NZ 

pasture based dairy farms.  

• Limitations imposed by the choice of the pasture-based dairy farm system 

The data used in this study was collected from Massey University’s Dairy 1 farm, 

which is characterised as a low input pasture-based dairy farm system. Dairy 1 however, 

is by no means representative of the production systems present in New Zealand or 

internationally. This limits the results reported in the thesis as conclusions cannot be 

extrapolated to other situations where other types of productions systems are available. 

For instance, a production system 5 as described by DairyNZ (2017) is a New Zealand 

high input pasture-based dairy farm system that uses between 25 to 40% of imported feed 

in the yearly diet of cows. In high input production systems such as type 5, the herbage 

component of the diet of cows is lower than in Dairy 1 (production system 2), and thus, 

variation of herbage NV is likely to play a less significant role in driving performance. 

Consequently, measuring herbage NV in high input systems might be less relevant. 

Research is required to determine the extent to which proximal hyperspectral herbage NV 

measurement could be useful in more intensified pasture-based dairy farm systems. 

• Limitations imposed by the choice of the feeding system   
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In this thesis, calculation of energy requirements of cows was based on the AFRC 

(1993) energy feeding system, but other energy systems could have been used (e.g. INRA 

1989; SCA 1990; NRC 2001; Fox et al. 2004; CSIRO 2007). Experimental research has 

found that the AFRC system can underestimate requirements for MEt of cows grazing 

pasture- (Dijkstra et al. 2008) or silage-based diets (Yan el at. 2003), the AFRC system 

was preferred over other systems due its simplicity and because its equations have served 

as the basis to the development of various decision support tools used in New Zealand 

(Frater et al. 2015). Moreover, the use of alternative systems to AFRC would have 

required addressing the inputs used in the calculation of energy requirements and the 

determination of the energy content of feeds. For instance, the NRC (2001) system uses 

net energy units as the basis of the calculation of energy requirements and energy values 

of feeds and so, using the NRC (2001) system would have required specific calibration 

models of hyperspectral canopy reflectance.  

As the use of different energy systems might have required specific hyperspectral 

canopy reflectance calibrations for different herbage NV traits. In this thesis, 

hyperspectral canopy reflectance calibrations for protein were developed for the CP 

system. However, the CP system does not work well for balancing diets for protein as it 

does not differentiate the requirements of ruminal microbes and the requirements of the 

host animal (AFRC 1993, NRC 2001). A major advancement to the CP system is the 

metabolisable protein (MP) system (Burroughs et al. 1974), which does account for 

effects of microbes in the rumen. However, the use of the MP system would require the 

determination of the energy available for microbial growth (fermentable metabolizable 

energy [FME]), which is calculated by discounting the energy content of lipids and 

fermentation end products of herbage. However, because lipid content of herbage has 

been poorly predicted from hyperspectral canopy reflectance data (Pullanagari et al. 

2012), the adaptation of proximal hyperspectral sensing to the MP system is limited. 

Further research involving more advanced machine learning algorithms to determine 

FME and lipid content of herbage from hyperspectral canopy reflectance would be of 

great use for the implementation of the MP system based on the use of proximal 

hyperspectral sensing. Such research would be helpful to determine how balanced for 

protein pasture-based dairy farm systems diets are and to therefore explore the potential 

impact of excess dietary protein on system performance and the environment. 
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• Need for experimental research  

This thesis assessed the potential value of using proximal hyperspectral sensing 

herbage NV measurement by quantifying variation of herbage NV and energy 

requirements of cows in a pasture-based dairy farm system, and discussing how this 

information could be used for daily grazing management and feed allocation. However, 

experimental research is required to quantify the actual value of using the tool in practice. 

An experiment can be undertaken to compare the effect of allocating herbage and feed to 

cows according to energy and protein balance with the aid of proximal hyperspectral 

sensing herbage NV measurement against current farm practice.  

7.3 Overall conclusion 

Canopy reflectance models built using proximal hyperspectral sensing data were 

shown to be accurate in predicting the NV of the vertical portion of ryegrass-white clover 

mixed herbage available to the grazing cow. Evidence from data collected from Massey 

University’s Dairy 1 farm, showed that temporal and spatial variation of herbage NV in 

addition to the variation of MEt estimated requirements that exists within and between 

cows in the milking herd and were large enough to justify the use of proximal 

hyperspectral sensing as a rapid herbage NV measurement tool to assist with feed 

allocation decision-making. However, the potential use of this technology could be 

further enhanced if coupled with other precision technologies aimed at controlling animal 

behavior at grazing and allocation of herbage to individual cows or groups of cows. The 

potential benefits of precise herbage and supplement allocation decisions relate to more 

efficient grazing management and thus improved utilization of herbage and milk 

production. Moreover, environmental benefits could also be expected as the result of 

more efficient use of herbage and supplements.  
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Appendix A 

Development and validation of bench-top near-infrared spectroscopy calibration models 

Bench-top near-infrared spectroscopy (NIRS) calibration models were developed 

for determination of DOMD, ME, CP, NDF and ADF of the 286 dried-ground herbage 

samples collected in this study. The data used for the development of these calibrations 

were obtained from a subset of the samples collected in this study and a complementary 

dataset provided by the New Zealand Centre for Precision Agriculture (NZCPA) at 

Massey University, Palmerston North. The complementary dataset consisted of dried-

ground herbage spectral data and their associated wet chemistry NVs. 

Fifty of the 286 samples collected in this study were selected for wet-chemistry 

analysis. The selection was performed by applying the Kennard-Stone algorithm 

implemented in the ‘Prospectr’ package for R software (Stevens et al. 2013) to the spectra 

of dried and ground herbage samples. Kennard-Stone selects samples that are uniformly 

distributed over the predictor space defined by candidate samples (Kennard and Stone 

1969). The algorithm calculates Mahalanobis distance to select samples based on the 

spread of the data in a multidimensional space. Thereafter, the fifty selected samples were 

sent to the Nutrition Laboratory of the Institute of Food Science and Technology at 

Massey University, Palmerston North for determination of ME (MJME/kg DM) and 

percentages of DOMD, CP, NDF and ADF in DM.  

Dry mater was determined using the procedure described by the Association of 

Official Analytical Chemists (AOAC 2005; method 930.15). Determination of DOMD 

was performed following the procedure described by Roughan and Holland (1977). 

Metabolisable energy was calculated from the equation MJME/kg DM = DOMD x 0.16 

(McDonald 2002). CP was calculated from the equation CP = N (%) x 6.25, where the 

average nitrogen (N) content of protein was assumed to be 16%, (Marten et al. 1989) and 

N was determined following the Dumas method (AOAC 2005; method 968.06).. 

Percentages of ADF and NDF were determined using Ankom nylon bags following 

AOAC (2005) methods 2002.04 and 973.18, respectively. 

Wet chemistry NV data and spectra corresponding to dried and ground herbage 

sample material was merged with the complementary dataset. The reference dataset 

resulted in a maximum of 3808 samples. Spectra of the reference dataset was pre-treated 
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following the procedure described in Section 3.3.5 and then used to develop and validate 

dried-ground herbage spectra calibration models for the selected NV traits following the 

procedure described in Section 3.3.6. Model accuracy indicators for the training and 

validation datasets are summarised in Table A.1.  

 

Table A.1 Accuracy of PLS regression calibration models built for determining the 

nutritive value (NV) of dried and ground herbage spectral measurements using training 

and validation datasets. 

Dataset NV trait n R2 RMSE RPE Bias RPD 

Training  

ME 1892 0.91 0.45 4.26 -2.43E-16 3.58 

CP 1606 0.95 1.02 5.68 3.32E-15 5.29 

NDF 191 0.87 3.56 6.94 -1.00E-15 3.01 

ADF 191 0.79 2.29 8.37 -4.84E-16 2.46 

DOMD 176 0.91 2.52 4.37 3.59E-15 3.99 

Validation 

ME 471 0.92 0.43 4.04 2.60E-02 3.46 

CP 399 0.94 1.13 6.34 8.10E-02 4.27 

NDF 44 0.87 2.95 5.76 7.04E-01 2.86 

ADF 44 0.76 2.27 8.24 -3.00E-02 1.84 

DOMD 40 0.95 1.68 2.93 -2.49E-01 4.55 

ME= metabolisable energy, CP= crude protein, NDF= neutral detergent fibre, ADF= 

acid detergent fibre, DOMD= digestible organic matter in dry matter. 

 

References 

AOAC. 2005. Official Methods of Analysis. 18th edn. Association of Official Analytical 

Chemists; Arlington, VA, USA. 

Marten GC, Shenk J, Barton F. 1989. Near infrared reflectance spectroscopy (NIRS): 

Analysis of forage quality. USDA Handbook 643: US Department of Agriculture, 

Washington DC, USA. 

McDonald P. 2002. Animal nutrition: Pearson education.Kennard RW, Stone LA. 1969. 

Computer aided design of experiments. Technometrics 11: 137-148. 

Roughan P G, Holland R. 1977. Predicting in‐vivo digestibilities of herbages by 

exhaustive enzymic hydrolysis of cell walls.  Journal of the Science of Food and 

Agriculture 28: 1057-1064. 

Stevens A, Ramirez-Lopez L. 2013. An introduction to the prospectr package. R Package 

Vignette, Report No.: R Package Version 0.13.



Appendix B 

 

189 

 

Appendix B 

Comparison of nutritive value of samples determined with different methods 

The relationship of the nutritive value of fifty samples determined using wet 

chemistry, near-infrared spectroscopy and proximal hyperspectral sensing of herbage 

canopy was assessed. Correlation coefficients of NV traits and NV data as determined by 

the three methods are shown in Table B.1 and Figure B.1, respectively. 

 

 

Table B.1 Correlation coefficients of nutritive value (NV) traits of fifty samples as 

determined by wet chemistry (WET), near-infrared spectroscopy (NIRS) and proximal 

hyperspectral sensing of herbage canopy (PHS). (n=50, p< 0.001) 

NV trait  WET NIRS 

ME NIRS 0.89  

 PHS 0.65 0.74 

CP NIRS 0.97  

 PHS 0.80 0.86 

NDF NIRS 0.90  

 PHS 0.69 0.67 

ADF NIRS 0.83  

 PHS 0.66 0.60 

DOMD NIRS 0.92  

 PHS 0.65 0.74 

ME= metabolisable energy, CP= crude protein, NDF= neutral detergent fibre, ADF= 

acid detergent fibre, DOMD= digestible organic matter in dry matter. 
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Figure B.1 Nutritive value of samples determined by wet chemistry analysis (WET), 

bench top near-infrared spectroscopy (NIRS) and proximal hyperspectral sensing of 

herbage canopies (PHS) (n= 50). (- - -) reference line with intercept of 0 and slope of 1. 

ME= metabolisable energy, CP= crude protein, NDF= neutral detergent fibre, ADF= acid 

detergent fibre, DOMD= digestible organic matter in dry matter. 



A
p
p
en

d
ix

 C
 

1
9
1
 

 

 

 

Appendix C 

Table C.1 Estimated principal components regression coefficients. 
Respons

e 
variable 

  

Explanatory variable 

Intercept HM HA AH PD ME CP DM Fibre T THI CSI Rain 
POP: 

Early 

POP: 

Mid 

POP: 

Late 

Y: 

2016 

Y: 

2017 

MYpc 16.08 0.034 0.028 -0.030 0.075 0.322 -0.024 -0.216 -0.010 0.092 0.232 -0.241 0.071 0.700 0.339 -1.142 -0.112 0.112 

MSYpc 1.47 0.001 -0.001 -0.006 -0.001 0.033 -0.003 -0.023 -0.027 -0.018 -0.013 -0.002 0.001 0.015 0.028 -0.048 -0.014 0.014 

MSPpc 9.16 0.000 0.042 -0.073 0.010 -0.274 -0.021 -0.032 -0.238 -0.119 -0.022 0.048 0.038 -0.096 -0.081 0.197 0.022 -0.022 

PFRpc 0.76 -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 0.001 0.002 0.001 0.001 0.000 0.000 -0.001 0.000 0.001 -0.001 0.001 

FPpc 5.20 0.012 0.012 -0.001 0.008 -0.005 -0.016 0.036 -0.057 -0.044 -0.052 0.054 0.018 -0.066 -0.050 0.128 0.006 -0.006 

PPpc 3.96 -0.052 0.201 -0.211 -0.018 -0.153 0.005 -0.022 -0.101 -0.033 0.011 0.017 -0.003 -0.056 -0.015 0.078 0.026 -0.026 

FYpc 0.83 0.008 0.003 -0.004 0.005 0.021 -0.007 -0.005 -0.018 -0.003 0.005 -0.003 0.007 0.022 0.010 -0.035 -0.008 0.008 

PYpc 0.63 0.001 -0.002 -0.005 -0.002 0.014 -0.002 -0.009 -0.011 -0.008 -0.006 -0.002 -0.001 0.006 0.012 -0.020 -0.006 0.006 

MUpc 0.06 0.000 0.000 -0.001 0.000 0.001 0.002 -0.001 -0.001 -0.002 -0.002 -0.001 -0.001 0.002 -0.002 -0.001 -0.001 0.001 

LWpc 479.13 0.280 1.021 -0.817 -0.101 -3.331 -1.106 -0.905 -4.740 -0.077 -0.271 -0.045 0.852 -1.205 -0.817 2.233 -0.388 0.388 

LWCpc -0.07 0.007 0.077 0.166 -0.118 -0.012 0.033 -0.012 0.043 0.061 0.030 0.040 -0.035 -0.055 0.010 0.048 -0.015 0.015 

BCSpc 4.61 -0.018 0.118 -0.128 0.008 0.008 0.010 -0.008 -0.015 -0.026 -0.008 0.004 -0.005 0.049 -0.015 -0.036 0.006 -0.006 

PI1 67.05 0.136 0.084 -0.311 0.535 2.621 0.766 -2.964 1.851 1.144 2.457 -3.130 0.448 8.260 3.828 -13.283 -0.875 0.875 

PI2 28.13 -5.340 25.944 -24.887 -1.450 -4.062 -0.922 -1.196 -7.702 -5.121 0.036 2.186 0.452 -1.442 -1.842 3.660 1.171 -1.171 

MYpc= milk yield per cow in the herd, MSYpc= milksolids yield per cow in the herd, MSPpc= milksolids percentage per cow in the herd, FPpc= milk fat 

percentage per cow in the herd, PPpc= milk protein percentage per cow in the herd, FYpc= milk fat yield per cow in the herd, PYpc= milk protein yield per 

cow in the herd, PFRpc= milk protein to fat ratio per cow in the herd, MUpc= milk urea per cow in the herd, LWpc= live weight per cow in the herd, LWCpc= 

live weight change per cow in the herd, BCSpc= body condition score per cow in the herd, PI1= performance indicator 1, PI2= performance indicator 2. 

HM = herbage mass, HA= herbage allowance, AH= area of herbage offered, PD= proportion of herbage in diet, ME= herbage metabolisable energy, CP= 

herbage crude protein, DM= herbage dry matter, T= daily mean temperature, THI= temperature humidity index, CSI= cold stress index, Rain= rainfall, 

POP:Early= period of production defined between day 1 and day 90 from the beginning of milk production, POP:Mid= period of production defined between 

day 91 and day 180 from the beginning of milk production, POP:Late= period of production defined between day 181 and day 250 from the beginning of 

milk production Y:2016= 2016-17 production season, Y:2017= 2017-18 production season.  
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Table C.2 Estimated partial least squares regression coefficients. 
Response 

variable  
Explanatory variable 

Intercept HM HA AH PD ME CP DM Fibre T THI CSI Rain 
POP: 

Early 

POP: 

Mid 

POP: 

Late 

Y: 

2016 

Y: 

2017 

MYpc 16.08 0.073 -0.024 0.050 -0.027 0.511 -0.157 -0.293 -0.083 0.009 0.133 -0.087 0.052 0.489 0.397 -0.981 -0.166 0.166 

MSYpc 1.47 0.007 0.003 -0.005 0.004 0.028 -0.008 -0.014 -0.018 -0.019 -0.013 -0.009 -0.004 0.026 0.020 -0.051 -0.016 0.016 

MSPpc 9.16 -0.012 0.080 -0.122 0.011 -0.138 0.005 0.031 -0.180 -0.118 -0.029 0.044 0.031 -0.138 -0.064 0.222 0.028 -0.028 

PFRpc 0.76 -0.001 -0.003 -0.003 -0.002 -0.002 0.000 0.002 0.001 0.001 0.001 -0.001 -0.001 -0.001 0.000 0.001 -0.001 0.001 

FPpc 5.20 0.002 0.027 0.000 0.009 -0.037 -0.011 0.043 -0.036 -0.056 -0.046 0.040 0.022 -0.043 -0.054 0.108 0.013 -0.013 

PPpc 3.96 -0.035 0.095 -0.150 0.019 -0.161 0.017 -0.006 -0.115 -0.051 0.017 0.007 0.014 -0.048 -0.015 0.069 0.024 -0.024 

FYpc 0.83 0.005 0.003 0.000 0.003 0.017 -0.005 -0.009 -0.010 -0.011 -0.007 -0.003 0.000 0.015 0.012 -0.030 -0.010 0.010 

PYpc 0.63 0.002 0.000 -0.005 0.001 0.011 -0.003 -0.005 -0.007 -0.008 -0.005 -0.006 -0.003 0.012 0.008 -0.022 -0.007 0.007 

MUpc 0.06 0.000 0.001 0.000 0.001 0.001 0.002 -0.001 -0.001 -0.002 -0.002 0.000 0.000 0.002 -0.002 0.000 0.000 0.000 

LWpc 479.13 -0.050 2.735 -2.158 -0.267 -2.980 -0.741 -0.508 -4.391 -0.389 0.225 -0.161 0.988 -1.490 -0.533 2.216 -0.299 0.299 

LWCpc -0.07 -0.009 -0.022 0.237 -0.087 -0.030 0.022 -0.043 0.024 0.055 0.013 0.042 -0.036 -0.056 0.012 0.046 -0.027 0.027 

BCSpc 4.61 -0.014 0.106 -0.123 0.011 -0.001 0.006 -0.017 -0.022 -0.027 -0.006 0.007 -0.007 0.052 -0.017 -0.036 0.005 -0.005 

PI1 67.05 0.567 -1.403 0.374 -0.739 6.275 -0.441 -3.645 2.330 1.373 2.058 -1.728 -0.084 7.898 3.191 -12.16 -1.351 1.351 

PI2 28.13 -4.744 23.40 -22.51 -1.503 -7.046 -1.916 -3.034 -9.656 -5.792 0.536 2.527 0.079 -0.625 -2.493 3.523 0.963 -0.963 

MYpc= milk yield per cow in the herd, MSYpc= milksolids yield per cow in the herd, MSPpc= milksolids percentage per cow in the herd, FPpc= milk fat 

percentage per cow in the herd, PPpc= milk protein percentage per cow in the herd, FYpc= milk fat yield per cow in the herd, PYpc= milk protein yield per 

cow in the herd, PFRpc= milk protein to fat ratio per cow in the herd, MUpc= milk urea per cow in the herd, LWpc= live weight per cow in the herd, LWCpc= 

live weight change per cow in the herd, BCSpc= body condition score per cow in the herd, PI1= performance indicator 1, PI2= performance indicator 2 

HM = herbage mass, HA= herbage allowance, AH= area of herbage offered, PD= proportion of herbage in diet, ME= herbage metabolisable energy, CP= 

herbage crude protein, DM= herbage dry matter, T= daily mean temperature, THI= temperature humidity index, CSI= cold stress index, Rain= rainfall, 

POP:Early= period of production defined between day 1 and day 90 from the beginning of milk production, POP:Mid= period of production defined between 

day 91 and day 180 from the beginning of milk production, POP:Late= period of production defined between day 181 and day 250 from the beginning of milk 

production Y:2016= 2016-17 production season, Y:2017= 2017-18 production season. 
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Figure D.1 Metabolisable energy (ME) estimated requirements per cow per day (a) and 

daily live weight of cows grouped by breed (b) during the 2016-17 and 2017-18 

production seasons at Dairy 1, Massey University, Palmerston North. F= Holstein-

Friesian, FX= Holstein-Friesian crossbred, FJ= Holstein-Friesian-Jersey crossbred, JX= 

Jersey crossbred, J= Jersey. 

 


