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Abstract: In this work we develop algorithms for the k-Supplier with Out-
liers problem. In a network, we are given a set of suppliers and a set of clients.
The goal is to choose k suppliers so that the distance between every served client
and its nearest supplier is minimized. Clients that are not served are called
outliers and the number of allowed outliers is given on input.

As k-Supplier with Outliers has numerous applications in logistics, we focus
on parameters which are suitable for transportation networks. We study graphs
with low highway dimension, which was proposed by Abraham et al. [SODA
2010], and low doubling dimension.

It is known that unless P = NP, k-Supplier with Outliers does not admit
a (3 − ε)-approximation algorithm for any constant ε > 0. The k-Supplier
with Outliers problem is W[1]-hard on graphs of constant doubling dimension
for parameters k and highway dimension. We overcome both of these barriers
through the paradigm of parameterized approximation algorithms.

In the case of highway dimension, we develop a (1 + ε)-approximation algorithm
for any ε > 0 with running time f(k, p, h, ε)·nO(1) where p is the number of allowed
outliers, h is the highway dimension of the input graph, and f is some computable
function. In the case of doubling dimension, we develop a (1 + ε)-approximation
algorithm for any ε > 0 with running time (k + p)k · ε−O(kd) · nO(1) where p is the
number of allowed outliers, and d is the doubling dimension of the input graph.
In fact, the latter algorithm can be extended to a more general problem called
Capacitated k-Supplier with Outliers.

Additionally, we consider a generalization of k-Supplier with Outliers called
Non-Uniform k-Supplier. It was shown that Non-Uniform k-Supplier
does not admit constant-approximation algorithms with a polynomial running
time, unless P = NP. We extend this hardness result to the setting where the
highway dimension and the doubling dimension are constant.

Keywords: highway dimension, doubling dimension, parameterized approxima-
tion, k-Supplier with Outliers problem
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Introduction
In this work we consider the k-Supplier problem, which was first introduced by
Hochbaum and Shmoys [HS86]. The input is specified by a graph G = (V, E)
with positive edge lengths d : E → R+, a set of suppliers Vs ⊆ V , a set of
clients Vc ⊆ V , and an integer k. The goal is to select k suppliers, so that the
distance between any client and its nearest selected supplier is minimal. Formally,
a feasible solution to the problem is a set S ⊆ Vs such that |S| ≤ k. For a pair
of vertices u, v ∈ V , we denote by distG(u, v) the shortest-path distance from u
to v with respect to edge lengths d. We omit the subscript if the graph is clear
from context. For a vertex u and a set of vertices A ⊆ V , we denote dist(u, A) =
minv∈A dist(u, v). The cost of a feasible solution S is maxc∈Vc dist(c, S), and the
goal is to find a solution of minimum cost. Note that the conventional definition
of k-Supplier [HS86, WS11] has Vc = V \ Vs. For our purposes however, it will
be useful to have vertices which are neither clients nor suppliers.

The k-Supplier problem is a generalization of the k-Center problem. We
can formulate k-Center as a special case of k-Supplier where the set of clients
and the set of suppliers coincide. That is, given a graph G = (V, E) on input, we
have Vs = Vc.

A natural application of k-Supplier would be the following situation: we
have predetermined some locations in a network which are suitable for building
warehouses. We also survey the network and determine the set of clients we would
like to serve. Warehouses are typically built on the outskirts of cities, as opposed
to clients whose location does not necessarily follow any pattern. As such, to
find a good placement of warehouses it is preferable to model the problem using
k-Supplier over k-Center: a good k-Center solution might determine that a
warehouse should be placed inside a client’s residence. Additionally, the majority
of the points in a map of the network, e.g., road intersections, will be neither
clients nor suppliers. Hence for applications it is indeed desirable to have points
which are neither clients nor suppliers in the definition of k-Supplier.

It is known that k-Center is already an NP-hard problem [HN79]. Hence
under the standard complexity assumption P ̸= NP, we cannot hope to solve it
in time polynomial in the length of the input. Two popular ways of dealing with
NP-hard problems is to design approximation algorithms [Vaz13, WS11] and pa-
rameterized algorithms [CFK+15, DF13]. An approximation algorithm computes
in polynomial time a b-approximation, that is, a solution that is at most b times
worse than the optimum. For k-Center, there are two known 2-approxima-
tion algorithms, one by Hochbaum and Shmoys [HS86] and another by Gonza-
lez [Gon85]. Moreover, it is known that there cannot be a (2− ε)-approximation
algorithm for any constant ε > 0 unless P = NP [HN79]. Even worse, for k-Sup-
plier it is known that there cannot be a (3 − ε)-approximation [HS86]. This
hardness result is matched by a 3-approximation algorithm by Hochbaum and
Shmoys [HS86].

Under the assumption that P ̸= NP, any exact algorithm for an NP-hard
problem will have a running time superpolynomial in the length of its input. The
rationale behind fixed-parameter algorithms is to isolate this superpolynomial
growth of the running time to some parameter q of the input while retaining
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a polynomial dependence on the input length. More precisely, a fixed-param-
eter algorithm computes an optimum solution in time f(q) · nO(1) where f is
some computable function, q is a parameter of the input, and n is the length of
the input. A problem that has a fixed-parameter algorithm for a parameter q
is called fixed-parameter tractable (FPT) for q. For k-Center one immediate
choice of a parameter would be the number of centers k. Unfortunately, Demaine
et al. [DFHT05] have shown that k-Center is a W[2]-hard problem for pa-
rameter k. Furthermore, Marx [Mar05] has shown that k-Center is W[1]-hard
for parameter k in two-dimensional Manhattan metrics. Under the standard as-
sumption FPT ⊊ W[1] ⊊ W[2], this means that k-Center is not FPT for the
parameter k in either of these settings.

As fixed-parameter algorithms have a superpolynomial running time in their
parameter, for practical purposes one should think of parameters that are small
for typical instances. Guided by the example we gave earlier of an application of
k-Supplier, we shall consider parameters that are appropriate for transportation
networks.

Abraham et al. [AFGW10] introduced the highway dimension in order to
explain the fast running times of various shortest-path heuristics. The defini-
tion of highway dimension is motivated by the following empirical observation
of Bast et al. [BFM06, BFM+07]. Imagine that we want to travel in a road
network from some point A to a sufficiently far point B along the quickest
route. The observation is that if we travel along the quickest route, we will
inevitably pass through a sparse set of “access points”. Highway dimension then
measures the sparsity of this set of access points around any vertex of a graph.
There are several formal definitions for the highway dimension that differ slightly,
see [AFGW10, ADF+11, ADF+16]. Here, we give the definition that we will use
in our algorithms. Let G = (V, E) be a graph with edge lengths d : E → R+

0 . For
a shortest path π = (u1, u2, . . . , uℓ) between its endpoints, we define its length
as d(π) = ∑︁ℓ−1

i=1 d((ui, ui+1)). For a positive real number r ∈ R+ the ball centered
at u of radius r is the set Bu(r) = {v ∈ V : distG(u, v) ≤ r}, i.e., vertices whose
distance from u is at most r.

Definition 1 ([FFKP18]). Let G = (V, E) be an undirected graph with edge
lengths d : E → R+

0 . The highway dimension of G is the smallest integer h such
that, for some universal constant γ ≥ 4, for any radius r ∈ R+, and any vertex u
there is a hitting set Z ⊆ Bu(γr) of size h for the set of all shortest paths π
satisfying d(π) > r and π ⊆ Bu(γr).

Note that the definition we use is slightly more general than the original one
stated in [AFGW10]. Abraham et al. [AFGW10] specifically chose γ = 4 but they
also note that this choice is, to some extent, arbitrary. Nevertheless, Feldmann
et al. [FFKP18, Lemma 9.6] have shown that the highway dimension of a graph
is highly sensitive to the choice of γ in Definition 1: their result says that for
any constant γ ≥ 4 there exists a graph that, according to Definition 1, has
highway dimension 1 with respect to γ and highway dimension Ω(n) with respect
to any γ′ > γ. Their proof only mentions the case when γ > 4 but it proves the
case when γ = 4 as well.

Another parameter that we will consider is the doubling dimension. Let us
first give the formal definition.
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Definition 2 ([GKL03]). The doubling constant of a metric space (X, dist) is
the smallest value λ such that every ball in X can be covered by λ balls of half
the radius. The doubling dimension of X is then defined as dd(X) = log2 λ.

Folklore results show that every metric for which the distance function is given
by the ℓq-norm in D-dimensional space RD has doubling dimension O(D) [GKL03,
FM20]. As a transportation network is embedded on a large sphere (namely the
Earth), a reasonable model is to assume that the shortest-path metric abides to
the Euclidean ℓ2-norm. Buildings in cities form so called “city blocks”, which
form a grid of streets. Therefore it is reasonable to assume that the distances in
cities are given by the Manhattan ℓ1-norm. Road maps can be thought of as a
mapping of a transportation network into R2. It is then reasonable to assume,
that transportation networks have constant doubling dimension.

An immediate question is whether k-Center is FPT when parameterized
by highway dimension or doubling dimension. Under the standard assump-
tion FPT ̸= W[1], Feldmann and Marx [FM20] have shown that the answer is neg-
ative. In fact, the result they show is even stronger: they show that the k-Center
problem is W[1]-hard on weighted planar graphs of constant doubling dimension
for the combined parameter k, highway dimension, and pathwidth1.

So far, it seems like the k-Center problem is quite resistant to approximation
and fixed-parameter algorithms, aside from the aforementioned 2-approximation
algorithms. However, what if we combine the two approaches? What if we want
a fixed-parameter algorithm that can return an approximate solution instead of
an optimum solution, and whose approximation factor is significantly better than
the 2 which we can achieve in polynomial time? In such cases, we develop fixed-pa-
rameter b-approximation algorithms (b-FPA) that compute a b-approximation in
time f(p) · nO(1) for parameter p. A family of algorithms for a problem such that
for every constant ε > 0 there exists an (1 + ε)-approximation algorithm for the
said problem is called an approximation scheme. If an approximation scheme has
a running time in the form of f(ε, p) ·nO(1) where f is some computable function
and p is a parameter of the input, then we call such an approximation scheme an
efficient2parameterized approximation scheme (EPAS) for parameter p.

For the parameters we have considered so far, the answer is negative. Feld-
mann [Fel19] has shown that unless FPT = W[2], there is no (2 − ε)-FPA for
k-Center when the parameter is k. The following results imply that we cannot
parameterize solely by the doubling dimension: Feder and Greene [FG88] have
shown that unless P = NP, there cannot be a (1.822−ε)-approximation algorithm
for two-dimensional Euclidean metrics, and that there cannot be a (2−ε)-approx-
imation algorithm for two-dimensional Manhattan metrics. On the other hand,
the situation is not clear-cut in the case of highway dimension. To the best of
our knowledge, it is not yet ruled out that there exists a (2 − ε)-FPA algorithm
when parameterizing by highway dimension. The best result so far is by Feld-
mann [Fel19] which shows that it is NP-hard to (2− ε)-approximate k-Center
on graphs with highway dimension O(log2 n). He [Fel19] notes that while this

1See Section 1.3 for definitions of pathwidth and treewidth.
2Efficient in this context means that the dependence on ε in running time of the algorithm

can be bounded by some computable function of the parameter and ε. In particular, an
efficient parameterized approximation scheme cannot have a running time in the form of, e.g.,
O(nO(1/ε)).
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does not rule out (2− ε)-FPA algorithms for the highway dimension parameter,
if such an algorithm exists, then, it cannot have a running time of 22o(

√
h) · nO(1),

unless the Exponential Time Hypothesis (ETH) [IP01] fails.
While the situation seems dire, there is still one more approach that we have

not discussed yet. That is, if we combine multiple parameters together. The
outlook for the k-Center problem is much more positive in this setting. For
parameters k and highway dimension there is an EPAS by Becker et al. [BKS18],
for parameters k and doubling dimension there is an EPAS by Feldmann and
Marx [FM20], and for parameter treewidth1 there is an EPAS by Katsikarelis et
al. [KLP19].

We will extend these results to the k-Supplier with Outliers problem,
which was first introduced by Charikar et al. [CKMN01]. The motivation behind
this problem is that “a few very distant clients, called outliers, can exert a dis-
proportionately strong influence over the final solution” [CKMN01]. Hence it is
desirable to leave these few outliers unserviced in favor of obtaining a solution
of significantly lower cost. Formally, in addition to the input of the k-Supplier
problem, the input contains an integer p ∈ N0. A feasible solution is a sub-
set S ⊆ Vs of size at most k and its cost is

cost(S) = min
V ′

c ⊆Vc
|V ′

c |≥n−p

max
u∈V ′

c
dist(u, S)

where V ′
c are subsets of clients of size at least n−p. Clients Vc \V ′

c are called out-
liers. The goal is to find a solution of minimum cost. Note that setting p = 0 gives
the original k-Supplier problem. The k-Center with Outliers problem is
a special case when Vs = Vc.

We will show a 3
2 -approximation algorithm for k-Center with Outliers

when the parameters are k, the number of outliers, and the highway dimension
of the input graph. The result is an extension of a 3

2 -approximation algorithm
for k-Center by [Fel19]. Given an instance I of some problem, we denote
by OPT(I) the cost of the optimum solution of the instance I. The result is the
following theorem.

Theorem 3. Let I = (G, k, p) be an instance of the k-Center with Outliers
problem where G has highway dimension h. There exists an algorithm that outputs
a solution of cost at most 3

2OPT(I) in time 2O(k(h log h)+p) · nO(1).

For a stricter definition of highway dimension, we extend the EPAS param-
eterized by k and highway dimension for k-Center by Becker et al. [BKS18]
to k-Supplier with Outliers. This “strictness” concerns the choice of the
constant γ in Definition 1. In both the original algorithm [BKS18] and in our
algorithm, we will require that the constant γ is strictly greater than 4, while the
algorithm given by Theorem 3 can work with the definition of highway dimension
where γ = 4 as well. As we have mentioned previously, Feldmann et al. [FFKP18]
have shown that a graph can have significantly different highway dimensions de-
pending on the choice of the constant γ. Thus, while the approximation ratio of
the algorithm given by Theorem 3 is weaker than the approximation ratio of an
EPAS, it uses a more general definition of highway dimension. Another advantage
of the algorithm given by Theorem 3 is its running time. Both algorithms are
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exponential in k, the number of outliers, and highway dimension, however, the
base of the exponent in the running time in Theorem 3 is constant while the base
of the exponent of the EPAS depends on k, the number of outliers, the highway
dimension, and ε. The result is the following theorem.

Theorem 4. Let I = (G, k, p) be an instance of the k-Supplier with Out-
liers problem where G has highway dimension h. There exists a computable
function f(·, ·, ·, ·) and an algorithm such that for any ε > 0 it outputs a solu-
tion of cost (1 + ε)OPT(I) in time f(h, k, p, ε) · nO(1). Moreover we have f ∈

Ω
(︄(︂

1
ε
(h + k + p)2

)︂O((h+k+p)2 log(1/ε))
)︄

.

When considering doubling dimension instead of highway dimension, we ex-
tend the EPAS parameterized by k and doubling dimension for the k-Center
problem by Feldmann and Marx [FM20] to an EPAS for the Capacitated
k-Supplier with Outliers problem. In the example of an application of
k-Supplier we gave earlier, a warehouse can supply an unbounded number of
clients. This might not be the case in real-world applications as warehouses
can only store a limited amount of goods. In Capacitated k-Supplier with
Outliers this issue is mitigated by placing a limit on the number of clients each
supplier can serve. Let us define the problem formally. In the Capacitated
k-Supplier with Outliers problem [CHK12], in addition to the input of the
k-Supplier with Outliers problem, we have a capacity function L : Vs → N0.
A feasible solution is a set of clients V ′

c ⊆ Vc, a set of suppliers V ′
s ⊆ Vs, and a

function ϕ : V ′
c → V ′

s which maps every client of V ′
c to some supplier of V ′

s such
that:

• |V ′
c | ≥ n− p,

• |V ′
s | ≤ k,

• |ϕ−1(s)| ≤ L(s) for every s ∈ V ′
s .

The cost of such a feasible solution is maxu∈V ′
c dist(u, ϕ(u)) and the goal is to find

a solution of minimum cost. If we set L(s) = |Vc| for every supplier s ∈ Vs, then
we get the original (uncapacitated) k-Supplier with Outliers problem. Our
result is the following theorem. Note that the running time depends only on the
doubling dimension of the suppliers. This can be especially advantageous, if the
set of clients does not exhibit any particular structure.

Theorem 5. Let I = (G, k, p, L) be an instance of the Capacitated k-Sup-
plier with Outliers problem, (Vs, dist) be the shortest-path metric induced by
the supplier set Vs, and d be the doubling dimension of (Vs, dist). There exists an
algorithm such that for any ε > 0 it outputs a solution of cost (1 + ε)OPT(I) in
time (k + p)k · ε−O(kd) · nO(1).

To obtain the algorithm given by Theorem 4, that is, an EPAS for k-Sup-
plier with Outliers when the parameters are k, the number of outliers, and
highway dimension, we use a framework by Becker et al. [BKS18]. To be able
to use the framework, we need as a subroutine an EPAS for k-Supplier with
Outliers when the parameter is the treewidth of the input graph. While we
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are able to show such an algorithm for the k-Supplier with Outliers prob-
lem (Theorem 17), we also show that such an algorithm for the Capacitated
k-Supplier with Outliers problem would imply that FPT = W[1]. Therefore
we are not able to obtain a result analogous to Theorem 5 when parameterizing
by highway dimension. Formally, the result is the following theorem.

Theorem 6. For any ε > 0 it is W[1]-hard to (2− ε)-approximate the Capaci-
tated k-Supplier with Outliers problem for parameters k and treewidth.

Note the difference in the dependence on the number of outliers in the running
time between Theorem 4 and Theorem 5. While in Theorem 4, the parameter p
appears in the exponent, in Theorem 5 the parameter p appears only in the base
of the exponent. We leave open whether the dependence on p can be improved
in the case of highway dimension. We also leave open whether the dependence
on p can be improved in either case so that the running time is polynomial in p.

Another downside of the definition of k-Supplier we gave earlier is that we
assumed all suppliers can provide the same quality of service. This might not be
the case in real-world applications, since warehouse staff can have different level
of competence, equipment and vehicles have different performance levels, etc.
Therefore aside from placing the suppliers in the network, we should also consider
the magnitude of the area each supplier is able to serve while maintaining service
quality standards. In the Non-Uniform k-Supplier problem, in addition to the
input of k-Supplier the input contains k reals r1 ≥ r2 ≥ · · · ≥ rk. A feasible so-
lution S is a tuple of k suppliers (s1, . . . , sk) and its cost is maxu∈Vc mink

i=1
dist(u,si)

ri
.

The goal is to find a solution of minimum cost. We can formulate an instance of
k-Supplier by setting r1 = · · · = rk = 1. If it is the case that Vc = Vs, then
we have an instance of the Non-Uniform k-Center problem, which was re-
cently introduced by Chakrabarty et al. [CGK16]. We can formulate an instance
of k-Center with Outliers as an instance of Non-Uniform k-Center by
setting r1 = · · · = rk and rk+1 = · · · = rk+p = 0. Note that this approach cannot
be used to generalize k-Supplier with Outliers to Non-Uniform k-Sup-
plier as each outlier would have to be a supplier to be able to open a supplier
of radius 0 in it. Chakrabarty et al. [CGK16] show that unless P = NP, there
cannot be a polynomial time b-approximation algorithm for any constant b ≥ 1
for Non-Uniform k-Center. We will show a similar hardness result for the
Non-Uniform k-Supplier problem when the parameters are doubling dimen-
sion and highway dimension. The following theorem implies that the algorithms
given by Theorems 4 and 5 cannot be extended to Non-Uniform k-Supplier.

Theorem 7. It is NP-hard to b-approximate the Non-Uniform k-Supplier
problem for any constant b ≥ 1, even on instances where both the highway dimen-
sion and the doubling dimension of the graph is 2.
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1. Preliminaries

1.1 Notation
Let G = (V, E) be a graph with edge lengths d : E → R+

0 . By distG(u, v) we
denote the shortest-path distance from u to v. We omit the subscript if the graph
is clear from context. For a vertex u and a subset of vertices W ⊆ V we de-
note distG(u, W ) = minw∈W distG(u, w). For a shortest path π = (u1, u2, . . . , uℓ)
between its endpoints, we define its length as d(π) = ∑︁ℓ−1

i=1 d((ui, ui+1)). For a
positive real number r ∈ R the ball centered at u of radius r is the set Bu(r) =
{v ∈ V : distG(u, v) ≤ r}, i.e., vertices whose distance from u is at most r. The
open neighbourhood of a vertex u is the set N(u) = {v ∈ V : (u, v) ∈ E}. The
closed neighbourhood of a vertex u is the set N [u] = N(u) ∪ {u}.

1.2 Approximation algorithms & parameterized
complexity

In this thesis we will design parameterized approximation algorithms. For the
reader’s convenience, we state some essential notions from those fields. For the
rest of this work we shall make the standard assumption that P ̸= NP and FPT ̸=
W[1].

Parameterized complexity. We follow [CFK+15] for the standard definitions
from the field of parameterized complexity.

We start by defining a parameterized problem and its corresponding complex-
ity class. A parameterized problem is a language L ⊆ Σ∗ ×N, where Σ is a fixed,
finite alphabet. For an instance (x, k) ∈ Σ∗×N, k is called the parameter. The size
of an instance (x, k) is defined as |x|+k, i.e. we assume that k is encoded in unary.
A parameterized problem L ⊆ Σ∗ × N is called fixed-parameter tractable (FPT)
if there exists an algorithm A (called a fixed-parameter algorithm), a computable
function f : N→ N, and a constant c such that, given (x, k) ∈ Σ∗×N, algorithmA
correctly decides whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The com-
plexity class containing all fixed-parameter tractable problems is called FPT.

For an FPT algorithm A, we are often not interested in the polynomial fac-
tor of its runtime. In such cases we may express the running time of A using
the O∗-notation which suppresses factors polynomial in the input size. A running
time O∗(f(k)) means that the running time is bounded by f(k) ·nO(1) where n is
the input size.

To exclude the existence of an FPT algorithm for some problem, we will need
the notion of a parameterized reduction. Let A, B ⊆ Σ∗×N be two parameterized
problems. A parameterized reduction from A to B is an algorithm that, given an
instance (x, k) of A, outputs an instance (x′, k′) of B such that

• (x, k) is a YES instance of A if and only if (x′, k′) is a YES instance of B,

• k′ ≤ g(k) for some computable function g, and
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• the running time is f(k) · |x|O(1) for some computable function f .

Analogous to the NP-hardness in classical complexity, the corresponding coun-
terpart in the field of parameterized algorithms is W[1]-hardness. Under the
standard assumption FPT ̸= W[1], if there is a parameterized reduction from a
W[1]-hard problem A to problem B, then problem B is also W[1]-hard and it does
not admit an FPT algorithm. For further information about the W[t] hierarchy,
we refer the reader to [CFK+15] and [FG01].

Let us remark that the aforementioned assumption P ̸= NP is not sufficient
to imply that FPT ̸= W[1]. We need a stronger assumption known as Exponen-
tial Time Hypothesis (ETH), first formulated by Impagliazzo and Paturi [IP01],
whose statement follows: Let δ ∈ R be the infimum of the set of of constants c
for which there exists an algorithm solving 3-SAT in time O∗(2cn), then δ > 0.

Approximation algorithms. We follow [Vaz13] and [WS11] for the standard
definitions from the field of approximation algorithms.

Before defining an approximation algorithm, we need the notion of an opti-
mization problem. An NP-optimization problem Π consists of:

• A set of valid instances DΠ recognizable in polynomial time.

• Each instance I ∈ DΠ has a set of feasible solutions SΠ(I). We require
that SΠ(I) ̸= ∅ and that every solution s ∈ SΠ(I) is of length polynomially
bounded in I. Furthermore, there is a polynomial algorithm which, given
a pair (I, s), decides whether s ∈ SΠ(I).

• There is a polynomial time computable objective function objΠ that assigns
a nonnegative rational number to each pair (I, s) where I is an instance
and s a feasible solution to I. We may refer to the objective function as
the cost function and denote the cost of a solution by costΠ(I, s). We may
omit the subscript Π or the argument I if they are clear from the context.

• Finally, Π is specified to be either a minimization or maximization problem.

An optimal solution for an instance of a minimization (maximization) problem
is a feasible solution that achieves the smallest (largest) objective function value.
We denote by OPTΠ(I) the cost of the optimal solution of an instance I of the
problem Π. We may omit the subscript Π or the argument I if the problem at
hand or the instance are clear from the context.

Let A be an algorithm for an optimization problem Π with a running time
polynomial in the size of its input. Given an instance I of the problem Π, we
denote by A(I) the cost of the solution output by A on input I. Let α : N →
R+ ∩ [1,∞) be a nondecreasing function of the input size. We say that A is
an α-approximation algorithm for Π if for all instances I of Π we have A(I) ≤
α(|I|) ·OPTΠ(I) when Π is a minimization problem and α(|I|) ·A(I) ≥ OPTΠ(I)
if Π is a maximization problem.

A natural question for any optimization problem is how well we can approxi-
mate it, that is what is the best α ≥ 1 such that there exists an α-approximation
algorithm for it. In some cases, we are able to obtain arbitrarily good approxi-
mation algorithms; a polynomial-time approximation scheme (PTAS) is a family
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of algorithms {Aε}, where there is an algorithm for each constant ε > 0, such
that Aε is a (1+ε)-approximation algorithm. Note that this definition allows Aε

to have running times such as nO(1/ε); if we require the running time to be bounded
by O(nc) for a constant c independent of ε, then the resulting family of algorithms
is called an efficient polynomial-time approximation scheme (EPTAS). Still, the
constant hidden by the big-O notation in the running time of an EPTAS can
depend on ε arbitrarily. If we further restrict the running time of an EPTAS
to be polynomial in 1

ε
, then the resulting family of algorithms is called a fully

polynomial-time approximation scheme (FPTAS).

Parameterized optimization. Given a problem which is W[1]-hard and there
exists a (possibly constant) computable function g of the input size n such that
it does not admit a g(n)-approximation algorithm, we may hope to obtain an
algorithm which combines both approaches to solving it by producing an approx-
imation of the optimum solution in FPT time. We follow [CGG06], [FSLM20]
and [Mar08] for standard definitions from the field of parameterized complexity
and parameterized optimization.

Let Π be an NP-optimization problem with a possibly empty set of feasible
solutions and κ : DΠ → N be a parameterization that assigns a parameter to each
instance of the problem. Let A be an algorithm for an optimization problem Π.
If the set of feasible solutions of an instance is empty, then we allow the behaviour
of A to be undefined. For the rest of this part, assume that the set of feasible
solutions is nonempty. Given an instance I of the problem Π, we denote by A(I)
the cost of the solution output by A on input I. Let α : N → R+ ∩ [1,∞) be
a nondecreasing function of the input size. We say that A is an FPT α-approx-
imation algorithm if for all instances I of Π we have A(I) ≤ α(|I|) · OPTΠ(I)
when Π is a minimization problem and α(|I|) · A(I) ≥ OPTΠ(I) if Π is a maxi-
mization problem, and the running time of A is bounded by f(κ(I)) · |I|O(1) for
some computable function f .

Analogously to polynomial-time approximation schemes, we define a param-
eterized approximation scheme (PAS) to be a family of algorithms {Aε}, where
there is an algorithm for each ε > 0, such that Aε is a (1 + ε)-approximation al-
gorithm with running time f(k, ε) ·ng(1/ε) for some computable functions f and g
where n is the input size and k is the parameter. Note that such an algorithm is
an FPT algorithm only if we treat ε as a constant. To obtain an FPT algorithm
for the case when ε is a parameter, we restrict the running time to f(k, ε) ·nO(1).
The resulting family of algorithms with such a running time is called a efficient
parameterized approximation scheme (EPAS).

1.3 Graph parameters
Treewidth. The following definition of treewidth is given in [CFK+15]. A tree
decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )), where T is a tree whose
every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the fol-
lowing three conditions hold:

(T1) Every vertex of G is in at least one bag, that is ⋃︁t∈V (T ) Xt = V (G).
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(T2) For every (u, v) ∈ E(G), there exists a node t ∈ T such that bag Xt contains
both u and v.

(T3) For every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt}, that is the set
of nodes whose corresponding bags contain u, induces a connected subtree
of T .

To improve comprehensibility, we shall refer to vertices of the underlying tree
as nodes. It follows from the third condition that for all i, j, k ∈ V (T ), if j is
on the path from i to k in T , then Xi ∩Xk ⊆ Xj. The width of a tree decompo-
sition T = (T, {Xt}t∈V (T )) equals maxt∈V (T )(|Xt| − 1), that is, the maximum size
of its bag minus 1. The treewidth of a graph G, denoted by tw(G), is the minimum
possible width of a tree decomposition of G.

If the underlying tree T of a tree decomposition T = (T, {Xt}t∈V (T )) is a
path, then T is called a path decomposition. The width of a path decompo-
sition is the maximum size of its bag minus 1. The pathwidth of a graph G,
denoted by pw(G), is the minimum possible width of a path decomposition of G.
Clearly tw(G) ≤ pw(G) for any graph G.

For algorithmic purposes, it is often more convenient to work with nice tree
decompositions. A rooted tree decomposition (T, {Xt}t∈V (T )) with root r ∈ V (T )
is a nice tree decomposition if each of its leaves ℓ ∈ V (T ) contains an empty bag
(that is Xℓ = ∅) and inner nodes are one of the following three types:

• Introduce node: a node t with exactly one child t′ such that Xt = Xt′∪{u}
for some vertex u ̸∈ Xt′ . We say that u is introduced at t.

• Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {v}
for some vertex v ∈ Xt′ . We say that v is forgotten at t.

• Join node: a node t with exactly two children t1, t2 such that Xt = Xt1 =
Xt2 .

It is known that if graph G admits a tree decomposition of width at most k,
then it also admits a nice tree decomposition of width at most k. Further-
more, given a tree decomposition T = (T, {Xt}t∈V (T )) of G of width at most k,
one can in O(k2 ·max(|V (T )| , |V (G)|)) time compute a nice tree decomposition
of G of width at most k that has at most O(k |V (G)|) nodes, for more details,
see [CFK+15, Lemma 7.4]. For this reason, we shall always assume without loss
of generality, that input tree decompositions of our algorithms are nice. By Vt

we denote vertices which appear in bags in the subtree rooted at the vertex
corresponding to Xt and by G[Xt] and G[Vt] we denote the subgraph induced
by vertices in bag Xt and vertices Vt respectively.

Doubling dimension. We recall the definition of doubling dimension.

Definition 2 ([GKL03]). The doubling constant of a metric space (X, dist) is
the smallest value λ such that every ball in X can be covered by λ balls of half
the radius. The doubling dimension of X is then defined as dd(X) = log2 λ.
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Highway dimension We dedicate this section to various definitions of high-
way dimension, relations between the definitions and other graph parameters.
The notion of highway dimension is motivated by the observation of Bast et
al. [BFM06, BFM+07] that in road networks, all shortest paths leaving a cer-
tain region pass through one of a small number of vertices. There are multiple
definitions capturing the notion of highway dimension, we list them all for com-
pleteness.

The first definition of highway dimension can be found in [AFGW10]. We
recall the definition from the introduction.
Definition 1 ([FFKP18]). Let G = (V, E) be an undirected graph with edge
lengths d : E → R+

0 . The highway dimension of G is the smallest integer h such
that, for some universal constant γ ≥ 4, for any radius r ∈ R+, and any vertex u
there is a hitting set Z ⊆ Bu(γr) of size h for the set of all shortest paths π
satisfying d(π) > r and π ⊆ Bu(γr).

The second definition of highway dimension, which uses a closely related no-
tion of shortest path covers, appears in [ADF+11], we give a slightly more compact
formulation from [Fel19].
Definition 8 ([ADF+11, Fel19]). Let G = (V, E) be an undirected graph with
edge lengths d : E → R+

0 . For a constant scale r ∈ R+, let P(r,2r] ⊆ 2V contain
all vertex sets given by shortest paths in G whose lengths lie in the interval (r, 2r].
A shortest path cover spc(r) ⊆ V is a hitting set for the set system P(r,2r], i.e.
for each π ∈ P(r,2r] we have π ∩ spc(r) ̸= ∅. We call the vertices in spc(r)
hubs. A hub set spc(r) is called locally h-sparse, if for every vertex v ∈ V
the ball Bv(2r) of radius 2r around v contains at most h hubs. The highway
dimension of G is the smallest integer h such that there is a locally h-sparse
shortest path cover spc(r) for every scale r ∈ R+ in G.

The third definition of highway dimension, which also appears in [ADF+16],
uses a notion of r-significant shortest paths.
Definition 9 ([ADF+16]). Given a shortest path π = (v1, . . . , vk) and r > 0,
an r-witness path π′ is a shortest path with length more than r such that π′ can be
obtained from π by adding at most one vertex to each end. That is, either π′ = π,
or π′ = (v0, v1, . . . , vk), or π′ = (v1, . . . , vk, vk+1), or π′ = (v0, v1, . . . , vk, vk+1).
If π has an r-witness path π′ it is said to be r-significant and π is (r, d)-close to
a vertex v if dist(π′, v) ≤ d. The highway dimension of a graph G is the smallest
integer h such that for all r > 0 and v ∈ V , there is a hitting set of size at most h
for the r-significant paths that are (r, 2r)-close to v.

We denote highway dimensions according to Definitions 1, 8 and, 9 as hd1,
hd2 and hd3 respectively. Feldmann et al. [FFKP18] have shown that hd1 ≤
hd3(hd3 + 1). Blum [Blu19] has shown that

• hd2 ≤ hd1 and hd3 ≤ hd2,

• all stated definitions of highway dimension are incomparable to treewidth,

• hd1 and hd2 are incomparable to doubling dimension.
Feldmann et al. [FFKP18] have also shown that computing hd1 and hd2 is

NP-hard and Blum [Blu19] has shown that computing hd3 is NP-hard.
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2. k-Center with Outliers
Let us recall the definition of the k-Center with Outliers (kCwO) problem.
As input we receive a graph G = (V, E) with positive edge lengths d : E → R+,
and integers k ∈ N and p ∈ N0. A feasible solution is a set of vertices C ⊆ V
of size |C| ≤ k. The cost of a solution C is

cost(C) = min
V ′⊆V

|V ′|≥n−p

max
u∈V ′

dist(u, C)

over all subsets V ′ ⊆ V of size at least n − p. The objective is to find a feasible
solution of minimum cost. Note that setting p = 0 yields the original k-center
problem.

2-center solution 2-center solution with three outliers

Figure 2.1: An example to illustrate how allowing outliers may yield a solution
of a lower cost. Dots and boxes are the points of the metric. Boxes are the
selected centers and the circles centered at them depict the points they cover.

In some cases it is more convenient to work with the decision variant of
kCwO. The input of the decision variant of kCwO has an additional integer ϱ
and our goal is to decide whether there exists a feasible solution of cost at most ϱ.
If we can solve the decision variant of kCwO, we can solve the optimization ver-
sion as follows. By definition of the problem, the cost of the optimum solution is
equal to the distance between some pair of vertices. Let d1 < d2 < · · · < dℓ be
all inter-vertex distances of G. We gradually apply the algorithm for the decision
variant with costs d1, d2, . . . , dℓ and the cost of the first YES instance is the cost
of the optimum solution.

Hochbaum and Shmoys [HS86] have shown that for any ε > 0 it is NP-hard
to (2− ε)-approximate the k-Center problem. As k-Center with Outliers
is a generalization of k-Center, the same hardness result applies. The hardness
result for the kCwO problem is matched by 2-approximation algorithms for this
problem: there are two different approaches by Chakrabarty et al. [CGK16] and
Harris et al. [HPST19].

2.1 3/2-approximation algorithm for low high-
way dimension graphs

In this section we extend the FPT 3
2 -approximation algorithm for the k-Center

problem given by Feldmann [Fel19] to obtain an FPT 3
2 -approximation algorithm
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for kCwO. For this algorithm, we use Definition 1 of highway dimension. Let us
recall the main result of this section

Theorem 3. Let I = (G, k, p) be an instance of the k-Center with Outliers
problem where G has highway dimension h. There exists an algorithm that outputs
a solution of cost at most 3

2OPT(I) in time 2O(k(h log h)+p) · nO(1).

Feldmann [Fel19] observes that the vertices of low highway dimension graphs
are highly structured for any scale r. To describe the structure, we need the
following definition.

Definition 10 ([Fel19, Definition 3]). Let G = (V, E) be a graph, r ∈ R+ be
a fixed constant, and spc(r) ⊆ V be a fixed shortest path cover for scale r.
We call an inclusion-wise maximal set T ⊆ {v ∈ V : dist(v, spc(r)) > r}
with dist(u, w) ≤ r for all u, w ∈ T a cluster, and we denote the set of all
clusters by T . The non-cluster vertices are those which are not contained in any
cluster of T .

Informally speaking, for a fixed scale r ∈ R+ we group vertices which are at
distance more than r from their nearest hub into (inclusion-wise maximal) clusters
of diameter at most r. Vertices which do not lie in clusters are at distance at
most r from their nearest hub. Additionally he [Fel19] observes that clusters must
be at distance more than 2r from each other. The following lemma formalizes
the structure of cluster and non-cluster vertices, the proof of which can be found
in [Fel19]. Note that the first two properties of the lemma follow directly from
Definition 10. For an illustration, see Figure 2.2.

Lemma 11 ([Fel19, Lemma 4]). Let T be the cluster set for a scale r ∈ R+

and a shortest path cover spc(r). For each non-cluster vertex u, dist(u, spc(r)) ≤
r. The diameter of any cluster T ∈ T is at most r, and dist(T, T ′) > 2r
for any distinct pair of clusters T, T ′ ∈ T .

> 2r

≤ r

> r

Figure 2.2: An example of a separation of a graph into clusters and non-clusters
given by a shortest path cover for some scale r. Clusters (full circles) are far from
each other, have a small diameter, and are far from hubs (crosses).
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Overview of the original algorithm. Let us give an overview of the algo-
rithm of Feldmann [Fel19]. Let T ⊆ V be a cluster as defined in Definition 10.
A set of vertices C covers T with balls of radius r if T ⊆ ⋃︁

c∈C Bc(r). Let C∗

be an optimum solution of cost ϱ of a k-Center instance (G, k). First he de-
fines C∗

1 ⊆ C∗ to be the set of non-cluster centers, i.e. C∗
1 = C∗ ∩ (V \ {v ∈

T : T ∈ T }). The algorithm computes a 3
2 -approximate center set C1 such

that ⋃︁c∈C∗
1

Bc(ϱ) ⊆ ⋃︁
c∈C1 Bc(3

2ϱ), that is, every vertex covered by C∗
1 is covered

by C1. Using the computed set C1, he defines C∗
2 ⊆ C∗ to be the set of cen-

ters which lie in clusters and cover all clusters uncovered by the approximate
center set C1. Then the algorithm computes an approximate center set C2 such
that ⋃︁c∈C∗

2
Bc(ϱ) ⊆ ⋃︁c∈C2 Bc(3

2ϱ). Finally, the subset C∗
3 ⊆ C∗ is the set of centers

which lie in clusters and cover the remaining vertices uncovered by C1 and C2.
For i ∈ {1, 2, 3} we denote R∗

i the region covered by centers C∗
i by balls of ra-

dius ϱ, that is R∗
i = ⋃︁

c∈C∗
i

Bc(ϱ). Analogously, we denote Ri the region covered
by centers Ci by balls of radius 3

2ϱ where the 3
2 factor comes from the approxi-

mation ratio. Using this notation, we have R∗
1 ⊆ R1 and R∗

2 ⊆ R2. Note that the
sets C∗

1 , C∗
2 , and C∗

3 are disjoint.
We briefly sketch how the approximate sets of centers Ci are computed. The

algorithm starts by guessing the cost ϱ of the optimum solution by trying all
inter-vertex distances in increasing order. Assume that the algorithm guesses the
cost of the optimum solution and let r = 1

2ϱ, spc(r) be the shortest path cover for
scale 1

2ϱ, and s be the local sparsity of spc(r). Since C∗
1 are non-cluster vertices,

from Lemma 11 for each c ∈ C∗
1 we have dist(c, spc(r)) ≤ 1

2ϱ. The algorithm
guesses a minimum sized subset of hubs H ⊆ spc(r) such that C∗

1 ⊆
⋃︁

h∈H Bh(1
2ϱ)

and sets C1 = H. Observe that if the guess is correct, then we have R∗
1 ⊆ R1.

To bound the running time incurred by guessing H, Feldmann [Fel19] shows the
following lemma.

Lemma 12 ([Fel19, Lemma 5]). Let ϱ be the optimum cost of the k-Center
problem in a given instance G. If a shortest path cover spc(1

2ϱ) of G for scale ϱ

is locally s-sparse, then
⃓⃓⃓
spc(1

2)
⃓⃓⃓
≤ ks.

The algorithm skips the current guess of optimum cost if |spc(r)| > ks, where s
is the local sparsity of spc(r), in accordance with Lemma 12. Let U be the set of
clusters which are not fully covered by R1, that is U = {T ∈ T : T \R1 ̸= ∅}. The
next goal of the algorithm is to cover U . Lemma 11 shows that the diameter of
each cluster is at most r = 1

2ϱ and that the distance between any pair of clusters
is more than 2r = ϱ. The second property implies that to cover a cluster T ∈ U
it must contain a center and the first property shows that picking any vertex
of T as a center covers T entirely. As such the algorithm picks C2 by selecting
an arbitrary vertex in each cluster of U . Let us remark that the existence of the
optimum solution guarantees |U| ≤ k. Finally to cover the remaining vertices,
the algorithm computes C3 by solving a certain instance of Set Cover.

The following definition of the Set Cover problem appears in [WS11]. The
input to the Set Cover problem is a ground set of elements U = {e1, . . . , en}
and some subsets of those elements S = {S1, . . . , Sm} where each Si ⊆ U . The
goal is to find a minimum sized collection of subsets S that covers U ; that is, we
wish to find a minimum sized set I ⊆ {1, . . . , m} such that ⋃︁i∈I Si ⊇ U . It is
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known that Set Cover can be solved in time 2|U |(|U | + |S|)O(1). We will need
a more concrete result for this problem, as such we state the theorem formally.

Theorem 13 ([CFK+15], [FKW04]). Given a set system (U,S) we can compute
a table T which for any subset U ′ ⊆ U contains the smallest set cover for (U ′,S)
in the entry T[U ′]. For any subset U ′ ⊆ U , the optimum set cover for U ′ can be
retrieved in constant time from T and T can be computed in time 2|U |(|U |+|S|)O(1).

The algorithm

Now we turn to describing our algorithm. Refer to Algorithm 1 for a description
using pseudocode. Let (G, k, p) be an instance of the kCwO problem, and C∗

be an optimum solution of cost ϱ which covers the subset of vertices V ∗ ⊆ V of
size at least n − p. For a fixed shortest path cover spc(1

2ϱ), let T be the set of
clusters induced by spc(1

2ϱ). Let T ∗ be the set of clusters fully covered by C∗,
i.e. T ∗ = {T ∈ T : T \⋃︁c∈C∗ Bc(ϱ) = ∅}. Similarly to the analysis of the original
algorithm, we will separate C∗ into disjoint sets C∗

1 , C∗
2 , and C∗

3 and we will also
compute three sets of approximate centers C1, C2, and C3. For i ∈ {1, 2, 3} we
denote R∗

i the region covered by balls of radius ϱ around centers in C∗
i and Ri

the region covered by balls of radius 3
2ϱ around centers in Ci. The set C∗

1 consists
of non-cluster centers of C∗, that is C∗

1 = C∗ ∩ (V \ {v ∈ T : T ∈ T }). We will
compute an approximate center set C1 such that R∗

1 ⊆ R1. Then the set C∗
2 is

the set of centers which lie in clusters and cover those clusters of T ∗ that are not
fully covered by C1 and C∗

3 is the set of remaining centers C∗ \ (C∗
1 ∪ C∗

2).
Similar to the k-Center algorithm, we will need to bound the size of the

shortest path cover for scale 1
2ϱ. For that purpose, we present the following

lemma.

Lemma 14. Let (G, k, p) be an instance of the kCwO problem and ϱ its optimum
cost. If a shortest path cover spc(1

2ϱ) of G is locally s-sparse, then
⃓⃓⃓
spc(1

2ϱ)
⃓⃓⃓
≤

ks + p.

Proof. The optimum solution C∗ covers the set of vertices V ∗ ⊆ V of size
at least n− p by k balls of radius ϱ. The set V ∗ is given by ⋃︁c∈C∗ Bc(ϱ). By Def-
inition 8 and the local sparsity of the shortest path cover, each ball of the op-
timum solution centered at a vertex of C∗ can contain at most s hubs. This
gives

⃓⃓⃓
spc(1

2ϱ) ∩ V ∗
⃓⃓⃓
≤ ks. All hubs which lie in V ∗ have been accounted for, it

remains to bound the number of hubs in V \ V ∗. Since V ∗ are vertices covered
by the optimum solution, we must have

⃓⃓⃓
spc(1

2ϱ) ∩ (V \ V ∗)
⃓⃓⃓
≤ |V \ V ∗| ≤ p. In

total we have
⃓⃓⃓
spc(1

2ϱ)
⃓⃓⃓

=
⃓⃓⃓
spc(1

2ϱ) ∩ V ∗
⃓⃓⃓
+
⃓⃓⃓
spc(1

2ϱ) ∩ (V \ V ∗)
⃓⃓⃓
≤ ks + p.

Computing a shortest path cover. We guess the cost of the optimum solu-
tion by trying all

(︂
n
2

)︂
inter-vertex distances in increasing order. For each guess ϱ′

we set scale r = 1
2ϱ′ and compute a shortest path cover spc(r). Abraham et

al. [ADF+11] have shown that given a graph of highway dimension h accord-
ing to Definition 1, one can compute a locally O(h log h)-sparse shortest path
cover in polynomial time assuming there is a unique shortest path between each
pair of vertices. Folklore results [ADF+11] show that this assumption can be
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made without loss of generality, as one can perturb the input to ensure unique-
ness. Therefore for s = O(h log h) we compute a locally s-sparse shortest path
cover spc(r) in polynomial time. To keep the running time of the algorithm low,
we check that the size of the shortest path cover is not too large. In particular, by
Lemma 14 if it is the case that |spc(r)| > ks + p, then we know that the current
guess ϱ′ cannot be the cost of the optimum solution and we proceed to the next
guess. For the rest of this section, assume that we have found the optimum cost ϱ.

Computing C1. Computing C1 will be done identically to the original algo-
rithm. Recall that C∗

1 are non-cluster centers. By Lemma 11, for each cen-
ter c ∈ C∗

1 there exists a hub h ∈ spc(1
2ϱ) such that dist(h, c) ≤ 1

2ϱ. We guess
a minimum sized subset of hubs H ⊆ spc(1

2ϱ) such that C∗
1 ⊆

⋃︁
h∈H Bh(1

2ϱ)
and choose H to be the first set of approximate centers C1.

We have |C1| ≤ |C∗
1 | since we choose a minimum sized subset of hubs such that

there is a hub h ∈ H at most 1
2ϱ away from each center of C∗

1 . To obtain R∗
1 ⊆ R1

we show that for each vertex u ∈ R∗
1 we also have u ∈ R1. Consider an optimum

center c ∈ C∗
1 such that u ∈ Bc(ϱ). By our choice of H there exists a hub h ∈

H such that dist(h, c) ≤ 1
2ϱ. Using triangle inequality we have dist(h, u) ≤

dist(h, c) + dist(c, u) ≤ 3
2ϱ and it follows that R∗

1 ⊆ R1.

Computing C2. By the definition of C∗
1 we know that centers C∗ \ C∗

1 lie in
clusters. At this point our algorithm will diverge from the original algorithm since
in the k-Center problem all clusters must be covered, but this is not necessarily
the case for kCwO as some cluster vertices may be outliers.

Let U = {T ∈ T : T \ R1 ̸= ∅}, that is the set of clusters uncovered by C1,
and similarly for the optimum solution let U∗ = {T ∈ T : T \R∗

1 ̸= ∅}. It follows
from R∗

1 ⊆ R1 that U ⊆ U∗. Let us examine how the optimum solution C∗ inter-
acts with the uncovered clusters U∗, and in particular how it covers clusters T ∗.
From Lemma 11 we have that the distance between any pair of clusters is more
than ϱ. Consider an optimum center c ∈ C∗

2 placed in a cluster T ∈ T and
let T ′ ∈ T be another cluster distinct from T , then it follows from the lemma
that Bc(ϱ)∩T ′ = ∅. We can conclude that to cover clusters T ∗, the optimum so-
lution opens at least one center in each cluster of T ∗. Lemma 11 also shows that
the diameter of any cluster is at most 1

2ϱ, therefore any cluster can be entirely
covered by opening a single center inside it. On the contrary, if v is an outlier in
the optimum solution and v lies in cluster T ′ ∈ T , then T ′ cannot contain a center
of the optimum solution. As a consequence, all vertices of T ′, aside from those
already covered by C∗

1 , are outliers as well. Clusters are non-empty by definition,
hence we obtain |T \ T ∗| ≤ p, i.e., in the optimum solution at most p clusters
can contain outliers. The optimum solution uses at most k centers, thus giving
us |U| ≤ |U∗| ≤ k + p.

The algorithm first checks whether |U| ≤ k + p. If this is not the case, then
we know that the preceding guess of set H is incorrect and we continue to the
next one. The algorithm computes the set C2 by guessing which clusters of U
are covered in the optimum solution and picks an arbitrary vertex in each of the
guessed clusters as the set C2. If the number of cluster vertices we decide not to
cover exceeds p, then we must reject the current guess. Note that the algorithm
must cover all clusters T ∈ T which have more than p uncovered vertices by C1,
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i.e., if |T \R1| > p, otherwise the solution would contain more than p outliers.
Let T ∈ T ∗ be a cluster covered by the optimum solution and C ′ = C∗ ∩ T , that
is the set of optimum centers which lie in cluster T , then from the upper bound
of 1

2ϱ on the diameter of a cluster it follows that ⋃︁u∈C′ Bu(ϱ) ⊆ Bv(3
2ϱ) for any

vertex v ∈ T , hence we have R∗
2 ⊆ R2 and |C2| ≤ |C∗

2 |.

Computing C3. Let us summarize our progress so far and recall some impor-
tant properties for computing C3. In the previous steps we computed center
sets C1 and C2. The region these approximate center sets cover is a superset of
the region covered by their optimum counterparts, i.e., R∗

1 ⊆ R1 and R∗
2 ⊆ R2.

These approximate centers also cover the set T ∗ of clusters covered by the op-
timum solution, hence we can conclude that the remaining vertices covered by
the optimum solution V ∗ \ (R1 ∪ R2) are non-cluster vertices. Additionally, by
the definition of C∗

1 we know that C∗
3 are cluster vertices. We will compute a

set C3 which covers the remaining vertices V ∗ and |C3| ≤ |C∗
3 |. Note that since

sets C∗
1 , C∗

2 and C∗
3 are disjoint, the upper bounds on the sizes of the approximate

center sets show that |C1 ∪ C2 ∪ C3| ≤ k.
Let V ′ = V ∗ \ (R1 ∪ R2). Our goal is to compute a set of centers C3 such

that V ′ ⊆ ⋃︁c∈C3 Bc(3
2ϱ) and |C3| ≤ |C∗

3 |. We guess the set of hubs H ′ ⊆ (spc(1
2ϱ)\

H) that lie in region R∗
3. The set H is excluded because we are looking for hubs

at distance at most 1
2ϱ from vertices in R∗

3, which are not yet covered by our
solution R1 ∪ R2, however, vertices close to H are already covered by C1. Then
we compute a center set C3 of minimum size such that H ′ ⊆ ⋃︁

c∈C3 Bc(ϱ). We
achieve this by reducing covering H ′ to the Set Cover problem with fixed
universe size.

We construct the following Set Cover instance: the universe U consists of
hubs spc(1

2ϱ) and the set system is defined as S = {Bv(ϱ) ∩ spc(1
2ϱ) : (∃T ∈

T )(v ∈ T )}, i.e., balls around cluster vertices of radius ϱ restricted to hubs. To
optimize the running time of the algorithm, we can precompute the table T given
by Theorem 13 before computing C1 and in particular before guessing set H. As
a result, we obtain a table T from which we can obtain an optimum center set for
covering any subset of hubs by balls around cluster vertices. As the next lemma
shows, we obtain the required properties for C3. This lemma is identical to the
one used by the original algorithm [Fel19]. Moreover, its proof applies for our
problem without any modifications.

Lemma 15 ([Fel19, Lemma 7]). Assume the algorithm guessed the cost of the
optimum solution ϱ, the correct scale r = 1

2ϱ, and the correct sets H and H ′.
Let C3 = {v ∈ ⋃︁T ∈T T : Bv(ϱ) ∩ spc(r) ∈ T[H ′]}, that is vertices which induce
the sets covering H ′. Then it holds that H ′ ⊆ ⋃︁v∈C3 Bv(ϱ) and |C3| ≤ |C∗

3 |.

It remains to show that our solution is a feasible solution to the given kCwO
instance, which we show in the next lemma. In particular, we need to show that
we cover at least n− p vertices and to prove this it is sufficient to show that we
cover all vertices V ∗. Up to some technicalities, the proof of our lemma is identical
to the one used in the original algorithm, cf. [Fel19, Lemma 8]. Nevertheless, since
the proof of the lemma is one of the main technical difficulties of the algorithm,
we present the entire proof.
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Lemma 16 ([Fel19, cf. Lemma 8]). Assume the algorithm guessed the correct
scale r = 1

2ϱ and the correct sets H and H ′. The approximate center sets C1, C2
and C3 cover vertices V ∗, i.e., (R1 ∪R2 ∪R3) ⊇ V ∗.

Proof. We prove the lemma by contradiction. Refer to Figure 2.3 for an illustra-
tion of some bounds on the distances we will derive in this proof. Recall that V ∗

is the set of vertices covered by the optimum solution C∗. Assume there exists a
vertex v ∈ V ∗ which is not covered by our solution, i.e. v ̸∈ R1 ∪ R2 ∪ R3. We
have already argued that all clusters T ∗ are covered by centers C1 and C2, thus v
is a non-cluster vertex. We will identify a hub y ∈ spc(1

2ϱ) on the shortest path
between v and an optimum center c ∈ C∗ which covers v. We will show that this
hub lies in H ′, which in turn means that v lies in R3, since v will turn out to be
close to y.

To show the existence of y, we begin by arguing that the closest hub x ∈
spc(1

2ϱ) to v is neither in H or H ′. Lemma 11 shows that dist(x, v) ≤ 1
2ϱ,

hence x ∈ H would imply that v is be covered by our solution, since H is precisely
the first set of approximate centers C1. Suppose that x ∈ H ′. By Lemma 15
there exists a center c ∈ C3 such that dist(c, x) ≤ ϱ. Using triangle inequality we
have dist(c, v) ≤ 3

2ϱ. Thus x ̸∈ H ∪H ′.
From the assumption v ∈ V ∗, there exists an optimum center w ∈ C∗ such

that v ∈ Bw(ϱ). Optimum center w must be an element of center set C∗
3 since v ̸∈

R1 ∪ R2 and we have R∗
1 ⊆ R1 and R∗

2 ⊆ R2. We defined H ′ as the set of hubs
that are at distance at most ϱ from the set C∗

3 , and so that H∩H ′ = ∅. Since x ̸∈
H ∪H ′, we have dist(x, w) > ϱ. From the definition of non-cluster vertices and
from x being the closest hub to v, we have dist(x, v) ≤ 1

2ϱ and dist(v, w) > 1
2ϱ.

In the optimum solution, center w covers v, hence we get dist(v, w) ≤ ϱ. Putting
these bounds together, we have 1

2ϱ < dist(v, w) ≤ ϱ which implies that there
must exist a hub y ∈ spc(1

2ϱ) which hits the shortest path between v and w.
From the upper bound dist(v, w) ≤ ϱ we obtain dist(v, y) ≤ ϱ and dist(y, w) ≤ ϱ.
We assume that vertex v is not covered by our solution, then we have y ̸∈ H,
otherwise the bound dist(v, y) ≤ ϱ would imply that v ∈ R1. However, hub y
not being an element of H combined with the bound dist(y, w) ≤ ϱ and w ∈ C∗

3
shows that y ∈ H ′.

Since w is a cluster vertex, we have dist(y, w) > 1
2ϱ by Lemma 11. This

implies dist(v, y) < 1
2ϱ. However, this means that v ∈ By(1

2ϱ) which gives v ∈ R3
since y ∈ H ′ and in particular dist(y, C3) ≤ ϱ. This contradicts the assumption
that v was not covered by the approximate center set.

To check if the solution we compute is feasible, it must hold that n − p ≤
|R1 ∪R2 ∪R3|. Lemma 16 proves correctness of the algorithm, to prove Theo-
rem 3, it remains to bound its running time.

Proof of Theorem 3. The correctness of Algorithm 1 is proved by Lemma 16,
it remains to bound the running time of the algorithm. It is clear that the
preprocessing outside the main loop requires polynomial time. The first nontrivial
step of the algorithm happens on line 5. Abraham et al. [ADF+11] have shown
that one can compute a locally O(h log h)-sparse shortest path cover for graphs of
highway dimension h in polynomial time assuming there is a unique shortest path
between every pair of vertices. Filling table T on line 10 requires time O∗(2ks+p)
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Figure 2.3: The situation in the proof of Lemma 16. Vertex w lies in a cluster,
vertex v and hubs x, y are non-cluster vertices. The figure shows some of the
bounds on the distances between vertices in the figure.

by Theorem 13 and the same theorem shows that retrieving a solution on line 19
requires constant time. Lemma 14 and the check on line 6 guarantees that shortest
path cover spc(r) has size at most ks + p. On lines 11 and 18 we guess hub
sets H and H ′ respectively. Since H ′ is disjoint from H by definition, sets H
and H ′ are disjoint subsets of spc(r). Thus guessing the sets H and H ′ takes
time O∗(3ks+p), each hub is either in H or in H ′ or neither of them. The check
on line 15 guarantees that guessing U ′ takes time O∗(2k+p). The remaining steps
of the algorithm can all be performed in polynomial time. In total, the algorithm
takes time O∗(2O(ks+p)) where s = O(h log h), hence the claimed running time
follows.
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Algorithm 1: fixed parameterized 3
2 -approximation algorithm

for kCwO in low highway dimension graphs
Input: Graph G of highway dimension h with optimum kCwO cost ϱ
Output: a kCwO solution C of cost at most 3

2ϱ

1 s← O(h log h) // local sparsity of a polynomially computable
shortest path cover

2 A← sort({dist(u, v) : u, v ∈ V }) // sorted inter-vertex distances
in non-decreasing order

3 for i← 0 to
(︂

n
2

)︂
− 1 do

4 r ← 1
2A[i]

5 compute a locally s-sparse spc(r) and obtain a cluster set T
6 if |spc(r)| > ks + p then // too many hubs means r ̸= 1

2ϱ
7 continue
8 V (T )← ⋃︁

T ∈T T
9 S ← ⋃︁

v∈V (T ){Bv(ϱ) ∩ spc(r)} // the set system given by hubs
in balls of radius ϱ around cluster vertices

10 T← SetCoverDP(spc(r),S) // lookup table T contains an
optimum set cover for each subset of the universe spc(r)

// guess the minimum sized set of hubs covering
non-cluster centers

11 foreach H ⊆ spc(r) do
12 C1 ← H
13 R1 ←

⋃︁
c∈C1 Bc(3r)

14 U ← {T ∈ T : T \R1 ̸= ∅}
15 if |U| > k + p then continue // too many uncovered

clusters means r ̸= 1
2ϱ

// guess which clusters of U are covered by C∗

16 foreach U ′ ⊆ U do
17 C2 ← an arbitrary vertex from each cluster in U ′

// cover the remaining vertices of V ∗ by reducing
to Set Cover

18 foreach H ′ ⊆ (spc(r) \H) do
19 C3 ← {v ∈ V (T ) : Bv(2r) ∩ spc(r) ∈ T[H ′]}
20 C ← C1 ∪ C2 ∪ C3
21 R← ⋃︁

c∈C Bc(3r)
// check if the current solution is feasible

22 if |C| ≤ k and |R| ≥ n− p then return C
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3. k-Supplier with Outliers
Let us start by recalling the definition of the k-Supplier with Outliers
(kSwO) problem. The input is specified by a graph G = (V, E) with posi-
tive edge lengths d : E → R+, a set of suppliers Vs ⊆ V , a set of clients Vc ⊆ V ,
and integers k ∈ N and p ∈ N0. A feasible solution is a subset of suppliers of size
at most k. The cost of a feasible solution S is

cost(S) = min
V ′

c ⊆Vc
|V ′

c |≥n−p

max
u∈V ′

c
dist(u, S)

where V ′
c are subsets of clients of size at least n− p. Clients Vc \ V ′

c that are not
covered by the solution are called outliers. The goal is to find a feasible solution
of minimum cost.

To simplify algorithm descriptions, we will require that Vs ∩ Vc = ∅. In our
setting, vertices which are neither clients nor customers do not affect the cost of a
solution. Their sole purpose is to enforce additional structure on the input graph,
i.e., once we compute the shortest-path metric of the entire graph, we can discard
them and solve the problem on the remaining metric given by the clients and the
suppliers. Thus in our algorithms, we will tacitly assume that every vertex is
either a client or a supplier.

In some cases it might be more convenient to work with the decision version
of the k-Supplier problem. In such cases, the input contains an additional
value ϱ ∈ R+

0 and our goal is to decide whether there exists a feasible solution
of cost at most ϱ. From the definition of the problem it is immediate that the
cost of the optimum solution must be one of the distances between a client and a
supplier. Thus the same approach of using an algorithm for the decision variant
of the kCwO problem to solve the optimization variant of the kCwO problem,
which we described in the previous chapter, can be used for the k-Supplier
problem.

Hochbaum and Shmoys [HS86] have shown that the k-Supplier problem
cannot be (3− ε)-approximated for any ε > 0 and they have also shown a match-
ing 3-approximation algorithm in the same work. As the k-Supplier problem
is a generalization of the k-Center problem, all parameterized hardness results
for k-Center apply for k-Supplier as well.

3.1 EPAS for low treewidth graphs
In this section we present an FPT approximation scheme for the kSwO prob-
lem on low treewidth graphs. To simplify the exposition, we restrict ourselves to
instances with integral edge lengths. The properties of the algorithm are sum-
marized by the following theorem.

Theorem 17. Let I = (G, k, p) be an instance of the kSwO problem, T =
(T, {Xi}i∈V (T )) a nice tree decomposition of width tw of G, ϱ a integral cost,
and ε > 0. There exists an algorithm which either

• returns a solution of cost (1 + ε)ϱ of the instance I if there exists a feasible
solution of cost ϱ, or
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• correctly determines that there is no feasible solution of cost ϱ,

running in time O∗
(︂
( tw

ε
)O(tw)

)︂
.

Our algorithm extends the FPT approximation scheme for the k-Center
problem by Katsikarelis et al. [KLP19]. They use a technique introduced by
Lampis [Lam14] to approximate problems which are W[1]-hard parameterized by
treewidth. He [Lam14] observes that the hardness of such problems “intuitively
stems from the fact that large integers need to be stored in the dynamic program-
ming table.” In the case of the algorithm of Katsikarelis et al. [KLP19], these
are distances of vertices to their nearest opened center. In our case, these will be
distances of vertices to their nearest opened supplier. The idea of the technique of
Lampis [Lam14] is the following: Instead of storing integers in the dynamic pro-
gramming table, we fix a parameter δ > 0 and represent all integers in {1, . . . , r}
by rounding them to the closest integer power of (1 + δ). It is shown in [Lam14]
that for an appropriate selection of δ, the size of the dynamic programming table
is reduced from rtw to (log r)O(tw). He [Lam14] then points out that “during the
process of running a dynamic programming algorithm on the approximate values
the rounding errors will propagate and potentially pile up to a large error.” In the
analysis of the original algorithm of Katsikarelis et al. [KLP19], it is shown that
these errors in a dynamic programming table can be bounded by a function only
in the height of the node of the bag corresponding to the table. We will extend
this analysis to our problem as well. In the original algorithm [KLP19], using
a result of Bodlaender and Hagerup [BH98], the provided tree decomposition is
balanced so that its height is O(log |V (T )|) while increasing the width only by a
constant factor.

We start by describing an exact FPT algorithm for the kSwO problem pa-
rameterized by treewidth of the input graph. This algorithm is an extension of an
exact FPT algorithm for the k-Center problem [KLP19, Theorem 27]. We will
later transform this exact algorithm into an approximation scheme with running
time independent from ϱ. The properties of the exact algorithm are summarized
by the following theorem.

Theorem 18. There exists an algorithm which for a given kSwO instance I =
(G, k, p) such that graph G has treewidth tw and cost ϱ ∈ N decides whether I
has a feasible solution of cost ϱ running in time O∗

(︂
ϱO(tw)

)︂
.

We give an equivalent formulation of the kSwO problem which is more con-
venient for our purposes. Let (G, k, p) be an instance of the kSwO problem
where G = (V, E) has edge lengths d : E → N and vertices are partitioned
into clients Vc and suppliers Vs. A distance labelling function of G is a func-
tion dl : V → {0, . . . , ϱ} ∪ {∞}. Only a supplier can have label 0. We say that
a vertex u ∈ V is satisfied by dl if dl(u) = 0 or u has a finite label and there
exists a neighbour v ∈ N(u) such that dl(u) ≥ dl(v) + d(u, v). Given a distance
labelling function dl, if every client is either satisfied or has label∞, then we say
that dl is valid. We define the cost of a distance labelling function dl as

⃓⃓⃓
dl−1(0)

⃓⃓⃓
and the penalty as

⃓⃓⃓
dl−1(∞) ∩ Vc

⃓⃓⃓
. The following lemma shows the equivalence

between the two formulations. A special case of this statement for the k-Center
problem is proved in the original algorithm, cf. [KLP19, Lemma 26].
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Lemma 19. A kSwO instance I = (G, k, p) admits a feasible solution of cost ϱ if
and only if it admits a valid distance labelling function dl : V → {0, . . . , ϱ}∪{∞}
of cost k and penalty p.

Proof. Let S ⊆ Vs be a solution of I of cost ϱ. We construct the required distance
labelling function dl as follows:

1. for each vertex u ∈ V with dist(u, S) ≤ ϱ we set dl(u) = dist(u, S),

2. we set the labels of the remaining vertices to ∞.

It is immediate that the cost of dl is at most k. From the definition of the kSwO
problem it is also clear that outliers are clients whose distance from S exceeds ϱ,
therefore the penalty of dl is at most p. Consider a vertex u ∈ V and a shortest
path π of length at most ϱ between u and its nearest opened supplier s ∈ S.
Let v be the neighbour of u on path π. We have dist(u, s) = d(u, v) + dist(v, s)
and dl(u) = dist(u, s) and dl(v) = dist(v, s), this shows that every vertex and
particularly every client with a finite label is satisfied.

For the opposite direction, let dl be a distance labelling function with prop-
erties given by the lemma statement. We select vertices with label 0 as the
solution S. By definition of a distance labelling function these can only be sup-
pliers. It suffices to show that the distance of vertices with finite labels from S is
at most the value of their label. This is the case because a valid distance labelling
function assigns finite labels to all but (up to) p vertices and the maximum finite
label is ϱ. We prove this claim by induction on label values. The base case is im-
mediate since vertices with label 0 are precisely the solution S. In the induction
step consider a vertex u with a finite label ℓ. Since u is a satisfied vertex, there
exists a neighbour v ∈ N(u) such that dl(u) ≥ dl(v) + d(u, v). As edge lengths
are positive, we have dl(u) > dl(v) and using triangle inequality we obtain

dist(u, S) ≤ dist(u, v) + dist(v, S) ≤ dist(u, v) + dl(v) ≤ dl(u)

where the second inequality follows from the induction hypothesis dist(v, S) ≤
dl(v). This shows that clients with finite labels are covered by the solution S and
since the penalty of dl is at most p, there are at most p outliers. Also the cost
of dl is at most k thus we also have |S| ≤ k.

According to the proven equivalence, we may refer to a client with label∞ as
an outlier and a supplier with label 0 as an opened supplier.

We are ready to prove Theorem 18. The algorithm will be a standard dynamic
programming procedure on a nice tree decomposition of the input graph. As is
customary, let us assume that a nice tree decomposition of the input graph G of
width tw(G) is given as a part of the input.

Proof of Theorem 18. Let T = (T, {Xt}t∈V (T )) be a nice tree decomposition of
the input graph G of width tw(G). For every node of i ∈ V (T ) we maintain a
dynamic programming table

Di :
(︂
(Xi → {0, . . . , ϱ} ∪ {∞})× 2Xi∩Vc × {0, . . . , k} × {0, . . . , p}

)︂
→ {0, 1}.

We may refer to the value 0 in the dynamic programming table as false and to
the value 1 as true. Let i be a node of a nice tree decomposition, recall that Vi is
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the set of vertices u ∈ V (G) such that there exists a bag corresponding to a node
in the subtree rooted at i which contains u. For a distance labelling function dl
of Xi, i ∈ V (T ), a subset of clients S ⊆ Xi ∩ Vc and constants ki and pi the
entry Di[dl, S, ki, pi] is going to be 1 if and only if there exists a distance labelling
function dl∗ of G[Vi] such that:

• dl∗ agrees with dl on Xi, i.e. (∀u ∈ Xi)(dl(u) = dl∗(u)),

• the cost of dl∗ is ki, that is
⃓⃓⃓
dl∗−1(0)

⃓⃓⃓
= ki,

• the penalty of dl∗ is pi, that is
⃓⃓⃓
dl∗−1(∞) ∩ Vc

⃓⃓⃓
= pi,

• aside from clients dl∗−1(∞) ∩ Vc with an infinite label, every client ((Vi \
Xi) ∪ S) ∩ Vc is satisfied.

In combination with Lemma 19, the input admits a feasible solution of cost ϱ
if there exists a distance labelling dlr of the root node r, and constants kr ≤ k
and pr ≤ p such that the entry Dr[dlr, Xr ∩ Vc, kr, pr] has value 1.

To simplify the exposition, assume that every value of the dynamic program-
ming table at each node is initialized to value 0.

Leaf node. For a leaf node ℓ we have Vℓ = ∅. Thus the only table entry which
can have value 1 is Dℓ[dl, ∅, 0, 0] where the domain of dl is an empty set.

Introduce node. Let i be an introduce node with a child node j where Xi =
Xj ∪ {u} and u ̸∈ Xj. Let Dj[dlj, Sj, kj, pj] be an entry of the table of the child
node j with value 1. We construct a distance labelling function dli which agrees
with dlj on Xj and tries all possible values for u. In particular the constructed
distance labelling functions set dli(u) to values {1, . . . , ϱ}∪{∞} and additionally
we try the label 0 for u if u is a supplier. For such a distance labelling function dli
we compute Si to be the set of satisfied clients of Xi as follows. We add the
entire set Sj to Si, we add u to Si if there exists a neighbour v ∈ N(u) so
that dli(u) ≥ dli(v) + d(u, v), and we add neighbours w ∈ N(u) to Si for which
it holds that dli(w) ≥ dli(u) + d(u, w). If dli(u) = 0 and kj ≤ k − 1, then we
set the entry Di[dli, Si, kj + 1, pj] to true. If dli(u) ∈ {1, . . . , ϱ}, then we set the
entry Di[dli, Si, kj, pj] to true. If dli(u) =∞, u ∈ Vc, and pj ≤ p− 1, then we set
the entry Di[dli, Si, kj, pj + 1] to true. If dli(u) =∞ and u ∈ Vs, then we set the
entry Di[dli, Si, kj, pj] to true.

We proceed to showing the correctness. Let ˆ︁dl be a distance labelling function
of G[Vi] with cost ˆ︁k and penalty ˆ︁p such that all clients of Vi\Xi with a finite label
are satisfied. We denote by ˆ︁S the set of clients in Vi satisfied by ˆ︁dl. We want to
show that the algorithm sets the table entry Di[dli, Si, ki, pi] to 1 where dli agrees
with ˆ︁dl on Xi, Si = ˆ︁S ∩Xi, ki = ˆ︁k, and pi = ˆ︁p. By the induction hypothesis this
property holds in the child node, thus there exists an entry Dj[dlj, Sj, kj, pj] with
value 1 where dlj agrees with ˆ︁dl on Xj, Sj = ˆ︁S∩Xj, and the cost and the penalty
of ˆ︁dl restricted to Vj is kj and pj respectively. The algorithm considers a distance
labelling function dli which agrees with dlj on Xj and sets dli(u) = ˆ︁dl(u). We
need to show that the algorithm computes the set Si correctly. Recall that by
property (T3) of tree decompositions we have u ̸∈ Vj. If a client of Xi \ N [u]
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is satisfied by dlj, then it is also satisfied by dli since the label of the neighbour
which satisfies it remains the same. Hence we have Sj ⊆ Si and Si \ Sj ⊆ N [u].
The algorithm handles this by adding the entire set Sj to Si. If u ∈ ˆ︁S, then there
exists a neighbour v ∈ N(u) ∩ Vi such that ˆ︁dl(u) ≥ ˆ︁dl(v) + d(u, v). In particular
this means that there exists a node in a subtree rooted at i whose bag contains v.
We want to show that v ∈ Xi. For a vertex a ∈ V (G), let Ta be the set of nodes
of the tree decomposition T whose bags contain a. For a subset U ⊆ V (T ),
where V (T ) are nodes of the tree decomposition, we denote χ(U) = {Xw : w ∈
U}. By property (T2) of tree decompositions, there must exist a node of T whose
corresponding bag contains both u and v. Thus χ(Tu)∩χ(Tv) ̸= ∅. If it were the
case that v ̸∈ Xi, then a tree decomposition satisfying properties u ∈ Xi, u ̸∈ Xj,
v ∈ Vi, and that there exists a node whose bag contains both u and v necessarily
violates property (T3). We conclude that v ∈ Xi. Since ˆ︁dl agrees with dli,
the algorithm will find v in Xi and add u to Si. For a client w ∈ N(u) ∩Xi, we
have (N(w)∩Xi)\(N(w)∩Xj) = {u}, since i is an introduce node introducing u.
Therefore the only reason why w would be satisfied by dli but not by dlj is that
it is satisfied by u. Then the set Sj is the set Si without clients in Xi which are
satisfied only by u. The algorithm adds to Si those vertices of N(u) ∩Xi which
are satisfied by u. It remains to describe values ki and pi, we distinguish the
following cases:

• Case ˆ︁dl(u) = 0. As u ̸∈ Vj, we have
⃓⃓⃓⃓ ˆ︁dl−1(0) ∩ Vi

⃓⃓⃓⃓
=
⃓⃓⃓⃓ ˆ︁dl−1(0) ∩ Vj

⃓⃓⃓⃓
+ 1.

Since ˆ︁dl(u) ̸= ∞, we have
⃓⃓⃓⃓ ˆ︁dl−1(∞) ∩ Vi ∩ Vc

⃓⃓⃓⃓
=
⃓⃓⃓⃓ ˆ︁dl−1(∞) ∩ Vj ∩ Vc

⃓⃓⃓⃓
. Thus

the algorithm sets ki = kj + 1 and pi = pj.

• Case ˆ︁dl(u) ∈ {1, . . . , ϱ}. Since ˆ︁dl(u) ̸∈ {0,∞}, we have
⃓⃓⃓⃓ ˆ︁dl−1(0) ∩ Vi

⃓⃓⃓⃓
=⃓⃓⃓⃓ ˆ︁dl−1(0) ∩ Vj

⃓⃓⃓⃓
and

⃓⃓⃓⃓ ˆ︁dl−1(∞) ∩ Vi ∩ Vc

⃓⃓⃓⃓
=
⃓⃓⃓⃓ ˆ︁dl−1(∞) ∩ Vj ∩ Vc

⃓⃓⃓⃓
, hence ki = kj

and pi = pj respectively.

• Case ˆ︁dl(u) =∞. We have
⃓⃓⃓⃓ ˆ︁dl−1(0) ∩ Vi

⃓⃓⃓⃓
=
⃓⃓⃓⃓ ˆ︁dl−1(0) ∩ Vj

⃓⃓⃓⃓
and therefore ki =

kj. If u ∈ Vc, then
⃓⃓⃓⃓ ˆ︁dl−1(∞) ∩ Vi ∩ Vc

⃓⃓⃓⃓
=
⃓⃓⃓⃓ ˆ︁dl−1(∞) ∩ Vj ∩ Vc

⃓⃓⃓⃓
+ 1 and pi =

pj + 1. Otherwise u ∈ Vs and then we have pi = pj.

For the opposite direction, assume that the algorithm sets the value of an
entry Di[dli, Si, ki, pi] to 1. By the description of the algorithm, this means that
there exists an entry Dj[dlj, Sj, kj, pj] in the table of the child node set to 1
where dli agrees with dlj on Xj, Sj ⊆ Si, kj ≤ ki, and pj ≤ pi. By the induction
hypothesis there exists a valid distance labelling function ˆ︁dlj on Vj which agrees
with dlj on Xj, satisfies clients Sj of Xj, and has cost kj and penalty pj. We
claim that the function ˆ︁dli which extends ˆ︁dlj by setting ˆ︁dli(u) = dli(u) has the
required properties. We need to show that all clients of Si are satisfied by ˆ︁dli.
Every satisfied client of Sj is still satisfied by ˆ︁dli since the distance label of the
neighbour which satisfies it is preserved. From the description of the algorithm
it is clear that the added clients Si \ Sj are satisfied by ˆ︁dli. It remains to verify
that the algorithm computes the cost of ˆ︁dli correctly. Recall that Vi \ Vj = {u}.
We distinguish the following cases based on the description of the algorithm:
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• Case dli(u) = 0. In this case ˆ︁dl−1
i (0) = ˆ︁dl−1

j (0) ∪ {u} and ˆ︁dl−1
i (∞) ∩ Vc =ˆ︁dl−1

j (∞) ∩ Vc. Then the cost of ˆ︁dli is kj + 1 and the penalty is pj.

• Cases dli(u) ∈ {1, . . . , ϱ} and dli(u) =∞∧ u ∈ Vs. In this case ˆ︁dl−1
i (0) =ˆ︁dl−1

j (0) and ˆ︁dl−1
i (∞) ∩ Vc = ˆ︁dl−1

j (∞) ∩ Vc. Then the cost of ˆ︁dli is kj and
the penalty is pj.

• Case dli(u) =∞∧u ∈ Vc. In this case ˆ︁dl−1
i (0) = ˆ︁dl−1

j (0) and ˆ︁dl−1
i (∞)∩Vc =(︃ ˆ︁dl−1

j (∞) ∩ Vc

)︃
∪ {u}. Then the cost of ˆ︁dli is kj and the penalty is pj + 1.

Forget node. Let i be a forget node where Xi = Xj \{u} and u ∈ Xj. For any
distance labelling function dl of Xi we denote Lc(dl) the set of functions which
extend dl by assigning labels {1, . . . , ϱ} to u and Ls(dl) the set of functions which
extend dl by assigning labels {0, . . . , ϱ} ∪ {∞} to u. Additionally, let L∞(dl) be
an extension of dl which assigns label ∞ to u. Let dli be any distance labelling
function of Xi, Si be any subset of clients of Xi, ki ∈ {0, . . . , k}, and pi ∈
{0, . . . , p}. If u is a supplier, then we set

Di[dli, Si, ki, pi] =
⋁︂

dlj∈Ls(dli)
Dj[dlj, Si, ki, pi].

If u is a client, then we set

Di[dli, Si, ki, pi] =
⎛⎝ ⋁︂

dlj∈Lc(dli)
Dj[dlj, Si ∪ {u}, ki, pi]

⎞⎠ ∨Dj[L∞(dl), Si, ki, pi].

We proceed to showing the correctness. Recall that by properties of nice tree
decompositions, we have Vi = Vj for the forget node i. Let ˆ︁dl be a distance
labelling function of G[Vi] of cost ˆ︁k and penalty ˆ︁p such that all clients of Vi \Xi

with a finite label are satisfied. Given a node t of the tree decomposition, let ˆ︁dlt
be the restriction of ˆ︁dl to Xt, and ˆ︁St be the set of satisfied of clients of Xt

by ˆ︁dl. Our goal is to show that the algorithm sets the entry Di[ ˆ︁dli, ˆ︁Si, ˆ︁k, ˆ︁p] to 1.
From the induction hypothesis, the entry Dj[ ˆ︁dlj, ˆ︁Sj, kj, pj] is set to 1 for some
values kj and pj; in fact it is the case that kj = ˆ︁k and pj = ˆ︁p as Vi = Vj. Since
the algorithm inspects all entries of the table Di, it will eventually consider the
entry Di[ ˆ︁dli, ˆ︁Si, ˆ︁k, ˆ︁p]. By trying all possible values for the forgotten vertex u,
it will consider the labelling ˆ︁dlj of Xj. To finish the proof of this direction, it
remains to determine the relationship between ˆ︁Si and ˆ︁Sj.

• Case u ∈ Vs. We have Xi ∩ Vc = Xj ∩ Vc and thus ˆ︁Si = ˆ︁Sj.

• Case ˆ︁dl(u) ∈ {1, . . . , ϱ} and u ∈ Vc. If the label of the forgotten client u is
finite, then it must be satisfied by ˆ︁dl from the requirement that ˆ︁dl satisfies
all vertices of Vi \Xi. Thus ˆ︁Si ∪ {u} = ˆ︁Sj.

• Case ˆ︁dl(u) = ∞ and u ∈ Vc. If the label of the forgotten client u is ∞,
then it is ignored by ˆ︁dl. In this case we have ˆ︁Si = ˆ︁Sj.
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For the opposite direction let Di[dli, Si, ki, pi] be an entry set to 1 by the
algorithm. Then it follows from the description of the algorithm, that there is an
entry Dj[dlj, Sj, kj, pj] set to 1 in the table of the child j where dlj is an extension
of dli to Xj, Sj ⊇ Si, ki = kj and pi = pj. By the induction hypothesis, there
exists a distance labelling function ˆ︁dlj on Vj which agrees with dlj on Xj, satisfies
clients Sj of Xj, has cost kj and penalty pj. We claim that ˆ︁dlj also agrees with dli,
satisfies clients Si of Xi, has cost ki and penalty pi. Since dlj agrees with dli on Xi

and Xi ⊆ Xj, ˆ︁dlj agrees with dli. The property that every client of Si is satisfied
by ˆ︁dlj follows from Si ⊆ Sj, Vi = Vj, and the fact that ˆ︁dlj satisfies Sj by the
induction hypothesis. From Vi = Vj it also follows that ki = kj and pi = pj.

Join node. Let i be a join node with children j1 and j2 where Xi = Xj1 =
Xj2 . Let dli be a distance labelling function on Xi, then for each pair of true
entries Dj1 [dl, S1, k1, p1] and Dj2 [dl, S2, k2, p2] we set to 1 the entry

Di

[︂
dli, S1 ∪ S2, k1 + k2 −

⃓⃓⃓
dl−1

i (0)
⃓⃓⃓
, p1 + p2 −

⃓⃓⃓
dl−1

i (∞) ∩ Vc

⃓⃓⃓]︂
.

We proceed to showing the correctness. It follows from the properties of nice
tree decompositions that Vi = Vj1 ∪ Vj2 . Let ˆ︁dl be a valid distance labelling
function of G[Vi] of cost ˆ︁k and penalty ˆ︁p such that all clients of Vi \ Xi with
a finite label are satisfied. We denote by ˆ︁Si the set of satisfied clients in Xi

and by ˆ︁dli the restriction of ˆ︁dl to Xi. Let a ∈ {1, 2}. Then let ˆ︁dla be the
restriction of ˆ︁dl to Vja , ˆ︁Sja be the set of clients of Xja satisfied by ˆ︁dla, ˆ︁Ca be
the set of opened suppliers in Vja , and ˆ︁Oa be the set of outliers in Vja . Note
that ˆ︁dl, ˆ︁dl1 and ˆ︁dl2 agree with each other on Xi. From the induction hypothesis
the entries Dja

[︂ ˆ︁dli, ˆ︁Sja ,
⃓⃓⃓ ˆ︁Cja

⃓⃓⃓
,
⃓⃓⃓ ˆ︁Oja

⃓⃓⃓]︂
are set to 1. To show that ˆ︁Si = ˆ︁Sj1 ∪ ˆ︁Sj2 ,

we use the standard approach of showing ˆ︁Si ⊇ ˆ︁Sj1 ∪ ˆ︁Sj2 and ˆ︁Si ⊆ ˆ︁Sj1 ∪ ˆ︁Sj2 .
From Vj1 ⊆ Vi it trivially follows that ˆ︁Sja ⊆ ˆ︁Si. For a satisfied client v ∈ ˆ︁Si,
we want to show that v ∈ ˆ︁Sj1 ∪ ˆ︁Sj2 . As Vi = Vj1 ∪ Vj2 , the neighbour w which
satisfies v lies in Vj1 ∪Vj2 . Hence it must be the case that v is satisfied in at least
in one of Vj1 or Vj2 and thus v is satisfied in at least one of ˆ︁Sj1 or ˆ︁Sj2 . It follows
from property (T3) of tree decompositions that if a vertex w is simultaneously
contained in a bag of some node of the subtree rooted in j1 and in a bag of some
node of the subtree rooted in j2, then w ∈ Xi. This means that Vj1∩Vj2 ⊆ Xi and
in particular ˆ︁C1 ∩ ˆ︁C2 ⊆ Xi and ˆ︁O1 ∩ ˆ︁O2 ⊆ Xi. Since ˆ︁dl, ˆ︁dl1, and ˆ︁dl2 agree with
each other on Xi, ˆ︁C1∩Xi = ˆ︁C2∩Xi and ˆ︁O1∩Xi = ˆ︁O2∩Xi. Using these facts we
have

⃓⃓⃓ ˆ︁C1

⃓⃓⃓
+
⃓⃓⃓ ˆ︁C2

⃓⃓⃓
= ˆ︁k +

⃓⃓⃓⃓ ˆ︁dl−1(0) ∩Xi

⃓⃓⃓⃓
and

⃓⃓⃓ ˆ︁O1

⃓⃓⃓
+
⃓⃓⃓ ˆ︁O2

⃓⃓⃓
= ˆ︁p +

⃓⃓⃓⃓ ˆ︁dl−1(∞) ∩Xi ∩ Vc

⃓⃓⃓⃓
,

that is, every opened supplier and every outlier is counted twice in Xi.
For the opposite direction, let Di[dli, Si, ki, pi] be an entry set to 1 by the

algorithm. From the description of the algorithm, this means that there exist
entries Dj1 [dli, Sj1 , kj1 , pj1 ] and Dj2 [dli, Sj2 , kj2 , pj2 ] set to 1 where Sj1 and Sj2

are subsets of Xi (where Xi = Xj1 = Xj2 for a join node i). By the induction
hypothesis, for a ∈ {1, 2} there exists a valid distance labelling function ˆ︁dla
on Vja which agrees with dli on Xja , satisfies clients Sja ⊆ Xja , and has cost ˆ︁ka

and penalty ˆ︁pa. We claim that a function dl which behaves as ˆ︁dl1 on Vj1 and
as ˆ︁dl2 on Vj2 has the desired properties. To verify that dl is a function (and not
a multifunction), we use the fact that Vj1 ∩ Vj2 ⊆ Xi. The algorithm requires
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that ˆ︁dl1 and ˆ︁dl2 behave the same on Xi, thus dl is indeed a function. We can prove
the remaining required properties, i.e. Si = Sj1 ∪ Sj2 , ki = kj1 + kj2 −

⃓⃓⃓
dl−1

i (0)
⃓⃓⃓
,

and pi = pj1 + pj2 , identically as in the proof of the opposite direction.

Running time. The size of the table at each node is at most (ϱ + 2)tw · 2tw ·
(k +1) · (p+1). In each introduce node i, we inspect all table entries of its child j
and for each such child entry we recalculate the set of satisfied vertices, suppliers
with label 0, and ignored clients in time tw. In each forget node i, for each table
entry of i we inspect up to ϱ + 2 entries in the table of the child j. In each join
node i, we try to combine all possible entries from its children j1 and j2 which
takes time |Dj1| · |Dj2| ≤ ((ϱ + 2)tw · 2tw · (k + 1) · (p + 1))2. Overall, the running
time of the algorithm is at most O∗((4(ϱ + 2))O(tw)).

The approximation scheme

Now we describe a parameterized approximation scheme based on the algorithm
from Theorem 18. We will need the following result from Chatterjee et al.

Theorem 20 ([CIJP14]). Let G be a graph. There exists an algorithm which,
given a tree decomposition T of G such that T has n nodes and width tw, produces
a nice tree decomposition of G with width at most 4tw+3 and height O(tw · log n)
in time O(tw · n).

Let us give an approximate version of the distance labelling problem for a
fixed error parameter ε > 0. This is a generalization of the approximate distance
labelling used in the original algorithm [KLP19]. Let (G, k, p) be an instance of
the kSwO problem with edge lengths d : E → N and δ > 0 some appropriately
chosen secondary parameter (we will eventually set δ ≈ ε

log n
). Let Σϱ = {(1 +

δ)i : i ∈ N, (1 + δ)i ≤ (1 + ε)ϱ}, we define a δ-labelling function of V as a
function dlδ : V → Σϱ ∪ {0,∞}. Only a supplier can have label 0. A vertex u
is ε-satisfied if dlδ(u) = 0 or if u has a finite label and there exists v ∈ N(u) such
that dlδ(u) ≥ dlδ(v) + d(u,v)

1+ε
. Given a δ-labelling function dlδ, if every client is

either ε-satisfied or has label ∞, then we say that dlδ is valid. We define the cost
of such a function dlδ as

⃓⃓⃓
dl−1

δ (0)
⃓⃓⃓

and its penalty as
⃓⃓⃓
dl−1

δ (∞) ∩ Vc

⃓⃓⃓
. The following

lemma shows that given a δ-labelling function of cost k and penalty p, we can
produce a solution to the kSwO problem which opens k centers, creates p outliers
and has cost (1 + ε)2ϱ.

Lemma 21. Let I = (G, k, p) be an instance of the kSwO problem. If there
exists a valid δ-labelling function of G with cost at most k and penalty at most p,
then I has a feasible solution of cost (1 + ε)2ϱ.

Proof. We select vertices with label 0 as the solution S. The number of opened
suppliers is the cost of the function, hence we open at most k suppliers. We will
show by induction on i that if dlδ(u) = (1 + δ)i, then dist(u, S) ≤ (1 + ε)dlδ(u).
In the base case let u be an ε-satisfied vertex with dlδ(u) = (1 + δ). Then there
exists a neighbour v ∈ N(u) with dlδ(u) ≥ dlδ(v) + d(u,v)

1+ε
. Since d(u, v) > 0, it

follows that dlδ(u) > dlδ(v) and the only possible δ-label less than (1 + δ) is 0,
hence dlδ(v) = 0. Then we have (1 + δ) ≥ d(u,v)

1+ε
which shows the base case as v ∈

S. For the induction step, let u be an ε-satisfied vertex with dlδ(u) = (1 + δ)i+1.
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There exists a neighbour v ∈ N(u) such that dlδ(u) ≥ dlδ(v) + d(u,v)
1+ε

. As edge
lengths are positive, we have dlδ(u) > dlδ(v) and using induction hypothesis we
receive dist(v, S) ≤ dlδ(v). By triangle inequality we have dist(u, S) ≤ d(u, v) +
dist(v, S) ≤ d(u, v) + dlδ(v) = (1 + ε)

(︂
d(u,v)
1+ε

+ dlδ(v)
)︂
≤ (1 + ε)dlδ(u).

Since all satisfied clients have a δ-label at most (1 + ε)ϱ, all satisfied clients
are at distance at most (1 + ε)2ϱ from S. The number of outliers is at most p as
the penalty of dlδ is at most p.

The following two lemmas from [KLP19], which they use for their parameter-
ized approximation scheme for the k-Center problem, will be useful for us as
well. The first lemma shows that adding all missing edges between vertices of a
single bag of length equal to their shortest-path distance does not change the set
of solutions. The original formulation is for the k-Center problem, however,
their proof generalizes to the kSwO problem without any major modifications.

Lemma 22 ([KLP19, Lemma 29]). Let I = (G, k, p) be an instance of the kSwO
problem, T a tree decomposition of G and u, v ∈ V two vertices which appear
together in a bag of T and (u, v) ̸∈ E. Let G′ be the graph obtained from G by
adding the edge (u, v) with length dist(u, v) and let I ′ = (G′, k, p) be an instance
of the kSwO problem. Then I has a feasible solution of cost ϱ if and only if I ′

does.

The second lemma shows that an algorithm with a running time in the
form O∗

(︂
( log n

ε
)O(k)

)︂
is still an FPT algorithm.

Lemma 23 ([KLP19, Lemma 1]). Let A be an algorithm for a parameterized
problem with parameter k such that the running time of A is O∗

(︂
( log n

ε
)O(k)

)︂
.

Then the running time of A can be bounded by O∗
(︂
(k

ε
)O(k)

)︂
.

We are ready to prove Theorem 17. The proof follows the proof of the original
algorithm, cf. [KLP19, Theorem 31]. The main obstacle is to bound the accu-
mulated error during the execution of the algorithm. The original proof heavily
relies on the properties of the parameterized approximation scheme they present
for the k-Center problem. Hence, we will have to modify their proof to work
with a parameterized approximation scheme we will give for the kSwO problem.

Proof of Theorem 17. Our algorithm will follow along the same lines as the algo-
rithm in Theorem 18. The major difference is that instead of distance labelling
functions we consider δ-labelling functions for some δ we specify later and instead
of satisfiability we use ε-satisfiability.

Recall that Σϱ = {0} ∪ {(1 + δ)i : i ∈ N, (1 + δ)i ≤ (1 + ε)ϱ} ∪ {∞}. For each
node i ∈ V (T ) we define a table

Dδ
i :
(︂
(Xi → Σϱ)× 2Xi∩Vc × {0, . . . , k} × {0, . . . , p}

)︂
→ {0, 1}.

We may refer to value 1 in the dynamic programming table as true and to value 0
as false. Recall that our definitions of a δ-labelling allows only suppliers to have
label 0. For a node i ∈ V (T ), a δ-labelling function dlδ : Xi → Σϱ, a subset of
clients S ⊆ 2Xi∩Vc , and integers ki and pi where 0 ≤ ki ≤ k and 0 ≤ pi ≤ p,
the value of an entry Dδ

i [dlδ, S, ki, pi] is 1 if and only if there exists a δ-labelling
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of G[Vi] which agrees with dlδ on Xi, satisfies clients ((Vi \ Xi) ∪ S) ∩ Vc, has
cost ki and penalty pi.

For the rest of the proof, we denote by n the number of nodes of the tree
decomposition T provided on input. We start by preprocessing the graph using
Theorem 20 and Lemma 22. We obtain a tree decomposition T ′ of the input
graph of width 4tw + 3 and height H where H ≤ c · tw · log n for some constant c.
For every pair of vertices u, v which appear together in some bag of T ′ we have
an edge with length at most their shortest-path distance. We define the height
of a node of T ′ inductively where the height of a leaf node is 1 and the height
of any inner node is 1 plus the maximum of the heights of its children. Under
this definition the root node has height H and all other bags have height less
than H. We may refer to a height of a bag by which we mean the height of the
node corresponding to the bag.

We set δ = ε
2H

= Ω
(︂

ε
tw·log n

)︂
. Observe that this choice of δ gives for all h ≤ H

that (1 + δ)h ≤
(︂
1 + ε

2H

)︂H
≤ eε/2 ≤ 1 + ε for sufficiently small ε (it suffices to

assume without loss of generality that ε < 1
4). The goal is to return a feasible

solution of cost (1 + ε)2ϱ if a feasible solution of cost ϱ exists by producing
a δ-labelling and invoking Lemma 21. The approximation ratio can then be
reduced to 1 + ε by adjusting ε appropriately.

We now present the dynamic programming procedure. It only differs from the
algorithm in Theorem 18 by considering δ-labelling functions instead of distance
labelling functions and ε-satisfiability instead of satisfiability.

• Leaf node. For a leaf node ℓ we have Vℓ = ∅. Thus the only true entry
is Dδ

ℓ [dl, ∅, 0, 0] where the domain of dl is an empty set.

• Introduce node. Let i be an introduce node with a child node j, then Xi =
Xj ∪ {u} where u ̸∈ Xj. Let Dδ

j [dl′δ, S ′, kj, pj] be an entry of the table of
the child node j with value 1. We construct a δ-labelling function dlδ
which agrees with dl′δ on Xj and tries all possible values for u. In partic-
ular the constructed δ-labelling functions set dlδ(u) to values Σϱ \ {0} and
additionally we try the label 0 for u if u is a supplier. For such a δ-la-
belling function dlδ we compute S to be the set of satisfied vertices of Xi

as follows. We add the entire set S ′ to S. We add u to S if there exists
a neighbour v ∈ N(u) so that dlδ(u) ≥ dlδ(v) + d(u,v)

1+ε
. Finally, we add

neighbours w ∈ N(u) to S for which it holds that dlδ(w) ≥ dlδ(u) + d(u,w)
1+ε

.
If dlδ(u) = 0 and kj ≤ k − 1, then we set the entry Dδ

i [dlδ, S, kj + 1, pj]
to 1. If dlδ(u) ∈ Σϱ \ {0,∞}, then we set the entry Dδ

i [dlδ, S, kj, pj]
to 1. If dlδ(u) = ∞, u ∈ Vc, and pj ≤ p − 1, then we set the en-
try Dδ

i [dlδ, S, kj, pj + 1] to 1. If dlδ(u) = ∞ and u ∈ Vs, then we set
the entry Dδ

i [dlδ, S, kj, pj] to 1.

• Forget node. Let i be a forget node where Xi = Xj \{u} and u ∈ Xj. For
any δ-labelling function dlδ of Xi we denote by Lc(dlδ) the set of functions
which extend dlδ by assigning labels Σϱ \ {0,∞} to u and by Ls(dlδ) the
set of functions which extend dlδ by assigning labels Σϱ to u. Additionally,
let L∞(dlδ) be an extension of dlδ which sets the label ∞ to u. Let S be
any subset of clients of Xi, ki ∈ {0, . . . , k}, and pi ∈ {0, . . . , p}. If u is a
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supplier, then we set

Dδ
i [dlδ, S, ki, pi] =

⋁︂
dl′δ∈Ls(dlδ)

Dδ
j [dl′δ, S, ki, pi].

If u is a client, then we set

Dδ
i [dlδ, S, ki, pi] =

⎛⎝ ⋁︂
dl′δ∈Lc(dlδ)

Dδ
j [dl′δ, S ∪ {u}, ki, pi]

⎞⎠∨Dδ
j [L∞(dlδ), S, ki, pi].

• Join node. Let i be a join node with children j1 and j2 where Xi = Xj1 =
Xj2 . Let dlδ be a δ-labelling function on Xi. Then for each pair of true
entries Dδ

j1 [dlδ, S1, k1, p1] and Dδ
j2 [dlδ, S2, k2, p2] we set to 1 the entry

Di

[︂
dlδ, S1 ∪ S2, k1 + k2 −

⃓⃓⃓
dl−1

δ (0)
⃓⃓⃓
, p1 + p2 −

⃓⃓⃓
dl−1

δ (∞) ∩ Vc

⃓⃓⃓]︂
.

To establish correctness of the algorithm, there are two tasks we need to
accomplish. First, we need to show that for any bag Xi we have Dδ

i [dlδ, S, ki, pi] =
1 if and only if there exists a δ-labelling of G[Vt] which agrees with dlδ on Xi,
satisfies clients ((Vi \ Xi) ∪ S) ∩ Vc aside from those clients with label ∞, and
has cost ki and penalty pi. The proof of this equivalence is done similarly to
the proof of correctness of Theorem 18. The only difference is that we need to
consider δ-labelling functions and ε-satisfiability instead of distance labelling and
satisfiability respectively. Hence we omit this part of the proof. Using Lemma 21,
we obtain a solution to the kSwO instance on input of cost (1 + ε)2ϱ.

It is more interesting to prove the following statement: we would like to show
that if there exists a solution of cost ϱ, then there exists a δ-labelling which is going
to be found by the algorithm. The main difficulty of proving this statement is
that the converse of Lemma 21 does not hold for any choice of δ. In the remainder
suppose there exists a distance labelling dl : V → {0, . . . , ϱ}∪{∞} which encodes
a solution to the instance as in the proof of Lemma 19.

Let Xi be a bag of the decomposition of height h and S the vertices of Vi

satisfied by dl including suppliers. We are going to show that there always ex-
ists dlδ : Xi → Σϱ, Sδ ⊇ S and values ki and pi such that Dδ

i [dlδ, Sδ, ki, pi] =
1, ki ≤

⃓⃓⃓
dl−1(0)

⃓⃓⃓
, pi ≤

⃓⃓⃓
dl−1(∞) ∩ Vc

⃓⃓⃓
and for all u ∈ Xi we have dlδ(u) ∈[︂

dl(u)
(1+δ)h , (1 + δ)hdl(u)

]︂
.

We prove this claim by induction on the height of a bag. This property trivially
holds for empty leaf bags in the base case. For the induction step, consider a node
at height h + 1. In the case of forget and join bags, if we assume that the desired
property holds for their children, then it follows that it holds for them as well
since dlδ(u) ∈

[︂
dl(u)

(1+δ)h , (1 + δ)hdl(u)
]︂

implies dlδ(u) ∈
[︂

dl(u)
(1+δ)h+1 , (1 + δ)h+1dl(u)

]︂
.

It remains to prove the property for introduce nodes. Let i be an introduce
node with child j where Xi = Xj ∪{u}, u ̸∈ Xj. We cannot use the approach for
proving the desired property we used for join and forget nodes. For the introduced
vertex u the induction hypothesis dlδ(u) ∈

[︂
dl(u)

(1+δ)h , (1 + δ)hdl(u)
]︂

does not apply
when dl(u) is finite since u ̸∈ Vj. Let S ⊆ Xi be the set of vertices (including
suppliers) satisfied by dl in Vi and similarly let S ′ ⊆ Xj be the set of satisfied
vertices in Vj. We claim that at least one of the following must be true:
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(i) dl(u) = 0,

(ii) S = S ′ ∪ {u},

(iii) u ̸∈ S and dl(u) <∞,

(iv) dl(u) =∞.

Suppose for contradiction that dl(u) ∈ {1, . . . , ϱ} and S ⊇ S ′∪{u, v1} where v1 ∈
Xi \ S ′. If v1 is satisfied in Xi but not in Xj, then the sole cause of this fact is
that v1 is satisfied by u as the labels of its neighbours aside from u remain the
same between Xi∩N(v1) and Xj∩N(v1). Thus we have dl(v1) ≥ dl(u)+d(v1, u).
Since u is a satisfied vertex and dl(u) ∈ {1, . . . , ϱ}, there exists a vertex v2 ∈ Xj

such that dl(u) ≥ dl(v2) + d(u, v2). Together we have dl(v1) ≥ dl(v2) + d(v2, u) +
d(u, v1) ≥ dl(v2)+d(v1, v2) where the last inequality holds from the preprocessing
using Lemma 22. However, the last inequality shows that v1 ∈ S ′ which is a
contradiction.

We therefore need to establish that for each of the four cases above, the algo-
rithm produces an entry Dδ

i [dlδ, Sδ, ki, pi] with S ⊆ Sδ, ki ≤
⃓⃓⃓
dl−1(0) ∩ Vi

⃓⃓⃓
, pi ≤⃓⃓⃓

dl−1(∞) ∩ Vi ∩ Vc

⃓⃓⃓
, and dlδ(u) which is at most a factor (1+δ)h apart from dl(u).

Assume by the induction hypothesis that there exists an entry Dδ
j [dl′δ, S ′

δ, kj, pj]
with value 1 for some S ′

δ ⊇ S ′, kj ≤
⃓⃓⃓
dl−1(0) ∩ Vj

⃓⃓⃓
, pj ≤

⃓⃓⃓
dl−1(∞) ∩ Vj ∩ Vc

⃓⃓⃓
and dl′δ which has (∀v ∈ Xj)

(︂
dl′δ(v) ∈

[︂
dl(v)

(1+δ)h−1 , (1 + δ)h−1dl(v)
]︂)︂

.

(i) If dl(u) = 0, the algorithm considers a δ-labelling function dlδ which agrees
with dl′δ on Xj and sets dlδ(u) = 0. Since the entry Dδ

j [dl′δ, S ′
δ, kj, pj] has

value 1, the algorithm sets the entry Dδ
i [dlδ, Sδ, kj + 1, pj] to 1 for some Sδ.

We claim that S ⊆ Sδ. To see this, let v ∈ S \S ′. Then v must be satisfied
by u and we have dl(v) ≥ dl(u) + d(u, v). From the induction hypothesis,
dl(u) = 0, and (1 + δ)h−1 ≤ 1 + ε, we have dlδ(v) ≥ dl(v)

(1+δ)h−1 ≥ d(u,v)
1+ε

. This
shows that every vertex v ∈ S \ S ′ is satisfied in Xi.

(ii) Assume that dl(u) ̸∈ {0,∞} and u ∈ S. Then there must exist a vertex v
which satisfies u, that is dl(u) ≥ dl(v) + d(u, v). Let r = (1 + δ)h−1dl(u).
The algorithm considers a δ-labelling function dlδ which agrees with dl′δ
on Xj and sets dlδ(u) = (1 + δ)⌈log1+δ r⌉. Using (1 + δ)h−1 ≤ 1 + ε we
have dlδ(u) ≥ (1 + δ)h−1dl(u) ≥ (1 + δ)h−1(dl(v) + d(u, v)) ≥ dlδ(v) + d(u,v)

1+ε
.

Hence the algorithm correctly adds u to S ′
δ to obtain Sδ ⊇ S. Moreover we

have the required upper bound as well since

dlδ(u) = (1 + δ)⌈log1+δ r⌉ ≤ (1 + δ)log1+δ((1+δ)h−1dl(u))+1 ≤ (1 + δ)hdl(u).

(iii) Consider the case when S \ S ′ ̸= ∅, otherwise there is nothing to prove.
Let v ∈ S \S ′, then v must be satisfied by u, that is dl(v) ≥ dl(u) + d(u, v).
Let r = dl(u)

(1+δ)h . The algorithm considers a δ-labelling function dlδ which
agrees with dl′δ on Xj and sets dlδ(u) = (1 + δ)⌈log1+δ r⌉. Using the induction
hypothesis and (1 + δ)h−1 ≤ 1 + ε, we have

dlδ(v) ≥ dl(v)
(1 + δ)h−1 ≥

dl(u)
(1 + δ)h−1 + d(u, v)

1 + ε
≥ dlδ(u) + d(u, v)

1 + ε
.
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Hence the algorithm extends S ′
δ by adding all elements of S \ S ′ to create

the set Sδ. Moreover we have the required upper bound as well since

dlδ(u) = (1 + δ)⌈log1+δ r⌉ ≤ (1 + δ)log1+δ
dl(u)

(1+δ)h +1 ≤ dl(u)
(1 + δ)h−1 .

(iv) The algorithm considers a δ-labelling function dlδ which agrees with dl′δ
on Xj and sets dlδ(u) = ∞. Since a vertex with label ∞ cannot satisfy
a neighbour by definition, we have Sδ = S ′

δ. The desired bound on dlδ(u)
for u ∈ Xi follows trivially.

We conclude that whenever a feasible solution of cost ϱ exists to the input
instance, we are able to recover from the root bag of the dynamic programming
table a solution of cost (1 + ε)2ϱ with at most k centers and at most p outliers.
In particular, there exists an entry in the dynamic programming table of the root
bag Dr[dlδ, Xr ∩ Vc, kr, pr] where dlδ is a δ-labelling of Xr where for all u ∈ Xr

we have dlδ(u) ≤ (1 + δ)Hdl(u) ≤ (1 + ε)ϱ, kr ≤ k and pr ≤ p.
It remains to bound the running time of the algorithm. We have |Σϱ| =

O(log1+δ ϱ) = O
(︂

log ϱ
log(1+δ)

)︂
= O

(︂
log ϱ

δ

)︂
where we have used the fact that ln(1+δ) ≈

δ for sufficiently small δ (that is, sufficiently large n). By setting δ = Ω
(︂

ε
tw·log n

)︂
and assuming k, p ≤ |V (G)|, we get a running time O∗

(︂
(tw · log n

ε
)O(tw)

)︂
. Using

Lemma 23, this is an FPT algorithm with running time O∗
(︂
( tw

ε
)O(tw)

)︂
.

3.2 EPAS for low highway dimension graphs
In this section we present an FPT approximation scheme for the kSwO problem
on low highway dimension graphs. For this algorithm, we use Definition 1 of
highway dimension where the constant γ in the definition is strictly greater than 4.
Let us recall the main result of this section.
Theorem 4. Let I = (G, k, p) be an instance of the k-Supplier with Out-
liers problem where G has highway dimension h. There exists a computable
function f(·, ·, ·, ·) and an algorithm such that for any ε > 0 it outputs a solu-
tion of cost (1 + ε)OPT(I) in time f(h, k, p, ε) · nO(1). Moreover we have f ∈

Ω
(︄(︂

1
ε
(h + k + p)2

)︂O((h+k+p)2 log(1/ε))
)︄

.

An embedding of an (undirected) guest graph G into a host graph H is an in-
jective mapping ϕ : V (G)→ V (H). The host graph H can contain vertices which
do not appear in G. Our algorithm uses a framework by Becker et al. [BKS18]
for embedding low highway dimension graphs into low treewidth graphs. After
embedding the input graph into a low treewidth graph, we use the algorithm
given by Theorem 17 to obtain an approximate solution. Let us remark that the
algorithm we present extends a parameterized approximation scheme for the k-
Center problem presented in [BKS18]. The formal statement of the used result
is the following theorem.
Theorem 24 ([BKS18, Theorem 4]). There is a function f(·, ·, ·) such that, for
every ε > 0, graph G of highway dimension h and set of vertices S ⊆ V (G), there
exists a graph H and an embedding ϕ : V (G)→ V (H) such that
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• H has treewidth f(h, |S| , ε) and

• for all vertices u, v ∈ V (G)

distG(u, v) ≤ distH(ϕ(u), ϕ(v)) ≤
≤ (1 + O(ε))distG(u, v) + ε ·min{distG(u, S), distG(v, S)}.

The algorithm for the kSwO problem proceeds in two steps. First it com-
putes a constant factor approximation to the problem to obtain the set S for
Theorem 24. We use a result by Ahmadian and Swamy [AS16] for comput-
ing a 5-approximation in polynomial time. Note that their result works for a
more general case of the kSwO problem. The approximate solution creates at
most p suppliers and we add those into the set S as well. We apply Theorem 24
to the input graph with the set S to obtain a host graph H. In the second step,
we use the algorithm given by Theorem 17 on graph H. The host graph H may
contain vertices which do not appear in the input graph. It is straightforward
to modify the algorithm to not require covering these added vertices. From the
statement of Theorem 24, the treewidth of H is bounded by the number of cen-
ters k, the number of outliers p, the highway dimension h of the input graph
and ε. To finish the proof of Theorem 4, we prove that the obtained solution is
indeed a (1 + ε)-approximation of the optimum solution in the original graph.

Lemma 25. A (1 + ε)-approximation of kSwO in the host graph H given by
Theorem 24 is a (1 + O(ε))-approximation of kSwO in the guest graph G.

Proof. Let OPTG and OPTH denote the optimum solution in the input graph G
and host graph H respectively. Let V ∗

c be the set of clients such that there exist
suppliers at distance at most cost(OPTG) from them, i.e. these are the clients
covered by the optimum solution. For each client u ∈ V ∗

c , we denote by su the
closest supplier to u in OPTG. We have

costH(OPTG) = max
u∈V ∗

c
distH(u, su) ≤

≤ max
u∈V ∗

c
{(1 + O(ε))distG(u, su) + O(ε) min{distG(u, S), distG(su, S)}}.

(3.1)

We can upper bound the inequality by maximizing over the terms separately.
Then we obtain

costH(OPTG) ≤
≤ (1 + O(ε)) max

u∈V ∗
c

distG(u, su) + O(ε) max
u∈V ∗

c
min{distG(u, S), distG(su, S)} ≤

≤ (1 + O(ε))costG(OPTG) + O(ε) max
u∈V ∗

c
distG(u, S).

For the second term, there are two cases to consider. If u is covered by the ap-
proximate solution, then we have distG(u, S) ≤ 5 ·costG(OPTG). Otherwise u has
to be an outlier in the approximate solution. We added all outliers to the set S,
thus distG(u, S) = 0. In total we have costH(OPTG) ≤ (1 + O(ε))costG(OPTG).
By the definition of OPTH we have

costH(OPTH) ≤ costH(OPTG) ≤ (1 + O(ε))costG(OPTG).
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Since the optimum solution in H is an approximate solution in G, an approximate
solution in H is also an approximate solution in G. In particular, Theorem 17
gives a (1 + ε)-approximate solution therefore we have a (1 + O(ε))2-approximate
solution.

The algorithm we have just shown uses as a subroutine the EPAS given by
Theorem 17 for low treewidth graphs, which runs in time O∗

(︂
( tw

ε
)O(tw)

)︂
. By The-

orem 24 the host graph H, on which we run the algorithm given by Theorem 17,
has treewidth bounded by f(h, k, p, ε) for some computable function f . While
the original authors [BKS18] do not explicitly state the function f , by carefully
analysing their proof we can at least give the following upper bound. Recall that
we selected the set S in Theorem 24 in such a way that its size is at most k + p.
From the proof of Theorem 24, see [BKS18, Theorem 4], we have in the worst case
that f ∈ O

(︂
(1/ε)θS

)︂
where θS = O (log((h + |S|)2 log(h + |S|) log(1/ε) + |S|)).

Hence f ∈ O((k + p + h)2 log(1/ε)). This shows that the algorithm given by The-
orem 4 has a running time of at least Ω

(︃(︂
1
ε
(k + h + p)2

)︂O((k+p+h)2 log(1/ε))
· n
)︃

.
In contrast to the 3

2 -approximation algorithm given by Theorem 3, which runs
in time O∗

(︂
2O(k(h log h)+p)

)︂
, this algorithm has a significantly worse running time

since the base of the exponential function in the running time is not constant but
depends on k, p and the highway dimension.

3.3 EPAS for low doubling dimension graphs
In this section we present an FPT approximation scheme for the kSwO problem
on low doubling dimension graphs. This algorithm is an extension of an FPT ap-
proximation scheme for the k-Center problem by Feldmann and Marx [FM20].
The result is the following theorem.

Theorem 26. Let I = (G, k, p) be an instance of the kSwO problem, (Vs, dist) be
the shortest-path metric induced by the suppliers Vs, and d be the doubling dimen-
sion of (Vs, dist). There exists an algorithm such that for any ε > 0 it outputs a
solution of cost (1 + ε)OPT(I) in time O∗

(︂
(k + p)k · ε−O(kd)

)︂
.

We will present a decision algorithm which can be turned into an approxi-
mation scheme; the exact approach is described in the definition of the kCwO
problem in Chapter 2. The properties of the decision algorithm are summarized
by the following lemma.

Lemma 27. Let I = (G, k, p) be an instance of the k-Supplier with Outliers
problem, (Vs, dist) be the shortest-path metric induced by the suppliers Vs, and d
be the doubling dimension of (Vs, dist). There exists an algorithm which for a
cost ϱ ∈ R+ and ε > 0 either

• computes a feasible solution of cost (1 + ε)ϱ if I has a feasible solution of
cost ϱ or,

• correctly determines that I does not have a solution of cost ϱ,

running in time O∗((k + p)kε−O(kd)).
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Let (X, dist) be a metric. By the aspect ratio of a set Y ⊆ X we mean the
diameter of Y divided by the minimum distance between any two distinct points
of Y , that is

maxu,v∈Y dist(u, v)
minu,v∈Y,u ̸=v dist(u, v) .

The following lemma shows that the cardinality of a subset Y ⊆ X can be
bounded by its aspect ratio and the doubling dimension of (X, dist). The proof
of the lemma can be found in [GKL03].

Lemma 28 ([GKL03]). Let (X, dist) be a metric with doubling dimension d
and Y ⊆ X be a subset with aspect ratio α. Then dd(Y ) ≤ 2 · dd(X) and |Y | ≤
2d⌈log2 α⌉.

For a metric (X, dist), a subset Y ⊆ X is called a δ-cover if for every u ∈ X
there is a v ∈ Y such that dist(u, v) ≤ δ. A δ-net is a δ-cover with the additional
property that dist(u, v) > δ for all distinct points u, v ∈ Y of the δ-cover. Observe
that a δ-net can be computed greedily in polynomial time. We will need the
following bound on the size of a δ-net given that there exists a feasible solution
to the kSwO problem.

Lemma 29. Let I = (G, k, p) be an instance of the kSwO problem, (Vs, dist) be
the shortest-path metric induced by the suppliers Vs, d be the doubling dimension
of (Vs, dist), ϱ ∈ R+, and ε > 0. Moreover assume that for each supplier s ∈ Vs
there exists a client c ∈ Vc such that dist(s, c) ≤ ϱ. If there exists a feasible
solution to the instance I of cost ϱ, then an (εϱ)-net Y of the set Vs has size at
most (k + p)ε−O(d).

Proof. Let V ∗
s be a feasible solution of the instance I of cost ϱ. Let B be the

vertices covered by the solution V ∗
s , i.e. B = ⋃︁

s∈V ∗
s

Bs(ϱ), and let V ∗
c = B ∩ Vc,

that is the set of clients covered by the solution V ∗
s . What remains outside the

set B are outliers Vc \ V ∗
c and a (possibly empty) subset of suppliers. Due to the

assumption that each supplier has at least one client at distance at most ϱ from
it and that such a client is either covered by the solution V ∗

s or is an outlier, we
have that balls of radius 2ϱ around suppliers V ∗

s and balls of radius ϱ around
outliers cover the entire metric. In total the entire metric can be covered by k +p
balls of diameter 4ϱ. The aspect ratio of Y inside each such a ball is 4ε−1. Using
Lemma 28 we have that each such a ball contains ε−O(d) vertices and that in total
we have |Y | ≤ (k + p)ε−O(d).

We are now ready to prove Lemma 27.

Proof of Lemma 27. The algorithm starts by removing all suppliers s which do
not have a client at distance at most ϱ from them since these suppliers cannot be
in a solution of cost ϱ. Slightly abusing notation, let Vs be the set of remaining
suppliers after this preprocessing step.

Then the algorithm computes an (εϱ)-net Y of the submetric (Vs, dist). If the
computed net Y has more than (k + p)ε−O(d) points, then by Lemma 29 we know
that there is no feasible solution of cost ϱ.

Assume that our instance has a feasible solution of cost ϱ and let us denote
it S∗. From the properties of the net Y we have that for each point u ∈ S∗ there
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exists a net point v ∈ Y such that dist(u, v) ≤ εϱ. Hence if we replace each
point u ∈ S∗ by its nearest net point, then we obtain a solution of cost (1 + ε)ϱ.

To compute a feasible solution, the algorithm tries each subset of size k of
the net Y as the solution. For each such a k-tuple S, we check whether it covers
sufficiently many clients, that is at least |Vc|−p of them, by balls of radius (1+ε)ϱ.
If a solution of cost ϱ exists, then we have already argued that at least one of
the k-tuples of the net will give us a feasible solution of cost (1 + ε)ϱ. On the
other hand, if none of k-tuples of Y form a feasible solution, then the instance I
does not have a feasible solution of cost ϱ.

It remains to bound the running time of the algorithm. The preprocessing and
computing a (εϱ)-net takes polynomial time. Guessing the approximate solution
takes time

(︂
|Y |
k

)︂
= (k + p)kε−O(kd) and checking feasibility of each such a guess

takes polynomial time.
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4. Capacitated k-Supplier with
Outliers
Let us begin by recalling the definition of the Capacitated k-Supplier with
Outliers (CkSwO) problem. In the CkSwO problem, in addition to the
input (G, k, p) of the kSwO problem, we have a capacity function L : Vs → N0.
A feasible solution is a subset of clients V ′

c ⊆ Vc, a subset of suppliers V ′
s ⊆ Vs,

and a function ϕ : V ′
c → V ′

s which maps every client of V ′
c to some supplier of V ′

s
such that

• |V ′
c | ≥ n− p,

• |V ′
s | ≤ k,

• |ϕ(u)−1| ≤ L(u) for each u ∈ V ′
s .

Informally speaking, a supplier u is only allowed to serve at most L(u) clients.
The cost of such a feasible solution is maxu∈V ′

c dist(u, ϕ(u)) and the goal is to
find a feasible solution of minimum cost. Note that setting the capacity of each
supplier to |Vc| gives us the kSwO problem. Similarly to the kSwO problem,
we can consider the decision version of this problem where the input contains
an additional integer ϱ and our goal is to decide whether there exists a feasible
solution of cost at most ϱ.

Cygan et al. [CHK12] have shown that under the assumption P ̸= NP,
the CkSwO problem does not have a (3−ε)-approximation for any constant ε >
0. Cygan and Kociumaka [CK14] have shown that there is a 25-approximation
algorithm for CkSwO.

4.1 EPAS for low doubling dimension graphs
In this section, we will develop an FPT approximation scheme for the CkSwO
problem for low doubling dimension graphs. It follows similar steps as the al-
gorithm given by Theorem 26 but it requires some additional modifications to
support capacities. Let us restate the main result of this section.
Theorem 5. Let I = (G, k, p, L) be an instance of the Capacitated k-Sup-
plier with Outliers problem, (Vs, dist) be the shortest-path metric induced by
the supplier set Vs, and d be the doubling dimension of (Vs, dist). There exists an
algorithm such that for any ε > 0 it outputs a solution of cost (1 + ε)OPT(I) in
time (k + p)k · ε−O(kd) · nO(1).

We will present a decision algorithm which can be turned into an approxi-
mation scheme; the exact approach is described in the definition of the kCwO
problem in Chapter 2. The properties of the decision algorithm are summarized
by the following lemma.
Lemma 30. Let I = (G, k, p, L) be an instance of the Capacitated k-Sup-
plier with Outliers problem, (Vs, dist) be the shortest-path metric induced by
the supplier set Vs, and d be the doubling dimension of (Vs, dist). There exists an
algorithm which for a cost ϱ ∈ R+ and ε > 0 either
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• computes a feasible solution of cost (1 + ε)ϱ if I has a feasible solution of
cost ϱ, or

• correctly decides that I has no solution of cost at most ϱ,

running in time O∗
(︂
(k + p)kε−O(kd)

)︂
.

Given a set of suppliers S ⊆ Vs of size at most k, we cannot spontaneously
assign every client to its nearest supplier in S since such an assignment might
exceed the capacity of some supplier s ∈ S. However, in the next lemma we will
see a polynomial algorithm which, given a set of suppliers S ⊆ Vs and a cost ϱ,
computes a feasible solution ϕ : Vc → S of cost ϱ if it exists. In other words the
algorithm finds a feasible solution of cost ϱ which opens the given set S as the
set of suppliers if such a solution exists.

Lemma 31. Given an instance I = (G, k, p, L) of the CkSwO problem, a
cost ϱ ∈ R+, and a subset of suppliers S ⊆ Vs of size at most k, we can de-
termine in polynomial time whether there exists subset of clients V ′

c ⊆ Vc of size
at least n − p, and an assignment ϕ : V ′

c → S such that |ϕ(u)−1| ≤ L(u) for
each u ∈ S.

Proof. We build a network N = (G′ = (V ′, E ′), a, b, c) where a ∈ V ′ is a source,
b ∈ V ′ is a sink, and c : E ′ → R+

0 assigns capacities to edges of the directed
graph G′ = (V ′, E ′). Refer to Figure 4.1 for an example of such a network. For
each vertex of S ∪Vc we are going to create a unique vertex in V ′, we denote this
bijection by m. For a subset of vertices U ⊆ Vc ∪ S we denote m(U) = {m(u) :
u ∈ U}. For each client u ∈ Vc we add a vertex vu to V ′, assign m(u) = vu, and
add an edge between the source a and vu with capacity 1. For each supplier s ∈ S
we add a vertex vs to V ′ and assign m(s) = vs. We add edges from each vertex
of the set {m(u) : u ∈ Vc ∩ Bs(ϱ)} to vs with capacity 1. That is, we add an
edge from a client vertex gadget to a supplier vertex gadget if the client is at
distance at most ϱ from the supplier. We add an edge from vs to the sink b with
capacity L(s). Finally we add a vertex o and add edges from each client vertex
gadget to o with capacity 1 and an edge from o to the sink b with capacity p.

We claim that the desired set of clients V ′
c ⊆ Vc and the assignment ϕ : V ′

c → S
exist if and only if the maximum flow of network N is |Vc|. That is, the size of V ′

c
is at least n− p, the assignment ϕ maps every client in V ′

c to some supplier in S,
and for each u ∈ S we have |ϕ(u)−1| ≤ L(u). Then, the sets V ′

c , S, and the
assignment ϕ form a feasible solution of cost ϱ of the instance I.

To prove the forward implication, let ϕ be a feasible solution of the instance I.
For each client u which is not an outlier according to ϕ, we send a unit flow on
the path (a, u, ϕ(u), b). Since ϕ is a feasible solution, for each supplier s ∈ Vs
there is at most L(s) units flowing through the edge (vs, b). For each outlier v
of the solution ϕ we send a unit of flow on the path (a, v, o, b). The solution ϕ
creates at most p outliers, thus the flow through the edge (o, b) is at most p,
which does not exceed the capacity of the edge (o, b). There is one unit of flow
going through each client, hence the flow has value |Vc|. All edges leaving the
source a are saturated and there are no incoming edges to a hence this flow is
also maximum.

To prove the backward implication, let the maximum flow of the network N
be |Vc| and let f be the corresponding flow. Assume that f assigns an integral flow
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to each edge, this is without loss of generality since we can compute such a flow
using the Edmonds–Karp [EK72] algorithm, and it is a well known fact that if the
capacities are integral, then the flow through each edge will be integral as well. To
simplify the exposition, let us remove edges through which there is no flow. From
the construction of network N and from the preceding assumptions, each vertex
of m(Vc) has one outgoing edge and this edge has its other endpoint in m(S)∪{o}.
We construct a feasible solution ϕ to the instance I as follows. If the outgoing
edge of the client gadget m(u) of a client u ∈ Vc ends in vertex o, then we
designate u an outlier. Otherwise the outgoing edge from m(u) ends in a supplier
gadget m(s) of some supplier s ∈ Vs, then we let ϕ(u) = s. Since the capacity of
the edge (o, b) is p there can be at most p outliers in our solution ϕ. From the
construction of the network we have that the distance between a client and its
assigned supplier does not exceed ϱ. Finally, the capacity of the edge (m(s), b)
for a supplier s ∈ S is set to L(s), hence there cannot be more than L(s) clients
assigned to s.

Clearly, the construction of the network N can be done in polynomial time.
The aforementioned Edmonds–Karp algorithm [EK72] has a polynomial running
time. Note that we have also described how to compute from a maximal flow in N
a feasible solution to I of cost ϱ such that S is the set of opened suppliers.

s1(1)

s2(2)

s3(2)

u1

u2

u3

u4
u5

u6

a

u1 u2

s1 s2 s3

u3 u4 u5 u6

o

b
1

2 2
1

Figure 4.1: An example of a network created by Lemma 31. Vertices s1, s2, s3
are suppliers and circles centered at them have radius ϱ. The numbers at edges
are the capacity of the corresponding edge. Edges with unspecified capacity have
capacity 1. We have capacities L(s1) = 1, L(s2) = 2, L(s3) = 2 and p = 1.

Contrary to the approach used in the proof of Theorem 26, we cannot simply
replace each point of a solution with its nearest net point as such an assignment
might violate the capacity of some selected net point. We present an alternative
approach in the following lemma.
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Lemma 32. Let I = (G, k, p, L) be an instance of the CkSwO problem such
that there exists a solution ϕ∗ of cost ϱ and for each supplier there exists a client
at distance at most ϱ from it. Given such an instance I, an (εϱ)-net Y of the
shortest-path metric induced by (Vs, dist), and ε > 0, we can compute a solution
of cost (1 + 2ε)ϱ in time O∗

(︂(︂
|Y |
k

)︂
kk
)︂
.

Proof. Let us fix an arbitrary linear order ⪯ on the net points Y . For two
net points v1, v2 ∈ Y , if v1 ⪯ v2 and v1 ̸= v2, then we write v1 ≺ v2. For a
net point v ∈ Y we denote P (v) = {v′ ∈ Y : v′ ≺ v} and M(v) = Bv(εϱ) \
(⋃︁v′∈P (v) Bv′(εϱ)). Let S∗ = {ϕ∗(u) : u ∈ V ′

c}, that is the set of suppliers opened
by the solution ϕ∗. For each net point v ∈ Y , let D(v) = |M(v) ∩ S∗| and R(v)
be the set of D(v) suppliers in M(v) with the highest capacities. It is easy to see
that for each net point v ∈ Y , the sum of capacities of R(v) is at least the sum
of capacities of M(v) ∩ S∗. The sets {R(v) : v ∈ Y } are disjoint by the way we
defined them.

The idea is that instead of replacing each solution point u ∈ S∗ with its nearest
net point v ∈ Y like in the proof of Theorem 26, we replace it with an arbitrary
point from R(v) whose capacity is not yet saturated. Such a replacement will
increase the cost of the solution by at most 2εϱ and since sets {R(v) : v ∈ Y }
are disjoint, the resulting solution will not violate the capacity of any opened
supplier.

We guess a k-tuple Y ′ = (y1, . . . , yk) of elements of Y such that y1 ≺ y2 ≺
· · · ≺ yk and S∗ ⊆ ⋃︁

v∈Y ′ Bv(εϱ). We also guess D(v) for each v ∈ Y ′. Let ϕ be
our solution created by picking D(v) distinct suppliers with the highest capacities
among those in R(v) for each v ∈ Y ′. To verify whether the computed solution ϕ
is feasible, we first check whether the guessed values D(v) are at most |R(v)| and
then we invoke the algorithm given by Lemma 31 for cost (1 + 2ε)ϱ. If none of
our guesses pass the feasibility check, then the instance I by contrapositive has
no solution of cost ϱ.

The running time of our algorithm is dominated by the time required to
guess Y ′ and the cardinalities D(v) for each v ∈ Y ′. From |Y ′| ≤ k, the time
required to guess the k-tuple Y ′ is O

(︂(︂
|Y |
k

)︂)︂
. Since D(v) ≤ k for every v ∈ Y ,

the time required to guess D(v) for each v ∈ Y ′ is kk. In total, the running time
of the algorithm is O∗

(︂(︂
|Y |
k

)︂
kk
)︂
.

Lastly, we need a bound on the net size analogous to Lemma 29. We can
view a solution ϕ∗ of cost ϱ as covering the graph up to the outliers with balls
of radius ϱ around opened suppliers. Hence the same lemma can be proven for
the CkSwO problem as well.

We are now ready to prove Lemma 30.

Proof of Lemma 30. Analogously to the algorithm from Theorem 26 the algo-
rithm starts by removing all suppliers which do not have a client at distance at
most ϱ from them and let Vs be the set of remaining suppliers. The algorithm
then computes a (εϱ)-net Y of the metric (Vs, dist). Using Lemma 29, if the
net Y has more than (k + p)ε−O(d) points, then the algorithm concludes that the
instance has no solution of cost ϱ. To compute a solution of cost (1 + 2ε)ϱ or
to show that there exists no solution of cost ϱ, we apply the algorithm given by
Lemma 32.
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Since the net Y has size at most (k + p)ε−O(d), the running time of the algo-
rithm is O∗

(︂
(k + p)kε−O(kd)

)︂
.

4.2 Hardness of parameterized approximation
on low treewidth graphs

In this section we show a result about hardness of parameterized approximation
of the CkSwO problem on low treewidth graphs. This result excludes using the
approach we used to obtain an EPAS for the kSwO problem (Theorem 17) for
low treewidth graphs through the framework of Becker et al. [BKS18]. Let us
restate the main result of this section.

Theorem 6. For any ε > 0 it is W[1]-hard to (2− ε)-approximate the Capaci-
tated k-Supplier with Outliers problem for parameters k and treewidth.

We will reduce from the Capacitated Dominating Set (CDS) problem.
The input of CDS consists of a graph G, a capacity function c : V (G)→ N such
that 1 ≤ c(v) ≤ deg(v) for every vertex v ∈ V and an integer k. A subset D ⊆ V is
a capacitated dominating set of graph G if there exists a mapping f : (V \D)→ D
which maps every vertex in V \ D to one of its neighbours such that the total
number of vertices mapped by f to any vertex v ∈ D does not exceed c(v). Our
goal is to determine whether there exists a capacitated dominating set D for G
containing at most k vertices. The CDS problem was proven to be W[1]-hard
parameterized by k and the treewidth of the input graph by Dom et al. [DLSV08].

Instead of directly reducing to the CkSwO problem, we will reduce to a
special case of the CkSwO problem called Capacitated k-Center (CkC). In
the CkC problem, the input consists of a graph G = (V, E) with edge lengths d :
E → R+, a capacity function L : V → N and an integer k. Given a subset of
vertices C ⊆ V , a feasible solution is a function ϕ : (V \ C) → C such that
the total number of vertices mapped by ϕ to any opened center c ∈ C does not
exceed L(c). The cost of a feasible solution is maxu∈V dist(u, C) and the objective
is to find a solution of minimum cost. As the CkC problem is a special case of the
CkSwO problem, the W[1]-hardness of CkC that we are going to prove applies
to CkSwO as well.

The reduction from CDS to CkC we present is analogous to the standard
reduction (cf. [HS86, WS11]) of their uncapacitated counterparts.

Lemma 33. For any ε > 0, it is W[1]-hard to (2 − ε)-approximate the CkC
problem for parameters k and treewidth.

Proof. Let I = (G, c, k) be an instance of the CDS problem. We produce an
instance I ′ = (G′, L, k′) of the CkC problem where G′ = G and we set the length
of each edge of E(G′) to 1. We set L(u) = c(u) for every vertex u ∈ V (G)
and k′ = k.

Assume that I has a solution D ⊆ V with an assignment f : (V \ D) → D
where |D| ≤ k. Then the set D with an assignment ϕ : (V \D)→ D where ϕ(u) =
f(u) for every u ∈ V (G) is clearly a solution of I ′ of cost 1 and size |D| ≤ k′

since ⋃︁u∈D N [u] = V (G).
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On the other hand, if I does not have a solution of size at most k, then
we claim that any feasible solution of I ′ has cost at least 2. For contradiction,
suppose S ′ ⊆ V (G′) where |S ′| ≤ k′ is a solution of I ′ of cost less than 2 with an
assignment function ϕ′ : (V \ S ′) → S ′. For every pair of vertices u, v ∈ V (G′)
such that {u, v} ̸∈ V (E ′) we have distG′(u, v) ≥ 2 from the manner we assigned
the edge lengths. Then for each vertex u ∈ V (G′) we have ϕ′(u) ∈ N(u) since
the solution has cost less than 2. However, this implies that S ′ is a dominating
set of V (G) which is a contradiction.

Hence a (2 − ε)-approximation algorithm for any ε > 0 parameterized by k
and tw(G) would contradict the W[1]-hardness of CDS.
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5. Non-Uniform k-Supplier
Let us recall the definition of the Non-Uniform k-Supplier (NUkS) problem.
The input is a graph G and k reals r1 ≥ r2 ≥ · · · ≥ rk. A feasible solution is a
tuple of k suppliers S = (s1, s2, . . . , sk). The cost of a solution S is the minimum
dilation parameter α such that

(Bs1(α · r1) ∪Bs2(α · r2) ∪ · · · ∪Bsk
(α · rk)) ⊇ Vc.

The goal is to find a solution of a minimum cost. An alternative way of viewing
the goal is to find a k-tuple of suppliers (s1, . . . , sk) which minimizes

max
v∈Vc

k
min
i=1

dist(v, si)
ri

.

When the set of clients and the set of suppliers coincide, then we have an
instance of the Non-Uniform k-Center (NUkC) problem, which was first
introduced by Chakrabarty et al. [CGK16]. The NUkC problem is a generaliza-
tion of k-Center with Outliers: we can express an instance of kCwO by
using k + p centers where we set r1 = · · · = rk = 1 and rk+1 = · · · = rk+p = 0,
the optimum dilation α is the optimum cost of kCwO, and vertices which have
a center of radius 0 opened in them are outliers. To the best of our knowledge,
the NUkS problem has not been studied before.

5.1 Hardness results
Chakrabarty et al. [CGK16] have shown that for any constant b ≥ 1 it is NP-hard
to b-approximate the NUkC problem, even when the underlying metric is a tree
metric. Their reduction uses a problem called Resource Minimization for
Fire Containment on Trees (RMFC-T) defined as follows. The input is
an unweighted rooted tree T with all leaves at the same distance from the root.
Let Lt be the set of vertices of T which are at distance exactly t from their
nearest leaf. The set L0 are the set of leaves of T . If the height of T is h, then Th

consists only of the root of T . The goal is to select a collection of non-root
vertices N ⊆ V (T ) such that

a) every path from the root to any leaf has at least one vertex from N , and

b) maxt |N ∩ Lt| is minimized.

King and MacGillivray [KM10] show that it is NP-hard to decide whether
the optimum is 1 or not. Moreover they show that this NP-hardness result holds
already for trees of maximum degree 3. We extend their result to show the
following hardness result for the NUkS problem.

Theorem 7. It is NP-hard to b-approximate the Non-Uniform k-Supplier
problem for any constant b ≥ 1, even on instances with the following properties:

• the graph G is a rooted tree where every vertex has maximum degree three,
and every leaf is at the same distance from the root,
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• the highway dimension and the doubling dimension of G are both 2,

• both the supplier set Vs and the client set Vc are a subset of the leaves of G.

We give a brief description of the reduction from RMFC-T to NUkC pre-
sented in [CGK16]. Suppose we want to exclude a b-approximation for a con-
stant b ≥ 1. Let T be an instance of RMFC-T such that all leaves are at the
same height, and h be the height of T . We denote by Lt be the set of vertices
at height t, then in particular L0 is exactly the set of leaves of T . Our goal is
to produce a NUkC instance (G = (V, E, d), {r1, . . . , rk}) where d are the edge
lengths of G. We set V (G) to be the set of leaves L0 of T . We use the tree T
to define the edge lengths d as follows. Let e = {x, y} be an edge of T such
that x ∈ Li−1 and y ∈ Li. We assign to e the length ℓ(e) = (2b + 1)i. For two
vertices u, v ∈ V (G), we set the length d(u, v) to be the length of the shortest
path between u and v in T according to edge lengths ℓ. The ball radii are defined
inductively as follows: let rk = 0 and rk−1 = (2b + 1) · ri + 2(2b + 1).

We define L(t) as the distance between a vertex at level t and a leaf in the
subtree rooted at such a vertex. This is a well defined notion as all leaves are
at the same distance from the root vertex. By a straightforward calculation we
have L(t) = ∑︁t−1

i=1(2b + 1)i = 2b+1
2b

((2b + 1)t − 1). The following observation is
going to be useful for future calculations.

Observation 35. Let T be the tree created by the above reduction, e be an edge
of the tree T and its endpoint with larger height be at height t. Then for any b ≥ 1
we have ℓ(e) ≥ 2b · L(t− 1).

Proof. The following calculation proves the observation

ℓ(e)
L(t− 1) = 2b(2b + 1)t−1

(2b + 1)t−1 − 1 ≥ 2b.

To prove Theorem 7 we show that the tree T produced by the reduction has
low highway dimension and doubling dimension for some appropriate constant b.
We denote byQt the set of paths of non-zero length in T which have their (unique)
highest vertex at height t. The following statement shows a relation between the
length of a path in Qt and the length of a path in Qt′ where t′ ≤ t− 1.

Observation 36. Let t and t′ be two constants such that t′ ≤ t − 1, Qt ̸= ∅,
and Qt′ ̸= ∅. Then for any P ∈ Qt and P ′ ∈ Qt′ we have ℓ(P )

ℓ(P ′) ≥ b.

Proof. Let P = arg minQ∈Qt
ℓ(Q), that is the shortest path among those of Qt.

Such a path P is a single edge which has one end at height t and the other end at
height t − 1. Let P ′ = arg maxQ∈Qt′ ℓ(Q), that is the longest path among those
of Qt′ . Such a path P ′ has two leaves as its end vertices. Hence the length of P ′

is at most 2 ·L(t− 1). From Observation 35 we obtain the required relation.

Lemma 37. The tree produced by the above reduction has highway dimension 1
(according to Definition 8) for any b ≥ 2.

Proof. Consider any scale r > 0. Recall that P(r,2r] is the set of shortest paths
of length more that r and at most 2r. We want to show that there exists a
locally 1-sparse shortest path cover for P(r,2r]. Assume that P(r,2r] ̸= ∅, otherwise
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there is nothing to prove. Then there exists a path P ∈ P(r,2r]. This path has a
unique lowest common ancestor at some height t. Note that P ∈ Qt.

We claim that Qt′ ∩P(r,2r] = ∅ for any t′ ≤ t−1. To prove this claim, we need
to show that the length of any path of Qt′ is at most r. Let P ′ ∈ Qt′ , we want to
show that r ≥ ℓ(P ′). Using Observation 36, we have ℓ(P )

ℓ(P ′) ≥ b. After rearranging,
we get ℓ(P )

b
≥ ℓ(P ′). As 2r ≥ ℓ(P ), we get 2r

b
≥ ℓ(P ′). We receive r ≥ ℓ(P ′) for

any b ≥ 2.
We also claim that Qt̄ ∩ P(r,2r] = ∅ for any t̄ ≥ t + 1. To prove this claim, we

need to show that the length of any path of Qt̄ is more than 2r. Let P̄ ∈ Qt̄,
we want to show that ℓ(P̄ ) > 2r. Using Observation 36, we have ℓ(P̄ )

ℓ(P ) ≥ b. After
rearranging, we get ℓ(P̄ ) ≥ b · ℓ(P ). As ℓ(P ) > r, we get ℓ(P̄ ) > b · r. We
receive ℓ(P̄ ) > 2r for any b ≥ 2.

We conclude that for any t′ ̸= t, we have Qt′ ∩ P(r,2r] = ∅. As P(r,2r] ̸= ∅, this
means that P(r,2r] ⊆ Qt. Thus the set Lt is a hitting set of P(r,2r]. It remains to
show that it is also a sparse hitting set.

Consider any vertex u ∈ V (T ) and suppose that |Bu(2r) ∩ Lt| > 1. Let v1
and v2 be a pair of vertices of Bu(2r)∩Lt. In particular we have an upper bound
of 2r on dist(u, v1) and dist(u, v2). Using triangle inequality, we have dist(v1, v2) ≤
dist(v1, u) + dist(u, v2) ≤ 4r. What this shows is that the necessary condition
for |Bu(2r) ∩ Lt| > 1 is that the distance between a pair of vertices of Lt is at
most 4r.

Consider a pair of distinct vertices u, v ∈ Lt. Any path between them must
pass through a vertex of Lt+1. Hence dist(u, v) ≥ 2 · (2b + 1)i+1. A longest
path ˆ︁P = arg maxQ∈Qt

ℓ(Q) has two leaves as its endpoints hence its length is
at most 2 · L(t). By a similar calculation as in Observation 35, we have just
shown that dist(u,v)

ℓ(ˆ︁P )
≥ 2b. From P(r,2r] ⊆ Qt, we have 2r ≤ 2 · ℓ( ˆ︁P ). Therefore we

have dist(u, v) ≥ 4br. For any b > 1 we have dist(u, v) > 4r which violates the
necessary condition for |Bu(2r) ∩ Lt| > 1. Thus by setting b > 1 the set Lt is a
locally 1-sparse shortest path cover for scale r.

Next we show an upper bound on the doubling dimension of the tree T . We
need to show that for every u ∈ V (T ) and any R ∈ R+, the ball Bu(2R) is a
union of a bounded number of balls of radius R.

Lemma 38. The tree produced by the above reduction has doubling dimension 2
for b ≥ 2.

Proof. Let R ∈ R+ and consider the ball Bu(2R) for any vertex u ∈ V (T ). We
denote by t the vertex with the largest height in Bu(2R). For a vertex v ∈ V (T ),
we denote by Tv the subtree of T rooted in vertex v.

If t = u, then we will show how to cover Bu(2R) with four balls of ra-
dius R. Let h be the height of u and v be any vertex of Bu(2R) \ {u} and P =
(u, v1, v2, . . . , v) be a path from u to v. Note that v is a vertex of a subtree
of Tu. Thus the length of the path segment (v1, v2, . . . , v) is at most L(h − 1).
By Observation 35 with b ≥ 1, the edge {u, v1} has length at least 1

2ℓ(P ) and
the path segment (v1, v2, . . . , v) has length at most 1

2ℓ(P ). Since ℓ(P ) ≤ 2R
and 1

2ℓ(P ) ≤ R, the path P can be covered by Bu(R)∪Bv1(R) where Bu(R) = {u}.
Vertex u has at most three children, let us denote them by w1, w2, w3. Note
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that u has three children if and only if u is the root of T . The union of four
balls Bu(R) ∪ (⋃︁i∈{1,2,3} Bwi

(R)) covers Bu(2R).
It remains to solve the case when t ̸= u. Let h be the height of t and v be any

vertex of Bu(2R) \ {t}. As t ∈ Bu(2R), we have dist(t, v) ≤ 4R and v ∈ Tt. We
will use a similar approach as in the case t = u. Let P = (t, w, . . . , v) be a path
from t to v. As v ∈ Tt, the length of the path segment of P between w and v is
at most L(h − 1). By Observation 35 with b ≥ 2, the edge {t, w} has length at
least 3

4ℓ(P ) and the path segment of P between w and v has length at most 1
4ℓ(P ).

Since ℓ(P ) ≤ 4R and 1
4ℓ(P ) ≤ R, the path P can be covered by Bt(R) ∪ Bw(R)

where Bt(R) = {t}. Vertex t has at most three children, let us denote them
by w1, w2, w3. The union of four balls Bt(R) ∪ (⋃︁i∈{1,2,3} Bwi

(R)) covers Bu(2R).
This shows that the doubling dimension of T is at most log2(4) = 2.
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Conclusion
In this work we designed efficient parameterized approximation schemes for sev-
eral generalizations of the k-Supplier problem. Due to the hardness results we
have summarized in the introduction, it may seem that getting an approximation
scheme for parameters k and either doubling dimension or highway dimension is
the “next best thing”. However, these results can still be further improved. In
the remainder, we outline several aspects in which one may attempt to do so.

Our 3
2 -approximation algorithm (Theorem 3) for the k-Center with Out-

liers problem runs in time exponential in the number of outliers. This result
could be improved by devising a fixed-parameter approximation algorithm which
is polynomial in the number of outliers. Or on the other hand, this result can
be complemented by showing that it is W[1]-hard to (2 − ε)-approximate this
problem when the number of outliers is not a parameter.

In a similar vein, the efficient parameterized approximation schemes for the
k-Supplier with Outliers problem on low highway dimension graphs (Theo-
rem 4) and low doubling dimension graphs (Theorem 5) also have running times
which are FPT in the number of outliers. To improve these results, one can
either devise efficient parameterized approximation schemes, parameterized by
either doubling dimension or highway dimension, with a running time polyno-
mial in the number of outliers, or show that the existence of such an algorithm
would imply FPT = W[1]. An important distinction between these algorithms is
their dependence on the number of outliers in the running time. The algorithm
for low highway dimension graphs (Theorem 4) is exponential in the number of
outliers, while the algorithm for low doubling dimension graphs (Theorem 5) has
the number of outliers only in the base of the exponent. Can the algorithm for low
highway dimension graphs be improved to have the number of outliers in the base
of the exponent as well? Or would such an algorithm imply that FPT = W[1]?

For the Capacitated k-Supplier with Outliers problem, we have shown
a parameterized approximation scheme for low doubling dimension graphs (The-
orem 5). We were not able to show a parameterized approximation scheme for
low highway dimension graphs. We showed that this problem does not admit
an approximation scheme for low treewidth graphs (Theorem 6). This shows
that the approach we used, based on the framework of Becker et al. [BKS18], to
obtain a parameterized approximation scheme for (uncapacitated) k-Supplier
with Outliers for low highway dimension graphs cannot be used to obtain an
analogous algorithm for Capacitated k-Supplier with Outliers. It would
be interesting to show that it is indeed W[1]-hard to obtain a parameterized ap-
proximation scheme when parametrizing by k and highway dimension. Such a
result would show that the Capacitated k-Supplier with Outliers prob-
lem is the first example of a problem which admits an efficient parameterized
approximation scheme for low doubling dimension graphs while simultaneously
not admitting such an algorithm for low highway dimension graphs.

We have shown a hardness of parameterized approximation for Non-Uni-
form k-Supplier problem (Theorem 7). To improve this result, one may at-
tempt to prove that the special case of Non-Uniform k-Center problem is
already hard.
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