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Abstract 

 Wildfire transforms soil physical, chemical, and biological properties. These changes are 

integral soil processes in fire-prone terrestrial ecosystems around the world. Although methods 

for estimating fire energy and impacts aboveground have progressed in recent decades, there 

remain major challenges in characterizing soil heating and associated effects belowground. 

Overcoming these challenges is crucial for understanding how fire influences soil carbon storage, 

biogeochemical cycling, and ecosystem recovery after fires.   

 The work in chapter one explores nitrogen (N) cycling in soils from a case study on the 

Walker Fire in Northern California, 2019. Previous work has shown that N cycling is transformed 

by fire but variability in the magnitude and direction of those changes makes generalizing 

between and within fires challenging. These studies are often complicated by the lack of prefire 

samples and verified control areas that did not burn. In this case study, I analyzed N cycling in 

samples from immediately prefire, immediately postfire, and up to nine months after the fire, in 

both burned and control areas. The burned sampling locations ranged from low to extreme 

severity. I found that in this system, fire severity and soil moisture interact to control levels of N 

cycling and availability. These synergistic effects would have been difficult to discern with 

traditional sampling designs that rely on postfire measurements and space-for-time substitutions 

to approximate prefire conditions because of the uncertainties inherent from spatial heterogeneity. 

This work increases our understanding of factors driving N cycling in Sierra Nevada forests and 

suggests that, when possible, this sampling design should be employed to study future fires. 

 Chapter two proposes a model for soil heating during wildfires. Previous work has shown 

that the extent and duration of soil heating determines the immediate fire effects on soils. 

However, measuring soil temperatures during fires is logistically complicated. The resulting 

dearth of temperature data makes elucidating mechanisms and direct relationships between 

heating and fire effects challenging. In this chapter, I describe and validate a new field method, 
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called iStakes, that addresses many of the current constraints in measuring soil temperatures. I 

also explain and validate a modelling framework I designed, called SheFire, which can predict 

soil temperature over time across soil depths during wildfires. The modeling framework also 

includes functions to summarize soil heating in a variety of manners and extends soil heating to 

biological impacts with functions that model soil organism survival at different soil depths. I use 

data from a case study to demonstrate the utility of iStakes and SheFire. This field method and 

model make studying the direct effects of fire on soil more streamlined and will help researchers 

characterize belowground processes that are transformed by fire.  
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I. Introduction to thesis research 

1. Wildfire and soil 

Fire is a key factor shaping the composition and structure of vegetation and soils in semi-arid 

forests and shrublands (Knelman et al. 2015, Alcañiz et al. 2018). It is well established that 

wildfires can transform soil biological, chemical, and physical properties which are critical to the 

functioning of all terrestrial ecosystems (e.g., Giovannini et al. 1990, Neary et al. 1999, Badía-

Villas et al. 2014, Doerr et al. 2017). Although fire effects on soil biogeochemistry have been 

recorded for decades, few generalizations can be made across ecosystems (e.g., Neary et al. 2005, 

Certini 2005, Hanan et al. 2016, Alcañiz et al. 2018).  

 It is challenging to generalize how soil properties are transformed by fire because these 

responses vary with fire severity, preexisting soil characteristics, and time since fire. Therefore, to 

understand how future fires will influence ecosystem processes, we must consider all these 

factors, ideally through pre- and postfire samples collected at high temporal resolution. However, 

doing so can be challenging, in part because access to unplanned wildfires is strictly controlled 

for safety reasons and prescribed fires, although planned far in advance, are often conducted on 

short notice. 

 In the first chapter of my thesis, I use a novel dataset to explore shifts in soil nitrogen (N) 

cycling following an unplanned wildfire. The dataset includes samples that were collected 

immediately before and after wildfire, as well as one and a half, six, and nine months later. The 

areas sampled range from unburned to extreme burn severity. This dataset provides a novel 

opportunity to analyze the immediate and seasonal changes in N availability and cycling 

following fire across a range of fire severities.  

 Even with datasets such as this, it is challenging to extrapolate from one fire to another, 

or even from one area of a fire to another area due to the high variability in fire behavior and 

spatially complex soil properties prefire (Ste-Marie and Paré 1999, Busse et al. 2013, Morgan et 
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al. 2014). Using soil temperatures during fires in a dose-response framework is one possible path 

to developing a generalizable understanding of how fires transform soils. Linking belowground 

temperatures to changes in soil properties and processes would provide a more direct link 

between the fire and its effects on soils than relying on fire severity, assessed through 

aboveground changes in vegetation. Unfortunately, recording soil temperatures during fires is 

logistically challenging to implement at a fine spatial scale across soil depth.  

 In the second chapter of my thesis, I addressed these challenges by developing a new 

model, Soil Heating in Fire (SheFire), that uses minimal input data collected in the field to predict 

soil temperature during and after fire, across a range of soil depths. I also explain a new data 

collection method, iStakes, that eases many of the current constraints on collecting soil 

temperature data during wildfires.  

  

2. Summary of themes discussed in each chapter 

2.1.  Effects of wildfire and seasonal changes on N cycling using a novel sampling design 

In this chapter, I quantified a variety of soil physical, chemical, and biological processes for soil 

samples collected immediately before and after wildfire in the Sierra Nevada, as well as 

seasonally over the first year of recovery. This novel sampling design included locations that did 

not burn, and locations that burned at varying levels of burn severity – a categorization based on 

above ground changes to vegetation and soil surface. The novel combination of immediate pre- 

and postfire sampling, and subsequent seasonal sampling under a range of burn severities enabled 

me to explore nitrogen cycling at a temporal resolution that is rarely possible with wildfires. It is 

well established that fires are a key driver of N cycling in fire-prone systems, but the magnitude 

of those changes can vary substantially with fire severity and time since fire. This variability 

makes it difficult to predict how fire will influence ecosystem processes. Effects from low 

severity fires in particular are challenging to predict because in some cases their effects are very 
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short-lived. However, as fire frequencies increase in many landscapes across the western U.S. 

(Westerling et al. 2006), these short-term changes may play a larger role in ecosystem N cycling 

and availability. This study provides a nuanced look at a single fire and how it transformed N 

cycling across a range of fire severities, at timescales ranging from days to months following fire. 

As expected, fire generally enhanced rates of N cycling and N availability. However, the 

exact changes varied in response to both fire severity and seasonal fluctuations in soil moisture. 

Areas of higher severity experienced increases in N cycling and availability but N availability 

crashed after extended periods of high soil water content. Low severity areas did not experience 

as extreme increases in N availability and cycling but sustained moderately increased levels 

through periods of high soil water content. Fire effects lasted longer with increasing fire severity, 

while the areas that did not burn had little to no measurable available nitrogen or nitrogen 

cycling, regardless of the soil water content.  

The sampling design used in this study helped elucidate ephemeral changes in soil 

biogeochemistry after the fire that would not have been caught without immediate pre- and 

postfire sampling. While the changes in areas of higher severity fire can last for extended periods 

of time, this study demonstrates that to understand low severity fires in particular, or the peak 

changes in higher severity areas, requires studying fires on a temporal scale of days to months, 

not months to years as has been the case in most previous studies.  

  

2.2.  Soil Heating in Fire (SheFire): a model and measurement method for estimating soil 

heating across depths over time, and belowground responses in wildland fires 

The direct impacts of fire on soil occur as a result of the extent and duration of soil heating. 

However, these data can be challenging to collect on a fine enough temporal and spatial scale to 

be useful for predicting fire effects or even to compare heating across soil depths. To address this 

problem, I developed a model in R, called Soil Heating in Fire (SheFire), that predicts soil 
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heating through time across soil depths. In addition to the model fitting function, the SheFire R 

package also includes a series of functions that summarize soil heating in variety of manners and 

a series of response functions that extend the model’s predictive scope beyond only soil 

temperature to include predicted survival for soil organisms. I also tested a new method for 

collecting soil temperature data, which uses easy to deploy ibutton sensors placed at different soil 

depths using a wooden stake (i.e., an iStake), rather than thermocouple probes with attached data 

loggers. 

 To validate the SheFire model, I designed an experiment that compared predicted 

temperatures against temperatures recorded at specific depths. Additionally, to demonstrate that 

the new iStake data collection method is a viable way to record data comparable with traditional 

methods, I benchmarked ibutton measurements against thermocouple measurements from paired 

sets of sensors exposed to the same soil heating. I also compared the SheFire model results from 

each paired set of sensors. 

I found that SheFire makes skillful temperature predictions across a range of soil depths. 

The summary functions provide a variety of ways to compare soil heating across locations, times, 

and soil depths. The survival response functions, which use temperature and thermal tolerance 

data to predict organism, tissue, or protein survival over time at a given depth, extend the utility 

of SheFire to include biological responses to soil heating. SheFire is a powerful tool to help 

explore soil heating during fires and its direct effects. 

For the novel data collection method for recording soil temperatures during fire, I found 

that iStake recorded temperatures were comparable to those recorded by thermocouples, 

suggesting that results from studies using thermocouples and studies using ibuttons can 

reasonably be compared or aggregated. There is no cause for concern that the different sensor 

types result in sufficiently different temperature readings that they cannot both be used. The 
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streamlined design of the iStakes offers a viable alternative to time and labor-intensive 

thermocouple deployment.  

The application of iStakes and SheFire to case study data demonstrated the utility of both 

the field method and the model. The iStakes provided useful soil temperature data from the 

experimental plots. SheFire was fitted using the data from the iStakes and supplied a valuable 

way to quantitatively compare the soil heating between plots and predict survival for various 

organisms and plant tissues in the soil.  
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II. Chapter One 

Quantifying how wildfire and seasonal fluctuations in the soil environment influence 

nitrogen cycling using novel timeseries sampling 
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Jonathan Greenberg1 

1Department of Natural Resources and Environmental Science, University of Nevada - Reno, 

Reno, Nevada, USA 

2US Forest Service, Northern Research Station, Delaware, Ohio, 43015, USA 

3Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, 
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Abstract 

As wildfires become more frequent and severe, it grows increasingly important to understand 

how they will affect the biogeochemical processes influencing ecosystem recovery. Soil nitrogen 

(N) cycling is a key process constraining plant productivity and N losses from fire. However, the 

short-term effects of fire on N cycling, on the scale of days to months, are often overlooked in 

favor of longer-term studies that examine rates months to decades after fire. This knowledge gap 

results in part from the fact that many studies rely on space-for-time substitutions to understand 

fire effects, which generate uncertainty because of differences among sites representing different 

postfire ages. In addition to these uncertainties, the longer-term focus can limit our ability to 

quantify shorter-term fire effects, especially for low severity fires, which often have ephemeral 

responses on N cycling compared to more severe fires. To assess shorter-term N cycling 

following this fire, this study uses a novel dataset to quantify forest net mineralization and net 

nitrification rates during the first year of recovery following a wildfire that burned in the Northern 

Sierra Nevada. Our dataset leverages immediate prefire, immediate postfire, and seasonal soil 



8 
 

 

samples collected along a gradient of fire severities, including sites that burned at low, high, and 

extreme severity as well as sites that did not burn in this fire.  

We found that immediately after fire, soil pH increased for all severities, but the 

magnitude and duration of the effect increased with increasing severity. Microbial biomass 

increased in locations that burned at high severity but decreased in locations that burned at low 

severity. These differences diminished over time as microbial biomass in the burned sampling 

sites slowly converged on the control sampling site levels. Nitrogen cycling was affected by both 

burn severity and soil moisture. Generally, higher burn severity increased net mineralization 

rates, but they decreased after extended periods with high soil moisture. Low severity samples 

had lower rates of net mineralization than high severity locations, but they were able to maintain 

those rates even after periods of high soil moisture. Samples collected from locations that did not 

burn had the lowest rates of net mineralization. These results suggest that burn severity and 

seasonal precipitation patterns interact to drive N cycling and availability following this fire. We 

also found that this sampling design was necessary to help elucidate some of the soil changes 

postfire and posit mechanisms for differences we observed between severity categories.  
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1. Introduction 

Wildfires shape coniferous forests across the western USA through their effects on forest 

structure, species composition, and soil chemistry (e.g., Knelman et al. 2015, Alcañiz et al. 2018). 

Although fire effects on soil chemistry have been recorded for decades, the magnitude and 

direction of responses can vary, particularly when it comes to nitrogen (N; e.g., Neary et al. 2005, 

Certini 2005, Hanan et al. 2016b, Alcañiz et al. 2018). However, two trends stand out as 

particularly robust: increases in pH and increases in net mineralization and nitrification rates 

following fire. These increases occur across biomes, from forests to savannas, and their 

magnitude generally grows with burn severity (e.g., Tester 1989, DeLuca et al. 2006, Verma and 

Jayakumar 2012, Alcañiz et al. 2018, Kranz and Whitman 2019). Other important, although more 

variable effects of combustion include fluctuations in microbial biomass, and changes in soil 

moisture and water availability. 

There are several interconnected processes that influence N mineralization and 

nitrification rates after fire. Fire deposits ash and char on soil surfaces, which is rich in 

ammonium (NH4
+) and readily decomposable organic N. Ash also contains base-forming cations 

that can increase soil pH, and fire behavior can further amplify pH increases by destroying 

organic acids in surface soils (Hanan et al. 2016b). Elevated soil pH increases the ammonia to 

ammonium ratio in soils (pKa = 10) and because nitrifying bacteria and archaea use ammonia 

substrate, nitrification increases with higher pH (Prosser 1990, De Boer and Kowalchuk 2001, 

Hanan et al. 2016b). However, other factors can moderate or counteract increases in N 

availability. For example, readily decomposable organic materials that are deposited on soil 

surfaces with ash can stimulate heterotrophic microbial biomass. Increases in microbial biomass, 

in turn, have been linked with N immobilization in a variety of N-limited ecosystems (Aoyama 

and Nozawa 1993, Gallardo and Schlesinger 1995). The amount and composition of fire created 

ash and char can influence which mechanisms dominate, mineralization and nitrification of N or 
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immobilization by biomass (DeLuca et al. 2006, Hanan et al. 2016b). Additionally, even though 

fire typically increases immediate N availability, it also oxidizes, volatilizes, and transports large 

amounts of N away from burned ecosystems, which over longer timescales can reduce the 

substrate available to heterotrophic microbes and nitrifying bacteria. As a result, N losses due to 

combustion during the fire and from postfire leaching can outstrip the short term increases in N 

availability in some areas (Murphy et al. 2006a, Verma and Jayakumar 2012, Alcañiz et al. 2018).  

Burn severity can be a key indicator of how these fire and soil processes interact with one 

another and which dominate in a given location (Neary et al. 1999, González-Pérez et al. 2004, 

Knicker 2007, Knelman et al. 2015, Whitman et al. 2019). Burn severity is a measure of the 

extent to which an ecosystem has been transformed by fire (mainly vegetation and surface soils). 

It can provide a convenient approach for indirectly categorizing how a fire’s energy dissipation 

and residence time has affected an ecosystem, since direct fire characteristics are not as easy to 

measure across large spatial scales. Energy release rates and totals (which correlate with severity) 

influence how much ash and char may be deposited, the degree of forest floor combustion, the 

presence and depth of hydrophobic soil layers, which, along with other factors including plant 

survival, can change postfire N availability, hydrology, and resulting N losses through leaching. 

There are both ground-based and remote-sensing approaches to determining severity but, in both 

cases, as an indirect indicator of fire energy, it is imperfect for quantifying the direct effects of 

heating belowground (Smith et al. 2016). 

Postfire N cycling is regulated by a suite of interacting soil characteristics including soil 

water content, pH, and microbial biomass (Aoyama and Nozawa 1993, Gallardo and Schlesinger 

1995, De Boer and Kowalchuk 2001, Hanan et al. 2016b). In addition to changing how N cycles 

internally, fires can deposit N rich ash and char on soil surfaces, while simultaneously 

volatilizing, oxidizing, and transporting N out of a system (DeLuca et al. 2006, Hanan et al. 

2016b). Because of varying inputs, outputs, and internal cycling the magnitude of N fluxes can 
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vary with changes in burn severity (González-Pérez et al. 2004, Knicker 2007, Knelman et al. 

2015, Whitman et al. 2019). However, it is extremely challenging to directly link or model 

relationships between burn severity and belowground N cycling because wildfires are complex 

and rarely provide an opportunity to compare homologous burned and unburned areas.  

  Despite the importance of quantifying fire induced transformations for understanding 

how they affect postfire N dynamics, few studies on wildfires have true prefire samples and 

instead rely on space-for-time substitutions, which increase uncertainty in a variety of ways. For 

one, soil properties can vary at fine spatial scales (e.g., less than 30 m; (Campbell 1978, Ste-

Marie and Paré 1999, Morgan et al. 2014). Therefore, temporal differences in N cycling that are 

gleaned from chronosequence measurements (e.g., recently burned, young, and mature stands) 

can be confounded with spatial differences among stands. The problem is highlighted by studies 

that have found site heterogeneity has a strong effect on soil processes postfire, sometime even 

stronger than the fire itself (Santos et al. 2019, Kranz and Whitman 2019). Other studies rely on 

opportunistic prefire samples, which were initially intended for another use before a study area 

unexpectedly burned (e.g., Murphy et al. 2006b). However, in many cases, these samples may 

have been collected weeks, months, or even years before the fire, which can lead to confounding 

between fire effects and the effects of other environmental drivers such as weather and 

hydrology, which can change over that time. 

In addition to the difficulties with reliable prefire sampling, sampling immediately after 

wildfire is challenging because of safety constraints and access limitations. As a result, many 

studies rely on longer postfire time intervals to explore soil biogeochemical changes. The first 

postfire sampling may not occur until weeks or months after fire, even in the case of prescribed 

burns (e.g., Stephens et al. 2004, Weber et al. 2014, Kranz and Whitman 2019). Ephemeral 

changes that occur immediately after fire can be missed if there is a delay in post-fire sampling. 

However, these ephemeral changes may still influence ecosystem N budgets and postfire 
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recovery trajectories, particularly in low severity burns, which may have compounding effects as 

fire frequency is increasing in many ecosystems globally (Pellegrini et al. 2021). 

This case study uses a unique sampling approach to circumvent many of the challenges 

and uncertainties associated with space-for-time substitutions and long time-lags between pre- 

and postfire sampling. We studied the Walker Fire, which burned in Plumas National Forest, CA 

in 2019, by sampling within three days before and after the fire, as well as one and a half months, 

six months, and nine months after fire. We sampled sites that did not burn in the Walker Fire 

(hereafter referred to as control sites), and sites that burned at low, high, and extreme severity. 

We measured soil characteristics including pH, microbial biomass, total C:N ratios, fractional 

water content, NH4
+, NO3

-, and net mineralization and nitrification rates to address two questions: 

(1) how does N cycling change with burn severity in the first year following this fire? And (2) 

does this sampling design provide unique data to advance methodology for future research, or are 

long-term studies sufficient? 

 

2. Methods 

Traditional fire studies frequently use space-for-time substitutions at one or multiple fires to 

estimate fire effects over time. In contrast, our study uses repeated sampling through time from 

before and after one fire in both areas that did and did not burn in this fire (Fig. 1). 

2.1. Site and Fire Description 

The northern Sierra Nevada experiences a Mediterranean climate and sees more than half of its 

annual precipitation in January, February, and March when much of it falls as snow (Wagtendonk 

et al. 2018). Summer precipitation, when it occurs, often comes as afternoon thunderstorms. 

Average summer high temperatures are approximately 25 °C and winter high temperatures are 

approximately -5 °C. The portion of Plumas National Forest included in this study is a Pinus 

ponderosa dominated ecosystem with some Calocedrus decurrens and occasionally other lower 
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Figure 1. Conceptual diagram comparing A. space for time study designs frequently used to 

study fire effects and B. the novel study design with repeated sampling at high temporal 

resolution on one fire used in this research. 

 

montane conifers such as Pinus lambertiana (Wagtendonk et al. 2018). Understory vegetation is 

typically grass and forb dominated with few shrubs. Annual precipitation is approximately 125 

cm. The soils are either sandy, mixed, frigid Entic Xerumbrepts (for plots 2 and 3 described 

below), mixed, frigid Dystric Xeropsamments (for plots 4, 5, and 8), or clayey, smectitic, frigid, 

shallow Typic Argixerolls (for plots 7 and 9; NRCS and UC Davis 2020). Elevations of sampling 

locations in this study range from 1650 m to 1700 m above sea level. The local topography at 

sampling locations is ridges divided by valleys often containing small streams. Site aspect varies 

and slope ranges from <5° to 17°. 

The Walker Fire burned in Plumas National Forest, California in September 2019. It 

burned approximately 55,000 acres over the course of 12 days, September 4 - 15 (Fig. 2; 

Dickinson et al. 2019). The fire was actively fought but continued to spread until the morning of 
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September 16th when there were heavy rains. Fuels, topography, as well as recent fire and 

management history varied across the area burned. Details can be found in Dickinson et al. 2019. 

 
Figure 2. A map showing the plot locations and fire perimeter in the vicinity of Murdoch 

Crossing Spring. Coordinates for the southwest corner of each plot are given in supplementary 

Table S1. 

 

2.2 Sampling Design 

While the fire was active, the US Forest Service Fire Behavior Assessment Team (FBAT) 

sampled eight plots prior to fire arrival at those sites. The plot size, 30 m by 30 m, was 

established for vegetation and fuel surveys in a complimentary study (Greenberg, unpublished). 

The plots were selected by FBAT members working with the incident command team based on 

ease of access and a high likelihood of burning within a few days. Plots 4, 5, and 8 burned before 

rain and burnout operations establishing containment ended active spread (Figure 1; Dickinson et 

al. 2019). Plots 4 and 5 burned in a surface fire while plot 8 burned in an intense surface fire with 
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isolated torching. Plot 5 was burned incompletely as rain started to fall. Plots 1, 2, 3, 6, and 7 did 

not burn (Fig. 2). Plots 1 and 6 were not resampled so they have been excluded from this analysis. 

For the sake of continuity with the FBAT datasets and report (Dickinson et al. 2019), we did not 

renumber the plots after removing plots 1 and 6. 

We visually assessed burn severity at the plot level based on changes to aboveground 

vegetation and the forest floor layer of soil. Severity categories were modified slightly from 

(Turner et al. 2007, Weber et al. 2014) such that complete tree mortality and forest floor 

combustion was considered high severity while little to no charring on tree boles and incomplete 

forest floor combustion was considered low severity (Fig. 3). Moderate severity was anything in 

between those two extremes. Plots 4 and 5 burned at low severity, no plots burned at moderate 

severity, and plot 8 burned at high severity. Plots 2, 3, and 7 did not burn and will be referred to 

as control locations. 

An additional plot (plot 9) was added in the spring following the fire to have more robust 

sampling in the high severity category. Plot 9 was set up to be consistent with the size, relative 

sampling locations, and orientations of the other plots. However, analysis of these samples and 

continued observation of these sampling locations indicated that the sampling locations in plot 9 

were too dissimilar from the high severity locations in plot 8 to reasonably combine the data. 

They are kept separate in all analyses. Tree mortality in plot 8 was 100% and resulted in postfire 

needle fall from the trees that did not experience foliage consumption (Fig. 3). Around Plot 8, 

some trees survived through the study period. Plot 9 had total tree mortality but no postfire needle 

fall because the canopy needles were entirely consumed in the fire (Fig. 3). While both meet the 

definition set a priori for high severity, for the sake of clarity, the plot 8 sampling locations are 

called high severity and the plot 9 sampling locations are called extreme severity due to the crown 

foliage combustion. These two categories are roughly equivalent to severe surface fire and crown 

fire as described in Turner et al. 2007.  
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Soil samples were collected in the northeast, southeast, and southwest corners of each 

plot except for one of the unburned plots which was always sampled in the center of the plot 

instead of the southeast corner. The precise sampling locations were recorded so that each time a 

location was re-sampled, the sample was within 1 m of the original, prefire sample but did not 

overlap with any previous sampling. Plot level data on land-use history, fuel loading, and stand 

assessments can be found in supplementary tables S2-4. 

We chose to focus on mineral soils for these analyses because forest floor consumption 

was inconsistent, ranging from no combustion in the control locations to almost completely 

consumed in the high severity sampling locations (which had high forest floor material loadings 

prefire). The extreme severity sampling locations had no intact forest floor when they were 

sampled at six and nine months postfire, although there was some ash and char in places. At each 

sampling location, fifteen 3.5 cm diameter by 5 cm deep mineral soil cores were collected from 

within a 30 cm diameter ring. Soil samples were brought back to the laboratory for analysis. 

   
Figure 3. From left to right: a low severity, high severity, and extreme severity sampling 

location. All three photos were taken in June 2020, nine months after the fire.  

 

 

2.2.1 Field sampling timeline 

Prefire and immediate postfire samples were collected over the course of one week. All 

prefire sampling, in locations that did and did not burn, occurred over the course of four days and 
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for the locations that burned in this fire, no more than four days prior to fire arrival. Immediately 

postfire samples were collected within three days of the sampling location burning. Samples were 

then collected at one and a half months, six months, and nine months postfire at the burned and 

unburned locations. Samples were kept cool and brough back to the laboratory for immediate 

processing and analysis. 

Table 1. Plots and number of sampling locations per burn severity category and at each sampling 

event. The sampling timeline covers immediately prefire through nine months after the fire.  

 

 

 

 

 

 

 

 

 
 

Figure 4. The monthly precipitation and mean maximum and minimum air temperatures from the 

Coyote, CA Remote Access Weather Station (“RAWS USA Climate Archive” 2020). The 

timeline covers the Walker Fire (Sep. 2019) and the subsequent year. * indicates months when 

samples were collected. 
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Min. temperature
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category 

Plots Immediately 

prefire 

Immediately 

postfire 

1.5 mo. 

postfire 

6 mo. 

postfire 

9 mo. 

postfire 

Control 2, 3, 7 9 0 9 9 9 

Low Severity 4, 5 6 6 6 6 6 

High Severity 8 3 3 3 3 3 

Extreme 

Severity  

9 0 0 0 3 3 

* * * * 
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Table 2. Sampling events for each soil characteristic. “X” indicates the soil characteristic was measured at the time point. C – 

control, LS – low severity locations, HS – high severity locations, ES – extreme severity locations.  

  Prefire Immediate Postfire 1.5 mo. Postfire 6 mo. Postfire 9 mo. Postfire 

  C LS HS ES C LS HS ES C LS HS ES C LS HS ES C LS HS ES 

Fractional Water Content X X X 

  

X X 

 

X X X 

 

X X X X X X X X 

pH X X X   X X  X X X  X X X X X X X X 

Microbial Biomass X X X 

  

X X 

 

X X X 

 

X X X X X X X X 

C:N ratio X X X 

  

X X 

  

X X 

    

X 

   

X 

Available NH4
+ X X X 

  

X X 

 

X X X 

 

X X X X X X X X 

Available NO3
- X X X 

  

X X 

 

X X X 

 

X X X X X X X X 

Mineralization, Field Moist 

        

X X X 

 

X X X X X X X X 

Mineralization, Wetted Wk 1 

        

X X X 

 

X X X X X X X X 

Mineralization, Wetted Wk 3 

        

X X X 

 

X X X X X X X X 

Nitrification, Field Moist 

        

X X X 

 

X X X X X X X X 

Nitrification, Wetted Wk 1 

        

X X X 

 

X X X X X X X X 

Nitrification, Wetted Wk 3 

        

X X X 

 

X X X X X X X X 
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2.3. Lab Analysis 

In the laboratory, the mineral soils were run through a 4.7 mm sieve. The soil cores were 

homogenized by sampling location so that each subsample used for laboratory analysis would be 

equivalent.      

We determined water-holding capacity and fractional water content by weighing 10 g 

field moist subsamples, then saturating them with water. We dried them at 58 °C for 48 hours. 

Water-holding capacity was calculated by subtracting the dry soil weight from the saturated 

weight then dividing by the dry weight. Fractional water content was determined by subtracting 

dry weight from field wet weight then dividing by field wet weight. Soil pH was measured by 

adding deionized water to 10 g field moist soil subsamples to create a 1:1 ratio slurry. We 

recorded pH using a standard electrode.  

Microbial biomass was estimated using substrate induced respiration (SIR) in a method 

adapted from West and Sparling 1986. We used a 3 g glucose to 250 ml deionized water solution 

and added 1.667 mL of the glucose solution per gram dry weight to the soil subsamples. The CO2 

levels were measured immediately after the glucose was added and again after a four-hour 

incubation. We measured the CO2 concentration in the headspace of the sealed jars by using a 

glass syringe to extract air samples through the rubber septa in the jar lids and then fed those 

samples through a LiCOR infrared gas analyzer. The change in CO2 concentration over the four 

hours was converted to µg carbon per gram of dry soil per hour. Microbial respiration is a reliable 

index that acts as a proxy for direct microbial biomass measurements (West and Sparling 1986, 

Beare et al. 1990, Bailey et al. 2002). 

Total carbon (C) to N ratios were determined with an elemental analyzer using 0.015 g of 

ground, homogenized soil. The ratios were measured prefire, immediately postfire, and one and a 

half months postfire for the low severity and high severity samples. For the extreme severity 

sampling locations, total C:N ratios were measured at six and nine months postfire because they 
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were not sampled at the earlier time points. Total C:N in the control samples was only measured 

prefire because C:N ratios typically change on the scale of decades, not months, without a large 

disturbance (e.g., Schipper and Sparling 2011, Pellegrini et al. 2018).  

In the lab, we incubated sets of soil subsamples, 10 g at field moist weight, for each 

sampling location. The field-moist incubation was one week long with no added water to 

approximate field moisture conditions. The second and third incubations, 1-week wetted and 3-

week wetted, were incubated at 40 percent water holding capacity for one and three weeks, 

respectively. When field moisture was above 40 percent water holding capacity, no water was 

added to the wetted incubations and the soils were incubated at their field moisture. No 

incubations were conducted for the immediate pre- or postfire samples.  

The field-moist incubations provide rates of net mineralization and nitrification at field 

moisture conditions. The rate from 1-week long wetted incubations provides clues about the soil 

microbial community composition by removing any water or hydrologic connectivity limitation. 

The rate for the 3-week long wetted incubations, compared with the 1-week wetted incubations, 

can provide insights into the population dynamics and resource availability by showing how a 

prolonged release from water related limitations can affect the NH4
+ and NO3

- cycling.  

We determined available NH4
+ and NO3

- concentrations for all incubated and unincubated 

(time = 0) samples by extracting the soil samples in 2 M potassium chloride (KCl; 40 mL) for 2 

hours then vacuum filtering through a glass fiber filter (Pall Gelmann Type A/E 1.0 lm). The 

extractants were measured using UV absorbance at 650 nm for NH4
+ and 540 nm for NO3

- with a 

plate reader to determine the amount of NH4
+ and NO3

- present. The NH4
+ and NO3

- values were 

adjusted to a µg per g dry soil basis for comparison across samples. Daily net N mineralization 

rates were calculated as the amount of inorganic N (NH4
+ and NO3

-) at the end of a given week 

minus the amount of inorganic N measured at the end of the week prior, divided by 7. Net 

nitrification rates were determined analogously but using only NO3
- concentrations in the 
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calculation. For week one, the time zero extraction, immediately after collection in the field, was 

the starting value. 

2.4. Statistical Approach 

We used each sampling location as a replicate within the burn severity categories and we 

treated plot as a random effect, because (1) plots were randomly located within each severity 

level, (2) soil characteristics can vary significantly at distances smaller than the distance between 

our sampling locations (i.e., 30 m; Campbell 1978, Hudak et al. 2007, Morgan et al. 2014), and 

(3) plot had no significant effect on any of the soil characteristics we measured before the fire 

(Table 3). Due to the low sample size, we would not extrapolate these results to other locations, 

but this approach enables us to assess fire induced changes across burn severity categories on the 

Walker Fire and the utility of immediate sampling events before and after wildfires.  

To examine the extent to which soil characteristics varied among locations that 

experienced different burn severities, we used linear mixed effects models. For each soil 

characteristic, we compared (1) between burn severity categories within a sampling event, (2) 

between sampling events within a burn severity category, and (3) to assessed interactions between 

burn severity and sampling events. We considered soil characteristic (i.e., pH, fractional water 

content, etc.) to be the response variable, while burn severity and sampling time were fixed 

effects and plot was a random effect. Extreme severity was not included in the third analysis due 

to the short sampling timeline at those sampling locations and the immediately postfire sampling 

event was excluded because the control sampling locations were not sampled at that time. We 

used an alpha of 0.1 to determine statistical significance in all analyses to offset the risk of type II 

errors due to low sample size.  

All statistics were run in in R version 4.0.3 (R Core Team 2020), using the following 

packages: ggplot2 (Wickham 2016), nlme (Pinheiro et al. 2020), car (Fox and Weisberg 2019), 

lme4 (Bates et al. 2015 p. 4), RLRsim (Scheipl et al. 2008), and multcomp (Hothorn et al. 2008). 
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Due to the relatively small sample sizes, normality was assessed visually using histograms. Cases 

where residuals were not normal are marked in the data tables. 

 

3. Results 

3.1 Plot level differences 

Soil characteristics did not vary significantly with plot before the fire (Table 3). Following fire, 

plot sometimes affected various soil characteristics, but significant effects were not consistent 

through time and were confounded with spatial patterns of the fire within the low severity 

category (Table 3). 

  imm. prefire 

imm. 

postfire 

1.5 mo. 

postfire 

6 mo. 

Postfire 

9 mo. 

Postfire 

  

All 

plots Cont. 

Low 

Sev. 

Low 

Sev. Cont. 

Low 

Sev. Cont. 

Low 

Sev.  Cont. 

Low 

Sev. 

Water 

content 
0.41 0.34 1.00 0.37 0.25 0.19 0.42 1.00 0.09 0.37 

pH 0.42 1.00 1.00 0.24 0.36 0.34 0.02 <0.01 0.10 0.37 

Microbial 

biomass 
0.35 0.02 1.00 1.00 0.28 0.34 0.42 1.00 0.07 0.16 

NH4
+ 0.34 0.42 1.00 0.36 0.02 0.29 0.42 <0.01 0.28 0.07 

NO3
- 0.31 1.00 NA 1.00 1.00 0.14 0.25 0.14 1.00 0.26 

Table 3. P-values for restricted likelihood ratio tests (RLRT) of all prefire samples and the 

control (cont.) and low severity (low sev.) samples at all sampling events. Control locations were 

not sampled immediately postfire. Values less than 0.1 indicate that plot was significant for the 

soil characteristic. Value of 1 indicates that the RLRT statistic was equal to 0 – model fit with the 

null and alternative hypothesis were indistinguishable. NH4
+ and NO3

- refer to the available NH4
+ 

and NO3
- at the time of sample collection. “NA” indicates that all the sample values were 0. 
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3.1 Fractional water content 

 
Figure 5. Fractional water content of field-moist soils from the four burn severity categories over time. The 

x axis is scaled to time. The two tick marks labeled “immediate” are immediately pre- and postfire samples. 

Control (unburned) sites were not sampled immediately postfire. Error bars show standard deviation within 

severity categories. 

 

Sampling event had a significant effect on fractional water content (Table S2). Soil fractional 

water content changed seasonally and with the weather (Fig. 5; Table S9). Immediately postfire, 

low and high severity sampling locations had high fractional water content following the fire-

ending rain. At six months postfire, during the spring thaw, all sampling locations had high soil 

water content. By nine months postfire, all sampling locations had dried (Fig. 5; Table 9). 

 

3.2 pH  

The time (sampling event)- severity interaction had a significant effect on soil pH (Table S2). Soil 

pH increased immediately after the fire in both low and high severity sampling locations (Fig. 6; 

Table S9). In high severity sampling locations, pH increased rapidly until one and a half months 

after the fire while low severity locations leveled off after the immediate postfire sampling event. 
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Extreme severity had the highest pH of all categories at six and nine months after the fire. The 

control sampling locations’ pH changed less than any of the burned sites (Fig. 6; Table S9). 

 
Figure 6. Soil pH values over time from the four burn severity categories. The x as=xis is scaled to time. 

The two tick marks labeled “immediate” are immediately pre- and postfire samples. Control (unburned) 

sites were not sampled immediately postfire. Error bars show standard deviation within severity categories. 

 

3.3 Microbial biomass respiration  

The time-severity interaction was significant for microbial biomass (Table S2). The control 

locations had minimal changes in microbial biomass after an initial decrease at one and half 

months after the fire. Microbial biomass had a non-monotonic response in the burned locations: 

immediately following fire, microbial biomass decreased in low severity sampling locations while 

it increased in high severity locations (Fig. 7; Table S9). It continued to increase in high severity 

locations up to one and a half months postfire then decreased through nine months postfire. After 

the initial decrease, microbial biomass in low severity locations increased slightly at one and half 

months postfire and then gradually decreased. At six and nine months after fire, extreme severity 

locations had the highest microbial biomass of any severity category (Fig. 7; Table S9). 
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 Figure 7. Microbial respiration (µg C per g dry soil per hour), an index for microbial biomass, for the burn 

severity categories. CO2 was measured before and after a four-hour incubation with glucose to determine 

the respiration rate. The x axis is scaled to time. The two tick marks labeled “immediate” are immediately 

pre- and postfire samples. Control sites were not sampled immediately postfire. Error bars show standard 

deviation within category. 
 

3.4 Total C:N ratio 

Before fire, the control, low severity, and high severity sampling locations all had similar C:N 

ratios (Table 4). The high severity sampling locations had negligible change after the fire. The 

low severity sampling locations, on the other hand, decreased immediately after and then 

increased substantially at one and a half months after fire to more than double the prefire value. 

However, the variability was high. The C:N ratio had minimal change over that time and the 

values were lower than the other three severity categories (Table 4). 

Table 4. Mean total C:N ratios and standard error for the four burn severity categories over time.  

 

Immediately 

Prefire 

Immediately 

Postfire 1.5 mo. Postfire 6 mo. Postfire 9 mo. Postfire 

Severity Mean SE Mean SE Mean SE Mean SE Mean SE 

Control 31.36 0.62 - - - - - - - - 

Low Sev. 40.79 1.03 26.93 0.88 82.89 11.13 - - - - 

High Sev. 38.06 2.51 38.29 2.53 35.92 2.66 - - - - 
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Extreme Sev. - - - - - - 23.91 0.52 22.53 0.18 

3.5 Available NH4
+  

The time-severity interaction was significant for available NH4
+ (Table S2). The available NH4

+ 

concentrations were nearly identical among sampling locations before the fire (Fig. 8; Table S9). 

Immediately after fire, high severity sampling locations had a greater than 40-fold increase, but 

they dropped by more than 15 µg per g of dry soil from that peak by one and half months after 

fire and declined only slightly after that. The control and low severity sampling locations had 

lower values than high severity at all sampling events after the fire. Although the low severity 

locations had an increase immediately after fire, available NH4
+ concentrations differed only 

slightly from the control locations at all subsequent sampling events. Extreme severity had the 

highest values by a large margin at both six and nine months after fire, although it decreased from 

six to nine months after fire (Fig. 8; Table S9).  

 
Figure 8. Amount of NH4

+ per gram of dry soil for the four burn severity categories measured immediately 

after sample collection. The x axis is scaled to time. The two tick marks labeled “immediate” are 

immediately pre- and postfire samples. Control (unburned) sites were not sampled immediately postfire. 

Error bars show standard deviation within severity categories. 
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3.6 Available NO3
-  

Time, severity, and the time-severity interaction did not significantly affect available NO3
- (Table 

S2). Before the fire, only the control locations had measurable NO3
-, and even those 

concentrations were low (Fig. 9; Table S9). The control locations were only marginally above 0 

at any sampling event. After the fire, low severity maintained the highest available NO3
- 

concentrations except for extreme severity at nine months postfire, which had a concentration 

approximately 30 times higher than any other value. High severity sampling locations were nearly 

identical to the control locations except at six months after the fire when they had slightly higher 

available NO3
- concentrations (Fig. 9; Table S9).  

 

 
Figure 9. Amount of NO3

- per g dry soil for the four burn severity categories measured immediately after 

sample collection. The inset plot shows the data with extreme severity at nine months postfire, the larger 

plot shows closer view of the data without that point. The x axis is scaled to time. The two tick marks 

labeled “immediate” are immediately pre- and postfire samples. Control (unburned) sites were not sampled 

immediately postfire. Error bars show standard deviation within severity categories. 
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3.7 Daily net mineralization rates  

The time-severity interaction significantly influenced rates of net mineralization in the field-moist 

incubations (Table S2). The field-moist incubations for the control sampling locations had small, 

negative daily net mineralization rates but they did not substantially differ from zero at any 

sampling event (Fig. 10; Table S10). The low severity sampling were equivalent to the control 

locations except at one and half months when the low severity locations had rates slightly lower 

than control. The high severity locations, on the other hand, had substantially lower net 

mineralization rates in the field-moist incubations compared to the control and low severity 

sampling locations although the difference decrease over time as the high severity location rates 

slowly increased. Extreme severity sampling locations were the only locations to have positive 

net mineralization rates in the field-moist incubations (Fig. 10; Table S10).  

 The time-severity interaction significantly influenced the net mineralization rates in the 

1-week wetted incubations (Table S2). Mineralization rates in the 1-week wetted incubations for 

the control locations did not change substantially over time (Fig. 10, Table S10). At one and a 

half months postfire, high severity sampling locations had the lowest daily net mineralization rate 

but increased at six months postfire to be roughly equivalent to the control locations and 

continued to increase through nine months postfire. Low severity soil samples had higher 1- week 

wetted net mineralization rates than the control locations until nine months postfire when it 

decreased to around the same rate as the control locations. Extreme severity sampling locations 

had the highest net mineralization rate for the 1-week wetted incubations at six months postfire 

but dropped precipitously at nine months postfire to the lowest rate, second only to high severity 

at one and a half months after the fire (Fig. 10; Table S10). However, rates were extremely 

variable in soils that burned at extreme severity, which makes robust comparisons challenging. 

For the 1-week wetted incubations, the daily net mineralization rates were generally higher than 

the field-moist incubation rates (Fig. 10; Table S10). 
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 Severity significantly influenced the net mineralization rates for the 3-week wetted 

incubations (Table S2). The control sampling locations had daily net mineralization rates near 

zero at all points (Fig. 10, Table S10). At all three sampling events, the low severity locations had 

rates more than double the control rates. The high severity locations, on the other hand, had 

substantial negative net mineralization rates at all three sampling events with the lowest rate at 

one and a half months postfire and highest at nine months. The extreme severity sampling 

locations also had negative net mineralization at one and a half months but by nine months 

postfire, the extreme severity sampling locations had the highest net mineralization rate for the 3-

week wetted incubations. However, net mineralization rates were extremely variable in soils that 

burned at extreme severity, which makes robust comparison challenging (Fig. 10; Table S10). 

 

 
Figure 10. Mean net mineralization (µg NH4

+ plus NO3
-) per gram dry soil per day for the weeklong field 

moist incubations, the 1-week 40% water holding capacity incubations (wetted week one), and the three-
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week 40% water holding capacity incubation (wetted week three) for the four burn severity categories. The 

error bars show standard deviation within the burn severity category. A. Control sampling locations, B. 

Low severity sampling locations, C. High severity sampling locations, and D. Extreme severity sampling 

locations.  

 

3.8 Daily net nitrification rates 

The time-severity interaction significantly influenced the field-moist incubation net nitrification 

rates (Table S2). The control sampling locations had no daily net nitrification for the field-moist 

incubations at one and a half and nine months after fire (Fig. 11; Table S10). At six months, the 

net nitrification rate was just slightly below zero. The low severity sampling locations had 

positive rates at one and half and six months postfire, with the highest rate at six months, and a 

slight negative rate at nine months. The high severity sampling locations had rates close to the 

control locations except at nine months postfire, when the high severity locations had a 

marginally higher net nitrification rate. The sampling locations that burned at extreme severity 

had the highest net nitrification rate for the field-moist incubations at six months postfire and the 

lowest rate at nine months after the fire (Fig. 11; Table S10).  

 Time, severity, and the time-severity interaction all were not significant for the 1-week 

wetted incubation net nitrification rates (Table S2). The control sampling locations had the lowest 

net nitrification rates for the 1-week wetted incubations: the rates were only slightly higher than 

zero at nine months after fire (Fig. 11; Table S10). The low severity sampling locations had net 

nitrification rates roughly five times higher than the control locations at all sampling events for 

the 1-week wetted incubations. High severity, by contrast, had net nitrification rates slightly 

lower than the control locations. The extreme severity sampling locations, at six months postfire, 

had the highest net nitrification rate, however the variability was high. At nine months postfire, 

the extreme severity sampling locations decrease net nitrification rates to nearly identical to the 

control location rates (Fig. 11; Table S10).  
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 The time-severity interaction was significant for nitrification rates in the 3-week wetted 

incubation (Table S2). The control sampling locations had low net nitrification rates at one and a 

half and nine months postfire but had no net nitrification at six months (Fig. 11; Table S10). Low 

severity sampling locations had higher net nitrification rates than the control sampling locations 

at all three points. Both the control locations and low severity locations had their highest net 

nitrification rates at nine months after fire. The high severity sampling locations had lower rates 

for the 3-week wetted incubations than both the control and low severity sampling locations. The 

extreme severity sampling locations had the highest net nitrification rate at six months after the 

fire but the lowest rate at nine months postfire when the rate was negative (Fig. 11; Table S10).  

 
Figure 11. Mean net nitrification (µg NO3

-) per gram of dry soil per day for the weeklong field-moist 

incubations, the weeklong 40% water holding capacity incubations (wetted week one), and the three-week 

long 40% water holding capacity incubation (wetted week three) for the four burn severity categories. The 

error bars show standard deviation. A. Control sampling locations, B. Low severity sampling locations, C. 

High severity sampling locations, and D. Extreme severity sampling locations. 
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4. Discussion 

Our novel study design enabled us to examine the immediate and ongoing effects of wildfire on N 

cycling in a manner that has previously not been feasible. We found that soil water content and 

burn severity synergistically affect N cycling in this system. Most of the soil characteristics we 

studied were significantly affected by the burn severity-time interaction (Table S2). Several 

seasonal variables—such as temperature and plant phenology—can also affect soil properties 

(e.g., MacDonald et al. 1995, Sierra 1997, Ren et al. 2020). Here, we found that seasonal changes 

in soil water content play a critical role in postfire N cycling across a range of burn severities 

after fire. A key strength of this study is that we were able to discern the interactions of fire 

effects and seasonal effects by comparing burned and unburned sites with pre- and postfire 

samples collected immediately postfire and through different seasons. We found that N 

mineralization is enhanced during spring snowmelt in sampling locations that burned and the 

magnitude of those increases as well as the extent to which mineral N is nitrified is a function of 

burn severity.  

Net Mineralization 

We found net immobilization (negative net mineralization) of N in the control, low severity, and 

high severity sampling locations incubated at field-moist conditions at one and a half, six, and 

nine months after the fire (Fig. 10). The consistency between the areas that burned, and the 

control locations suggests that the limitation on net mineralization is not substrate because NH4
+ 

is present after the fire in the burned sites (Fig. 10).  

The exception to this general pattern is the extreme severity sampling locations which 

had positive net mineralization rates at field-moist conditions for both six and nine months after 

the fire (Fig. 10). The extreme severity location results imply that, at these sites, there is enough 

N rich substrate readily available to sustain positive net mineralization for a prolonged period 

after the fire. Available NH4
+ concentrations support this idea. The NH4

+ concentrations varied 
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predictably: extreme severity locations had the highest concentrations followed by high severity 

locations and then the low severity locations, which were only marginally above the control 

locations (Fig. 10). N oxidation, volatilization of organic matter, and the amounts of readily 

available N deposited with ash and char can vary in response to the fire type (i.e., smoldering 

versus crown-fire) as well as the movement of ash by wind and water postfire (Grogan et al. 

2000, Neary et al. 2005). So, while the extreme severity sampling locations were not the only 

sites to receive ash and char from the fire, it is possible that they received more N rich substrate 

than the other sampling locations, which is what supported their increased net mineralization rates 

for months after the fire.  

Net Nitrification 

The net nitrification rates in the field-moist incubations followed the same pattern 

as net mineralization but were slightly higher (Fig. 8, 9), revealing that, following fire in 

these sites, NH4
+ is simultaneously being immobilized in some microsites, while being 

nitrified in others. This process can occur in locations where N-cycling is relatively tight 

(Schimel and Bennett 2004).  

The extreme severity sampling locations at six months postfire followed the same 

pattern as other locations, but the magnitude was larger. At nine months postfire, NO3
- 

concentrations were 30 times higher in sampling locations that burned at extreme severity 

than in any other burn severity at any sampling event (Fig. 9), however, we did not 

observe increases in net nitrification for this sampling event in our laboratory incubations 

(Fig. 11). While this appears paradoxical, a potential explanation comes from the plant 

community. Although not quantified, we anecdotally observed that the extreme severity 

sampling locations had far more forbs at nine months postfire that any other sampling 

location or sampling time (see Fig. 3 for photographs). One of the common forbs was 
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Lupinus spp., which are known to be symbiotic N-fixers and can increase mineral N 

concentrations in soil (Goergen and Chambers 2009, Che et al. 2018). Other forbs 

present, such as Achillea millefolium (yarrow), may also contribute mineral N to the soils 

(Haahtela et al. 1981). Therefore, there may have been substantial nitrification occurring 

in the soils at the extreme severity sampling locations that our laboratory analyses would 

not have measured because it was happening in close proximity to live plant roots, which 

were not present in the soil incubations. This suggestion is further supported by other 

studies that have found herbaceous plant cover postfire increases soil NO3
- concentration 

(Driscoll et al. 1999).  

Microbial biomass controls on N cycling 

Despite net immobilization in the field-moist incubations, the sampling locations that burned at 

high severity had consistently higher background NH4
+ concentrations—five times the 

concentration of the control and low severity sampling locations (Fig. 8). Microbial biomass was 

likely the cause of this unexpected juxtaposition. The high severity sampling locations had higher 

microbial biomass than the control and low severity locations at one and half and six months after 

the fire (Fig. 7). The higher microbial biomass would have increased the demand for N and the 

microbial immobilization of N would reduce net mineralization rates even if NH4
+ was still being 

produced. Although we did not measure gross mineralization, these results suggest that there may 

have been accelerated N cycling occurring in the high severity sampling locations, with 

simultaneously elevated rates of net immobilization. This is consistent with tight N cycling and 

simultaneous mineralization-immobilization occurring in N-rich and N-poor microsites, 

respectively. Our results support other work that has also found there are strong microbial 

controls on N availability in fire dominated coniferous forests (Vitousek and Melillo 1979, Turner 

et al. 2007). 
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 The extreme severity sampling locations had more microbial biomass than the high 

severity locations and higher net mineralization rates (Fig. 7, 8). This apparent contradiction, 

given the microbially dominated mechanism proposed for the high severity locations, can be 

resolved by looking at available NH4
+ concentrations which were substantially higher in the 

extreme severity sampling locations compared to high severity. This difference suggests that 

there is sufficient N available in the extreme severity locations to sustain both a large microbial 

biomass community and high net mineralization rates. The source of that additional N in those 

locations may be from a combination of ash and char deposition and the N fixing plant 

community discussed above.  

Soil pH  

Soil pH frequently increases as a result of fire (Certini 2005, Alcañiz et al. 2018), which is 

important because no single soil characteristic is as influential as soil pH (Thomas 1996, Lauber 

et al. 2009, Rousk et al. 2010). In our study, soil pH in the low and high severity sampling 

locations both increased by approximately the same amount immediately postfire—about half a 

pH unit (Fig. 6). This increase could be due to organic acid consumption during the fire and the 

deposition of base-forming cations (Certini 2005). We found the pH increases in soils that burned 

at low severity were short-lived (Fig. 6) because soil can act as a strong pH buffer and base 

forming cations like potassium (K) and sodium (Na) compounds formed in the fire may not 

persist for long (Certini 2005). Unlike our results, not all studies have found a pH change in 

mineral soil after low severity fires (e.g., Murphy et al. 2006a, Knicker 2007, Alcañiz et al. 2018). 

However, these studies sampled soils weeks to months after fire, which means they could have 

missed pH changes that may have occurred over shorter timescales. In our sampling locations that 

burned at high severity on the other hand, pH remained high for much longer (Fig. 6), perhaps 

because fire deposited more ash and char, which contain base-rich cations. Also, because the high 

severity fire consumed more forest floor and led to greater plant mortality, it may have taken 
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longer for organic acids to reaccumulate in those locations. Increases in pH were further 

intensified in soils that burned at extreme severity (Fig. 6) likely due to similar mechanisms. 

Similarly, Hanan et al. 2016a found prolonged pH increases in chaparral ecosystems that burn 

under a stand-replacing fire regime and many studies corroborate increased magnitude of pH 

change with increasing burn severity (e.g., Certini 2005, Alcañiz et al. 2018).  

These differences in pH are critical for understanding N cycling because pH regulates the 

conversion of ammonium to ammonia: a one unit increase in pH leads to a ten-fold increase in the 

ammonia (NH3-) to ammonium (NH4
+) ratio (De Boer and Kowalchuk 2001, Hanan et al. 2016b). 

Ammonia is the preferred substrate for nitrifying bacteria (Watson et al. 1989, Prosser 1990). 

Therefore, we would expect to see higher net nitrification rates when soil pH is higher, even if the 

NH4
+ availability is the same. Although N cycling was tight in all locations except those that 

burned at extreme severity, we did observe this pattern at six months after the fire. Additionally, 

the sampling locations that burned at extreme severity had the highest pH and their net 

nitrification rates were significantly higher than the other severity categories (Fig. 6, 11). This 

suggests the microbial controls discussed above may be strong enough to outstrip pH-driven 

increases in net nitrification.  

Moisture controls on N cycling 

The wetted incubations remove water and hydrologic connectivity limitations on mineralization 

and nitrification. They allow us to infer certain aspects of N cycling that could occur with the soil 

microbial communities present in the field following rain and snow melt events. The control 

locations demonstrate almost no response to increased water availability. This was surprising 

because dry soils are known to have lower nitrification rates (Booth et al. 2005). These findings 

imply extremely tight N cycling and/or N limitation in mature stands in this system. Similar 

patterns have also been observed in other conifer forests (Vitousek et al. 1979, Turner et al. 

2007). 
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 Following fire, N cycling was not as tight as in unburned locations. While the field-moist 

net mineralization rates did not differ substantially between the low, high, and extreme severity 

sampling locations across time, the addition of water caused different reactions. The low severity 

sampling locations responded with increased net mineralization in the 1-week long wetted 

incubations for each sampling time up to six months after the fire and increased net nitrification 

up to nine months after the fire. However, at nine months, the magnitude of the increases 

appeared to decrease compared to six months after the fire. These findings align with previous 

work that show fire effects on mineralization decrease with time postfire (Turner et al. 2007, 

Sharma et al. 2017) but that effects on NO3
- persist longer than effects on NH4

+ (Wan et al. 2001).  

Because the high severity sampling locations were more transformed by the fire, it is not 

surprising that the changes to net mineralization lasted longer at these locations. In the high 

severity locations, the addition of water increased net mineralization. However, in the 3-week 

long wetted incubations, net mineralization rates dropped below zero. This may have been due to 

immobilization by the microbial biomass, which likely increased over the course of the 3-week 

wetted incubations. The growth of microbial biomass, and subsequent N immobilization, is most 

apparent in the samples from sites that burned at high severity perhaps because those sampling 

locations were already primed with relatively high microbial biomass (Fig. 7).  

Microbial immobilization is also likely responsible for the surprisingly low net 

nitrification rates observed in the high severity sampling locations: all net nitrification rates were 

within 0.1 µg NO3
- per g dry soil per day for all incubation types at all sampling events, which 

was even lower than nitrification rates in the control locations. If the relatively high heterotrophic 

microbial biomass is immobilizing NH4
+, then there would be very little leftover for the nitrifiers 

to convert to NO3
-, which could explain the low net nitrification. Extreme severity sampling 

locations, which also has high microbial biomass, responded more like the low severity locations 

than high severity locations with increased net nitrification after the addition of water. Here, 
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unlike high severity, it appears there was enough substrate for the nitrifiers to convert some NH4
+ 

to NO3
- despite probable high demand from the rest of the microbial biomass. There also may be 

differences in the microbial community composition due to the different burn severities, which 

could also play a role in how NH4
+ is immobilized postfire (Weber et al. 2014). Further work is 

needed to explore the microbial community composition in these sites, but it offers a path for 

understanding the mechanisms behind these nonmonotonic responses in net mineralization and 

nitrification to the addition of water across a gradient of burn severity.  

 The effects of water addition were not apparent in the areas that did not burn but lasted 

for months in areas that did, and their magnitude increased with increasing burn severity. These 

patterns of low net mineralization and nitrification rates (and in some cases net immobilization) at 

field-moist conditions but higher rates after the addition of water suggest that, following fires in 

this system, N cycling in the soil is driven by occasional periods of increased cycling after rain 

that build up the soil NH4
+ and NO3

- pools followed by periods of reduced cycling when the 

microbes must draw on those pools for their N requirements. This reliance on water further 

corroborates our finding that there is a strong microbial control over N cycling. Additionally, 

these periods of increased N cycling after rain are reminiscent of effects seen in arid systems 

where there are periods of intense microbial activity following wetting events (i.e., the Birch 

effect; Birch 1958, Unger et al. 2010). The Birch effect can help explain how periods of net 

immobilization balance with periods of high net mineralization when soils are moist. Thus, fires 

may play a critical role in soil N cycling in this system by facilitating mineralization and 

nitrification pulses with rain and seasonal soil wetting. Because climate change is increasing fire 

activity and burn severity (Westerling et al. 2006, Mantgem et al. 2013) and altering winter 

snowpack and precipitation (Howat and Tulaczyk 2005, Hatchett et al. 2017), understanding 

these postfire N cycling patterns is critical for predicting forest health and resilience in the Sierra 

Nevada, across western North America, and in other fire-prone forests globally.   
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5. Conclusion 

We found that changes in soil N cycling postfire are not only an effect of burn severity; they are 

also attenuated by soil aridity. Soil water interacts with burn severity to heighten fire effects on N 

cycling. These changes are particularly noteworthy juxtaposed against the control sampling 

locations, which show minimal changes through time for any soil characteristic other than water 

content. While not all soil characteristics could be assessed before the fire, the consistency 

through time in the control sites, along with the minimal prefire differences between any of the 

sampled areas lend additional credence to our findings that fire, both alone and through 

interactions with soil water content, is a major driver of N cycling in this system.  

The importance of rain on N cycling postfire has long been established in the literature 

(Neary et al. 1999, Grogan et al. 2000, Certini 2005). However, in this system, N cycling appears 

to be extremely tight—there is almost no net mineralization or nitrification without recent fire. In 

this scenario, the importance of rain and seasonal snowmelt postfire is heightened because it 

increases N cycling and makes larger pools of available soil N. These finding also support the 

hypothesis that fire has a stronger effect on N cycling than atmospheric deposition and leaching 

in semi-arid systems (Johnson et al. 1998, 2009).  

Our findings highlight the need for further research on biogeochemical cycling using 

immediate pre- and postfire samples, as well as follow up sampling across seasons. There are 

numerous studies that investigate N cycling postfire but most studies focus on year and decadal 

scales postfire, not day to months (e.g., DeLuca and Sala 2006, Turner et al. 2007, 2019). These 

studies have found increases in N pools and cycling up to decades after wildfire. Our study 

extends these findings to include ephemeral and short-term seasonal changes in soil 

biogeochemistry, especially following low severity fires. Quantifying short-term responses is a 

critical step towards projecting how future, compounding fire events or increases in fire size and 

severity will affect ecosystem N budgets. Our results provide insight into how fire can affect 
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short-term and seasonal N cycling. The challenges of interpreting the trends in the extreme 

severity locations, compared to the other sampling locations that were sampled immediately 

before and after the fire, emphasizes the utility of those samples in understanding both short- and 

longer-term trends in soil processes after fire. While the studies that look years-to-decades after 

fire offer valuable information about long-term recovery, this study elucidates short-term 

responses and how low severity burns in particular can still shape biogeochemical cycling of a 

forest system. This knowledge will improve our understanding of how fire and fuel management 

will interact as we face increasing fire activity and more arid conditions across our landscapes 

(Lentile et al. 2007). 
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Supplementary Information  

 

S1. Plot level data: 

Table S1. The coordinates for the southwest corners of each plot. Coordinates use NAD83. 

Plot Latitude Longitude 

2 40.121722   

-120.559139 

3 40.108233   

-120.555500 

4 40.143311 
 

-120.554603 

5 40.143147 
 

-120.557666 

7 40.137983 
 

-120.504950  

8 40.116517 
 

-120.529500  

9 40.132514 
 

-120.501463 

 

Table S2. Site description from the FBAT report for plots 2, 3, 4, 5, 7, and 8 (Dickinson et al. 2019). Additional data added for plot 9. 

Silvicultural and hazardous fuels treatment history was determined from the Forest Service data clearinghouse ((U.S. Forest Service 

2021)). Treatments were performed over areas much larger than FBAT plots and, as such, conditions within plots may not always 

represent average treatment conditions. Wildfire history was determined from perimeters available in the Wildland Fire Decision Support 

System (WFDSS; (U.S. Geological Survey 2019). 

Plot Treatment history Wildfire history Walker Fire 

Slope 

(%) Aspect 

Elev. 

(m) 

2 2008 salvage cut borders 

the plot 

Low severity in 2007 Wheeler 

Fire 

Did not burn 14 S 1656 

3 Plot near a 1982 

sanitation cut, and near a 

2002 precommercial thin 

in the same area 

None recorded Did not burn 8 N 1680 

4 1996 commercial & 

precommercial thin 

Low severity in 2007 Wheeler 

Fire 

Low severity 7 W 1672 

5 1996 commercial & 

precommercial thin 

Low severity in 2007 Wheeler 

Fire 

Low severity 9 W 1736 
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7 1975 cut, 1994 

commercial & 

precommercial thin, 

2003 precommercial thin 

Bore charring consistent with 

burning in 2007 Wheeler Fire but 

outside official perimeter 

Did not burn 3 N 1704 

8 None recorded None recorded High severity 7 NE 1694 

9 2003 precommercial 

thin, planned salvage cut 

2020 

None recorded Extreme severity 17 SW 1704 

 

Table S3. Canopy characteristics from the FBAT report for plots 2, 3, 4, 5, 7, and 8 (Dickinson et al. 2019). Plot 9 was not surveyed by 

FBAT before the fire. Canopy height and cover are estimated directly from plot data. Canopy height is the average across all overstory 

trees in the sample. QMD, tree density, basal area, canopy base height, and canopy bulk density are FVS outputs based on plot data 

Plot 

Overstory 

density (trees ≥ 

6 in DBH/acre) 

Pole density 

(trees < 6 in 

DBH/acre) 

Quadratic 

mean 

diameter (cm) 

Basal area 

(m2/hectare) 

Canopy 

Cover 

(%) 

Canopy 

height 

(m) 

Canopy 

base 

height (m) 

Canopy bulk 

density 

(kg/m2) 

2 242.17 0 40.64 33.06 62 20.73 7.01 0.07 

3 219.93 0 40.64 28.70 31 23.17 9.14 0.05 

4 210.04 0 48.26 36.73 23 23.47 7.32 0.05 

5 486.81 0 35.56 45.69 46 20.12 5.79 0.08 

7 212.51 0 50.8 41.09 31 27.13 12.19 0.04 

8 1025.51 1423.35 22.86 107.44 62 21.64 1.83 0.27 

 

Table S4. Surface fuels and fuel bed depths for plots 2, 3, 4, 5, 7, and 8 from the FBAT report (Dickinson et al. 2019). Plot 9 was not 

surveyed by FBAT before the fire.  

  Mean fuel loading (tons/hectare) 

Fuel 

Bed 

Plot Duff Litter 1-hr 10-hr 100-hr 1000-hr 

Forb & 

grass 

Shrub & 

seedling total 

Depth 

(cm) 

2 15.32 5.77 0.48 1.93 4.27 0.00 <0.01 0.89 19.33 58.85 

3 25.86 8.03 0.38 1.41 1.83 0.68 <0.01 0.12 37.66 21.16 

4 6.28 8.03 0.23 0.35 0 0.00 0.14 0.49 15.32 13.13 

5 2.76 5.52 0.10 1.23 0.93 9.59 0.03 0.36 17.07 24.56 
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7 8.54 5.52 0.05 0.35 0 0.68 <0.01 0.07 14.56 13.54 

8 50.97 5.27 0.23 1.58 0 0.00 <0.01 0.01 58.00 20.32 

 

S2. Detailed Statistical Results 

Table S5. Statistical results for significant factors affecting each soil characteristic. Time refers to the sampling event, severity refers to 

the burn severity category, and interaction refers to the time-severity interaction. The extreme severity samples and the immediate post-

fire sampling event are not considered in this analysis due to a shortened timeline and a lack of immediate post-fire samples in control 

plots, respectively. + indicates the results from linear mixed effects models that had non-normal residuals. 

  category Chi2 df p value 

pH time 5.81 3 0.12 

  severity 4.94 2 0.08 

  interaction 27.83 6 <0.01 

Microbial Biomass time 11.9 3 0.01 

  severity 7.96 2 0.02 

  interaction 18.77 6 <0.01 

Fractional Water time 150.21+ 3+ <0.01+ 

Content severity 0.66+ 2+ 0.72+ 

  interaction 8.81+ 6+ 0.18+ 

Available NH4
+ time 1.63 3 0.65 

  severity 0.37 2 0.83 

  interaction 120.71 6 <0.01 

Available NO3
- time 0.24+ 3+ 0.97+ 

  severity 0.03+ 2+ 0.99+ 

  interaction 7.16+ 6+ 0.31+ 

Net Mineralization time 0.32 2 0.85 

Field-moist severity 28.13 2 <0.01 

incubation interaction 11.27 4 0.02 

Net Mineralization time 0.21 2 0.9 

1-week wetted severity 26.34 2 <0.01 

incubation interaction 50.68 4 <0.01 

Net Mineralization time 1.23 2 0.54 
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3-week wetted  severity 20.22 2 <0.01 

incubation interaction 5.17 4 0.27 

Net Nitrification time 0.15 2 0.93 

Field-moist severity 0.56 2 0.75 

incubation interaction 30.4 4 <0.01 

Net Nitrification time 0.18 2 0.91 

1-week wetted severity 1.11 2 0.57 

incubation interaction 1.91 4 0.75 

Net Nitrification time 1.88 2 0.39 

3-week wetted severity 0.68 2 0.71 

incubation interaction 13.95 4 0.01 

 

Table S6. Statistical results from multiple comparisons of the burn severity category means in the linear mixed effects models for soil 

incubations within a sampling event. + indicates the results from linear mixed effects models that had non-normal residuals 

    1.5 months Postfire 6 months Postfire 9 months Postfire 

Characteristic Comparison z score p value z score p value z score p value 

Mineralization Control/Low -0.44 0.90 0.49 0.96 0.13+ 1.00+ 

Field-moist Control/High -5.42 <0.01 -1.36 0.52 -0.43+ 0.97+ 

 Control/Extreme - - 4.98 <0.01 3.82+ <0.01+ 

  Low/High -4.79 <0.01 -1.65 0.35 -0.50+ 0.96+ 

  Low/Extreme - - 4.33 <0.01 3.50+ 0.00+ 

  High/Extreme - - 5.18 <0.01 3.47+ 0.00+ 

Mineralization Control/Low 1.94 0.13 1.64 0.35 0.07 1.00 

1-week wetted Control/High -5.35 <0.01 -0.28 0.99 0.45 0.97 

 Control/Extreme - - 6.68 <0.01 -0.53 0.95 

  Low/High -6.48 <0.01 -1.48 0.44 0.37 0.98 

  Low/Extreme - - 5.07 <0.01 -0.55 0.95 

  High/Extreme - - 5.68 <0.01 -0.80 0.85 

Mineralization Control/Low 1.72+ 0.20+ 0.75 0.87 0.54 0.95 

3-week wetted  Control/High -4.71+ <0.01+ -1.18 0.64 -2.92 0.02 

 Control/Extreme - - -2.46 0.06 1.79 0.27 
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  Low/High -5.72+ <0.01+ -1.67 0.34 -3.15 0.01 

  Low/Extreme - - -2.88 0.02 1.29 0.56 

  High/Extreme - - -1.05 0.72 3.85 <0.01 

Nitrification Control/Low 1.04 0.55 0.51 0.96 -0.52 0.95 

Field-moist Control/High 0.08 1.00 -0.03 1.00 1.01 0.74 

 Control/Extreme - - 3.07 0.01 -10.76 <0.01 

  Low/High -0.69 0.77 -0.40 0.98 1.34 0.54 

  Low/Extreme - - 2.52 0.06 -9.76 <0.01 

  High/Extreme - - 2.53 0.05 -9.61 <0.01 

Nitrification Control/Low 1.59 0.25 0.86 0.82 1.60+ 0.37+ 

1-week wetted  Control/High -0.17 0.98 -0.09 1.00 0.01+ 1.00+ 

 Control/Extreme - - 4.08 <0.01 6.59+ <0.01+ 

  Low/High -1.35 0.37 -0.72 0.89 -1.18+ 0.63+ 

  Low/Extreme - - 3.20 0.01 5.02+ <0.01+ 

  High/Extreme - - 3.40 0.00 5.37+ <0.01+ 

Nitrification Control/Low 2.37 0.05 1.39+ 0.50+ 0.61 0.93 

3-week wetted Control/High -0.54 0.85 -0.25+ 0.99+ -1.33 0.54 

 Control/Extreme - - -0.02+ 1.00+ -2.42 0.07 

  Low/High -2.27 0.06 -1.27+ 0.58+ -1.71 0.31 

  Low/Extreme - - -1.05+ 0.72+ -2.74 0.03 

  High/Extreme - - 0.19+ 1.00+ -0.89 0.81 

 

Table S7. Statistical results from multiple comparisons of the burn severity category means in the linear mixed effects models for each 

soil characteristic within a sampling event. + indicates the results from linear mixed effects models that had non-normal residuals.  

    

Immediately 

Prefire 

Immediately 

Postfire 1.5 mo. Postfire 6 mo. Postfire 9 mo. Postfire 

Characteristic Comparison 

z 

score 

p 

value z score 

p 

value 

z 

score 

p 

value z score 

p 

value z score p value 

Fractional Control/Low -3.39+ 0.00+ - - -2.76+ 0.02+ -1.86+ 0.24+ -2.33 0.09 

Water Control/High -0.17+ 0.98+ - - -0.85+ 0.67+ -2.16+ 0.13+ -0.62 0.92 

Content  Control/Extreme - - - - - - -1.56+ 0.40+ -0.45 0.97 
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  Low/High 2.37+ 0.05+ -1.39+ 0.16+ 1.25+ 0.42+ -0.65+ 0.91+ 1.15 0.65 

  Low/Extreme - - - - - - -0.08+ 1.00+ 1.31 0.55 

  High/Extreme - - - - - - 0.49+ 0.96+ 0.14 1.00 

pH Control/Low 2.06 0.10 - - 2.09 0.09 2.56 0.05 2.56 0.05 

 Control/High -1.80 0.17 - - 3.66 <0.01 1.18 0.63 1.18 0.63 

  Control/Extreme - - - - - - 4.85 <0.01 4.85 <0.01 

  Low/High -3.23 0.00 -3.09+ 0.00+ 1.89 0.14 -0.80 0.85 -0.80 0.85 

  Low/Extreme - - - - - - 2.66 0.04 2.66 0.04 

  High/Extreme - - - - - - 2.99 0.01 2.99 0.01 

Microbial  Control/Low 0.25 0.97 - - -0.62 0.81 -2.61 0.04 -1.73 0.30 

Biomass Control/High -1.48 0.30 - - 3.44 0.00 -1.73 0.30 -1.58 0.39 

  Control/Extreme - - - - - - 4.43 <0.01 2.86 0.02 

  Low/High -1.58 0.25 3.12 0.00 3.70 0.00 0.32 0.99 -0.19 1.00 

  Low/Extreme - - - - - - 6.13 <0.01 3.99 <0.01 

  High/Extreme - - - - - - 5.03 <0.01 3.63 0.00 

C:N ratio Control/Low 2.95 0.01 - - - - - - - - 

  Control/High 1.66 0.22 - - - - - - - - 

  Control/Extreme - - - - - - - - - - 

  Low/High -0.64 0.80 2.67+ 0.01+ -1.17+ 0.24+ - - - - 

  Low/Extreme - - - - - - - - - - 

  High/Extreme - - - - - - - - - - 

Available Control/Low -0.81+ 0.70+ - - 1.31 0.39 -0.10 1.00 0.43 0.97 

NH4
+  Control/High -0.72+ 0.75+ - - 13.08 <0.01 2.04 0.17 2.37 0.08 

  Control/Extreme - - - - - - 8.71 <0.01 7.93 <0.01 

  Low/High -0.08+ 1.00+ 11.61 <0.01 11.35 <0.01 2.00 0.19 1.92 0.21 

  Low/Extreme - - - - - - 8.29 <0.01 7.16 <0.01 

  High/Extreme - - - - - - 5.45 <0.01 4.54 <0.01 

Available  Control/Low -0.78+ 0.72+ - - 2.53 0.03 1.26+ 0.58+ 1.34+ 0.53+ 

NO3
-  Control/High -0.61+ 0.81+ - - -0.10 0.99 0.45+ 0.97+ 0.01+ 1.00+ 

  Control/Extreme - - - - - - 0.52+ 0.95+ 52.63+ <0.01+ 

  Low/High 0.00+ 1.00+ -0.58+ 0.56+ -1.98 0.11 -0.52+ 0.96+ -0.99+ 0.75+ 
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  Low/Extreme - - - - - - -0.46+ 0.97+ 48.62+ <0.01+ 

  High/Extreme - - - - - - 0.05+ 1.00+ 42.96+ <0.01+ 

 

Table S8. Statistical results from multiple comparisons of the mean values within a burn severity category in the linear mixed effects 

models for each soil characteristic across sampling events. + indicates the results from linear mixed effects models that had non-normal 

residuals.  

    Control  Low Severity High Severity Extreme Severity 

Characteristic Comparison z score p value z score p value z score p value z score p value 

pH Prefire/imm. Postfire - - 3.288+ 0.01+ 3.277+ 0.01+ - - 

  Prefire/1.5 mo. 1.666 0.34 3.023+ 0.02+ 10.649+ <0.01+ - - 

  Prefire/6 mo. 1.826 0.26 3.751+ <0.01+ 3.514+ <0.01+ - - 

  Prefire/9 mo. 1.108 0.68 2.03+ 0.25+ 4.915+ <0.01+ - - 

  imm. Postfire/1.5 mo. - - -0.265+ 1.00+ 7.372+ <0.01+ - - 

  imm. Postfire/6 mo. - - 0.463+ 0.99+ 0.237+ 1.00+ - - 

  imm. Postfire/9 mo. - - -1.258+ 0.72+ 1.638+ 0.47+ - - 

  1.5 mo./6 mo. 0.16 1.00 0.728+ 0.95+ -7.135+ <0.01+ - - 

  1.5 mo./9 mo. -0.557 0.95 -0.993+ 0.86+ -5.734+ <0.01+ - - 

  6 mo./9 mo. -0.718 0.89 -1.721+ 0.42+ 1.401+ 0.63+ -3.596 <0.01 

Microbial Prefire/imm. Postfire - - -3.17+ 0.01+ 1.736+ 0.41+ - - 

Biomass Prefire/1.5 mo. -3.88 < 0.01 -2.681+ 0.06+ 5.828+ <0.01+ - - 

  Prefire/6 mo. -2.67 0.04 -3.026+ 0.02+ 0.656+ 0.97+ - - 

  Prefire/9 mo. -3.722 0.01 -3.46+ <0.01+ -1.109+ 0.80+ - - 

  imm. Postfire/1.5 mo. - - 0.489+ 0.99+ 4.092+ <0.01+ - - 

  imm. Postfire/6 mo. - - 0.144+ 1.00+ -1.08+ 0.82+ - - 

  imm. Postfire/9 mo. - - -0.346+ 1.00+ -2.845+ 0.04+ - - 

  1.5 mo./6 mo. 1.21 0.62 -0.346+ 1.00+ -5.172+ <0.01+ - - 

  1.5 mo./9 mo. 0.159 1.00 -0.779+ 0.94+ -6.937+ <0.01+ - - 

  6 mo./9 mo. -1.052 0.72 -0.434+ 0.99+ -1.764+ 0.39+ -0.912 0.36 

C:N ratio Prefire/imm. Postfire - - -0.618+ 0.81+ 0.038+ 1.00+ - - 

  Prefire/1.5 mo. - - 1.877+ 0.15+ -0.34+ 0.94+ - - 

  Prefire/6 mo. - - 2.495+ 0.03+ -0.377+ 0.92+ - - 
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  6 mo./9 mo. - - - - - - -1.452 0.15 

Available NH4
+ Prefire/imm. Postfire - - 4.007+ <0.01+ 8.099+ <0.01+ - - 

  Prefire/1.5 mo. -1.352 0.53 1.573+ 0.52+ 5.065+ <0.01+ - - 

  Prefire/6 mo. 0.556 0.95 0.515+ 0.99+ 3.698+ <0.01+ - - 

  Prefire/9 mo. -0.967 0.77 2.288+ 0.15+ 3.634+ <0.01+ - - 

  imm. Postfire/1.5 mo. - - -2.434+ 0.11+ -3.034+ 0.02+ - - 

  imm. Postfire/6 mo. - - -3.492+ <0.01+ -4.401+ <0.01+ - - 

  imm. Postfire/9 mo. - - -1.719+ 0.42+ -4.465+ <0.01+ - - 

  1.5 mo./6 mo. 1.907 0.23 -1.057+ 0.83+ -1.367+ 0.65+ - - 

  1.5 mo./9 mo. 0.385 0.98 0.715+ 0.95+ -1.431+ 0.61+ - - 

  6 mo./9 mo. -1.523 0.42 1.772+ 0.39+ -0.064+ 1.00+ -0.517 0.61 

Available NO3
- Prefire/imm. Postfire - - 0.461+ 0.99+ 0.000+ 1.00+ - - 

  Prefire/1.5 mo. -0.226+ 1.00+ 0.992+ 0.86+ 0.090+ 1.00+ - - 

  Prefire/6 mo. 1.055+ 0.72+ 0.784+ 0.94+ 1.578+ 0.51+ - - 

  Prefire/9 mo. -0.821+ 0.85+ 1.844+ 0.35+ 0.053+ 1.00+ - - 

  imm. Postfire/1.5 mo. - - 0.532+ 0.98+ 0.090+ 1.00+ - - 

  imm. Postfire/6 mo. - - 0.323+ 1.00+ 1.578+ 0.51 - - 

  imm. Postfire/9 mo. - - 1.383+ 0.64+ 0.053+ 1.00+ - - 

  1.5 mo./6 mo. 1.281+ 0.58+ -0.209+ 1.00+ 1.488+ 0.57+ - - 

  1.5 mo./9 mo. -0.594+ 0.93+ 0.852+ 0.91+ -0.037+ 1.00+ - - 

  6 mo./9 mo. -1.875+ 0.24+ 1.061+ 0.83+ -1.525+ 0.55+ 59.03 <0.01 

Mineralization 1.5 mo./6 mo. 0.128 0.99 1.369+ 0.36+ 1.317 0.39 - - 

Field-moist 1.5 mo./9 mo. 0.922 0.63 1.297+ 0.40+ 1.919 0.13 - - 

incubation 6 mo./9 mo. 0.795 0.71 -0.072+ 1.00+ 0.602 0.82 -0.057+ 0.96+ 

Mineralization 1.5 mo./6 mo. -0.054+ 1.00+ 1.387+ 0.35+ 2.959+ 0.01+ - - 

1-week wetted  1.5 mo./9 mo. 0.656+ 0.79+ -0.835+ 0.68+ 5.342+ <0.01+ - - 

incubation 6 mo./9 mo. 0.71+ 0.76+ -2.222+ 0.07+ 2.383+ 0.05+ -1.168+ 0.24+ 

Mineralization 1.5 mo./6 mo. -0.292 0.95 1.598 0.25 -0.39+ 0.92+ - - 

3-week wetted 1.5 mo./9 mo. 1.101 0.51 0.113 0.99 -0.657+ 0.79+ - - 

incubation 6 mo./9 mo. 1.393 0.35 -1.486 0.30 -0.267+ 0.96+ 1.292+ 0.20+ 

Nitrification 1.5 mo./6 mo. -1.489 0.30 2.56+ 0.03+ -0.578 0.83 - - 
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Field-moist 1.5 mo./9 mo. 0.044 1.00 -1.016+ 0.57+ 1.011 0.57 - - 

 incubation 6 mo./9 mo. 1.534 0.28 -3.576+ <0.01+ 1.589 0.25 -1.672+ 0.09+ 

Nitrification 1.5 mo./6 mo. -0.29+ 0.96+ 0.912 0.63 -1.912+ 0.14+ - - 

1-week wetted 1.5 mo./9 mo. -1.546+ 0.27+ 0.332 0.94 -0.482+ 0.88+ - - 

incubation 6 mo./9 mo. -1.256+ 0.42+ -0.58 0.83 1.431+ 0.33+ -0.552 0.58 

Nitrification 1.5 mo./6 mo. 0.773 0.72 2.647 0.02 -0.827+ 0.69+ - - 

3-week wetted  1.5 mo./9 mo. 2.054 0.10 0.392 0.92 -0.187+ 0.98+ - - 

incubation 6 mo./9 mo. 1.282 0.41 -2.255 0.06 0.639+ 0.80+ -0.693+ 0.49+ 

 

Table S9. Mean and standard error for the soil characteristics measured at all sampling events. 

    

Immediately 

Prefire 

Immediately 

Postfire 

1.5 mo. 

Postfire 6 mo. Postfire 9 mo. Postfire 

Characteristic Severity Mean SE Mean SE Mean SE Mean SE Mean SE 

Fractional Water  Control 0.03 0.00 - - 0.07 0.00 0.22 0.01 0.06 0.00 

Content Low severity 0.02 0.00 0.15 0.00 0.04 0.00 0.16 0.01 0.02 0.00 

(g H2O per g field- High severity 0.03 0.00 0.12 0.01 0.06 0.02 0.14 0.00 0.05 0.01 

moist soil)  Extreme severity - - - - - - 0.16 0.01 0.05 0.00 

pH Control 5.84 0.03 - - 6.13 0.05 6.16 0.05 6.04 0.03 

  Low severity 6.14 0.04 6.64 0.04 6.60 0.04 6.71 0.07 6.45 0.02 

  High severity 5.52 0.07 6.02 0.10 7.16 0.04 6.06 0.01 6.28 0.06 

  Extreme severity - - - - - - 7.38 0.05 7.02 0.03 

Microbial Biomass Control 6.95 0.39 - - 3.32 0.16 4.45 0.19 3.47 0.19 

(µg C per g dry soil  Low severity 7.62 1.12 1.95 0.07 2.82 0.16 2.21 0.20 1.43 0.10 

per hour) High severity 2.04 0.16 3.46 0.36 6.83 0.49 2.58 0.38 1.13 0.14 

  Extreme severity - - - - - - 9.27 0.81 7.73 0.55 

C:N ratio Control 31.36 0.62 - - - - - - - - 

  Low severity 40.79 1.03 26.93 0.88 82.89 11.13 - - - - 

  High severity 38.06 2.51 38.29 2.53 35.92 2.66 - - - - 

  Extreme severity - - - - - - 23.91 0.52 0.05 0.00 

Available NH4
+ Control 2.63 0.29 - - 1.48 0.11 3.10 0.23 1.81 0.14 
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(µg NH4
+ per g dry  Low severity 1.71 0.09 6.80 0.44 3.71 0.50 2.36 0.15 4.62 0.64 

soil)  High severity 1.59 0.19 46.26 2.65 29.53 2.39 21.99 2.26 21.63 2.73 

  Extreme severity - - - - - - 83.85 13.24 68.04 11.66 

Available NO3
- Control 0.03 0.01 - - 0.02 0.01 0.08 0.02 0.00 0.00 

(µg NO3
- per g dry  Low severity 0.00 0.00 0.15 0.06 0.33 0.04 0.26 0.04 0.61 0.20 

soil)  High severity 0.00 0.00 0.00 0.00 0.01 0.01 0.16 0.09 0.01 0.00 

  Extreme severity - - - - - - 0.17 0.06 30.20 0.29 
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Table S10. Mean daily net mineralization (µg of NH4
+ plus NO3

- per g dry soil per day) and 

nitrification rates (µg NO3
- per g dry soil per day) with standard error for soil incubations. Wetted 

incubations were at 40% soil water holding capacity. The field-moist incubation was one week.  

    

1.5 mo. 

Postfire 6 mo. Postfire 9 mo. Postfire 

Incubation Severity Mean SE Mean SE Mean SE 

Mineralization:  Control -0.11 0.01 -0.10 0.02 -0.05 0.01 

Field-moist Low severity -0.16 0.03 -0.02 0.03 -0.03 0.03 

 High severity -0.87 0.09 -0.38 0.22 -0.16 0.11 

 Extreme Severity - - 0.94 0.12 0.90 0.33 

Mineralization: Control -0.03 0.02 -0.03 0.02 0.02 0.03 

1-week wetted  Low severity 0.26 0.04 0.54 0.09 0.09 0.05 

 High severity -1.02 0.19 -0.15 0.08 0.54 0.02 

 Extreme Severity - - 2.91 0.44 -0.59 1.67 

Mineralization: Control 0.06 0.05 -0.03 0.11 0.40 0.05 

3-week wetted Low severity 0.95 0.13 1.72 0.26 1.01 0.13 

 High severity -3.05 0.37 -3.51 0.53 -3.82 0.51 

 Extreme Severity - - -7.30 4.15 2.98 1.97 

Nitrification Control 0.00 0.00 -0.01 0.00 0.00 0.00 

Field-moist Low severity 0.03 0.01 0.17 0.03 -0.02 0.01 

 High severity 0.00 0.00 -0.02 0.01 0.05 0.03 

 Extreme Severity - - 1.38 0.65 -0.52 0.06 

Nitrification Control 0.05 0.01 0.04 0.01 0.25 0.03 

1-week wetted Low severity 0.32 0.06 0.56 0.10 1.35 0.20 

 High severity 0.01 0.00 -0.02 0.01 0.00 0.00 

 Extreme Severity - - 3.14 1.06 0.23 0.34 

Nitrification Control 0.15 0.02 0.00 0.00 0.41 0.05 

3-week wetted  Low severity 0.40 0.03 0.41 0.12 0.54 0.06 

 High severity 0.08 0.06 0.00 0.00 0.06 0.04 

 Extreme Severity - - 2.12 0.13 -0.23 0.19 
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Abstract 

Fire has transformative effects on soil physical, chemical, and biological properties in terrestrial 

ecosystems around the world. While methods for estimating fire characteristics and associated 

effects aboveground have progressed in recent decades, there remain major challenges in 

characterizing soil heating and associated effects belowground. Overcoming these challenges is 

crucial for understanding how fire influences soil carbon storage, biogeochemical cycling, and 

ecosystem recovery post fire. In this paper we present a novel framework for characterizing 

belowground heating and effects. The framework includes (1) an open-source model to estimate 

fire-driven soil heating, cooling, and the effects of heating across depths and over time (Soil 

Heating in Fire model; SheFire), and (2) a simple field method for recording soil temperatures at 

multiple depths using iButton sensors, self-contained temperature sensor and data loggers, 

installed along a wooden stake inserted into the soil (i.e., an iStake). The iStake overcomes many 

logistical challenges associated with obtaining temperature profiles with thermocouples. Heating 

measurements provide inputs to the SheFire model and modeled soil heating can then be used to 

derive ecosystem response functions, such as heating effects on microorganisms and tissues. To 

validate SheFire estimates, we conducted an experiment using a burn table where iStakes 

recorded temperatures that were used to fit the SheFire model. We then compared SheFire 

predicted temperatures against measured temperatures at other soil depths. To benchmark iStake 

measurements against those recorded by thermocouples, we co-located both types of sensors in 

the burn table experiment. We found that SheFire demonstrated skill in interpolating and 

extrapolating soil temperatures, with the largest errors occurring at the shallowest depths. We also 

found that iButton sensors are comparable to thermocouples for recording soil temperatures 

during fires. Finally, we present a case study using SheFire and iStakes to estimate soil heating 

during a prescribed fire. We predict how that heating would have influenced Chamaecrista 
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nictitans seed and tree root vascular cambium survival at different soil depths. This measurement-

modeling framework provides a cutting-edge approach for estimating how fire energy transfers 

through a soil profile and predicting biological responses. 

 

1. Introduction 

Wildfires can transform soil biological, chemical, and physical properties which are critical to 

terrestrial ecosystem functioning (e.g., Giovannini et al. 1990, Neary et al. 1999, Robichaud 

2000, Badía-Villas et al. 2014, Doerr et al. 2017). However, soil temperatures can vary by 

hundreds of degrees C within a given fire (Busse et al. 2013), which makes it challenging to 

generalize how soil properties may be transformed. Estimating belowground heat and mass 

transport, with associated temperature regimes, is essential to understanding how ecosystem 

services and processes, including carbon storage, primary production, and biogeochemical 

cycling, are changing across spatially complex fire footprints. Many effects of interest, such as 

effects on soil biota, occur as temperature-dependent rate processes (e.g., Rosenberg 1971) and, 

as such, characterizing temperature regimes is central to understanding fire effects on soils.   

Several tools have been used to estimate fire effects, both above- and belowground. For 

example, some models have been developed to predict specific fire effects belowground given 

simulated, not measured, fire conditions. However, these models (e.g., Choczynska and Johnson 

2009), though promising, are difficult to apply broadly given the range of required inputs. 

Further, the underlying soil heating models and associated software systems (e.g., FOFEM in 

Lutes 2017) have not been evaluated for use outside of the laboratory. Alternatively, remote 

sensing indices such as the difference normalized burn severity index (dNBR) can provide \ 

estimates of aboveground fire severity across ecosystems and landscapes. However, using these 

indices to assess belowground effects can have extremely high uncertainty because (1) 
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belowground fire effects do not always track predictably with fire energy (Hartford and Frandsen 

1992) and aboveground changes such as vegetation mortality and charring of the soil surface 

(Hudak et al. 2007, Murphy et al. 2008), and (2) there can be large scaling mismatches between a 

remote sensing pixel (e.g., 30-m for Landsat) and processes that occur at the scale of microns to 

centimeters (Massman et al. 2010, Morgan et al. 2014, Regan et al. 2017, Ramcharan et al. 2018, 

Zhang et al. 2020). To address the first issue, some studies have used other remote sensing 

techniques, such as hyperspectral and multispectral imaging, which can be more sensitive to soil-

specific changes (e.g., ash deposition and areas of bare ground; Kokaly et al. 2007). However, 

this is an imperfect solution because even soil-specific metrics are still derived from changes 

occurring at the surface and do not take into account belowground soil properties such as soil 

organic matter, which can influence how heat propagates through a soil profile (Morgan et al. 

2014). While ground based (finer-scale) measurements of burn severity can help address scaling 

mismatches that occur with satellite data (issue 2 above), local severity estimates still lack 

mechanistic connections between the fire processes or properties and their effects belowground 

(Smith et al. 2016a).  

Using direct measurements of fire behavior and energy to infer belowground responses is 

likely to be much more powerful than indirectly inferring belowground effects from coarse 

estimates of aboveground changes (Kreye et al. 2013, Quigley et al. 2019, Kreye et al. 2020). 

However, collecting direct measurements for fire energy and soil heating is challenging. For one, 

soil heating through time cannot be measured from satellite imagery and therefore, we need tools 

on the ground for quantifying heating during a fire (Morgan et al. 2014).  

Given limited development of most of these measurement methods and logistical 

challenges associated with their use in the field, there remains a dearth of data on soils during 

fires. For unplanned fires, wildfires, access is often a primary limitation. Prescribed fires on the 



62 
 
 

 
 

other hand, are typically planned for years but are still often conducted on short notice when 

conditions are appropriate which can complicate sampling and site instrumentation. Considerably 

more attention has been paid to fire measurement than soil measurement development (see 

reviews in Kremens et al. 2010, Ichoku et al. 2012, Moran et al. 2019) and instrumenting a burn, 

whether planned or unplanned, can be equipment and time intensive (Ottmar et al. 2016). Finally, 

fire effects are highly spatially variable so it can be misleading to extrapolate data gathered in one 

area to try to understand another (Busse et al. 2013, Morgan et al. 2014, Smith et al. 2016b). 

 Thermocouples are the current standard for logging temperature measurements and have 

been used for decades (e.g., Iverson et al. 2004, Kennard et al. 2005, Bova and Dickinson 2008, 

Pereira et al. 2019). They record point-specific temperatures at discrete time intervals and can be 

placed at any soil depth of interest (Busse et al. 2010, Kreye et al. 2013, Kreye et al. 2020). 

However, using thermocouples for soil measurement can be time consuming as they require 

precision work to install in the field—a major drawback when attempting to install them under 

time constraints, such as instrumenting an advancing wildfire. Additionally, disturbing soil 

structure, as occurs with thermocouple installation, alters soil heating dynamics (Busse et al. 

2010). The standard techniques for thermocouple installation reduce soil disturbance directly 

around the tip of the thermocouple by installing them through the side of an excavated hole and 

into the soil (e.g., Robichaud and Brown 2019), but these methods do not mitigate disturbance in 

close proximity to the sensor which can influence lateral heat transfer. Further, the canister 

designed by Robichaud and Brown (2019), that allows for ease of deployment, is constructed of 

metal, which may increase heat transfer into the soil along the can. Inserting insulated rods 

vertically into the soil with thermocouples exposed at specified depths (Kreye et al. 2020) offers 

promise, yet challenges in fire-hardening the system during intense fires remain. In this paper, we 

explore the use of iButtons exposed along wooden stakes (iStakes) as a way to minimize soil 
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disturbance, better match soil thermal properties, protect measurement devices from excessive 

heating, and increase efficiency of use for measuring soil heating during wildland fires. iButtons 

are integrated sensors and data loggers so there is no need to protect any additional equipment 

from heat (Maxim Integrated 2002).  

Regardless of how the temperature data are collected, we need tools for applying them. 

Attempts to understand how fire-induced heating affects soil properties must take soil depth into 

account—because in addition to heating, soil properties such as microbial processes, 

biogeochemical cycling, and soil organic matter also vary with depth (e.g., Achat et al. 2012, 

Balesdent et al. 2018, Kramer et al. 2017). Physical models of soil heating have potential to 

characterize soil heating and mass transport at high depth resolution (e.g., Campbell et al. 1997, 

Massman et al. 2010) but they require much more development for practical use. Alternatively, 

instrumenting every possible soil depth of interest to directly record temperatures in the field is 

not feasible either. In order to quantify fire effects on soil properties and biota, as well as to 

provide validation data for physical models, we need a statistical model that can interpolate and 

extrapolate temperature regimes to a depth of interest based on a limited set of measurements 

taken at discrete soil depths.  

Thus, the goals of this paper are twofold: to present an open-source modeling tool to 

understand soil heating and heating effects across depths over time (Soil Heating in Fire; 

SheFire), and to demonstrate a novel data collection method which minimizes soil disturbance 

and installation time (iStakes). To support this measurement-modeling framework, we describe a 

burn table experiment used to validate SheFire temperature estimates at different soil depths and 

to benchmark our iStake method against thermocouple readings. Finally, we present a case study 

using iStakes and SheFire to estimate soil heating during a prescribed fire and predict how 

heating may influence seed and root survival at different soil depths using a thermal tolerance 
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model (Dickinson et al. 2004). The thermal tolerance model is based on a temperature-dependent 

rate process and associated data. It offers a way to clarify the effects of the highly variable 

temperature regimes to which soil biota are exposed.  

2. Methods 

Below, we describe the SheFire modeling framework (section 2.1), and a measurement method, 

iStakes, which provides one way to easily collect the data needed as input to fit the SheFire model 

(section 2.2). All soil depths discussed in this paper refer to the depth below the mineral soil 

surface as the forest floor can combust during fires. 

2.1.  SheFire model description 

SheFire is a modeling framework for elucidating mineral soil temperatures during fire across a 

range of soil depths. It also enables researchers to predict biological responses to soil heating. 

Fitting the SheFire model requires temperature measurements over time from three different soil 

depths at the same location. The model then interpolates and extrapolates from those data to 

estimate temperature time series across a range of depths. Using those estimates, functions in the 

model framework can then be used to explore the nuances of the soil heating and biological 

responses. The current response functions focus on organismal thermal tolerance but the SheFire 

modeling framework can readily be expanded in a modular fashion to incorporate additional 

response functions that are of interest to model users. The different components of the modeling 

framework are described in the following sections. The modeling framework is contained in an R 

package, called SheFire, comprised of the model building function (shefire), and a series of 

summary and response functions that evaluate and apply the SheFire model object to understand 

soil heating and its effects.  
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2.1.1 Fitting the model 

Input Data 

Heat transfer through a soil profile is both soil- and fire-specific (Abu-Hamdeh and 

Reeder 2000, Abu-Hamdeh 2003, Kreye et al. 2013, Busse et al. 2013, Smith et al. 2016b, Pereira 

et al. 2019). As a result, the SheFire model must be fit separately for each location from measured 

temperature data. The model is fit using the shefire function in the R package. The inputs to this 

function are the temperature data and a series of parameters that allow for model fine tuning. The 

parameters are described in detail in supplementary Table S1. The model requires temperature 

recordings from three soil depths which can be measured with thermocouples, iButtons, or any 

other temperature sensor that records a time stamp with each temperature reading. The input data 

can have any data logging rate, but the three sensors must log at the same rate.  

Data Trimming 

The input temperature data do not need to be manually cleaned or trimmed to the 

beginning and end of the fire effects prior to building the model, however, they must all start at 

the same point in time. The function is designed to extract the fire induced heating and 

subsequent cooling period from data sets that may contain measurements collected prior to the 

arrival of the flaming front and after complete soil cooling. With default settings, the prefire data 

(i.e., everything up to 30 minutes preceding the initiation of soil heating) is removed. Initiation is 

defined as the last time that the temperature rate of change between two sequential measurements 

was zero before the maximum temperature was reached. The end of the data is determined by the 

first of the following events: a temperature rise after soil cooling has begun, a user-determined cut 

off time, or the end of the data set. All three temperature recordings must cover the same time 

period so the shallow sensor is used to set the start and end points, as it will be the first to heat, 

then the data from the deeper two sensors are trimmed to match.  
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Fitting BFD curves to input data 

The base equation of the model is a “Temperature - Time Curve of Complete Process of 

Fire Development”, also known as a BFD curve, which was developed for studying compartment 

fires in buildings (Barnett 2002) but has been used in other studies of fire and soils (Adie et al. 

2011, Grau-Andrés et al. 2017, Massman 2021). BFD curves calculate temperature at a given 

time. Note that the nomenclature from here on follows that used in the SheFire R package for 

reasons of clarity. 

A BFD equation has four terms that correspond to: initial temperature before the arrival 

of the flaming front (InitTemp), maximum temperature reached (MaxTemp), time the maximum 

was reached after heating began (TimeAtMax), and a shape parameter that determines the overall 

shape of the curve (Shape; equation 1 in Barnett 2002):  

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝐼𝑛𝑖𝑡𝑇𝑒𝑚𝑝 + 𝑀𝑎𝑥𝑇𝑒𝑚𝑝 x 𝑒−𝑧 (1) 

where e is Euler’s number and the exponent (z) is further defined as: 

𝑧 =
(𝑙𝑛(𝑡𝑖𝑚𝑒) − 𝑙𝑛(𝑇𝑖𝑚𝑒𝐴𝑡𝑀𝑎𝑥))

2

𝑆ℎ𝑎𝑝𝑒
⁄ . (1a) 

BFD equations are fit to each of the three trimmed input temperature recordings. We 

designed SheFire to use a nonlinear least squares approach to determine the best fit.  

Fitting parameter-depth regressions 

We then have SheFire extract the four BFD parameters (InitTemp, MaxTemp, 

TimeAtMax, and Shape) from each of the three fitted equations. Using the three values for each 

parameter, one from each input sensor depth, SheFire fits separate regression equations to 

estimate each parameter value for given soil depths, using the following equations:  

𝐼𝑛𝑖𝑡𝑇𝑒𝑚𝑝 = 𝐴 x 𝑑𝑒𝑝𝑡ℎ−𝐵    (2) 

𝑀𝑎𝑥𝑇𝑒𝑚𝑝 = 𝑒𝐶  x 𝑑𝑒𝑝𝑡ℎ𝐷    (3) 

𝑇𝑖𝑚𝑒𝐴𝑡𝑀𝑎𝑥 = 𝐹 + 𝐺 x 𝑑𝑒𝑝𝑡ℎ    (4) 
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𝑆ℎ𝑎𝑝𝑒 = 𝐻 x 𝑑𝑒𝑝𝑡ℎ−1     (5) 

where depth is the soil depth for which the BFD equation parameter will be calculated (equations 

2-5). These regression equations allow a BFD parameter to be estimated for any input soil depth. 

Equations 3 and 4 are fit using a simple linear model and subsequently evaluated for 

model performance by calculating R2, the coefficient of determination. The data for equation 3 

are log transformed before fitting. Equations 2 and 5 are fit using a nonlinear least squares 

approach. They are subsequently evaluated with a Pearson correlation coefficient comparing the 

BFD parameter values from the equations fit to the input data against the parameter values 

calculated by the regression equations for the same soil depths as the input data.  

Once the regression equations have been fit, the model can estimate each of the four BFD 

parameters for a given soil depth and thus can model temperature over time at any depth.  

Setting model constraints 

The final portion of model development sets constraints for the model. The time range 

that the model covers is equal to the time range of the trimmed input data. This may not be the 

full length of the input data sets if they covered prefire or post-cooling periods. SheFire also 

extracts the timestamp associated with the model start and end points from the input data to allow 

model-time to real-time conversions. To avoid mathematical problems associated with zero 

values, model time starts at 0.0001 minutes. SheFire sets the shallowest depth for which the 

model can predict temperatures as the depth for which the TimeAtMax parameter is 1. That is to 

say, the soil depth that reaches its peak temperature one minute after the beginning of model time 

is the shallowest depth that the model can calculate. A time cut off is used to set the shallowest 

depth because increasingly shallow depths have increasingly early peak temperatures. See 

supplementary section S1: Model implementation for comments on the issues concerning this 

approach. There is no deepest depth limit but the summary and response functions in SheFire will 
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print a warning for soil depths more than 5 cm deeper than the deepest sensor used to build the 

model because deep predictions have not yet been experimentally validated. 

Model output 

The shefire function outputs a list of the various equations, values, and constraints that 

comprise the model (Table 1). The summary and response functions included in the SheFire 

modeling framework can be applied to this output to explore soil heating, cooling, and biological 

responses. Users can also build custom functions that interact with the model to address specific 

research questions. Further details are in supplementary section S1: Model implementation.  

 

Table 1. Names and descriptions of shefire function outputs. These are needed to run the 

summary and response functions included in the SheFire modeling framework. 

Name Description 

BFDEquation Function to calculate temperature over time given values for the four 

BFD parameters 

MaxTemp.reg Function to calculate MaxTemp parameter for a given soil depth 

TimeAtMax.reg Function to calculate TimeAtMax parameter for a given soil depth 

Shape.reg Function to calculate Shape parameter for a given soil depth 

InitTemp.reg Function to calculate InitTemp parameter for a given soil depth 

MaxTemp.coeffs Coefficient values for the MaxTemp.reg function 

TimeAtMax.coeffs Coefficient values for the TimeAtMax.reg function 

Shape.coeffs Coefficient values for the Shape.reg function 

InitTemp.coeffs Coefficient values for the InitTemp.reg function 

InitTemp.byDepth An additional parameter needed for InitTemp.reg function – a list of 

InitTemp values calculated for the input temperature data 

sensorDepths An additional parameter needed for InitTemp.reg function – a list of 

sensor depths 

Shallowest The shallowest depth (in cm) for which the model will calculate 

temperature over time 

FullTime Duration (min.) that the model covers 

StartTime Timestamp at the beginning of the model time range 

EndTime Timestamp at the end of the model time range 

 

2.1.2 Heating summary functions 

The SheFire modeling framework includes a set of functions to summarize different aspects of 

soil heating and cooling (Table 2). The most basic function is temp_over_time, which calculates 

temperature at a given depth at a specified time resolution. This function is called in all other 
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summary and response functions. More details about specific summary functions and their 

implementation can be found Table 2. 

 

Table 2. The summary functions included in the SheFire modeling framework. The function 

name, description, and output are included. 

Function Name Description Output 

temp_over_time Calculates temperature over time for 

a specified soil depth, time range 

and resolution (i.e., temperature at 

every 1 minute) 

A list of the temperature 

values at each time increment 

time_above Calculates the duration of time at or 

above a chosen temperature 

threshold, for a specified soil depth  

Duration in minutes 

heating For a specified soil depth, isolates 

the portion of the model time range 

that the soil is heating 

A list of temperatures at the 

specified time resolution for 

the soil depth from the point 

that it began to warm through 

the time when it reaches its 

maximum temperature 

cooling For a specified soil depth, isolates 

the portion of the model time range 

that the soil is cooling 

A list of temperatures at the 

specified time resolution for 

the soil depth from the point it 

began to cool through the end 

of model time range 

time_temp_ranges Calculates the time spent in different 

temperature ranges for a specified 

soil depth. The breadth of the 

temperature ranges, but not the 

boundary temperatures dividing the 

ranges, is set by the user 

A data frame of the 

temperature boundary values 

and the time spent in each 

temperature range 

set_temp_ranges Calculates the time spent in different 

temperature ranges for specified soil 

depth(s). User sets the boundaries 

for the temperature ranges  

A data frame of the 

temperature boundary values 

and the time spent in each 

temperature range (for each 

specified depth) 

depth_for_temp Calculates the deepest soil depth that 

reaches a specified temperature 

The soil depth (cm) 

summ_depth_range Calculates the mean, standard 

deviation, median, and maximum 

temperature at each time point for a 

specified portion of the soil profile 

A data frame containing those 

statistics for the depth range at 

each time point 
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2.1.3 Heating response functions  

The SheFire modeling framework currently includes two response functions (survival_percent 

and survival_depth) that use soil heating to estimate survival. Survival_percent calculates the 

percent survival at the user specified depth. Survival_depth determines the soil depth at which a 

user specified percent survival will occur. For example, survival_percent could determine the 

percent survival for a particular species of seed at 5 cm depth, while survival_depth could be used 

to find the soil depth where 85% of those seeds survived. We demonstrate these functions in the 

case study by estimating survival of seeds and vascular cambium cells from soil temperature 

regimes in a prescribed fire. 

The two functions rely on a thermal tolerance model for estimating survival (Dickinson et 

al. 2004). Survival can be thought of as a general dimensionless effects variable where response 

to heating is quantified relative to pre-fire condition. Thermal tolerance is based on temperature-

dependent rate processes, the kinetics of which have been quantified in various ways for different 

biological systems, including by tissue respiration (Caldwell 1993, Dickinson et al. 2005), protein 

denaturation (Rosenberg et al. 1971), cell survival (Lorenz 1939, Dickinson and Johnson 2004), 

tissue survival from visual inspection or vital staining (Lorenz 1939, Nelson 1952), and 

organismal survival (Martin et al. 1969). 

The thermal tolerance model is solved numerically in two parts: determining the rate of 

impact and accumulating that impact over time. We determine the rate of impact from a 

temperature-dependent first-order rate process equation, termed the “absolute rate theory 

equation” by Rosenberg et al. (1971). This equation has two parameters that must be estimated 

for each unique biological system: activation entropy (deltaS), and activation enthalpy (deltaH). 

These parameters are determined statistically from thermal tolerance data (Dickinson and 

Johnson 2004). If needed, a user could incorporate a simpler, single-parameter rate equation (the 
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Arrhenius equation) into SheFire, opening up more sources of rate process information 

(Dickinson et al. 2005). The rate of impact increases exponentially with temperature:  

𝑘 =
𝑘𝐵𝑜𝑙𝑡𝑧 𝑇

ℎ𝑃𝑙𝑎𝑛𝑐𝑘
 x 𝑒

(
𝑑𝑒𝑙𝑡𝑎𝑆

𝑅𝐺𝑎𝑠
)
 x 𝑒

(
−𝑑𝑒𝑙𝑡𝑎𝐻

𝑅𝐺𝑎𝑠 𝑇
)
   (6) 

where k is the rate parameter (s-1), kBoltz is the Boltzman constant (J*K-1), T refers to soil 

temperature in Kelvin, hPlanck is Planck’s constant (J*s-1), and RGas is the universal gas 

constant (J*K-1*mol-1). The accumulation of the temperature effects is assumed to be additive 

with no effect reversal (see Dickinson and Johnson 2004)). Thus, survival is recursively 

decremented at each timestep at a temperature dependent rate. Survival begins at 100 percent: 

𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑆𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 − 𝑘 x 𝑡𝑙𝑒𝑛𝑔𝑡ℎ x 𝑆𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  (7) 

where Scurrent is survival up through the current time step, Sprevious is survival up through the 

preceding time step, and tlength is the length of the time step in seconds. Survival is not 

decremented at temperatures below the user specified threshold. The temperature threshold is the 

lowest temperature at which there would be a temperature effect on survival for the biological 

system of interest.  

2.2 iStake description 

iButton sensors are small, cylindrical devices approximately 1.5 cm in diameter and 0.5 cm width 

that measure and record temperature. There are a few different models but the two relevant here 

are the high temperature iButtons (Thermochron 8K High) and the low temperature iButtons 

(Thermochron, 4K). High temperature iButtons will record temperatures when the sensor is 

between 0 °C and 125 °C while the low temperature iButton will record when it is between -40 

°C and 85 °C.  

The iStakes are composed of a simple wooden stake with iButton temperature sensors 

installed across their width such that the iButtons surfaces are flush with the outside of the stake 

to provide thermal contact with the soil (Figure 1). Therefore, with a single stake inserted into the 
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ground, temperatures at multiple soil depths can be measured simultaneously with minimal soil 

disturbance (Figure 2A). A full description of iStake construction and field deployment is in 

supplementary section S2: iStake construction and field deployment.  

It is important to benchmark iButtons against thermocouples because different devices 

deployed in different ways can result in different temperature measurements because the 

temperature recorded is the temperature of the device (Kennard et al. 2005, Bova and Dickinson 

2008). A key advantage of measuring temperatures in soils is that, as long as there is good 

thermal contact between the device and the soil, the device temperature should faithfully reflect 

soil temperature. Thin thermocouples or thin thermocouple probes (a thermocouple sheathed in, 

typically, stainless steel) maximize thermal contact with soil and provide a point measurement. A 

disadvantage of an iButton is that it is in contact with soil over both its front and back surfaces 

and will not be a point measurement. Instead, given the high thermal conductivity of its metal 

case, its temperature will average over 1.5 cm of the soil column which could lead to different 

readings than thermocouples. Further, an iButton has more thermal inertia than a thin 

thermocouple or thermocouple probe and may heat and cool more slowly. 

 

 
Figure 1. A complete iButton stake that will measure soil depths 5, 10, and 15 cm when installed 

with the top of the stake (picture left) 2 cm below the soil surface.  
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2.3 Validation and benchmarking  

To validate the SheFire model and benchmark iButton readings against thermocouple readings, 

we conducted instrumented test burns. The test burns used a burn table set-up that consisted of a 

metal frame that held ceramic fiber boards flush with the top of 20 cm tall, 10 cm diameter cans 

filled with soil (Miesel, unpublished; Figure 2B and 2C). We drilled 10 cm diameter holes in the 

ceramic board using a circular drill bit such that four cans fit in each ceramic board. The open 

tops of the cans sat flush with the top surface of the board and the sides of the cans were flush 

against the inside of the holes in the board so there was no gap between the edge of the board and 

the sides of the can. The top of the soil, inside the cans, was continuous with the top surface of 

the ceramic board.  

The cans, below the ceramic board, were wrapped in ceramic fiber insulation and a layer 

of fire-shelter insulating material. The insulation was designed to minimize lateral heat gain or 

loss from the soil so that heat transfer was primarily vertical through the soil. This was designed 

to mimic soil in situ, which would not be isolated in columns and would heat and cool with the 

surrounding soil. The cans of soil, while not perfect facsimiles of a continuous soil bed, enabled 

reliable, precise sensor installation with minimal soil disturbance around the thermocouples. 

Once the cans were situated in the burn table, we installed the temperature sensors. For 

the model validation experiment described in section 3.2.1. we installed one iStake with iButtons 

at 5, 10, and 15 cm below the soil surface and one iStake with iButtons at 4, 7, and 12 cm deep 

per can. There were nine cans and thus nine replicate paired iStakes. High temperature iButtons 

were used at 4 and 5 cm depths, while low temperature iButtons were used at all other depths. For 

the benchmarking experiment described in 3.2.2. we installed an iStake in each can with iButtons 

at 5, 10, and 15 cm below the soil surface and we installed thermocouples at the same depths  
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Figure 2. A. Diagram of standard iButton stake deployment in the field and within the soil cans. 

B. Diagram of experimental set up for comparing model predictions against measured 

temperatures. C. Diagram of experimental set up for comparing iButtons against thermocouples. 

Diagrams are not to scale. 

 

through small holes drilled in the sides of the can. There were 15 cans prepared in this manner. 

All thermocouples used were type K (Omega Engineering, Norwalk, CT) thermocouple probes 

(1.6 mm diameter) and thermocouple data loggers were Madge Tech TC101A (Madge Tech, 

Warner, NH). High temperature iButtons were used at 5 cm deep, low temperature iButtons were 

used at 10 and 15 cm deep.  

After we instrumented the insulated, soil-filled cans, we placed a fuel bed, containing a 

mixture of dry pine needles, woodchips, and small twigs (less than 2 cm diameter), loosely 

stacked on top of the soil and ceramic boards. For each of the experiments described in 2.3.1. and 

2.3.2, we ignited the fuel bed and supplied additional fuels as needed to maintain active flames 

for approximately 10 minutes and then allowed the fire to reach extinction, and the soils to cool 

for several hours so that the entire recorded dataset (starting 10 minutes prior to ignition) was 350 

minutes long. The burns were conducted over the course of three days in October 2020. 

2.3.1 SheFire validation  

2 cm 

5 cm 

10 cm 

15 cm 

Thermocouple 

data loggers 

Can filled with soil 

Insulation 

B. C. 

Metal frame 

Ceramic board 

A. 
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For each replicate of paired iStakes, we used the data recorded at 5, 10, and 15 cm deep to fit the 

SheFire model. We then used the model to predict soil temperatures at 4, 7, and 12 cm deep and 

compared those predictions against the temperatures recorded at those depths. We compared 

model predictions against the recorded temperatures using Pearson correlation coefficient, R2, 

and root mean square error (RMSE). The 4, 7, and 12 cm comparisons were all analyzed 

separately in order to determine how the model performed at different depths. Due to sensor 

malfunctions, we only tested the 4 cm deep predictions in four of the nine replicates.  

While the insulation surrounding the cans mitigated the heat transfer between the soil and 

air, it did not eliminate it and the soil slowly heated throughout the day in a manner that is 

inconsistent with soil temperatures recorded in situ during wildfires. This was evident from the 

soil cooling pattern postfire (supplementary Figure S1). To account for this shifting temperature 

baseline, we adjusted the data used to build and test the model by fitting a linear regression line 

between the soil temperature before ignition and the soil temperature at the end of the cool down 

period and then subtracting the value on the regression line from the temperature recorded at each 

time step. Then, we added 5 °C to the temperatures to ensure final adjusted temperatures were > 

0. See supplementary Figure S1 for a comparison of adjusted and unadjusted temperatures over 

time from one replicate. 

2.3.2 Sensor benchmarking 

To benchmark iButtons against thermocouples we had 15 replicates of iStakes paired with sets of 

thermocouples (Figure 2C). In each replicate, we used both iStakes and thermocouples to record 

temperatures at 5, 10, and 15 cm depths. For analysis, the readings at 10 cm and 15 cm were 

combined because they were both measured with low temperature iButtons. The 5 cm readings 

were analyzed separately because they were recorded using high temperature iButtons. Due to 

sensor malfunctions, the 5 cm comparisons were included in 14 of the 15 replicates. Thus, there 
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were 30 paired low temperature iButtons and thermocouple comparisons and 14 paired high 

temperature iButtons and thermocouple comparisons.  

The thermocouple and iButton readings were compared at each timestep within each 

iButton – thermocouple pair using Pearson correlation coefficient, R2, and RMSE. While each 

sensor pair is independent, the temperature points within a paired set of sensors are not. To 

address this, we also fit BFD equations to the data from each sensor. Then the BFD equation 

parameters were compared between the paired iButtons and thermocouples to measure how the 

recorded temperatures differed as a set and not just at individual time steps. In order to fit the 

BFD equations with the shefire function, both the iButton data and the thermocouple data were 

adjusted using the method described in 2.3.1. to account for the solar heating that occurred over 

the course of the experiment. We ran shefire function with the reg parameter set to False so that it 

only fit the BFD equations and used the override.clip option for both iButton data and 

thermocouple data which prevents the model from shortening the data set based on rising 

temperatures after the maximum temperature is reached. This override.clip option was necessary 

because some of the thermocouple data were noisy enough that the model attempted to clip those 

datasets shorter than the iButton data. Details on the model fitting parameters can be found in 

supplementary Table S1.  

 

3. Results 

3.1.  SheFire validation 

The SheFire predictions at 12 cm were more accurate than at 7 cm and 4 cm, however, model 

predictions at both 7 and 12 cm demonstrated a high level of skill (Table 3; Figure 3). The 4 cm 

predictions fared the worst of the three but the Pearson correlation coefficient and R2 were still 

high at above 0.9 (Table 3). The RMSE was highest for 4 cm at 3.6 °C and lowest for 12 cm at 
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0.7 °C (Table 3). The predicted temperatures do not differ consistently from measured 

temperatures across depth: the times (i.e., heating, peak temperature, cooling, etc.) and 

characteristics (i.e., earlier, later, warmer, cooler) in which they differ are a result of the subtle 

variations between each temperature record and not a systemic difference between predictions 

and measurements (Figure 3). Additional information on results by replicate, calculated with both 

the unadjusted and adjusted temperatures, is provided in supplementary Table S2.  

 

 
Figure 3. Adjusted temperature measurements (black) and model predictions (red) for soil depths 

5, 10, and 15 cm deep from an example replicate. The topmost pair of curves are 5 cm, the middle 

pair are 10 cm, and the bottom pair are 15 cm depth. 

 

Table 3. A summary of the model predictions compared against actual measurements showing 

the Pearson correlation coefficient, R2, and the RMSE. The mean value and standard error are 

given for each statistic within each depth category. 

  12 cm (N = 9) 7 cm (N = 9) 4 cm (N = 4) 

  Pearson R2 RMSE Pearson R2 RMSE Pearson R2 RMSE 

Mean 0.98 0.97 0.66 0.98 0.96 1.50 0.96 0.92 3.56 

Stnd Error <0.01 <0.01 0.09 0.01 0.01 0.15 0.01 0.01 0.51 
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3.2.  Benchmarking 

The high temperature iButtons did not match thermocouples quite as tightly as the low 

temperature iButtons (Table 4; Figure 4A). The high temperature iButtons and the thermocouples 

had mean RMSE of 2.1 °C and the low temperature iButtons and the thermocouples had a mean 

RMSE of 0.9 °C (Table 4). While the high temperature iButton readings did differ more from 

thermocouples than the low temperature iButton readings, the difference was small and both 

types of iButtons recorded temperatures that were in close agreement to thermocouples. A full list 

of comparisons for each sensor pair can be found in supplementary Table S3. 

 

Table 4. Statistical comparisons of thermocouple versus iButton readings on a point-by-point 

basis. The mean value and standard error is shown for each statistic in the two sensor categories. 

A table containing the statistics for each replicate can be found in Appendix S4: Table S2.  

  

low temperature iButtons vs 

thermocouples: 30 trials 

high temperature iButtons vs 

thermocouples: 14 trials 

Pearson 0.98 +/- <0.01 0.97 +/- 0.01 

R2 0.97 +/- 0.01 0.94 +/- 0.02 

RMSE 0.87 +/- 0.08 2.11 +/- 0.32 

 

When comparing iButton vs. thermocouple timeseries estimates, we subtracted the 

iButton BFD parameter values from the thermocouple BFD parameters to quantify the difference 

between the two. Shape was the parameter with the smallest difference for both low and high 

temperature thermocouples (Table 5). The BFD parameters fit to the iButton and thermocouple 

data matched well for InitTemp where the mean difference was smaller than 0.6 °C for both 

iButton types (Figure 4B). The MaxTemp parameters had slightly larger differences. Here the 

larger difference was for the high temperature iButtons which had a 4.2 °C higher MaxTemp 

parameter, on average, than the BFD curves fit to the thermocouple readings. Thermocouples had 

TimeAtMax values 3.3 minutes later than the low temperature iButtons and 7.6 minutes later than 

the high temperature iButtons. The list of all BFD parameters fit to each sensor, organized by 

both depth and by thermocouple - iButton pairs, can be found in supplementary Table S4. 
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Figure 4. A. Thermocouple (red) and iButton (blue) readings adjusted to shifting temperature 

baseline for an example replicate. B. BFD equations fit to thermocouple (red) and iButton (blue) 

readings from the same replicate. The topmost pair of curves are 5 cm, the middle pair are 10 cm, 

and the bottom pair are 15 cm depth. 

 

Table 5. The mean value and standard error for the BFD parameters fit to thermocouple readings 

minus the BFD parameters fit to iButton readings within a thermocouple - iButton pair. The 

values are grouped by the sensor depth of the thermocouple - iButton pairs. A table showing the 

BFD parameters fit to the data from every sensor, organized by thermocouple - iButton pairs, is 

included as Appendix S4: Table S3. 

 iButton Type InitTemp MaxTemp TimeAtMax Shape 

High Temp. 0.13 +/- 0.29 -4.19 +/- 3.77 7.63 +/- 5.93 -0.09 +/- 0.06 

Low Temp. -0.50 +/- 0.22 1.15 +/- 1.56 3.33 +/- 3.55 0.04 +/- 0.05 

 

4. Case Study 

We used data from work done at the Texas A&M Agrilife – Sonora Research Station to 

demonstrate a simple application of the SheFire framework. This study was originally conducted 

for other purposes in the summer of 2018. The site is located on the western edge of the Edwards 

Plateau ecoregion. It is a semi-arid savanna with a bimodal precipitation pattern. The dominant 

vegetation includes a mix of trees (Quercus, Juniperus, and Prosopis species) and grasses. The 
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soils are Tarrant series (Clayey-skeletal, smectitic, thermic Lithic Calciustolls), shallow, and 

often have limestone bedrock (USDA 2016, Hiers et al. 2019). 

In this project, small, controlled burns were conducted with either high or low fuel loads 

to create different burn conditions. Each burn was 100 m2 and had an iButton stake installed with 

sensors at 5, 10, and 15 cm deep in the soil. Here, we present data and the SheFire model from 

two of the burns: one plot with a high fuel load (HF), and one with a low fuel load (LF). The LF 

plot received approximately 61 kg of hay as additional fuel, the HF plot received both 61 kg of 

hay and 201 kg of juniper branches as additional fuel. We fit the SheFire model using default 

parameter values for both plots. For more information on the design and objectives of the original 

study, please see Hiers et al. (2019). 

For the BFD equations fit to the input data, the HF plot had low RMSE between the fitted 

BFD equation and the input data with the largest value of 0.55 °C at 5 cm (Table 6). The LF plot 

also had low RMSE values at all three depths but they were slightly higher than the HF plot with 

the largest RMSE for LF at 2.25 °C for 5 cm (Table 6). In both plots, the best BFD fits for the 

input data were at 15 cm, then 10 cm, and 5 cm deep.  

Table 6. The model fit information for the LF and HF plots. BFD fit refers to the fit between the 

input data and the fitted BFD equations. The regression fit measures the fit between the 

parameters calculated directly by fitting a BFD equation to the input data and the parameters 

calculated using the parameter-depth regressions.  

 Low Fuel (LF) High Fuel (HF) 

BFD fit RMSE Pearson RMSE Pearson 

5cm 2.25 0.99 0.55 0.98 

10cm 1.19 0.98 0.23 0.99 

15cm 0.50 0.99 0.15 0.98 

Regressions Statistic Value Statistic Value 

MaxTemp R2 >0.99 R2 0.99 

InitTemp Pearson 0.98 Pearson >0.99 

TimeAtMax R2 0.99 R2 >0.99 

Shape Pearson >0.99 Pearson >0.99 
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The parameter-depth regression equations correlated strongly with the BFD parameters 

that were calculated to fit to input data (Table 6). We assessed the fit for linear relationships (i.e., 

MaxTemp and TimeAtMax) using R2 and non-linear relationships (i.e., InitTemp and Shape) using 

Pearson’s correlation coefficient. All four BFD terms’ regressions had R2 or Pearson’s correlation 

coefficients at 0.98 or above in both the HF and LF plots (Table 6). The output tables from shefire 

of all fit statistics for each plot can be found in supplementary Table S5 and S6. 

To be concise in this case study, we visually compare measured and predicted soil 

heating for a selection of soil depths across the LF and HF plots (Figure 5). The temperature over 

time for each depth was calculated using the temp_over_time function. The differences in soil 

temperatures experienced by the two plots were largest in shallow soils: at 3 cm depth in the HF 

plot, soil temperatures reached over 100 °C but did not even heat to 40 °C at that depth in the LF 

plot (Figure 5). The duration of heating also differed between the two plots. At 3 cm depth, within 

250 minutes, the HF plot cooled to approximately 50 percent of its maximum temperature, while 

the LF plot had barely begun to cool by 250 minutes (Figure 5).  

Although there are many possible fire-effect applications of the SheFire model, we will 

focus on survival_percent for the sake of brevity. Given a sparse literature on thermal tolerance 

(Dickinson et al. 2005), there are no thermal tolerance data available for the plant present in these 

plos. Therefore, we demonstrate the utility of this function by showing how contrasting thermal 

tolerances and variable soil heating affect response for sensitive partridge pea seeds 

(Chamaecrista nictitans, previously Cassia nictitans; Martin and Cushwa 1966, Martin et al. 

1969), and Douglas fir (Pseudotsuga menziesii) and trembling aspen (Populus tremuloides) stem 

vascular cambium cells (Dickinson and Johnson 2004). Sensitive partridge pea (from here on 

partridge pea) seed survival is based on percent germination after heating treatments (see Martin 

and Cushwa 1966). Vascular cambium cell survival is based oncounts of dead and live cells based  
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Figure 5. A. Raw temperature data recorded in the HF plot. B. Model predictions for a range of 

soil depths for the HF plot. C. Raw temperature data recorded in the LF plot. D. Model 

predictions for a range of soil depths for the LF plot. 

 

on vital staining (Dickinson and Johnson 2004). Because no suitable data on root thermal 

tolerance exist and to demonstrate the application, we assume that root vascular cambium has a 

similar heat tolerance to stem vascular cambium. Parameters for the rate process equation 

(Equation 6) for partridge pea seeds and vascular cambium tissue are in supplementary Table S7. 
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Figure 6. Predicted partridge pea seed survival and soil temperature over time at 5 and 10 cm 

deep in the soil for A. HF plot and B. LF plot.  

 

Predicted survival for partridge pea seeds was nearly 0 at 5 cm depth in the HF plot but at 

10 cm depth, the predicted survival was 100 percent (Figure 6). The seeds had 100 percent 

predicted survival at both depths in the LF plot which had cooler soil temperatures (Figure 6). 

Under the same soil heating regimes, different tissues experience vastly different effects (Figure 

7). For example, based on modeled soil temperatures at 13 cm depth in the HF plot, the thermal 

tolerance model predicted that aspen and Douglas fir vascular cambium cell populations would 

have experienced nearly complete mortality (0.2% and 2.5% survival, respectively) while 

partridge pea seeds would have 100 percent survival at that depth (Figure 7). Using 

survival_depth run at 0.01 cm increments, the 50% threshold, at which we would predict vascular 

cambium tissue necrosis (Dickinson and Johnson 2004), was predicted to occur at 14.2 cm depth 
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for aspen and at 14.1 cm for fir, in the HF plot. In contrast, the 50% threshold for partridge pea 

seed survival was predicted at 5.9 cm depth. 

 

 
Figure 7. Predicted root vascular tissue survival for aspen and Douglas fir, predicted partridge 

pea seed survival, and soil temperature at 13 cm deep in the HF plot. 

 

5. Discussion 

5.1. SheFire 

Fire is a key reorganizing force in terrestrial soils – soil heating can kill plant roots, seeds, and 

microbes which in turn transform biogeochemical processes, including carbon and nitrogen 

cycling (Smith et al. 2008, Varner et al. 2009, Swezy and Agee 2011, Hanan et al. 2016a, 2016b), 

and the frequency of severe wildfires is increasing (Schoennagel et al. 2017, Goss et al. 2020, 

Hanan et al. 2021). However heating is often perceived as minimal in most surface fires (Hartford 

and Frandsen 1992), and as a result, has not been studied as extensively as fire effects 

aboveground. The SheFire modeling framework is a first step towards collecting, extrapolating, 
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and applying soil temperature data more broadly. The model is a powerful tool for understanding 

the effects of fires on temperature across soil depths and over time, and how heating directly 

affects soil biological, chemical, and physical processes. SheFire and iStakes offer a means of 

describing, understanding, and predicting fire effects on soils in a more mechanistic and 

accessible way than has been available to date. 

Keeley (2009) describes a set of remotely sensed and ground-based measurements termed 

fire or burn severity that, although easy to obtain, can be indirectly or poorly related to both fire 

characteristics (i.e., energy rates, totals, and transport that we will term fire energy) and 

ecosystem responses of interest. In response to limitations of these severity measurements, the 

dose-response paradigm proposed by Smith et al. (2016a) relates quantitative measures of fire 

energy to biological outcomes. In situations where fire characteristics can be measured or 

simulated, the dose-response approach has great potential to elucidate the connections between 

fires and their effects on ecosystems and to better understand how severity measurements are 

related to fire energy (Miquelajauregui et al. 2016). A limitation of the dose-response approach is 

that the mechanism by which a dose causes a response is not specified. As such, dose-response 

relationships have uncertain generality across varying conditions, species, and ecosystems. A 

more mechanistic option would be to begin elucidating the processes by which the characteristics 

of fires cause effects of interest, a general methodology called the process-response approach 

(Johnson 1985). An increasing number of studies are using process-response approaches to 

understand fire effects (e.g., Balfour and Midgley 2006, Dickinson and Ryan 2010, Battipaglia et 

al. 2016, Michaletz 2018, Sparks et al. 2018) though few have focused on soil effects 

(Choczynska and Johnson 2009, Stephan et al. 2010). 

SheFire expands our ability to study fire effects on belowground dynamics in a process-

based manner. Using the SheFire modeling framework, researchers can explore both soil heating 
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through the temperature summary functions, and belowground effects through the thermal 

tolerance model that can be used to describe biochemical, organismal, and tissue responses to 

heating. When used in conjunction with easily deployable iStakes, SheFire is primed to enable 

laboratory and field measurement of soil heating and biotic effects. We hope that SheFire will 

lead to studies that better describe relationships between fire characteristics and soil heating and 

encourage more studies that estimate parameters of thermal tolerance models for soil organisms 

(e.g., Dickinson and Johnson 2004, Dickinson et al. 2005).  

5.1.1. Temperature, “dose”, estimates 

We found that SheFire demonstrated skill in estimating temperature over time at unmeasured soil 

depths (Table 3; Figure 3). However, because SheFire is based on soil temperatures, in its current 

form it cannot be used to characterize temperatures at the mineral soil surface. We found that 

SheFire can be used to predict soil temperatures at depths shallower than the shallowest sensor, 

but predictions become less accurate as the surface is approached (Table 3). While there are 

situations where fire and soil conditions allow the model to make estimates for soil temperature at 

depths < 0.1 cm from the surface, these estimates should be interpreted with caution and resulting 

conclusions about the soil surface temperature have not been tested. Until more work is done to 

improve shallow predictions, researchers should be mindful when calculating temperature over 

time at shallow depths. More soil surface temperature measurements and a better ability to model 

the physical processes that determine soil surface heat fluxes during fires are needed.  

5.1.2. Survival, “response”, estimates 

There has been significant pushback against the once-dogmatic lethal temperature threshold of 

60°C, the proposed threshold temperature at which live tissues and cells are killed (Dickinson and 

Johnson 2004, Dickinson et al. 2005, Pingree and Kobziar 2019). We demonstrate the application 

of a thermal tolerance model that shows how variable the response to heating can be, with large 
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differences between highly tolerant seeds and relatively intolerant vascular cambium (Figures 6 

and 7). Nonetheless, the exponential dependence between rates of injury and temperature 

(Equation 6) and the corresponding rapid fall-off in survival as temperatures increase (Figures 6 

and 7) explain why lethal effects of heating appear to be threshold phenomena and can often be 

approximated as such. These relationships underline both the importance of soil as an insulator 

and also the thin edge at which organisms in the soil survive or perish during a fire. 

 There are few studies that investigate thermal tolerance and survival during fires but they 

show that survival can be highly variable among species, tissue types, and heating regimes 

(Dickinson and Johnson 2004, Michaletz and Johnson 2007, 2008, Pingree and Kobziar 2019). 

We need more research to augment the current literature on biological responses to fire-induced 

heating, particularly estimates of thermal tolerance model parameters (Table S7) across a range of 

soil microbial taxa (e.g., archaea, bacteria, fungi), life-stages (e.g., vegetative cells, spores) as 

well as for plant seeds and root tissue across a range of species.  

Just as the survival response functions in SheFire reflect a growing understanding of soil 

organism responses to heating, new response functions can be added to the SheFire framework to 

model both threshold effects and more complex processes. For instance, the effects of fire on soil 

organic matter are known to vary with the extent and duration of soil heating (González-Pérez et 

al. 2004). Therefore, soil heating has major implications for soil carbon storage in fire prone 

landscapes. Current methods for assessing soil carbon storage and fire interactions are often not 

mechanistic at the level of soil heating and typically focus on fire frequency, severity, and 

aboveground fuels (Homann et al. 2011, Pellegrini et al. 2018). SheFire may provide a way to 

expand that work by linking soil carbon thermal degradation that occurs during fire to the 

temperatures experienced and the heating duration at different soil depths. Additionally, knowing 

how deep into the soil profile heating causes organic soil phosphorus to be converted to its more 
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biologically available form, orthophosphate, can increase our understanding of post-fire plant 

recovery. Understanding the heat experienced by soil microbial communities is important for 

predicting microbial community dynamics following fire, which has implications for ecosystem 

functioning (Whitman et al. 2019). Furthermore, soil temperatures experienced during fires can 

influence soil NH4
+ pools after fire, which are a critical component of nitrogen cycling and 

ecosystem nitrogen budgets (Klopatek et al. 1990). With SheFire, we have established a modeling 

approach that can be leveraged to fill these knowledge gaps and expand our ability to predict fire 

effects. 

5.2. iStakes 

The iButton and thermocouple benchmarking study demonstrates that iButtons provide a 

comparable alternative to thermocouples. Changing sensor types will not divide the soil 

temperature literature into two incompatible camps where the data from one sensor type cannot 

be compared to the data from the other (Table 4 and 5; Figure 5, Bova and Dickinson 2008). 

While thermocouples are the current standard for measuring soil temperatures during fires 

(Pereira et al. 2019), iButtons offer many advantages over thermocouples, including lower costs 

and ease of installation. In terms of ease of use, iStakes are simpler to install in the field than 

thermocouples because they are merely pushed into the soil and the depth of the top of the stake 

measured as opposed to thermocouples where the sensors must each be buried and precisely 

measured with additional work put towards protecting the data loggers from the fire (Pereira et al. 

2019). In the growing study of wildfires (Lentile et al. 2007, Miesel et al. 2018, Dickinson et al. 

2019) the ability to deploy equipment rapidly allows a team to collect as much data as possible 

while mitigating risk. 

Beyond the logistics of deploying equipment, iStakes offer many advantages in the data 

they collect. Because an iStake is thin and can simply be pushed into the ground, or in cases of 



89 
 
 

 
 

stony soil inserted into a pilot slot, it causes less disturbance than the hole that must be dug and 

then filled back in to deploy thermocouples. Disturbed soil heats differently than undisturbed soil 

so reducing disturbance around the sensors is important for recording temperatures representative 

of what the soil would experience without sensor installation (Busse et al. 2010). Other 

researchers have also devised ways to minimize the effects of soil disturbance on the temperature 

data they record with thermocouples such as Robichaud and Brown who patented a metal canister 

that is buried and deploys thermocouples that extend into the soil (Robichaud and Brown 2019). 

However, a risk with this approach is that the metal of the canister will conduct heat down into 

the soil profile more rapidly than do the surrounding soils, which transfer heat relatively slowly 

(DeBano 2000, Kreye et al. 2013, Badía-Villas et al. 2014, Aznar et al. 2016). The wood of the 

iButton stake will not conduct heat like the metal canister would because its thermal diffusivity 

(determined by the ratio of thermal conductivity to heat capacity) matches that of the soil more 

closely than does metal (MacLean 1941, Kersten 1949, Bristow 1998).  

It is, however, worth noting that iStakes are not ideal in all circumstances due to some 

logistical and data limitations. First, iButtons do not have replaceable batteries and cannot be 

recharged, thus battery life is sensor life (Maxim Integrated 2002). Anecdotal evidence suggests 

that they can record over 500,000 data points before the sensor must be replaced (Maxim 

Integrated 2002). Thermocouples on the other hand can be used for as long as they remain 

undamaged. The data loggers need a power source and can eventually break down, but they are 

considered long lived and have replaceable batteries. The second limitation is that iButtons have 

lower temperature thresholds than thermocouples. For the high temperature iButtons, that limit is 

125 °C. When soil temperatures exceed that limit, but are not high enough to damage the iButton, 

the sensor will record a timestamp at the appropriate data logging rate, but it will not record a 

temperature until it cools back to 125 °C and below. Preliminary work indicates that the BFD 
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fitting portion of the SheFire model can be used to accurately interpolate the missing data when 

the maximum temperature is above 125 °C. However, soil temperatures as shallow as 5 cm deep 

rarely exceed 150 °C (DeBano 2000) and decline rapidly with depth (Giovannini and Lucchesi 

1997, Badía-Villas et al. 2014, Aznar et al. 2016, Pereira et al. 2019) so outside of the high 

temperatures in pile burns (Massman et al. 2010) or below deep, smoldering duff (Hartford and 

Frandsen 1992), iButtons will generally work well.  

There are pros and cons to both iStakes and thermocouples, but our data shows strong 

agreement between iButton and thermocouple readings, indicating that studies using iButton 

measurements will contribute to the broader body of knowledge. In most cases, iStakes offer an 

easier alternative to thermocouple installation in the field and decrease soil disturbance.  

 

6. Conclusions  

The SheFire framework provides a cutting-edge approach for estimating how fire energy transfers 

through a soil profile and predicting biological responses. While the current model advances our 

ability to predict belowground responses to fire, there are many opportunities for future expansion 

and development. For example, as our understanding of temperature-dependent biological and 

biogeochemical responses continues to improve, new response functions can be added to the 

SheFire framework.  

In addition to adding new response functions, SheFire could be coupled with other fire 

models. For example, linking SheFire with aboveground dose-response models, such as the tree 

mortality model (Michaletz and Johnson 2008), could provide a more complete understanding of 

how fire affects plants, which can experience heating in both their above and belowground 

structures. Linking SheFire with models for fire effects on soils, such as those that model thermal 

conductivity, water content, and soil structure (Massman et al. 2010, Massman 2015, Smits et al. 
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2016) could strengthen SheFire’s predictive ability or even provide additional response functions 

that focus on those physical effects. Further work could also link SheFire with fire behavior and 

fire regime models which would enable predictions of soil temperatures and their effects 

belowground based on the predicted fire characteristics of current and future fire regimes.  

SheFire provides a modeling framework that enables researchers to move beyond 

qualitative and semi-quantitative descriptions of fire severity and explore how soil heating 

influences specific responses. As we learn to coexist with more frequent wildfire (Schoennagel et 

al. 2017), SheFire can help researchers and land managers quantify how unplanned wildfires, 

prescribed fires, and pile burns directly influence soil physical, chemical and biological 

processes.  
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Supplementary S1: Model Implementation 

The shefire function, which fits the model, has thirteen adjustable parameters beyond the 

input data (supplementary Table S1). The default settings will work in most situations, but they 

can be adjusted according to the user’s needs or to fit a particularly high or low energy fire, which 

may need a longer cool down period postfire or some data smoothing to identify the start of the 

fire effects, respectively. A full list of the parameter names and descriptions can be found in 

supplementary Table S1. 

The time.buffer parameter warrants a more detailed explanation. Because soil heating 

begins at the surface and transmits from shallow to deeper depths over time, depending on the 

exact heating profile of a given fire, extrapolating temperatures for depths shallower than the 

shallowest sensor may not be mathematically possible if the time when the shallowest sensor 

begins to warm is set as the starting point for the model (time.buffer of 0). The time the maximum 

temperature is reached (TimeAtMax) must be positive, so with a short time.buffer there is a 

smaller window of time when the shallower soil depths can reach their maximum temperature and 

still fall within the model time range. Thus, by setting the amount of time added prior to the time 

when the shallow sensor begins to warm as the start point, time.buffer also dictates, in 

conjunction with the exact heating patterns of the specific fire and soil conditions being modeled, 

how shallow of a depth can be predicted. The default time is 30 minutes, which, based on datasets 

we have examined (discussed later in the validation experiment and the case study), may be more 

than is needed to predict up to within 1.0 cm of the soil surface for many fires. In other cases, it 

may not be enough time and the shallowest depth that can be calculated will be deeper than 1.0 

cm. Users can increase the time.buffer as needed. However, a tradeoff for increasing the 

time.buffer is that it can negatively affect the BFD fits and BFD parameter-depth regressions. In 

particular, there is a consistent relationship between a longer time.buffer and worse regression fit 
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for the Shape parameter. This is a tradeoff that users must navigate if they want temperature 

predictions at shallow soil depths.  

 The shallowest depth that can be predicted by the model is not necessarily the shallowest 

depth for which the predictions are logically reasonable. The shallowest depth that has reasonable 

predictions varies with the characteristics of the fire, heating, and the time.buffer. If users are 

estimating heating at shallow depths and using large time.buffers, we recommend plotting 

temperature over time for multiple depths to make sure the estimates are reasonable. Generally, 

predictions ≥ 0.5 cm deeper than the shallowest depth that can mathematically be calculated are 

reasonable, but this is not a hard and fast rule. If a user needs to look at shallow depths 

specifically, they should plot the temperature over time for that depth alongside a few deeper 

depths and determine if this model is the right tool for them to use. In the future, more data on 

surface temperatures and physical modeling (e.g., Massman 2021) may guide developments of 

SheFire that would improve near-surface predictions. 

 The most challenging parameter-depth regression to fit is for InitTemp. Due to diurnal 

heating, the relationship between soil depth and temperature is variable depending on the time of 

day and weather preceding the fire induced heating (Sándor and Fodor 2012). Therefore, if the 

correlation between the InitTemp regression and the initial temperatures from the BFD equations 

fit to the input data falls below the correlation threshold (corr.threshold; see supplementary Table 

S1 for parameter details), the model reverts to a secondary option. The secondary option uses the 

initial temperature from the sensor closest to the soil depth of interest as the InitTemp term for 

that depth. If any of the other three parameter-depth regressions (MaxTemp, TimeAtMax, or 

Shape) fall below the correlation threshold, the model construction will abort and present an error 

message explaining what occurred. 
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 The shefire function output is slightly different when the parameter-depth regression 

equations are calculated versus when they are not (regression parameter set to True and False, 

respectively; see supplementary Table S1 for parameter details). Without the parameter-depth 

regressions, the model is incomplete and cannot be used to estimate temperature over time at any 

depth other than the three sensor depths. The function output is restricted to a list containing the 

BFD equations that were fit to the input data, their fit evaluation, the temperature values from 

those equations at the temporal resolution selected in the res parameter (see supplementary Table 

S1 for parameter details), and information about the beginning and end of the time range used to 

fit the equations. The full model, with the parameter-depth regressions, has an output list 

containing all the equations and data necessary to calculate temperature over time for a range of 

soil depths and run the summary and response functions (Table 2). Information about all the fit 

evaluations for the BFD equations fit to the input data as well as the parameter-depth regressions 

is in the summary tables and can be printed or saved with the print.plots.tables and 

save.plots.tables parameters (see supplementary Table S1 for parameter details). 

 

Table S1. Table of the shefire function parameters. The parameter name, description, and 

possible reasons to adjust the parameter are included. All parameters have default values except 

for the input data. 

Parameter 

Name 

Description Potential Adjustments 

input Data frame of formatted input 

temperature data 

Data unique to each location 

sensor.depths List of the temperature sensor depths in 

cm 

Default is 5, 10, and 15 cm 

because those are the 

recommended sensor depths 

when using iStakes 

cutoff The time (min) after the shallow 

sensor's maximum temperature 

(TimeAtMax) that the code will cut off 

the data set for fitting unless 

temperatures rise again (i.e., diurnal 

heating) or the data set ends first  

The default is 24 hours (1440 

min), but soils heated by high 

energy or smoldering fires may 

be cooling for more than 24 hours 
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override.clip Prevents the function from clipping the 

beginning or end of the data set. 

Default is False 

Set to True if the input data have 

been manually clipped to exactly 

the desired time frame for fitting 

moving.window Smooths the data (mean value across 

the window) when locating the starting 

point for heating in the shallow sensor. 

The default is False 

This can be useful in low energy 

fires in particular, when the fire 

heating may not be faster than 

diurnal heating on a point-to-

point basis 

window.size Only needed if moving.window is 

True. The size (in time steps) of the 

window that used for smoothing with 

moving.window. Default is 3 

Window size can be increased for 

particularly noisy data or slow 

warming 

regression This will have the function calculate 

the parameter-depth regressions which 

can be used to extrapolate or 

interpolate to other soil depths. This is 

needed to use any summary or response 

functions. Default is True 

Set to False to calculate only the 

BFD equations that are fit to the 

input data 

res Only needed when regression is False. 

Sets the temporal resolution (in min) 

for the output temperatures from the 

equations fit to the sensor data. The 

temperature values (at every time point 

based on the temporal resolution) are 

returned in the return list at the end of 

the function. Default is 1 minute 

Change temporal resolution to 

output the temperatures from the 

fitted parameter equations at 

timesteps other than one minute, 

i.e., temperature at every 30 

seconds would be res = 0.5 

minutes 

corr.threshold Threshold for accepted level of 

correlation between the input 

temperatures and the fitted 

temperatures as well as between the 

parameter-depth regressions and the 

BFD parameters calculated to fit the 

input data. Correlations less than the 

threshold will cause the model 

construction to abort. Default is 0.8 

Adjust for a higher or lower level 

of acceptable correlation 

time.buffer The time (min) added before the 

temperature begins to rise for the 

shallow sensor. The buffer is often 

needed to be able to extrapolate to 

depths shallower than the shallowest 

sensor. However, keep the time.buffer 

as short as possible because longer 

buffers can worsen the fits for 

equations and regressions. The default 

is set to 30 minutes 

If you do not need extrapolations 

to depths shallower than your 

shallowest sensor or if you are 

not calculating the regressions, 

users can set time.buffer to 0. 

Depending on the rate of heating 

for a given fire, a shorter buffer 

can work or in a few cases it may 

need to be extended if the model 

cannot make realistic predictions 

at a shallow depth of interest 

print.plots.tables If True, prints a standard set of plots 

(plotted at the temporal resolution of 

Set to True to print the plots and 

tables 
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the input data, not "res") to visualize 

BFD equation fits and prints summary 

tables containing equation details and 

fit information. Default is False 

save.plots.tables If True, saves a standard set of plots 

(plotted at the temporal resolution of 

the input data, not "res") to visualize 

BFD equation fits as jpeg images and 

saves the summary tables containing 

equation details and fit information as 

CSV files. Default is False 

Set to True to save the plots and 

tables 

save.name Only needed if save.plots.tables is 

True. The name that will be used for 

saving the plots and tables. Default is 

"SheFire" 

Set the name that will be used in 

saved file names 

save.directory Only needed if save.plots.tables is 

True. The file path for where to save 

the plots and tables, if different from 

current working directory 

Set to change the location the 

files be saved 

 

Supplementary S2. iStake construction and field deployment 

S2.1. iStake construction 

The iStakes are made of 0.5 cm thick softwood. The purpose of using wood is that its 

thermal properties and drying and wetting behavior (which influence thermal properties) better 

match soil than other materials, particularly metals. As such, the stake itself will have limited 

impact on soil heating and temperature measurements. A width of 2.5 cm works well to drill the 

holes for the iButtons without cracking the wood. The holes for the iButtons should be 1.5 cm in 

diameter for a snug fit. The stakes can be any length depending on the number of sensors and 

depths needed for a particular project. For example, in a pile burn that is expected to reach high 

temperatures, either placing the full stake deeper into the soil profile or shifting the sensors holes 

deeper along the stake may make sense. For general application, the following dimensions are 

recommended: 16 cm long with 2 cm of taper at the end with the iButton centers at 3, 8, and 13 

cm from the top of the stake (Figure 1). This placement means that, when installing the stake so 

that the top is 2 cm deep in the soil, the iButton centers will be at 5, 10, and 15cm deep. An 
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additional piece that can make stake retrieval faster is to drill a small hole in the top of the stake 

to attach a piece of wire or other non-combustible flagging that will stay above the soil surface. 

That flagging makes it easier to locate the stake post fire. A small piece of foil attached to the top 

of the stake can help prevent any charring or other heat damage to the stake, increasing longevity. 

We encourage users to experiment with a range of woods and milling techniques that may result 

in improved iStake function both thermally and in ease of use. 

  Depending on the depths to be measured, the stake will need either the high temperature 

or the low temperature iButtons. With the standard stake that places iButtons at 5, 10, and 15cm 

depth, using a high temperature iButton in the top position and low temperature iButtons in the 

bottom two is recommended. If particularly high temperatures are expected, such as in a pile burn 

or high fuel loading, it would be advisable to use high temperature iButtons in the deeper 

positions as well or simply place the stake deeper into the ground to measure cooler soil depths. 

Based on the precise goals of the project, varying numbers of sensors can be used, and they can 

be placed at different soil depths. For use with the SheFire model, three depths must be measured. 

So far, the model has been validated using sensor depths at 5, 10, and 15 cm but further work may 

show other depth combinations to be equally effective. 

S2.2. Field deployment 

Field deployment of the iStakes is straightforward. First, the sensors must be launched 

from a laptop or other computer using a software application such as OneWireViewer by Maxim 

Integrated. Launching the sensors requires setting a logging rate and start time which should be 

chosen depending on the specifics of the situation. Setting the iButtons to start at the same time 

will meet that SheFire requirement for the three datasets to start at the same time. Minimal data 

trimming by hand can also achieve the same result. The SheFire model does not have specific 

data logging rate requirements but the three sensors need to have the same rate. Using the 
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quickest data logging rate possible will provide the most information but will reduce the length of 

time that the iButtons can be deployed. We generally recommend using a 10 min logging rate as a 

compromise between temporal resolution and the need or desire to have the iStakes deployed for 

multiple days. It is often helpful to deploy the stakes a day or days prior to the fire and to leave 

them in the ground a day or more after the fire to discern diurnal heating and to fully characterize 

soil cooling. Being able to deploy iStakes well ahead of the fire also allows for data capture in the 

face of uncertainty as to when the fire will reach the iStake or if a prescribed burn will be 

conducted on a particular day. 

Once launched, the iButtons are ready to snap into the wooden stakes and can be placed 

in the ground. If the soil is especially rocky or compacted, it may be necessary to use a metal bar, 

with the same dimensions as the stake, and a hammer to create the space in the soil for the stake 

but in many cases, simply pressing the stake into the soil will be adequate. For the stakes 

described above, the top of the stake should be two cm below the surface of the mineral soil. That 

buffer space, accounted for in the sensor placement along the stake, ensures the stake will not 

char during the fire. See Figure 2A for a deployment diagram. After the fire and cooling period, 

the stakes can simply be pulled out of the ground. The data from the iButtons are then 

downloaded to a laptop or other computer and the iButtons stopped or redeployed. 
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Supplementary S3. Methods 

 
Figure S1. The temperatures over time at 5, 10, and 15 cm deep from an example replicate. A. 

The unadjusted temperatures B. The adjusted temperatures. The temperatures were adjusted for a 

shifting baseline temperature.  
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Supplementary S4. Results  

Table S2. SheFire validation results with both the adjusted and unadjusted temperatures. Each replicate is a pair of model building (5, 10, and 

15 cm) and model testing (4, 7, and 12 cm) iStakes. The statistics show the comparison between the model predictions and measured 

temperatures for 4, 7, and 12 cm deep. The “adjusted” statistics are from temperatures adjusted to a shifting temperature baseline before 

building or running the model. The “not adjusted” statistics are from the raw temperature values with no adjustment.  

Adjusted 12cm 7cm 4cm 

replicate id Pearson R2 RMSE Pearson R2 RMSE Pearson R2 RMSE 

1016T2C1 0.98 0.97 0.56 0.98 0.97 1.28 no sensor data   

1016T2C3 0.99 0.98 0.52 0.99 0.99 0.94 no sensor data   

1017T2C1 0.99 0.98 0.46 0.98 0.95 1.79 0.95 0.91 4.36 

1017T2C2 0.98 0.96 1.29 0.99 0.99 1.71 no sensor data   

1017T2C3 0.99 0.98 0.47 0.99 0.98 0.95 no sensor data   

1018T1C1 0.99 0.98 0.52 0.98 0.97 1.69 0.97 0.93 3.95 

1018T1C2 0.98 0.97 0.72 0.99 0.97 1.62 no sensor data   

1018T1C4 0.98 0.96 0.56 0.99 0.97 1.15 0.98 0.97 2.07 

1018T2C1 0.96 0.93 0.81 0.94 0.89 2.34 0.94 0.89 3.88 

Mean 0.98 0.97 0.66 0.98 0.96 1.50 0.96 0.92 3.56 

Stnd Error <0.01 0.01 0.09 0.01 0.01 0.15 0.01 0.01 0.51 

Not Adjusted    
1016T2C1 0.99 0.98 0.54 0.94 0.87 2.09 no sensor data   

1016T2C3 model could not run     no sensor data   

1017T2C1 model could not run          

1017T2C2 model could not run     no sensor data   

1017T2C3 model could not run     no sensor data   

1018T1C1 model could not run          

1018T1C2 0.99 0.98 0.67 0.93 0.87 2.78 no sensor data   

1018T1C4 model could not run         

1018T2C1 0.99 0.98 0.58 0.88 0.78 2.92 0.63 0.40 7.24 

Mean 0.99 0.98 0.60 0.92 0.84 2.60 NA NA NA 

Stnd Error <0.01 <0.01 0.04 0.02 0.03 0.26 NA NA NA 
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Table S3. Detailed comparison of unadjusted iButton and thermocouple readings. Each replicate is comprised of an iButton stake and three 

thermocouples. The paired thermocouples and iButtons are at the same soil depth. Each iButton thermocouple pair is compared separately 

from the other two paired sets of sensors within the replicate. In replicate 1018T1C4, the thermocouple at 5 cm malfunctioned.  

  15cm 10cm 5cm 

 Replicate id Pearson R2 RMSE Pearson R2 RMSE Pearson   R2 RMSE 

 1016T1C1 0.98 0.96 0.82 0.99 0.99 0.65 >0.99 >0.99 0.65 

 1016T1C2 0.99 0.98 0.69 >0.99 >0.99 0.29 0.98 0.96 1.72 

 1016T1C3 0.99 0.98 0.64 0.99 0.99 0.65 0.99 0.97 1.51 

 1016T1C4 0.99 0.99 0.43 >0.99 0.99 0.45 0.97 0.94 1.53 

 1016T2C1 0.97 0.94 0.73 0.95 0.89 1.21 0.93 0.87 3.15 

 1017T1C1 >0.99 0.99 0.48 0.99 0.97 1.11 0.99 0.97 2.13 

 1017T1C2 0.99 0.99 0.50 0.98 0.96 1.83 >0.99 0.99 1.60 

 1017T1C3 >0.99 >0.99 0.30 0.98 0.96 1.31 0.99 0.98 1.50 

 1017T1C4 0.98 0.95 1.35 0.98 0.97 1.31 >0.99 0.99 1.13 

 1017T2C1 0.99 0.99 0.42 0.93 0.86 1.73 0.99 0.99 0.94 

 1018T1C1 0.98 0.95 0.92 0.98 0.96 1.35 0.96 0.93 2.73 

 1018T2C2 0.99 0.98 0.53 0.99 0.97 1.02 0.92 0.84 5.04 

 1018T1C3 0.99 0.97 0.79 0.98 0.96 1.11 0.97 0.94 2.01 

 1018T1C4 0.96 0.92 1.31 0.99 0.98 0.76 sensor malfunction 

 1018T2C1 0.99 0.98 0.45 0.97 0.95 1.11 0.91 0.83 3.84 

Mean 0.99 0.97 0.69 0.98 0.96 1.06 0.97 0.94 2.11 

Stnd Error <0.01 0.01 0.08 0.01 0.01 0.11 0.01 0.02 0.32 
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Table S4. The BFD parameters fit to paired thermocouple and iButton sensors using adjusted 

data. Each row is a different sensor pair. One thermocouple at 5 cm deep malfunctioned. 

  InitTemp MaxTemp TimeAtMax Shape 

Depth Thermoc. iButton Thermoc. iButton Thermoc. iButton Thermoc. iButton 

5 cm 3.78 4.36 45.82 49.02 61.14 62.49 1.21 1.05 

5 cm 5.38 5.08 44.10 39.18 49.65 55.27 1.19 1.08 

5 cm 4.76 4.80 44.75 43.03 57.90 54.36 1.07 1.07 

5 cm 4.64 5.10 30.21 27.44 64.83 74.12 1.02 0.93 

5 cm 4.35 4.63 38.16 40.51 71.70 59.46 0.88 1.12 

5 cm 3.65 5.32 50.22 56.16 80.17 74.05 0.81 0.72 

5 cm 2.24 1.66 65.07 56.95 74.25 71.07 0.95 1.10 

5 cm 3.93 2.62 42.85 38.84 79.87 75.82 0.89 1.10 

5 cm 4.19 2.48 12.71 63.42 147.69 67.73 0.43 1.07 

5 cm 4.78 4.74 37.80 38.24 78.08 75.06 0.73 0.82 

5 cm 5.65 6.27 39.61 45.40 82.56 72.85 0.73 0.79 

5 cm 8.76 6.35 51.10 52.27 57.18 70.15 0.72 0.82 

5 cm 4.14 5.27 28.44 35.53 91.45 91.26 0.72 0.66 

5 cm NA 3.89 NA 32.17 NA 94.90 NA 0.65 

5 cm 5.35 5.12 40.97 44.47 70.31 56.24 0.88 1.11 

10 cm 3.73 4.08 24.19 22.60 102.45 100.32 0.78 0.80 

10 cm 3.82 3.97 17.84 18.00 89.25 88.10 0.95 1.03 

10 cm 3.63 4.21 18.49 17.95 100.00 92.36 0.79 0.90 

10 cm 4.57 4.46 15.04 13.59 111.15 112.45 0.88 0.85 

10 cm 2.34 3.86 18.86 18.91 71.30 91.16 1.79 0.98 

10 cm 2.87 3.95 21.20 25.22 119.31 109.68 0.58 0.63 

10 cm 3.58 3.91 27.96 28.09 120.49 107.86 0.59 0.71 

10 cm 3.57 4.11 18.03 20.39 119.79 110.16 0.63 0.72 

10 cm 3.20 3.64 28.20 29.12 97.07 104.48 1.01 0.73 

10 cm 3.18 4.27 19.03 19.29 85.76 106.76 1.36 0.70 

10 cm 2.24 4.36 22.64 22.25 106.73 104.63 0.80 0.72 

10 cm 3.48 4.02 24.98 23.56 98.41 102.98 0.84 0.76 

10 cm 4.36 4.53 17.87 17.40 106.88 120.85 0.87 0.62 

10 cm 4.71 1.33 16.69 14.66 128.57 135.06 0.57 0.69 

10 cm 4.08 4.16 22.19 20.08 86.95 92.47 0.97 0.95 

15 cm 4.97 5.16 14.21 13.73 123.37 120.72 0.61 0.63 

15 cm 5.24 4.95 12.03 12.14 114.04 103.89 0.59 0.87 

15 cm 4.56 4.47 8.92 9.76 125.54 113.31 0.41 0.56 

15 cm 4.36 5.12 7.56 8.94 123.48 127.85 0.45 0.61 

15 cm 5.07 4.56 10.09 11.12 126.82 116.22 0.59 0.78 

15 cm 4.46 4.69 11.85 13.19 144.39 137.93 0.48 0.49 

15 cm 4.83 4.84 12.59 14.42 144.79 135.04 0.50 0.52 

15 cm 4.53 4.28 10.78 10.74 142.34 136.85 0.43 0.53 
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15 cm 3.03 4.22 60.34 14.54 65.86 131.87 1.08 0.57 

15 cm 4.12 5.06 10.33 11.41 139.67 130.23 0.58 0.57 

15 cm 4.07 5.15 10.75 12.36 154.25 129.64 0.48 0.56 

15 cm 0.45 5.02 9.62 13.08 156.92 125.42 0.96 0.60 

15 cm 3.89 5.10 8.83 10.15 168.47 140.88 0.55 0.48 

15 cm 3.04 3.87 9.21 9.61 199.74 151.61 0.42 0.56 

15 cm 5.27 4.74 11.49 10.90 133.02 126.15 0.52 0.66 

 

Supplementary S5. Case Study  

 

Table S5. The BFD fit information from the SheFire model for A. the low fuel plot and B the 

high fuel plot. The table shows the BFD terms, root mean square error, and Pearson correlation 

coefficient for each soil depth measured. It also gives information about the time points to which 

the data set was trimmed, and the subsequent duration of the data set used to build the model. 

 A – low fuel (LF) Depth InitTemp MaxTemp TimeAtMax Shape RMSE Pears. 

Shallow - 5cm 5 25.63 34.03 259.82 1.16 0.55   0.98 

Middle - 10cm 10 26.73 31.24 411.83 0.84 0.23   0.99 

Deep - 15cm 15 27.60 30.10 556.60 0.65 0.15   0.98 

Formula:  Temp = InitTemp + (MaxTemp - InitTemp)e^(-z)  
z = (log(time) - log(TimeAtMax))^2 / ShapeConstant  

Real time conversion           

Start of data set used 08-02-18 15:53           

End of data set used 08-03-18 11:43 Time elapsed (min): 1190     

 B – high fuel (HF) Depth InitTemp MaxTemp TimeAtMax Shape RMSE Pears. 

Shallow - 5cm 5 28.74 78.29 126.34 2.11 2.25   0.99 

Middle - 10cm 10 30.38 52.81 260.11 1.62 1.19   0.98 

Deep - 15cm 15 30.81 44.36 434.63 1.35 0.50   0.99 

Formula:  Temp = InitTemp + (MaxTemp - InitTemp)*e^(-z) 

z = (log(time) - log(TimeAtMax))^2 / ShapeConstant  

Real time conversion           

Start of data set used 7-30-18 17:29           

End of data set used 7-31-18 16:11 Time elapsed (min): 1362     

 

Table S6. The parameter-depth regression for A. the LF plot and B. the HF plot. The table shows 

the fit statistic (either R2 or Pearson correlation coefficient) and its value, the regression equation, 

the shallowest soil depth that can be extrapolated by the model, and the time range covered by the 

model. The regression equations give the BFD parameter for soil depth x.  

A – Low fuel plot (LF)     

Parameter Statistic Value Equation  
MaxTemp R2 0.99 e^(3.71+(-0.11*log(x))) 

InitTemp Pearson >0.99 22.99*(x^--0.07) 

TimeAtMax R2 >0.99 112.63+29.68*x 
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Shape Pearson >0.99 2.65*(x^-0.51) 

Shallowest 0.001 cm cannot extrapolate shallower 

StartTime  08-02-18 15:53 beginning of model time range 

EndTime 08-03-18 11:43 end of model time range  FullTime: 1190 min 

B – High fuel plot (HF)    

Parameter Statistic Value Equation 

MaxTemp R2 >0.99 e^(5.19+(-0.52*log(x))) 

InitTemp Pearson 0.98 25.99*(x^--0.06) 

TimeAtMax R2 0.99 -34.59+30.83*x  
Shape Pearson >0.99 4.04*(x^-0.40) 

Shallowest 1.1545 cm cannot extrapolate shallower   
StartTime  7/30/18 17:29 beginning of model time range   
EndTime 7/31/18 16:11 end of model time range  FullTime: 1362 min 

 

Table S7. Parameters of the rate process equation (Equation 7) for C. nictitans seeds and vascular 

cambium tissue. We extracted the C. nictitans thermal tolerance data from Martin et al. (1969) 

Figure 8 and fit the first-order rate process equation to them to estimate parameter values. Martin 

et al’s data are times at fixed, elevated temperatures at which 100% seed mortality was first 

reached during heating trials. Vascular cambium cell survival is based on counts of dead and live 

cells based on vital staining (Dickinson and Johnson 2004). We assume that root vascular 

cambium has a similar heat tolerance to stem vascular cambium. 

Example 

Activation 

entropy - 

deltaS 

Activation 

enthalpy - 

deltaH 

Lower limit of 

relevant 

temperature range 

Source (J/mol*K) (J/mol) (C)  

Cassia 

seeds 

112 147741 70 Martin, Cushwa, 

Miller (1969) 

Aspen 665 312522 45  Dickinson and 

Johnson (2004) 

Douglas 

fir 

528 270036 45 Dickinson and 

Johnson (2004) 
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IV. Conclusions and future directions 

 Wildfires are a driving force shaping our landscapes. They can affect everything from 

plant community composition to soil characteristics and biogeochemical cycling (e.g., Giovannini 

et al. 1990, Neary et al. 2005, Knelman et al. 2015, Doerr et al. 2017, Alcañiz et al. 2018). Fires 

directly affect soils through the extent and duration of heating but also have indirect effects 

through processes including ash and char deposition. In this work I developed a new approach for 

measuring and modeling the direct effects of fires using SheFire and iStakes. I used an 

experimental setup to validate the model and to benchmark ibuttons against thermocouples. I also 

explored how N cycling is transformed by the combination of direct and indirect fire effects in the 

field. Using a novel dataset that included immediate pre- and postfire samples, I measured 

nitrogen availability and cycling through time across a range of fire severities.  

I found that fire severity alone was not fully responsible for changes in soil N cycling 

after the fire. High soil water content and fire severity interacted to produce increased levels of N 

availability and cycling in the soil sampling location that burned compared to control locations. 

Additionally, the length of time that the soils had high water content was an important factor 

contributing to N cycling, which furthered the divergence between the fire severity categories: 

high and extreme severity sampling locations experienced increased N availability and cycling 

when soils were wet but could not sustain those rates with prolonged soil wetting unlike low 

severity sampling locations which had moderate rate increases but could sustain them. These 

results suggest that, in this system, N availability and cycling is driven by rain events and 

seasonal soil wetting after fires.  

Although I found these intriguing patterns with N availability and cycling with soil 

moisture across varying levels of fire severity, there is room for expansion. This case study 

focused on a single fire and did not have extensive replication within fire severity. While the 
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patterns I found are strong in this situation, the data are not sufficient to generalize to other fires. 

Fire effects are variable both spatially and temporally (e.g., Neary et al. 2005, Certini 2005, 

Hanan et al. 2016, Alcañiz et al. 2018). It remains difficult to generalize all but the broadest 

strokes patterns from one fire to another. 

1. Sampling design for unplanned wildfires 

The sampling design employed in this study is promising. It provides a framework for 

measuring ephemeral shifts postfire as well as long term changes to N cycling. Including 

unburned control sites can enable researchers to tease seasonal effects apart from fire by season 

interactions—in other words, what would the temporal patterns be in the absence of fire. 

Although the fire behavior is uncontrolled, this study shows how prefire measurements and 

control areas enable researchers to study unplanned wildfires as effectively as they can study 

prescribed burns. Research has shown that unplanned wildfires and prescribed fires are not 

readily comparable (e.g., Alba et al. 2015, Price et al. 2018) so it is crucial that we find ways to 

study both as wildfire activity increases. Furthermore, because soil contains the largest terrestrial 

carbon (C) pool (Scharlemann et al. 2014), understanding how fire can influence soil 

biogeochemical processes, such as coupled C and N cycles, is critically important as fires become 

more frequent and/or more severe (Westerling et al. 2006, Schoennagel et al. 2017).  

2. Modeling framework for soil temperatures and direct responses 

SheFire is a modeling framework that successfully predicts temperatures over time for 

unmeasured soil depths. The survival response functions provide a valuable tool for quantifying 

the biological impacts of fire on soils. They also serve as an example for how we can model 

direct fire effects using temperature data. As our understanding of soil processes and fire induced 

soil transformations expands, SheFire provides a foundation for how to model these processes.  
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Traditionally, fire severity, either assessed on the ground or remotely from satellite 

imagery, has been used to categorize burned areas. However, using changes to aboveground 

vegetation and the soil surface to categorize fire effects is problematic (Smith et al. 2016). This is 

particularly true when studying soils because aboveground changes do not always scale linearly 

with belowground effects. But using soil temperatures offers a quantitative alternative. Although 

not a strictly controlled dose-response experiment, using soil temperatures, as opposed to fire 

severity, would address many of the concerns raised in (Smith et al. 2016) and other syntheses 

concerning how we measure fire intensity and fire effects. Although instrumenting large areas 

before fire is not currently feasible, shifting to categorizing fires by temperatures when it possible 

would be a good first step. 

In this research, I originally planned to use soil temperatures, as opposed fire severity, to 

categorize and group sampling locations in the Walker Fire. Unfortunately, due to a few failed 

and missing sensors, there were not enough data. However, there is great potential for future work 

to describe soil heating using quantitative temperature estimates rather than more qualitative, less 

mechanistic assessments of fire severity. Currently, there are no consistent relationships between 

fire severity estimates and soil physical, chemical, and biological changes following fire. Moving 

from indirect, qualitative fire severity estimates to quantitative fire temperature/energy 

measurements will enable us to more mechanistically represent the processes that lead to such 

wide variation. Future work may find that, while soil effects do not closely follow aboveground 

fire severity, they may be tightly correlated with the soil temperatures during the fire. Any 

increase in our understanding of these processes helps us better predict fire effects and 

sustainably manage our fire-prone landscapes.  
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