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A B S T R A C T   

This paper presents the first end-to-end example of a risk model for loss of assets in households due to possible 
future tsunamis. There is a significant need for Government to assess the generic risk to buildings, and the 
concrete impact on the full range of assets of households, including the ones that are key to livelihoods such as 
agricultural land, fishing boats, livestock and equipment. Our approach relies on the Oasis Loss Modelling 
Framework to integrate hazard and risk. We first generate 25 representative events of tsunamigenic earthquakes 
off the Southern coast of Java, Indonesia. We then create a new vulnerability function based upon the Indonesian 
household survey STAR1 of how much assets have been reduced in each household after the 2004 tsunami. We 
run a multinomial logit regression to precisely allocate the probabilistic impacts to bins that correspond with 
levels of financial reduction in assets. We focus on the town of Cilacap for which we build loss exceedance curves, 
which represent the financial losses that may be exceeded at a range of future timelines, using future tsunami 
inundations over a surveyed layout and value of assets over the city. Our loss calculations show that losses in
crease sharply, especially for events with return periods beyond 250 years. These series of computations will 
allow more accurate investigations of impacts on livelihoods and thus will help design mitigation strategies as 
well as policies to minimize suffering from tsunamis.   

1. Introduction 

Tsunamis are major worldwide disasters; large events in 2004 and 
2011 have reached death counts of approximately 228,000 and 18,000, 
and many more injuries, across the Indian Ocean and Japan [1]. Smaller 
events that are less widespread may still have a huge effect on local 
communities. One aspect that has been overlooked is the impact that 
such catastrophes have had, and will have, on livelihoods, due to a lack 
of methods to quantify these consequences. Since communities can be 
severely affected by the loss of their essential means of survival, the 
academic community needs to provide such approaches and aid 
policy-makers to design policies that can mitigate future events. How
ever, these challenges are sizeable since this research requires the 
involvement of multiple disciplines: Earth Sciences, Numerical Model
ling, Statistics, and Economics. In this paper a first proof-of-concept 
illustration is provided, for a small region of Indonesia, of how these 

research fields can be combined to provide estimates of future impacts of 
tsunamis originating south of Java, on livelihoods and household 
welfare. 

Indonesia is among the most active tsunamigenic regions in the 
world and was the site of two destructive tsunamis in the past few years 
in Sulawesi (September 2018) [2,3] and in Sunda Strait (December 
2018) [4,5]. The aforesaid tsunamis caused 4,340 [6] and 437 [7] 
deaths, respectively, as well as significant damage1. The tsunami cata
logue by Hamzah et al. [8] identified 105 tsunamis in Indonesia in the 
period 1600-1999 AD occurring in six main tsunamigenic zones. Pra
setya et al. [9] reported 18 tsunamis in Indonesia since 1900 AD. It was 
shown that 90% of past tsunamis in Indonesia were generated by 
earthquakes [8], highlighting the importance of understanding these 
types of tsunamis in the country. Among Indonesia’s six tsunamigenic 
zones [8] is the Eastern Sunda Arc zone spanning from Sunda Strait, in 
northwest, to Flores Island, in southeast (Fig. 1). This region is a 
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seismic-active zone with approximately 50 Mw > 6.5 earthquakes in the 
past 100 years according to the US Geological Survey (USGS) cata
logue2. The seismic activity here is due to the presence of the Java trench 
(Fig. 1) which is the result of northeast subduction of the 
Indo-Australian Plate beneath the Sunda Plate. 

The Java trench in central Indonesia has given rise to numerous 
tsunamis in the past [8]. One of the most recent catastrophic events 
affecting the region was the 2006 earthquake and tsunami. The so-called 
Pangandaran earthquake (after the worst hit region) occurred on July 
17, 2006 and registered a moment magnitude of Mw 7.7, circa 200 km 
south of Java (International Tsunami Information Center- ITIC3). The 
slow rupture gave rise to a tsunami that hit the coastlines of Java with 
little time for early warning due to the small amount of felt ground 
shaking and the source proximity to the shore [10]. More than 800 
people perished and over 300 km of coastline was affected by the event 
[10,11]. Tsunami waveforms of the 2006 event, recorded by a few tide 
gauges, are shown in Fig. 1. Another large tsunamigenic earthquake 
(Mw 7.8) in this region occurred on June 3, 1994 resulting in a tsunami 
that killed over 200 people [12]. Both 1994 and 2006 events were 
characterised as tsunami earthquakes [12,13]: events that rise to larger 
tsunamis than expected from their moment magnitudes [14]. Other 
historical events that affected the region span across the last century 

(1921, 1937, 1943 and 1977) [15,16]. The largest of them was the 1977 
outer-rise earthquake with Mw 8.3 (Fig. 1). The tsunami recorded 
maximum run-up height of 5.8 m and maximum inundation distance of 
1.2 km on Sumba island [15]. 

Risk modelling for tsunamis has so far mostly focused on buildings. 
These assets have been of primary interest to the (re-)insurance industry, 
the largest user of loss modelling platforms such as the Oasis Loss 
Modelling Framework. However, a small percentage of Indonesian 
households and small businesses are insured against losses from direct 
damages to buildings. There is also limited access to business interrup
tion that covers the wider range of assets that they possess to sustain 
themselves (e.g. agricultural land and livestock, fishing boats and nets, 
etc). Furthermore, insurance penetration and density rates are very low 
compared to other Asian countries and the World [17,18]. This results in 
a mismatch between what modelling platforms can compute and what 
actual losses would ensue from a tsunami (or another disaster). 

The aim of this research is to present a proof-of-concept study that 
can be extended to wider ranges of tsunami variations, over larger re
gions and even extend to other types of tsunamis (generated by land
slides, volcanic activity and others), as well as to other types of hazards. 
The objective of this research is to provide for the first time an end-to- 
end modelling by using damage to household level business and non- 

business assets as a proxy for impacts on household welfare. 
The questions are multiple in order to quantify the tsunami impacts: 

What hazard intensities will trigger impacts and by how much? Where 

Fig. 1. a) Area of interest and focal mechanisms of past earthquake events in the Java trench, b) Tide gauge records of the 2006 tsunami.  

2 https://earthquake.usgs.gov/earthquakes/search/.  
3 http://itic.ioc-unesco.org/index.php. 
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are the exposed assets? What monetary value have these assets locally? 
How impacts on household welfare based on historical events help es
timate damages from future tsunamis? What are the event distributions 
of future tsunamis and how to weigh low probability-high impact ones 
vs. more frequent but less damaging ones? How to integrate these 
computations into a loss modelling platform that allows for probabilistic 
computations to be carried out? The answers provided below focus on 
the livelihood aspect. We suggest a simplified setting for the tsunamis 
(25 representative events that we repeat with weights corresponding to 
expected frequencies), over a small region (the city of Cilacap in Java). 

2. Simulations of tsunami hazard 

2.1. Experimental set-up 

Tsunami hazard assessment is usually carried out by probabilistic 
approaches. Here, we adapt a simple pseudo-probabilistic approach to 
study tsunami hazards along the Indonesian coast of Java since our aim 
is to demonstrate the potential for realistic future welfare impact studies 
using a fully probabilistic approach over the entire coastline. An 
enhanced probabilistically generated set of scenarios will further 
improve, but may not radically modify these findings. We study 
maximum run-up height and inundation distance under a range of large 
to great earthquakes in the Java trench. We quantify the potential im
pacts of such tsunamigenic earthquakes from the Java subduction zone 
on the coastal areas. A tsunami numerical model is adopted for the re
gion, and is validated benefiting from the observation data of the 2006 
Java earthquake and tsunami as reported by Fujii and Satake [11]. We 
then model tsunami generation induced by 25 earthquakes with 
moment magnitudes in the range of 7.9–9.0. We numerically calculate 
the coastal run-up of these events and focus our simulations on tsunami 
inundation in populated areas that were affected during earlier tsunami 
events (e.g. the 2006 Java tsunami). 

To simulate the tsunami events, we make use of the numerical code 
JAGURS [19–21]. The code solves the nonlinear shallow water and the 
Boussinesq equations and has been efficiently used to model earthquake 
[19,20] and landslide tsunamis [22,23] in the past. In our study we 
make use of the nonlinear shallow water equations, the computation of 
the crustal displacement is integrated in the code following the Okada 
dislocation model [24]. One grid is used in the modelling of the 2006 
event with longitudes of 96∘E-119∘E and latitudes of 05◦S–14◦S and with 
a spatial resolution of Δx = Δy = 0.004∘. The bathymetry and elevation 
data derived from the General Bathymetric Chart of the Oceans (GEBCO) 
as a part of the GEBCO_2019 Grid product that has a resolution of 15 
arc-seconds. 

The utilisation of nested grids allows us to focus in the areas of in
terest to study the impact of large earthquake scenarios. In total we use 3 
nested grids spanning across 3 different resolution layers with a grid 
ratio of 1 : 4. The first resolution layer is the background grid SD01 
which has the same properties as the grid in the simulation of the 2006 
event (SD01, Fig. 2). The intermediary grid (SD02, Fig. 2) has 
geographical domain of 107.02∘E-112.48∘E in longitude and 07.02◦S- 
08.98◦S in latitude with a spatial resolution of Δx = Δy = 0.001∘. The 
third grid layer focuses on selected areas of the coastline and covers the 
geographical domain shown in Fig. 2, SD03 (which includes the area of 
Cilacap): [108.52∘E-109.28∘E, 07.62∘S–07.80∘S], with a spatial resolu
tion of Δx = Δy = 0.0025∘. 

The bathymetry and elevation data are derived from a compilation of 
sources as the GEBCO_2019 Grid (SD01) and the Geospatial Information 
Agency of Indonesia (SD02-03). For the grids SD02-03, the bathymetry 
data originate from the National Bathymetric dataset (BATNAS) and are 
provided at a resolution of 6 arc-seconds while the digital elevation 
dataset (DEMNAS) has a spatial resolution of 0.27 arc-seconds. The data 
are merged into uniforms grids; we treat the issue of void data that occur 
due to the merging with linear interpolation between the datasets, 
preserving the DEMNAS data for the elevation. 

2.2. Simulation of the 2006 event 

To simulate the 2006 event we take as initial source the fault pa
rameters as estimated by Fujii and Satake [11]. The fault model assumes 
an instantaneous rupture across 10 sub-faults. Following Fujii and 
Satake [11], the slip varies from 0 m to 2.47 m with the largest slip 
identified in the eastern part of the fault plane. The rupture length is 200 
km with each sub-fault occupying a size of 50 km × 50 km. The fault 
depth varies between 3 km and 11.7 km for the shallow and deep 
sub-faults, respectively. The focal mechanism is: dip angle = 10∘, rake 
angle = 95∘ and strike angle = 289∘. 

We validate our numerical modelling practice using the data from 
the 2006 Java earthquake and tsunami. Our data include three real tide 
gauge records of the 2006 Java tsunami which are digitized from Fujii 
and Satake [11]. The locations of the gauge stations that recorded the 
tsunami were in the vicinity of Christmas island, Cocos islands and 
Benoa, the locations are shown in Fig. 3d. The comparison shows an 
overall agreement in the tsunami phase between the tide gauge records 
and the simulations (Fig. 3). Some differences in tsunami amplitudes are 
observed especially at the location of the Christmas gauge (Fig. 3). These 
could be attributed to discrepancies between the computational grid and 
the actual bathymetric features of the region, as the resolution of the 
data (GEBCO) is not high enough to capture nearshore wave charac
teristics. Other sources of uncertainties are the location of tide gauges 
(as provided by varying sources), differences in the source models and 
subsequently in the wave characteristics [11,25,26] and wave amplifi
cation at certain locations caused by potential secondary events such as 
earthquake-triggered landslides [10]. 

The sampling intervals of the tide gauge observations were relatively 
large (usually more than 1 min) which does not allow a full registration 
of the tsunami; therefore, lack of a perfect match between observations 
and simulations does not necessarily imply problems in modeling. We 
note that the quality of our simulation and its agreement with obser
vation is similar to that of the original author of the source models, i.e. 
Fujii and Satake [11]. Here, we are not proposing a new source model 
for the 2006 Java earthquake, but are using a source model previously 
proposed by Fujii and Satake [11]; therefore, we do not perform Root 
Mean Square Error (RMSE) or other type of analyses as they are beyond 
the scope of this work. 

2.3. Large earthquake scenarios in the Java trench 

Given the lack of Mw 9 thrust events in the instrumentation data for 
the Java trench region, a rising question is whether the Java trench can 
accommodate mega-thrust events. According to McCaffrey [27] and 
Okal [16], any long and continuous subduction zone has the potential 
for great earthquakes (e.g. Mw 9) with large recurrence intervals (500 
years or longer). The lack of Mw 9 earthquakes in the Java trench does 
not necessarily mean such events never occurred; absence of evidence 
can possibly be attributed to the short span of historical and instru
mental data [27–30]. Paleo-tsunami and historical archival researches 
in other world’s subduction zones has found evidence for Mw 9 events in 
geological layers and historical data that can be dated ∼ 1,000 years ago 
(e.g. Refs. [31,32]). The data of our 25 tsunamigenic earthquake sce
narios are shown within the Appendix, in Table 7 and include the lon
gitudinal and latitudinal coordinates, the rupture length, depth and slip 
of each event. The table also presents the maximum uplift and subsi
dence for each scenario and the calculations of seismic moment (Mo) 
and moment magnitude (Mw); for example, one of the largest earth
quake scenarios, scenario 15 (Mw 9.0), has maximum uplift and subsi
dence of 6.4 m and − 4.4 m, respectively. 

To produce these 25 scenarios, we follow a pseudo-probabilistic 
approach which is a median approach between typical deterministic 
[4,30] and probabilistic [33,34] approaches. By considering minimum 
(Mw 7.9) and maximum (Mw 9.0) values for potential tsunamigenic 
earthquakes in the region, we produced 25 earthquake scenarios which 
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are distributed all along the Java Trench (Fig. 4). We took into account 
the geometrical and geophysical parameters of the subduction zone in 
our scenarios. For instance, all scenarios follow the strike angle of the 
subduction zone; the farther the scenarios from the trench, the deeper 
the depth of the earthquake becomes; the slip values are related to the 
length/width of the scenario earthquakes using the empirical equations 
of Wells and Coppersmith (1994) [35]. Fig. 4 gives the results of the 
dislocation modelling for scenarios along the trench. Snapshots of the 
tsunami generation and propagation from scenario 15, over a period of 
60 min are shown in Fig. 5. Fig. 5e shows the maximum elevation (m) 
over the domain and Fig. 5f the maximum velocity (m/s). The rupture 
location affects significantly the tsunami run-up due to wave direc
tionality, as demonstrated in Fig. 6. Scenarios 01–05 (Fig. 6a), for 
example, have a larger impact on the eastern coast of Java (longitudes 
greater than 110◦). 

3. Tsunami loss calculations 

3.1. Socio-economic factors and vulnerability 

We use a historical tsunami experience – the case of the December 
26, 2004 Indian Ocean tsunami, which largely affected the Aceh prov
ince in Northern Sumatra. The corresponding household level data were 
collected 5–14 months after the event from around 5600 households 
that were used to model damage to household welfare. The data come 
from the first wave of the Study of the Tsunami Aftermath and Recovery 
(STAR1), a collaborative project involving investigators at Duke Uni
versity, the University of North Carolina at Chapel Hill and Survey
METER [36]. Longitudinal household surveys such as STAR track the 
same households/individuals over time collecting information on in
come, consumption, livelihoods, demographic details, health, schooling 
and other aspects. Although the STAR project included a pre-tsunami 

Fig. 2. The spatial domains of the simulations. The computational grid SD01 is represented in the top-right corner, the boundaries of SD02 are represented by pink 
color. SD02 grid ire shown in bottom-left corner, the boundaries of grids SD03 are also depicted with red colour. The black crosses (forming a dense black line) show 
the locations (ca. 5,400) of the shoreline from which the tsunami elevation was sampled, extracted at each coastal grid cell of SD02 (Fig. 6). 

Fig. 3. Numerical results plotted against observations of the 2006 event. Panel d) represents the maximum free surface elevation from the fault displacement inferred 
by Fujii and Satake [11]. 
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Fig. 4. The scenarios of tsunamigenic earthquakes along the Java trench. The colour bar indicates the maximum uplift and subsidence in meters for each earthquake 
scenario. Panel (a) shows 16 of the 25 scenarios and panel (b) shows 9 of the 25 scenarios. 

Fig. 5. a-d)Snapshots of tsunami generation and propagation from earthquake scenario 15. e) Maximum tsunami amplitude over the computational domain during 
the entire tsunami simulations. The colour scale is in meters. f) Maximum tsunami velocities over the computational domain during the entire tsunami simulations. 
The colour scale is in m/s. 
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Fig. 6. Maximum wave amplitudes along the shoreline for various tsunami scenarios. The outputs are extracted from the computational grid SD02, see also locations 
in Fig. 2. The numbers 1–25 on the legend of the panels represent tsunami scenario numbers. 
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STAR0 survey, this has been inaccessible due to Indonesian data pro
tection laws. Consequently the STAR1 dataset was used to obtain 
post-tsunami data as well as to infer pre-tsunami characteristics. The 
surveys gather information at several levels, from individuals, house
holds and communities. Data collection was face to face, with enumer
ators travelling to the site location and being with individuals, 
households and community leaders, gathering data based on a 
pre-prepared, piloted list of instruments [36]. The respondents were 
usually the heads of households. Although in about 10% of the cases it 
was another adult. We report analysis based on responses provided by 
the heads of households but the results are similar with the inclusion of 
responses from an adult other than the head of household4. 

A proxy is used for Hazard intensity: the categorical variable that 
describes the damage to the wider area in which a household is located. 
This variable is coded as heavy, moderate or light/no damage. The 
measure has been constructed by the STAR team, drawing on data from 
multiple sources including satellite imagery and Global Positioning 
System (GPS) measurements. For example, ‘One measure was constructed 
by comparing satellite imagery from NASA’s Moderate Resolution Imaging 
Spectroradiometer (MODIS) for December 17, 2004 to imagery for 
December 29, 2004 (nine days before and three days after the tsunami). The 
proportion of land cover that changed to bare earth between image dates 
(through scouring or sediment deposition) was manually assessed for a 0.6 
km2 area centered on each GPS point. This measure was cross-validated with 
other estimates of damage derived from remotely-sensed imagery that were 
prepared by the USGS, USAID, the Dartmouth Flood Observatory, and the 
German Aerospace Center’ [38]. The extent of damage was also verified 
though field-level data gathered from local leaders’ individual assess
ment of the extent of destruction to the built and natural environments 
in each village, as part of the community surveys in STAR1 and the 
survey supervisors’ direct observations. 

Approximately 21% of the households were located in areas classi
fied as experiencing heavy damage, although only 78% of these 
households reported that there were major losses (i.e., financial loss, 
death of household member, major injury or relocation due to tsunami). 
Around 57% of households were in medium damage areas, of which 
31% experienced some form of major loss. Among the 21% households 
in areas with no damage or light damage, around 13% recorded some 

form of major loss. 
Were the households in areas that experienced higher damage 

significantly different to those in other areas? We investigate this using 
several pre-tsunami household characteristics derived from retrospec
tive questions asked of households in the STAR1 survey. The charac
teristics include the status of the household in terms of engaging in 
business activity (rice farming or other farm-related business, non-farm 
business or no business), household wealth is captured by asset 
ownership5 and household rural/urban location6. 

As Table 1 shows, there are no significant differences in mean 
characteristics between households in no/light damage areas and me
dium damage areas. Similarly, there are no significant differences be

Table 1 
Pre-tsunami household characteristics and post-tsunami outcomes. Columns 1, 2 
and 3 present mean values. Columns 4 and 5 present the differences in means in 
medium and heavy areas, respectively, compared to no/light areas. Standard 
errors in brackets. *** p < 0.01, ** p < 0.05, *.p < 0.10   

Location of household 
according to damage 
experienced in the wider area 

Difference 
in means 
(standard 
error) 

Difference in 
means 
(standard 
error) 

No/ 
light 

Medium Heavy   

(1) (2) (3) (1)–(2) (1)–(3) 

Pre-tsunami characteristics 
Farm business 

(proportion) 
0.435 0.454 0.397 − 0.0187 

(0.017) 
0.0379 
(0.020) 

Non-farm 
business 
(proportion) 

0.275 0.256 0.391 0.0190 
(0.014) 

− 0.116*** 
(0.019) 

No business 
(proportion) 

0.376 0.364 0.348 0.0122 
(0.016) 

0.0284 
(0.020) 

Wealth index 0.448 0.439 0.536 0.0090 
(0.006) 

− 0.112*** 
(0.006) 

Post-tsunami 
outcome      

Change in asset 
values 
between 2004 
and 2005 (as 
a percentage 
of asset value 
in 2004) 

− 0.039 − 0.096 − 0.408 0.058*** 
(0.006) 

0.369*** 
(0.009) 

Number of 
households 

1174 3245 1218    

4 The sampling frame for STAR1 was based on the 2004 annual National 
Socio-economics Survey (SUSENAS) collected by the Indonesian Bureau of 
Statistics between February and March 2004. SUSENAS is a broad-purpose 
survey conducted across Indonesia and is representative of the population at 
the district (Kabupaten) level of each province. The sampling scheme for the 
survey is stratified, with households randomly selected within census tracts. 
The STAR team collaborated with Statistics Indonesia to use this as a baseline 
(STAR0) from which to construct a panel in order to follow-up respondents 
from the 2004 survey. The panel sample contained all respondents living in a 
kabupaten with a coastline along the North and West coasts of Aceh and North 
Sumatra as well as the Islands off the costs. It also contained further enumer
ation areas further inland that were not directly affected by the tsunami for 
comparison purposes [37]. 

5 Pre-tsunami household wealth is measured using the wealth index ranging 
from 0 to 1. The proxy for wealth is the household’s ownership of common 
assets such as a house, land, livestock, vehicles including bicycles and cars, 
household durable goods such as furniture and appliances, gold, cash and 
financial instruments such as stocks, shares and bonds. To construct the index, 
the list of items that household i owns is counted, regardless of its monetary 
value, and converted into an index as follows: 

∑
i
assetsi − assetsmin

assetsmax − assetsmin
, where assetsmin to 

assetsmax is the range of these items in the dataset. Ideally an index of wealth is a 
composite measure of a household’s cumulative living standards including 
housing quality (captured by indicators such as type roof/wall/floor type, 
rooms per person), the access to services (captured by indicators such as type of 
toilet, water source, availability of electricity) and assets (captured by durable 
goods such as furniture, appliances, etc). The data available in the STAR1 
survey only allows us to infer the value of owned durable goods and assets such 
as household, land, pre-tsunami. 

6 A caveat here is that information is available for only post-tsunami house
hold location. However, nearly 80% report to live in the same house as they did 
before the tsunami. It is assumed that the remaining 20% who moved house did 
so within urban areas and within rural areas, allowing us to infer pre-tsunami 
household rural/urban location based on post-tsunami location data. 
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tween households in no/light damage and heavy damage, in relation to 
being engaged in farming business or not engaging in household-level 
business activities prior to the tsunami. However, households in areas 
that were affected more severely by the tsunami, rather than those 
lightly affected, appeared to have engaged more in non-farm business 
activities and to be significantly wealthier. This is consistent with the 
result in Table 1 showing that heavy damage occurred more in urban 
rather than in rural areas. 

Household welfare is proxied using a measure of household level 
business and non-business assets. The assets include farm and non-farm 
land, buildings, machinery and equipment, livestock, vehicles, raw 
material, unsold stock, hardwood trees (e.g. coconut and rubber), 
furniture and durable goods, gold, jewellery, cash and financial market 
instruments (e.g. bonds). The change in household welfare post-tsunami 
compared to pre-tsunami outcomes is measured using the change in the 
value of household-level assets. The value of pre-tsunami assets in 2004 
is comprised of the total value of business and household assets held by a 
household before the tsunami, taken from questions asked retrospec
tively from respondents in this regard. The value of post-tsunami assets 
in 2005 are computed as the value of pre-tsunami assets in 2004 plus the 
value of assets lost, damaged or sold after tsunami7. All monetary values 
are expressed in 2007 Indonesian Rupiah adjusted for spatial variations 
in price8. The change in asset values between 2004 and 2005 (as a 
percentage of asset value in 2004) winsorized at the 1st and 99th per
centiles shows that those households in heavy damage locations report a 
greater percentage loss of values of assets than those in areas with me
dium, no/light damage, at 40.8, compared to 9.6 or 3.8, respectively. 

To understand the effect of the tsunami on household welfare the 
following baseline model is specified where the time period immediately 
before the tsunami is denoted by t = 1 and the time period 5–16 months 
after the tsunami is denoted by t = 2: 

Δyj2 =α + βMj + γHj + δXj1 + εj2, (1)  

for households j = 1…N, where Δyj2, which denotes the change in asset 
values between 2004 and 2005 (as a percentage of asset value in 2004) is 
the dependent variable, winsorized at the 1st and 99th percentiles. Mj =

1, if household was in an area where damage from the tsunami was 
moderate (0 otherwise). Hj = 1, if household was in an areas where 
damage from the tsunami was heavy (0 otherwise). Xj1 is a vector of pre- 
tsunami household characteristics, which includes a categorical variable 
indicating the type of business operated by family (farming, non-farm 
business or no business activity) and household wealth index,εj2 is an 
idiosyncratic shock. 

Since some of the pre-tsunami characteristics are not balanced, a 
propensity score is estimated using baseline type of business operated by 
family (farming, non-farm business or no business activity) and house
hold wealth as matching variables, and then weighting observations 
inversely proportional to their propensity score. This approach was 
adopted by Refs. [41,42]. The rationale for weighting is that samples 
receiving the different treatments may differ in their distributions of 
pre-treatment variables and, therefore, possibly differ in terms of their 
observed outcomes in ways that are not attributable to the treatment. If 

all the variables with pre-treatment differences are observed and groups 
have at least some members with similar covariates (i.e., the conditions 
of conditional independence and overlap hold), then in principle, a 
treatment sample can be reweighted to make the distribution of cova
riates match that of any of the other treatment groups [43,44]. The 
identifying assumption in the model is that E(εj2

⃒
⃒Mj,Hj,Xj1) = 0, so that 

tsunami intensity, household business activity and wealth status in 2004 
are not correlated with unobservables determining asset loss between 
2004 and 2005. Identification relies on the exogenous nature of the 
tsunami. 

The issue of internal validity is important when estimating hazard 
relationships [45]. This refers to the establishment of a causal (or, at 
least, externally replicable) relationship between tsunami intensity and 
household welfare loss. The main measure of tsunami intensity in the 
above specification is the damage indicator rather than measures of 
wave height or force as it reached a particular household. Although 
damage is the most direct measure of the tsunami intensity available, 
measured at roughly 0.6 km2, there are two key disadvantages with the 
measure. First, it is not nuanced enough to capture the finer grades of 
intensity. For example, around 50% of the households are in the ‘mod
erate’ damage area. Second, damage extent may be correlated with 
unobserved determinants of asset loss. For example, if wealthier, urban 
areas indicate heavier damage but also have a more diverse portfolio of 
assets qualitatively different to those of more rural areas with assets (e.g. 

gold, stocks, shares, bonds) kept in banks rather than at home (causing 
lower levels of asset loss for a given tsunami intensity), then there would 
be an over-estimation of the welfare loss of tsunami in these areas. To 
deal with this, we include observable pre-tsunami characteristics in the 
specification but acknowledge that unobservable characteristics, that 
may influence both the proxy for intensity and welfare loss, remain 
unaccounted. 

The results of the Ordinary Least Squares estimation of Eq. (1) are 
presented in Table 2, Column 1. They show that a household that was in 
an area of medium damage rather than no/little damage reduced its 
welfare significantly by 5.8%. Households that were in a heavy damage 
area rather than a no/little damage area showed welfare losses of 33%. 
Household business type (farm or non-farm) and wealth had significant 
negative impacts on asset loss. 

To test for internal validity (weakly stated as robustness of tsunami- 
welfare loss over different specifications), Eq. (1) was re-estimated as 
follows: (a) Include an indicator for rural/urban residence in the 

Table 2 
Impact of tsunami on household-level assets conditioned on pre-tsunami char
acteristics, using Ordinary Least Squares estimation, with standard errors in 
brackets. The columns (1), (2) & (3) represent different specifications: (1)-all 
controls apart from rural, (2)-all controls and (3)-parsimonious (used in OASIS). 
*** p < 0.01, ** p < 0.05, * p < 0.10 Dependent variable: Δyj2.   

(1) (2) (3) 

medium − 0.0580*** 
(0.0053) 

− 0.0581*** 
(0.0052) 

− 0.0578*** 
(0.0074) 

heavy − 0.330*** 
(0.0106) 

− 0.337*** 
(0.0111) 

− 0.375*** 
(0.0090) 

farm − 0.0399*** 
(0.0128) 

− 0.0215 
(0.0136)  

nonfarm − 0.0393*** 
(0.0121) 

− 0.0380*** 
(0.0122)  

nobusiness − 0.0147 
(0.0158) 

− 0.00806 
(0.0160)  

wealth − 0.155*** 
(0.0196) 

− 0.156*** 
(0.0199)  

rural  − 0.0280*** 
(0.0088) 

− 0.0319*** 
(0.0064) 

Constant 0.0667*** 
(0.0159) 

0.0778*** 
(0.0166) 

0.0144* 
(0.0081) 

Observations 5,637 5,637 5,637  

7 It is important to include the value of assets sold since the tsunami, as the 
sale of raw material and assets offer an important coping mechanism after 
natural disasters especially in cases where credit access or insurance mecha
nisms are weak [39,40]. Access to support may be particularly limited in the 
case of natural disasters as the shock is likely to be common to all members of 
formal or informal insurance groups. Moreover, public safety nets and aid may 
be inadequate, or reach victims with a time lag, leading to asset sale. 

8 The deflators used for this come from province-specific price indices re
ported by Indonesia Statistics (BPS or Badan Pusat Statistik) for 66 cities in 
Indonesia from 2000 to 2012 and the simple average of BPS cities Banda Aceh 
and Lhokseumawe are used to reflect price indices for the geographic area 
enumerated in the STAR survey. 
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specification and change the propensity score weight to include this 
dummy (b) present a parsimonious specification including only the 
rural/urban dummy and an estimate unweighted regression (c) Employ 
the non-parametric nearest-neighbor matching estimator [46] to obtain 
the average treatment effects (ATE) as well as average treatment effects 
on treated (ATT)9. The results for the first two checks for robustness are 
reported in Table 2, Columns 2 and 3, respectively. The ATEs from the 
matching estimator are 5.8% and 34.9%, respectively, for medium and 
heavy intensity. The corresponding ATTs are 5.8% and 36.5%. Thus the 
results remain robust to changes in specification and the use of a 
non-parametric estimator: medium tsunami intensity significantly re
duces household welfare by 6% in all cases while heavy intensity re
duces household welfare significantly by 33–37.5%. 

Are these results externally valid i.e., generalizable out of sample in 
other contexts, locations or years such as for the case of Cilacap that may 
have a different development profile? This is a difficult question to 
answer. First, the empirical measurement of direct and indirect micro
economic losses in the context of a disaster is still a nascent field in 
economics and related social sciences, and there is much work yet to be 
done. Thus the relationship between different socio-economic contexts 
and vulnerability in the face of a disaster is far from clear. Second, major 
disasters often result in countries subsequently changing policy. Endo
genising this type of political response in a model is particularly difficult 
and may require the subjective judgement of analysts. Most importantly, 
estimates based on past experience may never guarantee similar 
behavior in the future as contexts change over time [45]. In spite of these 
difficulties in establishing external validity, we attempt to contextualize 
our results for Aceh by considering the case of a major disaster in 
another location in Indonesia. An ideally suited event to consider is the 
2006 Pangandaran tsunami affecting South Java including Cilacap. 
Although we have another household panel data set, the Indonesian 
Family Life Survey (IFLS) [50] to use for this purpose, it captures only 
around 25 households that experienced the 2006 tsunami and therefore 
provides a sample size too small for empirical analysis. So the IFLS data 
are used to estimate the impacts of the May 27, 2006 Yogyakarta 
earthquake that recorded a 6.6 magnitude and Medvedev–
Sponheuer–Karnik scale of VIII (damaging). Tsunami damage to 
household assets can be more severe than earthquake damage, given 
that flooding affects land, livestock and other assets more severely [51]. 
Nonetheless, the results may offer some insights as to how plausible the 
2004 tsunami based results on our measure of assets may be, in the 
Indonesian context. Waves 3 and 4 of the IFLS dataset collected in 2000 
and 2007 are used to look at the impact of the Yogyakarta earthquake on 
household welfare10. The earthquake struck near the city of Yogyakarta, 

incurring substantial damage to buildings, assets and housing. The 
measure of earthquake intensity used is the number of houses destroyed 
per capita (at the district-level) by the earthquake. This variable is 
continuous ranging from 0 to 0.091, rather than being categorical as was 
the proxy for tsunami intensity11. The measure of changes in household 
welfare is computed using changes to household level business and 
non-business assets, using pre and post-disaster data. In this case the 
pre-disaster data pertain to the year 2000 and post-disaster data to the 
year 2007, gathered roughly 18–25 months after the 2006 earthquake. 
Effects are identified using a specification similar to Eq. (1) above, with 
the change in household assets between 2000 and 2007 regressed on 
pre-earthquake characteristics that include business type (farm, non 
farm, no business), wealth and location12. Since some of the 
pre-earthquake characteristics are not balanced, the observations are 
weighted using inverse probability weights, as for the tsunami-based 
regression. 

The results (unreported) indicate that the average effect of the 
earthquake is to reduce household welfare significantly by 28.9%. It 
should be noted, however, that the earthquake effect is likely to be an 
overestimation for two reasons. First, the measure of intensity is avail
able only at the district level. Secondly it may be correlated with un
observed determinants of asset change. For example, housing quality 
may be lower in poorer areas resulting in higher levels of destruction for 
a given magnitude. If these areas also had lower asset growth, the effect 
of the earthquake will be overestimated. Nonetheless, the average 
impact of the earthquake of reducing household welfare by 28.9% is 
between the previous tsunami impact estimations of 6% and 37.5% for 
medium and heavy areas, respectively, compared to light/no damage 
areas. This result supports somewhat the observation that the effects of 
flooding can be more damaging for household assets than earthquakes. 
It also supports to some extent the notion that the Aceh-based estima
tions are plausible in a different context within Indonesia. However, it is 
acknowledged that further research in this area is needed to ensure that 
the results are externally valid. 

3.2. The Oasis loss framework 

Catastrophe models have been widely employed by the (re-)insur
ance businesses and government sectors to assess the risks posed by 
natural hazards and estimate the prospective losses. There is an 
increasing need for transparency within the (re-)insurance community, 
and beyond, especially relating to the black-box use and design of 

9 The effect of tsunami on welfare obtained from Eq. (1) can be interpreted as 
the average treatment effect (ATE), using terminology from the potential out
comes literature [47]. The ‘treatment’ is tsunami intensity, that has three 
levels-no/light, medium and heavy. The same results can be obtained using the 
inverse probability weighting with regression adjustment (IPWRA) estimator as 
described in Refs. [48,49] with the estimation procedure rewritten as a one-step 
step estimation within a Generalised Method of Moments (GMM) framework 
such that the standard errors automatically account for the estimation error 
from estimated propensity scores. Using the potential outcome framework also 
allows us to compute the average treatment effect on the treated (i.e., the mean 
effect for those who actually received the treatment) rather than the average 
treatment effect (the mean effect of giving each individual treatment heavy or 
medium instead of treatment no/light treatment). ATEs and ATTs can differ 
when the treatment effects are not constant across individuals (i.e., there exists 
treatment effect heterogeneity). The ATEs and ATTs can be obtained using an 
alternative non-parametric estimator as well such as nearest neighbor matching 
using the Mahalnobis distance metric. 
10 The first wave of the IFLS was collected in 1993, with the sample repre

sentative of 83% of the Indonesian population. Subsequent rounds of data were 
collected for the full sample over the next 20 years in 1997, 2000, 2007 and 
2014. 

11 Authors gratefully acknowledge data shared by Martina Kirchberger, from 
her paper [42], that was useful in capturing effects of the Yogyakarta earth
quake. As the paper noted, the data for reported earthquake damage to 
households came from the DesInvestar database for Indonesia, maintained by 
the Indonesian National Board for Disaster Management. District-level popu
lation data for 2005 were taken from Indonesia’s Statistical Agency. The paper 
also contains more details on how treatment and control groups were carefully 
assigned, restricting the sample to households within a Euclidean distance of 5 
km of cities with a population of more than 300,000 people in Java in 2000.  
12 Unlike the STAR data set, the IFLS allows us to calculate a more complete 

wealth index using pre-disaster data similar to the method used in papers such 
as [52]. Thus the wealth index in this case is calculated as the simple average of 
three sub-indices: the housing quality index, the access to services index and the 
asset index. The housing quality sub-index reflects the welfare of household 
members in terms of housing-related comfort and is the simple average of the 
four indicators based on wall, roof, floor quality and rooms per person. The 
access to services sub-index measures the household’s ability to meet functional 
requirements of sound shelter. Again it is calculated as the simple average of 
four indicators: access to electricity, safe drinking water, safely managed 
sanitation Service and adequate fuel for cooking. All four indicators are 
considered to have equal weight. The consumer durables sub-index is a measure 
of the household’s ownership of common household durable goods and assets 
(such as TV, radio, bicycle, cars). It counts a long list of items (regardless of its 
monetary value) that the household has and converts it into and index. 
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catastrophe models. In an attempt to provide with more transparency 
the Oasis Loss Modelling Framework (LMF), an open source catastrophe 
modelling platform, was created13. Several components are integrated 
in the core/kernel of Oasis to calculate ground-up losses. Overall, three 
main components are distinguished with reference to the hazard, 
vulnerability and financial structure (see also Fig. 7). Event occurrences 
and exposure data are also incorporated in the model. Ground-up losses 
are calculated through Monte Carlo sampling. In the following para
graphs we discuss the different model choices that led to the computa
tions of the tsunami loss exceedance curves for the area of Cilacap. 

3.2.1. Hazard 
Hazard in Oasis is represented by the hazard footprints of a set of 

events. In this study, the hazard footprints describe the numerical out
puts of the 25 tsunami event set (expressed as tsunami maximum 
elevation over the whole disaster duration) for the population distri
bution data of Cilacap. The intensity of the events is divided into three 
intervals depending on the expected impact of the maximum tsunami 
elevation on the population (small/no impact, medium or high impact). 
This classification is driven by the damage classification of the 2004 
tsunami in the Aceh province, Indonesia. We assume the threshold be
tween light to medium intensity to vary among 0.2–1 m and the 
threshold between medium to heavy damage to vary among 1–5 m14. 
We sample randomly from these intervals and produce 1,000 instances 
for which we run the model in order to express our own uncertainty over 
the threshold values. 

3.2.2. Occurrences 
In Oasis the occurrences of events are expressed as a series of iden

tified tsunamis over time. To create this event set we use a simple 
approach that combines a frequency/magnitude relationship with a 
Poisson distribution of inter-event times. Earthquake frequency- 
magnitude relationships can often be described by the Gutenberg- 
Richter (GR) law [53]. The GR law expresses the number of earth
quakes of a certain magnitude, or higher, that may occur in a region 
within a specific time period. Based on the historical seismicity of the 
region between 1977 and 2011, Okal [16] has estimated this relation
ship to be: log10N = 16.7 − 0.62log10M0 , where N is the number of 
events with a seismic moment >= M0. The regression was based on data 
that ranged between 1024 and 6 × 1025 dyn.cm. Extrapolating this 

relationship, a megathrust event (M0 >= 1029 or Mw >= 8.6) would 
occur roughly every 670 years [16]. Following the same approach, we 
estimate the expected time intervals for each one of the 25 earthquake 
scenarios. Thus, in a period of 297,470 years 10,000 events with Mw 
7.9− 9 could occur, out of which 19.85% would have a Mw 7.9 and 2.1% 
would have a Mw 9. 

To distribute events over time we employ the Poisson distribution. 
The distribution of inter-event times behaves exponentially with 
parameter λ, the mean rate of events per interval. The distribution of the 
inter-event time intervals (δt) until the next earthquake of/larger than a 
certain magnitude is expressed by: P(δt < t) = e− λt . The Poisson model 
has been widely used in the past for probabilistic seismic hazard anal
ysis, however in modern earthquake statistics it is considered the “least- 
informative” model as it assumes independence and randomness 
amongst the main-shocks and a stationary seismic process. We never
theless follow this approach in this study for its simplicity and efficiency 
in the lack of additional information other than the mean rate of 
earthquake generation (its concrete impact in Oasis computations is 
negligible as averages as aggregated after Monte Carlo sampling any
way). We thus sample randomly 10,000 inter-event times with a rate λ 
corresponding to each mean recurrence rate for the corresponding 
magnitude and attribute the set of earthquake events to these intervals 
according to frequencies derived from the GR law. 

As a result, these 10,000 events are distributed within 297,470 years. 
Fig. 8a displays one possible set of occurrences in time according to 
magnitude, showing for instance six Mw 9 events in 10,000 years in this 
draw. We generate 6 sets of inter-event times to assess the impact of such 
random variations. Note that a recent study [54] showed that for the 
2004 tsunami was the latest in a sequence of tsunamis along the Sunda 
Megathrust. This investigation established that the average time period 
between tsunamis is about 450 years with intervals ranging from a long, 
dormant period of over 2000 years, to multiple tsunamis within the span 
of a century. Hence the large variability in actual recurrence suggests 
that it is informative to consider events with large return periods with 
care in their statistical representation. Note that we do not capture such 
variability here with our stationary behaviour in time (see Fig. 9). 

3.2.3. Vulnerability 
For Oasis purposes, a variation of the tsunami vulnerability function 

discussed previously is used by making the dependent variable cate
gorical. For simplicity we also use only hazard intensity and location of 
household (rural versus urban) as explanatory variables. An economet
ric model is built here, which predicts how much loss each household 
would incur depending on the values of explanatory variables. After 
constructing it, we estimate the parameters of the model based on the 
historical data and use the model for future prediction. We employ a 
multinomial logit model (see for example [49]) and the formulation is 
reviewed. First, we classify the degree of loss into the six categories 
(Table 3). For each individual household i, yi denotes a random variable 
taking on the values {1,2, 3,4, 5,6} and it specifies into which category 
the loss incurred by household i falls. 

The explanatory variables are a constant and dummy variables 
di,rural, di,medium, di,heavy. di,rural takes 1 if the location of household i is 
rural. di,medium and di,heavy are equal to 1 if the household i experiences 
medium or heavy tsunami intensity respectively. Then, the probability 
that the loss of household i is classified into category j is: 

P(yi = j)=
exp

(
β0,j + β1,jdi,rural + β2,jdi,medium + β3,jdi,heavy

)

1 +
∑6

h=2exp
(
β0,h + β1,hdi,rural + β2,hdi,medium + β3,hdi,heavy

) (2)  

where j = 2,…,6 and the probability for j = 1 is: 

P(yi = 1)=
1

1 +
∑6

h=2exp
(
β0,h + β1,hdi,rural + β2,hdi,medium + β3,hdi,heavy

) (3) 

The log likelihood can be written as: 

Fig. 7. The Oasis Loss modelling framework.  

13 https://github.com/OasisLmf.  
14 Note, these values correspond to tsunami height as opposed to inundation 

depth. 
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L(β)=
∑N

i=1

∑6

j=1
1{yi=j}log(P(yi = j)) (4)  

where N means the total number of samples (in our case N = 6,277) and 
β denotes the set of βl,j for l = 0,1, 2,3 and j = 2,…,6. We estimate β by 
maximum likelihood method and all of βl,j are significant with a sig
nificance level 0.001 except for β2,5, which is still significant with a 
significance level 0.01 (Table 4). 

Using the expressions in Eqs. (2) and (3) with the estimated pa
rameters of βl,j, we can compute the probability of loss for a new 
household m in Cilacap. The value of the corresponding explanatory 
variable dm,rural, which is interpreted as exposure, is set to 0, which 
means the location of every household in Cilacap is considered as an 
urban area while dm,medium and dm,heavy take 0 or 1 depending on the 
simulated value of tsunami. In Table 5, the probability that specifies the 
loss of household m is presented. This is used as a vulnerability file in 
Oasis framework. If dm,heavy = 1, the intensity experienced by the 
household m is heavy whereas dm,medium = 0 means the household m 
incurs medium intensity. The Light column in Table 5 corresponds to the 
case where dm,heavy = 0 and dm,medium = 0. The values of dm,medium and 
dm,heavy change according to the tsunami height in different scenarios 
and this vulnerability file allows us to specify the corresponding prob
ability. More intense tsunamis generate a higher likelihood of experi
encing a higher loss (categories 5 & 6 in particular). There is 

nevertheless a large percentage of households experiencing no or less 
than 5% losses for all intensities (e.g. 34.23% for heavy tsunamis), 
possibly due to more resilient assets with stronger defences, or types of 
assets less affected by tsunamis for such households. 

3.2.4. Exposure 
Exposure in Oasis is represented by the coverage that each item has 

with reference to a total insured value (TIV). The items’ TIVs are defined 
by the average asset value in each sub-district after subtracting the 
percentage that is already insured (and thus covered by another source). 
The estimated values for assets for each of the districts in Cilacap are 
obtained from the Indonesia Family Life Survey, wave 5 (IFLS5), con
ducted in 2014. The asset-related survey instruments of the IFLS5 are 
comparable to that of STAR1, and include household-level business and 
non-business assets. Although the IFLS5 obtained information for 
around 70,000 households in total, these households were distributed 
across 13 provinces in Indonesia, each comprising many regencies. 
Thus, only a few households in coastal Cilacap were included in the 
sample15. The calculated TIVs are shown in Table 6. All vehicles are 
assumed to be insured and thus insured assets as a percentage of total 
assets is presented in the last column. The number of households 
obtaining insurance against buildings and other assets is negligible in 
Indonesia’s case. Each item is characterised by a coverage ID, incurred 
from their sub-district TIVs, the area peril ID (household location) and a 
vulnerability ID (which is the same for all households). The items are 
grouped together and used in the calculations of the ground-up losses. 

Fig. 8. (a) Distribution of events with varying moment magnitudes over a subset (10,000 years) of the total time. (b) Distribution of the 10,000 events along the 
inter-event times that result from the GR law. 

Table 3 
Classification of the incurred loss (negative change in household asset and 
business asset values).  

Category 1 2 3 4 5 6 

Loss 
interval 

[0,0.05] (0.05,
0.2]

(0.2,
0.4]

(0.4,
0.6]

(0.6,
0.8]

(0.8,
∞)

Table 4 
Estimated parameters with standard deviations.  

β0,2  β0,3  β0,4  β0,5  β0,6  

− 3.38 − 4.23 − 4.56 − 4.53 − 5.40 
(0.16) (0.21) (0.26) (0.26) (0.38) 
β1,2  β1,3  β1,4  β1,5  β1,6  

0.42 0.68 0.57 0.46 0.54 
(0.11) (0.12) (0.13) (0.12) (0.16) 
β2,2  β2,3  β2,4  β2,5  β2,6  

0.96 1.37 1.19 0.83 1.24 
(0.15) (0.20) (0.25) (0.25) (0.38) 
β3,2  β3,3  β3,4  β3,5  β3,6  

2.03 2.97 3.65 4.11 4.24 
(0.18) (0.21) (0.25) (0.25) (0.37)  

Table 5 
Estimated distributions, from the multinomial logit regression model, of loss 
categories defined in Table 3, by tsunami intensity classification (so columns 
sum to 1).  

Category Heavy Medium Light 

1 0.3423 0.8189 0.9307 
2 0.0890 0.0727 0.0318 
3 0.0974 0.0470 0.0135 
4 0.1372 0.0282 0.0097 
5 0.2262 0.0203 0.0100 
6 0.1078 0.0128 0.0042  

15 Household surveys such as the IFLS are most useful to identify patterns, 
causes and consequences, rather than be used for monitoring purposes, as 
would a population based census. Although population based data on assets 
would have been ideal for the current investigation, such detailed data is un
available and can only be obtained through a household survey such as the 
IFLS. 

D.M. Salmanidou et al.                                                                                                                                                                                                                        



International Journal of Disaster Risk Reduction 61 (2021) 102291

12

3.2.5. Financial 
In general, there are many ways to compute an insurance loss, under 

a range of different terms and conditions. For instance, there may be 
deductibles applied to each element of coverage (e.g. a buildings dam
age deductible), some site-specific deductibles or limits, and some 
overall policy deductibles and limits. The financial module in Oasis is 
intended to incorporate these aspects. The financial module links the 
varying (re-)insurance policies with the hazard impact, see Fig. 7. It 
comprises several components that relate to different financial layers 
and the contracts/policies that should be applied under each condition. 
Financial terms and conditions are represented in Oasis by three main 
files: FM Programme, FM Profile and FM Policy. The FM Programme 
describes the hierarchical aggregation of financial structures and the FM 
Profile specifies the calculation rules and the values to be used. The FM 
Policy connects the hierarchical aggregation structure to the profile and 
also describes any insurance layer conditions. In our case, we do not 
assume specific terms, and thus do not modify the computed loss, and 
thus all losses from individual households are summed up to one final 
output. 

3.3. Loss exceedance curves 

Loss exceedance curves (LECs), also called exceedance probability 
(EP) curves, form a predominant indicator of risk as they express the loss 
expectancy over a future period. More specifically, LECs graphically 
represent the probability that a certain amount of economic loss will be 
exceeded over a given time interval. LECs are computed by combining of 
different elements such as hazard, vulnerability, exposure and financial 
aspects, through Monte Carlo sampling (see Fig. 7). Tsunami events are 
generated in time, and the corresponding footprints are used to deter
mine the intensity of impact onto each household. Then a probability of 
falling into a category of loss is sampled for each household using 
Table 5 and used to reduce the household assets in Table 6 by a corre
sponding proportion from Table 3. The totals are aggregated into the 
overall losses, the so-called ground up losses. As time increases, these 
losses increase and may increase at a different rate as low probability but 
high impact tsunamis appear in the time window. The resulting LECs for 
Cilacap are shown in Fig. 10. We calculate the LECs for 1,000 times, with 
different hazard intensity thresholds at each iteration, for one set (out of 
the six) of 10,000 inter-event times that span across 297,470 years. The 
LECs in Fig. 10 represent a subset of 100 out of the 1,000 calculations. 

Table 6 
The estimated asset values in the sub-districts of Java as given by the IFLS 2014 
survey. The values are given in 2014 rupiah prices. The insured assets as of 2014 
are also given. The total insured value is estimated using these values as a 
guideline. Source: Indonesia Family Life Survey 2014.  

Sub- 
district 

Surveyed 
households 

Average 
asset value/ 
household 

Insured 
assets 

%assets 
insured 

Total Insured 
value 

Jeruklegi 1 3.8× 107  1.05×

107  
27.63 27,500,600 

Kesugihan 3 1.43× 108  5.233×

106  
3.66 137,766,200 

Adipala 4 2.35× 108  6.375×

106  
2.71 228,631,500 

Cilacap 
Selatan 

4 2.44× 108  3.28×

107  
13.44 211,206,400 

Cilacap 
Tengah 

37 4.49× 108  5.87×

107  
13.07 390,315,700 

Cilacap 
Utara 

4 4.66× 108  5.41×

107  
11.61 411,897,400  

Table 7 
Earthquake scenarios used as source in the tsunami simulations, All scenarios 
have a fault width of 100 km. Rigidity of earth is assumed to be 3 × 1010 (N/m2) 
after Fujii and Satake [11].  

Scena- Lon/Lat Length 
(km) 

Depth 
(km) 

Slip 
(m) 

Max 
uplift 
(m)/

M0 

(dyne. 
cm) 

Mw 

rio     Max 
sub (m)   

01 118.0/- 
11.0 

200.0 8.0 5.0 2.0/- 
1.1 

3.00×

1028  
8.3 

02 118.0/- 
11.0 

300.0 8.0 5.0 2.0/- 
1.1 

4.50×

1028  
8.4 

03 118.0/- 
11.0 

400.0 8.0 5.0 2.0/- 
1.1 

6.00×

1028  
8.5 

04 118.0/- 
11.0 

500.0 8.0 6.0 2.4/- 
1.3 

9.00×

1028  
8.6 

05 118.0/- 
11.0 

600.0 8.0 7.0 2.8/- 
1.6 

1.26×

1029  
8.7 

06 118.0/- 
11.0 

600.0 8.0 10.0 4.0/- 
2.3 

1.80×

1029  
8.8 

07 118.0/- 
11.0 

700.0 8.0 12.0 4.8/- 
2.7 

2.52×

1029  
8.9 

08 118.0/- 
11.0 

700.0 8.0 16.0 6.4/- 
3.6 

3.36×

1029  
9.0 

09 113.0/- 
10.6 

500.0 8.0 6.0 2.4/- 
1.3 

9.00×

1028  
8.6 

10 113.0/- 
10.6 

500.0 8.0 9.0 3.6/- 
2.5 

1.89×

1029  
8.8 

108.4/- 
9.93 

200.0 8.0 9.0 

11 113.0/- 
10.6 

500.0 8.0 12.0 4.8/- 
3.4 

2.52×

1029  
8.9 

108.4/- 
9.93 

200.0 8.0 12.0 

12 113.0/- 
10.6 

500.0 8.0 16.0 6.4/- 
4.5 

3.36×

1029  
9.0 

108.4/- 
9.93 

200.0 8.0 16.0 

13 110.0/- 
10.2 

500.0 8.0 8.0 3.2/- 
2.0 

9.6×

1028  
8.6 

108.4/- 
9.93 

200.0 8.0 8.0 

14 110.0/- 
10.2 

160.0 8.0 10.0 4.0/- 
2.7 

1.8×

1029  
8.8 

108.4/- 
9.93 

440.0 8.0 10.0 

15 110.0/- 
10.2 

160.0 8.0 16.0 6.4/- 
4.4 

3.36×

1029  
9.0 

108.4/- 
9.93 

540.0 8.0 16.0 

16 117.0/- 
10.0 

500.0 16.0 10.0 3.9/- 
2.2 

1.80×

1029  
8.8 

17 115.0/- 
9.9 

600.0 16.0 14.0 5.4/- 
3.1 

2.52×

1029  
8.9 

18 112.0/- 
9.6 

430.0 16.0 10.0 3.9/- 
2.2 

1.29×

1029  
8.7 

19 109.0/- 
9.3 

500.0 16.0 12.0 4.6/- 
2.6 

1.80×

1029  
8.8 

20 113.0/- 
9.7 

360.0 16.0 8.0 3.1/- 
1.7 

8.64×

1028  
8.6 

21 111.0/- 
10.3 

150.0 8.0 2.0 0.8/- 
0.4 

9.0×

1027  
7.9 

22 110.0/- 
10.2 

150.0 8.0 2.5 1.0/- 
0.5 

1.13×

1028  
8.0 

23 111.0/- 
9.3 

150.0 16.0 2.5 1.0/- 
0.5 

1.13×

1028  
8.0 

24 107.0/- 
9.15 

200.0 8.0 3.0 1.2/- 
0.6 

1.8×

1028  
8.1 

25 116.0/- 
10.0 

200.0 16.0 4.0 1.6/- 
0.8 

2.4×

1028  
8.2  
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4. Discussion 

The Loss Exceedance curve in Fig. 10 shows a sharp rise and then a 
plateau of around 7 × 1012 Indonesian rupiahs or roughly 483 million U. 
S. dollars. This plateau is reached very late in terms of occurrences at a 
return period of 20,000 years. Fig. 10b focuses on the period up to 1,000 
years and illustrates that losses start to increase for events with return 
periods beyond 20 years. The Oasis calculations estimate losses at the 
rates of approximately 1 × 1011 rupiahs for events with return periods of 
40 years. These losses increase more sharply beyond 250 years due to 
much larger losses when the magnitudes of the tsunamis intensify. The 
LECs show that the variance we set in the hazard intensity thresholds 
does not have a substantial impact on the overall trend of the loss 

calculations; it is nevertheless noticeable for events with periods be
tween 250 and 600 years (Fig. 10a–b). The concerns of policy makers 
will likely be centered around 200–1,000 year return periods or so, 
corresponding to tsunamis such as Sumatra 2004 or Tohoku 2011 and 
smaller ones. Direct losses of household and business assets represent a 
value of around 0.5 × 1012 to 2.5 × 1012 Indonesian rupiahs or roughly 
34–170 million U.S. dollars, sufficient to destabilize the local economy 
in the short and medium term. 

There are several limitations in our calculations. The loss calcula
tions could benefit from a more informative event set, as for example 
with a larger variance amongst intermediate earthquake magnitudes. 
Uncertainties in the ranges of exposures are not included as initial assets 
estimates are often based on one point estimate per district. The 

Fig. 9. Population data are classified on a sub-district level. The maximum elevation as modelled from scenario 15 is also presented (units are in metres). The map is 
produced with the QGIS software using as base-maps the Google satellite layers. 

Fig. 10. Loss exceedance curves over the next 100,000 years (a) and over the next 1,000 years (b), the results are shown for one out of six catalogues of inter-event 
times. The loss is calculated in rupiah. An ensemble of 100 of these curves according to the tsunami intensity thresholds is employed in both panels but is only visible 
on the right panel. 
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exposure is not fully matched with inundation limits, although sub
stantial care was given in achieving the appropriate match, using 
respectively 28 m and 30 m resolution grids for exposure and tsunami 
footprints that were overlaid. Finally, the incorporation of more precise 
information about the region’s socioeconomic data can potentially lead 
to a more encompassing analysis of the future tsunami risk. 

As this study is the first to present such calculations relating tsunami 
modelling, household data, microeconomic indicators, statistical 
modelling and the Oasis platform, some aspects have been simplified to 
focus on the most novel aspects pertaining to household welfare. In 
particular, future investigations may be focused on a wider range of 
possible future tsunami footprints, over a larger region, not limited (due 
to the prohibitive cost of running a large number of simulations at high 
resolutions over large areas) to a discrete set of 25 events and inundation 
only for the city of Cilacap. To account for that, the nascent leading 
approach has been to run the computer model over a small design of 
experiments and use this to create a surrogate, also called an emulator. 
Such an approach requires care in the design and the process of 
emulation (e.g. the parameterisation of the source), but has already 
shown success in various regions, such as Cascadia, NE Atlantic and the 
Western Indian Ocean [23,55–57]. An important source of uncertainties 
is the bathymetry in the coastal areas that have not been thoroughly 
surveyed; for Indonesia and other countries with extremely long and 
complex coastlines, it can be a challenge. In terms of the vulnerability 
module, improved analysis could be performed to contextualize and 
confirm the external and internal validity of the computations. 

Finally, there is the potential for policy-makers to design either in
surance schemes or welfare systems that can mitigate the economic 
shock created by the disaster. There are now highly probable for tsu
namis with the approach outlined. Optimising schemes can lead to 
improved efficiency and cost benefits. For instance, the Oasis frame
work, see Fig. 7, allows for excesses and limits to be included in its 
financial module, though none were used any in the modelling above. 
For instance, such allowances can be used to restrict the payments to the 
most impacted households, limiting settlements and targetting the 
poorer ones. Also in the vulnerability module, the measure of household 
welfare can be varied to include longer term impacts on aspects such as 
mental and physical health and education. Doing so would enable a 
more holistic capture of the welfare effects of the tsunami, aiding the 
understanding of the associated welfare, fiscal and insurance 
implications. 

5. Conclusions 

This study provides a step-change in tsunami risk assessment by 
computing explicitly the possible impact on household welfare. 

The process generated 25 earthquake-induced tsunami events, which 
capture a semi-realistic range of possible future scenarios. It weighed 
low probability-high impact ones vs. more frequent but less damaging 
ones by sampling according to a fitted frequency-magnitude law. This 
pseudo-probabilistic tsunami hazard assessment attempts to represent 
future tsunamis with a substantial degree of fidelity that forms a basis for 
the next step of loss modelling. We then used household survey data 
(STAR1) to understand the impact of tsunamis on household business 
and non-business assets using the 2004-tsunami experience in Aceh and 
North Sumatra. Impacts were estimated by regressing changes to asset 
loss against pre-tsunami household characteristics and intensity 
dummies. The baseline results showed that households in medium and 
heavy damaged areas saw an average asset loss of 6% and 33%, 
respectively, compared to those in no/light loss areas. Assuming exter
nally validity, we then used multinomial logit to fit in Oasis bins for the 
vulnerability module. The process accounted for the actual spread in 
losses and a more realistic capture of the impacts of future tsunamis, 
thus going further than simply using average effects on loss 
computations. 

This novel end-to-end integration of tsunami hazard and economic 

consequences may be of substantial interest to Government and agencies 
in charge of evaluating the potential risk and formulating mitigation 
policies. For instance, by considering the LEC, the level of capital 
resource (or insurance) in order to overcome a 200 year event or a 1,000 
year event can be determined. The information can also help develop 
disaster risk insurance products tailored to the local context. These can 
include Sharia-compliant products, relevant to Islamic finance, as well 
as microinsurance schemes involving tsunami intensity-related para
metric triggers, contributing to lower transaction costs. The use of such 
products may contribute to sustainable development in countries like 
Indonesia where private insurance density and penetration is insuffi
cient to mitigate such disasters. The demand for these products can be 
high especially in areas with a past disaster experience, like in Cilacap, 
as individuals in such a context tend to be more risk-averse [58]. 

The use of microeconomic data at the household level also helps to 
identify losses and damage to micro enterprises, small businesses and 
household-level assets used to support livelihoods. Thus local govern
ments in particular may be able to identify vulnerabilities faced by these 
small-holders. For instance, business recovery may be particularly sus
ceptible to disruptions in supply chains. It has been shown, in the 
context of the Sri Lankan post-2004 tsunami experience, that although 
there was an influx of aid, business recovery was much slower than 
commonly assumed, underscoring the role of targeted aid in hastening 
micro-enterprise recovery [59]. The analysis undertaken by this 
research can support such targeting by quantifying asset loss at the 
household level and the subsequent risk by business type, area and other 
criteria, as relevant. The loss information in the public domain, through 
educating households and small businesses, may also support disaster 
preparedness. 

Finally, this type of analysis could be utilised in a sector-specific 
manner, for instance vessels in harbors where fishing is a key part of 
the livelihood of the local community. Bespoke vulnerability functions 
of indirect livelihood impacts, due to damage on vessels and nets, could 
be derived from past surveys allowing specialized risk assessments for 
harbors. 
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