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Title: Applications of graph theory in protein function prediction

Author: Nikola Kalábová

Supervisor: Ing. David Hartman, Ph.D., Computer Science Institute of Charles
University

Abstract: The rapid development of the whole-genome sequencing methods and
their reducing cost resulted in a huge number of sequenced genomes. Developing
reliable methods for in-silico annotation of the expeditiously growing number of
sequenced genomes is the next challenge of modern biology. We described a graph-
theoretical approach for function prediction from the protein-protein interaction
networks and outlined its strengths and weaknesses. We illustrate the principles
of this approach on selected algorithms based on different ideas and provide their
comparison and evaluation.

Abstrakt: Rapidńı vývoj celogenomových sekvenačńıch metod a jejich snižuj́ıćı
se cena zapř́ıčinila existenci velkého množstv́ı osekvenovaných genomů. Vývoj
spolehlivých in-silico metod pro anotaci rychle rostoućıho počtu osekvenovaných
genomů představuje výzvu pro moderńı biologii. V práci představujeme zp̊usob
predikce funkce protein̊u, založený na aplikaci teorie graf̊u v protein-protein
interakčńıch śıt́ıch a identifikujeme jeho silné a slabé stránky. Tento př́ıstup
poté ilustrujeme na vybraných algoritmech založených na r̊uzných myšlenkách.
Představené algoritmy porovnáváme a vyhodnocujeme jejich spolehlivost.

Keywords: protein function prediction, graph algorithms, protein-protein inter-
actions, protein-protein interaction networks, graph theory
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Introduction
Proteins perform a vast number of tasks in organisms, from defining the structure
of cells or transporting vital molecules to replicating DNA or catalyzing metabol-
ical reactions. Therefore, determining the function of proteins is an essential task
in modern biology and biochemistry. Understanding the function of single pro-
teins helps us understand the complex processes in cells. Knowing which proteins
are involved in which processes is essential for personalized medicine because it
helps in addressing a specialized problem without disrupting other vital cell pro-
cesses [82].

In recent years, rapid development in sequencing technologies was seen, re-
sulting in many sequenced genomes [69, 45]. The next big challenge of modern
biology is the annotation of the genomes and the related determination of the
function of individual translated proteins [25] because even in the well-studied
organisms, a large portion of the genome remains uncharacterized [86].

Traditionally protein function was studied for just a few proteins at a time
[25], through methods using for example the clustering patterns of coregulated
genes [79], sequence similarity [61], or phylogenetic profiles [71]. Every one of
these methods has its own limitations.
Proteins rarely act as independent units. Knowing the function and the interac-
tions of one protein usually helps understand the function of interacting proteins
[86]. The availability of whole-genome sequences and the ability to detect coex-
pression patterns shifted the research focus from single proteins and complexes
of few proteins to large complexes and even the entire proteome [91].
In recent years high-throughput experimental and in-silico techniques for protein-
protein interactions, such as protein complex purification techniques using mass
spectrometry, correlated messenger RNA expression profiles, genetic interaction
data, gene fusion, gene neighborhood, and gene co-occurrences, have been de-
veloped [89, 75], which enabled the encoding of protein-protein interaction into
complex networks.
Protein-protein interaction networks was first used for function prediction in Bar-
tel et al. [8]. The prediction methods based on protein-protein interaction net-
works open wholly new possibilities. With the help of protein-protein interaction
networks, we can now predict the function of all proteins with known interactions
in a whole organism at once [40], even those proteins that suffer from low coverage
of homologous or associated sequences, or similar structures [98].

This theses aims to present the graph-theoretical concept of function pre-
diction from PPINs, outline its benefits and introduce in detail different widely
used algorithms for function prediction from PPINs and compare them with each
other.
In the first chapter, the biological background of protein annotation and protein
function is covered, in the second chapter, different approaches for protein func-
tion prediction are discussed, and their shortcomings are marked. In the third
chapter, the theoretical concepts of network-based methods are introduced, and
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a short overview of available algorithms is given. In the fourth chapter, different
categories of these algorithms are presented, with an example of one widely used
algorithm from each category. The last chapter focuses on the evaluation and
comparison of the presented algorithms.
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1. Biological background

1.1 Genome sequencing
Due to the development of high throughput new generation sequencing methods,
such as Illumina HiSeq 1 and the advancement of modern bioinformatics tools, the
complexity and cost of genome sequencing are decreasing steadily 2. This enables
the sequenation of a large number of different genomes; hence the number of
sequenced genomes is increasing rapidly. Because of that, the need for identifying
relevant regions in genomes and their annotation arises.

1.2 Identifying protein coding regions
The task relevant for this work is the identification of the protein-coding regions.
There are different approaches for their detection, presented for example in Lin
et al. [57], Clamp et al. [15]. Thanks to these methods, we can predict the ex-
istence of proteins we never experimentally detected. Owing to the availability
of a wide range of genomes, we are now in a situation where many protein se-
quences are predicted but never detected [12]. Thus, we have to resort to in-silico
methods for their analysis. There is also a need for a precise definition of func-
tion and a human- and computer-readable database of annotated genes. This is
accomplished in the Gene Ontology Consortium3 (GO)

1.3 Gene ontology project
Currently, the GO includes experimental findings from over 150,000 published
papers, represented as over 700,000 experimentally supported annotations.
GO differentiates three types of function annotations. The molecular function,
which describes the molecular activities of individual gene products, cellular
component, that is the location where molecular activities of individual gene
products are active and biological process, which defines the pathways and
more extensive processes to which that gene product’s activity contributes.

1.3.1 Molecular function
Examples of molecular functions are adenylate cyclase activity or Toll-like recep-
tor binding. The standard approach for molecular function determination is as-
signing the function according to sequentially or structurally similar proteins. For
more accurate prediction of molecular function, binding sites are found through
sequence-based methods such as Evolutionary Trace [56] or structure-based meth-
ods CASTp [20]. A local similarity search is then performed for the found binding

1Illumina Hiseq
2The Cost of Sequencing a Human Genome
3Gene Onthology
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sites. ProFunc [50] combines global and local structure-based methods to predict
molecular function.

1.3.2 Cellular component
Cellular components are, for example, mitochondria or ribosomes. Most newly
synthesized proteins have a short signal peptide present at the N-terminus, which
prompts a cell to translocate the protein. The respective DNA segment of the
signal peptide is analyzed to determine the localization. An example of a tool
used for protein localization is PSORT [66].

1.3.3 Biological process
The biological process is, for example, DNA repair or signal transduction. When
predicting function from PPINs, this type of function is usually meant, though
it is possible to this way also predict other types of function. In this work, the
term protein function will refer to the biological process they are involved in.
Methods for predicting the biological process of proteins are explained in detail
in the following chapters.
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2. Methods for prediction of
function and interactions
Function may be inferred from experimental methods [74, 64]. The same applies
to protein-protein interactions [80, 42]. However, owing to the advances in ge-
nomics, with the number of detected proteins, it is impossible to examine them
all experimentally. Moreover, these methods are not always applicable, are time
and cost-consuming, and particularly problematic for transient complexes.

In recent years a considerable amount of in-silico methods emerged. The
power of these methods is that they can predict function and interactions for
proteins that have never been characterized. However, these methods also have
their specific shortcomings.

2.1 Prediction of function and interactions
In this section, standard methods for predicting the function of proteins and
interactions between them are presented. Notice that a protein in some way
similar to the query protein with known function or interactions is required for
every mentioned method.

2.1.1 Association-based methods
Domain fusion

The domain fusion concept was introduced in Marcotte et al. [63]. It is based on
the idea that if two domains (spatially separated, evolutionary conserved, stable
units of the protein structure) with two different polypeptides are found in the
same polypeptide in another organism, these domains are with high probability
functionally linked and are interacting with each other. The reason for that is
that such two domains probably evolved from one single polypeptide, including
both. This method suffers from low coverage, as it is not common to find two
proteins fulfilling such conditions.

Figure 2.1: Proteins P2 and P3 in Genomes 2 and 3 are predicted to interact
because their homologs are fused in the first genome. Source: Raman [79]
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Phylogenetic profiles

This method is based on the idea that proteins with similar phylogenetic pro-
files (profiles describing the presence or absence of a protein in a set of reference
genomes) are usually also linked functionally [71] because similar phylogenetic
profiles produce similar phenotypes.

Figure 2.2: The figure shows five hypothetical genomes, containing the proteins
A, B, C and D. The presence or absence of each protein is indicated by 1 or 0,
respectively. Identical profiles are highlighted (dotted line). Source: Raman [79]

Co-evolution based methods

Co-evolution takes place when multiple species reciprocally affect each other’s
evolution through the process of natural selection. The species thus create mu-
tual selective pressure on each other. This method was proposed in Barker and
Pagel [7]. The main idea is that presence of several compensatory mutations in
corresponding proteins can predict the coadaptation of the interacting proteins
[79]. This approach can also be used to identify specific residues involved at the
interaction sites [70].

Figure 2.3: The alignments of two protein families are shown; conserved residues
in either alignment are shown in the same colour (blue and green). Correlated mu-
tations in either alignment (coloured red) are indicated by arrow marks. Source:
Raman [79]

Problems

It may happen that even strong genomic association not only does not indicate
function similarity but even indicate an opposite or complementary functional
association [31].
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2.1.2 Sequence based methods
Homologs with high sequence similarity tend to have similar functions. Homology-
based methods are based on finding those homologs, for example, through BLAST
Altschul et al. [3] or InterProScan [99], and assigning the same function to the
query protein-coding gene. Recently other tools emerged, such as eggNOG-
mapper [33].

For protein-protein interactions, the idea behind this approach is to two pro-
teins from a query organism to find two respective homologs interacting with
each other. High sequence similarity is required, especially in the binding site
[5]. Moreover, we differentiate the ortholog-based approach and domain-based
approach. The ortholog-based approach is based on finding two interacting or-
thologs (sequences found in different species that originated by vertical descent
from a single gene of the last common ancestor) [52]. In contrast, the domain-
based approach concentrates on finding domains that are known to interact with
each other in inspected sequences because domains tend to be more evolutionary
conserved, as well as their interactions [95], making this approach more reliable.

Problems

These methods are known to produce false positives [43]. Moreover, homologs
with high sequence similarity and known function are required. More distant
homologs can also offer functional clues but are less reliable [9]. The annotations
also have to be reliable. This is often not the case, as many BLAST hits are
hypothetical or electronically annotated proteins [31] and a possible error would
be further propagated.
Another problem is that top hit sequences sometimes fail to represent the closest
phylogenetic neighbor [31].

2.1.3 Structure based methods
In this work, we concentrate on proteins never experimentally measured. There-
fore we first have to predict the structure. The reliability of structure prediction
was recently hugely improved through AlphaFold 1, but it still brings additional
errors to the prediction.
The structure may be predicted by homology modeling[24], ab-initio modeling
[51] or threading methods [53], but all these have thir limitations [65].

For the prediction of the protein function is the concept similar to sequence-
based methods for the prediction of PPIs. We are searching for two interacting
proteins with respectively similar binding sites to our query proteins. These are
then believed to interact with each other [100]. We search for those proteins that
have compatible binding sites for function and interactions prediction.
Structure tends to be more conserved than sequence [94]; hence prediction from
structural similarity tends to be more accurate. However, the prediction of struc-

1AlphaFold
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ture is computationally demanding and results in additional inaccuracy.

2.2 Other methods for function prediction

2.2.1 Conserved neighbourhood
It was found that for those genes that encode proteins and are neighbors on a
chromosome in more genomes, their corresponding proteins are likely to be func-
tionally linked [17]. This method is helpful for such cases where operon exists,
or operon-like clusters are observed. This method is highly accurate but unfor-
tunately has only low coverage due to the very specific orthologs required.

Figure 2.4: The figure shows four hypothetical genomes, containing one or more
of the genes A, B, and C. Since the genes A and B are co-localized in multiple
genomes (1–4), they are likely to be functionally linked with one another. Source:
Raman [79]

2.3 Other methods for prediction of interactions

2.3.1 Docking procedures
Docking procedures use surface complementarity of the proteins and electrostatic
forces to fit the proteins’ structural models via their interacting surfaces. Such
prediction has its limitations due to the limited understanding of the forces in-
volved [23].

2.3.2 Bayesian approach
In Jansen et al. [36] a bayesian network is implemented to predict protein-protein
interactions. The method combines and weights genomic features that are not
strongly associated with protein-protein interactions. Moreover, it can integrate
noisy experimental interaction prediction data to improve the prediction.

2.3.3 Literature mining
Due to the huge amount of scientific papers, it is impossible to keep track of
all relevant publications. Usually, protein-protein interactions are recorded in a
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database. If it is not the case, for example, for very recent studies, literature
mining tools can search for records in a large number of scientific papers [13].

2.3.4 Other machine learning and artificial intelligence
methods

In recent years protein-protein interaction prediction experienced a boom because
of huge advances in machine learning and artificial intelligence in general. The
models are trained on enormously big datasets containing various features from
the sequential and physicochemical function of proteins and their respective DNA
to data from homologous sequences. [18, 19]

2.4 Summary
All of the proposed methods for protein function prediction require the availabil-
ity of annotated proteins that are in some way (sequentially, structurally) similar
to the query protein. Moreover, the methods are not utterly reliable, and a wrong
annotation in a database may be further propagated [31].
However, for protein-protein interactions, the conditions are slightly more re-
laxed. Some similarity-based methods do not require high global similarity but
only high local similarity for domain-coding regions. Moreover, modern methods
presented in the previous section are using a wide range of features and thus are
not entirely dependent on finding highly similar proteins.
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3. Prediction of function from
PPINs
Having more information about protein-protein interactions than about protein
function makes it beneficial to further use the information about protein-protein
interactions. This is accomplished in methods based on protein-protein interac-
tion networks. Moreover, PPINs based methods for evaluating the reliability of
interaction exist [58, 49], which further enhance the quality of function prediction
from PPINs.
Protein function prediction from PPIN also has its limitations, but it comple-
ments the previously mentioned methods and can be combined with them. More-
over, it can shed some light on areas where standard methods are insufficient.

3.1 Graph-theoretical background
A graph is a structure for capturing relationships between entities such as people,
cities, or proteins in our case. It consists of so-called vertices (also called nodes),
representing the entities and edges representing the relationships between the
vertices.

Definition 1 (Graph). A graph is a pair G = (V, E), where V is a set of vertices
and E a set of edges. E ⊆ {(u, v) : u, v ∈ V }.

We can also assign weights to vertices or edges, meaning that a value is as-
signed to each vertex or edge. The vertices usually represent some entities, and
the edges some relationships between them.

Definition 1 ((Weighted graph). A weighted graph is a graph in which every
edge e has a weight w assigned.

A graph can be directed or undirected. For an undirected graph, en edge
can be defined as a set of two vertices E ⊆ {{u, v} : u, v ∈ V }, whereas for an
directed graph, an edge is an ordered pair of vertices E ⊆ {(u, v) : u, v ∈ V }.
Thus an edge by a directed graph is bi-directional, and by a directed graph, a
direction of every edge is defined. An undirected edge can also be interpreted as
two directed edges with opposite directions.
Undirected graphs are used when the displayed relationship is symmetric, for
example, two proteins interacting. Directed graphs illustrate asymmetric rela-
tionships, for example, biological pathways.

3.1.1 Graph representation
Vertices are usually represented as dots or circles, edges as lines, by undirected
graphs, or arrows by directed graphs.
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x1 x2

x3 x4

x5

Figure 3.1: Undirected graph G

x1 x2

x3 x4

x5

Figure 3.2: Directed graph G

x1 x2

x3 x4

x5

1

2 1

5 3

Figure 3.3: Weighted graph G

Note that the way a particular graph is drawn posses no information value.

x1 x2

x3 x4

x5

x1 x2x3

x4 x5

Figure 3.4: Two depictions of the same graph G

We can also encode a graph in an adjacency matrix.

Definition 2 (Adjacency matrix). An adjacency matrix is a square matrix,
which elements indicate whether pairs of vertices are adjacent or not in the graph.

ai,j =

⎧⎨⎩1 if {vi, vj} ∈ E(G)
0 if {vi, vj} /∈ E(G)

(3.1)

3.1.2 Subgraph
Usually, we are interested only in some part of the entities and their relations.
For this case, we define a subgraph.

Definition 3 (Subgraph). A subgraph S of a graph G is a graph in which
vertices are a subset of the set of vertices in G and edges are a subset of the edge
set of G.
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2

31
A =

⎡⎢⎣
1 2 3

1 0 1 0
2 1 0 1
3 0 1 0

⎤⎥⎦ (3.2)

Figure 3.5: A numbered graph G on the left and its corresponding adjacency
matrix on the right

We often want the subgraph to preserve all relationships between its entities.
Thus we define an induced subgraph.

Definition 4 (Induced subgraph). An induced subgraph S of graph G is a
graph in which a set of vertices is a subset of the vertices of G, and a set of edges
are all those edges in G that connect the vertices of the subgraph.

2

31

2

1

2

1

Figure 3.6: Graph G on the left, its induced subgraph S1 in the middle and its
not induced subgraph S2 on the right.

3.1.3 Graph and subgraph types
We recognize several important types of graphs listed in the following definitions.

Definition 5 (Complete graph). A graph G is said to be complete, denoted Kn

if there exists an edge between all pairs of vertices.

A complete subgraph is called clique.

Definition 6 (Clique). A clique is a complete subgraph of a graph.

An important subgraph of a graph is a path.

Definition 7 (Path). A path is a sequence of distinct vertices where an edge
connects each consecutive pair, and there are no other edges.

Usually, we are interested in the shortest path because it represents the dis-
tance between two entities.

3.1.4 Graph properites
Definition 8 (Path length). A length of a path between two vertices v1, v2 in
a graph G is a sum of the weights of its constituent edges.

Definition 9 (Shortest path). A shortest path between two vertices v1, v2 in a
graph G is a path from v1 to v2 with a minimal path length.
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x1 x2

x3 x4

x5

x1 x2

x3 x4

x5

Figure 3.7: A path between x2, x5 in the graph G on the left, a shortest path
between x2, x5 in the graph G on the right. Weight one is assigned to all edges e
of the graph G.

We also define the distance between two vertices as the lenght of their shortest
path.

Definition 10 (Distance). A distance between two vertices u and v in graph G
is the length of the shortest path between them.

Then we are interested, whether two vertices are in some way connected.

Definition 11 (Connectivity). Two vertices are connected if there is a path
between every two vertices.

This property can be generalized for whole graphs.

Often we are interested in a set of entities that are connected. We call such a
set a connected component of a graph.

Definition 12 (Connected component). A connected component of an undi-
rected graph is a connected induced subgraph connected to no other vertices in the
graph.

Note that vertices of each graph can be decomposed into disjoint subsets, each
one inducing a connected component.

Definition 13 (Cycle). A cycle is a path in a graph where the starting point is
the same as the endpoint.

Figure 3.8: A graph with two connected components. Source: Kolb et al. [48]

We can also be interested in how important is a vertex in the sense of how
many neighbors it has.

We can examine the vertices that are directly connected to a selected vertex.
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Definition 14 (Neighborhood). A neighborhood of a vertex v is the set of all
vertices connected to it. A k-neighbourhood of vertex v is the set of all vertices
which distance from v is at most k.

Figure 3.9: Neighborhood levels of the vertex in the center. Source: Hishigaki
et al. [32]

Definition 15 (Degree). A degree of a vertex v is the size of its neighborhood.
The degree is denoted deg(v).

2 2

2 3

1

Figure 3.10: Graph with vertices labeled by their degree

The graph can also be examined globally. For example, whether the ver-
tices tend to have only a small number of neighbors or whether they are densely
connected.

Definition 16 (Graph density). A density, denoted den(G) of a graph G=(V,
E), is defined as the number of its edges |E| divided by its maximum number of
edges. For a simple graph that is |V | · (|V | − 1)/2

3.1.5 Networks
Large real-world graphs are called networks. Networks usually represent a large
amount of data and relationships between them in the form of a graph. The data
may, for example, represent people and relationships between them, cities and
roads, or biological pathways [16].

By networks, we usually examine whether some more connected subgraphs
are present. For real networks, this may be, for example, roads within a city.
To measure how clustered a network is, we use the so-called clustering coefficient
[93].
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Definition 17 (Clustering). Networks are said to be highly clustered if two
vertices with a common neighbor have a heightened probability also to be neighbors
of each other. We can quantify this property by clustering coefficient [93].

C = 3 · (number of triangles in a graph)
number of connected triples (3.3)

Where triangle is, a cycle of length three and connected triplet is connected in-
duced subgraph consisting of three vertices.

The clustering coefficient is 1 on a complete graph. For the real networks,
the clustering coefficient is noticeably higher than for random networks (around
0.1 − 0.5 [29]).

Dense clusters are called communities.

Definition 18 (Community). A community is a subset of vertices that are
densely connected with each other and sparsely connected to the vertices outside
of the community.

Highly clustered networks are usually community networks.

Definition 19 (Community networks). A network G is said to have a commu-
nity structure if it can be divided into communities, so that V = ⋃︁n

i=1 Ci, where
V is the set of vertices of the network G and Ci is the i-th community of the
network G.

Figure 3.11: A community network

Another common property of networks is the small-world property.

Definition 20 (Small-world property). Networks with small-world property
have a small diameter (maximal distance between two vertices) and are highly
clustered.
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3.2 Protein-protein interaction networks
In protein-protein interactions networks, the vertices represent the proteins. An
edge between two vertices exists if and only if there is an interaction between
the two proteins represented by the two vertices. The networks are usually not
oriented because the interaction relation is symmetric, meaning if protein one
interacts with protein two, then protein two also interacts with protein one.

3.2.1 Databases
Different institutes have their own databases of protein-protein interactions. How-
ever, some of them are deprecated or are using formats that are complicated to
parse. Some of them are specialized only for some class of organisms. The most
up-to-date database is STRING. In addition to PPI, it also contains a reliability
score for each one of them, determined by in-silico methods. The database also
has two clustering algorithms implemented and contains additional information
about proteins from other databases. Moreover, it is directly embedded in Cy-
toscape, software for visualization and network analysis.

Database URL Description
STRING https://string-db.

org
Protein networks based on experimental
data and predictions at EMBL. A large
number of different organisms. Up to
date.

APID http://cicblade.
dep.usal.es:8080/
APID/init.action

Agile Protein Interaction DataAnalyzer
(Cancer Research Center, Salamanca,
Spain)

DIP https://dip.
doe-mbi.ucla.
edu/dip/Main.cgi

Database of Interacting Proteins at
UCLA. No species restriction.

MIPS https://mips.
helmholtz-muenchen.
de/proj/ppi/

Collection of manually curated high-
quality mammalian PPI data collected
from the scientific literature.

HPDR http://www.hprd.
org

The Human Protein Reference Database.
Institute of Bioinformatics, India and
Johns Hopkins University, USA.

Table 3.1: Databases of PPI. Source:MIPS website

3.3 Principles of function prediction
For this method to be applicable, some of the proteins in the network must be
already annotated.
The methods can be generally divided into two categories.
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3.3.1 Neighbourhood based methods
Neighborhood-based methods use the fact that the proteins that have a small
distance to each other in the protein-protein interaction network often have sim-
ilar functions [86].

Figure 3.12: Neighbourhood function relationship. Distance in the unweighted
network on x-axis, by the shortest path metrics. Average function simmilarity
of proteins of specific distance on y-axis. Simmilarity mesured using semantic
similarity as introduced in Lord et al. [62]. Source: Sharan et al. [86].

The neighborhood-based methods concentrate on a small neighborhood of
each vertex. The most basic approach is introduced in Schwikowski et al. [85],
where only neighbors of a vertex are taken into account and the most frequently
occurring protein functions are selected. In Chua et al. [14] the frequencies are
normalized, and more distant vertices are taken into account.

These methods were the first introduced ones and served as a basis for modern
methods; however, they are mostly too inaccurate to be used nowadays. Because
of that, we will omit them in the following chapters.

3.3.2 Methods based on detection of communities
Most of the biological processes are carried out by protein complexes [30]. There-
fore, in order to identify protein with shared function, the methods aim to identify
the protein complexes. As stated in Tong et al. [88], the densely connected regions
in PPINs often correspond to protein complexes. In the language of mathematics,
the densely connected regions in a network are called communities. The problem
of community detection in complex networks is widely studied [46]. Hence the
applicability of known algorithms for PPINs and their modifications to reflect the
specific nature of the communities of proteins is studied.

To annotate the PPINs, the network is first divided into communities by a
clustering algorithm. Then, for each community, the frequencies of functions
present in the community are calculated and normalized according to the over-
all frequency of the particular protein function. The proteins with unknown
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functions are then annotated with the functions with a frequency above a given
threshold.

Figure 3.13: Process of communities identification and function assignment.
Source: Sharan et al. [86]

3.4 Problems and challenges

3.4.1 Overlapping of communities
It was proved that many proteins are present in more than one complex and hence
might have more functions. For example, out of 1,628 proteins in the CYC2008
yeast data set, 207 is present in more than one complex [76]. For many clustering
algorithms, this proposes a problem because they cannot assign a vertex to more
than one community.

Figure 3.14: Non-overlapping (left) and overlapping communitites (right).
Source: Gao et al. [27]

3.4.2 Unreliability of the interaction data
PPI data are often determined using in-silico methods, which are not entirely
reliable, as stated in the previous chapter. As a result, many false positives in-
teractions are present in the network, and many actual interactions are missing
[72].
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Fortunately, there exist topological methods for reliability assessment based
on the neighbourhood information [58], distance [49] or clustering [44]. Which
can be incorporated into the function prediction algorithms.

3.4.3 Time complexity
PPI networks usually consist of thousands of vertices. Moreover, many clustering
algorithms have adjustable variables; this requires multiple runs of the algorithm.
Therefore there is a need for a reasonable running time of the algorithms.

3.4.4 Detection of sparse complexes
Many algorithms focus on detecting dense subgraphs of the PPI network. How-
ever, the protein complexes are not always dense [59].

3.4.5 Distance metrics
The primary metric of the distance of two proteins in the network is the shortest
path metrics; however, due to the small-world property of the protein-protein
interactions networks, which causes that every two vertices are relatively near
each other, this metric may not be discriminating enough.

For this reason, other metrics have been developed, such as Czekanovski-Dice
distance [10] or statistical measure via p-value [84].
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4. Algorithms for detection of
communities in PPINs
In recent years, many different algorithms for community detection in protein-
protein interaction networks have been developed. These can be divided into the
following categories. The most used ones from every category are listed.

Approach Algorithms
Density based MCODE [6], CFinder [1], ClusterONE [67]
Flow based MCL[90], Tribe-MCL[22], STM[34]
Core based COACH[96], CORE[54]
Evolutionary alghorithms ACO-MAE [37], NACO-FMD[38], NHB-FMD[60]
Hierarchy based Jerarca[2], HC-PIN[92]
Spectral clustering ADMSC[35], [77]
Partition based RNCS[47], Edge-betweeness [21]
Simulated annealing [91]

Table 4.1: Clustering algorithms

In the following sections, we will present different approaches for the detection
of communities in PPINs and evaluate their strengths and weaknesses. In every
section, we will generally speak about algorithms using specific approaches and
then take a closer look at widely used ones for illustration.

4.1 Density based algorithms
Density-based algorithms search for densely connected subgraphs in the network,
often by finding maximal cliques (cliques to which no other vertices can be added
without disrupting their cliquishness) in the network and merging those with a
lot of common vertices. Therefore they usually explore local properties of the
network. Most of them are also able to detect overlapping communities. Unfor-
tunately, these algorithms often fail to recognize sparser communities or connect
almost isolated vertices [39].

4.1.1 MCODE
The MCODE algorithm was proposed in Bader and Hogue [6] and was one of the
first successful algorithms for the given problem.

The algoritm has three phases.

Phase one - weighting

Definition 21 (k-core). A k-core of a graph G is a subgraph S of minimal degree
of k.
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Definition 22 (Highest k-core). A highest k-core of a graph G is a k-core with
the highest k in G.

Definition 23 (Core-clustering coeffitient). A core-clustering coefficient of
a vertex v in a graph G is the density of the highest k-core of the immediate
neighborhood of v (vertices connected directly to v) including v [6].

Each vertex v of the graph G is weighted based on the product of its core-
clustering coefficient and the k-core of the vertex u, which is an immediate neigh-
bor of v and has the highest k-core among all neighbors of v.
Therefore, the weighting function is based on computing the local density with
further boost for densely connected vertices. It is also possible to use a custom
weighting function.

Phase two - Molecular complex prediction

A vertex v with the highest weight is selected. Then a recursive algorithm is
performed, where all of the neighbors of v, which weight is above a threshold,
are visited, and the same happens for their neighbors and so on. The recursive
algorithm terminates when no unseen neighbor-vertices above the given threshold
exist. The same is performed for the next unseen vertex with the highest score.
The whole algorithm terminates when there are no unseen vertices.

Threshold A threshold is a given percentage away from the weight of the seed
vertex, that is, the vertex with the highest weight from the first level of the
recursive algorithm. Thus the threshold parameter defines the density of the
resulting complexes. The closer to the weight of the seed vertex, the smaller and
denser the resulting complexes are.

Phase three - postprocessing

Complexes that do not contain at least 2-core are removed, and their vertices
marked again as unseen. The algorithm has two modes. In the ”fluff” mode, for
each vertex of each community, its unseen neighbors are added to the community
belonging to the vertex if the neighborhood density is higher than the given fluff
parameter. When a vertex is added to a community, it is not marked as seen and
can thus be added in another community. Therefore the resulting communities
may overlap.
In the ”haircut” mode, the unseen vertices are removed. It is possible to run both
the modes, first, the fluff mode followed by the haircut mode.

Problems

MCODE usually clusters the data in a small number of communities, which
results in some large communities [39]. Moreover, the algorithm aims to find
densely connected subgraphs, but protein complexes are not always densely in-
terconnected.
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4.2 Flow algorithms
Flow algorithms simulate a flow through the network. Through simulation of
flows within PPI networks, these algorithms can predict complex network behav-
iors under stimuli of each vertex in the network [39]. Moreover, the reliability
scores of individual interactions can be easily integrated.

To illustrate what a flow is, we can imagine our network as a network of
pipes. For our example, we pour an equal amount of liquid in each vertex and
assign to each vertex-edge pair what fraction of the total amount of liquid will
flow into that particular edge from the vertex. We let the liquid flow between
the vertices for some time and observe the amount of liquid flowing through each
edge. For the sake of the illustration, we allow the liquid to flow in both directions
simultaneously.

4.2.1 Markov Clustering Algorithm
Mathematical basics

Imagine the network as a network of cities and roads between them. Now imagine
traveling between the cities and in each city choosing the next destination from
the cities connected to the current city with a road at random. The probabilities
of choosing city j when in city i can be encoded in the Markov matrix.

Definition 24 (Markov matrix). The Markov matrix has on the index i, j the
probability of selecting the edge {vi, vj} from all edges directing from vi, if there
exists an edge between vi and vj, else 0. The probability of selecting a certain edge
incident to one vertex is uniform for each edge incident to the vertex.

mi,j =

⎧⎨⎩
1

d(vi) if {vi, vj} ∈ E(G)
0 if {vi, vj} /∈ E(G)

(4.1)

2

31
M =

⎡⎢⎣
1 2 3

1 0 1 0
2 1

2 0 1
2

3 0 1 0

⎤⎥⎦ (4.2)

Figure 4.1: A numbered graph G and its corresponding Markov matrix M

Starting from a city i, after k iterations, one will end up in city j. Such travel
is in graph theory called a random walk of length k from vertex i to vertex j.
The probability of ending up in city j when starting in city i in the k-th iteration
is given by the element Mk

j,i of the k-th power of the Markov matrix M .
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Algorithm

MCL, proposed in Van Dongen [90], uses the graph clustering paradigm, that ”A
random walk in G that visits a dense community will likely not leave the com-
munity until many of its vertices have been visited.” [90]. The basic idea behind
the algorithm is to simulate a flow within a graph. According to the paradigm,
the current will be stronger within the communities and weaker in between them.
The algorithm further promotes the flow where the current is strong and weakens
the current where the current is weak.

Expansion In the expansion step, the Markov matrix is expanded by taking
the eth power of the matrix M . M := M · M e. The element ei,j of the newly
expanded matrix M will then be the probability of a random walk from j to i
with the length e · n where n is the number of interactions.

Inflation In the inflation step, the differences between currents are further en-
hanced. For every column of the matrix, each element is taken to the power r,
and the column is then normalized by the sum of its elements.
This way, the differences between elements with high value and elements with a
low value of the Markov matrix are further promoted.

The algorithm is mathematically very simple and straightforward. First, a
Markov matrix is constructed. Then following steps are repeated till convergence.

1. Expansion
2. Inflation

Both these steps can be achieved by simple matrix multiplication. The resulting
matrix will have some entries very close to 0. The last step is to remove corre-
sponding edges from the network (i. e. if the value of the element Mi,j is close
to 0, ve remove the edge between vertex i and vertex j) and identify connected
components of the resulting network. Every connected component corresponds
to a community.

Advantages

This algorithm is considered very robust, meaning adding or removing a couple
of vertices will not significantly alter the structure of the community.
In Pereira-Leal et al. [73] the PPIN is first transformed into a line graph.

Definition 25 (Line graph). The vertices of the line graph L are the edges of
the original graph G, and edges between them exist if and only if the two edges of
G are incident.

This way also more distant vertices are taken into account for each vertex.
Moreover, reliability scores of PPIs can also be directly encoded in the Markov
matrix, and overlapping communities are detected [73].
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Problems

If there is a vertex connected to the rest of the network only by one edge, this
vertex will not be added to the neighboring community. Girvan and Newman
[29].

4.3 Core based algorithms
Communities in PPINs usually contain a core, that is, a dense subgraph. The
core proteins have high function similarity and coexpression. Attached proteins
then surround this core [28]. The core-based algorithms are designed to detect
communities with this nature. Being specialized in detecting communities in
PPIN, this approach has an advantage over other algorithms trying to solve more
general clustering problems.

4.3.1 COACH
The COACH algorithm, proposed in Wu et al. [96], is based on identifying graph
cores.

First, for each vertex v a graph Sv is constructed. This graph contains the
vertex v and all its neighbors with an above-average degree. Each subgraph Sv

then proceeds into the core graph removal procedure.

Core graph removal

If the density of the input graph Sv is above a given threshold, the whole graph
is returned. Else a dense subgraph of Sv, denoted DSv is identified, in which all
vertices have an above-average degree (average taken from the vertices of Sv).
Note that DSv is not necessarily dense.
The vertices of DSv are then removed from Sv. This way, This way, Sv \DSv might
fall apart into components, Cv,1, . . . , Cv,k. The core graph removal procedure is
recursively called for each connected component Cv,i, and a list of subgraphs of
every connected component is obtained. For each graph CR

v,1, . . . , CR
v,ℓ form the

list, an induced subgraph of Sv is created (denoted LR
v,j), containing only vertices

of CR
v,j and DSv . A list of densely connected components LR

v,1, . . . , LR
v,ℓ is returned.
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Figure 4.2: (A) shows the core graph of vertex 1’s neighborhood graph, denoted
as S1. In (B), the core vertices of S1, 1, 6, are removed from S1 and two connected
components are left in the remaining graph. In (C), 1, 6 are added back into each
connected component. Two subgraphs with vertices 1,2,3,4,5,6 and 1,6,7,8 are
obtained and finally returned. Source: Wu et al. [96]

For each graph Li from the list, first, its vertices with a small degree are
removed until the density of Li is above a threshold. Then vertices from the
neighborhood of Li are added starting with the one with a maximal degree until
no such vertices exist and the density is above the threshold.
This way, a lot of densely connected overlapping communities arise. These com-
munities are maximal, meaning adding another vertex would disrupt the density
condition.
The communities are added to the global list of all communities, and for each of
them, redundant communities are filtered as the final step.

Redundancy filtering

For each newly identified community, the most similar community from the global
list of communities is found. The similarity of communities A and B is defined
as:

NA(A, B) = |VA
⋂︁

VB|2

|VA| · |VB|
(4.3)

Where Vi are the vertices of the community i.

If their similarity is above a threshold, the community with lower den(G) · |VG|
is deleted from the list of all detected communities. Otherwise, both are kept on
the list. This algorithm, therefore, can detect overlapping communities.

4.4 Evolutionary algorithms

4.4.1 Basic concepts
In evolutionary algorithms, a population of individuals is created. The repre-
sentation of individuals is adapted to the specific problem. Like in nature, the
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individuals are mating and ”crossing over their genes,” which results in a new,
possibly better generation of individuals. There exists a fitness function com-
putable for each individual that is maximized. Individuals with higher fitness
have a higher probability of being selected from the mating pool. The selection,
mutation, and crossover are repeated for many generations.
By decoding the individual with the highest fitness, we should obtain a (subop-
timal)solution for our problem.

This approach can be illustrated on a simple example, where we are trying
to maximize a sum of n numbers from 1 − 9. In this example, we encode the
individual as a sequence of numbers, its fitness as a sum of the numbers, mu-
tation as substituting a number on a random index in the sequence for another
number, and crossover as switching the numbers on the same indices between
two individuals. (Proposed operators are not optimal for the given problem but
are easy to understand). Due to the selection, the individuals containing higher
numbers will prevail after a couple of generations.

Traveling salesman problem

A typical problem of evolutionary algorithms is the traveling salesman problem
(TSP). It is inspired by a salesman trying to travel through all cities on his map
while optimizing the length of his way. For a larger number of cities, this problem
is not solvable analytically in a reasonably short time.

4.4.2 Application to PPINs
Further research of PPINs communities will possibly result in a complex set of
rules for their possible structure, which would be hard to incorporate in the stan-
dard algorithms. For evolutionary algorithms, it may be possible to partially
define these constraints in the fitness function. Unfortunately, evolutionary algo-
rithms are often very computationally demanding.

4.4.3 Ant Colony Optimization with Multi-Agent Evolu-
tion

Ant Colony Optimization with Multi-Agent Evolution (ACO-MAE) algorithm,
introduced in Ji et al. [37] was inspired by colonies of ants, led by pheromones,
which can find the shortest path to resources.

First, the edges of the PPIN are weighted

Weighting the edges

We will weight the edges according to the distance of their constituent vertices.
The aim is to transform the problem to TSP, by assigning low ”distances” (like the
distances between cities) to those proteins, that have a lot of common neighbours.
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For two proteins is their ”distance” computed as follows [38]:

di,j = (Int(i) ⋃︁
Int(j)) − (Int(i) ⋂︁

Int(j))
(Int(i) ⋃︁

Int(j)) + (Int(i) ⋂︁
Int(j)) (4.4)

where Int(i) is the set of neighbours of i plus the protein i. The proteins that
have a similar neighborhood will have a small distance, as they will have a large
intersection.

Then a population of individuals is created with the following encoding of
each individual.

Encoding of an individual

The proteins are numbered. If a number x is i-th in the sequence, there is a path
from protein x to protein i.

After the algorithm is finished, we make a graph G from all vertices without
any edges. Then we will add edges according to the numbers in the encoding
sequence. Then we identify the connected components of the graph G. Every
connected component corresponds to one community.

Figure 4.3: Encoding of the individual at the bottom, decoding of the individual
at the top. Source: Ji et al. [37]

Fitness of an individual

Each position of the individual, a value is assigned, corresponding to the distance
between the index protein and the protein on the particular position. The re-
sulting fitness is the negative of the sum of these values. We typically want to
maximize fitness in evolutionary algorithms, therefore, minimize the distance.

The fitness resembles a ”distance” that the individuum travels between the
proteins.

Selection

The individuals are placed on a spheric grid to ensure their local perceptivity.
Every individual, therefore, has only 4 neighbors. For every individual i, we eval-
uate its fitness and the fitness of its neighbors. If any of its neighbors have higher
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fitness, one of two things happens with a certain probability. The neighbor j
with the highest fitness will replace i, and the protein on the position with the
largest distance in the encoding sequence of j will be replaced with a protein on
the respective position from the encoding sequence of i, or the new individual will
for every position select value form the individual (i or j) with smaller distance
on that position. Note that this way, smaller isolated paths may arise.

Figure 4.4: Grid-like evolutionary environment. Source: Ji et al. [37]

Mutation and crossover

For mutation, random position i in the sequence is selected, and the protein on
position i is replaced with a protein from another neighbor of protein i. For
crossover, a protein is selected randomly from one of the two neighboring indi-
viduals for each position.

Postprocessing

After running the algorithm for many generations, for the individual, with the
highest fitness, if the distance between the two following proteins is above the
given threshold, we switch the path between them for a self-loop.
This individuum is then returned and decoded.

Figure 4.5: The process of creating self-loops from edges representing interactions
of proteins with very different neighborhoods. Source: Ji et al. [37]
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4.5 Hierarchy based algorithms
The main advantage of hierarchical clustering is that it in some way resembles
the process of evolution of proteins and their interactions [39].
The algorithms are based on the premise that members of one community are
likely to have similar shortest-path-distance profiles [81]. For many hierarchy-
based algorithms, using simple shortest path metrics proposes a problem because
distances between many protein pairs are identical [4]. Using the shortest path
metric would make the resulting profiles too noisy. For this reason, other metrics
are used.

Unfortunately, most of these algorithms are not able to detect overlapping
communities.

4.5.1 Jerarca

Jerarca algorithm, proposed in Aldecoa and Maŕın [2] can be divided into three
phases.

Phase one - secondary distance matrix

In the newest version of the algorithm, all maximal cliques (cliques to which no
other vertices can be added without disrupting their cliquishness) in the network
are detected as primary communities. This is generally an NP-complete problem,
but since PPINs are sparse networks, it is still computable in a reasonable time.
Then the distance between two vertices is then computed as:

di,j = |C| − |Ci
⋂︁

Cj|
|C|

(4.5)

Where |C| is the number of detected communities and |Ci
⋂︁

Cj| the number of
vertices that the communities i and j have in common.
This way, a distance matrix D is constructed, where on index Di,j in the distance
between vertices i and j.

Phase two - tree construction

From the distance matrix, D a dendrogram (a diagram illustrating the hierarchi-
cal relationship between objects) is constructed with UPGMA [87] or Neighbor-
joining algorithm [83]. Communities are established by scanning the dendrogram
starting from its root. Each dichotomy generates an alternative community. Since
the Neighbor-joining algorithm generates an unrooted tree, the middle point of
the tree is used as the root.

Phase three - community structure evaluation

Each possible partition into communities is evaluated according to two criteria.
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Figure 4.6: Dendrogram with colored leaves correspondong to detected communi-
tites. New community is constructed for each dichotomy. Source: statisticshowto

Modularity First a matrix E is constructed, where on position Ei,j is the
fraction of all edges in the network that link vertices in community i to vertices
in community j. Modularity is then defined as:

Q = Tr(E) − ||E2|| (4.6)

Where ||X|| is the sum of all elements of the matrix X [68].

Definition 26 (Trace). The trace of a matrix M denoted Tr(M) is the sum of
its diagonal.

This equation measures the distributions of links within and between commu-
nities in a particular partition, compared to the expected number of connections
for the same degree distribution [2].

H-index

H = − log
min(M,n)∑︂

j=p

(︂
M
j

)︂(︂
F −M
n−j

)︂
(︂

F
n

)︂ (4.7)

Where p is the total number of direct intracommunity interactions detected, M
is the maximum possible number of intracommunity direct interactions, F is the
maximum possible number of edges in the network, and n is the number of edges
in the network.

H-index aims to select the partition that generates a distribution that maxi-
mizes the proportion of intracommunity direct interactions while minimizing the
proportion of intercommunity direct interactions [4].

The partition with the maximal product of H-index and Modularity is then
selected.

Advantages

The UVCluster algorithm, used in the first phase for distance matrix compu-
tation, can easily incorporate biological data and, this way, adjust the distance
matrix [4].
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4.6 Label propagation algorithms
In recent years, the label propagation algorithms proved to be very suitable for
predicting function from PPINs, and thus are now one of the leading algorithms
[41, 97].

Lable propagation algorithms, first proposed in Raghavan et al. [78] are based
on a straightforward idea. First, a distinct label is assigned to each vertex. Then
for each vertex v, the most occurring label in the immediate neighborhood is as-
signed v. The vertices are iterated in random order. If there are more labels with
the maximal frequency, one is chosen randomly. The relabeling of all vertices is
repeated until all the vertices have the label that is one of the labels with maximal
frequency in their neighborhood. The algorithm is nearly linear and thus runs
fast also on huge datasets.

Figure 4.7: Label propagation on a network, (A) the original network, (B) an
intermediate result, and (C) final communities. Source: [41]

4.6.1 Link-driven label propagation algorithm
The basic algorithm was modified in many ways to enhance the prediction relia-
bility for PPINs and to be able to operate on noisy data. The most recent paper,
relating to the usage of label propagation algorithms in PPINs, introduced a link-
driven label propagation algorithm(LLPA) [41] labels the edges, not the vertices,
and weights the edges by the reliability of the respective protein interactions. The
edges are then not iterated in random order but with descending reliability.

One of the basic relabeling algorithms’ main problems is that it chooses ran-
domly from the labels with maximal frequency. In the LLPA, the selection of the
label is more complex. For every edge incident to the currently labeled edge, a
value is computed as the product of the reliability of the edge and its similarity
to the labeled edge. These values are then summed for every label category, and
the label with the highest value is assigned.
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5. Evaluation
The evaluation of the algorithms for community detection in PPINs proposes a
difficulty for the following reasons. Firstly, the performance differs significantly
between different datasets, as we will see. Secondly, authors of a new algorithm
often make a performance comparison with other algorithms. This way, the
parameters of the algorithms are not optimized carefully. Therefore an evaluation
from an independent paper [39] is taken. Another problem is finding reliable
metrics for evaluation. These metrics should be able to evaluate the quality of
the algorithms given the experimentally obtained incomplete information.

5.1 Properties
First, we evaluate properties independent of real-world data.

5.1.1 Detection of overlapping communities
As stated in previous chapters, most proteins do not have only one function.
Hence the functional modules are overlapping. Therefore, it is advantageous for
the algorithms to detect overlapping communities.

5.1.2 Robustness
Robustness addresses the algorithm’s ability to perform well under the addition
and deletion of edges. This property is essential for real-world data because the
PPI data contain false positives and false negatives. The experimentally tested
robustness is taken from Ji et al. [39].

5.1.3 Incorporation of the reliability information
Because of the existence of methods that can evaluate the reliability of predicted
interactions, it is favorable to be able to incorporate the reliability information
data into our algorithms. The extension of the reliability information was intro-
duced for some of the examined algorithms.

5.1.4 Properties of algorithms
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Method Overlap Robustness Reliability incorp.
MCODE yes good No
MCL no1 good Yes
COACH yes good No
ACO-MAE no good No
Jerarca no fair Yes
1 But implemented in a later version

Table 5.1: Evaluation of data-independent properties

5.2 Quality estimation on experimental data
Now, we evaluate the performance of the algorithms on real-world data. These
results would vary depending on the data set. The performance was tested by Ji
et al. [39] on data from two databases, DIP and MIPS, on proteins with known
functions and known complexes. The MIPS dataset is much larger and possibly
noisier. Unfortunately, the experimentally obtained complexes and the functional
annotation are also not utterly reliable, and so some existing complexes were not
detected, functions not discovered, and some false positives are present.[55]

Our dataset contains proteins that were experimentally examined, and their
complexes were detected. The experimental detected complexes are denoted as
real communities.

5.2.1 Evaluation metrics
For evaluation, real communities are compared with the predicted. Unlike the
real complexes, the communities obtained from some of the algorithms are non-
overlapping.

Matching score

A matching score between real community r and computationally predicted com-
munity p is defined as:

NA(r, p) = |Vr
⋂︁

Vp|2

|Vr| · |Vp|
(5.1)

Communities that have a matching score above 0.25 are considered to be match-
ing.

Recall

Recall meassures the ratio of matching communities to all predicted communities.

R = Np

|P |
(5.2)

Where Np is the number of predicted communities matching at least one real
community and |P | is the total number of predicted communities.
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Precision

Precision meassures the ratio of real commmuntites, that were predicted by the
algorithm to all real communities.

P = Nr

|R|
(5.3)

Where Nr is the number of real communities matching at least one predicted
community and |R| is the total number of real communities.

F-measure

F-measure is defined as the harmonic mean of recall and precision.

F = 2 · R · P

R + P
(5.4)

Sensitivity

The sensitivity indicates what percentage of proteins of each protein complex
is found in a real complex, and thus the correct function was highly probably
assigned to those proteins. However, the sensitivity metric has its limitations. If
an algorithm predicts a giant community, covering many real communities, this
community will obtain a high score [55].

S =
∑︁|R|

i=1 maxj(Tij)∑︁|R|
i=1 Ni

(5.5)

Where |R| is the number of real communities, Tij is the size of the intersection
of the set of proteins in i-th real community, and j-th predicted community and
Ni is the size of the i-th real community.

Positive predictive value

The positive predictive value indicates if the predicted communities have their
vertices scattered among multiple communities or if the vertices are concentrated
in one community. This metric’s value depends on the experimental data because,
by strongly overlapping real communities, the value will naturally be lower.

PPV =
∑︁|P |

j=1 maxi(Tij)∑︁|P |
j=1 T∗j

(5.6)

Where |P | is the number of predicted communities and T∗j is the sum of the size
of the intersections of predicted community j with all real communities.

Accuracy

Accuracy is defined as the geometric mean of sensitivity and positive predictive
value.

A =
√

S · PPV (5.7)
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p-Value

The p-Value metric, proposed in Bu et al. [11] indicates the statistical significance
of the occurrence of a predicted protein community concerning given functional
annotation. This metric also works directly with the function, not only with com-
munities. The functional homogeneity of a predicted community is the smallest
p-value over all the possible functional groups. A predicted complex with a low
functional homogeneity is likely to be an actual protein complex [55]. Hence the
smaller p-Value is, the better.

p - Value = 1 −
k−1∑︂
i=0

(︂
|F |
i

)︂(︂
|V |−|F |
|C|−i

)︂
(︂

|V |
|C|

)︂ (5.8)

Where predicted complex C contains k proteins in the functional group F and
|V | is the number of proteins in the whole PPIN.

The use of p-Value is generally limited as it requires rich molecular function
information that is often not present in the data sets.

5.2.2 Limitations of evaluation metrics
None of the above-described metrics is by no means absolutely accurate. We
already proposed the limitations of sensitivity and positive predictive value. A
test was made on proteins from overlapping complexes from the MIPS database.
When the real complexes were evaluated against themselves, the resulting PPV
was only 0.772 instead of 1 [55]. In addition, the metrics assume that all protein
communities are known. The reality is far from that. Thus if an unknown but
real community is predicted, the metrics will regard it as false positive [55].

5.2.3 Performance on experimental data
Description of the datasets

Two publicly available yeast PPI data sets were employed. The DIP dataset1

contains 2.526 proteins and 5.949 interactions. The MIPS dataset2 contains 4.545
proteins and 12.318 interactions. The set of known protein complexes was taken
from three different database sources and a set of known protein complexes,
presented in Friedel et al. [26].

Performance on the DIP dataset

1No more available, available here in the past
2No more available, available here in the past
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Method Precision Recall F-measure Time (s)
MCODE 0.6364 0.2266 0.3342 3
MCL 0.356 0.3879 0.3717 1
COACH 0.5038 0.5 0.5019 2
ACO-MAE 0.4224 0.486 0.452 693
Jerarca 0.4286 0.5093 0.4655 268

Table 5.2: First part of the evaluation of the introduced algorithms on the DIP
dataset of protein-protein interactions.

Method Sensitivity PPV Accuracy p - Value
MCODE 0.1646 0.2852 0.2166 4.99 · 10−24

MCL 0.302 0.3031 0.3026 1.89 · 10−44

COACH 0.2568 0.3065 0.2805 3.05 · 10−37

ACO-MAE 0.3076 0.3249 0.3161 2.05 · 10−36

Jerarca 0.3034 0.3187 0.3110 2.65 · 10−33

Table 5.3: Second part of the evaluation of the introduced algorithms on the DIP
dataset of protein-protein interactions.

Performance on the MIPS dataset

Method Precision Recall F-measure Time (s)
MCODE 0.3614 0.1285 0.1896 7
MCL 0.1551 0.3224 0.2095 2
COACH 0.3006 0.3201 0.3132 8
ACO-MAE 0.2208 0.3598 0.2844 2733
Jerarca 0.1632 0.3224 0.2167 1319

Table 5.4: First part of the evaluation of the introduced algorithms on the MIPS
dataset of protein-protein interactions.

Method Sensitivity PPV Accuracy p - Value
MCODE 0.1247 0.2622 0.1808 1.19 · 10−27

MCL 0.2201 0.2913 0.2532 1.04 · 10−33

COACH 0.2078 0.2365 0.2217 7.79 · 10−33

ACO-MAE 0.2091 0.3411 0.2671 1.47 · 10−32

Jerarca 0.2328 0.2986 0.2636 7.53 · 10−32

Table 5.5: Second part of the evaluation of the introduced algorithms on the
MIPS dataset of protein-protein interactions.
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Data visualisation

Figure 5.1: Comparision of the introduced algorithms on the DIP and MIPS
datasets. Data source: Ji et al. [39]
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5.3 Verbal evaluation

5.3.1 Dataset difference
From the performance difference between the DIP dataset and the MIPS dataset,
it can be inferred that the prediction quality is strongly related to the data pro-
vided. However, for most of the algorithms and metrics, the relative performance
of the algorithms has not changed significantly between the two datasets.

5.3.2 Comparision of algorithms
Most surprising is the high precision of the MCODE algorithm, despite its overall
low performance. As stated in previous section, the MCODE algorithm tends to
predict large communities. These large communities may then contain multiple
real complexes while being small enough to pass the lower bound for the match-
ing score. However, this would possibly have a negative effect on the positive
predictive value and a positive effect on the sensitivity, which is not the case.
For both datasets, obtained the MCODE algorithm also the smallest p-value,
which indicates poor ability to assign a function to proteins correctly.

The F-measure of the COACH algorithm is overall good in comparison with
other algorithms, but the accuracy is significantly lower, at least for the MIPS
dataset. The reason for this may be that the threshold 0.25 is low enough for
some communities to match, but the accuracy takes the ratio of correctly pre-
dicted vertices into account, and the lower performance is detected.

The ACO-MAE algorithm has a great overall performance; unfortunately, it
is very slow.
The same applies to Jerarca, which also performs very well except for the preci-
sion for the MIPS dataset.

The MCL algorithm suffers from low precision; however, its accuracy is compa-
rable with the best-proposed algorithms, it has the best p-value for both datasets,
and it is very fast and easy to implement.

The LLPA algorithm was published after Ji et al. [39]. Therefore it was
not tested along with other proposed algorithms. However, in the paper intro-
ducing the LLPA algorithm, an comparison with other algorithms is published.
One of them is the CFinder [1], a density-based algorithm based on maximal
cliques, which performance is comparable with algorithms such as Jerarca [39].
While CFinder reached an F-measure score around 0.58, for LLPA, it was around
0.71[39]. However, the dataset was noticeably smaller and probably less noisy.

5.3.3 Summary
Every introduced algorithm has its limitations. They all perform significantly
worse on the bigger dataset with possibly noisier data. However, their real per-
formance cannot be calculated because of the false positives and negatives in the
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experimentally measured protein complexes. The algorithms probably predicted
some complexes that were not detected by the experimental methods. Moreover,
the metrics for the evaluation also have their limitations, which was visible on
the very different scores for the MCODE algorithm.
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Conclusion
The genome annotation task is, even to this day, far from being solved. Standard
methods for protein function prediction were presented, and their limitations
were outlined. A graph-theoretical approach acquiring functional information
from protein-protein interaction networks was introduced.
In contrast to standard methods, this approach does not concentrate on the se-
quence or structure of the proteins but the interactions between them; moreover,
the algorithms operate on the whole PPINs, taking global information of the
whole interactome into account. Hence, the graph-theoretical methods based on
the PPINs complement the standard approaches and can shed some light on areas
where standard methods are insufficient.

We identified the noisiness of the protein interactions data, overlapping of
the protein complexes, and the time complexity as the main challenges of these
methods. We described different types of community-detection-based algorithms,
outlined their main ideas, and provided an example algorithm from each category.
We then compared these algorithms, assessed their ability to overcome proposed
challenges, and evaluated their overall performance. We found that not only de-
signing reliable algorithms but also their evaluation presents a challenge.

From the evaluation results, it can be inferred that the graph-theoretical ap-
proach cannot solve the problem of function annotation of proteins; however, it
can undoubtedly serve as a complement to other methods of function predic-
tion. Moreover, new algorithms are being developed every year with increasing
performance.
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Guénoche, and Bernard Jacq. Functional classification of proteins for the
prediction of cellular function from a protein-protein interaction network.
Genome biology, 5(1):1–13, 2003.

[11] Dongbo Bu, Yi Zhao, Lun Cai, Hong Xue, Xiaopeng Zhu, Hongchao Lu,
Jingfen Zhang, Shiwei Sun, Lunjiang Ling, Nan Zhang, et al. Topological
structure analysis of the protein–protein interaction network in budding
yeast. Nucleic acids research, 31(9):2443–2450, 2003.

[12] Pea Carninci, T Kasukawa, S Katayama, J Gough, MC Frith, Norihiro
Maeda, Rieko Oyama, T Ravasi, B Lenhard, C Wells, et al. The transcrip-
tional landscape of the mammalian genome. science, 309(5740):1559–1563,
2005.

47



[13] Sung-Pil Choi. Extraction of protein–protein interactions (ppis) from the
literature by deep convolutional neural networks with various feature em-
beddings. Journal of Information Science, 44(1):60–73, 2018.

[14] Hon Nian Chua, Wing-Kin Sung, and Limsoon Wong. Exploiting indirect
neighbours and topological weight to predict protein function from protein–
protein interactions. Bioinformatics, 22(13):1623–1630, 2006.

[15] Michele Clamp, Ben Fry, Mike Kamal, Xiaohui Xie, James Cuff, Michael F
Lin, Manolis Kellis, Kerstin Lindblad-Toh, and Eric S Lander. Distinguish-
ing protein-coding and noncoding genes in the human genome. Proceedings
of the National Academy of Sciences, 104(49):19428–19433, 2007.

[16] Luciano da F Costa, Alexandre Evuskoff, Giuseppe Mangioni, and Ronaldo
Menezes. Complex Networks: Second International Workshop, CompleNet
2010, Rio de Janeiro, Brazil, October 13-15, 2010, Revised Selected Papers,
volume 116. Springer Science & Business Media, 2011.

[17] Thomas Dandekar, Berend Snel, Martijn Huynen, and Peer Bork. Con-
servation of gene order: a fingerprint of proteins that physically interact.
Trends in biochemical sciences, 23(9):324–328, 1998.

[18] Subhrangshu Das and Saikat Chakrabarti. Classification and prediction
of protein–protein interaction interface using machine learning algorithm.
Scientific reports, 11(1):1–12, 2021.

[19] Xiuquan Du, Shiwei Sun, Changlin Hu, Yu Yao, Yuanting Yan, and Yanping
Zhang. Deepppi: boosting prediction of protein–protein interactions with
deep neural networks. Journal of chemical information and modeling, 57
(6):1499–1510, 2017.

[20] Joe Dundas, Zheng Ouyang, Jeffery Tseng, Andrew Binkowski, Yaron Tur-
paz, and Jie Liang. Castp: computed atlas of surface topography of pro-
teins with structural and topographical mapping of functionally annotated
residues. Nucleic acids research, 34(suppl 2):W116–W118, 2006.

[21] Ruth Dunn, Frank Dudbridge, and Christopher M Sanderson. The use
of edge-betweenness clustering to investigate biological function in protein
interaction networks. BMC bioinformatics, 6(1):1–14, 2005.

[22] Anton J Enright, Stijn Van Dongen, and Christos A Ouzounis. An effi-
cient algorithm for large-scale detection of protein families. Nucleic acids
research, 30(7):1575–1584, 2002.

[23] Iakes Ezkurdia, Lisa Bartoli, Piero Fariselli, Rita Casadio, Alfonso Valencia,
and Michael L Tress. Progress and challenges in predicting protein–protein
interaction sites. Briefings in bioinformatics, 10(3):233–246, 2009.
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Geometric de-noising of protein-protein interaction networks. PLoS com-
putational biology, 5(8):e1000454, 2009.

[50] Roman A Laskowski, James D Watson, and Janet M Thornton. Profunc:
a server for predicting protein function from 3d structure. Nucleic acids
research, 33(suppl 2):W89–W93, 2005.

[51] Jooyoung Lee, Peter L Freddolino, and Yang Zhang. Ab initio protein struc-
ture prediction. In From protein structure to function with bioinformatics,
pages 3–35. Springer, 2017.

[52] Sheng-An Lee, Cheng-hsiung Chan, Chi-Hung Tsai, Jin-Mei Lai, Feng-
Sheng Wang, Cheng-Yan Kao, and Chi-Ying F Huang. Ortholog-based
protein-protein interaction prediction and its application to inter-species
interactions. BMC bioinformatics, 9(12):1–9, 2008.

[53] Christian M-R Lemer, Marianne J Rooman, and Shoshana J Wodak. Pro-
tein structure prediction by threading methods: evaluation of current tech-
niques. Proteins: Structure, Function, and Bioinformatics, 23(3):337–355,
1995.

[54] Henry CM Leung, Qian Xiang, Siu-Ming Yiu, and Francis YL Chin. Pre-
dicting protein complexes from ppi data: a core-attachment approach. Jour-
nal of Computational Biology, 16(2):133–144, 2009.

[55] Xiaoli Li, Min Wu, Chee-Keong Kwoh, and See-Kiong Ng. Computational
approaches for detecting protein complexes from protein interaction net-
works: a survey. BMC genomics, 11(1):1–19, 2010.

[56] Olivier Lichtarge, Henry R Bourne, and Fred E Cohen. An evolutionary
trace method defines binding surfaces common to protein families. Journal
of molecular biology, 257(2):342–358, 1996.

[57] Michael F Lin, Irwin Jungreis, and Manolis Kellis. Phylocsf: a comparative
genomics method to distinguish protein coding and non-coding regions.
Bioinformatics, 27(13):i275–i282, 2011.

[58] Guimei Liu, Jinyan Li, and Limsoon Wong. Assessing and predicting pro-
tein interactions using both local and global network topological metrics.
In Genome Informatics 2008: Genome Informatics Series Vol. 21, pages
138–149. World Scientific, 2008.

[59] Quanzhong Liu, Jiangning Song, and Jinyan Li. Using contrast patterns
between true complexes and random subgraphs in ppi networks to predict
unknown protein complexes. Scientific reports, 6(1):1–15, 2016.

[60] Wei Liu, Liangyu Ma, Byeungwoo Jeon, Ling Chen, and Bolun Chen. A net-
work hierarchy-based method for functional module detection in protein–
protein interaction networks. Journal of theoretical biology, 455:26–38, 2018.

51



[61] Yaniv Loewenstein, Domenico Raimondo, Oliver C Redfern, James Wat-
son, Dmitrij Frishman, Michal Linial, Christine Orengo, Janet Thornton,
and Anna Tramontano. Protein function annotation by homology-based
inference. Genome biology, 10(2):1–8, 2009.

[62] Phillip W. Lord, Robert D. Stevens, Andy Brass, and Carole A. Goble.
Investigating semantic similarity measures across the gene ontology: the re-
lationship between sequence and annotation. Bioinformatics, 19(10):1275–
1283, 2003.

[63] Edward M Marcotte, Matteo Pellegrini, Ho-Leung Ng, Danny W Rice,
Todd O Yeates, and David Eisenberg. Detecting protein function and
protein-protein interactions from genome sequences. Science, 285(5428):
751–753, 1999.

[64] Mark R Martzen, Stephen M McCraith, Sherry L Spinelli, Francy M Torres,
Stanley Fields, Elizabeth J Grayhack, and Eric M Phizicky. A biochemical
genomics approach for identifying genes by the activity of their products.
Science, 286(5442):1153–1155, 1999.

[65] John Moult, Krzysztof Fidelis, Andriy Kryshtafovych, Torsten Schwede,
and Anna Tramontano. Critical assessment of methods of protein structure
prediction (casp)—round x. Proteins: Structure, Function, and Bioinfor-
matics, 82:1–6, 2014.

[66] Kenta Nakai. Psort: a program for detecting the sorting signals of proteins
and predicting their subcellular localization. Trends Biochem. Sci, 24(1):
34–35, 1999.

[67] Tamás Nepusz, Haiyuan Yu, and Alberto Paccanaro. Detecting overlapping
protein complexes in protein-protein interaction networks. Nature methods,
9(5):471, 2012.

[68] Mark EJ Newman and Michelle Girvan. Finding and evaluating community
structure in networks. Physical review E, 69(2):026113, 2004.

[69] Chandra Shekhar Pareek, Rafal Smoczynski, and Andrzej Tretyn. Sequenc-
ing technologies and genome sequencing. Journal of applied genetics, 52(4):
413–435, 2011.

[70] Florencio Pazos and Alfonso Valencia. In silico two-hybrid system for the
selection of physically interacting protein pairs. Proteins: Structure, Func-
tion, and Bioinformatics, 47(2):219–227, 2002.

[71] Matteo Pellegrini, Edward M Marcotte, Michael J Thompson, David Eisen-
berg, and Todd O Yeates. Assigning protein functions by comparative
genome analysis: protein phylogenetic profiles. Proceedings of the National
Academy of Sciences, 96(8):4285–4288, 1999.

[72] Xiaoqing Peng, Jianxin Wang, Wei Peng, Fang-Xiang Wu, and Yi Pan.
Protein–protein interactions: detection, reliability assessment and applica-
tions. Briefings in bioinformatics, 18(5):798–819, 2017.

52



[73] Jose B Pereira-Leal, Anton J Enright, and Christos A Ouzounis. Detec-
tion of functional modules from protein interaction networks. PROTEINS:
Structure, Function, and Bioinformatics, 54(1):49–57, 2004.

[74] Charles M Perou, Stefanie S Jeffrey, Matt Van De Rijn, Christian A Rees,
Michael B Eisen, Douglas T Ross, Alexander Pergamenschikov, Cheryl F
Williams, Shirley X Zhu, Jeffrey CF Lee, et al. Distinctive gene expression
patterns in human mammary epithelial cells and breast cancers. Proceedings
of the National Academy of Sciences, 96(16):9212–9217, 1999.

[75] Sylvain Pitre, Md Alamgir, James R Green, Michel Dumontier, Frank
Dehne, and Ashkan Golshani. Computational methods for predicting
protein–protein interactions. Protein–Protein Interaction, pages 247–267,
2008.

[76] Shuye Pu, Jessica Wong, Brian Turner, Emerson Cho, and Shoshana J
Wodak. Up-to-date catalogues of yeast protein complexes. Nucleic acids
research, 37(3):825–831, 2009.

[77] Guimin Qin and Lin Gao. Spectral clustering for detecting protein com-
plexes in protein–protein interaction (ppi) networks. Mathematical and
Computer Modelling, 52(11-12):2066–2074, 2010.
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