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Abstract

Humans rely on prominent feature recognition to correctly identify and describe

previously seen faces. Despite this fact, there is little existing work investigating how

prominent facial features can be automatically recognized and used to create natural

language face descriptions. Facial attribute prediction, a more commonly studied

problem in computer vision, has previously been used for this task. However, the

evaluation metrics and baseline models currently used to compare different attribute

prediction methods are insufficient for determining which approaches are best at

classifying highly imbalanced attributes. We also show that CelebA, the largest and

most widely used facial attribute dataset, is too poorly labeled to be suitable for

prominent feature recognition. To deal with these issues, we propose a method for

generating weak prominent feature labels using semantic segmentation and show that

we can use these labels to improve attribute-based face description.
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Chapter 1

Introduction

Research in human vision indicates that humans recognize faces by identification of

prominent features [1], and in some cases can even recognize caricatures (exaggerated

drawings of faces) more quickly than unaltered photos of faces [2]. These features are

important for generating useful descriptions of faces. However, there is little existing

work in computer vision investigating how best to recognize prominent features and

even less work in natural language processing investigating how to use these features

to describe faces with words. This thesis aims to address both issues.

Prior work in prominent facial feature recognition exists in the form of facial

attribute prediction. Facial attribute labels describe a face with natural language

features such as big nose, bushy eyebrows, gray hair, and smiling. In addition to the

direct utility of being able to describe a face in words, attribute labels have been used

to improve face verification and identification [3–5] semantic segmentation [6], and

other face parsing tasks such as detection and landmarking [7]. Facial attributes have

also recently become popular for GAN-based face editing [8, 9]. The only large-scale

facial attribute dataset that includes prominent feature descriptions is CelebA [10],

which contains 202, 599 images of 10, 177 people labeled with 40 binary attributes.
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Figure 1.1: Examples of CelebA-ITW images (top) and their CelebA-C+A versions
(bottom).

The images are provided in both the original, uncropped format and as 218 × 178

cropped and aligned images. We refer to the two versions as CelebA-ITW (In the

wild) and CelebA-C+A (Cropped+aligned). Examples of both are shown in Figure

1.1.

In Chapter 3, we investigate the applicability of existing attribute prediction meth-

ods to prominent feature recognition. We find that the CelebA dataset is largely un-

suitable for prominent feature recognition and that there exist a large number of flaws

with existing methods for model evaluation. We are able to train simple ResNet-18

models to achieve state-of-the-art or near state-of-the-art attribute prediction per-

formance without taking advantage of any assumptions specific to the domain. We

show that this is because existing works fail to effectively evaluate how well their

models perform for imbalanced attributes, which are essential for prominent feature

recognition because prominent features are necessarily uncommon. We then argue

that these issues with evaluation are partly caused by larger issues with the dataset

itself. We show that many attributes in CelebA are frequently labeled incorrectly,

contradict with other labels, or are highly inconsistent with respect to quantitative

measurements. In light of these results, we argue that CelebA and other existing

attribute datasets cannot directly be used for prominent feature recognition. To im-

prove these issues, we suggest better evaluation metrics and awareness of data issues
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to facilitate more useful methods for attribute prediction.

While there are many issues with CelebA, it remains the primary dataset used

for facial attribute prediction. There has recently been increasing interest in using

text data to manipulate face images, and as such some works have used CelebA

attributes to generate captions for GAN training [11,12]. Captions are also useful for

improving accessibility and for image lookup, as existing image description methods

do not describe faces in a way that identifies what differentiates the person from

other individuals. Despite these applications, there has been little work focusing on

generating useful face captions.

In Chapter 4, we suggest alternative methods for prominent feature recognition

and use prominent features to generate natural language descriptions of face images.

Because there does not exist prior work for evaluating face captions, we also propose a

framework for evaluating how well a caption describes what is unique about a face. We

use this to determine the quality of captions generated using facial attribute labels.

To improve upon these labels, we also propose a novel method for weakly-labeled

prominent feature detection. We collect a small dataset of unrestricted prominent

feature descriptions and use feature sizes and shapes estimated using semantic seg-

mentation to predict many of these features. We then train a classifier to predict

these weak labels and show that we can use the predicted features to improve the

quality of our generated captions. We also show how face captions can be used in

practice for image lookup.

By examining issues in existing face attribute data and proposing empirical meth-

ods for evaluating description quality, we hope to facilitate future research in natural

language face description. In Chapter 5 we provide discussion of the challenges present

in face captioning and describe several potential avenues for future work in the area.
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Chapter 2

Background

2.1 Prominent Features

Research in human vision has found that prominent facial features are essential for

face identification, and that humans may have evolved to have more variable facial

morphology to assist quick recognition [1]. Humans can in some cases even recognize

caricatures, drawings which exaggerate the most prominent features of a face, more

quickly than actual face photos [2]. Existing work has also found that humans can

more easily recognize a sketch of a face when the prominent features are exaggerated,

but have more difficulty with recognizing sketches when prominent features are made

less distinct [13]. Humans have more difficulty recognizing face photos which have

been distorted to be more similar to an average face, but may even be able to recognize

photos distorted to exaggerate distinctions from an average face more easily than a

non-distorted image [14].

Because prominent features are important for human vision, some existing works

have used visual features for computer vision identification and verification models.
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Facial attributes were originally proposed as a method for using describable features

to improve face verification [3] and allow for text-based face image lookup [15]. This

method used labels collected through Amazon Mechanical Turk, with binary labels

for each feature. Features were selected arbitrarily, and are not useful for describing

all people (e.g., race labels are included, but the only options are “white,” “black,”

and “Asian”). A much larger dataset, CelebA [10], was constructed using a subset of

these attributes. We discuss this data and models for predicting its labels in Section

2.2.

While there exist other facial attribute datasets, we focus on CelebA because it

is the largest and most widely used. PubFig [3] contains 65 attributes, but only

1,000 samples per attribute were collected and the dataset only contains 200 unique

identities. LFWA [10] contains 40 attributes for 13,233 images, but was labeled by

the same group and in the same manner as CelebA, which contains 202,599 images.

Other attribute datasets such as Adience [16] and IMBD-Wiki [17] typically only

contain a small number of attributes which cannot be used for prominent features

such as race, gender, or age.

Prominent features can also be detected by modeling the shape of the face and

directly computing what features are prominent rather than predicting binary at-

tributes. This can be done with either semantic segmentation, which annotates each

pixel with a label indicating which features it is part of (e.g., face, nose, lips, eyes,

etc.) [18, 19] or 3D modeling, which builds a complete predicted 3D face mesh for a

given image [20,21]. To our knowledge no prior work has investigated the applicability

of these methods to prominent feature recognition.



6

2.2 Attribute Recognition

2.2.1 Attribute Recognition Networks

The CelebA dataset contains the following 40 attributes: 5 o’clock shadow, arched

eyebrows, attractive, bags under eyes, bald, bangs, big lips, big nose, black hair, blond

hair, blurry, brown hair, bushy eyebrows, chubby, double chin, eyeglasses, goatee,

gray hair, heavy makeup, high cheekbones, male, mouth slightly open, mustache,

narrow eyes, no beard, oval face, pale skin, pointy nose, receding hairline, rosy cheeks,

sideburns, smiling, straight hair, wavy hair, wearing earrings, wearing hat, wearing

lipstick, wearing necklace, wearing necktie, and young. Each image in the dataset

contains a binary label for each attribute indicating whether the attribute is present

or not. Models trained on the dataset therefore take an image as input an predict 40

binary labels as output.

Since the release of the CelebA dataset in 2015, there have been many proposed

methods for CelebA attribute prediction. Liu et. al. used three deep CNNs, LNet0,

LNets and ANet, where the LNet networks detect the face in an unaligned image

and ANet predicts attribute labels. Linear SVMs are then trained on the validation

set to translate features learned by ANet to attribute predictions [10]. This was

the first proposed method designed specifically for CelebA attribute prediction and

obtained significantly better results than the previous attribute recognition methods

PANDA [22] and FaceTracer [23].

Later works rely on more typical end-to-end CNN models. MOON [24], which uses

CelebA-C+A, consists of VGG-16 with a multitask loss function which accounts for

differences between a source and target distribution. AFFACT [25], which provides

results for both CelebA-C+A and CelebA-ITW (with faces detected by a pretrained

face detector), uses ResNet-50 combined with both train-time and test-time augmen-
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tations. MCNN-AUX [26] uses a shallower CNN with different branches for different

attribute groupings to take advantage of relationships between attributes.

Other works use additional data to improve performance. SSP+SSG [27] takes ad-

vantage of the relationship between part localization and attribute prediction, using

semantic segmentation to improve prediction performance. A semantic segmentation

model trained on the segmentation-labeled Helen face dataset is used to gate and

pool activations in a VGG-based architecture. Later work by the same authors uses

an Inception-v3 backbone which jointly learns attribute prediction and semantic seg-

mentation, improving the performance of both [6]. Segmentation data has also been

used by [28], who use a GAN to generate segmentation masks which are then used to

generate an additional set of features to combine with features from the RGB images.

In addition to auxiliary data, auxiliary labels can be used to improve attribute pre-

diction. LMLE and CLMLE [29] deal with class imbalance by learning an embedding

function which separates cluster distributions within and between classes. They use

DeepID2 features trained on the CelebFaces+ dataset [30], which was used to create

CelebA, effectively meaning that CelebA identity labels are auxiliary data. HFE [31]

also takes advantage of the identity labels provided by CelebA by enforcing that rep-

resentations should be separated by both attribute and identity information. Their

method uses a DeepID2 backbone with fully-connected branches for each attribute

and obtains, to our knowledge, the best reported results on aligned CelebA.

2.2.2 Labeling Issues

While many previous works have used the CelebA dataset to evaluate attribute pre-

diction and imbalanced classification methods, few have provided analysis of labeling

issues. Hand et. al. [32] argue that the poor performance of state-of-the-art classifiers

on many attributes is caused by ambiguous labeling, and provide examples of poor
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labels for the attributes oval face, attractive, high cheekbones, and arched eyebrows.

They also show that many images labeled with lipstick are incorrectly labeled. There

has also been some work discussing the bias caused by subjective labeling and dataset

imbalance. Prabhu et. al. [33] show that increasing the contribution of labels such as

attractive and wearing lipstick to a generative model causes images to look like blond,

white women. Wang et. al. [34] show that the imbalance present in CelebA results in

classifiers amplifying bias. Other works have shown that bias amplification is an issue

in large scale datasets exhibiting imbalance [35]. However, to our knowledge no other

work has performed quantitative analysis of labeling issues in CelebA. In section 3.2

we show that many CelebA labels, in addition to being subjective and imbalanced as

shown in prior work, are frequently inconsistent or even completely incorrect.

2.3 Captioning

Existing work in image captioning typically uses encoder-decoder models with large

datasets of image-caption pairs and recurrent or transformer-based decoders for gen-

erating text [36, 37]. While there are large existing caption datasets for birds [38],

common objects [39] and surveillance imagery [40], to our knowledge the only face

caption dataset with human annotation is Face2Text [41], which only provides cap-

tions for 400 face images with very little direction for how labelers should describe

faces. Although the dataset collectors filtered the captions for “hate speech,” this

only resulted in one description being discarded and descriptions which contain “use

of ethnic or other characteristics when these are not used in an offensive manner” were

left in the dataset. Most other work dealing with face captions focuses on extracting

names to collect additional data for face verification [42, 43] rather than collecting

descriptions of face features.
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As a result of these data issues, it is difficult to apply supervised learning to

face captioning. While there is some existing work in unsupervised captioning [44],

this relies on a large corpus of unpaired caption texts. Unfortunately, captions for

face images are very different from captions for common objects due to the smaller

amount of variation, so it is far more difficult to construct an adequate dataset.

As a result, existing works using face caption have relied upon captions generated

directly from attribute labels using a set of pre-defined rules [12,45]. Prior works have

used a probabilistic context free grammar (PCFG) to generate captions using CelebA

attribute labels [11, 12]. However, to our knowledge no prior work has investigated

how best to generate and evaluate face captions or use feature descriptions other than

those provided with CelebA.
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Chapter 3

Improving Attribute Recognition

In this chapter we investigate issues with attribute recognition and the CelebA at-

tribute dataset. Section 3.1 deals with evaluation issues present in existing attribute

recognition techniques, and section 3.2 deals with issues with the dataset itself.

3.1 Improving Evaluation

In this section we show that near-state-of-the-art accuracy can be obtained on both

versions of the CelebA dataset using a ResNet-18 model [46] trained with binary

cross-entropy loss without any auxiliary data. This is in contrast to most recent

attribute prediction approaches, which use substantially larger models and additional

information such as segmentation masks and identity labels. By using initial weights

pretrained on ImageNet, our results become even more competitive. On CelebA-

ITW our results with pretraining substantially improve upon the accuracy obtained

by current state-of-the-art models, most of which use auxiliary data far closer to the

target domain.

We argue that a major reason models struggle to improve upon such a simple
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baseline is that the metrics used to evaluate them are severely flawed. Due to the

imbalanced nature of the dataset, very high accuracy can be obtained for some at-

tributes by a naive classifier which always predicts the majority class. We obtain

results not far behind current state-of-the-art even when randomly discarding 90%

of the training data, which disproportionately impacts the least balanced attributes.

Furthermore, we show that balanced accuracy, used by several works as an alternative

metric for dealing with these issues, can in fact be even worse for measuring perfor-

mance on imbalanced data. We demonstrate how balanced accuracy can be exploited

by training a model to a balanced accuracy score of 88.4%, only slightly behind state-

of-the-art, with an average precision of just 58.6%. These metrics result in consistent

overestimation of model quality, masking labeling issues which prevent reasonable

performance on certain attributes. Better metrics show that several attributes are

too subjective or poorly labeled to be reliably predicted.

These flaws in currently used evaluation metrics, combined with the wide va-

riety of backbone models and hyperparameter selections in other state of the art

approaches as well as the lack of publicly available implementations, make it difficult

to meaningfully compare different methods. To deal with this issue, we provide sev-

eral suggestions for improved evaluation of facial attribute prediction models. Future

work should evaluate models using F1-score or other metrics not affected by true neg-

ative counts, provide comparisons to stronger baselines more closely related to the

proposed method, and better acknowledge the limitations of the dataset. We provide

our implementation and detailed per-attribute results (to be made publicly available

following publication) as a simple but strong baseline for future work to compare to.
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3.1.1 Baseline Experiments

In this section we establish a simple baseline approach for facial attribute prediction.

We then show that we are able to obtain results close to all state-of-the-art methods

discussed in Chapter 2 following this approach, even when using far less data.

Experimental Setup

For both CelebA-ITW and CelebA-C+A, we train one ResNet-18 model on the entire

training set and another on a randomly sampled subset of 10% of the training set.

We use the same subset across all experiments. We then repeat all experiments using

initial weights pretrained to perform ImageNet classification. All tests are run five

times with fixed hyperparameters to collect mean and standard deviation values. It

is important to note that prior works do not report mean and standard deviation,

likely resulting in inflated accuracy numbers. The reported results for AFFACT,

for example, use the model which obtained the highest validation accuracy out of

multiple runs.

For CelebA-C+A, we resize from the original 218×178 size to 274×224 to ensure

the smallest dimension matches the 224 × 224 image size most commonly used for

ImageNet. To augment images, we use flipping, cropping and rotation. Images are

first resized by a random scale between 95% and 105%, then cropped back to 274×224.

We then randomly rotate between ±5 and 5 degrees. We found that, while minor, the

cropping and rotation transformations were useful for reducing overfitting. Finally,

we flip the image horizontally with 50% probability. For CelebA-ITW, we zero-pad

all images to be square then resize to 500 × 500 to ensure facial features remain

visible even for images where the face is small. We then use the same augmentations

adjusted to the larger image size. Because this increases the memory requirements of

the network, we divide both the initial learning rate and batch size by 4.
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To train our models, we primarily use the same parameters as the ResNet pa-

per [46]: SGD with a batch size of 256, initial learning rate of 0.1, momentum of

0.9, weight decay of 0.0001, and a learning rate schedule in which the learning rate is

multiplied by 0.1 when the validation loss plateaus. However, because we train for a

fixed number of epochs, for most models we found that we obtained more consistent

results by simply multiplying the learning rate by a factor of 0.9 every epoch. Excep-

tions include results without pretraining on our 10% downsampled versions of CelebA

and on the full version of CelebA-ITW, for which we use the original plateau-based

schedule. We also use a smaller multiplier of 0.8 for the pretrained model using all

of CelebA-ITW. All models are trained on a single NVIDIA GTX 1080 Ti GPU. Full

configurations for each experiment are described below.

• ResNet-18: 40 epochs, learning rate multiplied by .9 each epoch.

• ResNet-18 (pretrained): 20 epochs, learning rate multiplied by .8 each epoch

• ResNet-18 (10%): 80 epochs, learning rate multiplied by .1 on validation loss

plateau with a patience of 10

• ResNet-18 (10%, pretrained): 40 epochs, learning rate multiplied by .9 each

epoch

For the unaligned data, we divide both batch size and initial learning rate by 4 to

allow training on a single GPU. All models trained on the unaligned version of CelebA

therefore use SGD with a batch size of 64, initial learning rate of 0.025, momentum

of 0.9, weight decay of 0.0001.

• ResNet-18: 60 epochs, learning rate multiplied by .1 on validation loss plateau

with a patience of 10

• ResNet-18 (pretrained): 20 epochs, learning rate multiplied by .9 each epoch
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• ResNet-18 (10%): 80 epochs, learning rate multiplied by .1 on validation loss

plateau with a patience of 10

• ResNet-18 (10%, pretrained): 40 epochs, learning rate multiplied by .9 each

epoch

Results

As shown in Table 3.1, we are able to improve upon the CelebA-C+A results of

MOON and CLMLE using ResNet-18 without any additional data, and, as shown in

Table 3.2, our CelebA-ITW results without additional data are within one standard

deviation of all methods other than SA. Note that all methods which outperform our

non-pretrained baselines use either auxiliary data or an additional model trained on

a different dataset. AFFACT and AFFAIR use pre-trained face detectors, SSP+SSG

and SA use semantic segmentation data, FAN uses semantic segmentation data as

well as ImageNet pretraining, and HFE uses CelebA identity labels. Additionally,

ResNet-18 has far fewer parameters and is much faster at inference time than the

methods used in most other works. For example, SA uses an Inception-v3 backbone,

which contains twice as many parameters as ResNet-18. AFFACT uses ResNet-50,

which similarly has twice as many parameters as ResNet-18. Note that AFFACT

reports higher accuracies when using 162 test-time augmentations or an ensemble of

networks. For fairness of comparison we use their results using a single model and no

test-time augmentations.

Notably, while [25] and [48] use face detection or alignment transformations, we

find that we are able to obtain high-quality results on CelebA-ITW without any

alignment or face detection. With ImageNet pretraining, our results improve upon

the nearest three methods, all of which are within 0.02% of each other, by 0.34%.

Surprisingly, we also improve upon our best CelebA-C+A results. This is partially
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Method Accuracy
MOON [24] 90.94%
CLMLE [29] 91.13%

MCNN-AUX [26] 91.29%
AFFACT [25] 91.67%

SSP + SSG [27] 91.80%
FAN [28] 91.81%
HFE [31] 92.17%
ResNet-18 91.48± .06%

ResNet-18 (ImageNet pretrained) 91.71± .01%
ResNet-18 (10%) 90.32± .07%

ResNet-18 (10%, ImageNet pretrained) 90.88± .02%

Table 3.1: Comparison between our baseline ResNet-18 networks and state-of-the-
art methods on the cropped and aligned images (CelebA-C+A). “10%” indicates the
network was trained on a subset containing 10% of the training data.

Method Accuracy
LNets+ANet [10] 87%
Zhong et. al. [47] 89.80%
AFFACT [25] 91.45%
AFFAIR [48] 91.45%

SA [6] 91.47%
ResNet-18 91.36± .13%

ResNet-18 (ImageNet pretrained) 91.81± .07%
ResNet-18 (10%) 89.86± .13%

ResNet-18 (10%, ImageNet pretrained) 90.43± .05%

Table 3.2: Comparison between our baseline ResNet-18 networks and state-of-the-art
methods on the in the wild images (CelebA-ITW).

because the data was labeled using the original images, and some attributes are not

visible in the aligned version. In particular, wearing necklace is frequently cropped

out of the aligned image. The full-size images may have also contributed to bias

in the labeling which networks using aligned data cannot exploit. For example, the

attractive attribute may be affected by the clothing worn in the image, which is mostly

cropped out by alignment.

Perhaps even more surprisingly, we are also able to obtain results comparable to

state-of-the-art with just 10% of the training data available in CelebA (a total of
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16,277 training samples, rather than the 162,771 in the complete dataset). With Im-

ageNet pretraining, our results for CelebA-C+A are competitive with MOON, which

is used as the strongest baseline for accuracy comparison by several works, includ-

ing [25] [27] [32]. All methods which improve upon our CelebA-ITW results, with

or without ImageNet pretraining, use either a pretrained face detector or additional

data.

3.1.2 Improving Evaluation

In this section we show that our ability to match or improve upon state-of-the-art

using simple models is in part because currently used evaluation metrics are highly

flawed. We provide suggestions for better evaluation and baselines and show that

better metrics reveal labeling flaws which harm performance for many attributes.

Better Metrics

Due to the imbalance present in CelebA, the accuracy of a model which always pre-

dicts the most common class based on the distribution of the training data is 79.91%,

rather than 50% as it would be for a balanced dataset. For the least balanced at-

tributes, such a model can obtain accuracy as high as 97.88%. To demonstrate why

this is problematic for comparing different methods, we compare our baseline trained

on 10% of the data with our baseline trained on the entire dataset. For the least

balanced attributes, the network trained on 10% of the data only has a few hundred

positive examples to learn from, so we expect these attributes to be where the dif-

ference between the two models is most apparent. However, when evaluating using

accuracy, we observe the opposite: the most imbalanced attributes correspond to the

smallest differences in accuracy. This is despite the fact that the network trained

with less data clearly does worse on these attributes in terms of both precision and
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Figure 3.1: Per-attribute accuracy and F1 drop incurred by training on a random
selection of 10% of the training data. Balance rank orders attributes by their ratio
between positive and negative samples, with rare attributes (e.g. bald) on the left
and common attributes (e.g. young) on the right.

recall (combined using F1), as shown in Figure 3.1. Because there is little improve-

ment than can be made over always predicting the majority class, performing well

for highly imbalanced attributes is not very important for achieving high average

accuracy scores.

To address this issue, several previous works [27–29, 49, 50] have used balanced

accuracy, which weighs true positive rate equally to true negative rate:

1

2
(

TP

TP + FN
+

TN

TN + FP
) (3.1)

Average precision has also been used [27]. However, we argue that both approaches

are flawed. Average precision can be maximized at the expense of recall by only

predicting 1 when highly confident, and balanced accuracy considers only true positive

rate and true negative rate, which can be misleading for highly imbalanced data [51].

In the case of CelebA, balanced accuracy places very little weight on precision for

highly imbalanced attributes. For the bald attribute, for example, a network can

obtain a balanced accuracy of 95% with perfect recall but a precision of just 17.5%

(2.12% TP, 10% FP, 87.78% TN, 0% FN). The relationship can be more clearly shown



18

Figure 3.2: Precision and recall for a ResNet-18 network optimized with BCE (left)
and balance-weighted BCE (right). Balance rank orders attributes by their ratio
between positive and negative samples, with rare attributes (e.g. bald) on the left
and common attributes (e.g. young) on the right.

by rewriting balanced accuracy as the following:

1

2
(1− FN

Np

)(1− FP

Nn

), (3.2)

where Np = TP +FN is the total number of positive samples and Nn = TN +FP is

the total number of negative samples. When Nn >> Np, it is much more important

to have few FN than few FP , thus prioritizing recall. Similarly, when Np >> Nn, it

is much more important to have few FP than few FN , thus prioritizing precision.

Because almost all CelebA attributes are predominately negative, we find in prac-

tice that optimizing models for balanced accuracy simply results in maximizing recall.

To show this, we train our baseline ResNet-18 model using a loss function which is

balanced by weighing each attribute loss by the ratio between negative and positive

samples for that attribute. We find that our balanced accuracy on CelebA-C+A

improves substantially with this weighted loss (81.52 ± .14 to 87.84 ± .11), but this

simply trades precision for recall, and our F1-score (the harmonic mean of precision

and recall) remains unaffected (71.99± .23 to 71.83± .38). The tradeoff between pre-

cision and recall is shown in Figure 3.2. Note that, particularly for the least balanced

attributes, precision is substantially damaged to improve recall.

To further show how balanced accuracy can be problematic, we replace each at-
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Without Pretraining
Data Acc. Bal. Acc. F1

CelebA-C+A, 100% 91.48± .06% 81.49± .18% 71.98± .21%
CelebA-C+A, 10% 90.32± .07% 78.20± .43% 66.58± .76%
CelebA-ITW, 100% 91.36± .13% 82.80± .11% 73.13± .21%
CelebA-ITW, 10% 89.86± .13% 76.34± .72% 63.72± 1.58%

With ImageNet Pretraining
Data Acc. Bal. Acc. F1

CelebA-C+A, 100% 91.71± .01% 82.35± .11% 73.19± .10%
CelebA-C+A, 10% 90.88± .02% 79.62± .12% 69.05± .11%
CelebA-ITW, 100% 91.81± .07% 82.39± .25% 73.36± .31%
CelebA-ITW, 10% 90.43± .05% 76.92± .19% 64.57± .28%

Table 3.3: Accuracy, balanced accuracy, and F1 scores averaged over all attributes.

tribute weight w for our BCE loss with w1.5, thus improving recall for attributes

which are mostly negative and improving precision for attributes which are mostly

positive. With ImageNet pretraining, we obtain a balanced accuracy of 88.43± .05%

– just 0.35% below the state-of-the-art result obtained by CLMLE using DeepID2

features pretrained to perform verification on CelebA – while our average precision

drops from 78.75± .13% to 58.62± .10% and our accuracy drops from 91.72± .01%

to 86.10± .12%.

While using a combination of balanced accuracy, accuracy, and average precision

overcomes their collective issues, this can lead to practical difficulties in comparing

models. For example, [29] compares their model to [27] using both balanced accuracy

and accuracy. However, Kalayeh et. al. obtained their results using two separate

models, one optimized for accuracy and the other optimized for balanced accuracy,

thus limiting the usefulness of the comparison.

In light of these results, we argue that all metrics used by prior work – accuracy,

balanced accuracy, and average precision – are insufficient for measuring attribute

prediction performance, particularly for imbalanced attributes. We instead suggest

F1-score, which is commonly used for other problems exhibiting class imbalance [52]
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and avoids the problems described above by completely ignoring the number of true

negatives. We provide results for all our models using accuracy, balanced accuracy,

and F1 in Table 3.3. Following previous work, our balanced accuracy metrics are

computed separately for each attribute then averaged to enforce that the model should

do well for all attributes. Similarly, F1 results are the average of per-attribute F1

scores because using cumulative TP/FP/FN counts across all attributes result in

prioritizing attributes which have more total positives. Note that our F1 results

are therefore not comparable to those provided by [28], as they do not compute F1

separately for each attribute but instead use cumulative counts. To our knowledge,

no other work provides F1 results for CelebA.

Better Baselines

Given the small scale of accuracy differences between state-of-the-art approaches, it

is worth considering how large of an effect hyperparameters and network backbone

selection can make. We find that several seemingly minor changes in training hyper-

paramters can result in substantial differences in validation accuracy. For example,

we found that resizing images from 218 × 178 to 274 × 224 resulted in an average

validation accuracy improvement of 0.41%. Additionally, the final model after our

fixed number of epochs does not always achieve the highest validation accuracy, and

stopping training early can result in similar gains. In particular, the learning rate

reduction on plateau schedule varies a large amount from run to run, and can result

in standard deviations as high as 0.13 as shown in Table 3.3. These fluctuations high-

light the importance of having a strong, directly comparable baseline to show that

reported improvements are actually a result of the proposed method.

This can be further seen from works which provide such a comparison. [6] use

Inception-v3 as the backbone of their proposed Symbiotic Augmentation (SA), and
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as such provide comparisons to an Inception-v3 baseline trained without SA. Their

method only improves upon this baseline by 0.15%. Another method which uses

segmentation masks, [28], achieves accuracy results for CelebA-C+A which are within

0.01% of SSP+SSG (the precursor to SA), but improve upon their ResNet-50 baseline

by a much larger 0.31%. While the lack of mean and standard deviation numbers

for these results makes it difficult to determine how significant the improvements

over these baselines are, it is clear from their small scale that a large portion of

the difference between methods comes from backbone networks and hyperparameter

selection.

Labeling Inconsistencies

The similarity in accuracy between a classifier trained using all the data and one

trained using just 10% of the data raises the question of why state-of-the-art classifiers

struggle to obtain accuracy greater than 92%. Measuring results in terms of F1

demonstrates some of the major problems present in the dataset. As explored by

previous work, several labels such as oval face, attractive, high cheekbones, and arched

eyebrows are subjective and inconsistently labeled, while other labels, such as lipstick,

are frequently mislabeled [32]. While some methods have been able to obtain good

results on these attributes in terms of accuracy or balanced accuracy by exploiting the

balance of the dataset, when measured in terms of F1 these issues become far more

clear. For certain highly subjective attributes such as narrow eyes, oval face, and big

lips, our baseline model pretrained using ImageNet is unable to obtain an F1-score

above 50. For some of these attributes, the labeling issues can be seen by averaging

the 200 validation images which result in the highest activations for each attribute.

For example, as shown in Figure 3.3, narrow eyes frequently applies to partially closed

eyes due to laughing and high cheekbones seems to just recognize smiling (we find that
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Figure 3.3: Average of the 200 validation images which achieve the highest activations
for narrow eyes, high cheekbones, big lips, and big nose (left to right).

85.6% of images labeled with high cheekbones are also labeled with smiling). For some

subjective attributes such as big nose and big lips, our baseline seems to rely heavily

on racial or gender bias. Of the 200 images with the highest activations for big lips,

99% of the people are black. Of the images with the lowest activations, 0% are black.

For the top activations for big nose, 78% of the people are black and 3% are female.

For the lowest activations, 0% are black and 100% are female. Almost half (46.5%) of

the images that achieve the highest 200 activations for big lips are also in the highest

200 activations for big nose, suggesting that the two features learn similar biases.

Due to the subjectivity of these attributes, even when optimizing for accuracy

rather than a balanced metric, the most balanced attributes aren’t necessarily the

ones the network performs best for. For example, as shown in Table 3.4, big lips,

oval face, and pointy nose are among the most balanced attributes in the training

set with a positive/negative ratio near 30, but we are unable to obtain an F1 much

better than 50 for any. Additionally, our ability to obtain better performance on

CelebA-ITW than any model not using identity labels on either CelebA-ITW or

CelebA-C+A suggests that the labels are affected by factors outside of facial features.

As previously mentioned, the wearing necklace attribute is frequently not visible in

aligned images, allowing our ImageNet-pretrained network trained on CelebA-ITW

to obtain an average F1 improvement of 15.28 over an identical network trained on

CelebA-C+A. While the network trained using CelebA-C+A performs better on most

attributes, there are 13 other attributes for which the network using unaligned data
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Figure 3.4: Top row: Examples of validation images labeled as bald. Some images are
clearly not bald (leftmost example) or clearly bald (rightmost example), but there is
some ambiguity in between. Bottom row: examples of validation images labeled as
receding hairline seemingly due to close-cropped or tied back hair.

performs better, including oval face (+9.95), mustache (+5.46), big lips (+1.96), and

wearing necktie (+1.92). While wearing necktie is more visible in the uncropped data,

the other features should be entirely visible in the aligned images and may therefore

be biased by factors cropped out during alignment.

We also find that there are many attributes other than those described in [32]

which are seemingly non-subjective but lack clear definitions and are inconsistently

labeled. For example, we found it highly unclear what differentiates bald from receding

hairline. Although the two classes should seemingly be disjoint, 33.1% of images

labeled with bald are also labeled with receding hairline. Though detailed analysis

of labeling issues is left for future work, we found that as many as 50% of images

labeled as bald have some amount of hair on the scalp. Receding hairline is even

more inconsistently labeled, with labelers frequently seeming to use it to describe

hair which is close-cropped or tied back. Examples of both are shown in Figure 3.4.
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Attribute %pos Acc BA Prc Rcl F1
No Beard 85.4 96.5 93.4 98.1 97.8 98.0

Young 75.7 89.0 82.6 90.9 95.1 92.9
Wearing Lipstick 52.1 94.2 94.2 95.9 92.8 94.3

Smiling 50.0 93.4 93.4 94.7 91.9 93.3
Attractive 59.6 83.2 83.2 83.8 82.0 82.8

Mouth Slightly Open 49.5 94.3 94.3 94.9 93.6 94.2
High Cheekbones 48.2 88.1 88.0 89.3 85.5 87.4

Heavy Makeup 40.5 92.0 91.5 91.5 88.5 90.0
Male 38.7 98.4 98.2 98.3 97.5 97.9

Wavy Hair 36.4 85.3 82.0 87.2 69.9 77.6
Big Lips 32.7 72.8 62.7 67.1 33.3 44.5

Oval Face 29.6 76.1 63.0 72.3 31.1 43.5
Pointy Nose 28.6 77.8 68.2 66.1 45.9 54.2

Arched Eyebrows 28.4 84.4 80.8 72.4 72.7 72.5
Black Hair 27.2 90.5 86.5 85.9 77.7 81.6

Big Nose 21.2 84.3 76.8 62.8 63.8 63.3
Straight Hair 21.0 85.0 74.7 66.7 56.9 61.4

Wearing Earrings 20.7 90.7 86.2 76.8 78.6 77.7
Bags Under Eyes 20.3 85.5 78.8 63.4 67.5 65.3

Brown Hair 18.0 89.5 83.7 69.3 74.6 71.9
Bangs 15.6 96.2 91.9 89.4 85.8 87.6

Narrow Eyes 14.9 87.7 64.5 69.4 31.5 43.3
Wearing Necklace 13.8 88.1 65.2 63.3 33.5 43.8

Blond Hair 13.3 96.2 91.4 86.3 84.8 85.5
Bushy Eyebrows 13.0 93.0 80.3 78.9 63.2 70.2

5 o Clock Shadow 10.0 94.8 87.0 72.7 77.1 74.8
Receding Hairline 8.5 94.0 74.9 69.9 51.9 59.6

Rosy Cheeks 7.2 95.4 77.4 73.5 56.3 63.8
Wearing Necktie 7.0 97.1 87.1 81.7 75.4 78.4

Eyeglasses 6.5 99.7 98.4 98.2 96.9 97.5
Chubby 5.3 95.9 75.7 64.2 53.1 58.1
Blurry 5.1 96.4 73.4 71.2 47.9 57.2

Sideburns 4.6 98.0 89.6 76.6 80.4 78.5
Goatee 4.6 97.6 88.1 72.0 77.7 74.7

Double Chin 4.6 96.5 72.7 66.2 46.6 54.7
Pale Skin 4.2 97.2 75.3 74.2 51.4 60.7

Wearing Hat 4.2 99.2 94.3 91.2 89.0 90.1
Mustache 3.9 97.1 72.7 68.8 46.3 55.4
Gray Hair 3.2 98.3 84.9 74.6 70.7 72.5

Bald 2.1 99.1 86.8 80.4 74.1 77.1

Table 3.4: Average accuracy, balanced accuracy, precision, recall, and F1 results on
CelebA-C+A using our baseline ResNet model with ImageNet pretraining. “%pos” is
the percentage of samples which are positive. We bold attributes with an F1 below
60.
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3.1.3 Summary

Although CelebA is the largest-scale facial attribute dataset available, it is difficult

to directly compare methods trained on this data. The two metrics primarily used to

compare performance, accuracy and balanced accuracy, can be optimized for imbal-

anced attributes without producing a classifier which is actually useful for predicting

those attributes. We demonstrate that simple baseline models are able to obtain re-

sults very close to highly specialized methods. To our knowledge, no method is able

to improve upon a non-pretrained ResNet-18 model without requiring additional data

or an additional pretrained model, and improvements over a ResNet-18 model pre-

trained on ImageNet are small (or, in the case of the uncropped data, nonexistent).

Additionally, many attributes have highly inconsistent or inaccurate labels, making

it difficult for any model to achieve reasonable results.

To improve evaluation of facial attribute prediction models, we suggest using met-

rics which are invariant to true negative count such as F1, computed as the average of

per-attribute scores to ensure that all attributes are weighed evenly. Per-attribute re-

sults showing which attributes the model performs best on are also important both to

show how performance is impacted by balance and to demonstrate which attributes

cannot be reliably predicted. Improved performance on certain poorly-labeled at-

tributes may not be meaningful. Additionally, due to the relatively small differences

between most methods and the varying use of additional data, we emphasize the

importance of comparing to strong baselines and providing mean and standard de-

viation numbers to ensure reported improvements come from the proposed method

rather than hyperparameter and backbone selection.
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3.2 Data Issues

Despite the popularity of CelebA, there are a multitude of widespread, unaddressed

attribute labeling issues. While the subjectivity of many attributes in the dataset

makes complete analysis difficult, the majority of labels we are able to analyze have

a large number of errors or inconsistencies. We use several techniques to evaluate

label quality. We first create a list of contradicting attributes and find that 6.78%

of images are labeled with attributes which directly contradict one another. We

then relabel a random sample of 400 images for all non-subjective attributes and

find that some attributes have false positive rates as high as 25%, while others have

false negative rates as high as 22%. To evaluate subjective attributes, we use age

estimation and semantic segmentation to provide estimates of age and feature size,

and compare these estimates with the binary attributes in CelebA. We find that such

attributes are highly inconsistent with these more fine-grained measures, preventing

even near-state-of-the-art classifiers from achieving reasonable performance. Finally,

we show that some attributes are correlated in ways that cannot be explained by

dataset imbalance, indicating incorrect labeling or gender and racial bias. In total,

we determine that at least 10 of the 40 attributes in CelebA have major issues such

as frequent contradictions, incorrect labels, or significant inconsistency.

3.2.1 Incorrect Labels

We first focus on labels which can be directly shown to be incorrect. For subjective

labels, we do this by identifying contradicting labels. For non-subjective labels, we

manually relabel random samples to determine the frequency of incorrect labels.
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Label Contradictions %
No Beard 5 o’Clock Shadow, Goatee, Mustache 4.0%
5 o’Clock Shadow Goatee, Mustache, No Beard 47.9%
Straight Hair Wavy Hair 2.7%
Bald Bangs, Receding Hairline, Straight

Hair, Wavy Hair
33.3%

Table 3.5: Contradicting attribute labels. % is the percentage of images in the full
dataset with the label in the left column and a contradicting label from the middle
column.

Figure 3.5: The first four images in CelebA labeled as double chin but not chubby.
None of these images contain a double chin.

Contradicting and Conflicting Labels

To determine the prevalence of incorrect labels for subjective attributes, we first count

the number of labels which are contradicting (in direct opposition to one another).

For example, it is not possible to have both straight hair and wavy hair. To determine

how many labels in CelebA directly contradict another label, we define a list of all

contradicting attributes. This is shown in Table 3.5. No beard contradicts with all

facial hair labels other than sideburns. Depending on definition, sideburns may also

contradict with no beard, but we find that this only applies to 128 images (0.06% of

the dataset) so we do not include it. Similarly, 5 o’clock shadow contradicts with

other facial hair, straight hair contradicts with wavy hair, and bald contradicts with

all hair labels. We find that 6.78% of images have at least one contradicting label

based on this list, and that bald and 5 o’clock shadow contradict with another label

in one third or more images labeled with these attributes.

We also find that there are many labels, which, while not necessarily contradicting,
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conflict with one another. 2.33% of images labeled with a hair color are labeled with

multiple hair colors, most commonly either both brown hair and black hair or brown

hair and blond hair due to the unclear separation between classes. We also find

that 38.1% of images labeled with double chin are not labeled with chubby. While

double chin does not necessitate chubby, this is frequently indicative of bad labeling,

as shown in Figure 3.5. Similarly, while hair color labels don’t contradict with bald

because they may refer to facial hair, we find that this is very rarely the case. If we

add these conflicts to our list of contradictions, we find that 9.84% of the dataset

contains at least one pair of contradicting labels, and the contradiction frequency for

bald rises to 42.3%.

Mislabeling

To determine the prevalence of incorrect labels for non-subjective attributes, for each

attribute we construct one randomly sampled subset of 400 images containing only

positive instances, then another containing only negative instances. We then manually

verify the correctness of the labels. To avoid sampling bias, a random seed of 0 is

used for all attribute samples. Results are shown in Table 3.6. We find that there

are very few entirely non-subjective labels in CelebA; of the 40 total attributes, only

7 can be clearly defined. Even for these labels, there is some ambiguity. For wearing

hat, we assume that hoods and bandanas count as hats. Without this assumption,

the number of false positives rise to 26 and false negatives drop to 5. We also find

that mouth slightly open is better defined as mouth open. Images of people with wide

open mouths are consistently labeled as mouth slightly open, but images of people

with slightly open mouths are labeled inconsistently. Examples of incorrectly labeled

images are shown in Figure 3.6. In addition to incorrect labels, we find that in 86

images (21.5%) correctly labeled as wearing necklace, the necklace is entirely cropped
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Label FP FN
Eyeglasses 2 (0.5%) 0 (0.0%)
Mouth Slightly Open 5 (1.3%) 86 (21.5%)
Male 5 (1.3%) 2 (0.5%)
Wearing Hat 14 (3.5%) 9 (2.3%)
Wearing Earrings 53 (13.3%) 44 (11.0%)
Wearing Necklace 102 (25.5%) 39 (9.8%)
Wearing Necktie 56 (14.0%) 3 (0.8%)

Table 3.6: Number of false positives (FP) and false negatives (FN) for non-subjective
attributes out of a sample of 400. Gender labels were verified using identity labels.

Figure 3.6: Examples of false positives (left to right): eyeglasses, wearing earrings,
wearing hat, and wearing necktie.

out in the aligned version. In many more images, the necklace is visible but too small

or similar to clothing to be noticeable. This makes accurately predicting wearing

necklace near-impossible for the aligned version of the dataset.

Using the false positive and false negative rates in Table 3.6 combined with at-

tribute probabilities and correlations, we estimate that 34.3% of images in CelebA

have at least one incorrect label among these seven. Note that almost all attributes

are predominately negative (77% of all labels are negative), so the contribution of

false negatives is far greater than the contribution of false positives. Importantly,

incorrect labels cannot be treated as random noise. Of the 102 images incorrectly

labeled with wearing necklace, 100 are of women. Of the 56 images incorrectly la-

beled with wearing necktie, all are of men, most of whom are wearing a collared shirt

and coat as shown in Figure 3.6. We therefore suggest that these labeling issues

were likely caused by labelers misunderstanding a set of reference images, resulting in
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systemic mislabeling. Details about CelebA data collection are not provided, so we

are unable to determine the specific cause of these issues. These errors are far more

problematic than random noise because classifiers are able to learn the noise. For

example, a classifier trained on CelebA may predict that someone wearing a collared

shirt is wearing a necktie even if they are not, because this is frequently the case in

the training data.

3.2.2 Inconsistent Labels

While incorrect labels are an issue for many attributes, most attributes are subjec-

tive and therefore cannot be directly relabeled or shown to contradict with other

attributes. We instead show that many subjective attributes fail to capture quan-

titative information about the feature they describe or are strongly correlated with

other, unrelated attributes.

Consistency

To evaluate label quality in subjective attributes, we take advantage of other facial

analysis tasks that can be used to estimate quantitative information about subjective

CelebA attributes. Semantic segmentation can be used to estimate the size of differ-

ent facial regions, and age estimation can be used to estimate youth. We therefore

compare all attributes which subjectively label the size of facial features (big lips, big

nose, and narrow eyes) as well as young, which subjectively labels the age of the face,

with these classifiers. We find that the subjective labels are highly inconsistent with

respect to these quantitative metrics, preventing even near-state-of-the-art classifiers

from achieving acceptable performance.

For age estimation, we use DEX [53] to estimate the age of all images in CelebA.

For semantic segmentation, we use the DeepLabv3+ architecture [54] trained on the
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Figure 3.7: Left: Histogram of combined lip segment size for images labeled with big
lips and images not labeled with big lips. Right: Histogram of estimated ages for
images labeled with young and images not labeled with young.

CelebA-Mask-HQ dataset, which annotates 18 facial regions for the 30, 000 image

CelebA-HQ dataset [18]. We predict part masks for all images in CelebA. Because

segment size is affected by pose, we restrict our analysis to frontal images to ensure

consistent evaluation of part size. We use the HopeNet pose estimation network [55]

to estimate head poses for all images in CelebA and discard all images with a pitch

or roll not within ±10◦ or a yaw not within −20◦ and 5◦. Because CelebA images are

generally frontal, this still leaves 84, 970 out of 202, 599 images for analysis.

To evaluate the consistency of size-based attributes we count the number of pixels

contained in the segment associated with each attribute. We find that the attribute

labels provided by CelebA do a poor job of discriminating these features. Images

labeled with big lips have an average lip size of 343.1± 75.4, and images not labeled

with big lips have an average lip size of 293.5 ± 73.2. This is shown in Figure 3.7.

We obtain similar results for big nose and narrow eyes : images labeled with big nose

have an average nose size of 560.97± 69.81, with all other images having an average

nose size of 518.96±68.42. Images labeled with narrow eyes have an average eye size

of 72.61 ± 33.42, with all other images having an average eye size of 104.01 ± 33.07.

A linear classifier trained to predict these attributes using segment sizes (assuming a
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Attribute Estimated ResNet-18
Narrow Eyes 38.31 45.47
Big Lips 52.47 46.73
Big Nose 46.34 64.89
Young 90.05 92.91

Mouth Slightly Open 93.93 95.70
Eyeglasses 95.03 98.10

Table 3.7: F1 scores for linear classifiers using estimated quantitative metrics to
predict subjective labels compared with a ResNet-18 classifier trained on CelebA. All
attributes other than young are evaluated using only frontal images.

balanced distribution) is unable to reach an F1-score on the test data above 50 except

for when predicting big lips, for which it achieves an F1-score of 52. This indicates

the actual size of the features has little bearing on whether labelers described them as

“big.” As shown in Figure 3.7, we find that the young attribute is far more consistent,

but still cannot be predicted completely reliably. The substantial overlap in estimated

age between positive and negative instances demonstrates that even with reasonably

consistent labeling, subjective binary attributes are highly flawed for representing

non-binary features. A model with higher accuracy for young than a competitor may

simply do a better job of capturing labeling bias than actually estimating age.

Even for less inconsistently labeled attributes, we find a large amount of overlap

between positive and negative samples. We use DEX [53] to estimate the age of all

images in CelebA, then compare this with the young attribute. While there is a far

more clear separation between the distributions than for the size-based attributes, we

still find there is a great deal of overlap. A classifier trained to predict young based

on estimated age can only achieve an F1-score of 90, by predicting all people with an

estimated age below 33.61 years old to be young.

To demonstrate that the poor performance of these classifiers is not a result of bad

segmentation and age estimation, we provide comparison to our pretrained ResNet-18

classifier described in Section 3.1. These results are shown in Table 3.7. This classifier
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does not perform substantially better than using segment size or age estimation, and

even performs worse for big lips. To demonstrate that non-subjective attributes can

be accurately estimated using quantitative classifiers, we also estimate mouth slightly

open and eyeglasses using the mouth and glasses segments. While mouth slightly open

is not entirely consistently labeled (as discussed in section 3.2.1) and glasses propped

on foreheads cause issues for our segment-size based classifier, we are still able to

achieve satisfactory performance. We therefore suggest that subjective, size-based

labels are too inconsistent for any classifier to achieve reasonable performance. Other

highly subjective labels likely suffer from similar issues.

To further show the extent to which these labels are inconsistent, we compute

the agreement across labels for different images of the same person. We compute the

Fleiss’ κ metric for each attribute across each person, where labels for different images

are treated as different raters. We then compute the average κ across all subjects to

determine the average agreement. These agreements are shown in Table 3.8. Note

that κ ranges from −1 to 1, where κ < 0 indicates even less agreement than expected

by chance and κ > 0 indicates some amount of agreement, up to perfect agreement at

κ = 1. As shown in the table, only 12 attributes have agreement higher than κ = .5.

Correlated Labels

Counting contradictions, relabeling, and evaluating consistency with a quantitative

classifier still leaves many attributes unanalyzed. While we are unable to directly

evaluate the quality of these attributes, there are some correlations between subjective

attributes which indicate poor labeling. As discussed by previous work, on average

attributes have a gender skew of 80.0% [34]. For example, 27.9% of images labeled

with male are labeled with attractive, whereas 67.9% of images not labeled with male

are labeled with attractive. It is difficult to tell to what extent this is a result of bias in
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Blurry −0.0181 Wavy Hair 0.4272
Pale Skin 0.1562 Bangs 0.4313

Mouth Slightly Open 0.2141 Pointy Nose 0.4546
Narrow Eyes 0.2378 Black Hair 0.4717
Wearing Hat 0.2489 Sideburns 0.4759

Smiling 0.2551 Bushy Eyebrows 0.4893
Wearing Necktie 0.2712 Mustache 0.4945
Double Chin 0.2910 Bald 0.4981

Wearing Necklace 0.3113 Goatee 0.5062
High Cheekbones 0.3178 5 ’o Clock Shadow 0.5131

Rosy Cheeks 0.3282 Arched Eyebrows 0.5131
Bags Under Eyes 0.3388 Attractive 0.5140
Receding Hairline 0.3405 Big Nose 0.5585
Straight Hair 0.3441 Blond Hair 0.5727
Brown Hair 0.3719 Heavy Makeup 0.6302
Oval Face 0.3881 No Beard 0.6450

Wearing Earrings 0.3893 Big Lips 0.7279
Chubby 0.3924 Wearing Lipstick 0.7322

Eyeglasses 0.4150 Young 0.8360
Gray Hair 0.4233 Male 0.9789

Table 3.8: Average Fleiss κ agreement for the 40 attributes in CelebA

labeling rather than bias in data selection, but there are some cases were correlation

is clearly indicative of bad labeling. The clearest example is high cheekbones, which

has a correlation of 0.68 with smiling. 85.6% of images labeled high cheekbones are

also labeled smiling, which is otherwise only applied to 48.2% of all images. This is

likely because cheekbones appear higher while smiling, particularly when the smile is

wide. Therefore, it is highly unlikely that high cheekbones provides an accurate label

of cheekbone height irrespective of expression. Additionally, some gender correlations

are too strong to be explained by data selection. We find that women are 3.1 times

more likely to be labeled with pointy nose, whereas men are 2.9 times more likely to

be labeled with big nose. This is despite the fact that the probability of a random

male nose being larger than a random female nose in terms of segment size is just

54.3%, indicating gender bias substantially influences labeling.



35

Gender bias is also not the only bias encoded by subjective attributes. While the

correlation between big lips and big nose in the validation set is fairly weak (0.054), our

ResNet classifier described in Section 3.2.2 exaggerates this correlation to 0.091 due

to related biases. Analysis of the 200 images which achieve the highest activations

for these attributes show that they are heavily biased towards black men. 99% of

people in the top activations for big lips are black, and 94% are male. 78% of people

in the top activations for big nose are black, and 97% are male. None of the people

in the images with the 200 lowest activations for either attribute are black. The bias

exhibited for attractive is also exaggerated, with the percentage of men predicted to

be attractive dropping to 25.1% while the percentage of women rises to 71.0%.

3.2.3 Summary

While the subjectivity of CelebA labels makes their quality difficult to evaluate, we

find that most labels we are able to quantitatively evaluate are poorly or inconsis-

tently used. In particular, 10% or more instances of 5 o’clock shadow, bald, wearing

earrings, wearing necklace, and wearing necktie are used incorrectly or contradict an-

other label. Mouth slightly open is labeled consistently enough to predict reliably,

but the predictor does not match the label definition. Furthermore, subjective labels

such as big nose, big lips, narrow eyes, and young are inconsistent with a quantitative

classifier measuring the same feature. Attributes can also be shown to be poorly

labeled through correlations. High cheekbones almost entirely overlaps with smiling

and pointy nose is strongly negatively correlated with male. Other attributes clearly

encode bias which is amplified by a classifier trained to predict those attributes. Big

lips and big nose, while doing a poor job of estimating quantitative measures of lip

and nose sizes, both encode racial bias which is learned by a classifier. In total, we

find that there are 5 attributes which are clearly labeled incorrectly or contradict
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with another attribute more than 10% of the time, and another 5 attributes which

are highly inconsistent or can be shown to be highly problematic through correlation

with another attribute. There are many other attributes we are unable to evaluate,

but are likely also poorly labeled. For example, a surprisingly high number (34.8%)

of images labeled male are also labeled bags under eyes, and our ResNet classifier is

unable to achieve an F1 greater than 50 for oval face.
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Chapter 4

Utilizing Attributes for Face

Captioning

In this chapter we investigate the applicability of attributes for natural language face

description. Section 4.1 deals with the use of weakly labeled features to overcome the

lack of high-quality data available in CelebA, and section 4.2 deals with the generation

and evaluation of face captions using CelebA attributes and our proposed weak labels.

4.1 Weakly Labeled Prominent Features

In this section we propose a method for generating weak prominent feature labels to

help overcome issues with existing labeled data. We collect a small dataset of natural

language descriptions for 205 people and construct a classifier which uses semantic

segmentation to predict these features. We show that we are able to accurately

represent 12 segment-based features which we use to generate 22 distinct binary

prominent feature labels.
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Labels: well-defined nose tip, ears
stick out, pierced ears, arched eye-
brows, puffy eyelids, bags under
eyes, mustache, goatee.

Labels: wide eyes, long eyelashes,
hooked nose, thin nose, small
head, full lips, arched eyebrows.

Figure 4.1: Examples of two subjects in the caricature set and their associated ground-
truth labels.

4.1.1 Data

We first collect a dataset consisting of 2,900 images of 205 celebrities. All images are

manually cropped to 218x178 boxes containing the face and hair and manually labeled

with at least four prominent features such as “wide nose,” “high cheekbones,” and

“pointy chin” by two graduate students and a professor at the University of Nevada,

Reno. Two labelers independently annotated all 205 celebrities, and the third acted

as a tie-breaker in cases of disagreement. The only restriction we imposed on the

prominent feature selections was that each should consist of a part and a description

(e.g. “nose,” and “wide”). In total, the dataset contains an average of 7.04 features

per person and a total of 150 unique features; our weak labeling method described

in the following section covers 36 of these features. The dataset also contains 1,424

caricature images which are not used for this work. We refer to the dataset as the

“caricature dataset.” Two examples are shown in Figure 4.1.
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4.1.2 Weak Labeling

To generate weak labels, we first use semantic segmentation to determine the lo-

cations and sizes of each region in the face. Face images are segmented into 18

different classes based on the labels provided by the CelebAMask-HQ dataset [18].

These classes include face, nose, eyes (left/right), lips (upper/lower), mouth, ears

(left/right), eyebrows (left/right), hair, neck, and various items (glasses, hats, cloth-

ing, earrings, and necklaces). Segments are allowed to overlap; for example, there

may be hair partially covering the forehead or ears. In the CelebAMask-HQ dataset,

labelers attempted to segment partially occluded regions but did not segment mostly

or fully occluded regions (for example, if an ear is completely covered by hair it is not

segmented).

For our segmentation model we use DeepLab v3+ [54] with a ResNet [46] backbone

pretrained on the ImageNet dataset [56]. After pretraining, the full model is trained

to segment all 18 facial features labeled in the CelebAMask-HQ dataset. To improve

generalization, the dataset is augmented with random rotation, grayscaling, blurring,

and elastic deformation [57]. We also downscale CelebAMask-HQ by one half to

512 × 512 and apply random scale augmentation with a modifier between .5x and

1.25x. Because DeepLab does not work very well with images at a resolution much

lower than this, during inference we rescale our images from 218× 178 to 418× 512.

Figure 4.2 shows an example of a mask output by the network for an image in the

caricature dataset.

20 shape measurements are extracted from the segmentation results and used as

features to predict 36 shape-based prominent facial feature labels. For each subject,

non-frontal images are discarded and the remaining images are rotated to be horizon-

tally level. Most features are based on basic distance measurement. For example, eye

distance is defined as the distance between eye centroids, nose height is defined as



40

Figure 4.2: Visualization of a segmentation mask output by the DeepLab v3+ net-
work.

Figure 4.3: Plots of an ax+ b function fit eye contours (left) and an alog(x) + bx+ c
function fit to eyebrow contours (right).

the distance between the highest and lowest nose point, and lip thickness is defined

as lip area divided by mouth width. There are also two ratio-based features: face

aspect ratio (the ratio between face width and face height) and face size (the ratio

between face area and head area). Finally, there are some features calculated using

the parameters of a function fit to the shape contours. Eyebrow arch is defined as the

b parameter of a alog(x) + bx+ c function fit to the eyebrow, chin flatness is defined

as the p parameter of a xp function fit to the bottom of the head, and eye angle is

defined as the slope of a linear function fit to the eye. Complete details are provided

in Table 4.1. To demonstrate why we use a log function for eyebrows and a linear

function for eyes, we plot examples of functions fit to these regions in Figure 4.3.
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Feature Definition
Ear size Area of ear segment (averaged between left/right ear)
Ear width Width of smallest bounding box containing the ear (averaged

between left/right ear)
Ear height Height of smallest bounding box containing the ear (averaged

between left/right ear)
Eye distance Distance between eye centroids. Normalized by width of head

segment.
Eye size Area of eye segment (averaged between left/right eye)
Eye angle a parameter of ax + b function least-squares fit to eye (aver-

aged between left/right eye)
Eyebrow arch b parameter of alog(x) + bx + c function least-squares fit to

eyebrow (averaged between left/right eyebrow)
Eyebrow width Arc length of the log function described above (averaged be-

tween left/right eyebrow)
Eyebrow height Area of eyebrow segment (averaged between left/right eye-

brow). Normalized by eyebrow width.
Chin flatness p parameter of xp function least-squares fit to region from

bottom of head to halfway between bottom of head and lower
lip. This region is normalized to have a width of 2 and a
height of 1 and is centered at the origin.

Face aspect ratio Aspect ratio of smallest bounding box containing the face.
The face is defined as the eyes, nose, and upper lip (lower lip
not included to reduce error resulting from smiling)

Face size Area of smallest bounding box containing the head (entire
face segment predicted by the network) divided by area of
smallest bounding box containing the face (defined above)

Forehead size Area of smallest bounding box containing the head, cut off
below the eyes.

Glasses Binary flag: 1 if the glasses segment has nonzero area, 0 oth-
erwise.

Lip thickness Area of lip segment (averaged between upper/lower lip). Nor-
malized by mouth width.

Lip thickness ratio Area of upper lip segment divided by area of lower lip segment
Mouth width Width of smallest bounding box containing the upper and

lower lip
Nose width Width of smallest bounding box containing the nose
Nose height Height of smallest bounding box containing the nose

Table 4.1: Shape measurement computation details. All metrics are normalized by
distance between the eyes unless otherwise specified
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4.1.3 Evaluation

To evaluate the similarity between the segmentation-based shape features and what

humans perceive to be prominent features, we compute how correctly the generated

weak labels order the ground truth descriptions in the caricature dataset. Each of

the 20 shape features is associated with either one or two of the 36 labels. For

example, the “nose width” shape feature is associated with the “wide nose” and “thin

nose” labels. To determine the accuracy of a shape feature, all 203 are subjects are

ordered by that shape feature. Because we have several images of each subject from

which the feature can be measured, we average each measurement across all images

of a subject. To avoid noisy estimations for subjects with few images, we construct a

prior distribution for each feature using the entire dataset then compute the posterior

distribution for a particular subject as

µpost = (
n/σ̂2

1/s2 + n/σ̂2
)m+ (

1/s2

1/s2 + n/σ̂2
)µ̂ σ2

post = (
1

s2
+

n

σ̂2
)−1,

where n is the number of images of the subject, µ̂ and σ̂ are the sample mean and

sample variance of the feature for that subject, and m and s2 are the prior mean and

variance of the feature. The mean of the posterior is used for ranking subjects by the

feature.

To determine the quality of each feature, we compute how useful that feature is for

predicting its associated label(s). This is done by calculating the optimal information

gain for the labels from splitting the subjects on that feature. Information gain is a

common metric for determining the usefulness of a feature for predicting a label, and

has long been used for the induction algorithm in decision trees [58]. For features

with multiple labels, we split subjects into three categories (negative label, no label,

positive label) based on the estimated value of the feature. For features with one
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Feature Predicted labels Entropy Gain Ratio
eye distance wide-set, narrow-set 1.151 .166 .144
nose width wide, wide nostrils, thin 1.150 .348 .303
nose height long, short .483 .142 .294
brow height bushy, thin .887 .364 .410
lip thickness pouty/full, thin 1.216 .439 .362
chin flatness square, pointy .981 .0920 .0938

eye size wide, narrow 1.418 .399 .281
mouth width big, small 1.221 .257 .211

ear size big, small .828 .0984 .119
forehead size big, small .973 .188 .193

face aspect ratio long, wide .478 .138 .289
face size small, big .682 .0794 .116
ear width stick out, flat .955 .296 .310
brow coeff arched .718 .177 .246
ear height high, low .351 .0710 .202
glasses glasses .263 .174 .661

brow width long, short .853 .175 .205
eye angle slanted up, slanted down 1.25 .277 .221

lip thickness ratio thin upper, thick lower .791 .0630 .0797

Table 4.2: Entropy, information gain, and the ratio between the two for each fea-
ture/label combination in the caricature dataset.

label, we split subjects into two categories (positive label, no label). We then compute

information gain as G(x, f) = H(x)−H(x|f), whereH(x|f) is the conditional entropy

of the data given cutoffs for feature f . For example, the labels for “arched eyebrows”

have an entropy of .718. Splitting the subjects into “brow coefficient < .477” and

“brow coefficient > .477” results in a conditional entropy of .541, so the information

gain is .177. Because information gain is impacted by the entropy of the feature

(e.g., if the label already has low entropy it is hard to gain any information), we also

provide the ratio between information gain and original label entropy. These results

are shown in Table 4.2.

Note that even for seemingly easy to predict features, perfectly ordering the sub-

jects is difficult. “Glasses,” for example, is reasonably easy to predict as the seg-

mentation of this feature is generally very accurate. However, there is not a perfect
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correspondence between how frequently at which a subject wears glasses and how

likely labelers were to consider the glasses a prominent feature, so the feature is only

able to reduce entropy from .263 to .174 (a ratio of .661).

4.1.4 Attribute Prediction

We use the described weak labeling method to predict prominent feature labels for

all images in CelebA. To ensure we are only using high-quality weak labels, we only

utilize features which achieve an information gain to entropy ratio greater than 0.2 and

do not already exist in CelebA for our captions described in the following section.

These labels are then used to generate captions as described in the next section.

The primary drawback to the approach described in Section 4.1.2 is that we require

images to be entirely frontal. However, most images are not perfectly frontal so this

drastically limits the system. To deal with this, we use a face frontalization network

to rotate images before generating labels. This is not a perfect process due to the

inherent ambiguities present in rotated images, but allows us to make reasonable

predictions for most images. We use Rotate-and-Render [59] for face frontalization.

This is shown in Figure 4.4. Rotate-and-Render fails for many more difficult images,

so we create an alternative set of weak label which rely on ground-truth identity

labels. Features which should remain consistent across different images of the same

person (e.g., big nose), are averaged across all images of a person to reduce noise from

poor segmentation or frontalization. In the following section we provide results with

both the raw, per-image labels and the identity-averaged labels.
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Figure 4.4: Examples of images at different orientations rotated using Rotate-and-
Render

4.2 Captioning

In this section we propose the problem of face captioning and discuss methods for

generating and evaluating captions. Face captioning is useful for the following appli-

cations:

• Accessibility. Current captioning methods are not able to describe what a face

looks like in a way that would allow for someone to build a mental image of the

person.

• Lookup. Captioning allows for image lookup based on text similarity. It is far

more simple to describe a face than to draw it, but current image lookup meth-

ods for faces are based entirely on visual similarity. This means that someone

would have to draw the face in order to find it, which many people are unable

to do.

• Image Manipulation. It has recently become popular to perform image manip-

ulation using text captions, as this is easier for humans to control than prior

image manipulation techniques using segmentation.
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Despite these applications, to our knowledge there is no prior work investigating

how to best generate captions for face images and evaluate the quality of generated

captions. Unlike simpler problems such as describing the color and general shape of

a bird, describing human faces is highly subjective and detail-oriented. We therefore

propose a simple but useful method of generating face captions and two techniques

for evaluating the quality of these captions.

4.2.1 Implementation

We first describe our method for generating image captions from attribute labels.

Prior works have used a PCFG to generate captions using CelebA attribute la-

bels [11, 12]. For our baseline we use a similar technique, but rather than grouping

all attributes into “wearing,” “has,” and “is” we group attributes into ones that can

function as nouns and ones that can function as adjectives (many can function as

both). Nouns are then split into description of qualities of the face (e.g., hair and

feature size), description of expression (smiling, mouth open), descriptions of cloth-

ing or makeup being worn (wearing hat, wearing lipstick), and descriptions of the

image itself (blurry). Qualities which apply to the same feature (e.g., big nose and

pointy nose) are grouped together to avoid awkward sentences which refer to the

same part multiple times. This allows us to construct more grammatical sentences

that align more closely with how an actual person would write face descriptions. To

avoid overly verbose sentences, we split captions into multiple sentences which then

can be reordered for data augmentation. Comparison between captions generated by

our method and those provided by Multi-Modal CelebA sample-captions are shown

in Table 4.3. For fairness of comparison, we randomly discard a subset of attributes

to keep captions concise as is done by prior works. For the provided captions, each

attribute has a 33% chance of being discarded.
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The person has high cheekbones, and
pointy nose. She is wearing lipstick.

A woman with bags under her eyes, big
lips, long eyebrows, and brown hair.
Her mouth is wide open and she is smil-
ing.

This person has arched eyebrows, wavy
hair, and mouth slightly open. She
wears lipstick. She is attractive.

A woman with blond hair and big lips.
Her mouth is open.

She wears lipstick. She is smiling,
and attractive and has wavy hair, and
brown hair.

An attractive woman with a long nose,
brown hair, and high cheekbones.

This woman wears lipstick. She has
bushy eyebrows, and big nose. She is
young, and smiling.

A picture of an attractive woman with
black hair. Her mouth is open and she
is smiling.

She has mouth slightly open, straight
hair, and big lips. She wears earrings.
She is young.

An image of a woman with wide-set
eyes and straight hair. Her mouth is
slightly open. She is wearing earrings.

Table 4.3: Comparison between randomly-generated captions in Multi-Modal CelebA
(left) and captions in our datast (right) for the first five images in CelebA-HQ.

Because CelebA captions are highly inconsistent across different images of the

same person, we construct an alternate version of CelebA in which attributes which

are not image specific are forced to be consistent for all images of a single person

(things such as big nose, oval face, and high cheekbones should not vary between dif-

ferent images of the same person). The consistent label assigned to each person is the

rounded average (i.e., majority vote) of the labels for all images of that person. This

helps preserve features that are prominent for a particular person between different

images.

Because in practice ground-truth attributes will not be available to generate cap-

tions, we train classifiers to predict CelebA attribute labels and shape-based labels

and use these to generate the captions used for evaluation. For CelebA attributes,

we use the pretrained ResNet-18 model described in Section 3.1.1. For predicting the

weakly labeled shape-based labels, we use an identical model trained to predict the

percentile of each shape feature. We use mean-squared error as our loss function and
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train for 20 epochs using the Adam optimizer.

4.2.2 Evaluation

We suggest two important qualities in an evaluation metric based on the previously

described use cases. First, captions should describe the specific prominent features

of the person in the image, such that a person or a model can predict with high

accuracy if two captions are of the same person. This evaluates the extent to which

the description captures unique features which someone could use to recognize the

person being described in a different context in which features such as clothing and

makeup may change. This metric is the main focus of our weak label-based captions.

Second, captions should describe the features present in the specific image, such that

someone describing an image of a person can easily find the correct image in a large

group. To measure these qualities, we evaluate captions based on both verification,

in which a network is trained to predict if two captions are of the same person, and

identification, in which a network is trained to compute a similarity score between an

image and a caption.

To enforce consistency of evaluation, we use natural language processing tech-

niques to evaluate captions rather than directly using the attributes used to generate

our captions. This is to ensure results are derived from the captions being generated

rather than just the attributes, which vary in number between methods and for some

methods may not exist.

Verification

To perform verification, we fine-tune a DistilBERT model [60] to predict whether two

captions describe the same person. We use the tokenizer and pretrained weights pro-

vided by Huggingface Transformers [61], which were trained using BookCorpus and
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Caption Type Not Consistent Consistent
Gender only 73.39%

CelebA attributes 81.15± .06% 81.70± .02%
CelebA + Shape attributes 81.16± .04% 82.60± .07%

Table 4.4: Verification accuracy for CelebA and shape label-based captions using
consistent and inconsistent labels.

English Wikipedia. We use DistilBERT instead of the larger BERT model because

our focus is on evaluating captions rather than producing a state-of-the-art text veri-

fication model, and DistilBERT can be more quickly and efficiently trained. To train

the model, we randomly sample images from the training set with equal probability

assigned to sampling two images of the same person and sampling two images of

different people. We then predict both CelebA attributes and shape features using

ResNet-18 models. ResNet-18 model as described in Section 3.1.1. To evaluate the

model, we iterate through the CelebA validation set, matching each image with one

of the same person or one of a different person with 50% probability. The model is

trained for 3 epochs with a batch size of 64 using the Adam optimizer with weight

decay.

We find that we can obtain reasonable results using CelebA captions, but these

results are highly reliant on the gender attribute. With captions using only CelebA

attributes, we achieve a verification accuracy of 81.15 ± .06% on the validation set

(averaged over 3 runs). Using the identity-consistent verison of the dataset only

improves validation accuracy to 81.70 ± .02%. Note that with a balanced gender

distribution, a verification accuracy of 75 can be achieved simply by always predicting

0 when the genders don’t match and always predict 1 otherwise – using captions only

containing gender generated from predicted attribute labels, we are able to achieve a

validation accuracy of 73.39%. With default CelebA attributes we are therefore only

able to improve over this simple baseline by 7.76%. These results are shown in Table



50

4.4.

Captions including shape features improve upon this accuracy, though not by a

huge amount. We find that shape labels generated on a per-image basis do not im-

prove verification. However, while forcing CelebA captions to be consistent across

identities only results in moderate improvement (+.55%), forcing the segment cap-

tions to be consistent improves accuracy by a further .90%. Note that, as previously

mentioned, attribute captions do not substantially improve over a simple gender-based

baseline so improvements of .90% are relatively large.

Identification

To perform identification, we use a contrastive technique somewhat similar to CLIP

[62]. We map images and captions to a common representation space where we can

use dot product to compute the similarity between an image and a caption, and for

the identification task simply return the image or caption with the highest similarity

score. We again use DistilBERT to generate base representations for the captions,

and use ResNet-18 to generate base representations for the images. A two-layer

fully connected network with a ReLU nonlinearity is then used to project these base

representations to a smaller subspace in which the contrastive loss is performed. We

use a size of 128 for the projected representations. For our contrastive loss, we the

NT-Xent normalized cross-entropy loss [63] with a temperature parameter of 1. The

loss is computed by comparing each element in a mini-batch to each other element in

that same mini-batch, where the only similar representations should be an image and

its associated caption. For evaluation, we use the CelebA validation set. Top-1 and

top-10 accuracy are computed using the dot product between each image and each

caption, then computing the number of images for which the correct caption is the

most similar or among the 10 most similar captions.
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Not Consistent Consistent
Caption Type Top-1 Top-10 Top-1 Top-10
CelebA attributes 43.44± 1.27% 94.73± .26% 40.74± 1.58% 94.04± .38%
CelebA + Shape 44.10± 1.23% 94.79± .44% 41.65± 1.07% 94.14± .46%

Table 4.5: Validation accuracy for CelebA and shape label-based captions using con-
sistent and inconsistent labels.

We find that captions are reasonably capable of placing the correct image within

the top few results, but not always consistent for returning the correct image first.

With the default CelebA labels, we are able to achieve an average top-1 accuracy of

43.44% and an average top-10 accuracy of 94.73% with a batch size of 128. With

consistent captions, we achieve a top-1 accuracy of 40.74% and a top-10 accuracy of

94.14%. We note that it is expected for the consistent captions to perform worse, be-

cause enforcing consistency intentionally throws away per-image biases which would

make verification more difficult but identification easier. However, the accuracy dif-

ference is very small, indicating that these biases are not actually very useful for

identification.

As shown in Table 4.5, captions using shape-based labels do not substantially

improve upon the top-10 accuracy of a classifier using just CelebA attributes. There

is a more significant difference in top-1 accuracy for both the consistent and non-

consistent captions, but results are far more variable even when averaged over 5 runs.

We are therefore unable to conclude if the shape-augmented captions are better than

the plain CelebA captions for identifying a specific image. While shape-based labels

do not seem to substantially improve upon identification results, they do provide ad-

ditional options for text-based image lookup which are closer to a standard definition

or “prominent features.” An example of this is shown in Figure 4.5. Note that for this

application we modify use captions for which labels are discarded with 50% proba-

bility (if the gender label is discarded, pronouns are replaced with “they/them”). We
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Figure 4.5: Application for searching for images using text descriptions. The selected
images are pulled from a pool of 2,000 validation images.

also use all segment features rather than just the ones with high information gain.

4.2.3 Summary

Based on the usefulness of captions for image description and lookup, we suggest two

methods for evaluation: caption verification and caption identification. The former

measures how well the captions describe what is unique about a person, whereas

the latter measures how well the caption describes what is unique about a specific

image. Our evaluation method allows comparison between different face captioning

methods irrespective of how the captions where generated. We apply this to captions

generated from CelebA labels as well as captions generated from a combination of

CelebA labels and weak labels generated based on information calculated using se-

mantic segmentation. Our weak labels are based on simple measurements computed

from semantic segmentation data on frontalized images and do a reasonable job of

approximating ground-truth labels. We find that our augmented captions result in

an improvement in verification accuracy, though it is unclear if the captions improve
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identification accuracy. This aligns with our focus on recognizing prominent features

which are important for verification.
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Chapter 5

Conclusion and Future Work

Natural language face description is an interesting and important area of research,

but existing methods do a poor job of capturing what humans recognize as prominent

facial features. Prominent feature descriptions collected without restriction are widely

varied (we collected 150 unique descriptions for a dataset of 205 people) and have

little crossover with existing attribute datasets. The most commonly used attribute

dataset, CelebA, is highly flawed and can be shown to be inconsistent or frequently

wrong for at least 10 of the 40 attributes present in the dataset. The attributes

that would be most useful for describing prominent features are not consistent across

different images of the same person and in many cases do not accurately represent the

feature they are describing. As a result of these issues, researchers should be cautious

about making performance claims in regards to CelebA facial attribute classifiers.

Future work should considering separating the most subjective attributes or even

removing them from consideration entirely.

Furthermore, the existing methods for attribute prediction do a poor job of mea-

suring their ability to perform imbalanced classification. The two metrics primarily

used to compare CelebA performance, accuracy and balanced accuracy, can be opti-
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mized for imbalanced attributes without producing a classifier which is actually useful

for predicting those attributes. The small scale of differences between attribute pre-

diction methods further complicate comparison between models.

Because of these issues, we generate weak labels using semantic segmentation.

While this approach has flaws – in particular, it struggles with non-frontal images –

we are able to accurately capture a number of prominent facial features. In future

work we will expand our weak labeling method to cover more features and investigate

ways to better deal with issues with non-frontal images.

Although the existing data is flawed, we investigate the possibility of using at-

tribute data to generate captions of face images. We find that these captions rely

heavily on gender, but with consistent features and our weakly labeled prominent fea-

tures can reasonably describe a person’s unique features. With textual descriptions

alone we are able to achieve a verification accuracy of 82.6%. Because there is little

existing work in the area, it is currently unknown what “human-level” accuracy on

this task is. We leave better interpretation of these accuracies to future work.

We find that captions can more reliably be used for identification, and take advan-

tage of this to build a BERT-based system for text-based image lookup. Our lookup

system can extract and utilize 54 attributes (40 from CelebA, 14 from prominent

feature labels) for searching for faces.

There remain many open challenges to be dealt with in future work. Due to the

subjectivity of prominent features, it is very difficult to collect accurate, unbiased

labels. Binary labeling is problematic for many prominent features because it is

unclear where the binary cutoff should be (e.g., it is not clear how “big” a nose

should be before the image is labeled as “big nose”). There are also some features

for which it is inherently problematic for the feature to be binary, and even more

problematic to have labelers make “ground-truth” determinations about that feature.
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Gender, for example, is not a binary feature despite being reduced to one by attribute

recognition datasets and labelers with no knowledge of the subject are unqualified to

make determinations about the subject’s gender.

While weak labeling helps deal with labeling bias, weak labels are not without

issues. Our weak label features define “prominent” relative to the dataset they are

generated for, and as such inherit the biases of that dataset. CelebA disproportion-

ately consists of white people, and as such a network trained using CelebA will learn

to define “prominent features” largely as “features which are prominent for white peo-

ple.” This is a major obstacle to practical usage of our work, and is an important

area for future work. Note that our caption evaluation method does not account for

bias in the labeling, and as such bias must be investigated separately.

Using semantic segmentation is also highly flawed because segmentation can only

capture 2D information. We found that in practice 3D models are not any more

appropriate for prominent feature detection because existing methods for 3D face

mesh prediction are designed primarily for alignment and as a result tend to “nor-

malize” face meshes to make the most prominent features more average. Semantic

segmentation similarly does not perfectly capture the size of each feature, but is in

general able to do a better job because the problem is simpler and there is much

more training data available. However, unlike segmentation, 3d-based features are

not inherently limited and will likely be necessary to make further improvements in

prominent feature detection.
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