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Abstract 
 
 Cognitive flexibility is an important mechanism enabling organisms to adapt to their changing 

environment. Different brain structures are involved in this complex process. It has been 

repeatedly shown that the striatum is one of the key structures controlling cognitive flexibility. 

Striatum receives rich input from different brain regions while its output is rather uniform. 

Striatal functions and signalling are greatly modulated by dopamine and acetylcholine. A 

number of studies have shown involvement of striatal acetylcholine and its receptors in the 

control of cognitive flexibility but very little is known about the role of M4 muscarinic 

acetylcholine receptors. These receptors are inhibitory, and they have been shown to induce 

long-term depression in striatal medium spiny neurons, therefore opposing the action of the 

dopamine D1 receptors. We hypothesize that the inhibitory effect of M4 muscarinic 

acetylcholine receptors may supress spiny projection neurons coding for outdated and no longer 

effective behavioural strategy and thus they may be necessary for the flexible change of 

behaviour. In the present thesis, I investigated the effects of pharmacological antagonism of M4 

receptors on cognitive flexibility of mice tested in a simple reversal learning paradigm. 

Key words: striatum; cholinergic system; cognitive flexibility; mouse; behavioural experiments 

Abstrakt 

Kognitivní flexibilita je důležitým mechanismem umožňujícím organismům adaptovat se na 

neustále se měnící prostředí. Jednou z klíčových částí mozku podílejících se na řízení kognitivní 

flexibility je striatum. Striatum přijímá projekce neuronů z různých mozkových oblastí, zatímco 

jeho vlastní projekce jsou poměrně uniformní a podílejí se na výběru vhodných motorických 

odpovědí organismu. Signalizace ve striatu je modulována především dopaminem a 

acetylcholinem. Řada studií ukázala na význam acetylcholinu a jeho receptorů ve striatu pro 

správnou funkci kognitivní flexibility, ale konkrétně role M4 muskarinových receptorů v tomto 

kontextu je stále nejasná. M4 inhibiční receptory jsou schopné indukovat dlouhodobou depresi 

(LTD) na projekčních neuronech striata a působí tak proti účinku D1 dopaminových receptorů. 

Podle naší hypotézy může inhibiční účinek M4 receptorů potlačovat projekční neurony kódující 

již zastaralou a neefektivní behaviorální strategii, a tím přispívat ke flexibilní změně chování. 

Cílem této práce bylo otestovat účinek farmakologické inhibice M4 receptorů na kognitivní 

flexibilitu myší vystavených jednoduchému testu reverzního učení v operantním boxu. 

Klicová slova: striatum; cholinergní systém; myš; behaviorální experimenty 
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Introduction 
 

Cognitive flexibility, an ability to change a behaviour or a behavioural strategy, allows 

organisms to adapt to the environment and therefore, it plays a crucial role in their daily lives 

and survival. An impairment of cognitive flexibility is observed in many neuropsychiatric 

disorders including Parkinson's disease, addiction, autism, obsessive-compulsive disorder 

(OCD) and eating disorders. Potential mechanisms underlying cognitive flexibility have been 

studied since the second half of the past century. So far, brain regions playing the crucial role 

in cognitive flexibility have been identified including the prefrontal cortex and the striatum. 

Previous studies have shown that acetylcholine (ACh) and cholinergic signalling in the 

dorsomedial striatum is necessary for cognitive flexibility in mice and primates. However, a 

mechanistic understanding of the processes involved is still missing and processes or signalling 

pathways that are recruited by acetylcholine to control cognitive flexibility remain elusive. In 

addition, it is not clear which acetylcholine receptors, expressed by striatal neurons and nerve 

terminals, are involved in this control. While several studies indicated a role for M1 muscarinic 

acetylcholine receptors (mAChRs) in the dorsomedial striatum playing a role in cognitive 

flexibility, a potential role of other receptors is still controversial or has been rarely investigated. 

In the present thesis, I am focusing on a role of M4 mAChRs in cognitive flexibility in mice. 

The M4 receptors have the ability to inhibit striatal projection neurons and thus, we 

hypothesized that they can inhibit motor programs and behavioural strategies that are no longer 

efficient in a given context. Currently, there is little studies available investigating a role of M4 

mAChRs in the control of cognitive flexibility.  Therefore, in this study, I decided to focus on 

M4 mAChRs expressed by striatal projection neurons and on their potential role in the control 

of cognitive flexibility. First, using pharmacological binding experiments and testing several 

different behavioural paradigms, I established a suitable pharmacological and a behavioural 

approach to study the role of M4 mAChRs in the cognitive flexibility in mice. Then I adopted 

a technique of stereotaxic surgeries to implant permanent cannulas into mouse dorsal striatum 

and test the effect of pharmacological M4 inhibition on performance in a cognitive flexibility-

based behavioural task. 
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1. Cognitive flexibility 
 

Cognitive flexibility is one of the key processes for successful adaptation to the changing 

environment. It is an ability to change old, no longer appropriate strategy to a new, suitable one; 

ability to switch attention from one concept to another or, in an animal model, to adjust 

behaviour according to the changing environmental context. Observed and described in 60’s 

and developed as psychological phenomenon in 90’s by Spiro, cognitive flexibility has been 

shown to act on different brain levels from cortex to basal ganglia (Scott, 1962; Spiro et al., 

1988). The whole process involves a large net of connections and signals between different 

brain structures, such as prefrontal, anterior cingulate and posterior parietal cortexes and basal 

ganglia. Activation of these areas has been shown with functional magnetic resonance imaging 

(fMRI) during cognitive flexibility tasks (Leber et al., 2008). In addition, other brain structures 

are also involved in this mechanism, such as thalamus, limbic system and different cortical 

areas which all send projections to the basal ganglia and strongly influence their functioning. 

Involvement of subcortical structures such as basal ganglia tells us about the long existence of 

cognitive flexibility phenomenon, which makes it possible to study this mechanism effectively 

in animals such as mice and rats and suggest that findings are at least partially applicable to 

humans. 

Impairment of cognitive flexibility, as in the case of other executive functions, can be often 

observed with aging as well as induced by pathological states or neurological diseases such as 

Huntington’s, Parkinson’s diseases or schizophrenia (Hanes et al., 1995).  Inability to learn new 

strategy and repeating the old one or problems in decision making are behavioural markers of 

these diseases. For instance, in animal models of Parkinson’s disease an impaired ability of 

reversal learning can be seen in performance of set-shifting test or T-maze test and connected 

with the striatum signalization (Grospe et al., 2018; Owen et al., 1992). Impairment of the 

attentional set-shifting task can be also observed in patients with OCD (Vaghi et al., 2017) and 

Huntington’s disease (Langley et al., 2020). 
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2. Striatum, anatomy and function 

2.1 Anatomy of the striatum 
 

Anatomically, we can distinguish two main structural parts of the striatum – ventral and dorsal 

striatum. They can be further divided based on their glutamatergic input connections and 

specific functions. 

In primates, the dorsal striatum consists of the caudate nucleus and the putamen. In rodents, it 

can be analogically subdivided into two regions – dorsolateral striatum (corresponding to 

putamen in primates), which receives input primarily from sensorimotor cortex, and 

dorsomedial striatum (corresponding to caudate nucleus in primates) with afferent projections 

from frontal and parietal association cortices. The ventral striatum consists of nucleus 

accumbens, which can be divided into shell (ventromedial) and core (ventrolateral) parts and 

the olfactory tubercle. It receives glutamatergic projections from limbic structures such as the 

amygdala (to the ventrolateral striatum), hippocampus (to the ventromedial striatum) and from 

the medial prefrontal and anterior cingulate cortices (Haber, 2003; Rusu and Pennartz, 2019). 

The striatum also has a strong input from the thalamus, and it is indirectly connected with the 

thalamus through its output projections, the direct and indirect pathways. These projections 

form thalamo-cortico-striatal loops, where subareas of thalamus with input from basal ganglia 

are primarily interconnected with motor-related cortical areas. (Hunnicutt et al., 2016) 

Another strong input to the striatum comes from the midbrain regions. Ventral tegmentum area 

(VTA) and substantia nigra pars compacta (SNc) dopaminergic neurons projecting to the 

nucleus accumbens form an important reinforcement pathway (Fiorino et al., 1993). 

Activating effect on motor behaviour provided by the direct pathway and is mediated through 

the inhibition of two gamma-aminobutyric acid producing (GABAergic) output nuclei – global 

pallidus internal (GPi) and substantia nigra pars reticulata (SNr) – therefore disinhibiting 

thalamocortical and brainstem motor circuits. In opposite, indirect pathway activation is 

increasing the activity of basal ganglia’s output nuclei and thus increasing their inhibitory effect 

on thalamocortical motor output. It has additional synapses in the global pallidus external (GPe) 

and subthalamic nuclei (STN). Inhibiting of GPe by indirect projection neurons leads to lack of 

inhibition of the STN which has excitatory projections to the SNr/GPi, therefore supporting 

GABAergic activity of this nuclei and suppressing motor functions. 
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While the direct pathway is required to initiate and sustain locomotion and motor action, the 

indirect pathway inhibits movement, and it is thought to suppress actions that would interfere 

with currently selected behaviour. The two pathways are the most crucial in the control of motor 

behaviours depended on the basal nuclei, nevertheless, there are other connections which add 

to the complexity of the whole structure (Albin et al., 1989; Gerfen and Surmeier, 2011; Lee et 

al., 2016). Among those connections, there are collaterals bridging of direct spiny projection 

neurons (dSPNs) to GPe (Cazorla et al., 2014), intranigral inhibitory connections (Mailly et al., 

2003), projections from the penduculopontine and laterodorsal tegmental nucleus to the 

striatum (Dautan et al., 2014) and from GPe to the cortex (Saunders et al., 2015). 

 

 2.2 Cellular composition of the striatum 
 

Various types of neurons can be found in the striatum. The 

majority of them are spiny projection neurons between 

which we can distinguish those who project through direct 

or indirect pathway (dSPNs or iSPNs, respectively).  They 

are medium-sized cells with typical spiny dendrites, and 

they are all produce GABA as a main neurotransmitter. The 

rest of the striatal neurons consists of interneurons of 

different types. 

Spiny projection neurons (SPNs) (also known as medium 

spiny neurons (MSNs)) are making 95% of striatal neuron 

population and can facilitate or inhibit motor behaviour in 

two pathways – direct and indirect one. Activating effect on 

motor behaviour is provided by dSPNs with projections to 

the SNr/GPi and forming the direct pathway. Indirect 

pathway is formed by iSPNs with projections to GPe and 

mediates suppression of motor actions. 

Besides the connectivity distinction, direct and indirect 

SPNs also differ in their neurochemical profiles. While 

dSPNs are mostly expressing Gs/olf-coupled D1 type 

dopamine receptors and contain neuropeptides substance P 

(SP) a dynorphin (DYN), iSPNs are expressing Gi/o-coupled 

Fig. 1 Striatal neurons diversity 
(adapted from Hjorth et al., 
2020). ChIN – cholinergic 
interneurons, CR – calretinin, 
dSPNs -direct spiny projection 
neurons, FS – fast spiking, IN- 
interneurons, iSPNs - indirect 
spiny projection neurons, LTS – 
low-threshold spiking, NGF – 
nerve growth factor, TH-IN – 
tyrosine hydroxylase expressing 
interneurons 
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D2 type and contain enkephalin (ENK) (Deng et al., 2006; Gagnon et al., 2017). Despite the 

fact that this expression is not exclusive for a certain type of neurons it is still clearly prevalent 

to be an important marker for distinguishing between dSPN and iSPN.  

Interneurons in the striatum can be divided into two main groups: GABAergic and cholinergic 

interneurons (CINs). They are not having a big share in the whole striatal neuronal population 

but play an important role in the local inhibition and modulate striatal input as well as signalling 

by striatal microcircuits.  

Cholinergic interneurons are large cells with ~1% share of the striatal cells. They make dense 

local connections within striatum and provide ongoing acetylcholine signal because of their 

tonic activity (Oorschot, 1996; Zhou et al., 2002). 

GABAergic interneurons further have been divided into the three main subgroups based on 

their electrophysiological and neurochemical properties: fast spiking interneurons (FSI) also 

referred to as parvalbumin-expressing interneurons, somatostatin-expressing low-threshold 

spiking interneurons (LTSI) and calretinin-expressing (CR) interneurons. Nevertheless, there 

are other GABA interneuron types that have been discovered lately and added to the diversity 

of the population. In particular, 5-hydroxitryptamine 3 (5-HT3) receptor expressing 

interneurons which are classified as fast adapting (Faust et al., 2015), tyrosine hydroxylase 

expressing interneurons (Ibáñez-Sandoval et al., 2015) and neuropeptide Y (NPY)- expressing 

neurogliaform interneurons (Ibáñez-Sandoval et al., 2011). All these types show specific 

patterns of firing and connectivity and add-up to the complex system of striatal microcircuits. 

In summary, there is a dense concentration of different neuronal types in the striatum with 

intertwined dopamine and acetylcholine circuits, which promote main modulative effects and 

are involved in the control of executive functions including cognitive flexibility. In this thesis, 

we will focus on acetylcholine, as one of the key striatal neurotransmitters, and try to clarify 

its’ role in cognitive flexibility. 

2.3 Behavioural functions of the striatum 
 

The striatum is a major part of the basal ganglia and plays an important role in motor functions 

as well as being a part of reward system. It is an important regulation point for signals passing 

from the cortex to the motor neurons with conductive and regulatory functions (Redgrave et al., 

1999). Its’ functions in motivation and reinforcement learning of certain behaviour strategies 

are also have been shown. In contradistinction to prefrontal cortex, which mediates cognitive 

action planning and is responsible for model-based reinforcement learning, striatum is used to 
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be considered as responsible for model-free reinforcement learning, based on the direct 

behavioural outcome. However, last studies have shown more complex picture with a role for 

the striatum also in model-based reinforcement learning. (Daw et al., 2011, 2005; Deserno et 

al., 2015)  

Dopamine (DA) neurons projecting to the striatum take part in the reinforcement learning 

processes. They have been shown to encode reward prediction error – the difference between 

experienced and expected reward (Montague et al., 1996). DA neurons are increasing their 

activity in response to an unexpected reward, cues that predict reward and distance of the animal 

from the reward (Cohen et al., 2012; Fiorillo et al., 2003; Roesch et al., 2007). The DA signal 

is positively modifying glutamatergic synapses in D1-expressing SPNs and increasing 

probability of repeating the action that lead to the unexpected reward (Bromberg-Martin et al., 

2010). Decrease of DA release, in turn (caused by the omission of the reward), leads to the 

extinction of the previously conditioned response (Salinas-Hernández et al., 2018). 

Besides the role of a neurotransmitter, dopamine also has modulative functions on the SPNs 

synapses. It modulates neuron’s responsiveness to stimuli not only by increasing sensitivity of 

membrane but also by gene expression affection and long-term potentiation (LTP) induction 

which therefore leads to stronger nervous signal towards preferred type of behaviour. (Tritsch 

and Sabatini, 2012). 

Different striatal regions have different roles in cognitive functions and behaviour. The 

dorsomedial striatum is important for goal-directed learning and behaviour, behavioural 

flexibility, reward associated motor learning and reaction time. The dorsolateral striatum is 

important for habit formation. Getting DA signal in response to the cue that leads to undirected 

movements (not cued), dorsal striatum is thought to be important for stimulus-response 

associations and response-outcome associations (Balleine et al., 2007; O’Doherty et al., 2004; 

Saunders et al., 2018). 

The ventral striatum is involved in reinforcement learning and in appetitive as well as aversive 

behaviours. It also contributes to the control of sensitivity to drugs of abuse and natural rewards, 

such as food intake. Ventral striatum is thought to be important for stimulus-outcome 

associations and DA projections there mediate a cue-approaching behaviour .(O’Doherty et al., 

2004; Saunders et al., 2018) 

Considering their involvement in the direct and indirect output pathway, respectively, it is not 

surprising that dSPNs and iSPNs can be also distinguished by their effect on behaviour. dSPNs' 

and iSPNs' influence on behavioural outcome is based on the go/no go system where direct 
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pathway promotes, and indirect pathway inhibits actions. For instance, optogenetic activation 

of the iSPN led to the increased freezing, bradykinesia and decreased locomotion, when 

activation of the dSPN has shown opposite effect with increased locomotion and reduced 

freezing (Kravitz et al., 2010). This effect has also been observed on the SNr, where after dSPN 

and iSPN optogenetic activation was induced excitation or inhibition that correlated with motor 

suppression or facilitation, respectively. This characterises SPNs types as opposite acting 

“switches” for output nuclei that allows to control motor behaviour (Freeze et al., 2013). 

Modulative functions of SPNs are observed as well upstream the signal, in the cortex. While 

dSPNs promote excitation through the striatonigral projections to the primary motor cortex, 

iSPNs act antagonistic to them through the striatopallidal projections. (Oldenburg and Sabatini, 

2015; Alexander and Crutcher, 1990; Deniau and Chevalier, 1985; Gerfen et al., 1990)  

However, this go/no go system cannot be simplified only to this function as both pathways are 

activated during the task performance (Wu et al., 2000).  Latest studies suggest the role for 

dSPNs in selecting action, whereas iSPNs role is in avoiding it. This also supported by 

observations that dSPNs are more active in presence of the reward while iSPNs in its absence. 

(Shin et al., 2018) Optogenetic experiments also show the role for SPNs activity rather in 

decision making than movement output, with dSPNs responsible for repeating the action if it is 

rewarding and iSPNs responsible for avoiding non-rewarding action (Nonomura et al., 2018). 

Latest study, where inhibition of iSPNs, but not dSPNs leaded to the attenuation of the response 

flexibility, suggests the greater role for the first in the cognitive flexibility processes (Peak et 

al., 2020). 

Cholinergic striatal system also plays a role in behavioural control. CINs have been shown to 

regulate reinforcement learning processes whet it occurs but not promoting reinforcement 

learning by themselves (Lee et al., 2016). CINs role is also confirmed to be rather in cognitive 

flexibility and reversal learning than in the initial learning (Aoki et al., 2015). Its influence is 

mediated through the direct synapses with SPNs as well as through the influence on 

glutamatergic synapses on SPNs. Mechanisms of these effects are described in further chapters 

of this thesis. 
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3. Cholinergic system, its structure and functioning in the striatum 
 

3.1 Striatal cholinergic interneurons: morphology and physiological properties 
 

In mouse brain, acetylcholine is produced by cholinergic projection neurons of midbrain and 

basal forebrain and by striatal interneurons. While cholinergic projection neurons reach various 

areas including neocortex and limbic cortex, hippocampus and amygdala or thalamus, striatal 

cholinergic interneurons are influencing local microcircuits in the striatum (Woolf, 1991). 

Cholinergic interneurons (CINs) are also known as „tonically active neurons” for being able of 

the ongoing spontaneous activity, inducing action potentials at about 3-10 Hz. This tonic 

activity has been shown to be independent on the synaptic input with intrinsic origin and caused 

by afterhyperpolarization that follows single spikes. It is caused by calcium-dependent 

potassium currents and provides rhythmic single spiking of CINs (Wilson et al., 1990; Wilson 

and Goldberg, 2006).  However, the tonic spiking pattern can be influenced by external stimuli, 

which can cause pauses in their activity. Those pauses in CINs tonic spiking have been shown 

to inhibit SPNs activity and influence the behavioural outcome (Kimura et al., 1984; Zucca et 

al., 2018). 

Another remarkable characteristic of the CINs is their size, they are the largest cells in the 

striatum. Their large axons are spreading wide across the other neurons and affecting them 

through a variety of nicotinic and muscarinic acetylcholine receptors (Gonzales and Smith, 

2015). 

 3.2 Striatal cholinergic interneurons: connectivity 
 

CINs are primarily receiving their excitatory input from the cortex and thalamus. Main thalamic 

source of projections are intralaminar nuclei, in particular, parafascicular nucleus (Lapper and 

Bolam, 1992; Van der Werf et al., 2002). Thalamus, in turn, receives projections from the 

sensory cortex. These projections can influence the autonomous firing pattern of CINs and 

mediate the thalamic regulation of striatal responsiveness to the cortex stimuli (Ding et al., 

2010; Schulz et al., 2011). 

Another important input to the CINs is represented by DA afferents, which can directly affect 

them through the D2 dopamine receptors and provide inhibition of CINs, as well as modulate 

their responsiveness and excitatory input which leads to pauses in their tonic activity. This 

mechanism is possibly important for the reward learning and can be downregulated through 
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nAChRs expressed by DA terminals, forming a feedback loop (Schulz and Reynolds, 2013; 

Zhang et al., 2018). 

Inhibition of the CINs is also provided by surrounding GABAergic interneurons, activity of 

which can be in turn regulated by acetylcholine through their nAChRs (Sullivan et al., 2008). 

CINs projections are widespread within the striatum and make synapses with SPNs, releasing 

acetylcholine as a main neurotransmitter. Besides acetylcholine, CINs have also been shown to 

co-release glutamate (Gras et al., 2008; Guzman et al., 2011; Sakae et al., 2015). 

 3.3 Acetylcholine receptors in the brain and the striatum 
 

CINs are the main source of acetylcholine in the striatum, with lesser contribution of the 

pedunculopontine and laterodorsal tegmental nuclei in the brainstem (Dautan et al., 2014). 

Striatal acetylcholine affects receptors on spiny projection neurons as well as on GABAergic 

interneurons and its own pre-synaptic receptors expressed by CINs.  

Synthetized in the axonal end of neuron by choline acetyltransferase, acetylcholine is then 

released to the synapse where it binds to its receptors, which are heterogeneous in their structure 

and function, and it is also quickly degraded by acetylcholine esterase. Two main types of 

acetylcholine receptors are distinguished: nicotinic acetylcholine receptors (nAChRs) which 

are represented by ion channels activated by acetylcholine and cause membrane depolarization, 

and muscarinic acetylcholine receptors (mAChRs) represented by G-protein coupled 

metabotropic receptors, activation of which may lead both to inhibition or activation of neurons 

based on the type of mAChR. 

nAChRs are widely distributed across the brain and peripheral nervous system and play a role 

on muscular synapses as well as in autonomous nervous system’s synapses. They are also found 

in the brain where their function is more regulative and modulative rather than direct. nAChRs 

are typically made of five subunits which can be either all the same type in homopentameric 

receptors, or, more frequently, of different types in heteropentameric receptors. Different 

subunits of nicotinic receptors can be more widely expressed in some brain areas and rarely 

found in others. In the striatum, heteropentameric structure of nAChRs is characteristic, 

nicotinic receptors can be found on a variety of neuronal cells and are affected primarily by 

acetylcholine produced by CINs (Gotti et al., 2006). 

Muscarinic receptors family is represented by transmembrane proteins coupled with 

intracellular G proteins. Subtypes are divided by their G protein type, binding site’s structure 
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and therefore ligands, and location in the body. M1, M3 and M5 are providing neuronal 

excitation through the Gq protein, M2 and M4 are inhibiting neurons through Gi/o. Induced 

through G proteins, mAChR response is slower than nAChR but persists longer and have effects 

on gene expression. Activation of the muscarinic receptors M1, M3 and M5 by acetylcholine 

upregulates phospholipase C and increases Ca2+ influx, M2 and M4 activation decreases cAMP 

concentration in the cell. This second messenger’s action leads to the changes in the cell 

functioning and particularly in gene expression (Caulfield, 1993). 

Muscarinic receptors distribution is also rather heterogeneous. Typically, M1, M2 and M4 types 

can be found in the brain, mainly in cortex, basal forebrain and hippocampus. M5 presence is 

specifically observed in the midbrain (Moran et al., 2019, Vilaró et al., 1993). 

Modulatory effect of acetylcholine on the striatal output is mediated through the both main 

types of acetylcholine receptors. There is not so much specific evidence for nAChRs 

distribution in the striatal neurons, but they are abundantly expressed by different types of 

projection terminals. In addition, they seem to have modulatory effect in presynaptic location 

on specific types of striatal interneurons (Matsubayashi et al., 2001; Luo et al., 2013; English 

et al., 2011). More evidence of direct postsynaptic action can be found for mAChRs, especially 

M1 and M4, it suggests their major role in striatal cholinergic signalization and therefore in 

regulating of the striatum output in cooperation with dopamine and GABA effects. 

 

Fig.2. Schematic representation of a hypothetical cholinergic synapse illustrating general 
synaptic localization and function of cholinergic receptors. AC- adenylate cyclase, IP3 – inositol 
triphosphate, ChAT – cholinacetyltransferase, AChE – acetylcholine esterase, BuChE – 
butyrylcholinesterase, vAChT – vesicular acetylcholine transporter (adapted from Jones et al., 
2012) 
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4. M4 muscarinic acetylcholine receptors in the striatum 

M4 receptors are a subtype of muscarinic acetylcholine receptors with inhibitory function. 

Upon activation by acetylcholine, they activate mechanisms leading to lowering cAMP and 

Ca2+ concentration in the cell and therefore inhibiting gene transcription. M4 is a classical G-

protein coupled receptor with seven transmembrane domains which endogenously binds 

acetylcholine as an agonistic ligand. Other agonists for this receptor are carbachol and 

oxotremorine. M4 has a variety of known antagonists among which are himbacine, mamba 

toxin 3 and tropicamide. Also, a variety of M4 positive allosteric modulators has been 

synthesized. (Goyal, 1989; Kargbo, 2018) 

 4.1 Effect of M4 mAChRs on striatal signalling 
 

While M1 receptors can be found on both dSPNs and iSPNs, 

M4 receptors with inhibiting function can be found 

preferentially on the direct pathway (D1) medium spiny 

neurons. As was mentioned before, those are GABAergic 

neurons, activated primarily by DA through the D1 dopamine 

receptors. Thus, inhibitory M4 receptors can counterbalance the 

activating effect of DA in dSPNs (Gomeza et al., 1999). 

When expressed presynaptically, role of M4 receptors mostly 

consists of acetylcholine release regulation (Bubser et al., 

2014), postsynaptically its effect extends broader and can 

influence cell activation and gene expression in a more 

sophisticated way. Acetylcholine does not have an action 

potential inducing effect on dSPNs synapses; however, it has an 

important modulative role, contributing to the striatal 

acetylcholine/dopamine intertwined and balanced system, both 

pre-and postsynaptically (Oldenburg and Ding, 2011). 

One of this modulative roles consists in regulation of the 

dopamine release from dopaminergic neurons. Acetylcholine 

distribution from the CINs can inhibit or promote further dopamine release, depending on the 

targeted receptor type. In case of M4 receptors, this effect in inhibitory. One of the mechanisms 

responsible for this regulation was suggested to be through the activation of postsynaptic M4 

receptors expressed by D1-SPNs that can promote releasing of 2-AG endocannabinoids, 

Fig. 3. M4 receptor 
distribution in a mouse brain 
(upper picture) and its 
location on the striatal 
synapse (lower picture). 
(Moran et al., 2019) 
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substrates for the cannabinoid receptors 2 (CB2R) with inhibitory effect on the DA neurons 

endings (Foster et al., 2016).  Another modulative role of M4 receptors is in its presynaptic 

inhibition of glutamate release from cortical/thalamic input projection to the striatum (Pancani 

et al., 2014). 

Acetylcholine acting through the M4 receptors can also interfere with dopamine effect in 

dSPNs. Mechanism of this interaction consists in competition of D1 activating and M4 

inhibiting signalling on adenylyl cyclase activity and further on production of cAMP (Dencker 

et al., 2011). Another recent study suggested that M4 mAChRs exert tonic inhibition on striatal 

SPNs and a pause in this inhibition is required for dopamine-induced LTP in dSPNs (Nair et 

al., 2019). Also, M4 receptors activation can directly promote LTD on glutamatergic synapses 

in SPNs (Shen et al., 2015). However, not only acetylcholine from CINs can influence M4 

receptors expressed by dSPNs. Acetylcholine is also released from extra-striatal cholinergic 

projections to SNr and it was suggested that it inhibits dSPNs activity there, decreasing 

probability of GABA release on SNr synapses (Moehle et al., 2017). 

 

 

Fig. 4. Schematic of striatal cholinergic system. iMSN and dMSN – indirect and direct medium 

spiny neurons, respectively (Janickova, 2018) 
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4.2 Role of M4 mAChRs in the control of striatal-based behaviour 
 

Not surprisingly, M4 receptors’ role in modulation of dopaminergic system makes their 

functions tightly connected with dopamine-dependent behaviours. Behaviours such as 

increased motor activity and increased behavioural sensitization following treatment with 

psychostimulants can be observed in mice with M4 deletion on dSPNs (Jeon et al., 2010). There 

is evidence for M4 receptors’ role in suppressing alcohol-addiction (Walker et al., 2020). In 

addition, antipsychotic effect (Foster et al., 2016; Hailwood et al., 2019; Yohn and Conn, 2018) 

can be induced by activation of M4 receptors which makes them potential target for treatment 

of several striatum-associated diseases such as addiction or schizophrenia. Deletion of M4 

receptors was also connected with compulsive behaviour which adds up to list of the disorders, 

in mechanisms of which M4 receptors are involved (Justinussen et al., 2020). Furthermore, 

boosting M4 activity with specific allosteric positive modulator attenuated dyskinesia, a 

Parkinson’s disease treatment consequence (Shen et al., 2015). 

4.3 Striatal M4 mAChRs and cognitive flexibility 
 

Striatal acetylcholine has been shown to be important in reversal learning and cognitive 

flexibility in general (Prado et al., 2017). CINs activity is shown to be important for behavioural 

flexibility tasks and its absence decrease set-shifting tasks performance (Aoki et al., 2015). 

However, there are also evidence of the opposite action of CINs on the reversal learning (Okada 

et al., 2018, 2014). Higher acetylcholine levels in some striatal region, in particular in 

dorsomedial striatum can be observed during the reversal learning tasks, but not during the 

acquisition (Kitabatake et al., 2003; Ragozzino et al., 2009).  It confirms a role for acetylcholine 

in cognitive flexibility processes and its influence on striatum-depended memory. 

The possible mechanism for the mediating attention shift might be through the enhancing 

activity of iSPNs by acting on its M1 receptors and suppressing non-rewarded action (Tzavos 

et al., 2004). However, role of the dSPNs and M4 muscarinic receptors can be distinguished 

here as well. Specifically, they were suggested to mediate attenuative effect of acetylcholine on 

behavioural flexibility and stabilize previously used strategy in order to obtain the reward. 

These effects were observed after CINs elimination or M4 gene-specific silencing in the 

dorsomedial striatum, which both led to the enhancing of the reversal learning ability (Okada 

et al., 2014). This influence on cognitive flexibility has been also shown to be dependent on the 

duration of interatrial intervals, with longer intervals needed to detect enhancing effect of CINs 

elimination (Okada et al., 2018). 
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Another study proposed that the effect of dorsomedial striatum acetylcholine on cognitive 

flexibility is mediated primarily by M1 receptors. Their inhibition led to the impairment of 

reversal learning with increased number of regressive but not perseverative errors. This 

suggests the importance of acetylcholine in mechanisms maintaining a new way of action but 

not in initial strategy switching processes. Importantly, blocking the M4 receptors by specific 

antagonist did not show any effect on the cognitive flexibility in this study (McCool et al., 

2008). 

Considering general function of dSPNs to promote an action and support a strategy leading to 

the reward and D1 LTP-promoting effect, which is controverted by M4 LTD induction, 

acetylcholine may have a regulative function here as well as during the behavioural strategy 

switch. It can suppress activity of the dSPNs responsible for the old strategy and increase 

cognitive flexibility. Therefore, we hypothesize that inhibition of M4 receptors could lead to 

cognitive flexibility impairment. 

There is only limited number of studies investigating this topic which is making it relevant and 

intriguing for studying. 
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Aims 
 

Based on the available literature, the role of striatal acetylcholine and striatal CINs in the control 

of cognitive flexibility is quite clear. In contrast, roles of individual acetylcholine receptors in 

cognitive flexibility needs to be clarified. In particular, there is little information on the role of 

M4 mAChR expressed by dSPNs. It has been shown that the inhibitory effect of M4 mAChRs 

on dSPNs is in opposition to the activating effect of D1 dopamine receptors and in contrast to 

D1-induced LTP, M4 mAChRs were shown to induce LTD in dSPNs (Shen et al., 2015). In 

addition, one of the two available studies  reported that knock-down of M4 mAChRs in the 

striatum leads to improvement in cognitive flexibility (Okada et al., 2014). Therefore, the main 

goal of the present study was to test a hypothesis that inhibition of M4 mAChRs in the dorsal 

striatum would affect mice performance in a behavioural task where an intact cognitive 

flexibility is required. To test this hypothesis, I set up the following aims: 

1. Find a suitable M4-selective or -preferential antagonist to inhibit M4 mAChRs in the 

DS in mice in vivo and test its pharmacological properties. 

2. Test several behavioural paradigms commonly used to test cognitive flexibility in 

rodents in order to select the optimal paradigm to be used in mice with permanent intra-

cerebral cannula placement. Both male and female mice should be behaviourally tested 

in order to detect potential differences between sexes and select the more suitable sex 

(or both) for the final testing. 

3. Establish stereotaxic coordinates for the DS in mice and optimize the stereotaxic 

placement of intra-cerebral cannula that would allow a microinfusion of the selected 

M4 antagonist into the DS. 

4. Test our hypothesis using the selected behavioural paradigm. The task will be tested in 

mice with cannulas placed in the DS and administered with M4 antagonist before being 

subjected to the behavioural task. 

 

 

 

 



 

17 

 

Materials and methods 
 

1. Binding assays with M4-preferential antagonist tropicamide 
 

After extensive search of literature, I selected M4-preferential antagonist tropicamide to be used 

in my behavioural experiments for blocking M4 receptors in the DS and testing their role in 

cognitive flexibility. I selected tropicamide based on its reported preference for M4 mAChRs 

and because it has been previously used in vivo in rodents (Betz et al., 2007; Ztaou et al., 2016). 

Then, to confirm the presence of mAChRs in the mouse striatum as well as the preferential 

binding of tropicamide to M4 mAChRs, I performed two types of binding experiments: 

saturation experiments to measure expression of all types mAChRs in the mouse striatum and 

competitive binding experiments to measure the tropicamide affinity for M1 versus M4 

mAChRs. M1 mAChRs were selected for the comparison because, according to the data in 

literature, M1 affinity to the tropicamide is close to M4 and it is one of the most common 

mAChR in the striatum. It is also expressed on the same neurons as M4 receptors and its’ 

antagonism may potentially interfere with the effect of tropicamide on the M4 receptors (Betz 

et al., 2007) (Table1.). For the saturation experiments, I used membrane fraction of striatal 

homogenates. For the competitive assays, I used membranes prepared of two different cell lines 

with heterogeneous expression of either M1 or M4 mAChRs.    

 

Table 1.Tropicamide affinity for the mAChRs subtypes (adapted from Betz et al., 2007). 

1.1 Samples’ preparation and membranes isolation 
 

Mouse was sacrificed by decapitation and brain was quickly extracted. Striata from both 

hemispheres were dissected on ice, homogenized in homogenization medium (100 mM NaCl, 

10 mM MgCl2, 20 mM Hepes, 10 mM ethylenediaminetetraacetic acid (EDTA), pH=7.4) and 
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used for membrane isolation as further described. All samples were homogenized with Ultra-

Turrax homogenizator for approximately 1 min. Large fragments (sediment) were discarded 

after centrifugation at 300 g and 4 °C for 3 min. 1.4 ml of supernatant was then distributed to 

microtubes and centrifuged for 30 min at 30 000 g and 4 °C. Supernatant was discarded and 

sediment washed with 1 ml of incubation medium (100 mM NaCl, 10 mM MgCl2, 20 mM 

Hepes, pH=7.4). Samples were centrifuged again for 30 min at 30 000 g and 4 °C. Isolated 

membranes were stored at – 80 °C until use. 

1.2. Saturation binding assay 
 

In saturation experiments, a radioactively labelled ligand of increasing concentrations is added 

to the membrane sample and after incubation, bound fraction of radioactivity is separated by 

filtration and measured with a scintillation counter. For mAChRs, [3H]-N-methylscopolamine 

([3H]-NMS) is commonly used as a radioactive ligand. For eliminating the effect of non-specific 

binding, an extra sample is prepared with addition of a high concentration of non-labelled ligand 

(atropine) that is supposed to displace the labelled [3H]-NMS from its specific binding. The 

measured value of the non-specific binding is then deducted from the specific binding values. 

The saturation binding assay allows to quantify a maximum number of binding sites (maximum 

binding, Bmax) and affinity of the receptors to the ligand (equilibrium dissociation constant, Kd). 

To measure the expression of mAChRs in the mouse striatum, we prepared a sample of striatal 

membranes (50 ug protein/well) and loaded on 96-well plate in triplicates. The total incubation 

volume was 400 ul. To individual samples, a radioactively labeled [3H]-NMS was added in the 

following concentrations: 4000-2000-1000-500-250-125-62,5 pM. In addition, 8 ul of 1 mM 

atropine was added to the non-specific binding wells. Samples were incubated for 3 hours at 

the room temperature. After the incubation, plates were filtered (Brandel Cell Harvestor) and 

membranes with radioactive ligand were fixed on the filtration paper, previously soaked in 

polyethylenimine to lower non-specific binding of [3H]-NMS. Dried filters were fixed in 

scintillation wax and measured for radioactivity with scintillation plate counter (Microbeta, 

Perkin Elmer). Saturation assay was repeated in three independent experiments. 

1.3. Competitive binding assay 
 

For these experiments, membranes prepared from Chinese hamster ovary (CHO) cells with 

heterologous expression of either M1 or M4 mAChRs were used. 100 µl of membrane samples 

were prepared and loaded in the 96-well plate in quadruplicates (50µg of protein/well). To the 

membranes, I added 50 µl of 2 mM [3H]-NMS and 50 µl of tropicamide diluted according to 
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the Table 2 or 50 µl of buffer in control samples and non-specific (NS) binding wells. The total 

incubation volume was 200 ul. 5 µl of 1mM atropine was added to the non-specific binding 

wells. 

   Tropicamide concentration 10 (-..)  

M1 Ctrl Ctrl -8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 NS 

M4 Ctrl Ctrl -8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 NS 

Table 2. Scheme of the wells filling with tropicamide dilution stage. Ctrl -control sample, NS -non-

specific binding. 

Samples were incubated for 3 hours at the room temperature. Filtration and radioactivity 

measurement were performed as described in the previous paragraph. 

 

2. Animals 
 

In the following behavioural experiments, 41 wild type (WT) inbred mice of mixed background 

were used, 31 males and 10 females. 19 mice (9 males, 10 females) were used in the initial 

experiments in order to select an optimal behavioural paradigm and compare performance of 

both sexes. 22 male mice were implanted with intra-cerebral cannulas used to test the effect of 

tropicamide on cognitive flexibility. All experimental procedures complied with the directive 

of the European Community Council on the use of laboratory animals (2010/63/EU) and were 

approved by the Czech Central Commission for Animal Welfare. Mice were housed in a 

temperature and humidity-controlled room with a 12-hour light/dark cycle (lights ON at 6 AM). 

Mice were provided with standard rodent chow and water ad libitum. For the food-motivated 

tasks (T-maze and instrumental task in the operant box), mice were food-restricted to 85-90 % 

of their original (adult, free-food) weight. As a food reward, we used condensed milk (Mlekarna 

Hlinsko) diluted 1:1 with water and chocolate-flavoured cereal pellets (BioServ) for the T-maze 

and operant box task, respectively. 

 

3. Behavioural tests 
 

To test the effect of M4-preferential antagonist tropicamide on cognitive flexibility, I had to 

select an optimal behavioural paradigm. The ideal task should be 1/ commonly used for 

investigating cognitive flexibility in rodents and widely reported in literature, 2/ relatively 

easily acquired by animals so the number of microinfusions would be minimized as well as the 
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risk of cannula damage during the experimental period, 3/ feasible in mice with permanent 

cannulas avoiding a risk of cannula damage or contamination, 4/ consisting of relatively short 

individual sessions so the effect of the microinfused tropicamide can be assumed during the 

whole testing period. Initially, I chose three candidate tests that I optimized while comparing 

performance of drug-naive male and female mice. The same cohort of mice was subjected to 

all three tests in the following order: response-based T-maze (plus maze), Morris water maze 

with reversal and instrumental task in the operant box. 

3.1. T-maze task 
 

 
Fig. 5 Cross maze design scheme 

This behavioural task is based on the ability of rodents to learn the direction to a reward 

regardless on their cognitive space map made in the hippocampus. Instead, it relies on the 

egocentric navigation, that is, on body turn. In the experiment, mouse is placed into a starting 

arm of a cross-maze with the opposite arm blocked, so the maze is in the shape of T-maze. A 

reward is placed in the correct direction, either left or right (the correct direction is pseudo-

randomly assigned to each animal). The starting position of the animal is alternated in two 

opposite starting arms (Fig. 5) so the position of the reward depends solely on the correct body 

turn and cannot be deduced from the external spatial cues. The experiment consists of the 

acquisition and reversal phase and the correct direction is switched to the opposite side during 

the reversal. For the whole experiment duration, mice were kept on the food restriction at 85-

90% of their normal weight (Deacon and Rawlins, 2006; Juszczak and Stryjek, 2019; Okada et 

al., 2018). 

Pre-habituation took place every day before starting the experiment. Mice were left in the 

experimental room for 30 minutes to habituate to the environment. Mice have been also held in 

hands and habituated to a human presence. 
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1st phase of the experiment consisted of the habituation of the mice to the apparatus and the 

experimenter. On the first day of habituation mice were given a little of reward (condensed milk 

diluted with water in the proportion 1:1) and were placed in the maze apparatus together with 

their cage mates. On the second day and the following days, mice were taught to look for and 

consume the reward regardless of the direction as it could be found in both side arms. One 

session consisted of ten trials and was held once a day. Sessions were started from south arm 

and north arm, five times each, and were limited to the time of 90s, reward amount set to 40µl. 

Mouse was taken out of the maze after the session time elapsed or after consuming the reward. 

When all mice were reliably searching for the reward and consumed it 10 times in a row, they 

have been moved to the second (acquisition) phase. 

2nd phase was the acquisition phase during which mice were toughed to find the reward in only 

one of the arms and reliably choose the correct body turn (direction). Direction for each mouse 

was chosen based on their original preference during the habituation in favour of the non-

preferred direction. Design of this phase sessions was the same as in the first phase, only now 

there was the reward only in the correct arm and starting arm (north or south) choice was 

randomized.  Mice were given maximum 10 days to learn, however, after reaching 70% 

accuracy threshold on 2 days in a row they were passed to the 3rd phase of experiment. 

3rd phase of the experiment investigated the ability of mice to abandon the original and now 

inefficient strategy and make a new correct choice. They were tested by the same protocol as 

in the 2nd phase, only now the correct direction was switched to the opposite side. Mice 

completed the experiment after they reached 70 % accuracy on two days in a row or spent 10 

days in the reversal. 
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3.2. Morris Water Maze (MWM) with reversal phase 
 

 
Fig. 6. MWM design scheme (adapted from Kazantsev et al., 2017) 

 

Morris water maze is a behavioural memory task commonly used in mice and rats. Animals 

need to find a hidden platform in a pool with filled water. The starting position of the animal is 

altered during the training while the position of the hidden platform is constant and must be 

found using external spatial cues such as furniture in the room or highly visible black and white 

patterns attached to the walls for that purpose (Morris, 1981). A little stress caused by water 

environment makes the learning process faster and the whole method convenient for short-term 

experiment. For testing cognitive flexibility, a reversal stage is included in the task where the 

position of the hidden platform is changed and animals are therefore forced to switch the 

previously acquired strategy (Vorhees and Williams, 2006). 

During the acquisition phase, mice were released in the pool (Ø 90cm) filled with water (25 °C) 

and given 60s to find the hidden platform. If the mouse failed to find the platform, it was gently 

guided to it, let stand there for several seconds and then withdrawn from the pool and left in 

cage until the next trial. Each mouse had four trials per day with intertrial intervals of 

approximately 10 - 15 minutes. After four days of training mice had a test day when they were 

given 60s in the pool with no platform to check if they spend most of their time looking for the 

platform in the correct location (quadrant). After completing the acquisition, reversal phase was 

performed according to the same protocol, only the platform was moved to a different position 

in the pool. Reversal part lasted only two days as the mice were already familiar with the task 

and they acquired the new position quickly. The third day was the test day as in the acquisition 

phase. The experiment was recorded by a camera and the mice path to the platform was tracked 

and analysed by a Tracker software (Biosignal Group). Average speed, distance and time for 
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reaching the platform were the primary outcomes of the task during training and on the test 

days, I analysed time spent in individual quadrants of the pool. 

3.3 Instrumental task in the operant box 
 

 
Fig. 7. Operant box experiment design scheme (adapted from Med associates Inc.) 

Operant boxes allow us to test mice in a variety of instrumental tasks and thanks to the flexible 

and programmable control software, those tasks can be adjusted to the experimenter’s needs. I 

have selected and programmed a simple instrumental task where mice had to choose a correct 

lever (left or right) and pressing the correct lever resulted in a reward delivery in a ratio 1:1. All 

mice were food-restricted and maintained at 85-90 % of their normal weight before the 

beginning of the experiment to ensure their motivation to earn the food reward (Floresco et al., 

2009). Operant box task was programmed in Pascal according to the manufacturer's manual 

(Med Associates). The full code can be found it attachments (attachment 1.) The experiment 

consisted of several phases including individual steps of habituation, operant training, 

acquisition and reversal learning.  1st day of habituation consisted of 10 minutes spent in the 

operant box chamber with the house light on. 2nd day of habituation was a 40 min session with 

the reward falling out automatically every two minutes. All the mice were checked for 

consuming the reward and in case of successful reward consumption were passed to the next 

step. After the habituation, an operant training was initiated. Mice had to learn to press any 

lever (left or right) in order to obtain the reward. Session time was set to 30 minutes and 

maximum of rewards to be earned was 40. After successful completion of the session with all 

the maximum rewards obtained and consumed, mice proceeded to the acquisition phase. In this 

phase only one lever was correct, opposite from the one that was naturally preferred during the 

initial training sessions for each mouse. Criterium for passing to the reversal phase was to obtain 

and consume 40 rewards with at least 80% of correct presses. After completing the acquisition 
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phase, mouse had to complete two baseline sessions to ensure that task had been learned and to 

assess baseline performance. The final, reversal phase was identical to the acquisition, only the 

correct lever has been switched to the opposite side. 

4. Stereotactic surgeries 
 
Stereotactic frame (Stoelting) was used for surgeries and implantation of permanent intra-

striatal cannulas. Coordinates were adjusted before to target the dorsal striatum. 

 

 
Fig. 8. schematic of target coordinates for the DS. Red dot represents placement of the cannula 
tip 

 
Mice were deeply anaesthetised with mixture of ketamine (87 mg/kg) and xylazine (13 mg/kg; 

both Vetoquinol), and eye gel was applied for preventing eyes from drying. Mouse’s head was 

fixed in the frame with metal bars inserted into ears to prevent any head movements during the 

surgery. After the skin incision, hydrogen peroxide was carefully applied on the skull surface 

to make the sutures clearly visible. In the next step, I ensured that bregma and lambda points of 

the scull were laying in one plane and they were both placed in the midline. For ensuring better 

cannula fixing two holes were drilled and two screws of 1,6 mm diameter (PlasticsOne) were 

placed approximately 2 mm posterior from the cannula holes. Then two holes were drilled in 
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the skull with the following coordinates: AP: 0.8 mm; ML: ±1.8 mm from bregma. Cannulas 

(PlasticsOne; RWD Life Science) were placed in depth of 2.4 mm DV from bregma. Cannulas 

were fixed with a small amount of dental cement and let dry for approximately 30 minutes. 

Then the mouse was released from the frame and moved to a home cage for recovery from 

anaesthesia. Mice were held in separate cages after the surgery to prevent them interacting with 

mate’s cannulas and decrease the possibility of cannulas damage. 

5. Microinfusions into the dorsal striatum 
 

After evaluation of the three different behavioural paradigms, we chose the instrumental task 

in the operant box as the final task for testing the role of M4 mAChRs in cognitive flexibility. 

The stereotaxic surgery and cannula placement was either done after completion of the 

acquisition session of the task or at the beginning of the task before the training was initiated. 

After the surgery, mice were given recovery time of 2-7 days. Before each session of the 

reversal phase, tropicamide or saline was infused through the cannula into the dorsal striatum.  

For the microinfusion, mice were gently restrained, and an injector (PlasticsOne) was inserted 

into the cannula, attached to a syringe held by a microinfusion pump. The infusion rate was set 

at 0,5µl/min. Mice were infused with 1µl of tropicamide in concentration of 1µg/µl or the same 

amount of saline in each hemisphere and then left for 20-30 mins before initiating the task. 

Then they were placed into the operant box and tested according to the protocol described 

above. Immediately after completion of the last session, mice were anaesthetised, transcardially 

perfused with 4 % paraformaldehyde (PFA) and their brains were extracted and post-fixed in 

4% PFA for 24 hours. After that brains were put into 30% sucrose solution, cut with the 

vibratome in sections of 40 µm and stored in cryoprotective solution at -20 °C as free floating 

sections. 

6. c-Fos staining 
 
Stored brain slices were taken out and moved to the phosphate buffer saline (PBS) (0.1M) 

solution at the room temperature. For c-Fos imagining, slices were stained with anti-Fos 

antibody according to the following protocol: Free floating brain sections were rinsed three 

times in PBS 0.1M + 0,15% Triton-X solution (pH 7,4; washing buffer) for 5 minutes each 

time. For antigen retrieval, brain slices were incubated at 95 °C in citrate buffer (0.1M, pH 6) 

for 10 minutes then left for 10 more minutes to cool down at the room temperature and washed 

three times in washing buffer for 5 minutes each time. To remove endogenous peroxidase 

activity, slices were pre-incubated for 30 minutes with 1% hydrogen peroxide in PBS and then 
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washed for 5 minutes with washing buffer. To avoid unspecific binding of the antibody, free-

floating sections were also incubated in a solution containing 5% bovine albumine (BSA), 

washing buffer and 5% normal goat serum (NGS) for one hour. Then sections were incubated 

overnight with primary antibody (Abcam, ab190289, anti-c-Fos rabbit, 1:1000) in washing 

buffer with 2% NGS. After the primary antibody incubation, sections were successively washed 

three times in washing buffer 5 minutes each and incubated with an anti-rabbit HRP-conjugated 

secondary antibody (Santa Cruz, 1:500) in washing buffer plus 2% NGS for 2 hours and then 

washed three times at PBS 0.1M for 5 minutes each time. Sections were placed into solution 

for 3,3’-diaminobenzidine (DAB) reaction prepared with the DAB staining kit according to 

manufacturer's instructions (Abcam) and developed for 2-10 minutes. Stained slices were put 

into PBS to stop reaction and then washed in PBS 2 more times. Sections then were mounted 

with DPX mountant (Sigma), coverslipped and after drying analysed under a microscope. 

7. Statistical analysis 
 

Behavioural and binding experiments data were analysed using GraphPad Prism versions 7 and 

8 (GraphPad Software, SanDiego, CA). We used two-tailed Student’s t-test for comparison of 

two experimental groups. Two-way ANOVA or repeated measures two-way ANOVA followed 

by Sidak’s or Tukey’s post-hoc tests was used to evaluate effects of two variables. Significance 

was set at p < 0.05. Data are reported as means ±SEM and statistical analysis includes p values 

and 95 % confidence intervals (C]I) for the differences between means. 
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Results 
1. Affinity tests 
 

1.1. Saturation binding assay 
 

Initial experiments consisted of measuring and calculating saturation curve for the [3H]-NMS 

in the striatum to prove that it has a high expression of the muscarinic receptor. For this aim we 

used radioactively labelled ligand - [3H]-NMS, that is non-specifically binding to all five 

subtypes of muscarinic receptors. Because of the lack of M4 specific radioactive ligand I was 

not able to evaluate M4 receptors expression specifically. Nevertheless, during the experiment 

I defined a value indicating the maximum expression of receptors that could bind the ligand 

(Bmax) and equilibrium dissociation constant, which indicates concentration of ligand occupying 

50% of binding sites (Kd). Experiment was repeated three times and analysed in GraphPad 

Prism software (Fig.9). 

 
Fig. 9 Saturation binding curves in striatal homogenates, RA – radioactivity 

 

Saturation experiments have shown high concentration of the muscarinic receptors in the 

striatum with average Bmax of 0,3700 pmol/mg and average Kd of 119,4 pM (Fig.9). 

 

1.2. Competitive binding assay 
 

For determining whether tropicamide has a higher preference to M4 receptors comparing to 

M1, another set of binding experiments was done. For this experiment we used cell membranes 

from the CHO cell lines, which exclusively expressed either M1 or M4 subtype of muscarinic 

receptors. These binding experiments consisted of measuring competition between [3H]-NMS 

and tropicamide, to determine which concentration of the latter is sufficient to displace the 

radioactive ligand from the binding site of M1 and M4 receptor i.e., the affinity of the 

tropicamide to the receptor. Experiment was repeated 5 times. 
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Fig. 10 Curves of the competitive binding of tropicamide to M1 and M4 receptors. values are 

averaged from 5 independent experiments. Difference between two receptor affinity is significant 

with p = 0.0179 (two-way ANOVA, unpaired t-test). 

 
Table 3. Ki (nM) average parameters for competitive binding experiments.  

Tropicamide has a relatively strong affinity to both M1 and M4 receptor. However, the M4 

binding curve is slightly left-shifted, indicating that lower tropicamide concentration is needed 

for the [3H]-NMS displacement and receptor binding, which proves tropicamide preference 

towards M4 receptors. Figure 10 is representing results averaged from five competition 

experiments.  

 

2. Behavioural tests 
 

Three types of behavioural tests were done to select the optimal one to use with mice after the 

microinfusion of tropicamide. Criteria we considered to select the optimal test were 1/ total 

time of testing, 2/ inter-trial interval (if any) and 3/ mice motivation during task performance. 

Before choosing the optimal test for our future experiments with tropicamide, we tested and 
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optimized our behavioural tasks in wild type mice (C57BL/6 background), both males and 

females. Mice were separated into 2 groups – male (n=9) and female (n=10) - and the two 

groups were tested separately. Performance of both sexes was also compared to decide whether 

males or females will be used for future testing the effect of tropicamide. 

2.1. T-maze task 

During the T-maze experiment mice were required to learn the correct turn in the maze in order 

to obtain the reward. After they reached the learning criteria in the acquisition phase, they had 

to re-learn the opposite turn in the reversal part of the experiment. Percentage of correct choices 

was analysed for each day of training as well as the number of days needed to reach the learning 

criterion (70% of correct choices). The mice received maximum 10 days of training for each 

phase of the experiment. 

Fig. 11. Comparison of the daily performance of the male (blue) and female (pink) cohort during 

the reversal phase of the T-maze task. b1 and b2 for 2 days of baseline, before entering the reversal 

phase (***, effect of time on task performance, p <0.0001, two-way ANOVA) 

When we analysed performance (percentage of correct choices) of mice on individual days of 

the reversal phase of the task, we found that time had a highly significant effect on the 

performance (p <0.0001, repeated measures two-way ANOVA). This confirms that both males 

and females were able to re-learn task and after the initial drop in performance, their accuracy 

improved with time. However, there is also a significant effect of sex vs. time interaction (p 

<0.0001, repeated measures two-way ANOVA). Specifically, while males had lower 
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performance at the beginning of the reversal phase and in the end, they reached the same 

accuracy as in the baseline, females did not drop their performance as much but after 10 days 

of reversal training, they were not able to reach the baseline performance.  

male
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In contrast to accuracy, there was no difference in the number of days needed for reaching the 

learning criteria in the acquisition or reversal stage (acquisition: mean ±SEM of days to reach 

the criterion in males and females, respectively: 7.667 ±0.8819, 7.100 ±0.9597; 95 % CI for the 

difference between means in males and females [-3.317 to 2.183], p = 0.6692, unpaired t-test; 

reversal: mean ±SEM of days to reach the criterion in males and females, respectively: 8.778 ± 

0.4339 and 8.700±0.6155; 95 % CI for the difference between means [-1.521 to 1.676], p = 

0.9190, unpaired t-test) (Fig.12). The discrepancy with the accuracy data from the reversal 

phase may be caused by the fact that both sexes required close to 10 days or more to reach the 

accuracy criteria and the even in animals that did not reach it, the training was terminated after 

10 days of training. Therefore, the difference between sexes in the number of days to reach the 

criterion could manifest only after longer training. 

2.2. MWM with reversal phase 
 

Next behavioural test we performed was Morris water maze with reversal phase, where mice 

were required to learn a position of the hidden platform in the water pool. Learning parameters 

including time and distance travelled to reach the platform and speed of swimming were 

Fig. 12. Comparison of the days number to reach criterion for the acquisition (A) and reversal 
(B) learning 
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evaluated. This task also consisted of acquisition and reversal phase where mice had to learn 

and re-learn two different positions of the platform. After each acquisition and reversal phase 

of the task, a probe test was performed, to confirm successful learning in the absence of the 

platform. During probe sessions, time spent in the correct (target) quadrant was the main 

evaluated parameter. 

Statistical analysis of MWM data showed highly significant effect of time on the performance, 

as both males and females have shown ability to learn platform location and decreased the time 

and distance needed to reach the platform over the training (fig. 13A, 13B) (p < 0.0001, two-

way ANOVA). The maximum performance was reached already on the second day of the 

training and then it was maintained at the same level during the following acquisition days. On 

the first day of the reversal phase, we can see increasing of these parameters as the platform 

was moved to a new location. However, both groups were able to return to the previous level 

of performance on the second day of the reversal training. 

In the MWM experiment we did not detect a significant difference between sexes in either time 

or distance needed to reach the platform. However, the average speed of swimming was higher 

in the female cohort during the acquisition phase but not during reversal. Bonferroni post-test 

has shown significant difference between sexes in the second, third and fourth day of the 

acquisition phase (Fig. 13 C)   

Probe tests show that both cohorts tended to stay in the quadrant of the maze, where the platform 

was previously located (Fig.14). That confirms effective spatial learning for male and female 

mice both in acquisition and reversal phase of the experiment. In some sector comparisons the 

difference is lower due to the limited pool size, where mice tend to cross the sectors border. 

However, this effect is seen only in case of nearby sectors. This effect can be seen, for example, 

in the reversal learning probe test for the females. Another explanation might be in the worse 

reversal learning performance of the female’s cohort. We see the trend for females in the 

reversal to not differ to the same extent in spending time in the target sector versus other sectors 

as for the males. In case of the opposite sector difference is clearly seen for both acquisition (95 

% CI for the difference between mean target and opposite target (%) [-38,83 to -17,97] and [-

28,48 to -8,684] for males and females respectively, multiple comparison two-way ANOVA) 

and reversal (95 % CI for the difference between mean target and opposite target (%) [14,09 to 

38,71] and [4,812 to 28,17] for males and females respectively, two-way ANOVA) learning 

phase. 
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Fig. 13    Performance of the male and female cohort during the training days of MWM: average time to 

reach the platform (A); in average distance swam to the platform (B) and average speed of swimming (C). 

(****, *** p < 0.0001; ** p < 0.005) 
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Fig.  14. Acquisition learning probe test (upper graph) and reversal learning probe test (lower 
graph) results for the male and female group. Sector numeration is described in methods (Fig. 6) 
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2.3. Instrumental task in the operant box 
 

The third behavioural test was performed in the operant box (Med Associates Inc.) where mice 

were taught to press one of the levers in order to get a reward. The main parameter to evaluate 

was the percentage of correct presses. This parameter is important in order to see if mice were 

able to associate the correct lever with the reward. Learning criterion was set at 80% accuracy. 

Number of training days needed to reach the learning acquisition criterion was also evaluated, 

to see if there is any difference in the initial learning between the groups. 

 

Fig. 15A is showing daily performance of the male and female mice. Both groups were able to 

reach criterion for the acquisition phase and they did not differ in their performance. On the 1st 

day of the reversal phase the performance decreased in both groups to a similar extent. On the 

second day of the reversal, returning to the same level, reaching the criterion of 80% success 

again. This is proven by significant effect of the time on the performance (p <0.0001, two-way 

ANOVA) and also by significant difference between the referred days (Bonferroni post-test). 

There is, however, no significant difference between sexes (p= 0.5166, 95 % CI for the 

difference between mean of males and female performance (%) [-8,190 to 4,426], two-way 

ANOVA). 

Notably, there is a significant difference between sexes in number of days needed to reach the 

learning criterion in the acquisition phase, with shorter time needed for the female cohort (mean 

±SEM of days to reach the criterion by males and females, respectively: 3,333 ± 0,6455, 2,000 

± 0,1491, 95 % CI for the difference between means (days) [-2,663 to -0.003326], p = 0,0495, 

unpaired t-test) (Fig.15B). However, analysis of the performance during the whole task showed 

no significant difference between the sexes (95 % CI for the difference between mean of males' 

and females' performance (% accuracy) [-1.743;15.43], p = 0.1049, two-way ANOVA) 

(Fig.15B). 
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Fig. 15 Daily performance of the male and female cohort in the operant box task (A); number of 

days needed to reach criteria during the acquisition phase (B); performance of the male and 

female cohort during the reversal phase of the operant task (the last two days in graph A) (C).; * 

p < 0.05 
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3. Effect of tropicamide on the performance in the operant box 
 

Finally, instrumental task in the operant box was chosen as the optimal task for testing the effect 

of M4 antagonism on cognitive flexibility in mice. Learning criterion of 80% accuracy and the 

experimental setting remained the same as in the previously described instrumental task in the 

operant box. 
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Fig. 16 Daily performance of the saline-(n=11) and tropicamide (n=11)-injected groups during the 

operant box task (A)(two-way ANOVA); days needed to reach the acquisition learning criterion 

for the saline and tropicamide to-be-injected mice (B) (unpaired t-test); performance during the 
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reversal learning phase only in the saline- and tropicamide-injected group (C) (unpaired t-test, 

two-way ANOVA).(**** p < 0.0001; *p < 0.05)  

 

In the Fig. 16A, a significant effect of time on the daily performance is shown (p <0.0001, two-

way ANOVA). Both groups have learned the correct lever position during the acquisition phase, 

they decreased their performance on the 1st day of reversal learning and then improved on the 

2nd day. There is also a significant difference in performance between the mice injected with 

the saline and tropicamide, specifically during the reversal phase of the task. While the two 

groups show very similar performance during acquisition, injection of tropicamide impaired 

performance of mice during reversal phase (mice were not injected during acquisition) (p = 

0.0106, 95 % CI for the difference between mean of performance during the reversal (%) [2.122 

to 15.70], two-way ANOVA). In the Fig. 16B, number of days needed for reaching the learning 

criterium during the acquisition phase are shown. As expected, there is no difference between 

the groups (mean ±SEM of saline and tropicamide to-be-injected mice, respectively: 3.091± 

0.4946, 3.500±0.6872, p = 0.6298, unpaired t-test). In Fig. 16C reversal learning performance 

is specifically compared between the saline- and tropicamide-injected mice. The analysis shows 

a significant effect of time on the performance as both groups improved their performance with 

time (p <0.0001, two-way ANOVA) (Fig.16A) and on the saline or tropicamide injection 

(p=0.0118, 95 % CI for the difference between mean of performance (%) [4.091 to 30.82], two-

way ANOVA) (Fig. 16C). However, no significant difference was shown between groups on 

individual days. 

 
4. Immunohistochemical analysis of c-Fos expression 
 

To see the effect of tropicamide on neuronal activity in the striatum, we wanted to detect 

expression of an immediate early gene c-Fos with immunohistochemistry. Unfortunately, we 

were not able to detect a sufficient c-Fos expression in the striatum. However, in the same 

sections, strong c-Fos expression was detected in the lateral septum and to the less extent also 

in the cortex. For the lack of strong striatal expression, we did not perform any quantitative 

analysis of c-Fos expression. 
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Discussion 
 

The main goal of this thesis was to test the hypothesis that the M4-preferential antagonist 

tropicamide affects cognitive flexibility in mice. Based on the current literature, it is unclear if 

M4 muscarinic receptors are involved in the control of cognitive flexibility (McCool et al., 

2008; Okada et al., 2014) as available data are scarce and contradictory. The results of the thesis 

support the notion that at least in certain tasks and conditions, blocking the activity of M4 

receptors in the dorsal striatum impairs cognitive flexibility in mice.  

Before arriving to the final experiment that allowed us to test the initial hypothesis, I performed 

a range of pilot experiments to select the optimal behavioral paradigm and establish the optimal 

conditions for stereotaxic surgery and microinfusion of tropicamide in the dorsal striatum.  

In the first series of experiments, I confirmed that tropicamide is a suitable preferential 

antagonist of the M4 mAChRs. However, the final concentration used in the microinfusing 

experiments was adapted from the literature (Ztaou et al., 2016), rather than calculated from the 

experiments. 

The next experimental block consisting of three different behavioral tests suggested that in 

general, all three tests are suitable for testing cognitive flexibility mice. Both males and females 

were able to acquire the tasks and they showed expected behavioural pattern during the 

acquisition and reversal phase. Nevertheless, based on the other criteria such as the duration 

and easiness of each test, the instrumental task in the operant box was chosen for the 

microinfusion experiments in mice with intracerebral cannulas, testing the effect of 

tropicamide. 

In the pilot behavioral experiments, I tested both sexes and compared their performance to 

decide which sex (or both) should be used in the final test with tropicamide. Both males’ and 

females’ performance were sufficient to use them for the test. However, they showed several 

significant differences in their performance, which suggests that the sexes should be tested and 

analyzed separately in future experiments. Specifically, females have shown less accuracy in 

reaching the required criteria in the reversal phase (see T-maze) and in MWM probe tests, where 

their time spent in the target sector does not differ to the same extent from the other sectors as 

for the male’s cohort. There is a trend for females in all three experiments to perform better 

rather in acquisition phase and, relatively to this success, show less successful performance in 

the reversal phase. In literature, there is an evidence for the sex influencing performance in the 

cognitive flexibility tasks. The striatal dopaminergic system is affected by the estrogen and 
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female’s performance in cognitive flexibility tasks differ depending on the actual phase of their 

estrous cycle (Korol et al., 2004; Shams et al., 2016). This behaviour is seen not only in rodents 

but also in primates (LaClair et al., 2019; Schoenberg et al., 2019). Overall, the results of my 

pilot experiments are supporting these observations from the literature and the lower 

performance during reversal phase in females was the main reason for choosing the male as the 

only sex for the following experiments with tropicamide. Female mice could be tested in these 

experiments as well, however, the difference between sexes should be considered here and the 

results should not be mixed.  As well as conclusions and observation should consider the sex 

bias in the cognitive flexibility testing experiments. 

Results of the instrumental task in the operant box show the suitability of this task for testing 

the cognitive flexibility. Also, due to the time needed for the experiment (2 reversal days) it is 

the most convenient task for testing larger mice cohort and choose the mice with the same level 

of acquisition performance for the future surgeries and tropicamide effect testing. In 

comparison, T-maze task lasts longer, and environment is more complex which allows to 

observe more behavioral details than in the easier and faster paradigm in the operant box. Due 

to this complexity, there is also higher variability in performance during the acquisition which 

can influence the reversal phase performance. To avoid this variability influence, larger mice 

cohorts may be needed in this task. The last tested task, the MWM, was not chosen primarily 

because of the fact that multiple trials with inter-trial intervals are run within a single session 

which would complicate precise timing of tropicamide microinfusion in individual animals that 

need to be administered consistently the same time before starting the experiment. Additionally, 

the risk of water filling the cannulas makes this task less suitable for the experiment with the 

tropicamide despite its time convenience relatively to T-maze. 

In literature, T-maze task was previously used for testing the effect of M4 blockade on cognitive 

flexibility. However, those experiments were based on the place discrimination task, which is 

highly dependent on hippocampus activity and may be not that suitable to test the effect of M4 

receptors in the striatum. (McCool et al., 2008; Okada et al., 2014) In the place discrimination 

task, rodents are required not to remember a turn direction, but the fixed position of the reward 

in the maze using external navigation cues. Direction of the turn is therefore changing with the 

change of the starting position. Such task is corresponding more with the cognitive map 

formation, whereas response discrimination task requires to remember the turn direction and 

therefore is better suited to test striatal alterations.  
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The crucial results of my thesis obtained in the final experiment using tropicamide 

microinfusion, are supporting our hypothesis that M4 receptors in the dorsal striatum are 

involved in the control of cognitive flexibility. Currently, there are only two studies examining 

the role of M4 receptors in the cognitive flexibility. The two studies are contradictory, and my 

own results are in partial contradiction with both of these studies. 

In the McCool study (McCool et al., 2008), the authors are showing a role for acetylcholine in 

regulation of the striatal SPNs responsible for the acquisition of a new strategy. Using specific 

antagonists, they confirmed a role of M1 but not M4 muscarinic receptors in this regulation. In 

contrast, in the Okada study M4 receptors small hairpin ribonucleic acid (shRNA) block has 

been shown to increase reversal learning performance, whereas analogical M1 block had no 

effect (Okada et al., 2014). One of the key differences between these two studies, besides the 

block method is intertrial interval (ITI), which was set at 15s in the first study and 20 min in 

the second one. 15s might just be not enough for the seeing M4 block effect on the reversal 

learning. On the other hand, 20 min might be just too much, so another compensatory 

mechanisms are getting involved into this regulation. 

Importance on the timing is also has been shown in another Okada studying (Okada et al., 

2018). Cholinergic interneurons elimination during the response discrimination task has been 

shown to impair cognitive flexibility in experiment with 15s ITI but has an opposite effect in 

the experiments with 10- and 20-min ITIs. That might mean that acetylcholine contributes to 

the cognitive flexibility shortly after the trial, but later has rather regulative function and 

contributes to the maintaining of the old strategy. The operant box, used in our case, does not 

have an ITI problem, as the experiment is running continually, and it depends on the mouse 

when it chooses to press the lever in order to obtain the reward. M4 receptors block effect, 

therefore, will be generally noticeable. I would predict more accuracy in this case for the short 

intervals between lever presses and less accuracy for the longer intervals.  However, additional 

box data analysis should be done for getting more information about the presses timing. 

Besides the test choice and ITIs there is also a few very important differences between these 

three experiments. First are the animals. When I was using mice during my experiments, other 

two studies were using rats, which are having more complex brain and higher variety of the 

compensatory mechanisms. Together with the choice of the place discrimination task it gives 

higher chances that subtle changes in the striatum neurochemistry can be obscured by 

compensatory mechanisms, also due to the hippocampal involvement. There is also a difference 

in the way of blocking the targeted receptors. Also, the toxin used for block in this thesis and 
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McCool experiments are different. Presence of the tropicamide affinity to the M1 receptors 

could influence the results as well. 

 Besides the differences described above, time awaited after the drug application was 10 and 60 

min in McCool study (McCool et al., 2008). 20-30 minutes awaited in our case might be more 

suitable, as it’s enough for the animal to calm down and not too much for drug extinction. Also, 

relatively short duration of the experiment in the operant box (30 min) also ensures time 

sufficiency for the tropicamide action. 

As it could be observed in results, surgery and microinfusion itself cause impairment of the 

general performance in the reversal learning task, so the time for recovering for the mouse is 

also crucial for it’s representee performance. The chosen time of 30 min was sufficient in this 

case for recover after the injection. The timeframe for the surgery recovery, however, was not 

set immediately. The first half of the cohorts which only had 2 days for recover has shown 

worse performance and no significant difference between the vehicle and tropicamide injected 

mice. Another half was given 7 days for the recovery and their performance was so significantly 

different that this effect is observed even in the mixed results. 

The mice housing after the surgery may also influence the final performance, as they are 

separated into individual cages and therefore have no social interaction during the recovery 

stage and reversal tests. It is done to prevent the cannula losing by mice grooming each other 

or other interactions and commonly used in experiments with cannula injections. However, the 

experiment should be held as soon as possible after the recovery time to prevent social isolation 

impact on the mice performance. 

Another important parameter is the drug concentration which is shown to be reliable as mice 

performance was sufficiently affected by it. It also has worked for the other studies from which 

the final concentration has been taken (Ztaou et al., 2016). 

Results described above are showing that M4 blocking impair cognitive flexibility in mice. 

However, the effects described above might be affected by other factors. Such as sensitivity of 

the tropicamide to the M1 muscarinic receptors or expression of the M4 receptors on CINs. 

First can lead to the lack of activation of iSPNs responsible for the old strategy which would 

lead to the worse performance in the reversal learning and higher chance of regressive errors. 

M4 receptors expressed by CINs after tropicamide block might have an effect of increased 

acetylcholine release from the CINs and therefore lead to the enhanced effect on M1 receptors. 
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This might also be a case for the described studying where targeted genetical block of M4 

receptors could also affect CINs.(Betz et al., 2007; Yan and Surmeier, 1996) 

Further studying of this subject are certainly needed, as the whole picture of the striatal M4 

receptors functioning in the cognitive flexibility is not clear and the studies in this area are 

having contradictory data. 

More specific manipulation with M4 receptors such as positive allosteric modulation or genetic 

approach can be used to follow their effects on behavior. 

Genetical block of the M4 receptors with the shRNA delivered to the target area with help of 

lentivirus vector can be repeated similar to the experiments described in the literature (Okada 

et al., 2014), but other behavioral experiments should be done to observe cognitive flexibility 

change. The most precise one in this case would be T-maze response discriminative task, in 

which is involvement of the striatal motor neurons memory is higher and has a key role 

comparing to the place discrimination task, where hippocampal spatial map is formed. Operant 

box can be also suitable for this aim, especially with some additions such as light stimuli 

dependent learning, where the response discrimination task will be in choosing the lever under 

the light regardless of the left/right position. 

 Also, more precise analysis of the behavioral data and errors type (either perseverative – with 

repeating of the old strategy or regressive – coming back to the old strategy after acquiring a 

new one) can give more information of the origin of the observed effects. 

 

Conclusion 
 

Aims of this thesis were achieved and the main hypothesis was confirmed. However, it brought 

more information about the possible subtleness of the underlying mechanisms and more 

sophisticated methods needed for its revealing. Also, the obtained results are somehow 

controversial to the existing studying around this topic and show how easily the final results 

can be influenced by the experimental setting. As most of the research works, it answers some 

questions but revealing much more to ask and explore. 
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Appendix 
Attachment 1. Representative version of the code used for the operant box experiments 

“ \ 30min aquisition 

\ reward with left lever 

\ session time = 30 min 

 

 

\inputs 

^leftlever = 1 

^rightlever = 2 

 

 

\outputs 

^reinforcer = 3 \pellet dispenser 

^HouseLight = 7 

^leftstimuluslight = 4 

^rightstimuluslight = 5 
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VAR_ALIAS Session time = M \default = 30 minute 

VAR_ALIAS maximum number of reinforcers = N \ Default = 50 

 

\variables 

\ M = session time 

\ F = fixed ratio 

\ N = max of reinforcers 

\ R = reinforcer counter 

\ S = session timer 

DIM C = 999 

DIM E = 999 

 

LIST Z = 1, 5, 2, 4, 3 

 

PRINTORIENTATION = LANDSCAPE 

PRINTCOLUMNS = 5 

PRINTOPTIONS = FULLHEADERS, FORMFEEDS 

PRINTVARS = C, E, L, P, R 

S.S.1, 

S1, 

 1": SET F = 1, M = 30, N = 50 ---> S2 

S2, 

   #START : ON ^houselight  ---> S3 

S3, 

 #R^leftlever : Z1 ---> SX 

S.S.2, 

S1, 

  1": RANDD F = Z; SHOW 5, VR =, F ---> S2 

  #Z32: ---> S1 

S2, 

F#R^right lever: ON ^rightstimuluslight ---> S3 
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S3, 

 1": OFF ^rightstimuluslight ---> S1 

S.S.3, 

S1, 

  1": RANDD F = Z; SHOW 5, VR =, F ---> S2 

  #Z32: ---> S1 

S2, 

F#R^leftlever: ON ^leftstimuluslight ---> S3 

S3, 

 1": OFF ^leftstimuluslight ---> S1 

 

 

 

S.S.4, 

S1, 

 #START : SHOW 3, Left responses, L ---> S2 

S2, 

 #R^leftlever : ADD L; SHOW 3, Left Responses, L ---> SX 

S.S.5, 

S1, 

 #START : SHOW 4, Right responses, P ---> S2 

S2, 

#R^rightlever: ADD P; SHOW 4, Right Responses, P ---> SX 

S.S.6, 

 \reinforcment timer 

 \ Z1=input 

S1, 

 #Z1: ON ^Reinforcer; ADD R; SHOW 2, Reinforcers, R ---> S2 

S2, 

 2": OFF ^Reinforcer ---> S1 

 S.S.7,  \ Increment time (T) in 0.01 second intervals 

S1, 

  #START: ---> S2 
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S2, 

  0.01": SET T = T + 0.01 ---> SX 

  #Z32: ---> S1 

 

S.S.8, \Recording IRT's left 

S1, 

  #START: ---> S2 

S2, 

  #R^Leftlever: IF I > 999 [@arrayfull, @continue] 

                    @full: ---> S1 

                    @cont: SET C(I)=T, T=0; ADD I; 

                    IF I> 999 [@array, @sealarray] 

                      @full: ---> S1 

                      @seal: SET C(I) = -987.987 ---> SX 

  #Z32: ---> S1 

  S.S.9, \Recording IRT's right 

S1, 

  #START: ---> S2 

S2, 

  #R^rightlever: IF K > 999 [@arrayfull, @continue] 

                    @full: ---> S1 

                    @cont: SET E(K)=T, T=0; ADD K; 

                    IF K> 999 [@array, @sealarray] 

                      @full: ---> S1 

                      @seal: SET E(K) = -987.987 ---> SX 

  #Z32: ---> S1 

S.S.10, \session timer & max reinforcer limiter 

S1, 

 #START: SHOW 1, Session minutes, S/60 ---> S2 

S2, 

 0.01": SET S = S+0.01; 

       SHOW 1, session minutes, S/60; 

       IF (S/60 >= M) OR ( R>=N) [@True, @false] 
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         @true: Z32 ---> S3 

         @false:---> SX 

S3, 

2": ---> STOPSAVE   “ 


