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A B S T R A C T   

The current study contributes to a better understanding of health information acquisition (HIA) and ongoing 
public policy debates about the usefulness of online health information. We distinguish between types of health 
knowledge (i.e., objective vs. subjective knowledge) and health information sources (information on the Internet 
vs. information from a Health Professional’s office visit), to examine risk perceptions and health behavior out
comes (i.e., health information seeking intentions, general prevention intentions, and vaccination intentions). 
Using the human papillomavirus, one of the most common sexually transmitted diseases in the US among men 
and women aged 18–26 years, as the health context, field survey data were collected through a US online 
consumer panel and analyzed via structural equation modeling. We find that factually correct health information 
acquired by a health professional’s office visit (rather than the Internet) leads to reduced risk perceptions, with 
potentially detrimental effects on health behavior change outcomes. Conversely, perceptions of knowledge ac
quired through the Internet (rather than information from a health professional’s office), leads to enhanced risk 
perceptions with positive impacts on health behavior change outcomes. We discuss how this discrepancy can lead 
to a conundrum for public policy and efforts to effectively communicate health risks to individuals.   

1. Introduction 

Even though people often turn to the Internet to inform themselves 
about the risks and consequences of diseases and health issues (Lee and 
Lee, 2018; Manika et al., 2018; Morrison, 2020; Myrick, 2017), and 
organizations use Internet-based technology tools to improve their 
health care service provision (Almobaideen et al., 2017; Gastladi et al. 
2018; Wang et al., 2018; Wang, Gupta and Ozdemir 2019), online health 
information is often criminalized (Betsch et al., 2010). Frequently 
described as “unreliable” (Gottlieb, 2000), health information on the 
Internet may mislead, misinform, and deceive. For example, some online 
sources actively discourage protective health behavior by providing 
“harsh criticism against vaccinations” (Betsch et al., 2010, p.447). But at 
the same time, due to the emotionally-charged content with visuals, 
personal stories and interactive content (Manika, Gregory-Smith and 
Antonetti 2017), the Internet is considered a highly influential source of 
health information for behavior change. From a public policy perspec
tive, using online health information is in line with strategic 

considerations to stem the massive costs of health care and associated 
health problems (Keller and Lehman 2008); which is the reason for the 
upsurge of research on forms of communicating health information and 
its association with health behavior (Bostrom 1997; Downs, Bruine de 
Bruin and Fischhoff 2008; Betsch et al., 2012; Deng et al., 2015; Morgan 
and Trauth 2013; Mou et al., 2016; Redmond et al., 2010). 

In the current study, we expand on this body of literature, and health 
information acquisition models in particular, by distinguishing between 
types of health knowledge (i.e., objective vs. subjective knowledge) and 
health information sources (information on the Internet vs. information 
from a Health Professional’s office visit) to examine risk perceptions and 
health behavior outcomes (i.e., health information seeking intentions, 
general prevention intentions, and vaccination intentions). Objective 
knowledge refers to the accuracy of one’s knowledge stored in memory, 
while subjective knowledge is the perceived amount of knowledge one 
thinks he/she has, irrespective of whether it is accurate or not (Manika 
et al., 2018). The differentiation between these two types of knowledge 
is noteworthy (Ran et al., 2016), as it can have different effects on health 
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behavior (Alba and Hutchinson, 2000). Past health information acqui
sition models do not distinguish between these two types of knowledge, 
but often rely on subjective perceptions of knowledge adequacy (Health 
Information Acquisition Model; Freimuth et al., 1989), or information 
insufficiency (Risk Information Seeking and Processing Model; Griffin 
et al., 1999) as a predictor of additional information seeking behavior. 

In relation to the health information source, we contribute to 
ongoing debates about the usefulness of health information on the 
Internet for behavior change and present a public-policy conundrum: 
We find that factually correct health information (i.e., objective 
knowledge), connected to exposure to information from a health pro
fessional’s office visit (rather than the Internet), can lead to reduced risk 
perceptions, with detrimental effects on health behavior change out
comes; while perceptions of knowledge (i.e., subjective knowledge), 
connected to information exposed on the Internet (rather than infor
mation from a health professional’s office), lead to enhanced risk per
ceptions with a positive impact on health behavior change outcomes. 
Given that the behavioral outcome is the ultimate goal, one may wonder 
whether it is better to engage in public health communications that 
increase subjective or objective knowledge. 

We conducted a field survey that examines how past exposure to 
sources of health information (e.g. from the Internet, from a health 
professional’s office visit, and no exposure) affects people’s health 
knowledge types and, in turn, their risk perceptions and disease pre
vention intentions. Our results show that knowledge type depends on 
past exposure. Exposure to information, whether from the Internet or 
from a health professional’s office visit, leads to higher objective and 
subjective knowledge compared to no exposure at all. Moreover, infor
mation exposure from a health professional’s office visit (versus from 
the Internet), leads to higher objective knowledge but not subjective 
knowledge. In our data, higher objective knowledge is related to lower 
risk perceptions whereas higher subjective knowledge is related to 
higher risk perceptions. Finally, we find evidence for risk perceptions 
mediating the knowledge-behavior relationship, such that subjective 
knowledge increases risk perceptions, which in turn are related to higher 
intentions to seek further health information. These results allow in
sights into the psychological processes of preventative health behavior 
and the role of the Internet in health information acquisition. Based on 
these findings, we argue that health information from the Internet 
should not be criminalized per se. While acknowledging that individuals 
make health care decisions dependent on a multitude of information and 
sources, we provide recommendations to policy makers and contribute 
to ongoing debates about the usefulness of Internet-based health 
information. 

2. Literature review 

2.1. Health information seeking and knowledge acquisition 

Research highlights that people often engage in information-seeking 
activities to improve their health (Brashers et al., 2002; Deng et al., 
2015; Freimuth et al., 1989; Kahlor 2010; Manika et al., 2018; Mou 
et al., 2016; Myrick, 2017; Rains, 2008). The goals for these 
information-seeking activities may range from understanding a health 
diagnosis to considering treatments and taking control over one’s own 
health and/or lives (Palsdottir, 2010). Health knowledge is a result of 
past information exposure and also determines how people seek, 
encounter, and avoid information (Kahlor, 2010; Manika and Golden, 
2011; Stanaland and Golden 2000; Wilson, 2000). The interconnected 
process between knowledge and information seeking underscores the 
complexity of health decision-making where knowledge is dynamic and 
competing goals may interfere with translating knowledge into behavior 
(Manika et al., 2018). 

Several models have been proposed to describe and explain when 
and why health risk information is sought. For example, the Health In
formation Acquisition Model (HIAM; Freimuth et al., 1989), and the 

Risk Information Seeking and Processing Model (RISP, Griffin et al., 
1999) posit that perceived information insufficiency acts as a trigger for 
the need to obtain further information. The notion of information 
insufficiency relies on subjective perceptions similar to the concept of (i. 
e., “subjective knowledge”). If one thinks he/she has a sufficient amount 
of health knowledge, he/she is less likely to continue seeking health 
information. However, the HIAM and RISP models do not take into ac
count the factual correctness of the current information (i.e., “objective 
knowledge”). 

Based on previous models, this perceived information insufficiency, 
in turn, has been linked to risk perception. Thus, these models suggest 
that individuals form the intention to seek further information if they 
consider their current level of knowledge to be inadequate or insuffi
cient and perceive a health risk. In an extension to the RISP model, 
Kahlor, (2010) proposed the Planned Risk Information Seeking Model 
(PRISM), which also incorporates aspects of several other models, such 
as the Theory of Planned Behavior (TPB; Ajzen, 1991), Health Infor
mation Acquisition Model (HIAM; Freimuth et al., 1989), and the 
Comprehensive Model of Information Seeking (CMIS; Johnson and 
Meischke, 1993), among others. According to PRISM, the intention to 
seek information depends directly on subjective norms, attitudes, con
trol (including whether information is available), and affective reactions 
to risk. While these models contribute to our understanding of health 
information acquisition, and the mediating psychological mechanism of 
risk perceptions between knowledge adequacy/insufficiency and health 
behavior, they do not distinguish between types of health knowledge (i. 
e., objective vs. subjective knowledge) and health information sources to 
examine risk perceptions and health behavior outcomes. The current 
study proposes a model which addresses this gap in the literature (see 
Fig. 1) and thus contributes to information acquisition theories as well as 
public policy debates on effective health communication. 

2.2. Online health information sources: curse or blessing? 

Health information can be acquired through a multitude of sources 
(e.g., TV, radio, magazines, newspapers, the Internet, health pro
fessionals, doctors, fellow patients, family, and friends; Fox, 2011). The 
advantages of using Internet-based health information sources have 
been well-documented in prior literature, which might explain why 
public-policy makers are still using the Internet as one of the main 
sources for health information dissemination. Online sources are 
immediately accessible, widespread, practical for younger adults, 
low-income, less educated and minority groups and allow for privacy, 
anonymity and variety of opinions (Cotton and Gupta, 2004; Fox, 2011; 
Jacobs, Amuta, and Jeon 2017). On the other hand, offline sources like 
print media, friends and family, and health professionals are more 
associated with health behaviors than other sources of information 
(Redmond et al., 2010). Most individuals compare Internet-based health 
information through a variety of sources (Dutta-Bergman, 2004), given 
the associated lower trust in online information compared to informa
tion from health professionals (Fox 2011). However, Internet informa
tion can promote better physician-patient interactions offline (Seckin 
2014) and virtual one-to-one consultations with health professionals, 
which offer convenience to both patients and doctors (Greenhalgh et al. 
2016). 

While a plethora of research has debated the negative and positive 
aspects of using Internet-based health information, online health infor
mation is often criminalized (Betsch et al., 2010) due to its unreliability 
(Gottlieb, 2000) and resulting negative associations with health 
behavior (Bostrom, 1997; Downs, Betsch et al., 2012; Deng et al., 2015; 
Morgan and Trauth 2013; Mou et al., 2016; Redmond et al., 2010). In 
contrast, information acquired via a health professional’s office visit is 
considered more trustworthy (Fox 2011). We compare these two types 
of health information because health professionals are more associated 
with health behavior than any other source of information (Redmond 
et al., 2010). This may be due to people being more receptive to health 
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information during a health professional’s office visit, paying more 
attention to that information, as well as comprehending information 
better, all of which could contribute to greater objective knowledge 
acquisition. Conversely, Internet-based health information might make 
individuals less inclined to process information deeply in the first place. 
Finally, regardless of whether exposure to health information is 
Internet-based or via a health professional’s office visit, individuals are 
more likely to have increased health knowledge compared to those not 
exposed to any information. 

2.3. Objective and subjective health knowledge 

The influence of prior knowledge on information processing and 
decision-making is well documented (e.g., Alba and Hutchinson, 2000; 
Hadar et al., 2013; Lee, 2016; Lee and Koo, 2012), including 
health-related contexts (e.g., Brucks 1985; Manika and Golden 2011; 
Rudell 1979; Stanaland and Golden 2000; Manika et al., 2018; Moor
man et al., 2004). Knowledge can influence people’s comprehension and 
adoption of a new product (e.g. such as a prevention vaccine) as well as 
perceptions of its advantages and risks (Moreu et al., 2001). At the same 
time, health knowledge can also determine future information-seeking 
behaviors (Kahlor 2010; Moorman et al., 2004) and affects disease 
prevention behavior in general (Manika and Golden, 2011). However, 
simply increasing knowledge accuracy about health threats and related 
issues (i.e., objective knowledge; Brucks, 1985) sometimes is not enough 
to elicit behavior change. Objective knowledge may be misperceived or 
rejected (Fessenden-Raden et al., 1987) leading to misconceptions of 
one’s subjective extent of health knowledge. 

Generally, subjective knowledge has been found to affect behavior 
more than objective knowledge (Schneider et al., 2016). Objective and 
subjective knowledge are unique constructs with unique measures 
(Park, Motherbaugh and Feik 1994); they have unique influences 
(Bettman and Park, 1980; Brucks, 1985; Moorman et al., 2004; Rudell 
1979), unique antecedents (Park, Mothersbaugh and Feik, 1994) and 
varying correlations (Carlson et al., 2009; Raju et al., 1995). Studies 
which have explored these knowledge types provide support for their 
relevance in understanding health behaviors (Brucks, 1985; Stanaland 
and Golden, 2009; Manika and Golden, 2011; Moorman et al., 2004). It 
is still unclear, however, how exposure to various sources of health in
formation may affect objective and subjective health knowledge, and in 
turn how this new knowledge may lead to risk perceptions and behav
ioral responses. 

In the current study, based on the aforementioned literature we 

hypothesize that past exposure to health information from any source 
will lead to greater knowledge, than not being exposed to any infor
mation. Even though this seems intuitive, no prior research has exam
ined this hypothesis based on the distinction between objective and 
subjective knowledge. When exposed to health information, people may 
know more (i.e., higher objective knowledge) and think they know more 
(i.e., higher subjective knowledge) - even if that knowledge is not 
factually correct -compared to no exposure at all (H1a). In relation to 
H1b, health information from a health professional’s office visit is 
considered more trustworthy from an expert source of information, 
compared to health information on the Internet (Fox, 2011); hence it is 
more likely that health information from a health professional’s office 
visit will lead to greater knowledge (objective and subjective) compared 
to health information on the Internet. In regards to subjective knowl
edge, it might be that just the exposure itself increases perceptions of 
subjective knowledge, while the actual truth content of that information 
is less relevant. The same relationship is being proposed for objective 
and subjective knowledge due to the absence of literature on how 
knowledge types are affected by sources of past health information 
exposure. Hence, in summary we hypothesize the following relation
ships (see Fig. 1): 

H1: (a) Past exposure to health information leads to greater health 
knowledge (i.e., objective and subjective health knowledge) than not being 
exposed to health information; while (b) past exposure to health information 
from a health professional’s office visit leads to greater health knowledge (i. 
e., objective and subjective health knowledge) than health information 
exposure from the Internet. 

2.4. Risk perceptions and health behavior 

For health information to be relevant for people’s health behavior, it 
needs to communicate both the information that leads to knowledge as 
well as motivate to act (Fischoff, 1995; Bostrom, 1997). One way how 
knowledge can motivate health behavior is through informing about 
risks of contracting a disease and related preventative behaviors. 

The study of risk perception provides a basis for understanding 
public responses to health threats and improving the communication of 
risk information for the general public (Bruine de Bruin and Bostrom 
2013; Slovic et al., 1982). Research on the mental-models approach for 
communicating risk information (e.g. Bostrom, 1997; Jungermann et al., 
1988) suggests that next to identifying the knowledge needed for mak
ing informed decisions, policy makers should also identify what people 
already know, compare lay decision models with expert models, and test 

Fig. 1. Hypothesized model.  
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the effectiveness of their communication content. Recipients of health 
information communications need to identify the potential threat, assess 
their own likelihood of contracting a specific disease, and identify means 
by which to protect themselves. The assessment of risk often includes 
judgments of severity (e.g., how deadly a certain virus is) as well as 
judgments of the probability of this outcome (Slovic et al., 2004). Both 
types of judgment are often driven by affective interpretations (i.e., risks 
are deemed higher if the consequences are severe; Dickert et al., 2015; 
Keller et al., 2006; Slovic, 2010). 

Prior research has proposed risk perceptions as mediators to the 
knowledge-behavior gap within health-related contexts (Klerck and 
Sweeney 2007; Bolton et al. 2008) but largely ignored the distinction 
between objective and subjective knowledge and their effects on the 
disease prevention behavioral responses examined in the current study. . 
More specifically, while extensive research has been conducted on the 
cognitive and affective underpinnings of risk assessments (e.g., Siegrist 
et al., 2005; Slovic 1999; Slovic et al., 2007), the role of objective and 
subjective knowledge in driving risk perceptions is not entirely clear. It 
is possible that objective knowledge is linked to more cognitive pro
cesses of risks while subjective knowledge is related to affective pro
cesses underlying risk perceptions. This could be the case because 
objective knowledge of health risks is often communicated by abstract 
numerical facts (e.g., the risk of becoming infected with HIV while using 
condoms is less than 0.05%), whereas subjective interpretations of these 
facts carry more affective meaning and evoke stronger mental imagery, 
both of which are linked to stronger emotional reactions (Slovic et al., 
2004). Research on decision making and risk perception suggests that 
abstract numerical facts (such as percentages) can be difficult to 
mentally represent and are thus less likely to motivate action (Slovic 
et al., 2007). Conversely, using more concrete representations of risks (e. 
g., using frequency formats) can increase risk perceptions, particularly 
for people with low numerical skills (Keller and Siegrist, 2009; Peters, 
Hart and Fraenkl 2011; Peters et al., 2006). 

Thus, we argue that greater knowledge can affect the perceived risk 
(in both directions, such that knowledge about the negative conse
quences of infection increases perceived risk and knowledge about the 
actually low probability of contracting the disease can decrease 
perceived risk), and higher perceived risk should increase preventive 
behaviors and further information search. Therefore, we propose that: 

H2: Perceptions of risk mediate the effects of health knowledge (objective 
and subjective knowledge) on behavioral responses. 

As per previous health information acquisition models, such as 
PRISM, we suggest that the motivation to search for more information 
can be interpreted as a motivation to find ways of protecting oneself. 
Therefore, we assume that search intentions are a precursor to general 
prevention as well as specific vaccination intentions. 

H3: Health information seeking intentions are positively related to general 
prevention behavior change intentions, and vaccination intentions. 

Finally, general intentions to protect against infection should predict 
specific intentions to get vaccinated, as that is one of the more promi
nent ways of avoiding infection (Manika et al., 2017). In this paper we 
distinguish vaccination intentions from general prevention measures 
due to the fact that vaccinations sometimes meet staunch opposition on 
specific websites on the Internet (Betsch et al., 2010) whereas general 
prevention behavior seems to be regarded favorably for the most part. 
This also allows us to re-examine the relationship between specific and 
general prevention behaviors in relation to types of information source 
and objective vs. subjective knowledge. 

H4: General prevention behavior change intentions are positively related 
to vaccination intentions. 

3. Methods 

3.1. Research context, design and sampling frame 

Human papillomavirus (HPV) is one of the most common sexually 

transmitted diseases in the United States, estimated to cause 30,700 
cancers in men and women every year (CDC, 2018). The HPV vaccine is 
the first cancer-related prevention vaccine available since 2006 (Fayed, 
2008). Google Trends show that HPV has been a popular search term 
online since 2004 in the U.S., with spikes in popularity in 2007 when the 
HPV vaccine started to gain significant attention due to its aggressive 
promotion to the public through direct-to-consumer (DTC) advertising, 
and more recently in 2016 because of the increasing number of debates 
regarding HPV-related legislation in some U.S. states (Google Trends, 
2018; NCSL, 2017). The frequent news coverage, and aggressive pro
motion through DTC pharmaceutical advertisements in the USA, both 
through the Internet and health professionals, make HPV an appropriate 
and topical health issue for our study. 

For the data collection, a self-administered online Internet survey 
was created, pretested and administered using e-mail addresses rented 
from a U.S. online Internet consumer panel (Qualtrics), to men and 
women aged 18–26 years old; who have never been diagnosed with or 
vaccinated against HPV. The sampling frame was selected on the basis 
that young adults aged 18–26 years have the highest rates of HPV 
infection (Bosch and De Sanjose 2007) and therefore represent a specific 
target group for public health management. Participants who were 
exposed to both health information from a health professional’s office 
visit and the Internet were excluded from our sampling frame – even 
though that can happen in reality – as the aim was to compare the two 
sources and their effects on objective and subjective knowledge. Data 
was collected before the Covid-19 pandemic. Our sample was repre
sentative of the target group and geographically dispersed. 

3.2. Sample characteristics and survey measures 

To investigate whether objective and subjective health knowledge 
differs based on the source of information exposure, we assessed the self- 
reported1 source of past health information exposure to categorize 
participants into one of the three groups i.e., those who had only been 
exposed to HPV information from the Internet (which could include for 
example websites, social media, newspapers read online, etc.), those 
who had only been exposed to HPV information from a health pro
fessional’s office visit (health professionals could include printed ma
terials in a clinic, aside from personalized health advice from an expert), 
and those who had not been exposed to any HPV information. 

Out of the 261 participants (mage = 22; 64% female), 38.7% par
ticipants had been exposed to HPV information from a health pro
fessional’s office visit, 23.4% had been exposed to HPV information 
from the Internet, and 37.9% of them had not been exposed to HPV 
information. Almost half of the sample (41.4%) attended “some college 
but had no degree”. The largest group of the sample classified them
selves as “Anglo American” (36.4%), had an average income of $25,000 
to $34,999 (18.8%), and self-described their health status as “good” 
37.9%) or “very good” (35.6%). 

After assessing past exposure to HPV information, the survey 
measured participants’ objective HPV knowledge based on the HPV 
objective knowledge scale by Manika et al., (2017), which included 15 
multiple-choice questions about HPV. The sum of correct answers 
formed the composite test score of participants’ objective HPV knowl
edge (M = 8.41, SD = 3.92, Range = 0–15). Subjective HPV knowledge, 
risk perceptions, information seeking intentions, general prevention 
behavior change intentions and vaccination intentions were also based 
on existing 7-point rating scales. Table 1 provides details on the 
multi-item measures for subjective knowledge (M = 4.12, SD = 1.79) 
adapted from Burton et al., (1999); perceived risk (M = 2.55, SD = 1.42) 
based on Rosenstock, (1974); and information-seeking intentions (M =
3.88, SD = 1.63) adapted from Kahlor, (2010) and Manika and Golden, 

1 (binary: yes or no; respondents who were not sure were allowed to select 
“not sure” and were subsequently removed from the final sample) 
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(2011). Most scales were adapted from health-related studies to ensure 
context relevance. 

The two behavioral intentions measures employed (i.e., general 
prevention behavior change intentions and specific vaccination in
tentions) were measured via single-item measures ranging from 1 =
Strongly Disagree to 7 = Strongly Agree: “I will change my behavior to 
try to avoid getting infected with HPV” (M = 4.60, SD=1.90) and “I 
intend to get vaccinated against HPV in the next 6 months” (M = 3.54, 
SD = 2.11), respectively. We chose single items to measure general and 
specific prevention behaviors because these measures benefit from 
simplicity, cost, ease of interpretation, ease of collection (DeSalvo et al., 
2005), and are commonly used in health research (Bowling, 2005; 
DeSalvo et al., 2005). In fact, Fuchs and Diamantopoulos, (2009) note 
that single-item measures are increasingly accepted in the academic 
literature and are appropriate under certain conditions such as in the 
measurement of behavioral outcomes. 

3.3. Confirmatory factor analysis and common method bias 

A confirmatory factor analysis was conducted using Mplus to test the 
reliability and validity of the hypothesized model constructs. All multi- 
item scales had significant factor loadings above 0.77 and were highly 
reliable and valid, with construct reliabilities above or equal to 0.85 and 
average variance extracted (AVE) scores above or equal to 0.66 (Fornell 
and Larcker, 1981). The measurement model demonstrated a theoreti
cally and statistically good overall fit [χ2

(24) = 40.01, p = .02; 
Comparative Fit Index (CFI) = 0.99; Tucker Lewis Index (TLI) = 0.98; 

Standardized Root Mean Square Residual (SRMR) = 0.03]. Table 2 
shows the inter-item correlations, with none exceeding 0.59, thus indi
cating discriminant validity. The Fornell and Larcker criterion [AVEv>
(r)2] indicated that the AVEs for each construct were greater than the 
square of the correlation estimates. The authors also confirmed that the 
data were normally distributed by calculating z-scores for skewness and 
kurtosis for each variable with SPSS. All were between -3 and +3, which 
are considered acceptable (Field, 2005). There were also no signs of 
extreme multicollinearity as indicated by the Variance Inflation Factor 
(VIF) (VIF < 1.97) and tolerance (tolerance > 0.50) levels for each 
construct (Hair et al., 1998). 

To minimize potential common method bias (CMB), all scales were 
randomized and participants were reminded frequently of the ano
nymity and confidentiality of their responses (Podsakoff et al., 2003). 
Results of a Harman single factor test, assessed through a principal 
component analysis with no rotation, showed that one factor explains 
32.4% of the variance in the sample. This compares to two factors 
explaining 60.98% of the variance. This analysis suggests that CMB is 
not a threat in the interpretation of the results. 

4. Results 

4.1. Structural equation model results 

We used orthogonal contrasts to create two dummy variables 
(Dummy 1: No exposure versus Exposure, and Dummy 2: Internet vs. 
health professional’s office visit), which were subsequently used in the 
structural equation modeling analysis. 

The structural equation model was tested with Mplus and had sta
tistically acceptable model fit [χ2

(63) = 176.95, p < .01; CFI = 0.94; TLI 
= 0.91; SRMR = 0.07], accounting for 42% of the variance in vaccina
tion intentions, 34.8% in general prevention intentions, and 22.2% in 
information-seeking intentions. Table 3 shows the SEM results for the 
hypothesized relationships and Fig. 2 depicts the significant relation
ships only. 

Whether individuals have been exposed to information or not (i.e., 
Dummy 1) and whether individuals have been exposed to information 
from the Internet versus a health professional’s office visit (i.e., Dummy 
2) has implications for health knowledge. Results show that exposure to 
information leads to higher objective and subjective knowledge 
compared to no exposure at all. Moreover, information exposure from a 
health professional’s office visit (versus the Internet) leads to higher 
objective knowledge, but not higher subjective knowledge. In turn, these 
health knowledge types are related to risk perceptions and information 
seeking intentions. However, objective health knowledge has a negative 
relationship and subjective health knowledge a positive relationship 
with risk perceptions and information seeking intentions. Neither 
knowledge nor risk perceptions directly influence general prevention 
behavior change intentions or vaccination intentions. Only information 
seeking intentions influence these latter behavioral response variables 
positively (supporting H3). Lastly, general prevention behavior change 
intentions positively relate to vaccination intentions (supporting H4). 

Thus, the SEM results support both H3 and H4. Even though the SEM 

Table 1 
Multi-item Scales.  

Constructs Loadings 

Subjective knowledge   
In general, how much do you think you know about HPV?a .86** C.R. =

0.90 
AVE =
0.70 

In general, how much do you think you know about how to 
protect yourself from HPV?a 

.91** 

In general, how much do you think you know about the 
potential health consequences of having HPV?a 

.89** 

Perceived risk   
To what extent do you personally feel you are at risk of being 

infected with HPV?b 
.77** C.R. =

0.85 
AVE =
0.66 

Do you actively engage in any behaviors that might put you at 
risk of getting HPV?c 

.77** 

I believe I am personally at risk for getting infected with HPVd .89** 
Information-seeking intentions   
I intend to seek HPV-related informatione .86** C.R. =

0.89 
AVE =
0.73 

I intend to actively search for information about HPVe .87** 
I intend to actively seek information on how to prevent myself 

from getting infected with HPVe 
.84** 

**p<.01; AVE = Average Variance Extracted; C.R. = Construct Reliability 
a7-point bipolar adjective scale (1 = Nothing, – 7 = A Lot) 
b7-point bipolar adjective scale (1 = At no risk – 7 = At great risk). 
c7-point bipolar adjective scale (1 = Not at all severe – 7 = Very severe). 
d7-point bipolar adjective scale (1 = At no risk – 7 = At great risk). 
e7-point bipolar adjective scale (1 = Strongly Disagree – 7 = Strongly Agree). 
**p = .00. 

Table 2 
Correlations.  

Constructs Correlations & square root of average variance extracted 

Dummy 1 information exposure (No exposure versus exposure) 1        
Dummy 2 information exposure (internet vs. health professional’s office visit) n/a 1       
Objective knowledge .47** .37** 1      
Subjective knowledge .41** -0.01 .59** .84     
Perceived risk .01 -0.18* -0.05 .13* .81    
Information-seeking intentions .01 -0.09 -0.10 .14** .30** .85   
General prevention intentions .08 -0.04 .01 .17** .13* .53** 1  
Vaccination intentions -0.02 -0.12 -0.06 .15* .23** .55** .49** 1 

N = 261; * p ≤ .05; **  p≤ .01; Bold diagonal illustrate the square root of average variance extracted. 
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results also provide initial partial support for both H1 and H2, to 
examine these hypotheses in more detail we conduct t-tests using the 
orthogonal contrasts and the use of the PROCESS macro by Hayes, 
(2013) to perform a mediation analysis. 

4.2. Differences based on information exposure 

Objective and subjective HPV knowledge significantly differed for 
participants who were exposed to information compared to those who 
were not (t(259) = -8.64, p < .01 and t(257) = -7.15, p < .01 for objective 
and subjective knowledge, respectively). Participants exposed to infor
mation had higher objective (M = 9.85, SD = 3.11) and subjective (M =
4.69, SD = 1.51) knowledge than those who were not exposed to in
formation at all (Objective knowledge: M = 6.04, SD = 3.97 and Sub
jective knowledge: M = 3.18, SD = 1.83). When comparing individuals 

who had been exposed to information from the Internet versus a health 
professional’s office visit, only objective knowledge differences were 
found (t(160) = -5.04, p < .05), with participants who had been exposed 
to information from health professionals having greater objective 
knowledge (M = 10.75, SD = 2.68) than those exposed to online in
formation (M = 8.37, SD = 3.24). No differences were found for sub
jective knowledge. These results confirm the aforementioned SEM 
results and partially support H1. 

Even though no differences were found in risk perceptions and 
behavioral outcomes based on comparing those who had and had not 
been exposed to information (i.e., Dummy 1), results indicated that risk 
perceptions did differ between those who had been exposed to infor
mation from the Internet versus a health professional’s office visit 
(Dummy 2: t(157) = 2.32, p < .05). Specifically, participants who had 
been exposed to online information had higher risk perceptions (M =
2.90, SD = 1.42) than those who were exposed to information from a 
health professional’s office visit (M = 2.36, SD = 1.41). 

4.3. Mediation results 

To probe the mediations postulated by the model in regards to H2, an 
OLS regression approach to path analysis was adopted (Hayes 2013) to 
estimate the indirect effects for all dependent variables. Table 4 presents 
the results of indirect effects estimated using PROCESS and the calcu
lation of 95% confidence intervals with bias-corrected and accelerated 
bootstraping with 10,000 resamples (Hayes 2013). The mean average of 
the scales is used for the analysis. All direct relationships were mostly 
consistent with those found in the SEM model (slight differences were 
observed because average scores are used in the mediation analysis, 

Table 3 
Structural equation model results.  

Relationship Estimate S. 
E. 

Dummy 1 Information exposure (no exposure vs. exposure) → 
objective knowledge 

.43** .05 

Dummy 1 information exposure (no exposure vs. exposure) → 
subjective knowledge 

.43** .05 

Dummy 2 information exposure (internet vs. health 
professional’s office visit) → objective knowledge 

.23** .05 

Dummy 2 information exposure (internet vs. health 
professional’s office visit) → subjective knowledge 

− 0.01 .06 

Objective knowledge → perceived risk -0.18* .08 
Objective knowledge → information seeking intentions -0.21** .07 
Objective knowledge → general prevention behavior change 

intentions 
.01 .07 

Objective knowledge → vaccination intentions -0.06 .06 
Subjective knowledge → perceived risk .21* .01 
Subjective knowledge → information seeking intentions .26** .07 
Subjective knowledge → general prevention behavior change 

intentions 
.09 .07 

Subjective knowledge → vaccination intentions .08 .06 
Perceived risk → information seeking intentions .29** .06 
Perceived risk → general prevention behavior change intentions -0.08 .06 
Perceived risk → vaccination intentions .05 .05 
Information seeking intentions → general prevention behavior 

change intentions 
.59** .05 

Information seeking intentions → vaccination intentions .42** .07 
General prevention behavior change intentions → vaccination 

intentions 
.23** .06 

**p ≤ .01, *p ≤ .05; Coding Dummy 1: No exposure = -2 versus Exposure (whether 

from the Internet or from a health professional’s office visit) = 1; Coding Dummy 2: Internet =
-1 versus Health professional’s office visit = 1). 

Fig. 2. SEM results. **p ≤ .01, * p≤ .05; Coding Dummy 1: No exposure = -2 versus Exposure (whether from the Internet or from a health professional’s office visit) = 1; Coding 
Dummy 2: Internet = -1 versus Health professional’s office visit  = 1). 

Table 4 
Mediation results testing H2.  

Mediation Result 

Objective knowledge → risk perception → information 
seeking intentions 

b = -0.01, 95% C.I. 
[-0.02 to 0.01] 

Subjective knowledge → risk perception → information 
seeking intentions 

b = 0.03, 95% C.I. [.01 
to 0.08] 

Objective knowledge → risk perception → general 
prevention behavior change intentions 

b = -0.01, 95% C.I. 
[-0.01 to 0.01] 

Subjective knowledge → risk perception → general 
prevention behavior change intentions 

b = 0.01, 95% C.I. 
[-0.00 to 0.04] 

Objective knowledge → risk perception → vaccination 
intentions 

b = -0.01, 95% C.I. 
[-0.02 to 0.01] 

Subjective knowledge → risk perception → vaccination 
intentions 

b = 0.03, 95% C.I. [.01 
to 0.08]  
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while in the SEM the variables may be also affected by the additional 
variables simultaneously included in the model). 

Based on the mediation results, risk perceptions mediated the rela
tionship between subjective knowledge and information seeking in
tentions, and between subjective knowledge and vaccination intentions. 
More specifically, as subjective knowledge increased, so did risk per
ceptions, which in turn led to higher information seeking intentions and 
vaccination intentions. However, risk perceptions did not mediate the 
subjective knowledge and general prevention behavior change intention 
relationship. Additionally, risk perceptions did not mediate any rela
tionship between objective knowledge and behavioral responses. Thus, 
H2 is supported for subjective knowledge only. 

5. Discussion 

Turning knowledge into behavior has been a challenge for health 
information campaigns for decades (Atkin and Rice, 2013). The 
health-related knowledge-behavior gap has been examined within both 
online (Faith et al., 2016; Myrick, 2017; Taiminen, 2016; Lowe et al., 
2015; Manika et al., 2018; Woolley and Peterson, 2012) and offline 
contexts (Berger and Rand, 2008; Bolton et al., 2007; Bolton, Bhatta
charjee and Reed, 2015; Gomez et al., 2017; Guthrie et al., 2015; Han
sen and Thomsen, 2013; Rogers and Gould, 2015; Spiteri Cornish and 
Moraes, 2015). Past studies also suggest that the distinction between 
objective and subjective health knowledge is important for health be
haviors (Brucks, 1985; Gomez et al., 2017; Manika and Golden, 2011; 
Moorman et al., 2004), while perceived risks have been found to 
mediate the knowledge-behavior gap (Klerck and Sweeney, 2007; Bol
ton et al. 2008). However, to date Health Information Acquisition 
models often ignore the distinction between objective and subjective 
health knowledge. The current study was designed to address this 
research gap and further our understanding on how health information 
from the Internet versus a health professional’s office visit can help 
people’s information acquisition processes and influence prevention 
choices. 

5.1. Theoretical contributions 

Our results support a conceptual model in which exposure to sources 
of health information affects people’s objective and subjective knowl
edge differently. It further provides supporting evidence for risk 
perception as a mediator of the knowledge-behavior gap (Klerck and 
Sweeney, 2007; Bolton et al., 2008). 

However, our findings add two additional layers in understanding 
this mediating relationship. First, we found that objective and subjective 
health knowledge have different effects on risk perceptions and, second, 
these risk perceptions, in turn, are associated with higher intentions to 
seek further health information but not other behavioral responses 
(general prevention behavior change intentions and vaccination 
intentions). 

While subjective knowledge is related to increased risk perceptions, 
objective knowledge is related to lower risk perceptions. In other words, 
this suggests that the more someone thinks he/she knows the more likely 
he/she is to perceive a health issue as risky. Additionally, we found that 
risk perception only mediated the effects of subjective knowledge, but 
not of objective knowledge. We interpret these findings to be in line with 
affective accounts of risk (e.g. Loewenstein et al., 2001, Slovic et al., 
2004), which highlight the importance of subjective risk perception 
(Slovic, 1999). Underlying this perspective is the observation that peo
ple generally find risks meaningful if they “feel” them. Although in our 
model we do not equate subjective knowledge to subjective risk 
perception, we do note that they share a common underpinning: both 
are subjective perceptions of reality and likely linked to affective re
actions to the information exposed to. 

However, the opposite seems to be the case for high objective 
knowledge. The more factually correct information an individual has 

about a health issue, the less likely he/she will perceive a high risk. This 
contradicts popular health theories postulating that knowledge posi
tively impacts risk perceptions (Glanz et al., 2008). However, past 
research has mostly ignored the difference between an individual’s ac
curacy of knowledge and an individual’s perceptions of his/her knowl
edge for risk perceptions. Individuals with higher objective knowledge 
scores may well know how to protect themselves from a disease and 
hence may perceive a lower personal risk than those with lower objec
tive knowledge scores. Conversely, those who report higher subjective 
knowledge may perceive a greater risk because of an increased exposure 
to disease-related information. In turn, we found that greater perceived 
risk is related to greater likelihood to seek further health information, in 
part supporting prior literature (e.g. Kahlor, 2007; Glanz et al., 2008). It 
should be noted, though, that in our study objective and subjective 
knowledge correlated positively, such that participants who possess 
factually correct knowledge also generally perceive themselves to be 
more knowledgeable. Still, these two types of knowledge are related to 
risk perceptions differently. 

Finally, although our study was on protective health behavior, some 
of our findings can be extrapolated to other models of risk perception. 
For example, research on climate change suggests that people’s attitudes 
are influenced by psychological and experiential factors, including 
affect, imagery, and values (Leiserowitz, 2006). All of these can be 
related to subjective knowledge of the causes for climate change, which 
might influence environmental protective behavior by increasing risk 
perception. Similarly, research also has shown that people do not have 
accurate objective knowledge about how long air pollutants (e.g., car
bon dioxide) stay in the atmosphere and that this (inaccurate) knowl
edge was not related to support taking action to counter climate change 
(Dryden et al., 2018). Thus, it is possible that subjective knowledge is a 
better predictor for environmental protective behavior as well. 

5.2. Implications for practice and public policy 

Our results showed that individuals exposed to health information 
had both higher objective and subjective knowledge than those not 
exposed to information at all. This is good news for health communi
cation strategists, as exposure indeed influences both factual as well as 
perceived knowledge in the population at risk. However, individuals 
exposed to information at a health professional’s office had more 
factually correct information than those exposed to information online, 
while the information source did not matter for how much someone 
thinks he/she knows. These results indicate that the choice between 
health information sources has implications for the accuracy of in
dividuals’ knowledge (i.e., objective knowledge), but not for percep
tions of knowledge (i.e., subjective knowledge). 

In combination, these findings indicate that health information 
campaigns should not only be concerned about message content and 
differences between lay and expert mental models, but also about the 
source type. Even though past research and public policy recommen
dations note the importance of objective health knowledge in encour
aging health behavior, our results suggest that this advice needs a more 
nuanced elaboration. Individuals may become less receptive to new 
information as a result of higher factually correct knowledge, as they 
may already have the necessary expertise and accurate knowledge on 
how to protect themselves from a disease. In contrast, individuals who 
think they know a lot may be more likely to seek additional information. 
Hence, health campaigns aiming to motivate the public to seek more 
information should try to increase subjective rather than objective 
health knowledge. 

Lastly, even though neither knowledge nor risk perceptions directly 
impacted general prevention behaviors and vaccination intentions, 
higher intentions to seek further health information was found to be 
positively related to both general as well as specific prevention in
tentions. This finding illustrates that the likelihood of engaging in one 
health behavior increases the probability of engaging in another. Thus, 
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health campaigns should focus at least on one specific health behavior, 
as then individuals are more likely to engage in more behaviors to 
prevent a disease. Motivating information seeking intentions may be the 
way forward through exposure to information, which aims to increase 
individuals’ subjective knowledge. 

The relationship between health knowledge and health behavior is a 
cornerstone of behavior change and health communications, however 
our results indicate not only that objective and subjective health 
knowledge have different effects on information seeking intentions, but 
also that neither directly impacts general prevention behavior change 
and vaccination intentions. Our results further indicate that even though 
one behavior can lead to another, not all behavioral responses should be 
treated the same in communication campaigns. It is important to un
derstand the effect of information exposure on knowledge and behavior, 
in order to devise effective health information campaigns. Effective 
health campaigns need to strike a balance between increasing objective 
knowledge about a disease and motivating people to acquire further 
information. One way to do this seems to be to increase people’s sub
jective knowledge. 

5.3. Limitations, further research and conclusion 

In this study we sought to address an important research gap and 
provide novel findings in regards to the knowledge-behavior relation
ship and the impact of sources of information exposure to advance in
formation acquisition literature and contribute to ongoing public-policy 
debates on the usefulness of Internet-based health information. In 
evaluating the data and overall results, however, several limitations 
should be considered. 

First, we used a correlational / quasi-experimental design, based on 
field data, which does not allow drawing definite causal conclusions. 
This also relates to the fact that individuals may be exposed to health 
information via a combination of sources. Future research should 
address this with either a true experimental design, which considers the 
multitude sources and combinations of health information exposure. A 
combination of exposure types would probably further increase objec
tive and subjective knowledge, although it is not clear how risk per
ceptions and behavioral responses would be influenced. In our study, 
using field data increased external validity, but it did not permit con
trolling for the similarity of the information content across sources of 
health information exposure nor could we control for the self-selection 
of participants’ exposure type (e.g., people with higher risk percep
tions may have preferred online information because of accessibility). 

Furthermore, HPV is often sexually transmitted and potentially a 
private matter for the target group. This could have influenced their 
choice of information sources. Additionally, with advances in technol
ogy it is possible to have one-on-one virtual consultations online via the 
internet or other telecommunications. Similarly, health information 
exposure from a health professional’s office visit does not necessitate 
speaking to a nurse or doctor and can include printed material. We note, 
however, that the prevalence of face-to-face interactions is higher in the 
health professional context and interpret our results such that a major 
difference between information acquired via this source versus health 
information from the Internet is the interpersonal interaction with a 
person versus the anonymity (and potentially less reliable information) 
online. 

Our study did not measure source credibility and hence future 
research should take into account source credibility as a moderator for 
the knowledge-risk-behavior relationships posed in this research. The 
current study also did not measure real behavior and focuses instead on 
behavioral intentions. Although intentions are often a good predictor for 
actual behavior, future research could address these limitations by using 
a true experimental design while keeping constant the information 
provided and using actual behavioral responses. 

Furthermore, this study also looked at perceived risks without dis
tinguishing between performance, psychological and physical risks 

(Klerck and Sweeney, 2007). Exploring how each of these risk types may 
be impacted by objective and subjective knowledge may lead to addi
tional insights. Various mediators aside from risk perceptions have also 
been proposed as explanations for the knowledge-behavior gap, such as 
self-efficacy (Bolton et al., 2007), unhealthy-equals-tasty intuition (Mai 
and Hoffmann, 2015), motivation and ability (Bolton, Bhattacharjee and 
Reed, 2015), including skepticism (based on persuasion knowledge; 
Manika et al., 2018) and digital health technologies readiness and 
willingness to pay to adopt medical advice (Lowe et al., 2015), among 
others. Future research on the knowledge-behavior gap could explore 
how these mediators may be impacted by the distinction between 
knowledge types and behavioral responses. 

Lastly, data was collected before the Covid-19 pandemic and was 
based on a consumer panel. Hence, more research is required on the 
current health information environment – during and after Covid-19, 
with a representative sample of the entire population and taking into 
account whether or not the participants have medical insurance; as in 
the US the HPV vaccine would not be covered by any medical insurance. 
Relevant to the data collection also, we did not include a marker variable 
for checking CMV although does note its consideration in future data 
collections. 

In conclusion, our findings present a conundrum to public policy, as 
policy makers want to correctly inform people of objective risks, and 
thereby increase protective behavior. However, in our study objective 
knowledge was not positively related to any of the behavioral protective 
measures we examined. Subjective knowledge seems to be a better 
motivator for people to seek more information on health issues, and 
subsequently form behavioral intentions to protect themselves. More
over, using the Internet as a communication channel of health infor
mation may present a cost-efficient way of information dissemination, 
yet it is possible that this does not increase objective knowledge. It does, 
however, help increase subjective knowledge and, via increased risk 
perception, contribute to health protection behavior indirectly. 
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Peters, E., Västfjäll, D., Slovic, P., Mertz, C.K., Mazzocco, K., Dickert, S., 2006. Numeracy 
and decision making. Psychol. Sci. 17 (5), 407–413. 

Podsakoff, P.M., MacKenzie, S.B., Lee, J.Y., Podsakoff, N.P., 2003. Commonmethod 
biases in behavioral research: a critical review of the literature and recommended 
remedies. J. Appl. Psychol. 88, 879–903. 

Rains, S.A., 2008. Health at high speed: broadband internet access, health 
communication, and the digital divide. Communic. Res. 35 (3), 283–297. 

Raju, P.S., Lonial, S.C., Mangold, W.G., 1995. Differential effects of subjective 
knowledge, objective knowledge, and usage experience on decision making: an 
exploratory investigation. J. Consum. Psychol. 4 (2), 153–180. 

Ran, W., Yamamoto, M., Xu, S., 2016. Media multitasking during political news 
consumption: a relationship with factual and subjective political knowledge. 
Comput. Human Behav. 56, 352–359. 

Redmond, N., Baer, H.J., Clark, C.R., Lipsitz, S., Hicks, L.S., 2010. Sources of health 
information related to preventive health behaviors in a national study. Am. J. Prev. 
Med. 38 (6), 620–627. 

Rogers, Z.F., Gould, S.J., 2015. How do you know that? The epistemology of consumer 
health decision making under conditions of risk–benefit conflict. Psychol. Mark. 32 
(4), 450–466. 

Rosenstock, I., 1974. Historical origins of the health belief model. Health Educ. Monogr. 
2 (4), 328–335. 

D. Manika et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0011
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0011
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0011
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0012
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0012
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0013
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0013
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0014
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0014
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0015
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0015
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0016
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0016
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0017
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0017
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0018
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0018
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0018
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0019
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0019
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0019
https://www.cdc.gov/hpv/parents/whatishpv.html
https://www.cdc.gov/hpv/parents/whatishpv.html
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0023
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0023
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0025
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0025
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0025
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0026
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0026
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0027
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0027
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0027
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0028
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0028
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0029
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0029
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0029
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0031
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0031
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0031
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0032
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0032
http://cervicalcancer.about.com/od/riskfactorsandprevention/a/hpv_prevention.htm
http://cervicalcancer.about.com/od/riskfactorsandprevention/a/hpv_prevention.htm
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0034
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0034
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0034
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0035
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0038
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0038
http://pewinternet.org/Reports/2011/HealthTopics.aspx
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0042
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0042
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0042
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0043
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0043
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0046
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0046
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0047
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0047
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0047
https://trends.google.com/trends/explore?date=all&tnqh_x0026;geo=US&tnqh_x0026;q=hpv
https://trends.google.com/trends/explore?date=all&tnqh_x0026;geo=US&tnqh_x0026;q=hpv
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0049
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0050
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0050
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0050
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0051
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0051
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0051
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0052
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0052
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0053
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0053
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0054
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0054
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0054
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0055
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0055
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0056
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0056
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0058
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0058
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0059
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0059
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0060
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0060
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0061
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0061
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0062
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0062
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0063
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0063
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0064
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0064
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0064
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0066
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0066
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0066
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0067
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0067
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0067
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0068
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0068
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0069
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0069
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0069
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0070
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0070
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0072
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0072
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0073
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0073
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0073
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0074
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0074
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0074
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0075
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0075
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0075
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0078
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0078
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0079
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0079
https://www.dailymail.co.uk/sciencetech/article-8001065/Google-reveals-10-common-search-queries-linked-Coronavirus.html
https://www.dailymail.co.uk/sciencetech/article-8001065/Google-reveals-10-common-search-queries-linked-Coronavirus.html
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0081
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0081
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0082
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0082
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0083
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0083
http://www.ncsl.org/research/health/hpv-vaccine-state-legislation-and-statutes.aspx
http://www.ncsl.org/research/health/hpv-vaccine-state-legislation-and-statutes.aspx
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0086
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0086
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0086
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0087
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0087
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0088
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0088
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0088
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0089
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0089
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0090
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0090
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0090
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0091
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0091
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0092
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0092
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0092
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0093
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0093
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0093
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0094
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0094
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0094
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0095
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0095
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0095
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0096
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0096


Technological Forecasting & Social Change 173 (2021) 121098

10

Rudell, F., 1979. Consumer Food Selection and Nutrition Information. Praeger, New 
York.  

Siegrist, M., Keller, C., Kiers, H.A., 2005. = A new look at the psychometric paradigm of 
perception of hazards. Risk Anal. 25 (1), 211–222. 

Slovic, P., 1999. Trust, emotion, sex, politics, and science: surveying the risk-assessment 
battlefield. Risk Anal. 19 (4), 689–701. 

Slovic, P., Finucane, M.L., Peters, E., MacGregor, D.G., 2007. The affect heuristic. Eur. J. 
Oper. Res. 177 (3), 1333–1352. 

Slovic, P. (2010) The Feeling of Risk: New perspectives On Risk Perception. Routledge. 
Slovic, P., Finucane, M.L., Peters, E., MacGregor, D.G., 2004. Risk as analysis and risk as 

feelings: some thoughts about affect, reason, risk, and rationality. Risk Anal. 24 (2), 
311–322. 

Slovic, P., Fischhoff, B., Lichtenstein, S., 1982. Why study risk perception? Risk Anal. 2 
(2), 83–93. 

Schneider, F.M., Weinmann, C., Roth, F.S., Knop, K., Vorderer, P., 2016. Learning from 
entertaining online video clips? Enjoyment and appreciation and their differential 
relationships with knowledge and behavioral intentions. Comput. Human Behav. 54, 
475–482. Journal, 13(2), 25-34.  

Spiteri Cornish, L., Moraes, C, 2015. The impact of consumer confusion on nutrition 
literacy and subsequent dietary behavior. Psychol. Mark. 32 (5), 558–574. 

Wang, Y., Kung, L., Byrd, T.A., 2018. Big data analytics: understanding its capabilities 
and potential benefits for healthcare organizations. Technol. Forecast. Soc. Change 
126, 3–13. 

Wang, Y., Kung, L., Gupta, S., Ozdemir, S., 2019. Leveraging big data analytics to 
improve quality of care in healthcare organisations: a configurational perspective. 
Br. J. Manag. In-press.  

Wilson, T.D., 2000. Human information behavior. Inf Sci.e 3 (2), 49–55. 
Woolley, P., Peterson, M., 2012. Efficacy of a health-related facebook social network site 

on health-seeking behaviors. Soc. Mar. Q 18 (1), 29–39. 

Danae Manika is a Professor of Marketing & Business Education at Brunel Business 
School, Brunel University London, UK. Her research focuses on health and pro- 
environmental behavior change and takes an information processing approach, which 
identifies, classifies and examines cognitive and affective factors that influence in
dividuals’/consumers’/employees’ decisions and choices after exposure to campaigns/ 
messages/interventions; and translate knowledge acquisition to behavior change/forma
tion. Prof. Manika has a track record of high quality publications in journals, such as 
Journal of Business Ethics, Technological Forecasting and Social Change, Psychology & Mar
keting, Journal of Business Research, European Management Review, International Business 

Review, Journal of Marketing Management, International Journal of Advertising, Journal of 
Marketing Communications, Computers in Human Behavior, Information Technology & People, 
Journal of Health Communication, and Tourism Management, amongst others. Her research 
has been supported by external funding bodies such as Cancer Research UK, and the En
gineering and Physical Sciences Research Council. Prof. Manika is an Associate Editor for 
Business & Society, and the Journal of Current Issues and Research in Advertising and serves on 
the Editorial Advisory Boards of Journal of Business Ethics and Technological Forecasting & 
Social Change; while in the past she served as Associate Editor for the Journal of Marketing 
Management and she has experience as a guest editor for various special issues across 
journals. 

Stephan Dickert is a Reader (Associate Professor) in Marketing at Queen Mary University 
of London, School of Business and Management. He currently also holds a full Professor
ship of Psychology at the University of Klagenfurt, Austria. His-research focuses on aspects 
related to judgment and decision making in social and economic contexts. This includes 
research on the affective and cognitive mechanisms underlying prosocial behavior (and 
charitable giving in particular), ownership and risk perception in consumption situations, 
and environmental decision making. His-research projects often use an experimental 
approach to address societal challenges that are of interest to various disciplines (including 
marketing, psychology, economics, and public policy). Stephan’s research has been pub
lished or accepted for publication in the Journal of Behavioral Decision Making; Journal of 
Experimental Social Psychology; Organizational Behavior and Human Decision Processes; 
Psychological Science; Judgment and Decision Making; Journal of Applied Research in 
Memory and Cognition; Applied Cognitive Psychology; Plos ONE; Frontiers in Psychology; 
Journal of Behavioral and Experimental Economics; Swiss Journal of Psychology; Syn
these; Journal of Educational Technology & Society; Journal of Experimental Psychology: 
Learning, Memory, and Cognition. 

Linda L. Golden holds the Marlene and Morton Meyerson Centennial Professorship in 
Business at the Department of Marketing of McCombs Business School at the University of 
Texas at Austin. She received her Ph.D. from the University of Florida in 1975. Published in 
the areas of attribution theory, comparative advertising, retail image and patronage 
behavior, methodological scaling issues, and social marketing (health and ecological is
sues), and risk management. She is currently holds the Judd Neff Fellowship at IC2 and is a 
University of Texas Humanities Institute Fellow. Journals in which Professor Golden has 
published include the Journal of Marketing Research, Journal of Consumer Research, 
Journal of Educational Research, Journal of Urban Analysis, and Management Science, 
among others. 

D. Manika et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0098
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0098
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0100
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0100
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0101
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0101
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0102
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0102
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0104
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0104
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0104
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0105
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0105
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0106
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0106
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0106
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0106
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0107
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0107
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0110
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0110
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0110
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0111
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0111
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0111
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0113
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0114
http://refhub.elsevier.com/S0040-1625(21)00531-X/sbref0114

	Check (it) yourself before you wreck yourself: The benefits of online health information exposure on risk perception and in ...
	1 Introduction
	2 Literature review
	2.1 Health information seeking and knowledge acquisition
	2.2 Online health information sources: curse or blessing?
	2.3 Objective and subjective health knowledge
	2.4 Risk perceptions and health behavior

	3 Methods
	3.1 Research context, design and sampling frame
	3.2 Sample characteristics and survey measures
	3.3 Confirmatory factor analysis and common method bias

	4 Results
	4.1 Structural equation model results
	4.2 Differences based on information exposure
	4.3 Mediation results

	5 Discussion
	5.1 Theoretical contributions
	5.2 Implications for practice and public policy
	5.3 Limitations, further research and conclusion

	CRediT authorship contribution statement
	Acknowledgement
	References


