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Abstract

The aim of this thesis is to develop a variable selection framework with the spike-

and-slab prior distribution via the hazard function of the Cox model. Specifically,

we consider the transformation of the score and information functions for the partial

likelihood function evaluated at the given data from the parameter space into the

space generated by the logarithm of the hazard ratio. Thereby, we reduce the nonlin-

ear complexity of the estimation equation for the Cox model and allow the utilization

of a wider variety of stable variable selection methods. Then, we use a stochastic

variable search Gibbs sampling approach via the spike-and-slab prior distribution

to obtain the sparsity structure of the covariates associated with the survival out-

come. To demonstrate the efficiency and accuracy of the proposed method in both

low-dimensional and high-dimensional settings, we conduct numerical simulations

to evaluate the finite-sample performance of the proposed method. Finally, we ap-

ply this novel framework within biological contexts on real world data sets such as

primary biliary cirrhosis and lung adenocarcinoma data to find important variables

associated with decreased survival in subjects with the aforementioned diseases.
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Chapter 1

Introduction

Some prominent cancers such as lung adenocarcinoma, a type of non-small cell lung

cancer, have been widely studied in the 21st century, as many researchers have aimed

to find how overexpression or downregulation in various genes can influence a person

with lung adenocarcinoma’s survival (Beer et al., 2002; DiFeo et al., 2008; Puzone et

al., 2013; Chen et al., 2013). Finding genes associated with lung adenocarcinoma’s

survival is important because today, lung adenocarcinoma remains the most common

lung cancer in the United States, representing about 40% of all lung cancers (Myers

& Wallen, 2019). Additionally, this subtype of lung cancer is the most common

lung cancer diagnosed to people who have never smoked, stressing the importance of

detecting significant, associated genes. A typical approach is to conduct univariate

analyses for each gene, find the relationship between each gene and survival times,

and choose a few genes with strong signal. As an illustration, Beer et al. (2002) have

used this marginal analysis based on Kaplan-Meier survival curves for over 7000 genes

and selected a few genes associated with survival in lung adenocarcinoma patients.

Although these existing approaches are useful in expressing individual genes and

their relations to lung adenocarcinoma, the genes identified may not sufficiently ac-

count for the biological mechanism. Additionally, these existing forms of univariate
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analysis can not only be inefficient but can also cause complications due to multiple

testing and constant adjustments to the significance level. Thus, model-based ap-

proaches such as a proportional hazards model would be needed for a more complete

analysis and potentially more efficient, as the strength of model-based approaches lie

in being able to efficiently and simultaneously detect significant genes while account-

ing for the joint effects among the covariates on the survival outcome.

The Cox proportional hazards model (Cox, 1972) specifies the association between

survival time and a set of predictors via the utilization of a hazard function. In recent

years, important applications that examine this association have risen in prominence

in many fields of biomedical research such as clinical trials and gene studies (Singh

et al., 2012; Güler, 2017). One of the primary advantages of the Cox proportional

hazards model lies in its semi-parametric nature, which creates interpretability when

accounting for the associations between proportional risk and the baseline hazard

function. The proportional risk component allows for variable selection, as the haz-

ard function is constructed by the predictors which most heavily influence the survival

outcome of interest. In practice, researchers focused in clinical trials may be inter-

ested in how clinical treatments or patient attributes such as age and sex may affect

their survival to a disease being studied. Similarly, researchers focused in genetic

studies may be interested in performing variable selection by pinpointing which over-

expressed or downregulated genes among thousands are associated with the survival

time to a disease being studied.

While various methods, extensions, and application have been proposed to esti-

mate the hazard function of the Cox model in settings where the number of predictors

is a small number (Lawless, 2011; Kalbfleisch & Prentice, 2011; Fleming & Harring-

ton, 2011; Ibrahim et al., 2001; Fan & Jiang, 2009; Su et al., 2016), these approaches

experience difficulties in constructing the hazard function from high-dimensional pre-



3

dictors. This shortcoming becomes problematic in applications such as gene expres-

sion profiling, where data is strictly high-dimensional. Some high-dimensional fre-

quentist approaches in the Cox model framework that perform variable selection and

can reduce dimensionality include lasso (Tibshirani, 1997), smoothly-clipped abso-

lute deviation (Fan & Li, 2001), and adaptive lasso (Zhang & Lu, 2007). These

methods have been successfully utilized in some instances of gene expression profil-

ing (Xu, 2012), but may suffer in performance as a result of diverging spectra, noise

accumulation, computational burden, and inferential uncertainty issues (Fan & Lv,

2010; Ahn et al., 2012; Yang et al., 2018).

Alternatively, the high-dimensional Bayesian approaches of variable selection have

received much attention and a large number of methods including the works of

Park & Casella (2008), Griffin & Brown (2011), and Leng et al. (2014) have shown

that the aforementioned frequentist approaches can be potentially outperformed via

Bayesian methods in terms of variable selection. The primary characteristic of these

approaches is their usage of independent Laplace type (i.e., double-exponential) dis-

tributions as the prior distribution, concentrating more mass near 0 and in the tails.

This characteristic, thereby, yields estimates for the regression coefficients as a sparse

structure. Moreover, Tang et al. (2017) introduced a double-exponential spike-and-

slab prior distribution which has been successfully utilized to analyze genes associated

with Dutch breast cancer data and myelodysplastic syndromes.

There have been several advantages of the spike-and-slab prior distribution de-

fined by the mixture distribution of the normal distribution and degenerate distri-

bution on a certain point (Mitchell & Beauchamp, 1988; Madigan & Raftery, 1994;

George & McCulloch, 1997; Ishwaran & Rao, 2005; Yang et al., 2020). For instance,

any prior distribution concentrating more mass near a point can be flexibly gen-

erated by adjusting the point. Additionally, it provides nonlinear shrinkage of the
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regression coefficients, which results in smoothed/regularized estimates as well as

fully Bayesian inference after fitting a Markov Chain Monte Carlo. Lastly, it would

be possible to develop a unified framework to deal with variable selection yielding the

sparsity structure of the coefficients for both low-dimensional and high-dimensional

circumstances.

The aim of this thesis is to develop a variable selection framework with the spike-

and-slab prior distribution and consider high-dimensional applications to specify the

association between survival time and a set of predictors via the hazard function of

the Cox model. Specifically, we consider the transformation of the score and first

derivative of the partial likelihood function evaluated at the given data from the pa-

rameter space into the space generated by the logarithm of the hazard ratio. Thereby,

we reduce the nonlinear complexity of the estimation equation for the Cox model and

make it possible to utilize a wider variety of stable variable selection methods. Then,

we consider using a stochastic variable search (SVS) Gibbs sampling approach via

the spike-and-slab prior distribution in order to obtain the sparsity structure of the

covariates associated with the survival outcome. By incorporating these two steps,

a more established and potentially more stable form of sparse variable selection can

be constructed without any loss of information. We show that this approach pro-

vides a model where it is easy to interpret the resulting sparsity structure, as our

primary goal is to detect and differentiate significant covariates from white noise. We

also conduct numerical simulations to evaluate the finite-sample performance of our

method. Finally, we apply our proposed methodology to detect the sparsity structure

for the lung adenocarcinoma data (Beer et al., 2002). Unlike previous analyses which

focus primarily on utilizing univariate analytical methods to describe the associations

between individual genes and lung adenocarcinoma, we will obtain a more efficient

form of sparse variable selection to simultaneously select dozens of genes which are
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associated with survival times.

Upon completion of this thesis, we will be able to establish a novel framework

for survival analysis models which can accurately and efficiently select significant co-

variates associated with survival times in both high-dimensional and low-dimensional

settings. The established framework will also be capable of outperforming existing

variable selection techniques commonly utilized on real data sets found in clinical

contexts and gene expression profiling studies.

This thesis is organized as follows. In Section 2, we discuss the background behind

popular existing procedures within the survival analysis framework. In Section 3, we

introduce the specifics behind our estimation procedure. In Section 4, we conduct

simulation studies to evaluate the finite-sample performance of our method when

compared to other sparse estimation techniques. In Section 5, we apply our method

to our analysis of the primary biliary cirrhosis data collected by the Mayo Clinic

and lung adenocarcinoma cancer data collected from Beer et al. (2002). We provide

concluding remarks in Section 6.
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Chapter 2

Literature Review on Survival

Analysis

2.1 Introduction to Survival Analysis

Survival analysis is a field that primarily focuses on analyzing a group of subjects

with the purpose of predicting the expected time until an event of interest will occur

to each subject. This event of interest is often death in biological applications of

survival analysis such as disease studies and gene expression profiling which are the

primary applications we will explore in this thesis. These studies are often conducted

over finite time periods which involve censored data. Censoring is a form of missing

data problem in which time-to-event is not observed. In this thesis, we will focus on

right censored data, where censoring is observed for reasons such as termination of

study before all recruited subjects have shown the event of interest or the subject

has left the study prior to experiencing the event.

Within survival analysis, an important universal concept is defined as the hazard

ratio. The hazard ratio measures a subject’s probability of instantaneously experi-

encing the event of interest at time t, given that they have survived to time t and
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have not been censored. The hazard ratio at any given time t can be computed with

the hazard function:

λ(t) = lim
h→0

P [t ≤ T < t+ h|T ≥ t]

h
(2.1)

The hazard function from (2.1) can then be integrated to obtain the survival function:

S(t) = exp
{
−
∫ t

0

λ(u)du
}

(2.2)

In survival analysis, one may try to assume that the hazard function in (2.1),

and by extension, the survival function in (2.2) originate from a common under-

lying distribution, such as the Weibull or exponential distributions. However, this

assumption is rather strong and difficult to make in practice, often making more flexi-

ble approaches which do not assume an underlying hazard distribution more practical

choices. In the next two sections, we examine the Kaplan-Meier estimator and the

Cox proportional hazards model (Cox, 1972) which do not assume any underlying

distribution for the hazard function.

2.2 Kaplan-Meier Estimator

While proportional hazards models are generally utilized to perform multivariate

analyses with survival data, it is important to discuss the most popular univariate

option utilized in the survival analysis framework. Kaplan-Meier estimators (Kaplan

& Meier, 1958), which are conceptually identical to the complement of empirical

distribution functions when censoring is not present, are utilized to compare survival

curves among different univariate groups.
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The Kaplan-Meier estimator for S(t) = P (T ≥ t) is defined as:

ŜKM(t) =
∏
x≤t

(
1− d(x)

n(x)

)
, (2.3)

where d(x) represents the amount of deaths at time x, and n(x) represents the number

of individuals at risk just prior to time x.

The Kaplan-Meier estimator can be applied to different levels within a single

variable, producing plots that can display how the survival curves for individuals

differ based on their respective levels. For instance, one may be able to produce

Kaplan-Meier plots based on sex to assess if one sex has increased survival over the

other for a particular disease. Generally speaking, one can visually assess the plots

and determine if there is a significant difference between the survival curves. Software

within R is capable of displaying Kaplan-Meier curves alongside confidence intervals

and log-rank test statistics.

The standard error for the Kaplan-Meier estimator at time t, which is also known

as Greenwood’s formula (Greenwood, 1926), is defined as follows:

SE[ŜKM(t)] = ŜKM(t)

√∑
x≤t

d(x)

n(x)[n(x)− d(x)]
(2.4)

Utilizing the definition of the survival function in (2.3) and standard error in (2.4),

one can incorporate confidence intervals for all of the survival curves for all levels of

a given variable. Often, when two Kaplan-Meier curves have overlapping confidence

intervals across the majority of the interval, there is a lack of evidence to suggest

that there is a statistically significant difference in survival times between the two

groups.

The log-rank test (Peto & Peto, 1972) formally tests the hypotheses H0 : S1(t) =
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S2(t) for all t versus H1 : S1(t) 6= S2(t) for some t with the following χ2 test statistic:

χ2 =
2∑
j=1

(
∑

tOjt −
∑

tEjt)
2∑

tEjt
, (2.5)

where
∑

tOjt represents the sum of the observed number of events in the jth group

over time and
∑

tEjt represents the sum of the expected number of events in the jth

group over time.

The main drawbacks of this univariate analysis are most apparent in high-dimensional

settings which are common within various biological applications such as gene ex-

pression studies. In these contexts, often thousands of genes must be investigated

individually, making the process inefficient. Additionally, complications can eas-

ily arise due to multiple testing and constant adjustments to the significance level.

Thus, model-based approaches such as the Cox proportional hazards model would

be needed for a more complete and efficient analysis, a topic which is covered in the

following section.

2.3 The Cox Proportional Hazards Model

Let the random variables T and C be the survival time and censoring time, re-

spectively. The observed time variable is given by the minimum time denoted by

T̃ = min{T,C}. Let δ = I{T ≤ C} be the censoring indicator that takes the value

of 1 when the observed time experienced the event of interest, and takes the value of 0

when the observed time was censored. In most clinical and gene expression profiling

applications, the event of interest is generally death, while censoring occurs when

an individual is no longer at risk of dying from the disease. Let a random vector

X = (x1, . . . , xp)
T ∈ Rp be a set of covariates. Let Ti be the true survival time of

the ith individual and assume that it takes its value in T = [0, τ ] for some positive
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constant τ . We consider a sample of n subjects given by {(Xi, T̃i, δi) : i = 1, . . . , n},

where Xi denotes a vector of covariate of the ith individual and δi = I{Ti ≤ Ci}

denotes the censoring indicator of the ith individual.

The Cox proportional hazards model, which is semi-parametric in nature, does

not depend on an underlying baseline hazard function, and is utilized to model the

relationship between survival time and a vector of covariates via the following hazard

function:

λ(t|Xi) = λ0(t)e
xi1β1+···+xipβp = λ0(t)e

X
T
i β, (2.6)

where β = (β1, . . . , βp)
T ∈ Rp is a vector of parameters to be estimated and λ0(t) is

the baseline hazard function, for which the baseline hazard function in (2.6) is the

underlying hazard for any individual with Xi = (0, . . . , 0)T .

Let Ni(t) = I{T̃i ≤ t, δi = 0} be the counting process and Yi(t) = I{T̃i ≥ t} be

the at-risk process for the ith individual for any t ∈ [0, τ ]. Without loss of generality,

suppose that there are no ties in observed event times. The maximum likelihood

estimator for β can be found through maximizing the partial log-likelihood function

(Lawless, 2011; Kalbfleisch & Prentice, 2011; Fleming & Harrington, 2011) given by

L(τ, β) =
n∑
i=1

∫ τ

0

[
XT
i β − log

{ n∑
j=1

Yj(s) exp(XT
j β)

}]
dNi(s). (2.7)

It should be noted that the primary limitation of the Cox model framework is

that it does not work with high-dimensional data. In this scenario, it is common

to rely on alternative frequentist estimators such as the ridge and lasso estimators

covered in Section 2.6.
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2.4 Stepwise Variable Selection

We briefly explore some of the most common stepwise variable selection techniques

that are utilized to select significant covariates within the Cox model framework as

constructed in (2.7). Specifically, we explore variable selection methods that arise

from employing the Akaike Information Criterion (AIC) (Akaike, 1974) and Bayesian

Information Criterion (BIC) (Schwarz, 1978). Other techniques which consider step-

wise variable selection via hazard ratio confidence intervals and p-values have been

considered from a theoretical perspective previously, but have consequently been

ruled out due to limitations with multiple comparisons in models with a large num-

ber of covariates and inherent flaws with small p-values that result from analyses on

datasets with large sample sizes.

Within statistical packages such as R and SAS, it is possible to utilize functions

that employ algorithms which perform stepwise variable selection for low-dimensional

models with AIC and BIC. These algorithms are notoriously slow and may require

the exploration of as many as 2p models to find the optimal model. Nevertheless,

these algorithms serve as a classic means of performing variable selection in basic

survival models, and should be discussed for foundational purposes.

The AIC in survival analysis models is defined in a very similar manner as it is

in the linear regression framework with the following function:

AIC = −2 log(L(τ, β)) + 2p, (2.8)

where L(τ, β) is a likelihood function and p is the number of covariates.

The formula for AIC in (2.8) is often not recommended with the usage of large

data sets, as its penalty term does not take the sample size n or number of uncensored

events d into consideration. The penalty term −2p is modified in the construction of
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the formula for the modified BIC below:

BIC = −2 log(L(τ, β)) + p log(d), (2.9)

where d is the number of uncensored events. The formula in (2.9) was proposed by

Volinsky & Raftery (2000) as a modification to the original BIC formula utilizing n

in the penalty term.

While stepwise methods are fairly simplistic from a theoretical perspective, it is

important to note that its flaws severely limit the amount of survival datasets in which

it can adequately examine. A lack of compatibility with high-dimensional datasets

and low computational efficiency with datasets with a large amount of parameters

still hinder the performance of stepwise methods reliant on AIC and BIC, whereas

other stepwise methods which are reliant on p-values for covariates and hazard ratio

confidence intervals are theoretically inferior to competing sparse variable selection

methods in large low-dimensional datasets.

2.5 Sparse Estimation with Minimizing Approxi-

mated Information Criterion

An alternative to stepwise variable selection in low-dimensional settings comes with

the utilization of sparse estimation with Minimizing approximated Information Cri-

terion (MIC) as proposed by Nabi & Su (2017). This method considers the utilization

of the following objective function:

MIC = −2 log(L(τ, β)) + log(d)

p∑
j=1

w(γj),

where w(γ) is a function of β = γw(γ) = γ tanh (γ).
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This particular choice in β is due to γ tanh(γ) being a unit dent function which is

smooth everywhere except for β = 0, providing the sparsity structure in the selection

of the covariates. This particular choice of penalty function will provide a much

more efficient means of selecting covariates than in stepwise methods. To estimate

β, generally the partial likelihood estimator in (2.7) is utilized as an initial starting

point, prior to the employment of simulated annealing (Bélisle, 1992) and quasi-

Newton BFGS methods (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970; Shanno,

1970) for finding the MIC estimator. It should be noted, however, that the MIC

estimator shares the primary flaw found in stepwise regression of being incompatible

with high-dimensional data.

2.6 Cox Ridge and Lasso Estimators

As noted in the previous sections, the primary limitation of the Cox model framework

and variable selection methods such as stepwise selection and sparse approximation

with MIC are that they are incompatible with high-dimensional data. In these sce-

narios, other estimators of β can be found through regularization methods such as

the lasso (Tibshirani, 1996) and ridge (Hoerl & Kennard, 1970b,a) estimators. Gen-

erally, the regularized estimator, which utilizes the penalty term to the partial log-

likelihood function, can be obtained by maximizing the following regularized partial

log-likelihood:

R(τ, β) = L(τ, β)− λP(β), (2.10)

where P(β) denotes the penalty function of β and λ > 0 is a regularization parameter.

When imposing the L2 penalty, i.e., P(β) =
∑p

j=1 β
2
j on the partial log-likelihood

in (2.7), maximizing the objective function in (2.10) yields the ridge estimator, for
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which the L2 penalty term serves in encouraging smoothness and avoiding problems

with overfitting. Similarly, when imposing the L1 penalty, P(β) =
∑p

j=1 |βj| on

(2.7), maximizing (2.10) yields the lasso estimator, which serves to directly detect

the sparsity structure within the Cox model. Many forms of literature associated

with variable selection assume the sparsity condition that there are only a few co-

variates truly related to the outcome, whereas all other covariates serve as noise

which have no real effect on the outcome. Following this assumption, we will develop

the Cox proportional hazards model framework identifying the sparsity structure of

the covariates, based on the Bayesian approach given by the spike-and-slab prior

distribution proposed by Tang et al. (2017).

2.7 Bayesian Hierarchical Cox Model

Prior to discussing the proposed framework, we discuss the Bayesian Hierarchical

Cox model proposed by Tang et al. (2017). This method utilizes the well-known

concept that the lasso estimator can be expressed as a hierarchical model with double-

exponential prior as follows:

βj|s ∼ DE(βj|0, s) =
1

2s
exp(−|βj|/s), (2.11)

where s = 1/λ. The double-exponential prior in (2.11) can utilize a spike-and-slab

structure to produce the following spike-and-slab mixture double-exponential prior:

βj|γj, s0, s1 ∼ (1− γj)DE(βj|0, s0) + γjDE(βj|0, s1) (2.12)
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Equivalently, (2.12) can be rewritten as:

βj|γj, s0, s1 ∼ DE(βj|0, Sj) =
1

2Sj
exp(−|βj|/Sj), (2.13)

where γj is an indicator variable and Sj = (1 − γj)s0 + γjs1 with s1 > s0 > 0.

Here s0 is chosen to be incredibly small and serves as the “spike” component of the

spike-and-slab, whereas s1 is chosen to be relatively large and serves as the “slab”

component.

In order to obtain the parameter estimates, the Bayesian Hierarchical Cox Model

employs the EM coordinate descent algorithm which works as follows:

• Step 1: Choose a starting β0 and θ0 value which generally correspond to 0

and 0.5, respectively.

• Step 2: Update γj, the indicator parameter by its posterior expectation pj:

pj =
DE(βj|0, s1)θ

DE(βj|0, s0)(1− θ) +DE(βj|0, s1)θ

• Step 3: Update β using the cyclic coordinate descent algorithm which maxi-

mizes

Q1(β) = L(τ, β)−
J∑
j=1

S−1j |βj|, (2.14)

where S−1j = (1− pj)/s0 + pj/s1.

• Step 4: Update θ which uses the function:

Q2(θ) =
J∑
j=1

(γj log pj + (1− γj) log(1− pj))
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• Step 5: Repeat Steps 2–4 until the algorithm converges. Convergence is based

off of |d(t) − d(t−1)|/(0.1− |d(t)|) < ε, where d(t) is the estimate of the deviance

at iteration t and ε is an appropriately small value such as 0.00001.

The optimization function in (2.14) will provide the sparsity structure in the

Bayesian Hierarchical Cox framework. Utilizing a similar approach to the existing

Bayesian Hierarchical Cox model, we establish our novel framework in the next chap-

ter.
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Chapter 3

Spike-and-Slab Type Variable

Selection

3.1 Estimation of Proposed Method

In this section, we develop our proposed framework by transforming the score defined

on T ×Rp into the function defined on T ×Rn and the negative information defined

on T × Rp into the function defined on T × Rn. Define Zi = XT
i β as the linear

predictor of the ith observation for i = 1, . . . , n. We consider the score function for

(2.7) with respect to the linear predictors Z = (Z1, . . . , Zn)T , whose jth component

is specifically given by

∂L(τ, Z)

∂Zj
=

∫ τ

0

{
I{T̃j ≤ s} −

Yj(s) exp(Zj)∑n
i=1 Yi(s) exp(Zi)

}
dNj(s). (3.1)

The original score function with p-dimensional length for (2.7) can be written as

∂L(τ, β)

∂β
=

n∑
i=1

∫ τ

0

{
Xi −

∑n
j=1 Yj(s) exp(XT

j β)Xj∑n
j=1 Yj(s) exp(XT

j β)

}
dNi(s). (3.2)
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Then, the relation between (3.1) and (3.2) can be represented as

∂L(τ, β)

∂β
=

n∑
j=1

∂Zj
∂β

∂L(τ, Z(β))

∂Zj
,

where
∂Zj

∂β
is a p× 1 vector with its k-th entry being

∂Zj

∂β
(k) =

∂Zj

∂βk
for k = 1, . . . , p.

Define

∂L(τ, Z)

∂Z
=
(∂L(τ, Z)

∂Z1

, . . . ,
∂L(τ, Z)

∂Zn

)T
and

∂Z

∂β
=
(∂Z1

∂β
, . . . ,

∂Zn
∂β

)
(3.3)

as an n × 1 vector and a p × n matrix with its (k, l)th entry being ∂Z
∂β

(k, l) = ∂Zl

∂βk
,

respectively.

The information function of the linear predictors can similarly be constructed and

derived from the partial log-likelihood function in (2.7). Thus we have

∂2L(τ, Z)

∂Z2
j

= −
∫ τ

0

{
Yj(s) exp(Zj)∑n
i=1 Yi(s) exp(Zi)

−
Yj(s) exp(2Zj)

{
∑n

i=1 Yi(s) exp(Zi)}2

}
dNj(s).

and

∂2L(τ, Z)

∂Zj∂Zk
=

∫ τ

0

{
Yj(s) exp(Zj)Yk(s) exp(Zk)

{
∑n

i=1 Yi(s) exp(Zi)}2

}
dNj(s)

for j 6= k and j = 1, . . . , n. The derivative of the score function with the p×p matrix,

denoted by ∂
2
L(τ,β)

∂β∂β
T , can be approximated as

∂2L(τ, β)

∂β∂βT
≈ ∂Z

∂β

∂2L(τ, Z(β))

∂Z∂ZT

∂ZT

∂βT
≈

n∑
j=1

∂Zj
∂β

∂2L(τ, Z(β))

∂Z2
j

∂Zj

∂βT
. (3.4)

Notice that the Fisher scoring method (McCullagh & Nelder, 1989) allows the first

approximation and the argument introduced in Hastie & Tibshirani (1990) allows

the second approximation.



19

Now we utilize these transformed components including (3.3) and (3.4) in the

framework of the partial log-likelihood given by (2.7). Considering the quadratic

approximation of the partial log-likelihood function around β, we derive an algebraic

form for the maximum likelihood estimator based on the transformed functions. For

the fixed τ , the usual Taylor expansion of the estimation equation about β yields

L(τ, β) ≈ L(τ, β̂) + (Z − Ẑ)T
∂L(τ, Ẑ)

∂Z
+

1

2
(Z − Ẑ)T

∂2L(τ, Ẑ)

∂Z∂ZT
(Z − Ẑ), (3.5)

where Ẑ = (Ẑ1, . . . , Ẑn)T , Ẑi = XT
i β̂, and β̂ denotes some value close to β.

Then the right-hand side in (3.5) is equal to

1

2
(Ẑ − ∂Z2

∂2L(τ, Ẑ)

∂L(τ, Ẑ)

∂Z
− Z)T

∂2L(τ, Ẑ)

∂Z2 (Ẑ − ∂Z2

∂2L(τ, Ẑ)

∂L(τ, Ẑ)

∂Z
− Z) (3.6)

+ L(τ, β̂)− 1

2
(
∂L(τ, Ẑ)

∂Z
)T

∂Z2

∂2L(τ, Ẑ)

∂L(τ, Ẑ)

∂Z
, (3.7)

where ∂Z
2

∂
2
L(τ,Ẑ)

is the inverse of ∂
2
L(τ,Ẑ)

∂Z
2 such that ∂Z

2

∂
2
L(τ,Ẑ)

∂
2
L(τ,Ẑ)

∂Z
2 to be an identity

matrix.

In practice, we recommend utilizing the ridge estimator for β in high-dimensional

settings, while the partial likelihood estimator is used in low-dimensional settings.

Note that the second term given in (3.7) is not dependent on Z including β within

the approximated partial log-likelihood function given in (3.5). Thus, (3.6) can be

rewritten in the following algebraic form:

1

2
(F −Xβ)TW(F −Xβ), (3.8)

where F = Ẑ − ∂Z∂Z
T

∂
2
L(τ,Ẑ)

∂L(τ,Ẑ)
∂Z

, X = (X1, . . . , Xn)T , and W = ∂
2
L(τ,Ẑ)

∂Z∂Z
T are an n × 1

response vector, an n × p design matrix, and an n × n weight matrix, respectively.

For notational convenience, we denote F ∗0 = W1/2F and X∗0 = W1/2X, where F ∗0 =
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(f ∗01, . . . , f
∗
0n)T and X∗0 = (X∗01, . . . , X

∗
0n)T .

3.2 Stochastic Variable Search Gibbs Sampling

After the transformation inducing (3.8) is done via the proposed approximation, any

existing sparse method of variable selection within a linear regression framework can

be utilized. While there are a wide variety of sparse methods to choose from, we

consider using the spike-and-slab prior distribution that employs stochastic variable

search (SVS) Gibbs sampling (Ishwaran & Rao, 2005). Specifically, we consider the

following model with the following prior distributions:

(f ∗0i|X∗0i, β, σ2)
ind∼ N(X∗0i

T
β, σ2n), i = 1, . . . , n (3.9)

(βk|Jk, τ 2k )
ind∼ N(0, Jkτ

2
k ), k = 1, . . . , p

(Jk|ν0, w)
i.i.d.∼ (1− w)δν0(·) + wδ1(·)

(τ−2k |a1, a2)
i.i.d.∼ Gamma(a1, a2)

w ∼ Uniform[0, 1]

σ−2 ∼ Gamma(b1, b2),

where δ1(·) is used to denote a degenerate point mass distribution concentrated at

the value 1, and ν0 denotes a small value near zero. Additionally, Jk denotes the

latent indicator variable, which takes Jk = 1 if the kth covariate is classified in the

nonzero group, or Jk = ν0 if the kth covariate is classified in the zero group for each

k. Our model allows Jkτ
2
k as the conditional variance of the prior distribution for the

kth parameter, i.e. βk, where τ 2k is a small positive value. While Jk is treated as an

independent Bernoulli random variable with parameter w, where w is a complexity

parameter controlling the probability 0 < w < 1 as mentioned in Ishwaran & Rao
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(2005), we will use the uniform prior as an indifference distribution. Thereby, the

variance Jkτ
2
k yields a continuous bimodal distribution with a spike at ν0 and a right-

continuous tail, where we denote γk = Jkτ
2
k for brevity. This is important as the

spike allows the posterior to shrink insignificant parameters towards 0 while the right-

continuous tail can identify nonzero parameters. Additional details on the derivation

and reasoning behind this structure can be found in Ishwaran & Rao (2005).

We fit the Bayesian model in (3.9) using the SVS Gibbs sampler. The SVS Gibbs

sampler works with the transformed design matrix X∗0 and transformed response

vector F ∗0 to obtain the posterior sample (β,J , τ , w, σ2|F ∗0 ), where J = (J1, . . . , Jp)
T ,

τ = (τ1, . . . , τp)
T , and γ = (γ1, . . . , γp)

T . We present the computational algorithm in

Ishwaran & Rao (2005), which provides the posterior distributions as follows:

• Step 1: Simulate the conditional distribution for β:

(β|γ, σ2, F ∗0 ) ∼ N(µ, σ2Σ),

where µ = ΣX∗T0 F ∗0 , Σ = (X∗T0 X∗0 + σ2nΓ−1)−1, and Γ = diag(γ1, . . . , γp).

• Step 2: Simulate Jk from its conditional distribution:

(Jk|βk, τk, w)
ind∼

w1,k

w1,k + w2,k

δν0(·) +
w2,k

w1,k + w2,k

δ1(·),

where w1,k=(1− w)ν
−1/2
0 exp(− β

2
k

2ν0τ
2
k

) and w2,k = w exp(− β
2
k

2τ
2
k

) for k = 1, . . . , p.

• Step 3: Simulate τ−2k from its conditional distribution:

(τ−2k |βk, Jk)
ind∼ Gamma

(
a1 +

1

2
, a2 +

β2
k

2Jk

)
for k = 1, . . . , p
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• Step 4: Simulate w from its conditional distribution:

(w|γ) ∼ Beta
(

1 +

p∑
k=1

I(γk = 1), 1 +

p∑
k=1

I(γk = ν0)
)

• Step 5: Simulate σ−2 from its conditional distribution,

(σ−2|β, F ∗0 ) ∼ Gamma
(
b1 +

n

2
, b2 +

1

2n
||F ∗0 −X∗0β||2

)

• Step 6: Set γk = Jkτ
2
k for k = 1, . . . , p.

Once we obtain the transformed design matrix and response vector, we can ap-

proach the problem as a Bayesian regression problem and develop it with the spike-

slab prior being able to identify the sparse structure of the covariates. There are

several possible approaches using Markov Chain Monte Carlo (MCMC) from the

complete conditional distributions aforementioned. One possible approach is to ob-

tain the MCMC samples as part of the spike-slab package in R that have been

developed in recent years (Ishwaran et al., 2010). We implement this framework to

produce the posterior samples. Model results can be somewhat sensitive to hyper-

parameter values, so we fit our model under the prior distributions including two

gamma distributions with hyperparameters that are chosen as a1 = 5, a2 = 20 and

b1 = b2 = 0.0001, respectively, and the point mass that is chosen as ν0 = 0.005.
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Chapter 4

Simulation Study

4.1 Simulation Setting

In this section, we conducted a simulation study to examine the performance of

our proposed method with simulated time-to-event data. We considered data sets

generated from both low-dimensional and high-dimensional simulation settings. For

the low-dimensional settings, we conducted scenarios with sample sizes of n = 1000

and n = 3000 with three different censoring rates of 0.2, 0.3, and 0.4. The number

of covariates was set to be p = 100. For the high-dimensional settings, identical

sample sizes of n with the identical corresponding censoring rates were considered,

but the number of covariates was set to be p = 4000. In all simulation settings, four

significant parameters were used, with β1 = 0.8, β2 = 0.9, β3 = −0.8, β4 = −0.9, and

β5 = · · · = βp = 0. Hence, the true set of the indices associated with the nonzero

covariates can be denoted as M = {1 ≤ j ≤ p |βj 6= 0} = {1, 2, 3, 4}.

All of the covariates xij are independently generated from N(0, 1) for i = 1, . . . , n

and j = 1, . . . , p. We independently generated ui from Uniform[0, 1] and then gener-



24

ated the true survival time based on the proportional hazards model given by

Ti =
− log ui

λ exp{
∑p

j=1 xijβj}
, (4.1)

where λ > 0 denotes the baseline hazard function set to be 1 in this simulation.

Note that the data generating process in (4.1) is equivalent to an exponential model.

After drawing the censoring time Ci from Exponential(1), the observed time T̃i =

min{Ti, Ci} and the censoring indicator δi = I{Ti ≤ Ci} for i = 1, . . . , n, we gener-

ated a simulated data set of n subjects given by {(xi1, . . . , xip, T̃i, δi) : i = 1, . . . , n}

for each censoring rate.

As a form of comparison, we considered existing sparse variable selection methods

including the Bayesian Cox model introduced by Tang et al. (2017), denoted by (B),

the Cox lasso method (Tibshirani, 1997), denoted by (C), and the sparse estimation

method using approximated information criterion introduced by Su et al. (2016),

denoted by (D), where our proposed method was denoted by (A). The two methods

including (B) and (D) serve as two competing sparse Bayesian approaches, whereas

we consider the lasso (C) as a competing sparse frequentist approach. We define

M̂ = {1 ≤ j ≤ p |β̂j 6= 0} as an estimated set of indices associated with the nonzero

covariates. In order to compare with the other competing methods, we examined

three types of performance measures. Specifically, we considered the probability

of obtaining the correct model, defined as PC = P (M = M̂), the probability of

obtaining an overfitted model, defined as PO = P (M ⊂ M̂), and the expected value

of incorrect nonzero covariates, defined as EIN = E(|M̂ ∩ Mc|), where Mc is the

compliment of M. For each scenario, 100 simulated data sets were generated, and

three performance measures were empirically computed across all simulated data

sets, i.e., P̂C = 1
M

∑M
m=1 I{M = M̂m}, P̂O = 1

M

∑M
m=1 I{M ⊂ M̂m}, and ÊIN =

1
M

∑M
m=1 |M̂m ∩Mc|, respectively, where M̂m denotes an estimated set of nonzero
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Table 4.1: Simulation results for the low-dimensional data (p = 100): We used
the proposed method, denoted by (A), Bayesian Cox method, denoted by (B), Cox
lasso method, denoted by (C), and Cox method with the approximated information

criterion, denoted by (D). ÊIN is the expected number of the incorrect nonzero

covariates, P̂C is the empirical probability of the correct model, P̂O is the empirical
probability of the overfitted model, n is the sample size, p is the number of the
covariates, and censor denotes the censoring rate. The variances are provided in
parentheses.

n p censor (A) (B) (C) (D)

ÊIN P̂C P̂O ÊIN P̂C P̂O ÊIN P̂C P̂O ÊIN P̂C P̂O
1000 100 20% 0.13 0.88 0.12 34.80 0.00 1.00 0.72 0.57 0.43 3.59 0.08 0.92

(0.13) (0.11) (0.11) (21.64) (0.00) (0.00) (1.29) (0.25) (0.25) (5.09) (0.07) (0.07)
30% 0.06 0.94 0.06 32.07 0.00 1.00 0.73 0.62 0.38 2.86 0.12 0.88

(0.06) (0.06) (0.06) (16.83) (0.00) (0.00) (1.86) (0.24) (0.24) (4.22) (0.11) (0.11)
40% 0.11 0.89 0.11 28.11 0.00 1.00 0.52 0.69 0.31 2.86 0.09 0.91

(0.10) (0.10) (0.10) (21.07) (0.00) (0.00) (1.02) (0.22) (0.22) (4.88) (0.08) (0.08)
3000 100 20% 0.05 0.95 0.05 58.11 0.00 1.00 0.12 0.92 0.08 2.81 0.05 0.95

(0.05) (0.05) (0.05) (19.59) (0.00) (0.00) (0.21) (0.07) (0.07) (2.80) (0.05) (0.05)
30% 0.08 0.93 0.07 54.35 0.00 1.00 0.08 0.93 0.07 3.03 0.05 0.95

(0.09) (0.07) (0.07) (24.96) (0.00) (0.00) (0.09) (0.07) (0.07) (3.42) (0.05) (0.05)
40% 0.11 0.90 0.10 53.19 0.00 1.00 0.14 0.92 0.08 3.32 0.05 0.95

(0.12) (0.09) (0.09) (19.85) (0.00) (0.00) (0.38) (0.07) (0.07) (3.92) (0.05) (0.05)

indices for the mth simulated data for m = 1, . . . ,M and M denotes the total

number of simulated data sets.

4.2 Simulation Results

Table 4.1 reports the performance measures for the low-dimensional scenarios. In

order to transform the score and information functions, we chose the initial β̂ to be

the Cox partial likelihood estimator. This β̂ estimator is identically utilized as the

initial estimator of the Cox model based on the approximated information criterion.

For lasso, we chose to work with the smallest λ value within one standard error of the

minimum λ selected based on 10-fold cross validation. After transforming the score

and information functions, 1000 iterations of the spike-and-slab Gibbs sampler were

run with a total of 500 iterations of burn-in. For the existing Bayesian Cox model

(B), we conducted 50 iterations of the EM algorithm to obtain the estimator. With

n = 1000 and p = 100, we see that the proposed method (A) experiences the best
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performances out of all four methods. Additionally, the proposed method has by

far the least amount of incorrect covariates. Notably, lasso (C) performs the second

best, but never classifies more than 70% of models correctly. For n = 3000 and

p = 100, the proposed method (A) is still the best performing Bayesian method by

a wide margin. We see that the lasso estimator (C) provides similar results to (A),

now that n has been increased. Meanwhile, the existing Bayesian Cox method (B)

and approach accompanying the approximated information criterion (D) experience

decreased performances when the sample size is increased in the low-dimensional

settings.

It should be noted that it was also possible for us to test methods involving step-

wise methods as proposed in Section 2.4 for the low-dimensional simulation settings.

However, we must consider that if we had utilized backwards elimination to per-

form variable selection, the algorithm would have had to consider many models with

many noisy variables prior to potentially arriving at the correct model with only four

variables. Forward selection could be considered as an alternative, but this choice

would rely on knowing that p is small, but the forward selection technique still fails

to outperform the proposed method in these simulation settings.

Table 4.2 contains the performance measures for the high-dimensional scenarios.

It should be noted that the approximated information criterion method (D) is incom-

patible with high-dimensional data, meaning high-dimensional results were compared

solely between the three other methods. To choose β̂ for the transformation, we chose

to work with the ridge estimator as the initial estimator in a high-dimensional set-

ting. To use the ridge estimator, we first selected the tuning parameter based on the

smallest λ within one standard error of the minimum of the λ value chosen via 10-fold

cross validation. After choosing λ, β̂ was computed by minimizing the L2 penalty

function. To obtain the samples from the posterior distribution, 2600 iterations of
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Table 4.2: Simulation results for the high-dimensional data (p = 4000): We used
the proposed method, denoted by (A), Bayesian Cox method, denoted by (B), and

Cox lasso method, denoted by (C). ÊIN is the expected number of the incorrect

nonzero covariates, P̂C is the empirical probability of the correct model, P̂O is the
empirical probability of the overfitted model, n is the sample size, p is the number of
the covariates, and censor denotes the censoring rate. The variances of each member
are provided below in parentheses.

n p censor (A) (B) (C)

ÊIN P̂C P̂O ÊIN P̂C P̂O ÊIN P̂C P̂O
1000 4000 20% 0.03 0.97 0.03 553.48 0.00 1.00 1.91 0.41 0.59

(0.03) (0.03) (0.03) (185.93) (0.00) (0.00) (8.37) (0.24) (0.24)
30% 0.04 0.96 0.04 492.63 0.00 1.00 1.77 0.50 0.50

(0.04) (0.04) (0.04) (183.71) (0.00) (0.00) (11.55) (0.25) (0.25)
40% 0.02 0.98 0.02 427.08 0.00 1.00 1.88 0.44 0.56

(0.02) (0.02) (0.02) (138.11) (0.00) (0.00) (8.81) (0.25) (0.25)
3000 4000 20% 0.08 0.93 0.07 1695.04 0.00 1.00 0.68 0.67 0.33

(0.09) (0.07) (0.07) (406.50) (0.00) (0.00) (1.57) (0.22) (0.22)
30% 0.09 0.92 0.08 1562.78 0.00 1.00 0.56 0.76 0.24

(0.10) (0.07) (0.07) (497.41) (0.00) (0.00) (2.31) (0.18) (0.18)
40% 0.13 0.88 0.12 1415.71 0.00 1.00 0.40 0.83 0.17

(0.13) (0.11) (0.11) (382.23) (0.00) (0.00) (3.17) (0.14) (0.14)

the spike-and-slab Gibbs sampler were run with a total of 100 iterations of burn-in.

We set the iterations of the EM algorithm to be 50 for (B), and similarly chose the

tuning parameter λ for (C) as mentioned above. For the setting with n = 1000 and

p = 4000, we see that the proposed method (A) experiences the best performance

out of all simulation settings. Meanwhile, we see that the spike-and-slab lasso via (B)

and lasso (C) both have more difficulty detecting the sparsity structure within the

simulated data. It should be noted that over 95% of the time, the proposed method

(A) correctly selects the model while lasso (C) does not manage to do so more than

50% of the time. Similarly, less than 5 nonzero covariates are selected across 100 sim-

ulations for the proposed method. As for the simulations settings with n = 3000 and

p = 4000, the proposed method (A) still maintains an excellent performance. Again,

the existing Bayesian Cox model with spike-and-slab (B) experiences worsened per-

formance as n increases. While lasso (C) experiences improved performance when n

increases like the low-dimensional settings, the performance is still not comparable

to the precision and performance of our method (A).
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A B

C D

Figure 4.1: The empirical average of incorrect nonzero covariates across all scenarios:
Panels A, B, C, and D depict the graphical representations of ÊIN for all scenarios
including the two low dimensional settings (n = 1000, p = 100 and n = 3000,
p = 100), and two high dimensional settings (n = 1000, p = 4000 and n = 3000,
p = 400), respectively. In each panel, we included the proposed method (solid line
with open circle), Bayesian Cox method (dashed line with open triangle), Cox lasso
method (dotted line with filled circle), and the method with minimized approximated
information criterion (dot-dashed line with filled triangle).
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Figure 4.1 shows the graphical representations for the empirical average of in-

correct nonzero covariates across all scenarios. Panels A, B, C, and D depict the

graphical representations of ÊIN for all scenarios including the two low dimensional

settings (n = 1000, p = 100 and n = 3000, p = 100), and two high dimensional

settings (n = 1000, p = 4000 and n = 3000, p = 400), respectively.

In summary, it should be noted that while the performances of lasso (C), Bayesian

Cox model (B), and Cox model with the approximated information criterion (D)

are heavily influenced by sample sizes, the performances of the proposed method

are relatively consistent across numerous sample sizes in this simulation. These

results suggest that, in practice, the proposed method is a method that is capable of

pinpointing sparsity structures within datasets regardless of sample size. Similarly,

increasing the amount of noisy variables within the data can significantly influence

the incorrect amount of incorrect covariates chosen by methods including (B) and

(C), leading to overfitted models. On the other hand, our method (A) tends to

maintain similar, if not improved, results when the total amount of covariates is

increased.

Table 4.3 and Table 4.4 contain the performance of the prediction measures.

We considered the areas under the receiver operating characteristic curve, denoted

by AUC, the area under the precision-recall curve, denoted by PRC, and concor-

dance index, denoted by CCI, as three predictive measures. It can be seen in the

low-dimensional settings that ultimately all of the methods had a rather similar

performance. However, in the high-dimensional setting, we note that (A) and (C)

performed significantly better in the n = 1000 case than (B) which severely overfit-

ted models. We see that for all three performance measures, (B) has a significantly

worse performance than (A) and (C). In the n = 3000 case, our proposed method

(A) performed slightly better than (C) when we considered the concordance index.
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Table 4.3: Predictive results for the low-dimensional data (p = 100): We used the
proposed method, denoted by (A), Bayesian Cox method, denoted by (B), Cox lasso
method, denoted by (C), and Cox method with the approximated information crite-
rion, denoted by (D). Performance was assessed via three measures abbreviated as
AUC (area under the receiver operating characteristic curve), PRC (area under the
precision-recall curve), and CCI (concordance index). n is the sample size, p is the
number of the covariates, and censor denotes the censoring rate, where the standard
deviations are provided in parentheses

n p censor (A) (B) (C) (D)
AUC PRC CCI AUC PRC CCI AUC PRC CCI AUC PRC CCI

1000 100 20% 0.834 0.831 0.821 0.832 0.829 0.821 0.834 0.831 0.822 0.831 0.828 0.820
(0.012) (0.015) (0.009) (0.012) (0.015) (0.009) (0.012) (0.015) (0.009) (0.012) (0.015) (0.009)

30% 0.837 0.833 0.825 0.836 0.831 0.824 0.837 0.832 0.825 0.835 0.831 0.823
(0.013) (0.016) (0.010) (0.013) (0.016) (0.010) (0.011) (0.015) (0.009) (0.013) (0.016) (0.010)

40% 0.837 0.833 0.825 0.836 0.832 0.824 0.837 0.833 0.825 0.835 0.831 0.823
(0.013) (0.016) (0.010) (0.013) (0.016) (0.010) (0.013) (0.016) (0.010) (0.013) (0.016) (0.010)

3000 100 20% 0.836 0.834 0.824 0.835 0.832 0.824 0.836 0.834 0.824 0.835 0.833 0.824
(0.006) (0.008) (0.005) (0.006) (0.008) (0.005) (0.006) (0.008) (0.005) (0.006) (0.008) (0.005)

30% 0.837 0.835 0.825 0.837 0.834 0.825 0.836 0.834 0.825 0.837 0.834 0.824
(0.006) (0.007) (0.004) (0.006) (0.007) (0.004) (0.006) (0.007) (0.004) (0.006) (0.008) (0.004)

40% 0.837 0.834 0.825 0.836 0.834 0.825 0.836 0.834 0.825 0.836 0.833 0.824
(0.006) (0.007) (0.004) (0.006) (0.007) (0.004) (0.006) (0.007) (0.004) (0.006) (0.007) (0.004)

Table 4.4: Predictive results for the high-dimensional data (p = 4000): We used
the proposed method, denoted by (A), Bayesian Cox method, denoted by (B), and
Cox lasso method, denoted by (C). Performance was assessed via three measures
abbreviated as AUC (area under the receiver operating characteristic curve), PRC
(area under the precision-recall curve), and CCI (concordance index). n is the sample
size, p is the number of the covariates, and censor denotes the censoring rate, where
the standard deviations are provided in parentheses

n p censor (A) (B) (C)
AUC PRC CCI AUC PRC CCI AUC PRC CCI

1000 4000 20% 0.838 0.831 0.827 0.811 0.802 0.811 0.837 0.833 0.825
(0.012) (0.016) (0.009) (0.014) (0.019) (0.010) (0.011) (0.015) (0.008)

30% 0.837 0.829 0.828 0.817 0.807 0.815 0.837 0.832 0.824
(0.011) (0.016) (0.008) (0.012) (0.017) (0.008) (0.012) (0.016) (0.008)

40% 0.838 0.831 0.828 0.824 0.815 0.817 0.837 0.831 0.825
(0.011) (0.014) (0.008) (0.012) (0.016) (0.010) (0.013) (0.016) (0.009)

3000 4000 20% 0.838 0.833 0.829 0.803 0.790 0.832 0.837 0.834 0.825
(0.006) (0.008) (0.004) (0.006) (0.009) (0.005) (0.006) (0.008) (0.005)

30% 0.838 0.832 0.828 0.817 0.805 0.832 0.835 0.832 0.824
(0.006) (0.007) (0.004) (0.007) (0.009) (0.004) (0.006) (0.008) (0.004)

40% 0.838 0.833 0.828 0.827 0.817 0.832 0.837 0.833 0.825
(0.006) (0.008) (0.004) (0.006) (0.010) (0.004) (0.005) (0.008) (0.004)

Additionally, we see that (B) performs significantly worse than (A) and (C) when we

considered the performance measures of AUC and PRC.
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Chapter 5

Real Data Application

5.1 Primary Biliary Cirrhosis Data

We demonstrate our method by first performing an analysis on the primary biliary

cirrhosis (PBC) data collected by the Mayo Clinic between 1974 and 1984. This

dataset, which is publicly available in the survival package in R, consists of 418 ob-

servations and 17 covariates. Prior to applying our method on the PBC dataset,

we first performed some filtering measures. All observations that contained missing

covariate values were removed, leaving us with 276 observations. The PBC dataset,

unlike most survival datasets, consists of three censoring indicators. The first indica-

tor, which corresponds to 0, represents patients who survived and did not need a liver

transplant. The indicator corresponding to 1 corresponds to patients who survived,

but needed a liver transplant, while the indicator corresponding to 2 corresponds to

patients who died from PBC. To ensure censoring was binary, we assigned patients

who survived the censoring indicator of 0 and patients who died the censoring indi-

cator of 1. After performing these adjustments to the PBC data, we were left with

111 censored observations, creating a censoring rate of 40.22%.

We first standardized all of the covariates. This was due to the varying scales
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Table 5.1: Results for the PBC data set: We used the proposed method (A), Bayesian
Cox method (B), Cox lasso method (C), and Cox method with the approximated
information criterion (D).

Covariate (A) (B) (C) (D)
trt No No No No
age Yes Yes Yes Yes
sex No No Yes No
ascites Yes No Yes No
hepato Yes No No No
spiders Yes No Yes No
edema Yes Yes Yes Yes
bili Yes Yes Yes Yes
chol Yes No No No
albumin Yes Yes Yes Yes
copper Yes Yes Yes Yes
alk.phos No No No No
ast Yes No Yes Yes
trig No No No No
platelet No No No No
protime Yes No Yes Yes
stage Yes Yes Yes Yes

within the PBC data, specifically with regards to variables such as alkaline phos-

phatase and serum bilirubin. The initial estimator β̂ was chosen as the maximum

likelihood estimator provided by the partial likelihood function. After transform-

ing the score and information functions, 1000 iterations of the spike-and-slab Gibbs

sampler were run with a total of 500 iterations of burn-in. Again, we compared our

results on the standardized survival data set with the existing Bayesian Cox model

(B), Cox lasso method (C), and Cox method using approximated information crite-

rion (D). As this data set was already explored in Tibshirani (1997) and Nabi & Su

(2017), we reported their original results for (C) and (D).

Table 5.1 reported the results for the PBC data set. Six variables were selected

by all methods, which consist of age, the presence of edema, the amount of serum

bilirubin in mg/dl, albumin in gm/dl, urine copper in ug/day, and histologic stage
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of disease. Two additional variables were selected by all of the methods except

the Bayesian lasso (B), which consisted of the AST enzyme in U/liter, and the

prothrombin time in seconds. Notice that sex was selected by the lasso (C) but not

via any other methods. In the PBC data, 242 out of 276 subjects are female, creating

a large imbalance for sex which may have contributed to the result where only the

lasso estimator detected sex as significant. Four additional covariates were selected

via our method (A) and were not selected by the method with the approximated

information criterion (D). These covariates are the presence of ascites, the presence

of hepatomegaly, the presence of spiders, and the level of serum cholesterol in mg/dl.

Figure 5.1 contains Kaplan-Meier plots for these four covariates. For the choles-

terol covariate, the groups were split based on the median value. The lasso estimator

(C) selected the presence of ascites and the presence of spiders to be significant,

but did not select the presence of hepatomegaly or the level of serum cholesterol to

be significant. However, two studies after the initial lasso publication support the

significance of these variables (Janičko et al., 2013; Uddenfeldt & Danielsson, 2000).

In all four plots, there is clear visual evidence to suggest there are significant differ-

ences between the survival curves of the groups. Additionally, the p-values from the

Kaplan-Meier log-rank tests, which are calculated and displayed within each Kaplan-

Meier plot, suggest that there are statistically significant differences between the two

groups for each variable.

Within the context of clinical trials, under-fitted models can lead to severe con-

sequences, as they might overlook important and significant covariates which are

associated with patient survival times. The results of this analysis suggest that the

proposed method can detect important and significant covariates that may not nec-

essarily be reported by other existing methods within low-dimensional settings.
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5.2 Lung Adenocarcinoma Data

Next, we demonstrate the performance of our method in a high-dimensional setting

with the lung adenocarcinoma data presented by Beer et al. (2002). The data set

consists of 86 observations with 7129 genes serving as covariates. Of the 86 obser-

vations, 62 are censored, yielding a censoring rate of 72.09%. As the data set was

high-dimensional, the initial β̂ for the transformation was chosen utilizing an ini-

tial ridge estimator. The tuning parameter was chosen as the smallest λ within one

standard error of the minimum λ chosen by leave-one-out cross-validation (LOOCV).

After choosing λ, we used the L2 penalty function to calculate β̂. After transforming

the score and information functions, 5500 iterations of the spike-and-slab process

were run with 500 iterations of burn-in.

Ultimately, our method detected 28 genes as being significant to predicting the

survival of patients with lung adenocarcinoma. To elaborate on the results, we discuss

four of the significant genes reported by our proposed method, which correspond to

genes which have been previously reported to have strong associations with lung

cancer. These genes are referred to as PRKACB, GAPDH, KLF6, and STX1A. In

previous studies, there has been strong evidence to suggest that downregulation in

the PRKACB genes can increase risk for those with lung adenocarcinoma (Chen et

al., 2013). Similarly, overexpression in GAPDH, KLF6, and STX1A also leads to the

increased risk (Puzone et al., 2013; DiFeo et al., 2008; Beer et al., 2002).

To further examine these genes, we showcase Kaplan-Meier plots in Figure 5.2

that correspond to the four previously mentioned genes. Although the genes have

continuous values, observations were split into two groups based on the median val-

ues for each gene. In the Kaplan-Meier plots, we observe a clear difference between

survival times within the groups plotted. For PRKACB, GAPDH, and STX1A, the

p-values from the Kaplan-Meier log-rank test (Bland & Altman, 2004) also suggest
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significant differences between the subgroups of each gene. These results are consis-

tent with other studies, and suggest that our proposed method is correctly detecting

signals within a high-dimensional setting with a high censoring rate.

The Kaplan-Meier log-rank test for the KLF6 gene yields a p-value of 0.06, which

normally suggests that there is no significant difference between the survival curves.

However, the loss of power within the Kaplan-Meier log-rank test can be attributed

to the early crossings between the two survival curves and relatively small sample

size (Li et al., 2015). Visually, it is clear after the time point of 25 that there is a

clear difference in survival probabilities between those who experience overexpression

in the KLF6 gene and those who do not. This gene presents an important example of

our method being able to detect a significant gene that may have been overlooked by

other popular methods such as the log-rank test. The results of this analysis suggest

that even in high-dimensional settings with high censoring rates, our method is able

to detect significant variables and sparsity structures.
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Figure 5.1: Kaplan-Meier plots for the PBC data set: Panels A, B, C, and D contain
the survival probabilities for the presence of ascites, presence of spiders, presence
of hepatomegaly, and amount of serum cholesterol, respectively. For A, B, and C,
the green lines indicate the presence of the covariate, whereas the red lines indicate
the absence of the covariate. For D, the green line represents serum cholesterol levels
higher than the median level, whereas the red line represents subjects who had serum
cholesterol levels lower than the median level. In each panel, p-values for the log-rank
test are provided.

A B

C D

p<0.001 p<0.001

p<0.001 p=0.008
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Figure 5.2: Kaplan-Meier plots for the lung adenocarcinoma dataset: Panels A, B,
C, and D contain the survival probability for the PRKACB, GAPDH, KLF6, and
STX1A genes, respectively. The green lines indicate levels of the gene higher than
the median level, whereas the red lines indicate levels of the gene lower than the
median level. In each panel, p-values for the log-rank test are provided.

A B

C D

p<0.001 p=0.039

p=0.060 p<0.001
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Chapter 6

Discussion

In this thesis, we have proposed a sparse variable selection method that transforms

the nonlinear estimating equation for the partial likelihood function into a linear esti-

mating equation framework prior to performing a method of sparse variable selection.

Although our primary focus was motivated by improving sparse variable selection

within the context of clinical trials and cancer gene-expression profiling, the method

can easily be extended to other low- and high-dimensional contexts within the Cox

model.

In our simulation section, we found that the proposed method is capable of provid-

ing an excellent performance in both low-dimensional and high-dimensional settings,

while being relatively unaffected by censoring rates of the simulated data sets. Ad-

ditionally, we saw that all of the competing methods had performances that were

heavily influenced by the sample size, whereas the proposed method was relatively

consistent. Lastly, we also saw that increasing the number of covariates led to worse

performance in competing methods, whereas our method tended to maintain similar,

if not improved, results when the total number of covariates was increased.

In our analysis on the PBC data, we found that the proposed method is capable of

detecting several significant covariates that were not deemed significant by any of the
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competing methods. We were able to confirm that our method’s choices were sensible

based on existing literature and examination of the Kaplan-Meier curves, suggesting

that our method was capable of detecting significant covariates in scenarios, where

other approaches may provide seemingly reasonable, but under-fitted models.

In our real data analysis on lung adenocarcinoma data, we found that the pro-

posed method is capable of detecting signal and joint effects on the survival outcome

among many noisy covariates. The proposed method was able to efficiently select 28

significant genes associated with decreased survival in patients with lung adenocarci-

noma, whereas competing sparse variable selection methods were unable to identify

any signal amongst the genes. The results suggest that in future genetic studies, our

method can be utilized as a reliable way to efficiently detect joint effects of genes

associated with survival times, serving as an improvement over the popular forms of

univariate analysis that have been commonly used within the field.

It should be noted that the ridge estimator chosen for the initial transformation

can be sensitive and time-consuming to obtain in high-dimensional settings. In our

simulations, we chose to utilize 10-fold cross validation to select our regularization

parameter λ for better computational speed. However, in our real data application,

LOOCV was utilized to select a more precise λ at the cost of computational time.

Lastly, in future work, we may look into alternatives to the SVS Gibbs sampler

for the variable selection step. Although the SVS Gibbs sampler has demonstrated

exceptional performance, improvements may be possible by devising a variable selec-

tion method specific to the proposed transformed linear estimating equation.
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