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Abstract

Methods for identifying the mechanism and estimating the rate of chemical reactions are
presented and evaluated for a wide range of systems, using both classical and quantum
mechanical description of the atomic nuclei. In the classical case, the minimum energy
path (MEP) connecting two minima, that represent states of the system, is found. Energy
maxima on the path correspond to first order saddle points on the energy surface and
give an estimate for the activation energy of the transition. For quantum mechanical
description of the atoms, the optimal tunneling path (OTP) is found. This path is
equivalent to a first order saddle point on the action surface, referred to as an instanton,
and can be used to calculate the rate of thermally assisted tunneling. In order to navigate
on these surfaces, the energy and force acting on the atoms needs to be evaluated. Such
calculations are typically carried out using computationally intensive electronic structure
methods. It is, therefore, important to develop both reliable and efficient algorithms to
navigate on these surfaces in an efficient way with as few evaluations of the energy and
atomic forces as possible.

The various methods presented in this work are extensions of the widely used
nudged elastic band (NEB) method. In NEB, a trial path represented by a set of points
is iteratively displaced towards a target path, an MEP or OTP. The path is displaced
downhill on the surface along the directions perpendicular to the path and spring forces
are used to keep discretization points evenly distributed along the path. To achieve
this, an accurate estimate of the tangent to the path is needed in order to decompose
the forces into perpendicular and parallel components. In the first part of this work,
the computational efficiency of NEB calculations of MEPs for molecular reactions is
addressed. There, excessive computational effort is often needed because the MEPs
often include long segments with little or no change in the energy. Computational
resources are therefore wasted on resolving irrelevant segments of the path. Moreover,
a sparse distribution of points along the path may also yield an inaccurate estimate
of the tangent. This can affect the efficiency of an NEB calculation and can even
lead to non-convergence. Two NEB variants are presented to automatically focus the
computational effort on the most important part of the MEP, i.e. the region around
the highest energy maximum. In one of these methods, a loose convergence on the
MEP is first obtained and then a new set of points is automatically distributed in the
region of the energy barrier to improve the resolution around the energy maximum and
hence improve the tangent estimate there. In the second method, an increased density
of points is obtained in the critical region of the MEP by adaptively scaling the strength
of the spring interaction according to the energy, making the springs stiffer in regions
of higher energy. Experience will show which one of these two approaches will turn
out to be optimal, or perhaps a combination of both. The computational effort when
searching for saddle points can be reduced further by using a combination of NEB and
an eigenvector-following (EF) method. In this approach, the points along the path are



first converged loosely to the MEP. Then, information obtained from the NEB path and
the point of maximum energy are used to automatically start an EF search to swiftly
target the saddle point. These methods are applied to various chemical reactions and
to a database of 121 molecular reactions. The methods have been implemented in the
ORCA quantum chemistry software which is rapidly becoming the most widely used
tool for electronic structure calculations in computational chemistry.

In the second part of this work, the focus is on the quantum mechanical description
of the atomic nuclei and identification of OTPs. An OTP traces out the same path on
the action surface as an instanton and can therefore be used to estimate the tunneling
rate. Calculations of OTPs are found to be more efficient than the typical search method
used for instanton calculations. The main reason is that the distribution of system
images along the OTP are controllable while the points accumulate near the endpoints
in instanton calculations. Therefore, fewer images can be used to represent the path in
OTP calculations compared to instanton calculations.

In the first two parts, the electronic structure computations are carried out using
density functional theory (DFT) as is now commonly done in computational chemistry.
However, the selection of an appropriate level of theory for calculations of molecules
and chemical reactions can be difficult. In this regard, a particularly interesting and
challenging diamine cation is studied in the third part of this work. In this case,
the existence of both a localized and delocalized electronic state has been inferred
from experimental measurements. While, standard electronic structure methods, e.g.
commonly used density functionals and the coupled cluster singles-doubles-(triples),
method are unable to predict the existence of a localized electronic state. To shed light
on this issue, which has turned into a controversy in the literature, and determine whether
the localized state truly exists, high-level multireference wavefunction calculations of
the energy surface are carried out and found to establish the existence of the localized
state.
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Útdráttur

Aðferðir til þess að finna hvarfgang og meta hraða efnahvarfa eru þróaðar og prófaðar
á fjölbreytilegum kerfum, þar sem bæði klassísk og skammtafræðileg lýsing á atóm-
kjörnum er notuð. Fyrir klassíska lýsingu á atómunum eru fundnir lágmarksorkuferlar
sem tengja tvö orkulágmörk og samsvara stöðugum ástöndum kerfisins. Á slíkum
ferli samsvarar orkuhámark fyrsta stigs söðulpunkti á orkuyfirborðinu og gefur mat á
virkjunarorkunni fyrir hvarfið. En, fyrir skammtafræðilega lýsingu á atómunum er besti
smugferillinn fundinn. Þessi ferill samsvarar fyrsta stigs söðulpunkti á verkunaryfir-
borðinu og er oft kenndur við snareindir. Út frá slíkum punkti er hægt að reikna hraða
á varmaörvuðu smugi. Til þess að hægt sé að kanna slík yfirborð og finna þessa ferla
þarf að reikna orku og kraftinn sem verkar á atómin. Slíkir reikningar fela yfirleitt í sér
þunga tölvuútreikninga. Því er afar mikilvægt að þróa aðferðir sem eru bæði nákvæmar
og hagkvæmar að því leiti að sem fæsta orku og kraftareikninga þurfi til.

Hinar ýmsu aferðir sem eru þróaðar hér eru útvíkkanir á hinni vel þekktu teygju-
bandsaðferð, NEB. Í þessari aðferð er ferill, sem er lýst sem safni af hnitum atómanna,
færður í átt að lausnarferlinum, annað hvort lágmarksorkuferli eða besta smugferli, með
ítrun. Hver punktur í þessari strjálu lýsingu á ferlinum er þá færður niður eftir yfirborð-
inu í stefnu hornétt á ferilinn og gormkraftar notaðir til þess að viðhalda jafndreifingu
á punktunum eftir ferlinum. Þetta krefst þess að hafa nógu gott mat á snertlinum eftir
ferlinum til þess að framkvæma vörpun á kröftunum í þverstæða og samsíða þætti. Í
fyrsta hluta verksins er hagkvæmni teygjubandsaðferðarinnar fyrir reikninga á lágmarks-
orkuferlum fyrir sameindahvörf metin og betrumbætt. Raunin er að oft er þörf á að
nota óþarflega mikla reiknigetu fyrir teygjubandsreikninga á slíkum hvörfum, þar sem
orkan á lágmarksorkuferlinum breytist oft lítið sem ekkert á köflum. Þar af leiðandi er
reikniafli sóað í að lýsa lítilvægum hluta ferilsins á sama tíma og upplausn ferilsins er
ekki nægjanlega góð til að fá mat á snertilnum á mikilvægum hluta hans. Þetta getur haft
mikil áhrif á kostnað teygjubandsreikninga og getur jafnvel orsakað það að samleitni
náist ekki. Tvær breytingar á teygjubandsaðferðinni eru settar fram þar sem áhersla er
lögð á mikilvægasta hluta lágmarksorkuferilsins, þ.e. þann hluta sem inniheldur hæsta
orkuhámarkið. Í annarri aðferðinni er veikri samleitni á lágmarksorkuferlinum fyrst
náð og síðan er nýju punktasafni sjálfvirkt dreift á svæði orkuhólsins til þess að bæta
upplausnina á ferlinum í grennd við hámarkið. Í hinni aðferðinni er auknum þéttleika
punkta náð á þessu mikilvæga svæði lágmarksorkuferilsins með skölun á styrkleika
gormkraftsins samkvæmt orku kerfinsins á hverjum stað, þar sem gormarnir eru gerðir
stífari á háorkusvæðum á meðan ítranirnar eru framkvæmdar. Reynslan mun sýna hvor
aðferðin, eða mögulega samsetning beggja, er hagkvæmari. Með því að setja saman
teygjubandsaðferðina og eiginvigrarakningu er dregið enn frekar úr reiknikostnaði þegar
leitað er að söðulpunktum. Í þeirri aðferð er grófri samleitni á lágmarksorkuferlinum náð.
Upplýsingum er síðan safnað af ferlinum, þ.m.t. punktinum með hæstu orkuna. Þessar
upplýsingar eru sjálfvirkt notaðar til þess að byrja eiginvigrarakningu sem auðveldlega



nær samleitni á söðulpunktinn sem svarar til viðkomandi efnahvarfs. Aðferðirnar eru
notaðar á ýmis efnahvörf og á gagnasafn sem inniheldur 121 sameindahvörf. Aðferð-
irnar hafa verið innleiddar í ORCA skammtaefnafræði hugbúnaðinum sem nýtur ört
vaxandi vinsælda og er á góðri leið með að verða útbreiddasti hugbúnaður í heimi fyrir
rafeindastrúkturreikninga í efnafræði.

Í öðrum hluta verksins er lögð áhersla á skammtafræðilega lýsingu atómanna og
leit að bestu smugferlum. Besti smugferill fylgir sömu leið og snareind á verkunaryf-
irborðinu og því er hægt að hann til þess að reikna út skammtafræðilegan smughraða
efnahvarfa. Reikningar á bestu smugferlum eru hagkvæmari en hefðbundna leitaraðferð-
in sem notuð hefur verið til þess að finna snareindir. Aðal ástæðan fyrir þessari auknu
hagkvæmi er sú að það er hægt að stjórna dreifingu punktanna á ferlinum í leitinni
að besta smugferlinum, á meðan flestir punktarnir enda í grennd við endapunktana
í snareindareikningum. Því er hægt að nota færri punkta til að ná góðri upplausn á
ferlinum í reikningum á bestu smugferlum í samanburði við snareindareikninga.

Í fyrstu tveimur hlutum verksins er notast við þéttnifellafræði til að reikna rafeind-
astrúkturinn eins og almennt tíðkast nú í reikniefnafræði. Aftur á móti getur val á
viðeigandi orkuyfirborði fyrir reikninga á sameindum og efnahvörfum oft reynst erfitt.
Með þetta í huga er sérstaklega áhugaverð og erfið díamínkatjón skoðuð í þriðja hluta
verksins. Tilraunamælingar á þessari sameind hafa verið túlkaðar þannig að bæði sé
tilstaðar staðbundið og óstaðbundið rafeindaástand. Hefðbundnar rafeindastrúktúrað-
ferðir sýna hins vegar ekki tilvist staðbundna rafeindnaástandsins, svo sem vinsæl
rafeindaþéttleikafelli og jafnvel CCSD(T) aðferðin. Nákvæmir og flóknir fjölástands
bylgjufallsreikningar (e. multireference wavefunction calculations) eru notaðir til að
varpa ljósi á þetta misræmi á milli rafeindareikninga og tilrauna og skera úr um til-
vist staðbundna rafeindaástandsins. Í samræmi við niðurstöður tilraunanna, spá þessir
nákvæmari reikningar fyrir um tilvist staðbundna ástandsins.
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1 Introduction

Computer simulations have become a valuable tool for chemists. Not only can such
simulations help interpret results obtained in the laboratory but they can also, in principle,
predict what chemicals and materials would be interesting to prepare and study for
various purposes. The simulations are, however, not able to give precise results, there
are uncertainties because of limitations in the methodology and computational power
needed for highly accurate simulations. The improvements have been dramatic over
the past decades, in part because of greatly increased computational power, but also
and not less because of improved algorithms for the calculations. Calculations of the
mechanism and rate of chemical reactions that were considered to be highly challenging
just a couple of decades ago, can almost be considered to be routine today. Still, there is
much work to be done in the development of simulation methods to make them more
robust and to make them applicable to even more challenging systems, and that is the
prime focus of this thesis.

The standard approach in computational chemistry research is based on the Born-
Oppenheimer or adiabatic approximation. It divides the task of describing the atomic
nuclei and electrons into two parts, first the properties of the electronic subsystem are
calculated for a fixed position of the nuclei, and then in the second step the motion of
the nuclei is accounted for. This is not entirely rigorous, there can be non-adiabatic
effects where the two are coupled closely and need to be treated simultaneously, but in
most cases this separation is a good approximation and this will be taken to be the case
in the examples discussed here. In most cases the atomic nuclei are treated as classical
particles since they are relatively heavy, about three orders of magnitude heavier than
an electron, and usual ambient conditions correspond to relatively high temperature.
However, for light atoms such as hydrogen and for lower temperature, it is necessary to
use a quantum mechanical description of the nuclei and one of the articles in this thesis,
article I, describes a method for finding the mechanism of reactions where quantum
mechanical tunneling is faster than a classical over-the-barrier hop.

A great deal of effort has been invested in the development of algorithms for solving
the first step, the electronic structure calculation. The basic equation is well known, the
Schrödinger equation, but the challenge is to find approximations that make it possible
to carry out calculations of large enough systems while still obtaining results that are
accurate enough to describe the system under investigation. One of the articles in this
thesis, article IV, addresses this issue as it deals with a molecular cation which turns
out to be challenging for standard electronic structure methodology. Neither commonly
used functionals in density functional theory (DFT) calculations, (Becke, 2014; Burke,
2012) nor the wave function based method that is considered to be the ’golden standard’
of computational chemistry, i.e. the coupled cluster singles, doubles and perturbative
triples (CCSD(T)) (Bartlett and Musiał, 2007), give results that are consistent with
recent experimental measurements where it has been shown that both a localized and a
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1. Introduction

delocalized electronic state exists for this molecular cation. (Cheng et al., 2016) There
has been some controversy over this in the literature (Ali et al., 2018; Cheng et al., 2018)
but the article presents high level calculations, arguably state-of-the-art methodology, to
resolve this controversy.

The second step in the two step process of characterizing a chemical reaction, the
identification of the mechanism of the atomic rearrangement and estimation of the
rate has not been addressed nearly as much as the first step, the electronic structure
calculation. This second step is the main focus of the present dissertation. There is
still much room for improvement in the computational methods that have so far been
developed for finding the mechanism and rate of chemical reactions. As mentioned
above, article I, presents an algorithm for incorporating the quantum mechanical de-
scription of the atomic nuclei in the rate calculation, but it is rather exceptional if a
classical particle description does not suffice. So, a greater emphasis is placed on further
development of the tools for describing rearrangements of classical particles and this
is the task addressed in articles II and III. Each evaluation of the electronic structure,
which gives the electronic energy of the system for a given set of atom coordinates and
the atomic forces, typically involves a significant computational effort. The number
of such computations that need to be carried out in order to find the mechanism and
estimate the rate of a given transition (i.e. elementary reaction step) is therefore of
critical concern. The goal is to reduce as much as possible the energy/force evaluation
needed to reach a converged solution. The two articles are based on the so-called
nudged elastic band (NEB) method (Mills et al., 1995; Jónsson et al., 1998) for finding
minimum energy paths on that connect two local energy minima on an energy surface.
The energy minima characterize the initial and final state of the transition and are also
referred to as the reactant and product states. The minimum energy path is such that
at each point on the path, no force acts on the atoms perpendicular to the path. The
NEB method is widely used for such calculations in solid state chemistry, as well as, in
condensed matter physics research, (Henkelman et al., 2002; Ásgeirsson and Jónsson,
2020). However, there is still room to improve the NEB method, i.e. to make it more
reliable, as well as, efficient. The latter can be achieved by reducing the number of
energy/force evaluations required to obtain the minimum energy path. In article II, the
Z-NEB method is presented where a regular NEB calculation is stopped after a rough
approximation to the minimum energy path has been obtained, the computational effort
is then focused onto the most relevant region of the path, i.e. near the point of highest
energy. The point of highest energy, which corresponds to a first order saddle point on
the energy surface, provides an estimate of the activation energy for the transition. By
focusing the calculation on the region around the point of maximum energy, the path
can be represented with fewer snapshots (or images) of the system and thereby reducing
the number of computationally intensive electronic structure computations. Another
way to accomplish this improved resolution of the minimum energy path around the
maximum is presented in article III where the strength of the springs connecting adjacent
images along the path is adjusted according to the energy of the system. This method is
referred to as energy-weighted NEB. (Henkelman et al., 2000) The higher the energy,
the stiffer the springs. Moreover, as in Z-NEB, the calculation of the minimum energy
path is stopped after a certain level of convergence has been reached. Then, the highest
energy image is moved to the first order saddle point using a more rigorous saddle point
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seach method that is based on approximations to the matrix of second derivatives of the
energy with respect to atomic coordinates. (Baker, 1986) This combination of methods,
NEB-TS, is found to be remarkably efficient for a large dataset of 121 molecular reac-
tions. (Zimmerman, 2013a; Birkholz and Schlegel, 2015) Reactions of molecules in the
gas phase are more challenging than the typical applications of the NEB method which
have mostly been for transition in and on condensed phases of matter. (Ásgeirsson and
Jónsson, 2020) In the gas phase, molecules or fragments of molecules are often highly
flexible and can move significant distances without appreciable change in the energy.
Therefore, for molecular reactions the minimum energy paths are often long and the
segment of the path that corresponds to the more interesting and relevant reactive event
(e.g. bond breaking and formation) is short. This can lead to poor resolution of the
region around the energy maximum unless an excessive number of images and thereby
computational effort is used. The Z-NEB, EW-NEB and NEB-TS methods address this
issue in different ways. It remains to be seen which of these approaches, or even some
combination, will end up being the optimal method. However, the optimal method may
also depend on the type of system under study.

The dissertation consists of four articles and a preceding overview part that presents
a more introductory discussion and a review. The following chapter reviews the basics
of electronic structure calculations, especially as they relate to the work presented in
the articles. Chapter 3 reviews the basic concepts of potential energy surfaces, how to
navigate on these surfaces and estimate both the rate of reaction between two states on
the energy surface, using both a classical and quantum mechanical description of the
atomic nuclei. In Chapter 4, the methodologies and results presented in Articles I–IV
are summarized.
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2 Electronic structure calculations

In this chapter the first step of the Born-Oppenheimer approximation, the solution of
the electronic structure, is addressed. The standard methodology in electronic structure
calculations can be divided into two classes of methods, namely wave-function based
methods (see section 2.1) and density functional theory (DFT) based methods (see
section 2.2). DFT was used as the electronic structure method of choice for the majority
of computations presented in Articles I-III. While in Article IV, the accuracy of both
DFT and wave-function based calculations is evaluated and compared for a particularly
challenging molecular cation. Most of the electronic structure calculations were carried
out using the ORCA software. (Neese, 2018)

2.1 Wavefunction based methods

The time-independent Schrödinger equation is given by (Griffiths and Schroeter, 2018)

Ĥψ = Eψ (1)

where ψ is the wavefunction of a quantum mechanical system, Ĥ is the Hamiltonian
operator and E is the energy of the system. For a system with N electrons and M atom
nuclei, the Hamiltonian is expressed in atomic units (h̄ = me = 1) as

Ĥ =−1
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∇
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where the integers i and j are the indices for the N electrons and A,B are the indices
for the M nuclei. ZA is the nuclear charge of atom A. The first two terms correspond to
the kinetic energy of the electrons and nuclei, respectively. The attractive interaction
between the electrons and the atom nuclei is given by the third term. The fourth
term gives the challenging repulsive interaction between the electrons and the fifth
term corresponds to the repulsive interaction between the atom nuclei. The nuclei
are at least three orders of magnitude more massive than the electrons. Therefore,
in computational chemistry, the common approximation is to regard the position of
the nuclei as being fixed, while the wavefunction for the electrons is calculated, i.e.
the electronic Schrödinger equation becomes a parametrized function of the atom
coordinates. Then, in a subsequent step, the dynamics of the atom nuclei is addressed.
This two step approach rests on the Born-Oppenheimer approximation (Born and
Oppenheimer, 1927), where the electronic Hamiltonian is written as,

Ĥ =−1
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∑
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5



2. Electronic structure calculations

where C is the constant inter-nuclear repulsion term. The attractive electron-nucleus
interaction in eq. 2 is now written in the form of an external potential. Nevertheless,
despite the simplification using the Born-Oppenheimer picture, the Schrödinger equation
remains impossible to solve exactly for systems containing several electrons. This stems
from the fact that the third term in eq. 3 couples together the motion of the electrons
in a complicated way. Without this term, the Hamiltonian would simply become a
sum of single electron Hamiltonian operators and the N electronic wavefunction would
become a product of N one-electron wavefunctions, so-called orbitals. Since electrons
are Fermions, the wavefunction has to be antisymmetric with respect to exchange of
indices of the electrons so a Slater determinant is constructed instead of a simple product
of orbitals. In order to decouple the motion of the electrons and simplify the calculation,
a mean field approximation can be made where each electron is subject only to the
average influence of the other electrons. This is done by assuming a form for the
wavefunction that is valid only for independent electrons, a single Slater determinant,
and then carry out a variational minimization of the expectation value of the energy.
This is equivalent to having each electron be subject to an effective potential Ui(ri) so
the Hamiltonian is reduced to

Ĥ =−1
2

N

∑
i=1

∇
2
i −

N

∑
i=1

Vext(ri)+
N

∑
i=1

Ui(ri). (4)

This approach is referred to as the Hartree-Fock (HF) approximation (Slater, 1928).
Being a mean field approximation, the HF approximation neglects to a large extent
correlation between the electrons. However, some correlation between electrons of
same spin is included, i.e. two electrons cannot occupy the same point in space as a
direct results of the antisymmetry principle. Therefore, the error in the estimate of the
electronic energy of a system obtained by HF is typically defined as the correlation
energy. For many systems, HF can give a good result for the structure of molecules,
but typically the binding energy calculated as the difference between the energy of a
molecule and the separated atoms (or molecular fragments) is typically too small and
vibrational frequencies of molecules tend to be too large. Even though HF is able to
account for most of the total electronic energy of a chemical system, or about 99%
of the energy(Jensen, 2017), it is not sufficiently accurate to describe many chemical
phenomena. Therefore, various methods have been developed that build on the HF
solution to reach higher accuracy. These methods are referred to as post-HF methods
and include e.g. configuration interaction (Nesbet, 1955), Møller-Plesset perturbation
theory (Møller and Plesset, 1934) and coupled cluster theory (Bartlett, 1989). The
higher-level of theory methods can often provide close agreement to experimental data
and are, therefore, often used to obtain accurate benchmark values. The configuration
interaction method is in principle exact, i.e. it can give the exact solution to the non-
relativistic Schrödinger equation. However, such high accuracy calculations involve
computational effort that grows rapidly as the number of electrons increases and are,
therefore, limited to small systems with at most a few tens of electrons. The development
of more efficient algorithms and approximations that scale better with system size is an
active field of study.
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2. Electronic structure calculations

2.2 Density functional theory

An alternative to the wavefunction theory based methods is a method based on the elec-
tron density. This method is referred to as density functional theory (DFT). The reader
is referred to Refs. (Becke, 2014; Burke and Wagner, 2013; Perdew and Ruzsinszky,
2010; Perdew et al., 2009) for a more detailed discussion about DFT.

Thomas and Fermi used the electron density to approximate the electronic struc-
ture of atoms (Thomas, 1927; Fermi, 1927) and Dirac derived the functional form of
the exchange energy as a function of the electron density of homogeneous electron
gas (Dirac, 1930). This is referred to as the Thomas-Fermi model and forms the basis
of orbital-free density functional theory. (Witt et al., 2018) The basic Thomas-Fermi
model is crude and does not lead to an accurate description of physical systems. Since
then the development of a different and formally exact way of writing the energy of an
electronic system as a functional of the total electron density has been developed and
is referred to as density functional theory (DFT). (Hohenberg and Kohn, 1964; Kohn
and Sham, 1965) In DFT, it is possible to carry out calculations on much larger systems
than can otherwise be treated with the more accurate wavefunction methods, i.e. the
post HF methods. However, it is not clear what corrections need to be applied to a DFT
calculation, since the approximations that are made in practice are not as well defined,
as for the wavefunction approaches.

The electron density

The Hohenberg-Kohn theorem proofs that the external potential is uniquely determined
by the electron density of a chemical system in its ground state, i.e. if it exists. (Hohen-
berg and Kohn, 1964) In other words, the electron density contains all the information
about the system necessary to determine the external potential and thereby the full
Hamiltonian of the system. An integral of the electron density over all space yields the
total number of electrons, N, which allows, in principle, for the kinetic energy term
and the electron-electron repulsion term to be determined. The only unknown term in
the electronic Hamiltonian that remains is then the external potential. The location of
the atom nuclei and the respective nuclear charge can be determined by cusps in the
electron density. The energy due to the external potential can be written exactly in terms
of the density as,

Vext[n] =
∫

n(r)vext(r)d3r. (5)

The classical Coloumb average inter-electronic potential, often referred to as the Hartree
potential, constitutes a large part of the electron-electron repulsion, and is defined in
terms of the density as,

U =
∫∫ n(r)n(r′)

|r′− r|
d3rd3r′ (6)

In fact, Hohenberg and Kohn showed that the ground-state energy of the system obeys a
variational principle in terms of the density, i.e. any trial electron density n will give an
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2. Electronic structure calculations

upper bound of the true ground state energy E0

E0[n0]≤ T [n]+Vext[n]+Vee[n] (7)

and the equality will only hold when n = n0, where n0 is true ground-state electron
density. In principle, with the exact density functional, that involves the extraction of N
and construction of the electron-electron repulsion, the kinetic energy and the external
potential from the electron density, will allow for the solution of the Schrödinger
equation, where the highly complex, correlated multi-electron wavefunction is not
needed. However, as discussed below, this is only a dream and approximation have to
be made.

The Kohn-Sham equations

The main disadvantage of the Thomas-Fermi model and the orbital-free DFT methods
is the inaccurate representation of the electronic kinetic energy. (Jensen, 2017) The
approach taken by Kohn and Sham to obtain an improved estimate of the kinetic energy
that goes beyond the TF model, is to introduce a fictitious non-interacting electron
reference system that has the same total electron density as the real system.(Kohn and
Sham, 1965) This non-interacting electron system can be described with a product of
orbitals, i.e. one electron wavefunctions and are referred to as Kohn-Sham (KS) orbitals.
The KS orbitals are related to the density by the expression

n =
N

∑
i
|φs,i|2. (8)

An estimate of the kinetic energy of the non-interacting system can then be obtained
from the KS orbitals, Ts. This form of the kinetic energy is not exact. The kinetic energy
of the true, interacting electron system will differ from this estimate, but the difference
is typically believed to be small.

In Kohn-Sham DFT, the electron-electron interaction is decomposed into the Hartree
potential (i.e. the classical Coulomb interaction between the electrons) and a remainder
term that includes the contributions to the energy from correlation effects. The estimate
of the classical Coulomb interaction from the total electron density, defined in eq. 6,
includes self-interaction, as can be seen most easily for a system of a single electron
where this estimate gives non-zero positive value. Therefore, the correction to the
estimate of the kinetic energy, a correction to remove the self-interaction in the classical
Coulomb interaction as well as the missing exchange and correlation energy are all
represented by a remaining contribution to the functional commonly referred to as
the exchange-correlation term, Exc. The functional form of the exchange-correlation
potential is written by,

vxc(r) =
δExc

δn(r)
(9)

and the one-electron effective KS potential veff,

veff =Vext(r)+
∫ n(r)
|r′− r|

d3r+
δExc

δn(r)
(10)
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The variational minimization of the energy gives a set of coupled equations, known as
the KS equations, for the orbitals,[

−1
2

∇
2 + veff

]
φs,i(r) = εiφs,i(r) (11)

where εi is the energy of the i-th KS orbital. The effective potential is dependent on the
electron density which is constructed from the KS orbitals. Hence, the KS equations
need to be solved iteratively. To begin with an initial guess of the orbitals is constructed.
The effective potential is computed and solved to generate a new set of orbitals. The
next iteration is then started from the new orbitals. This procedure is continued until a
set of self-consistent solutions is acquired, i.e. changes to the KS orbitals or the orbital
energy between two subsequent cycles are minimal. The orbitals that are obtained by
solving the KS equations become for all practical purposes the same as the orbitals used
to evaluate the effective potential.

In order to make an effective use of the KS approach, an expression is needed for the
Exc term. In modern DFT development, most of the effort is directed towards improved
approximation to this term, referred to as exchange-correlation functionals. The large
number of functionals that have been developed, some tailored to specific types of
systems, makes this field rather bewildering. The typical strategy to categorize the
plethora of available functionals is to use the metaphor of Jacob’s ladder (Perdew and
Schmidt, 2001). At the first rung of Jacob’s ladder lies the fundamental local density
approximation (LDA) (Dirac, 1930; Ceperley and Alder, 1980) and as one ascends
the ladder, both the complexity and computational effort of the functionals typically
increases. At the top of the ladder the exact functional is obtained and KS-DFT becomes
exact. This is, of course, only a dream.

In the LDA, the Exc is taken to be that of homogeneous electron gas with density
equal to n(r) and can be written as,

ELDA
xc =

∫
ε

hom
xc [n]n(r)dr (12)

In practice, the exchange-correlation energy is often partitioned into two contributions
(formally ignoring then the correction to kinetic energy and self-interaction correction
which should also be included)

Exc = Ex +Ec (13)

where the form of the exchange energy Ex is given by the analytical expression, (Dirac,
1930)

Ex[n] =
−3
4

(
3
π

) 1
3 ∫

n(r)
4
3 dr. (14)

and Ec is parametrized to reproduce numerical quantum Monte Carlo simulations. (Ceper-
ley and Alder, 1980)

The LDA is at the lowest rung of Jacob’s ladder and is the simplest density functional
approximation. It and can provide reasonably accurate results for systems with slowly
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2. Electronic structure calculations

varying electron density (such as metals). In LDA, the exchange energy is overestimated,
while the correlation contribution is underestimated. This results in an accidental
cancellation of errors and is the reason for the success of LDA. For most chemical
systems of interest, the LDA is typically too approximate. For open shell systems
the local spin density approximation (LSDA) (Vosko et al., 1980) should be used. It
includes dependency on the spin densities, n ↑ and n ↓, where n = n ↑+n ↓. All methods
discussed in the following are equally valid for the spin density, but the spin notation
will be neglected for simplicity.

At the second level of Jacob’s ladder lies the generalized gradient approximation
(GGA). In some sense this approximation scheme can be thought of as a next step in an
expansion in terms of spatial derivatives of the electron density. GGA adds to the LDA
method a dependency on the gradient at each point r, thereby making the functional
semi-local. The form of the exchange-correlation energy in GGA can be expressed as

EGGA
xc =

∫
ε

hom
xc [n(r),∇(r)]n(r)dr. (15)

The added complexity beyond LDA results in considerably better description of molecules,
e.g. binding energy and energy barriers for transitions. The most widely used GGA
functionals are BLYP (Becke, 1988; Lee et al., 1988; Gill et al., 1992) and PBE (Perdew
et al., 1996a). The effect of the gradient is included with an exchange enhancement
function. Its functional form is not known from first principles but some limits and
bounds have been derived. While these kinds of calculations are often referred to as ab
initio or first principles, many choices of functional form and parameter values have in
fact been made based on comparison of calculated results with high level wavefunction
calculations of small systems and even experimental data. Experience has shown that
GGA still overestimates the strength of chemical bonds and underestimates energy bar-
riers for transitions, although not as strongly as LDA. Moreover, the GGA functionals
tend to favor delocalized electronic states over localized states.

At the third rung of Jacob’s ladder lie the meta-GGA functionals. In these methods a
dependency on the kinetic energy density is added to the exchange-correlation term, i.e.,
the sum over the Laplacian of all occupied KS orbitals. Therefore, in comparison to the
aforementioned GGA functionals, the meta GGA involve one higher spatial derivative
of the electron density and thereby require a more detailed representation of the orbitals.
The most commonly used meta-GGA functional is probably the TPSS functional (Tao
et al., 2003). However, the more recent SCAN functional (Sun et al., 2016) is becoming
used more and more.

On the next rung beyond meta-GGA is the hybrid functionals. In these methods
a fraction of the exact exchange contribution is included in the exchange-correlation
term, analogous to Hartree-Fock. With the difference being that the Slater determinant
is formed from the KS orbitals (instead of the canonical HF orbitals). The exchange-
correlation energy is expressed as,

Ehyb
xc = ELDA

xc +a0(EHF
x −ELDA

x )+ax(EGGA
x −ELDA

x )+ac(EGGA
c −ELDA

c ) (16)

where ax,ac and a0 are parameters that are fitted to some set of data. The most commonly
used hybrid functional, B3LYP functional is of this form (Stephens et al., 1994). The
weight of the exact exchange term in B3LYP is a0 = 0.2. Another popular hybrid
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2. Electronic structure calculations

functional is the PBE0 (Perdew et al., 1996b) functional. It has a simpler form with just
one adjustable parameter,

Ehyb
xc = EGGA

xc +a0(EHF
x −EGGA

x ). (17)

where a0 = 0.25. The non-local exchange term is known to significantly improve values
obtained for bond energy, structure of molecules and vibrational frequencies. However,
it also increases the computational effort needed for the calculation. The constant a0
is often treated as an adjustable parameter depending on the system and molecular
property under investigation. In some cases, e.g. for calculations of charge transfers,
accurate results require a value of a0 around 0.5. While, for other cases values of a0
that are smaller than 0.2 give good results, e.g. for thermochemical data. The HF and
GGA approximations tend to have errors of opposite sign, for example HF giving too
weak bonds while GGA gives too strong bonds. Also, HF favors localized electronic
states while GGA favors delocalized states. It is, therefore, not surprising that some
mix of the two can be made to give good results, but the optimal recipe depends on the
system under study.

Unlike the wavefunction theory approaches, it is not clear what approximation
actually is being made at each level of Jacob’s ladder and what exactly the required
correction should be in order to obtain the exact results. The advantage of DFT, however,
is that it is applicable to larger systems for a given level of computational resources.

Computational considerations of density functional theory

In application of both KS-DFT and wavefunction methods, some representation of
the orbitals is needed. For this purpose, the unknown KS orbitals are given as linear
combinations of a set of known functions, known as a basis set. A KS orbital is then
expanded in a set of K basis functions ηk,

φi =
K

∑
k=1

ck,iηk (18)

where the ck,i are expansion coefficients. Inserting this expression in eq. 11 and manipu-
lating the expression yields,

FKSC = SCε (19)

where FKS is the Kohn-Sham matrix of size K×K and S is the overlap matrix of the
same size. Their form can be found in standard textbooks (Koch and Holthausen, 2001).
This treatment and the resulting equation is analogous to that of the Hartree-Fock-
Roothaan equation (Roothaan, 1951).

In modern electronic structure software, most of the basis sets are made from either
contracted Gaussian functions or plane waves. The contracted Gaussian basis sets are
constructed to mimic atomic orbitals, i.e. Slater-type orbitals. A Gaussian basis function
is usually expressed in the form,

ψ = Nxlx ylyzlz exp(−ξ r2) (20)
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where lx, ly, lz are constants related to the angular momentum and hence determine the
type of the orbital. N is a normalization factor. Many basis sets based on Gaussian
functions have been developed throughout the years. The most notable ones are the
Pople style basis (Pople et al., 1987), correlation-consistent basis set (Dunning, 1989)
and the Ahlrichs type basis (Schäfer et al., 1992). The different basis sets vary in the
number of functions used per atomic orbital and the addition of polarization and diffuse
functions beyond the functions that describe filled atomic orbitals. As the space spanned
by the basis set is increased, the accuracy and computational effort of an electronic
structure calculation increases. The accuracy is improved by increasing the number of
linearly independent basis functions, and the computational effort increases at the same
time. For a large enough basis set, the calculated energy of the system will converge, i.e.
a basis set limit is reached.

Shortcomings of density functional theory

One of the more severe shortcomings of (commonly used) density functionals is the lack
of dispersion interaction. The dispersion interaction is a weak long range interaction
that arises from correlated induced multipoles caused by fluctuations. A semi-local
functional cannot describe such long range interactions where the electron clouds are
barely overlapping.

A simple and computationally efficient empirical approach to include dispersion
effects are the DFT-D methods, (Grimme, 2004, 2006) where the total energy is written
as

Etot = EDFT +Edisp (21)

and Edisp is calculated by adding up pair-wise atomic dispersion contributions

Edisp =−∑
A,B

f (rAB,A,B)
CAB

6

r6
AB

. (22)

CAB is the dispersion coefficient for species A and B. f is a damping function used to
correct the unphysical behavior caused by divergence of the inverse distance at small
inter-nuclear distances. The damping function and CAB

6 need to be compatible with the
exchange-correlation functional used. This dispersion-correction scheme is, of course,
approximate since the dispersion interaction is in reality not pairwise additive.

Another shortcoming of the semi-local exchange-correlation functionals is the
self interaction error. As discussed above, the Hartree energy in eq. 6 describes the
interaction of the total electron density with itself. This is best illustrated with a system
of only one electron where the KS-DFT Hartree energy is non-zero and positive. While
the exchange-correlation term of the functional should contain a self-interaction term
which gives a contribution of opposite sign and thereby cancels out the error (as is the
case in HF), a semi-local approximation to the exchange-correlation term cannot provide
such a cancellation since the self-interaction error in the classical Coulomb interaction
is highly non-local, involving a double integral over all space. Mathematically, an
elimination of the self-interaction error is not possible in a semi-local functional. As a
result of this error GGA functionals have systemic problems such as an underestimation
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2. Electronic structure calculations

of band gaps, underestimation of energy barriers and incorrect balance between localized
and delocalized states. As mentioned above, hybrid functionals can be made to give
more accurate results by tuning the fraction of exact exchange and sometimes this is
described in terms of a cancellation of the self-interaction error. The self-interaction
error is a limitation of the semi-local functional form commonly used for the exchange-
correlation term, but a more accurate density functional of a more general form could in
principle be developed without introducing self interaction (Steckel, 2009).
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3 Calculations of chemical reactions

In this chapter, theory and methods used in the second step of the Born-Oppenheimer
approximation, i.e. the treatment of the atomic nuclei, are reviewed. The focus is
on methods used for the identification and computation of the mechanism and rate of
chemical reactions. The chapter starts with a review on potential energy surfaces and
important features thereof. In the following section, the well established transition
state theory (TST) for estimating the classical rate of thermally activated transitions is
described. In section 3.3, the, practical, harmonic approximation to TST is introduced,
within this approximation the estimation of the rate of reaction requires only two
points on the energy surface to be known, namely, the reactant energy minimum and a
connected first order saddle point. In sections 3.4 and 3.5, methods used to navigate on
the energy surface and to locate minimum energy paths and first order saddle points are
reviewed. More precisely, in section 3.4, three of the most widely-used double-ended
methods are reviewed, where the common objective is to identify a minimum energy path
(and the corresponding highest energy, first order, saddle point) for a transition between
a given reactant and product states. Then, in section 3.5, two classes of commonly used
single-ended methods are reviewed, where the objective is to directly and rigorously
locate a first order saddle point from a given initial configuration. Finally, in section
3.6, semi-classical rate theories to incorporate quantum mechanical description of the
atomic nuclei are reviewed.

3.1 Potential energy surfaces

The concept of potential energy surfaces (PES) arises from the Born-Oppenheimer
approximation, where the nuclear and electronic degrees of freedom of a molecular
system are decoupled. Then, the energy of a system (for a given electronic state) can be
expressed as a parametric function of the position of the N-atoms in the system, or in
Cartesian coordinates as

E(r) = E(x1,x2,x3, ...,x3N−1,x3N) (23)

The set of 3N-coordinates is referred to as a configuration. The force acting on individual
atom in the system is given by the negative gradient of the energy with respect to the
atom coordinates,

F =−
[

∂E
∂x1

,
∂E
∂x2

, ...,
∂E

∂x3N

]
(24)
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3. Calculations of chemical reactions

The Hessian matrix, i.e. the matrix of second derivative of the energy with respect to
the atom coordinates,

H =



∂ 2E
∂x2

1

∂ 2E
∂x1∂x2

. . .
∂ 2E

∂x1∂x3N
∂ 2E

∂x2∂x1

∂ 2E
∂ 2x2

. . .
∂ 2E

∂x2∂x3N
...

...
. . .

...
∂ 2E

∂xN∂x1

∂ 2E
∂xN∂x2

. . .
∂ 2E

∂ 2x3N


(25)

describes the curvature of the energy landscape and is often referred to as the force
constant matrix. In principle, the energy surface can be constructed by computing the
energy, E, for all possible configurations of the system, r. Of course, in practice, this is
only possible for low dimensional systems, e.g. a system of 10 dimensions on a small
grid of 10 points would require 1010 energy computations! To illustrate some of the
features of an energy surface, a model two-dimensional energy surface is shown in
Fig. 3.1.

Figure 3.1. A model two-dimensional energy surface, E(r) = E(x,y). On the surface,
there are two energy minima (shown by green circles) separated by an energy ridge
(shown by a dashed red line). The minimum of energy along the energy ridge is a first
order saddle point (shown by a red point). A path of minimum energy goes through the
saddle point and connects the two energy minima.

An energy minimum on the PES corresponds to a (meta)-stable configuration of a
molecule, often referred to as a equilibrium structure. An energy minimum is a stationary
point on the energy surface (i.e., F = 0) for which the Hessian matrix is positive semi-
definite, i.e., all eigenvalues (λi for i ∈ [1,2, ...,3N]) of the Hessian matrix are positive
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or zero. For non-linear molecular systems, 3N−6 (and 3N−5 for linear molecules) of
the eigenvectors of the mass-weighted Hessian matrix, 1√

mi
√m j

Hi j, correspond to the
normal modes of vibration about the equilibrium structure (also referred to as vibrational
modes). The frequency of vibration for particular mode is proportional to the square
root of the associated eigenvalue. The remaining six modes are the zero-modes (i.e.
λi = 0 for i ∈ [1, ...,6]) that correspond to the rotational and translational degrees of
freedom of the system.

The energy surface expressed by eq. 23 is written as a function of the Cartesian
coordinates of the system, which is a simple and unambiguous manner of defining the
position of a set points (or atoms). It is, however, important to note that the energy
surface can be written in terms of any complete set of coordinates, for example in the
normal modes of vibration or by a set of internal coordinates. The internal coordinates
are likely to be the most chemically intuitive way to represent a molecular configuration,
where the relative position of the atoms is expressed entirely in terms of bonds, angles
and torsions (or dihedrals). For more complex molecular configurations (e.g. cyclic
geometries) more than 3N-6 coordinates are needed to obtain a complete description of
the molecular configuration. This is referred to as redundant internal coordinates. Then,
linear combinations of redundant internal coordinates, or delocalized non-redundant
internal coordinates, may offer a more suitable representation. Baker et al. (1996) One
of the main advantages of using internal coordinates is that coupling between individual
coordinate components is highly reduced compared to e.g Cartesian coordinates. This
serves to accelerate optimization methods and exploration of energy surfaces. However,
the use of internal coordinates makes the methods and discussion more complicated.
Therefore, in the remainder of the dissertation Cartesian coordinates are assumed, unless
specified otherwise.

It is relatively simple to locate an energy minimum on the PES, starting from a trial
configuration (r0), the atom force F can simply be followed downhill on the energy
surface to the local minimum,

ri+1 = ri +αF(ri) (26)

where i is the current optimization step and α is some adjustable parameter used to
control the size of the step. This method is referred to as the steepest descent method
and is known to be very inefficient. (Nocedal and Wright, 2006) All configurations that
lead to the same energy minimum when a steepest-descent direction is followed on the
energy surface define the potential well surrounding the energy minimum. Collectively,
the minimum and the potential well are defined together as a state of the system. The
lower the energy of a state, the more likely the system is to be found in that state
according to Boltzmann statistics, i.e. P(r) ∝ exp(−βE(r)) where β = 1/kBT .

Most commonly used minimization methods to locate energy minima are based on
the local quadratic approximation (LQA), (Schlegel, 2003) where the energy surface
around a configuration r is approximated by a second-order expansion of the surface,

E(r+∆r)≈ E(r)+FT
∆r+

1
2

∆rT H∆r (27)

In Fig. 3.2 an illustration of a LQA around the energy minimum of a non-quadratic
(i.e. third and higher order derivatives are non-zero) one-dimensional energy surface is
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shown. The step ∆r to the stationary point of the LQA is given by

∆r = H−1F. (28)

Figure 3.2. The local quadratic expansion (shown by red dashed line) around the
energy minimum of a model non-quadratic, one-dimensional, energy surface,
E(r) = E(x).

If the starting configuration, r0, is near a minimum, the H is positive-definite and the
step will be downhill in energy along all degrees of freedom. As most energy surfaces
are not quadratic, the quadratic expansion of the energy surface and stepping to the
minimum of the expansion becomes an iterative procedure to locate an energy minimum,
i.e. ri+1 = ri +∆r where ∆r is computed from eq. 28. This method is known as the
Newton-Raphson method. Note that if H= I, the method reduces to the steepest-descent
method discussed above. If the starting configuration of Newton-Raphson is in region on
the energy surface that yields a Hessian matrix with one or more negative eigenvalues,
the step will be uphill in energy along the direction of the eigenvectors corresponding
to the negative eigenvalues. In this case, an energy minimum will be not located. But,
instead, a different kind of stationary point on the energy surface might be identified (as
discussed below). The hyper-surface on the energy surface, where the lowest eigenvalue
of the Hessian matrix goes from being positive to negative (λ1 = 0) is known as the
inflation surface.

In Newton-Rapshon, the Hessian matrix is needed for each iterative step in the
search for a stationary point. However, the evaluation and diagonalization of the 3N x
3N dimensional Hessian matrix is computationally demanding or even prohibitive for
large systems, in particular if electronic structure methods are being used. Sometimes
analytical Hessian calculations are available but still the computational cost is signifi-
cantly larger than that of the energy and force computations. In this case, quasi-Newton
methods can be used, where an approximate Hessian matrix is used instead. The
search for a stationary point is then either started from the exact or an approximation
to the Hessian matrix. After which, changes to the (inverse) Hessian matrix, ∆H, are
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approximated in each step of the optimization,

Hi = Hi−1 +∆H (29)

where the change expected to occur in the Hessian matrix needs to fulfill the following
condition

∆F =−Hi∆r (30)

There are numerous way to fulfill this condition, the most popular one is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update, (Broyden, 1970; Fletcher, 1970; Goldfarb,
1970; Shanno, 1970)

∆HBFGS =−∆F∆FT

∆F∆r
− Hi−1∆r∆rT Hi−1

∆rT Hi−1∆r
. (31)

The BFGS is a suitable update method for approximating the Hessian matrix in energy
minimizations since it ensures that the Hessian matrix is positive definite. For larger
optimization problems, it is more suitable to use the limited memory version of BFGS,
referred to as L-BFGS. (Nocedal, 1980) The storage of the full Hessian matrix is avoided
in L-BFGS. Instead only a memory of M previous optimization steps and forces is kept.

When searching for stationary points which are not characterized by a positive-
definite Hessian matrix, e.g. saddle points (discussed below), other Hessian updates
need to be used. These updates should not enforce the Hessian to be positive-definite.
This includes the symmetric rank one (SR1) update, (Murtagh, 1970)

∆HSR1 =− (∆F−Hi−1∆r)(∆F−Hi−1∆r)T

(∆F−Hi−1∆r)T ∆r
(32)

and the Powell-symmetric Broyden (PSB), (Dennis Jr and Schnabel, 1996)

∆HPSB =− (∆F−Hi−1∆r)∆rT +∆r(∆F−Hi−1∆r)T

∆rT ∆r
(33)

+
∆rT (∆F−Hi−1∆r))∆r∆rT

(∆rT ∆r)2 . (34)

Bofill proposed that it was better to use a linear combination of SR1 and PSB and
introduced a mixing parameter θ , given by (Bofill, 1994)

∆HBofill = θ∆HSR1 +(1−θ)∆HPSB (35)

θ =
((∆F−Hi−1∆r)T ∆r)2

|∆F−Hi−1∆r|2|r|2
(36)

For the initial Hessian matrix, an inexpensive estimate is typically used. The
simplest being a scaled identify matrix, H0 = αI. For molecular systems, the initial
Hessian is often empirically constructed by accounting for the connectivity of the atoms
and the flexibility of the molecule. A positive definite diagonal Hessian matrix is
then computed using empirical estimates of second derivatives (or force constants)
of the bonds, angles and dihedrals that involve connected atoms. This method was
first proposed by Schlegel (Bernhard Schlegel, 1984) and revised later by Fischer and
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Almlöf (Fischer and Almlöf, 1992). The model, empirical, Hessians are known to give
satisfactory results. However, when possible it is advantageous to use more intensive
(but approximate) methods to estimate the initial Hessian, e.g. by using force-fields that
are fitted to the given system or semi-empirical electronic structure methods. (Jensen,
2017) It is important that the properties of the initial Hessian matrix reflect the problem
at hand, e.g. be positive-definite for energy minimization.

The Newton-Raphson and quasi-Newton methods may lead to a large optimization
step being taken that exceeds the boundaries of the LQA. For example, near the boundary
of the inflation surface or if the starting configuration is far from the stationary point and
the surface is non-quadratic. (Schlegel, 2011) This may bring the system to unreasonable
regions of the energy surface and can even lead to poor convergence. It is, therefore,
essential to control the step-size of Newton-Rapshon and quasi-Newton calculations.
The simplest approach is to use a constant trust-radius, ∆trust, where if the optimization
step exceeds the trust-radius, the size of the step is simply scaled back to be equal to
∆trust. In this case, if too small ∆trust is used, the optimization becomes inefficient and
may resemble the steepest descent method. Instead, adaptive scaling of ∆trust can be
used. (Schlegel, 2011; Dennis Jr and Schnabel, 1996) For minimization problems, a
better alternative is to use an inexact line-search method to select the step-size such that
the objective function (e.g., the energy) and the gradient along the search direction are
ensured to be reduced in each step, i.e. by fulfilling the Wolfe conditions. (Nocedal and
Wright, 2006) The third option is to use Lagrange multipliers to constrain the step to be
equal to a given step-size, ∆. (Fletcher, 2013; Dennis Jr and Schnabel, 1996)

Adjacent states (i.e. the energy minimum and the surrounding potential well) are
separated by energy ridges on the energy surface. Dips in energy along the energy
ridges correspond to saddle points on the surface. For an n-th order saddle point, the
energy is at a maximum along n degrees of freedom and a minimum along all other
degrees of freedom. In other words, the Hessian matrix of a n-th order saddle point has
n negative eigenvalues and the corresponding eigenvectors are referred to as imaginary
vibrational modes.

First order saddle points are at a maximum in energy along one direction and
minimum along all other 3N− 1 degrees of freedom. These points are of particular
importance as they can represent dynamical bottle-necks of the transition from one
state to another. In other words, in the dynamical evolution of the system, majority of
the transition events would occur in vicinity to the first order saddle points. Therefore,
identification of these points becomes essential for the computation of the rate of
reaction, see sections 3.2 and 3.3. At a first order saddle point, the Hessian matrix has
one and only one negative eigenvalue and the corresponding eigenvector is referred to as
the unstable-mode. Therefore, in order to locate a first order saddle point on the energy
surface, the energy needs to be maximized along one degree of freedom corresponding
to the correct reaction coordinate (e.g. the unstable mode), while being minimized
along all other degrees of freedom. Typically, this reaction coordinate is not known a
priori and needs to be identified. For example, to locate the saddle point on the model
surface presented in Fig. 3.1 from any given starting configuration, the energy needs
to be maximized in the x-direction, while being simultaneously minimized along the
y-direction. For a high-dimensional molecular energy surface, the identification of first
order saddle points presents a significant computational challenge and the development
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of reliable and efficient methods to locate saddle points is an active field of research.
As previously stated, if a Newton-Raphson calculation is started from an initial

configuration where the Hessian matrix has a single negative eigenvalue, i.e. λ0 < 0, the
displacement of the system will be uphill in energy along the corresponding eigenmode,
q0. In principle, the Newton-Rapshon method can then be used to identify first order
saddle points, but this only applies if the trial configuration is already in very close
proximity to a first order saddle point, where the eigenmode corresponding to the
negative eigenvalue aligns with the unstable mode. Such a configuration is very hard (or
even impossible) to obtain for a high-dimensional molecular system when guided only
by chemical intuition. Moreover, even if the initial guess configuration is started from
a region on the energy surface beyond the inflation surface and with a single negative
eigenvalue of the Hessian matrix, the Newton-Raphson method may still not necessarily
converge to a first order saddle point. (Peters, 2017)

An early and important development of saddle point search methods was the Cerjan-
Miller method. (Cerjan and Miller, 1981) In this method, the eigenmode of the Hessian
matrix corresponding to the lowest eigenvalue (λ1) is followed uphill in energy from
the energy minimum towards the saddle point using a modified Newton-Rapshon
method. (Fletcher, 2013; Dennis Jr and Schnabel, 1996) The Cerjan-Miller method uses
the LQA expansion of the energy surface, but subject to the constraint of a constant
step-size, ∆. In other words, by defining the Lagrangian,

L(∆r,∆) = E(r)+FT
∆r+

1
2

∆rT H∆r− λ

2
(||r||−∆)2 (37)

the step to the stationary solution of the Lagrangian is given by,

∆r = (H−λ I)−1F (38)

where λ is a shift parameter used to shift the Hessian matrix to ensure that it has
always one negative eigenvalue, i.e. λ0 < 0. Then, the system is always displaced,
uphill in energy along q1 and down-hill in energy along all other modes according to
eq. 38, towards a first order saddle point. The value of the shift parameter, λ , must
be selected to be larger than the lowest eigenvalue, λ1, and smaller than the second
lowest eigenvalue, λ2 of the Hessian matrix. The use of a shift parameter allows the
Cerjan-Miller method to be started from a configuration within the energy minimum
basin or even in regions far beyond the inflation surface where the Hessian matrix
has more than one negative eigenvalue. The Cerjan-Miller method hence eliminates
the need for having an unreasonably accurate initial guess configuration to identify a
saddle point, as is needed in the Newton-Rapshon method. (Peters, 2017) However,
the saddle point to which the Cerjan-Miller method converges is highly dependent on
the initial guess configuration. The idea of maximizing the energy along a selected
eigenmode sparked the development of the eigenvector-following (Baker, 1986) and
minimum-mode following methods (Henkelman and Jónsson, 1999). These methods
are collectively referred to as single-ended methods and are reviewed in section 3.5.

The unstable mode at a first order saddle point is aligned in the direction normal to
the energy ridge, pointing towards the two energy minima located on opposite sides of
the saddle point. The two connected energy minima can, therefore, be readily identified
from a first order saddle point by simply following the steepest-descent path downhill,
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from the saddle point along the forward and backward directions of the unstable mode.
This type of a steepest descent path is referred to as the minimum energy path (MEP)
and satisfies

(1− τ̂(s)τ̂(s))F(φ(s)) = F(φ(s))⊥ = 0 (39)

where φ(s) describes the MEP and s is a parameter that traces out the path, dependent on
the arclength of the curve. τ(s) is the tangent to the path. In other words, all components
of the atom force that are orthogonal to the MEP are zero. Hence, the MEP is the lowest
energy (local) path on the energy surface that connects the reactant energy minimum
to a product energy minimum. This renders the MEP a natural choice to describe the
transition of the system from one state to another, i.e. a reaction coordinate. (Marcus,
1966) The MEP is important for e.g. building in anharmonic effects (Henkelman et al.,
2005), including quantum corrections (Truhlar et al., 1996) and defining a reaction path
Hamiltonian. (Miller et al., 1980; Peters, 2017) For an illustration of the MEP and the
energy curve along the MEP, see Figs. 3.1 and 3.3. If mass-weighted coordinates (i.e.√

mr) are used in the steepest-descent calculation, the MEP is also referred to as the
internal reaction coordinate. (Fukui, 1981) Methods that follow the steepest-descent
path downhill from a saddle point, to trace out the MEP rigorously require a significant
computational effort. (Ishida et al., 1977; Hratchian and Schlegel, 2005)

Figure 3.3. Potential energy along the minimum energy path, i.e. E(φ(s)), for the model
energy surface presented in Fig. 3.1. The parameter s is normalized according to the
arclength of the MEP, i.e. s̄ ∈ [0,1]. The energy maximum along the minimum energy
path (denoted by a green circle at s̄ = 0.5) is the first order saddle point on the energy
surface.

Alternatively, methods that search approximately for MEPs are more efficient and
do not require the correct saddle point to be known, a priori. In fact, they are useful for
identifying the correct first order saddle point that characterizes the transition between
a given initial and final states. Also referred to as reactant and product states. These
methods are, hence, often referred to as ’double-ended search methods’. By searching
for a MEP that connects the given reactant and product states, the calculation may
locate unknown intermediate extrema along the MEP, e.g. energy maxima and minima
that correspond to first order saddle points and stable intermediates on the energy
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surface. (McPherson et al., 2016) The highest energy maximum along the MEP is
the most important point and corresponds to the first order saddle point that describes
the given transition. The rise in energy along the MEP is the activation energy of
the transition. Moreover, by searching for MEPs alternative or unexpected reaction
mechanism for a given reactant and product state may be obtained. (Henkelman et al.,
2006) In the double-ended methods, a path that lies between the reactant and product
energy minima is represented by a discrete set of system configurations (or ’images’ of
the system), i.e. the path is defined by R = [r0,r1, ...,rM−1] using M images, where r0
and rM−1 are typically fixed at the reactant and product energy minima, respectively.
The objective of the double ended optimization is then to iteratively shift the set of
discrete images to the MEP.

In early developments of double-ended methods, Elber and Karplus, (Elber and
Karplus, 1987) attempted to locate a MEP for a given reactant and product energy
minima by minimizing the objective function,

S(R) = S([r0,r1, ...,rM−1]) =
1
L

M−2

∑
j=1

∆l jE(r j)+λ

M−1

∑
j=1

(
∆l j−

√
L2

M

)
(40)

L =
M−1

∑
j=1

∆l j (41)

∆l j = ||r j− r j−1|| (42)

with respect to the configuration of the M−2 intermediate images. For any objective
function S(R), the minimization can be done by following the steepest-descent direction,
i.e. − ∂S

∂ri
, down on the objective function surface to obtain a stationary path, δS = 0. In

the method of Elber and Karplus, the energy is minimized for each intermediate image,
as well as, the separation between a pair of images according to the first term in eq.40.
In the second term, spring forces are introduced in an attempt to control the distribution
of images along the path, where the natural length of the spring interaction is the average
separation between a pair of images. However, in this method, the path is not able
to converge to the MEP. Instead, the intermediate images ’cut corners’ in regions of
high curvature along the MEP. (Olender and Elber, 1997) Moreover, the intermediate
images accumulate near the energy minima and also kinks are readily formed along the
path as the path loops in on itself. (Czerminski and Elber, 1990; Jónsson et al., 1998)
Later developments of these methods attempted to fix the corner-cutting problem by
involving second derivatives (Olender and Elber, 1997) and the aggregation problem by
introducing a repulsive term acting between the images. (Czerminski and Elber, 1990).
Later, Choi and Elber presented the locally updated planes method (Choi and Elber,
1991) where the images are shifted to the MEP by using an estimate of the local tangent
to the path to minimize the energy of the images only in the direction normal to the path,
i.e. within a 3N−1 dimensional hyperplane. In the locally updates planes method, no
measure was included to control the distribution of images along the path. This leads to
an uneven distribution of images and poor estimates of the tangent to the path and could
even lead to a discontinuity in the path. (Jónsson et al., 1998) The early double-ended
methods mentioned here and the need to have reliable methods to locate approximate
MEPs have led to the continual development of modern double ended methods which
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are reviewed in section 3.4. This includes the nudged elastic band method (NEB) (Mills
et al., 1995; Jónsson et al., 1998), the string method (E et al., 2002) and the growing
string method (GS) (Peters et al., 2004). The development and improvement of these
methods remains an active field of study and is the primary focus of this dissertation.

3.2 Transition state theory

The dynamics of a system that has reached equilibrium in a given state, referred to here
as the reactant state (R), are characterized by a very large number of small fluctuations
(e.g., vibrational and rotational motions of the system) back and forth in the energy
basin, around the equilibrium structure. Occasionally large excursions of the system
from the equilibrium structure may occur, caused by coupling to the surroundings (or
heat bath). If enough energy is input along the correct degrees of freedom the system
may escape the reactant state to enter a product state P. The waiting time between such
reactive events, R→ P, is typically many orders of magnitude longer than the relaxation
time of the system in the stable energy basin. This allows the system to relax and
reach thermal equilibrium in the new state before the next reactive event occurs. There
is, therefore, a clear separation of time-scale between the relaxation and the reactive
events. This justifies the use of equilibrium statistical mechanics to compute the rate
of escape from a given state. The most successful and widely used theory in chemical
reaction kinetics is transition state theory (TST) (Eyring, 1935; Wigner, 1938; Evans
and Polanyi, 1938; Truhlar et al., 1996; Peters, 2017).

In TST, a dividing surface in configuration space needs to be defined. It should be
defined in such a way that it separates the reactant state from all possible product states,
i.e. a classical trajectory going from the reactant to any product state must cross the
dividing surface. This is illustrated in Fig. 3.4 using a model two-dimensional surface.
The dividing surface is a D− 1 dimensional hypersurface, where D is the number
of degrees of freedom of the system. The dividing surface is given an infinitesimal
width (σ ) and is then referred to as the transition state, denoted by ‡ in the following
discussion. In TST, it is assumed that the transition state species are populated as in
an equilibrium with the reactant state. Moreover, it is also assumed that if the system
makes it to the transition state and the velocity is pointing away from the reactant state,
a reaction is guaranteed to occur and the system enters and then thermalizes in a product
state. That is, as the system crosses the transition state towards the product state, it can
not be reflected back to enter the reactant state again. Given an appropriate selection
of the transition state dividing surface and a classical description of the atom nuclei,
the generalized TST rate (Wigner, 1938; Evans and Polanyi, 1938) is computed as the
quotient of the flux ( j†) through the transition state and the equilibrium population of
the reactant state 〈R〉, expressed as (Peters, 2017)

kTST = j‡ 1
〈R〉

= ν exp(−β∆F) (43)

where ∆F = F‡−FR is the free-energy barrier measured from the ensemble free energy
of the transition state and the reactant state. As always, β = 1/kBT . ν is a kinetic
prefactor accounting for the averaged absolute velocity at the transition state in the
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direction of a product state, 〈|v‡,⊥|〉. For a more in-depth discussion and derivation of
the TST rate expression in eq. 43, the reader is referred to Ref. Peters (2017).

Figure 3.4. A model two-dimensional energy surface to illustrate some of the key
concept of transition state theory. The surface is composed of seven minima of varying
depth and size. The reactant energy minimum is selected to be at the center of the
surface. Possible transitions out of the reactant state include the P1, P2, P3 and P4
states. The other energy minima are not directly connected to the reactant state and are
not marked. The transition state surface (‡) is selected to be a mosaic of hyperplanes
and placed along the energy ridges that separates the reactant from possible products
(shown by blue), centered on the respective first order saddle points. Three hypothetical
classical trajectories, originating from the center of the reactant state, are shown for
illustrative purposes. In red, a reactive trajectory is shown for the transition R→ P3
(red). In green, a trajectory is shown that goes towards P2 but is then reflected back to
the reactant state. The third trajectory, shown in dark red, re-crosses the transition
state near P1 two times and is then reflected back to the reactant state.

With an accurately selected transition state, generalized TST leads to a reasonably
accurate estimate of the rate constant. The assumption of no re-crossing is an approx-
imation. In reality, some dynamical trajectories will be reflected back after crossing
the transition state to re-enter the reactant state. These re-crossings can occur because
of e.g. large curvature of the energy surface and the coupling of the system to the
heat bath. In Fig. 3.4, three hypothetical classical trajectories are shown, one reactive
and two trajectories that cross the transition state one and two times before getting
reflected back to the reactant state. As a result, the TST rate is guaranteed to yield an
upper-bound of the rate constant leading to a variational principle for the placement of
the dividing surface. In other words, the transition state that yields the lowest TST rate
constant is the optimal one. However, finding the optimal transition state manually, in a
high-dimensional space, is impossible. Instead, a variational optimization needs to be
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carried out. The simplest approach is to use a single hyperplanar dividing surface and
variationally optimize the location and orientation of the surface such that kTST is mini-
mized. (Jóhannesson and Jónsson, 2001) Note that a single dividing surface is typically
not sufficient to represent the transition state, instead either a curved surface (Ciccotti
et al., 1995) or a mosaic of hyperplanes needs to be used. (Bligaard and Jónsson, 2005)
At present, finding the optimal transition state dividing surface is a computationally
infeasible task for high dimensional chemical systems.

Given a reasonable placement of the dividing surface, the kTST rate can be corrected
for dynamical inaccuracies by the WKE method. (Wigner, 1938; Keck, 1967; Eyring,
1935) In this approach, short classical trajectories are started from the transition state and
the number of re-crossings over the transition state are counted to obtain a dynamical
correction factor (κ). (Keck, 1967; Voter and Doll, 1985) The corrected TST rate can
then be expressed as,

kcorr = κkTST (44)

In general, the more accurate the placement of the dividing surface, the smaller the
number of trajectories is needed to obtain a statistically converged correction factor. The
trajectories also serve to identify the possible product states connected to the reactant
state.

Transition state theory is an incredibly powerful theory which can be used to
approximate the canonical rate of reaction from one state to another, i.e. when the
system is in thermal equilibrium with a heat bath. However, for unimolecular reacations,
at low pressure, the Rice-Ramsperger-Kassel-Marcus (RRKM) theory should instead be
used to estimate the micro-canonical reaction rate. (Marcus and Rice, 1951; Marcus,
1952)

3.3 Harmonic transition state theory

Computation of the rate of reaction with harmonic TST (HTST) is both straightforward
and practical, even when electronic structure methods are used to describe the energy
surface. For this reason, HTST is likely to be the most commonly used form of TST. In
HTST, the transition state is simply chosen to be the ensemble of first order saddle points
that lie on the energy ridge surrounding the given reactant state. This assumption is
valid if the saddle points represent dynamical bottle-necks for transitions of the system
from the reactant to the product states. There are typically many more saddle points
on the energy surface than there are energy minima and the number of saddle points
surrounding a single energy minimum can easily be enormous. The main challenge of
HTST is, therefore, to locate all of the relevant saddle points.

For example to determine the reaction mechanism and when computing and com-
paring the relative HTST rates of two (or more) elementary reaction steps to determine
the ratio of products formed. The correct saddle points need to be identified. These are
the lowest energy saddle points along the energy ridge that correspond to a transition
between the given reactant and desired product states. For this task, the correct saddle
points can be identified by locating the relevant MEP for the given reactant and product
states, see section 3.4. A more challenging application of HTST is to estimate the rate
at which the system moves from one state to another, i.e. the rate of escape from a
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given state. This is quantity of crucial importance for long timescale simulations on the
evolution of a system using adaptive kinetic Monte Carlo. (Henkelman and Jónsson,
2001) The computation of the rate of escape is a challenging computational task. In
principle, it involves locating all of the first order saddle points that encircle the given
state. However, in practice, only the low energy saddle points on the energy ridge are
relevant and need to be identified, as they describe the the most likely transitions out of
the given state, according to Boltzmann statistics.

In the following two different formulations of HTST are presented, namely, that of
Eyring (Eyring, 1935; Peters, 2017) and Vineyard (Vineyard, 1957). Starting from a
slightly different but equivalent expression to the generalized TST rate. The kTST rate
constant can be written in terms of the partition functions for the transition state (Q‡)
and the reactant state (QR),

kTST =
1
2
〈|v‡,⊥|〉

σ

Q‡

QR (45)

where the quotient Q‡

QR is the probability of the system making it to the transition state,

i.e. to a first order saddle point in HTST. The factor 〈|v
‡,⊥|〉
σ

is the rate of crossing the
transition state. The average absolute velocity normal to the transition state (along
the reaction coordinate) can simply be estimated from the Maxwell distribution of
velocities,

〈|v‡,⊥|〉=

√
2kBT
πµ

(46)

where µ is an effective mass along the reaction coordinate. The factor 1
2 in eq. 45

accounts for the fact that only half of the trajectories are moving in the direction of the
product state.

3.3.1 Eyring’s HTST

In the Eyring formalism, the factor corresponding to translation along the reaction

coordinate is separated from Q‡ and treated as a free translation, or σ

λ ‡ =
σ
√

2πµkBT
h .

Combining this result with eqs. 45 and 46, the kinetic prefactor equates to kBT
h and the

expression for the rate constant becomes

kTST =
kBT

h
Q‡

QR (47)

For calculations of the canonical rate of molecular reactions, the rigid-rotor harmonic
oscillator approximation can be used to approximate the partition functions of the
transition state and reactant. In this approximation, the translation, rotational, vibrational
and electronic degrees of freedom are considered separable and the partition function Q
can be written as,

Q = QtransQrotQvibQelec (48)
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where the typical individual partition functions (for polyatomic non-linear molecule)
are given as, (Jensen, 2017)

Qtrans =

(
2πMkBT

h2

)3/2

V (49)

Qrot =

√
π

σsym

(
8π2kBT

h2

)(3/2)√
I1I2I3 (50)

Qvib =
3N−6(7)

∏
i=1

exp(−β h̄ωi)

1− exp(−β h̄ωi)
(51)

Qelec =
∞

∑
i=0

gi exp(−βEi) (52)

In this approximation, the vibrational degrees of freedom are treated as quantum me-
chanical harmonic oscillators (see eq. 52) and hence the name ’harmonic’ TST. Then,
kTST becomes kHTST. ωi is the vibrational frequency of the ’i-th’ vibrational mode qi,

given by ωi =
√

λi
µ

. The product in Qvib runs over the 3N−6 vibrational modes in the
reactant state. While, for the transition state (or saddle point) the product runs over
3N−7 vibrational modes. Because, the unstable mode, i.e. the vibrational mode that
corresponds to the imaginary vibrational frequency at the saddle point, is omitted from
the product. In fact, this degree of freedom was factored out of Q‡ in the derivation
of kTST and is treated as a free translation. For the rotational partition function, the
principle moments of inertia (∏3

i=1
√

Ii) can be different for the reactant and saddle
point configurations even for unimolecular reactions. σsym is the symmetry number and
accounts for the number of equivalent ways by which the transition may occur. For the
electronic partition function, it is typically sufficient to include only the ground state
electronic contribution to the partition function. Since the energy difference between
the ground-state and higher energy excited states is often large and thus have negligible
contributions. In kHTST, given the relevant saddle points have been located, the rate of
reaction is readily computed using only a single Hessian calculation per relevant saddle
point and one Hessian calculation at the given reactant state. The possible product states
can be obtained by following the steepest descent path down from the saddle points in
the direction of the unstable mode.

3.3.2 Vineyard’s HTST

The partition functions of eq. 45 can be written in terms of configurational integrals,

QR = ZR =
∫

R
exp(−βE(r))dr (53)

Q‡ = Z‡ = σ

∫
‡

exp(−βE(r))dr (54)

where the integration is carried out over the reactant region R and the transition state
region ‡ of configuration space, respectively. Strictly speaking, to define the state
of system in phase-space, i.e. E tot(r,v) = Ekin(v)+Epot(r), both the coordinates r
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and velocities v of all of the atoms are needed. However, the distribution function of
the system, P(r,v)drdv = Aexp(−βE(r,v))drdv, can be factored into the individual
distribution of velocities and coordinates, P = PrPv. The velocity distribution is simply
the Maxwell distribution which is the same everywhere in configuration space and can
thus be factored out.

Figure 3.5. Harmonic expansion along the vibrational modes of the reactant energy
minimum (q1,q2) and saddle point (q‡

2) on the model energy surface from Fig. 3.1. The
unstable mode, q‡,unst.

1 , pointing along the reaction coordinate (shown in green) is not
included in the expansion. The (angular) vibrational frequency of this mode is
imaginary. In Vineyard’s HTST the prefactor is proportional to the ratio of the
corresponding vibrational frequencies, or ν = ω1ω2/ω

‡
2 . This effective frequency is

often interpreted as the attempt frequency of the system to cross the transition state.

For systems of small vibrations around an equilibrium structure, e.g. atoms or
molecules reacting in and on the surfaces of solids, the theory of small oscillations
becomes applicable. (Vineyard, 1957) In Vineyard HTST, the configuration integrals
are evaluated by expanding the energy surface to second order in the vibrational normal
modes around the reactant energy minimum and the first order saddle point, i.e.

E‡(q‡) = ESP +
1
2

D−1

∑
i=1

λ
‡
i q‡

i
2

(55)

ER(qR) = ER +
1
2

D

∑
i=1

λ
R
i qR

i
2

(56)

where D is the number of vibrational modes of the system. The expansion is not carried
out along the degree of freedom corresponding to the unstable mode, as is shown in
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Fig. 3.5. This leads to the harmonic approximation to the TST rate constant (Vineyard,
1957),

kHTST =
1

2π

∏
D
i ωR

i

∏
D−1
i ω

‡
i

exp(−β∆E) (57)

where ∆E = E‡-ER is the energy difference of the saddle point and the reactant energy
minimum. The prefactor is written in terms of the classical vibrational partition func-
tions. If the quantum mechanical vibrational partition functions are used instead, the
method is referred to as quasi-quantum HTST (or qq-HTST). Again, the imaginary
frequency is omitted from the product over vibrational frequencies at the transition state.
If the system includes translation and rotational degrees of freedom, they have to be
introduced to eq.57 separately as defined in the previous section.

The form of the Vineyard HTST expression is in agreement to the empirical Arrhe-
nius dependence of the rate constant on temperature,

k = Aexp(−Ea/kBT ) (58)

and allows for a physical interpretation of the Arrhenius parameters. The activation
energy, Ea, can be interpreted as the height of the potential energy barrier. The prefactor,
A, is thus related to the width of the potential energy well around the minimum and the
energy valley at the saddle point.

The HTST approximation can give an accurate estimate of the rate constant at
ambient temperature intervals, if the energy surface is smooth and the first order saddle
points are separated by regions of high enough energy for the harmonic approximation
to accurately represent the energy surface in vicinity to the reactant sand saddle point
stationary points. However, for systems characterized by rugged energy landscapes,
e.g., reactions in enzymes and solution, the assumptions of HTST are not likely to be
valid. For such reactions, TST (or WKE) will still give an accurate estimate of the
rate. That is, if the assumptions of TST hold and an accurate placement of the dividing
surface. However, at low enough temperature, where a classical description of the atom
nuclei is not correct, the HTST (and also TST) rate become inaccurate and nuclear
quantum effects need to be accounted for. This can be done within the semi-classical
approximation of HTST, see section 3.6.

3.4 Double ended methods

Double ended saddle point search methods represents a class of path optimization
methods used to locate and resolve minimum energy paths for a given reactant and
product energy minima. Consequentially, the highest energy, first order, saddle that char-
acterizes the reaction is also identified. The nudged elastic band method (NEB) (Mills
et al., 1995; Jónsson et al., 1998) is a well-established and widely used method of this
class. (Ásgeirsson and Jónsson, 2020) In this chapter, the NEB method and variants
thereof are reviewed in section 3.4.1 and 3.4.2, respectively. A large portion of the
body of work presented in this dissertation are developments and applications of the
NEB method to (i) calculate optimal tunneling paths (see Article I) and (ii) to locate
first order saddle points of molecular reactions (see Article II and III). Other commonly
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used double ended methods are presented in sections 3.4.3 and 3.4.4, namely the string
method (E et al., 2002) and the growing-string method (GSM) (Peters et al., 2004).

3.4.1 Climbing image nudged elastic band method

In NEB, a path between the reactant and product energy minima is discretized by
creating a set of M points and arranging them in such a way as to trace out an MEP on
the energy surface that connect the two minima. The discretization points are referred
to as ‘images’ of the system. An image, denoted by i, is specified by the set of 3N
coordinates of all atoms in the system, ri. The two end-points of the path are typically
fixed at the reactant and product energy minimum. A point in path space is, therefore,
3N x(M−2) dimensional. The task is to first construct a reasonable initial path between
the two endpoints and then apply the NEB combined with some optimization method to
iteratively shift the images to the MEP.

The images are shifted downhill on the energy surface in a direction obtained from
the atom force. However, only the component acting perpendicular to the path is used
to modify the shape of the path, (Jónsson et al., 1998). Following the full atom force
would lead to accumulation of images near the local energy minima. Therefore, a force
projection is required based on an approximation to the local tangent to the path. While
it seems more accurate to estimate the tangent at a given image, i, from the coordinates
of atoms at the two adjacent images, i− 1 and i+ 1, it turns out to be numerically
more stable to use only the coordinates of the neighboring image that has the higher
energy. In other words, using an (upward) finite difference instead of central finite
difference approximation. (Henkelman and Jónsson, 2000) For images at an energy
extremum along the path, the tangent is approximated by the energy weighted average
of the two line segments connecting it to its two neighbors. (Henkelman and Jónsson,
2000) Letting the normalized tangent to the path be denoted as τ̂i, the perpendicular
component of the force acting on image i is

F⊥i = Fi− (Fi · τ̂ i) τ̂i. (59)

where Fi is the atom force for image i. By iteratively displacing the images in the
direction of F⊥i until the perpendicular component of the atom force vanishes, places
the images on the MEP. For each optimization step, the energy and atom forces of all
movable images need to be computed. The computations of the energy and gradient are
the most computationally intensive part of a NEB calculation, especially when used in
conjunction with electronic structure methods. However, one of the main advantages of
the NEB method is that the computations are readily carried out simultaneously, using
parallel or distributed computing.

It is necessary to control the distribution of the images along the path. Otherwise, the
images may slide down in energy and aggregate near the local energy minima. (Jónsson
et al., 1998) This is achieved by incorporating harmonic springs between pairs of
adjacent images. Several different formulations of the spring interaction have been
presented, see Refs. Jónsson et al. (1998); Henkelman and Jónsson (2000); Kolsbjerg
et al. (2016); Maras et al. (2017); Röder and Wales (2020). In this work, the distance-
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based formulation of the springs is used, (Henkelman and Jónsson, 2000)

Fsp,‖
i = (ki|ri+1− ri|− ki−1|ri− ri−1|) · τ̂i. (60)

The spring force should only act tangential to the path, as the perpendicular component
of the spring force serves to straighten out the path and induce ’corner-cutting’ of
the images in regions of large curvature. In other words, the images get pushed off
the MEP. (Jónsson et al., 1998) The perpendicular component of the spring force has
been used to aid in NEB calculations of long paths where the density of images is low
compared to the local curvature of the energy surface. (Jónsson et al., 1998; Trygubenko
and Wales, 2004; Sheppard et al., 2008; Kolsbjerg et al., 2016; Maras et al., 2016)

Figure 3.6. Snapshot of a NEB calculation, illustrating the different force components
that are used to displace the path to the MEP. Namely, the component of the spring
force acting parallel to the path Fsp,‖ shown in green, the component of the atom force
acting normal to the path F⊥ shown in red and the effective NEB force FNEB shown in
blue for three intermediate images ri+1,ri,ri+1.

The spring constants, k, are most commonly chosen to have the same value for
all segments of the path resulting in an equidistant placement images along the path,
i.e. an even distribution. The distribution of the images along the path can also be
controlled using constraints (instead of a penalty function) based on an estimate of the
total length of the path (E et al., 2002; Maras et al., 2017). In principle, different values
of the spring constant can be used for different segments of the path to produce any
desired distribution of images. For example, it is possible to adaptively scale the spring
constants according to the energy such that stiffer springs act between images located in
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higher energy regions of the path, the so-called energy-weighted (EW) spring constants.
In this scheme, the spring constant for segment i is given by (Henkelman et al., 2000)

ki =

{
(1−αi)ku +αikl, if Ei > Eref
kl , otherwise (61)

αi =
Emax−Ei

Emax−Eref
(62)

ku and kl are upper- and lower-bound values of the spring constant. Emax is the energy
of the highest energy image (HEI) along the path, Ei is the higher energy image of
the pair of images connected by line segment i and Eref is a reference energy chosen
to be equal to the higher energy state of the reactant and product states. The energy-
weighted (EW) spring constants lead to a higher density of images in the higher energy
regions along the path, while other less important parts of the MEP become less well
resolved. (Henkelman et al., 2000) An example of the different image distributions
obtained from CI-NEB and EW-CI-NEB calculations of the MEP for the ene-reaction of
1-propylene and ethylene is shown in Fig. 3.7. Even though this method was proposed
some time ago, it has (to the best of the authors knowledge) not been used in NEB
calculations since, nor is it available in commonly used implementations of the method.
In Article III, the energy-weighted springs are found to be essential for reliable NEB
calculations of molecular reactions.

The effective force acting on image i is then given by the sum of the two force
components,

FNEB
i = F⊥i +Fsp,‖

i , (63)

and defines the steepest-descent direction of NEB, i.e. FNEB
i =− ∂S

∂ri
for an unknown

objective function S(R). The effective force, perpendicular atom force and parallel
spring force of eq. 63 are visualized in Fig. 3.6. The force projections decouple the
displacement of the images along the path and the change in the position and shape of
the path towards the MEP.

The most important part of an MEP is the highest energy point along the path, i.e.
the highest energy first order saddle point connecting the reactant and product states,
since the rise in energy along the MEP gives an estimate for the activation energy of
the transition. However, as discussed above, the images are typically distributed evenly
along the path and then there is no guarantee that an image ends up being placed in the
vicinity of the highest energy saddle point, leading to an uncertain underestimate of
the activation energy. To improve on this, it is possible to interpolate the path using a
piecewise cubic polynomial, where both the energy and the component of the atomic
force acting tangential to the path are used. (Henkelman and Jónsson, 2000) Moreover,
the interpolation may reveal the presence of other extrema along the path, e.g. an
intermediate minimum.

In order to obtain a more accurate estimate of the activation energy for the transition,
one of the images can be forced to ’climb’ uphill along the path and converge on the
highest energy maximum. This image is referred to as the ‘climbing image’. Generally,
the HEI after a few optimization steps is chosen to be the climbing image, i = ci. The
effective force acting on the climbing image is given by, (Henkelman et al., 2000)

FNEB
ci = Fci−2(Fci · τ̂ci) τ̂ci. (64)
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Figure 3.7. Comparison of the different image distributions obtained by CI-NEB and
EW-CI-NEB calculations of the minimum energy path for the ene-reaction of
1-propylene and ethylene. The CI-NEB method uses an even distribution of images
along the path, this leads to only a single image (the climbing image) being located on
the actual energy barrier. In the EW-CI-NEB method, however, the images accumulate
on the energy barrier. This leads to a more accurate resolution of the energy barrier in
EW-CI-NEB compared to CI-NEB. But, other, irrelevant, regions of the path become
more poorly resolved. The reactant (denoted by R), saddle point (denoted by SP) and
product (denoted by P) configurations are shown as insets.

Note that the CI is unaffected by the spring force and is only displaced according to
the projected atom force. By inverting the force in the direction of the tangent, the
force around a first order saddle point is made to mimic the force around a minimum.
Therefore, ordinary minimization methods can be used to converge the climbing image
on the first order saddle point. The main assumption here is that the tangent estimate at
the climbing image gives an accurate estimate of the direction of the unstable mode at
the saddle point. This method is referred to as the climbing-image nudged elastic band
(CI-NEB) method. (Henkelman et al., 2000)

Optimization of the path

Various optimization methods can be used to zero the effective force and shift the path
to the MEP, see Refs. (Sheppard et al., 2008; Herbol et al., 2017). An NEB calculation
is a minimization in the 3N x(M−2) dimensional path space. An illustrative CI-NEB
calculation is shown for the two-dimensional Müller-Brown surface (Müller and Brown,
1979) in Fig. 3.8. The images are iteratively displaced in the direction normal to
the path until they converge on the MEP, while maintaining even spacing along the
path. The climbing image accurately converges to the higher energy saddle point.
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Typically, a calculation is considered to be converged when the absolute maximum
Cartesian component of the atom force acting perpendicular to the path, max(|F⊥|), is
below 0.01 eV/Å for all images. However, the most important part of the MEP is the
highest energy point and the estimate the tangent to the path at that point. Therefore,
in practice, tighter convergence thresholds are used for CI than for the other images,
e.g. max(|FCI|) < 0.01 eV/Å and max(|F⊥i |) < 0.1 eV/Å. An illustrative CI-NEB
calculation is shown for the two-dimensional Müller-Brown surface (Müller and Brown,
1979) in Fig. 3.8.

Figure 3.8. Climbing image nudged elastic band calculation on the two-dimensional
Müller-Brown surface. (Müller and Brown, 1979) There are three energy minima on the
surface, the reactant (denoted as R), intermediate (denoted as I) and product (denoted
as P). There are also two saddle points. The higher energy saddle point is labeled by
SP. The calculation is started from a linear interpolation of M = 10 images between
the reactant and product energy minima. The path is then accelerated in the normal
direction, down-hill, to the minimum energy path (shown by a white dashed line) using
the velocity-projection optimization method. The optimization trajectory of the images
are shown by dark red curves and the final position of the images on the MEP by
circles. The highest energy image converges directly to the higher energy saddle point.
The optimization profile of the CI-NEB calculation is shown as an inset. In this, a cubic
interpolation of the energy between the images along the MEP is plotted as a function
of displacement after each optimization step.

It is important to note that the objective function for the NEB force is not known
explicitly because of the force projections. This complicates the use of optimization
methods that require the use of a line-search method to determine the size of the
optimization step, such as the conjugate gradient methods (Hestenes et al., 1952) and

35



3. Calculations of chemical reactions

some quasi-Newton methods (Nocedal and Wright, 2006).
In the earliest implementations of the NEB method (Mills et al., 1995; Jónsson

et al., 1998), the velocity projection optimization (VPO) method was used. It is a
reliable but conservative optimization method where the effective force is minimized
using a quenched version of the velocity Verlet algorithm. (Andersen, 1980) The path is
accelerated in the direction of the effective force by projecting the velocity along the
effective force. If the velocity and force do not align (i.e. are anti-parallel) the velocity is
zeroed, as this is an indication that the optimization has overshot the objective function
minimum, i.e. the MEP. A parametrized extension of the VPO method has been devised
and is referred to as fast inertial relaxation engine (or FIRE). (Bitzek et al., 2006) The
biggest difference between the two methods, is that FIRE uses a variable time-step
to accelerate the optimization more aggressively, and that only part of the velocity is
projected along the effective force (i.e. first derivative), maintaining momentum in other
directions.

In VPO and FIRE, only the effective force is used to displace the path to the MEP.
Alternatively, more efficient optimization methods can be used, where information
about the second derivative is used, as well, to bring the path to the MEP. Here, a local
quadratic approximation (LQA) to the unknown NEB objective function surface is made
and the system is displaced to the minimum of the quadratic approximation, using

∆r = HNEB−1FNEB (65)

where HNEB is the Hessian matrix for the path and FNEB = [FNEB
1 ,FNEB

2 , ...,FNEB
M−1]. If

no inter-image interactions were included (i.e. if HNEB is constructed solely from F),
then HNEB would be block-diagonal with the block elements equal to Hi. However,
like energy surfaces, the unknown NEB surface is not quadratic. Therefore, an iterative
procedure is required to zero the atom force. Bohner et al. (Bohner et al., 2013) derived
the analytical expression of HNEB and used it to achieve quadratic convergence for
several simple test cases, where the analytical Hessian of the energy surface was readily
available. However, the calculation and diagonalization of the second derivative of
the energy function is, for most practical purposes, computationally prohibitive. To
address this issue, the quasi-Newton methods can be used, where the Hessian matrix is
approximated by the Hessian update methods. A good choice for NEB is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update. (Broyden, 1970; Fletcher, 1970; Goldfarb,
1970; Shanno, 1970) For high-dimensional optimization problems such as NEB, the
limited-memory variant of the BFGS method (Nocedal, 1980) is the more sensible
choice as it scales linearly in terms of processor and memory requirements with system
size. A memory of M previous steps is kept and used to construct the approximate
inverse Hessian matrix. In fact, in the work of Sheppard and Henkelman, it is reported
that the L-BFGS method, where HNEB includes the off-diagonal elements, is the most
efficient and robust optimization method for NEB. (Sheppard et al., 2008). As previously
stated, the implementation of an efficient line-search for NEB/L-BFGS is not an easily
realizable task, as the objective function is unknown. This needs further investigation.
Instead, the NEB/L-BFGS method is typically used with a constant trust-radius, ∆trust,
to prevent the optimization from taking unreasonable steps into high-energy regions
on the energy surface. It has also been suggested that the L-BFGS method may reach
ill-conditioned states when used with NEB. In these cases it is recommended to reset
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the L-BFGS memory of previous steps. (Chill et al., 2014a,b) In Article III, a reasonable
choice for ∆trust is found to be of crucial importance for the reliability and efficiency of
the NEB/L-BFGS method in applications to molecular reactions.

Recent developments of NEB have used machine learning approaches to reduce the
number of energy and force evaluations by an order of magnitude. Both neural networks
(Peterson, 2016) and Gaussian process regression (GPR) (Koistinen et al., 2017, 2019)
have been applied for this purpose. In these approaches, an approximate energy surface
is constructed with a machine learning model where the energy and force evaluations
are used as an input, typically in tandem with an electronic structure method. Then,
a CI-NEB calculation is carried out on the approximate energy surface to converge
to an approximate MEP, after which electronic structure calculation are carried out
for each image along the approximate MEP or possibly only for the image with the
largest uncertainty estimate (in the GPR-model) of the approximate energy surface. The
approximate energy surface is then refined using the new information and the CI-NEB
calculation carried out again. This procedure is repeated until the MEP obtained on the
approximate energy surface parallels the MEP on the actual energy surface. The GPR
has the advantage (over neural networks) of having a built in error estimate that can be
used to choose which image should be evaluated using the electronic structure method.
The machine learning approach helps make optimal use of each electronic structure
calculations, while traditional optimization methods, such as the VPO and L-BFGS
method, only use the forces obtained at the current and at a few previous steps. All other
force evaluations are disregarded. However, the current limitation of the GPR-NEB
method is that it is only applicable to relatively small systems, as the computational
resources required for such a calculation grow as the third power of the degrees of
freedom and number of evaluations.

In the case of symmetric MEPs, computational resources required by the CI-NEB
calculation can effectively be reduced by half. In this approach, the calculations
of the energy and atom forces are only explicitly carried out for half of the images
in the path and then projected onto the other half using the appropriate symmetry
operations. (Mathiesen et al., 2019)

For CI-NEB calculations of finite systems, such as clusters or molecules, it is im-
portant to remove the trivial translation and rotation of the system from the available
degrees of freedom during the optimization. The optimization of the path could other-
wise lead to an artificial lengthening of the path involving translation and/or rotation
in order to enable images to slide down from high energy regions. This can reduce the
resolution of the path in regions of high energy and increase the computational effort,
or even prevent the calculation from converging. A method based on quaternions has
been formulated for the purpose of constraining the translation and rotation (Melander
et al., 2015).
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Initial path generation in NEB

The simplest method (and likely to be the most frequently) used to generate an initial
path in NEB is linear interpolation in Cartesian coordinates between the reactant and
product energy minima. However, the linear interpolation may lead to an initial path that
is characterized by large atom forces, caused by overlapping of atoms in intermediate
configurations. When the calculation of the energy and atom force is carried out using
an electronic structure method, such strong overlap can slow down or even prevent the
self-consistency calculation from converging. Additionally, an initial path, generated by
linear interpolation, is typically located far from an MEP on the energy surface.

A better approach is to generate the initial path by taking the pairwise distances
between atoms into account using the image dependent pair potential (IDPP) method
(Smidstrup et al., 2014). In this method, the pairwise distances between neighboring
atoms are interpolated linearly between the two energy minima and an initial path is
generated to match those distances as closely as possible. Since there are many more
pairwise distances than atom coordinates, the matching can only be approximate and
the initial path is found by minimizing the sum of squared deviations (Smidstrup et al.,
2014). In IDPP, this is achieved by defining an objective function, SIDPP

κ , and carrying
out an NEB calculation on an ’effective surface’ defined by the objective function,

SIDPP
κ (ri) =

M

∑
A

M

∑
B>A

w(dAB)(dκ
AB−dAB)

2 (66)

where dAB is the pairwise distance between atoms A and B for intermediate image i. dκ
AB

is the interpolated pairwise distance between atoms A and B of the same image. Here,
w is a weight-function to give shorter bond distances higher weight and make unnec-
essary bond breaking unfavorable. The weight function is given as w = (dAB)

−4. The
NEB/IDPP calculation requires little computational effort compared to the electronic
structure calculations. Typically, the resulting IDPP initial path lies closer to the MEP
than a path generated by e.g., linear interpolation of Cartesian coordinates (Smidstrup
et al., 2014) with much lower energy intermediate configurations. This is clear from
Fig. 3.9, where the energy difference between the highest energy image and reactant
energy minimum is visualized for a large benchmark set of 121 main-group molecular
reactions.

Recently, a method to grow the initial path in a step-wise fashion for a NEB
calculation on the effective IDPP surface has been proposed (Schmerwitz et al., 2021).
This builds on the basic idea of the growing string method (Peters et al., 2004) see
section 3.4.4, but is applied to the IDPP surface so as to generate an initial path for
an NEB calculation. Alternatively, it is possible to avoid the problem of overlapping
atoms by carrying out the linear interpolation between the energy minima in internal
coordinates (Goumans et al., 2009). Another promising novel initial path generation
method has been proposed (Zhu et al., 2019) where the initial path is obtained by a
geodesic interpolation between the two minima.
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Figure 3.9. Comparison of two different initial path generation methods for NEB,
namely linear interpolation in Cartesian coordinates (a) and the image-dependent pair
potential (IDPP) method (b). The distribution of the maximum rise in energy (∆E)
along the initial paths generated for a large database of 121 main-group molecular
reactions, is shown. Moreover, in (a), for clarity the distribution of ∆E ∈ (0,100]
kcal/mol is shown as an inset. As expected, the IDPP method leads to the generation of
more reasonable, lower energy, intermediate configurations compared to linear
interpolation in Cartesian coordinates.

The choice of the initial path will determine the final outcome of a NEB calculation.
For instance, it can happen that two or even more MEPs exist between the same
reactant and product minima, as is shown in Fig. 3.10. A NEB calculation will most
likely converge to the MEP that is closest to the initial path. Then, it is important to
sample different MEPs to find the one that corresponds to lowest activation energy. If a
preconceived notion of the optimal MEP exists, e.g. an initial guess of the saddle point
or an intermediate energy minimum, the information can be used to influence the initial
path generation and bring the initial path into the vicinity of the desired MEP. This is
illustrated in Fig. 3.10, where the initial paths obtained by linear interpolation converge
to the closest MEP. Then, by altering the initial path with an insertion of a single image,
the CI-NEB calculation can be made to converge to an alternative MEP. In this scheme,
the procedure for the initial path generation is divided into two parts, i.e. interpolation
from the reactant energy minimum to the inserted image and then from the inserted
image to the product energy minimum. The two partial paths are then concatenated
to form the full initial path which can then be used as input for the NEB optimization.
When an image is inserted into the initial path generation, the position of the image
along the band needs to be selected in such a way as to minimize the difference in
maximum deviation of straight-line distances between all pair of images along the band.
If the insertion is done properly, a desired MEP will more likely be obtained and the
efficiency of the NEB calculation improved.
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Figure 3.10. Different (discretized) minimum energy paths obtained by CI-NEB
calculations on the two-dimensional LEPS potential coupled to an harmonic oscillator
(and with added Gaussian functions). (Henkelman and Jónsson, 1999) The three energy
minima on the surface are shown by white circles with black borders. The first order
saddle points are shown by green boxes and the energy maxima are shown by magenta
hexagrams. Four minimum energy paths are connected to the lower left energy
minimum. Two from the upper left energy minimum and two from the right energy
minimum. The initial paths of the CI-NEB calculations are shown by black dashed lines
and illustrate how different initials path can be constructed to locate alternative
reaction pathways.

3.4.2 Variants of the CI-NEB method

There have been numerous variants of the NEB method proposed where the objective
of the method is to locate the highest energy first order saddle point for a given reaction
as efficiently as possible. This is typically achieved by focusing the computational
effort on the saddle point region of the path and can be particularly important for
NEB calculations of clusters and molecules. For these transitions, the MEP tends to
be significantly longer than for e.g. transitions occurring in and on the surfaces of
solids. The MEPs are often characterized by long segments of chemically irrelevant
configurational changes associated little-to-no change in the energy. The actual energy
barrier then constitutes only a small portion of the reaction pathway. Distributing images
over the entire reaction coordinate in an equidistant fashion is then substandard, as is
highlighted in the example of Fig. 3.11. In this example, two CI-NEB calculations
using different number of images are carried out for the formation reaction of 1,2-
hexadiene. The reaction coordinate is very long and the actual energy barrier narrow.
This results in the use of excessive number of images needed to resolve the MEP in
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CI-NEB. Alternatively, the CI-NEB calculations could be confined to the region of the
energy barrier and calculations of images in other regions of the path halted. In the
following, several CI-NEB variants are briefly reviewed. In these methods, the main
theme is to redirect the computational effort to the barrier region.

Figure 3.11. Results of CI-NEB calculations of the reaction of ethylene and
1,3-butadiene to form 1,2-hexadiene using M = 10 (blue) and M = 34 (red) images.
The reaction is characterized by a long MEP and a narrow energy barrier. The
CI-NEB(M = 10) calculation is unable to converge in 500 optimization steps and the
final path does not even capture the correct characteristics of the energy barrier. The
CI-NEB(M = 34) calculation converges in about 150 optimization steps, i.e. ≈ 4800
energy/gradient evaluations. Despite the large number of images being used in the
CI-NEB(M = 34), the resulting resolution of the energy barrier is, at best, moderate.
The reactant (denoted by R), saddle point (denoted by SP) and product (denoted by P)
configurations are visualized in (c)

In its simplest form, the CI can be added to the path as an additional image in the gap
between the two highest energy images of a regular NEB calculation. (Goumans et al.,
2009) Another approach is to use two climbing images located on opposite sides of
the HEI. Then, all three images move towards and bracket the saddle point. (Zarkevich
and Johnson, 2015). For a more aggressive approach, the adaptive NEB (or ANEB)
has been proposed. In the ANEB method, repeated NEB calculations (limited to three
movable images) are carried out for a small fixed number of optimization steps. Then,
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after each NEB calculation a new initial path is constructed from the position of the two
images adjacent to the HEI, i.e. these images define fixed endpoints for the subsequent
NEB calculation. (Maragakis et al., 2002) A more elaborate scheme for focusing the
CI-NEB calculation on the saddle point region is the autoNEB method. (Kolsbjerg et al.,
2016) In this method, additional images are added, on-the-fly, into the largest energy (or
geometrical gap) along the path after a certain number of fixed optimization steps. The
addition of images is carried out until the calculation reaches a user-defined threshold
of allowed number of images. At that point, the CI is activated and the saddle point
targeted. To maintain efficient parallelization, only the images surrounding the most
recently added image are computed and displaced in each optimization step. All other
images remain fixed during the optimization. In the ANEB and autoNEB methods, the
partially converged paths are chosen to have fixed endpoints that are not local minima
and are not part of the MEP. This can, however, lead to problems as, for example,
kinks form on the path as neighboring images to the endpoints get pulled away from
the MEP, see Article II. A better approach is to use endpoints that can move either to
follow equipotential contours (Zhu et al., 2007) or the component of the atom force
perpendicular to the path (Zhang et al., 2016).

The NEB method has also been extended to other application areas, e.g. for cal-
culations of energy ridges and second order saddle points (Maronsson et al., 2012),
simultaneous optimization of a periodic system and the simulation cell (Sheppard et al.,
2012), temperature-corrected MEPs (Crehuet and Field, 2003), reaction paths on free-
energy surfaces (Bohner et al., 2014), tunneling paths (see Article I), point-to-point
ionospheric ray tracing (Nosikov et al., 2020) and magnetic transitions (Bessarab et al.,
2015).

3.4.3 String method

A path connecting the reactant and product states is in principle a continuous string and
such a formulation was given in one of the original NEB publications (Jónsson et al.,
1998). The continuous string is represented by a function of a progress parameter, φ(s),
such that φ(0) is the reactant configuration and φ(1) is the product configuration. The
string is then evolved/displaced in the direction normal to the string until it converges to
the MEP (i.e. ∇E⊥(φ) = 0).

For numerical calculations, the string needs, however, to be discretized by intro-
ducing a finite set of images. Instead of using harmonic springs to control the image
distribution as in NEB, it is also possible to reparametrize the distribution of the images
after each displacement si = [0, 1

M−1 ,
2

M−1 , ...,1] for i ∈ [0, ..,M−1], where M is again
the number of images. This approach is adopted by E and coworkers (E et al., 2002).
The position of image i along the string is then given by φ(si) = siSarc, where Sarc is the
arclength of the string. New images can readily be introduced in the parametrization
step to e.g. obtain a more accurate representation of the string. However, this will make
parallelization of the method significantly more challenging. The discretized string is
iteratively displaced downhill in energy along the direction normal to the path, i.e. by
computing F⊥. The upwind-tangent scheme is also used in this formulation (Henkelman
and Jónsson, 2000; Ren, 2003). Alternatively, the tangent can be computed by the cubic
spline representation of the continuous string (Koslover and Wales, 2007).
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The climbing image variant of the NEB method can readily be applied to the string
method as well. (Sheppard et al., 2008). Moreover, a single-fixed-end climbing image
variant of the string method has also been proposed. (Ren and Vanden-Eijnden, 2013)
In this method only one of the end-points is fixed at an energy minimum and the other
end-point chosen as the climbing image with the effective force transformed in an
analogous manner as in the CI-NEB method. The CI is displaced uphill in energy along
the tangent direction and downhill in energy along the direction normal to the string. To
prevent the CI from escaping the energy basin of the minimum (which is possible for
more complicated energy landscapes), a constraint is imposed on the string, where the
energy along the string is required to be monotonically increasing.

Quasi-Newton optimization methods can be used in conjunction with the string
method to evolve the string to the MEP (E et al., 2002; Burger and Yang, 2006, 2007;
Koslover and Wales, 2007; Samanta and E, 2013). There, the energy surface is expanded
using a local quadratic approximation for each image individually in the hyperplane
normal to the string. However, as the images are relaxed individually, they can move at
a different rate causing kinks to develop on the string. This issue has been addressed
by introducing a de-kinking spring force acting perpendicular to the path (Burger and
Yang, 2007) and by using a strict step-size control (Samanta and E, 2013). As could be
expected, the performance and efficiency of the CI-NEB and the string method with
a climbing image have been found to be comparable for benchmark calculations, for
example the Pt-heptamer island diffusion on a Pt(111) surface and for small-to-medium
sized clusters. (Sheppard et al., 2008; Koslover and Wales, 2007)

3.4.4 Growing string method

As discussed in section 3.4.1, the initial path used as input to NEB plays an important
role as the optimization likely converges on the closest MEP and the closer the initial
path is to an MEP, the fewer iterations are needed for convergence. The typical linear
interpolation in Cartesian coordinates usually presents a poor choice for the initial guess
that may lead to slow convergence of the calculation or even divergence in the electronic
structure calculation of the images. In the growing string method (GSM) (Peters
et al., 2004), the problem of strong overlap of atoms is avoided by growing separate
string fragments from each of the two energy minima (i.e. the reactant and product)
while simultaneously optimizing the position of the string fragments. Once, the two
string fragments have merged into a single ’continuous’ string, connecting the reactant
and product states, the method becomes equivalent to the string method of section
3.4.3, and the string is displaced to the MEP. An illustrative GSM calculation on the
two-dimensional Müller-Brown surface is shown in Fig. 3.12.

In the first step of GSM, two images are added, one from each endpoint with a fixed
distance and in the direction of the other endpoint. These images are referred to as the
frontier images. The ’continuous’ string connecting the reactant and product minima is
represented by a cubic spline interpolation of the two string fragments, from which the
tangent to the path is obtained. This choice of tangent is more appropriate for GSM than
the linear tangents used in NEB, because of the large unknown gap present in between
the frontier images. While, the tangents are obtained from the ’continuous’ string, the
two string fragments, originating from each minimum, are optimized individually.
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The optimization of the string fragments is carried out in an analogous manner
to the string method. The images are displaced according to the component of the
atom force acting normal to the string, followed by a re-parametrization step. When
a frontier image is partially converged (i.e. the magnitude of the atom force drops
below a prescribed tolerance) a new image is introduced to the corresponding string
fragment. This image is the new frontier image. Images are added according to a
fixed spacing from the frontier image along the cubic representation of the path or
alternatively by using the linear synchronious transit method. (Behn et al., 2011b).
Furthermore, to reduce the computational effort the innermost images can be frozen
when a new image is added (Behn et al., 2011a). However, this may hinder the string
from actually converging on the MEP. Similar idea, based on selecting the images with
the largest atom forces, has been explored for NEB. (Goumans et al., 2009; Crehuet and
Field, 2003; Galván and Field, 2008). The growing of the string fragments (i.e. adding
of images) is repeated until the two disjoint strings connect to form a single ’continuous’
string. Thereafter, the number of images used for the string to resolve the path remains
fixed and the string is evolved to the MEP using the original string method. (E et al.,
2002) By growing the path sequentially and optimizing the position of the images, high
energy regions on the surface are avoided. This renders the GSM more suitable than
both the NEB and string method for calculations of paths where a reasonable initial path
is hard to generate. However, effective use of parallel computing is not easily realizable
with the GSM and also with the development of new and improved methods beyond
the linear interpolation of Cartesian coordinates, such as the IDPP initial path, the high
energy regions are less likely to be encountered in NEB.

There have been significant improvements and developments of the GSM devised
throughout the years. To name a few, a single ended GSM (Zimmerman, 2015) and
a climbing image variant (Zimmerman, 2013b) have been used. An energy-weighted
parametrization scheme has been used to distribute images along the string (Goodrow
et al., 2009). Quasi-Newton optimization methods and internal coordinates have been
implemented and used for GSM calculations (Goodrow et al., 2008; Zimmerman,
2013a,b). Moreover, a GSM incorporating the aforementioned improvements has
also been combined in a reliable and efficient manner with a single ended method for
converging on a first order saddle point (Zimmerman, 2013a), analogous to the NEB-TS
method proposed in Article III.
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Figure 3.12. Growing string method calculation on the two-dimensional Müller-Brown
surface (Müller and Brown, 1979) using a cubic spline representation of the continuous
path. In (a), two images are placed adjacent to the reactant and product energy minima
and in the direction of the opposite energy minimum. Then the images are optimized
according the component of the force acting perpendicular to the continuous path. The
final position of these images (white circles) and the continuous representation of the
path (black solid line) is shown in (a). After convergence has been reached for the
frontier images, other images are added separately in the large unknown gap between
the two string fragments. In this manner, the string fragments continue to grow as they
are evolved towards the MEP. In (b) and (c), intermediate growth steps of calculations
are shown, where M = 8 and 13. In (d), the two string fragments have connected to
form a single path, composed of M = 17. This final converged GSM path is accurately
aligned with the MEP.
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3.5 Single ended methods

Single ended methods is a class of saddle point search methods where the product of
the transition is not specified, i.e. the saddle point search is initiated from a single
configuration (e.g. the reactant energy minimum) and moved uphill on the energy
surface to a first order saddle point, using both first and (approximate) second derivatives
of the energy function. The first order saddle points identified by such methods are
highly dependent on the initial guess configuration and the way the second derivative
information is obtained and used. In this chapter, a brief description of two single ended
methods, i.e. eigenvector-following and minimum-mode following, is given in sections
3.5.1 and 3.5.2, respectively.

3.5.1 Eigenvector-following

The eigenvector-following (EF) partition rational function optimization (P-RFO)
method (Banerjee et al., 1985; Baker, 1986) is probably among the most commonly used
single ended methods for identifying first order saddle points. In P-RFO, the energy
surface is locally expanded by a rational function approximation (RFA), (Banerjee et al.,
1985)

E(r+∆r)≈ E(r)+
gT ∆r+∆rT H∆r

1+∆rT S∆r
(67)

instead of LQA. S is chosen as the identity matrix times a constant γ . The RFA is a
more suitable model than LQA for energy surfaces of chemical reactions as it remains
bounded for large ∆r (Peters, 2017; Banerjee et al., 1985). The displacement towards
the minimum of the RFA expansion is then given by

ri =−
gi

λi− γ
(68)

for i = [1, ..,D], where λi denotes the i-th eigenvalue of the Hessian matrix. g is the
gradient of energy w.r.t atom displacements in the eigenvector basis. γ is a shifting
parameter, analogous to the one in the Cerjan-Miller method. The difference between
the Cerjan-Miller method and RFO is that the shift parameter naturally arises from the
RFO expansion, while in Cerjan-Miller the shift parameter originates from the use of
Lagrangian to constrain the size of the displacement. In RFO, the shift parameter can
be used to control both the length of the displacement as well as to shift the eigenvalues
of the Hessian matrix to make them all positive when an energy minimization is carried
out. Or, for saddle point searches, the Hessian is shifted to have usually at least one
negative eigenvalue. Banerjee et al. proposed to partition the saddle point search into
two individual (but simultaneous) RFO optimizations, one for energy maximization
and the other for minimization. (Banerjee et al., 1985) This warrants the use two shift
parameters, γmax and γmin. A mode, say qk (with eigenvalue λk) is selected to represent
the reaction coordinate and the shift parameter γmax is then used to ensure that each
displacement is uphill in energy along qk. The other shift parameter, γmin, is determined
to ensure that the energy is minimized along all other modes, i.e. qi where i 6= k. The
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shift parameters are determined from the roots of,

γmax =
g2

k
γmax−λk

(69)

γmin =
3N

∑
i6=k

g2
i

γmin−λi
(70)

where γmax is the larger root of eq. 69 and γmin is the smallest root of eq. 70. For a more
detailed discussion about the two shift parameters, see Refs. Peters (2017) and Schlegel
(2011). The position of qk can shift in the eigenspectrum during the P-RFO calculation.
Therefore, the mode chosen as the reaction coordinate needs to be re-identified after
every displacement of the system, hence the name eigenvector-following. This is done
computing the maximum overlap of qk from the previous step to all modes at the current
step. (Baker, 1986)

Because of the use of two shift parameters and the tracking of the reaction coordinate,
P-RFO is highly reliable and can, in most cases, be started from anywhere on the energy
surface, e.g. within an energy well (convex region) or in regions characterized by
multiple negative eigenvalues, and still converge accurately to a first order saddle point.
However, it is important to stress that most often there are multiple saddle points
connected to the same energy minimum and single ended methods will converge to
different first order saddle points for different initial guess configurations and different
choices of the reaction coordinate. This is illustrated in the example presented in
Fig. 3.13, where nine P-RFO calculations, started both within and outside of the
inflation surface, are able to identify three of the four connected saddle points. This
also brings us to an important point that some saddle points connected to a given energy
minimum can be extremely hard to locate with single ended methods alone. Such saddle
points often require the initial guess configuration to be already in close proximity
to the saddle point, which can lie far outside of the inflation surface. In P-RFO, it is
also possible to identify different saddle points using the same initial configuration by
following a different reaction coordinate, e.g., qk = q2. However, if the search is started
close enough to the correct saddle point, then the lowest mode of the Hessian will be
the correct choice for the reaction coordinate, as it aligns with the unstable mode. It
has been reported that P-RFO may sometimes encounter problems when attempting
to leave the convex region (Olsen et al., 2004) or when dealing with bimolecular and
unimolecular reactions characterized by multiple low frequency eigenmodes of the
Hessian matrix. (Peters et al., 2004)

As for Newton-Raphson and quasi-Newton methods, the Hessian matrix (or an
approximation thereof) is needed to evaluate the displacement in EF P-RFO. With an
accurate Hessian and in close proximity to the saddle point, EF P-RFO may achieve
quadratic convergence. However, the Hessian matrix is typically approximated using
the Bofill update scheme (Schlegel, 1982; Bofill, 1994). For challenging systems
with multiple (e.g., near-degenerate eigenmodes), the approximation introduced to the
Hessian matrix by the Bofill method may not be sufficiently accurate. This can distort
the eigenspectrum and cause the eigenvector-following to lose track of qk. (Peters,
2017) In these cases, it may be optimal to construct a more accurate initial guess
configuration and/or rely on the computation of the exact Hessian matrix. The Hessian
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Figure 3.13. Optimization trajectories for several partitioned rational function
eigenvector-following calculations on the two-dimensional LEPS potential coupled to
an harmonic oscillator (with added Gaussian functions). (Henkelman and Jónsson,
1999) The three energy minima on the surface are shown by white circles with black
borders. The first order saddle points are shown by green boxes and the energy maxima
are shown by magenta hexagrams. The shaded part of the surface shows where
λmin > 0. In all calculations, the eigenmode, qmin, corresponding to the lowest
eigenvalue is followed. The calculations are started around the lower left energy
minimum, both inside and outside of the inflation surface. The starting points are given
by small green circles. The optimization trajectories are shown by dashed black lines.

matrix at the starting point of EF P-RFO calculations needs to be of the correct form
and with qk that resembles the actual reaction coordinate. Therefore, the initial Hessian
matrix is often computed analytically or numerically at the beginning of the calculation.
But, it may also be possible to use lower-level of theory electronic structure methods
(e.g. semi-empirical methods) or as in Article III, construct an empirical Hessian
matrix (Fischer and Almlöf, 1992) and modify it accordingly.

3.5.2 Minimum-mode following

In the minimum-mode following (MMF) method, the system is iteratively displaced to
a first order saddle point using only the atom force and the eigenvector corresponding
to the lowest eigenvalue of the Hessian matrix, qmin, or an approximation thereof. This
eigenvector is referred to as the minimum mode.
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In a similar fashion to the P-RFO method, the minimum mode is used to partition
the displacements of the atoms into two parts. That is, an energy maximization along
the minimum mode and simultaneous minimization in all directions orthogonal to the
minimum mode, (Henkelman and Jónsson, 1999),

FMMF = F−2(F ·qmin)qmin (71)

Note that the projection of the atom force carried out in eq. 71 is the same as for
climbing image in CI-NEB, except that qmin is used here instead of the approximate
path tangent at the climbing image.

In MMF, the first step is to bring the system over the inflation surface, λmin < 0, e.g.
by following gradient-ascent or stepping along the minimum mode −(F ·qmin)qmin.
(Henkelman and Jónsson, 1999; Olsen et al., 2004) Then, the system is iteratively
displaced according to FMMF until a first order saddle point is located. The displacement
of the system can be carried out using any number of gradient based optimization
methods, as discussed in section secs: 3.1 and 3.4.

There are many different ways to estimate the minimum mode, the most common
one being the dimer method. In the dimer method, two system replicas, held at a finite,
fixed distance (∆) apart from a center image are used to compute the lowest mode of
the Hessian matrix, i.e. r1 = rmid +

∆n̂
2 and r2 = rmid− ∆n̂

2 , where n̂ is pointed along the
axis of the dimer. The energy surface of the dimer is then approximated by a second
order expansion and simplifies to (Peters, 2017)

E(r1,r2)≈ 2E(rmid)+
∆2

4
n̂T Hn̂ (72)

the lowest energy orientation of the dimer is obtained when n̂ aligns with the direction
of the minimum mode, qmin. In this way, the lowest mode can be computed by itera-
tive minimization of the dimer energy in the space spanned by n̂ using only the atom
forces(Henkelman and Jónsson, 1999; Olsen et al., 2004; Heyden et al., 2005; Kästner
and Sherwood, 2008), i.e. no second derivatives are needed. Alternative methods to
find the minimum mode are directional minimization of a finite difference approxi-
mation of the second derivative (Voter, 1997; Munro and Wales, 1999), the iterative
Lanczos method (Malek and Mousseau, 2000; Olsen et al., 2004) or the Davidson
method (Plasencia Gutiérrez et al., 2017). Therefore, in the MMF methods several
evaluations of the energy/atom force are required in each step to explicitly compute
the minimum mode. However, since the minimum mode often change only slightly
between steps, computational resources can be saved by evaluating the minimum mode
only every few iterations. In comparison to EF P-RFO methods that use approximate
Hessian (i.e. only one energy/gradient evaluation per displacement) MMF methods are
likely to require more computational effort. However, for challenging systems where
the Hessian matrix might need to be computed every few steps, MMF methods will
become more efficient than EF P-RFO. Also, the MMF methods are more suitable
for large systems as they do not require the storage (or diagonalization) of the 3Nx3N
dimensional Hessian matrix.

It is important to stress that single ended saddle point searches require an initial
configuration (MMF and EF P-RFO) and a qualitatively accurate initial estimate of the
Hessian matrix (EF P-RFO)to locate a saddle point. When attempting to locate saddle
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points on the edge of an energy basin to compute the escape rate from a given state,
both EF and MMF methods suffer from the problem of re-discovering already known
saddle points for different initial guesses. This can be partially remedied by maximizing
the distance between initial guess configurations on a hypersphere. (Plasencia Gutiérrez
et al., 2017)

If, however, the objective of a single ended calculation is to locate a saddle point for a
desired transition, the initial configuration of the calculation needs to be close enough to
the desired saddle point and/or the correct reaction coordinate needs to be chosen. This
is near impossible to do by chemical intuition in high-dimensional systems. Therefore,
to generate such an initial guess, considerable human (and computational) effort is often
spent. Typical strategies involve starting from the highest energy configuration along
a linear interpolation in Cartesian, internal or distance matrix coordinates (Halgren
and Lipscomb, 1977). Alternatively, the synchronious transit-guided quasi Newton
method (Peng and Bernhard Schlegel, 1993) or the IDPP method (Smidstrup et al., 2014)
can be used (see Article III). It is also common to carry out one- or two-dimensional
constrained energy minimization where a coordinate is selected and dragged from the
reactant to the product state. However, all of these methods are not without faults and
are often not be reliable enough for complex reactions. It is therefore advantageous
to combine single and double ended methods, (Henkelman and Jónsson, 2000; Peters
et al., 2004) to find first order saddle points for a given transition, see Refs. Zimmerman
(2013a) and Heyden et al. (2005), as well as, Article III.

3.6 Tunneling and quantum harmonic transition state theory

Transition state theory, as described in sections 3.2 and 3.3, is a very powerful theory
used to estimate the classical rate of reactions, i.e. over-the-barrier hopping mechanism.
However, the theory is inherently classical. While, quantum effects like the zero
point energy can readily be incorporated into the HTST rate expression by using the
appropriate partition functions in the rate expression. However, the effect of quantum
mechanical tunneling is entirely missing from TST. (Wigner, 1938)

A tunneling process is where the system passes through regions of the energy surface
where the potential energy is higher than the total energy of the system (Meisner and
Kästner, 2016). In other words, the system passes through a classically insurmountable
energy barrier to enter a new state. The tunneling probability is a function of the mass
of the tunneling atoms, the shape of the PES in vicinity to the reactant and product
states and the total energy of the system. In other words, the lighter the participating
atoms and the shorter the tunneling path, the stronger the influence of tunneling. The
mass-dependence of tunneling leads to a strong kinetic isotope effect. Therefore, by
substituting the expected tunneling atoms by their respective isotopes, the importance
of tunneling can be probed.

Tunneling is predominantly observed for reactions involving light species such as
hydrogen atoms, e.g., hydrogen atoms hopping between sites on surfaces. (Lauhon
and Ho, 2000; Ásgeirsson et al., 2017) However, there are also studies that indicate
the importance of heavy-atom tunneling in e.g. organic reactions. (Castro and Karney,
2020; Doubleday et al., 2017). Moreover, if the temperature is low enough, any reaction
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will, in principle, be dominated by tunneling (Kästner, 2014). For example, reactions
occuring under atmospheric and astrochemical conditions. (Shannon et al., 2013; Fang
et al., 2016; Ásgeirsson et al., 2017). There are, also, cases where tunneling is observed
to be the preferred mechanism at and above room temperature, e.g. in biochemical
system (Sutcliffe and Scrutton, 2002; Masgrau, 2006). In Article I, tunneling is found
to be the dominant reaction mechanism for the dissociation of molecular hydrogen from
ammoniumborane at room temperature. For an excellent review on the different aspects
of atom tunneling in chemistry, the reader is referred to Ref. Meisner and Kästner (2016)

The temperature for the crossover from the over-the-barrier mechanism to tunneling
can be roughly estimated from the first order saddle point that characterizes the classical
transition mechanism, (Gillan, 1987)

Tc =
h̄|ω‡|
2πkB

(73)

where ω‡ is the vibrational frequency of the unstable mode at the saddle point. The
temperature, Tc, is referred to as the crossover temperature. The more narrow the energy
barrier, the larger ω‡ is, the higher the Tc. At and below the cross-over temperature,
tunneling will become the dominant transition mechanism. This results in a break-down
of the Arrhenius behavior (i.e. the linear relationship between ln(k) and 1/T ) and
manifests itself as an effective reduction and eventually vanishing of the activation
energy, i.e. the overall rate becomes temperature independent.

3.6.1 Computation of a tunneling correction factor

In its most simple form, tunneling can be accounted for by computing a correction factor,
κ tun, and applying it to the classical rate, i.e. kcorr. = κ tunkclassical. The assumption here
is that the reaction coordinate is chosen accurately and is separable from all the other
modes of the system. Hence, the correction factor can be computed as the ratio of the
quantum mechanical and classical transmission coefficient, respectively, through the
reaction coordinate,

κ
tun =

∫
∞

0 PQM(E)exp(−βE)dE∫
∞

0 H (E−E‡)exp(−βE)dE
(74)

where H is the Heaviside function. The quantum mechanical transmission probability,
PQM, is given by the Jeffreys-Wentzel-Kramer-Brillouin (JWKB) approximation (Dun-
ham, 1932)

PQM(Esys) =
1

1+ exp( 2
h̄ θ(Esys))

(75)

where θ(Esys) is the barrier-penetration-integral (also known as the imaginary action
integral) for system of fixed energy, Esys,

θ(Esys) =
∫ r(s2)

r(s1)

√
2µ(s) [E(r(s))−Esys]ds (76)

where r(s1) and r(s2) are the classical turning points along the reaction coordinate, s that
fulfill E(r(s1)) = E(r(s2)) = Esys. The integration is carried out over the, classically
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forbidden segment of the chosen reaction path. The dimension of the integral is action
and the smaller the value θ , the larger the tunneling probability, PQM. Therefore, a
path on the energy surface, between r(s1) and r(s2), that minimizes the action integral
of eq. 76, defines a path of maximum tunneling probability. This path can differ
significantly from the MEP depending on temperature. The optimal tunneling path will
climb up along the walls on the concave side of the reaction channel (i.e. the path will
’cut corners’) to higher energy regions of the energy surface, in order to effectively
shorten the tunneling path, which in turn enhances the tunneling rate. (Marcus and
Coltrin, 1977) This effect of corner-cutting is more pronounced as the temperature is
lowered. (Richardson, 2018)

The most important parameters of the selected reaction coordinate, e.g. E‡ and ω‡,
are often used to fit prototypical problems to energy barriers for which analytical (or
approximate) JWKB solutions to the quantum mechanical transmission probability are
readily available. One such example is the infinite downward parabola. (Wigner, 1932)
The analytical solution of the infinite parabola gives the famous Bell correction, (Bell,
1959)

κ
tun =

1
2 β h̄ω‡

sin( 1
2 β h̄ω‡)

(77)

It was derived for and is only valid for temperature, T > Tc. Another correction factor
(obtained from a truncated series expansion) approximates the solution to the infinite
downward parabola and is referred to as the Wigner tunneling correction,

κ
tun ≈ 1+[β h̄ω

‡]2/24 (78)

Even though, Wigner’s correction factor is applicable for lower temperature than Tc, it is
only accurate at relatively high temperature, where tunneling is seemingly unimportant.
Usually, it is more accurate to fit a one-dimensional (asymmetric) Eckart barrier to the
reaction coordinate, since the parabolic fit is too simple and narrow at the base. For the
Eckart barrier, analytical solutions of κ tun are also available. (Johnston and Heicklen,
1962) An Eckart barrier can be fitted to a reaction coordinate using the imaginary
vibrational frequency at the classical transition state, ω‡, as well as the, zero-point
energy corrected potential energy barrier height for the forward and backward reactions.
The Eckart model can yield reasonably accurate correction factors for temperature
around Tc. (Kästner, 2014) However, the tunneling probability is highly dependent on
the shape of the energy barrier and it becomes more important as the temperature is
lowered.

A more elaborate and accurate set of methods are the curvature-tunneling meth-
ods. In these approaches, the JWKB approximation is used to compute the quan-
tum mechanical transmission coefficient through a reaction coordinate, defined a pri-
ori. In the zero-curvature tunneling (ZCT) method, the reaction path is chosen the
MEP. (Truhlar and Kuppermann, 1971) In the widely-used small-curvature tunneling
(SCT) method, (Skodje et al., 1981) the effect of corner-cutting on the tunneling rate is
realized. (Marcus and Coltrin, 1977) Therefore, by carrying out an harmonic expansion
orthogonal to the MEP and introducing an effective mass along the coordinate (depen-
dent on the reaction curvature), the tunneling probability through a path of least action
(within the harmonic expansion) can be computed. Therefore, in SCT, the calculation
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and diagonalization of the Hessian matrix along the MEP is required. The SCT method
provides accurate results for tunneling transitions that are characterized by small corner-
cutting effects, or at a temperature around and somewhat below Tc. This is realized
in the large-curvature tunneling (LCT) method, where the reaction path is selected as
a straight-line between the reactant and product energy minima. (Garrett et al., 1983)
The small- and large curvature tunneling methods are two extremes and are accurate
for limiting cases. (Kästner, 2014) Therefore, intermediate methods that combine the
two have been devised and are applicable over a larger range of temperature, e.g., the
optimized multidimensional tunneling method, OMT, which selects the larger tunneling
correction of SCT and LCT. (Garrett et al., 1985)

3.6.2 Direct computation of the canonical tunneling rate

Multidimensional tunneling (and other quantum nuclear effects) are better described
using a statistical description of the quantum dynamical behavior of the atom nuclei.
The canonical quantum mechanical rate constant is then expressed in terms of the
quantum dynamical partition functions, analogous to TST for the computation of the
canonical rate constant. The following section is largely based on Refs. Arnaldsson
(2007); Kästner (2014); Richardson (2018). Within, the Feynman path integral formal-
ism, (Feynman et al., 2010) the canonical partition function Q of a quantum mechanical
ensemble can be expressed as

Q =
∫

exp
(
−1

h̄
SE(r̃(τ))

)
Dr̃(0)=r̃(h̄β ) (79)

SE =
∫ h̄β

0

[
µ

2

(
dr̃(τ))

dτ

)2

+E(r̃(τ))

]
dτ (80)

where r̃(τ) = r(s(τ)) is a path in configuration space dependent on the time-parameter
τ . The operator Dr̃(0)=r̃(h̄β ) signifies that the integration in eq. 79 is carried out over all
closed Feynman paths (CFP). A closed Feynman path has a period of h̄β , i.e. a CFP is
a path that fulfills the boundary condition r̃(0) = r̃(β h̄). Each CFP is weighted by the
exponent of the Euclidean action, given in eq. 80.

In analogy to the energy surface and the classical MEP, a path of largest statistical
weight on the Euclidean action surface is a minimum action path (MAPs) and the highest
action first order saddle point along the MAP represents a dynamical bottlenecks for
the transition from the reactant state CFP to the product state CFP. (Mills et al., 1997,
1998) Or more precisely, a MAP is a path on the Euclidean action surface where
each point along the path is a CFP. The derivative of the Euclidean action for each
CFP is tangential to the MAP (i.e. the derivative is zero in all modes normal to the
path). The CFP of highest action, along the MAP, is a first order saddle point on the
Euclidean action surface and is referred to as an ’instanton’. (Arnaldsson, 2007) An
alternative interpretation of instantons (referred to as the semiclassical approximation)
is that instantons are a periodic classical orbit on the inverted PES that goes through the
classically forbidden region of the (inverted) energy barrier, with a period of β h̄. An
instanton is a multidimensional path on the PES that minimizes θ of eq. 76, i.e. the
optimal tunneling path for a given temperature. (Richardson, 2018)
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In practice, for the computation of the Euclidean action, the CFP needs to be
discretized by a set of system configurations (or images) and the canonical, quantum
mechanical, partition function of eq. 79 needs to be approximated. The discrete
representation of the Euclidean action in the space of CFPs is given by,

SE(y,T ) =
P

∑
i=1

(
1
2

P
h̄β
|yk+1−yk|2 +

h̄β

P
E(yk)

)
(81)

where the path is discretized into P images of the system distributed in equidistant time
steps along the path, i.e., r̃(τk) for τk = k β h̄

P−1 with k∈ [1,2, ...,P]. This distribution of the
images in configuration space represent the quantum delocalization of the atom nuclei
Moreover, to conveniently account for the effective mass, µ , in eq. 80, mass-weighted
coordinates, yk =

√
mir̃(τk)i (and mi is the mass of the i-th coordinate component), are

used. Therefore, a discretized CFP is a 3N x P dimensional point in path space and is
referred to as a ring-polymer. A ring-polymer configuration of P images is denoted as
y = [y1,y2, ...,yP].

For clarity, following the discussion of Ref. Arnaldsson (2007), the discretized
Euclidean action can be written in terms of an effective energy surface (V eff) where
each image is connected by temperature-dependent springs,

SE(y,T ) = h̄βV eff(y,T ) (82)

V eff(y,T ) =
P

∑
k=1

1
2

ksp(T )|yk+1−yk|2 +
E(yk)

P
(83)

where ksp(T ) is given by,

ksp(T ) = P
(

kBT
h̄

)2

(84)

hence each image along the ring-polymer feels only an average potential, 1
P E(y), and is

connected to its two neighboring images by a temperature-dependent spring interaction.
The shape of the instanton is temperature dependent. For temperatures above Tc, the
spring interaction overcomes the curvature of the underlying PES and the ring-polymer
is collapsed, i.e. y1 = y2 = ... = yP. As the temperature is lowered below Tc, the
spring interaction becomes weaker, the curvature of the energy surface allows the
CFP to open up and begin to spread over the energy barrier toward the reactant and
product states. The amount of spreading increases with decreasing temperature. At
very low temperatures, where only the lowest vibrational ground state of the reactant
state is occupied, the instanton can simplistically be thought of as stretching over
the base of the classical energy barrier and essentially describes a ’deep-tunneling’
mechanism with a temperature independent overall reaction rate. In reality, however, the
instanton is a multidimensional curved, corner-cutting, path on the energy surface that
can significantly differ from the classical reaction coordinate (i.e. the optimal tunneling
path for a given temperature).
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Figure 3.14. Illustration of two ring-polymers: an instanton spreading over the
classical energy barrier at a temperature slightly below the cross-over temperature and
the collapsed ring-polymer in the reactant energy minimum.

Armed with the definition of a ring-polymer, the quantum dynamical partition
function of eq. 79 becomes

Q =
∫

...
∫

exp
(
−1

h̄
SE(y)

)
d3NPy (85)

Hence, the quantum statistical mechanics of the system become mathematically equiva-
lent to the classical statistical mechanics of a ring polymer of P images of the system
connected by temperature dependent springs. (Barker, 1979; Chandler and Wolynes,
1981) Rigorous thermal averages are obtained as P→ ∞. In analogy to the Vineyard’s
formulation of HTST (Vineyard, 1957) (discussed in section 3.3.2). The partition
function of eq. 85 for a given discretized CFP can be approximated by expanding the
Euclidean action up to second order around a stationary CFP. Or, for computation of the
canonical tunneling rate, the expansion is carried out for the reactant energy minimum
CFP and the instanton CFP. (Langer, 1969; Miller, 1975; Coleman, 1977; Callan and
Coleman, 1977; Benderskii et al., 2009; Messina et al., 1995; Richardson, 2016) This
method is referred to as the harmonic quantum transition state theory (HQTST). The
resulting partition function for the reactant energy minimum is,

QR =

√
(π h̄)3NP

∏
D
i ωR

i
exp
(
−1

h̄
SE(yR)

)
=

√
(π h̄)3NP

∏
D
i=1 ωR

i
exp
(
−βE(rR)

)
(86)

where the only possible stationary (discretized) CFP for the reactant state is collapsed in
the energy minimum (rR). Therefore, as is evident from eqs. 82 and 83, 1

h̄ SE = βE(rR)

where rR is the reactant energy minimum configuration on the PES. The ωi are the
angular vibrational frequencies of the vibrational modes obtained by the diagonalization
of the Hessian matrix of the ring-polymer i.e. HCFP = [H1,H2, ...,HP] and D is the
number of vibrational modes. For the ring-polymer of the reactant state CFP, all the
images are collapsed to the same point on the N-dimensional PES and hence only a
single Hessian calculation is required to evaluate the partition function of eq. 86. For
molecular systems, there are six degrees of freedom that correspond to rotational and
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translational motion of the ring-polymer. These degrees of freedom need to be treated
separately, as discussed in section 3.3.1, and introduced into the partition functions, QR

and Q‡ (see below). For the rotational partition function, the ring-polymer can be taken
to be a ’super-molecule’ and the rotation treated classically, where each image only
accounts for 1/P-th of the total mass. However, at a low temperature, this approximation
needs to be validated. Also, as usual, the translational contributions can be skipped, as
they cancel out for the reactant and instanton ring polymers in the final expression for
the rate constant. For a more in-depth discussion for the treatment of molecular systems,
the reader is referred to Ref. (Beyer et al., 2016)

The partition function for the instanton CFP (i.e. at the first order saddle point on
the Euclidean action surface) is given as,

Q‡ =

√
β h̄PS0

2

√
(π h̄)3NP−1

∏
D
i=2 |ω

‡
i |

exp
(
−1

h̄
SE(y‡)

)
(87)

S0 =
P

h̄β

P

∑
k=1
|yk+1−yk|2 (88)

where the S0 term has been factored out, as this degree of freedom corresponds to the
permutational translation of images along the ring polymer. The motion of images
along the CFP involves no change in the Euclidean action. Instead, it contributes only
an entropic term which is proportional to the length of the ring polymer. In contrast to
Vineyard’s HTST, the frequency corresponding to the unstable mode at the instanton
is not factored out. Instead, only the magnitude of the frequency is relevant. (Kästner,
2014)

The HQTST, canonical, rate constant for a tunneling transition from the reactant
energy minimum to a product energy minimum, along the instanton, can be expressed
in terms of the quantum dynamical partition functions,

kinst. =
2kBT

h̄
Q‡

QR (89)

where Q‡ and QR are given by eqs. 87 and 86, respectively. (Kästner, 2014) In classical
HTST, the rate constant is depends exponentially on the activation energy (i.e. difference
between the energy of the saddle point and the reactant energy minumum), the canonical
rate constant is dependent on the rise in Euclidean action along the MAP, i.e. Q‡

QR ∝

exp
( 1

h̄ [SE(y‡)−SE(yR])
)
.

To evaluate the HQTST tunneling rate from any given reactant energy minimum,
the connected instanton needs to be located. As discussed above, instantons are
first order saddle points on the Euclidean action surface. Therefore, the eigenvector-
following (Baker, 1986) and minimum-mode following (Henkelman and Jónsson,
1999) saddle point methods, as discussed in section 3.5, can be applied to shift the high-
dimensional ring-polymer to the instanton. (Arnaldsson, 2007; Rommel et al., 2011)
This is achieved by using only the negative gradient of the Euclidean action with respect
to the atom coordinates, i.e. ∂SE

∂xi
. In practice, only half of the P images are needed in

the optimization as the images tend to pair up, i.e. yk = yP−k+1 for k ∈ [1,2, ...,P/2].
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Still, in comparison to the classical analog, the identification of an instanton and the
computation of the HQTST rate calculations is considerably more demanding. Each
optimization step requires a factor of roughly P/2 more energy/gradient evaluations
than is required in the classical case. The number of energy/force evaluations required
per image can be on the order of hundreds to thousands of evaluations. Also for the
evaluation of the rate, P/2 Hessian matrices along the ring-polymer at the instanton
need to be computed. Depending on temperature, the value of P can range from 20 to
100 images. Also, to obtain converged eigenvalues of the instanton Hessian matrix, very
tight convergence thresholds are usually needed in. Therefore, locating an instanton
for a given temperature and evaluating the tunneling rate can be a computationally
challenging task if the energy and atom forces are obtained from electronic structure
calculations.

To evaluate the tunneling rate for various values of the temperature, as is customary,
the instanton needs to be identified for various decreasing values of the temperature.
In other words, for each temperature, the Euclidean action surface changes and new
instantons (first order saddle points) emerge. Typically, for HQTST calculations over
a given temperature interval, a sequential cooling procedure is used. (Rommel et al.,
2011) From any given initial ring-polymer, an instanton search is carried out. Then, the
temperature is lowered and the converged instanton from the previous calculation is
used as the initial ring polymer for the a new instanton search. This procedure is then
repeated. As the temperature is lowered, more and more images are needed to resolve
the path, since the path becomes longer and the images tend to aggregate near the
reactant and product energy minima. The reason for this can easily be seen by using the
periodic orbit interpretation of instanton theory, i.e. the semi-classical approximation.
The images along the instanton ring-polymer are distributed in equidistant time-steps
along the inverted energy barrier. The system will spend most of its time near the end-
points of the orbit (which corresponds to regions in vicinity to the reactant and product
energy minima) with approximately zero velocity, as the system moves down-hill along
the inverted energy-barrier, the potential energy is converted into kinetic energy and
the velocity increases. With increased velocity in and around the center region of the
inverted energy barrier, the distance traveled per time-step becomes greater.

The HQTST approximation to the tunneling rate is found to provide accurate rate
constant estimate for a variety of chemical reactions. (Rommel and Kästner, 2011;
Rommel et al., 2012; D.M. Einarsdóttir and Jónsson, 2012; Jonsson, 2011; Ásgeirsson
et al., 2017; Meisner and Kästner, 2016) A noteworthy success of HQTST is the
mechanistic study of hydrogen atom reaction with methane to form molecular hydrogen
and a methyl radical. (Andersson et al., 2009) In this study, the rate estimated by HQTST
was found to be in excellent agreement to multiconfigurational time-dependent Hartree
calculations, (Meyer et al., 1990; Manthe et al., 1992) where the quantum dynamics of
the system are propagated directly in imaginary time, from the reactant energy minimum
ensemble, on a fitted PES.
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The focus of this dissertation is the development and evaluation of tools and methods that
can be used to characterize chemical reactions, i.e. the identification of the mechanism
of atomic rearrangements and the estimation of the rate of reaction, where both classical
and quantum mechanical description of the atom nuclei is used.

Within the commonly used harmonic approximation to transition state theory
(HTST), the calculation of the classical rate of escape from a given reactant state
is transformed into the problem of locating low-lying saddle points on the energy ridge
surrounding the state. Or, for a given reaction (i.e. both reactant and product states
are known a priori) by the highest energy maximum along the minimum energy path
(MEP). The energy maximum along the MEP characterizes the transition of the system
as it moves from the reactant to the product state. Furthermore, within the framework of
harmonic quantum transition state theory (HQTST), the calculation of the tunneling rate
is cast into the problem of locating a saddle point on an extended quantum mechanical
energy surface (referred to as an ’instanton’) or equivalently by locating the optimal
tunneling path (OTP) by minimizing the action of a trial path. Therefore, the methods
and tools used by computational chemist to navigate and identify classical and quantum
mechanical saddle points, as well as, stationary paths on energy surfaces play a pivotal
role in studies of chemical reactivity. Typically, the energy surfaces are computed using
electronic structure methods and the computational cost of the calculations can readily
become large and for some systems even computationally prohibitive. It is, therefore,
very important to make saddle point search and path optimization methods as reliable
and robust as possible for calculations on a large variety of systems, while also reducing
the number of electronic structure calculations needed to obtain the desired, converged,
solution.

4.1 Applications of NEB to molecular reactions

Molecular reactions are often characterized by a large degree of flexibility, i.e. degrees
of freedom where there is little change in energy as the system traverses along these
degrees of freedom. This results in long and flat reaction paths where the reactive
event, that gives rise to the actual energy barrier, contributes only a small segment of
the path. Hence, in standard CI-NEB calculations of molecular reactions, where the
discretization points used to represent the path are evenly distributed along the path,
significant computational effort is wasted on resolving irrelevant parts of the MEP. More
importantly, the resolution of the path near the climbing image (and hence saddle point)
may be too small for the tangent estimate to be accurate enough to converge to the energy
maximum along the path. By simply increasing the number of discretization points,
the resolution of the full path can be improved. However, this may not necessarily
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improve the resolution of the energy barrier itself to a sufficient extent. It is neither
practical nor computationally feasible to continually increase the number of images
until a sufficiently accurate resolution of the energy barrier is achieved, especially when
computationally intensive methods are used to obtain the energy and forces. The use
of an excessive number of images can simply lead to other problems. Instead, more
elaborate solutions are needed.

In Article II, the Z-NEB method is presented to resolve the resolution issue that often
occurs in CI-NEB calculations of molecular reactions, without introducing an excessive
number of images. In Z-NEB, the computational effort of a CI-NEB calculation is
simply focused into the region of the highest energy maximum along the MEP using a
two step procedure.

Figure 4.15. Illustration of the Z-NEB method on the two-dimensional Müller-Brown
surface. The initial, linear interpolation path is shown by a red dashed line and the
individual images by red circles. The displacement of the images during the iterative
optimization is shown by black solid lines. The final position of the images converged to
a segment of the minimum energy path is shown by green circles. In the first part of
Z-NEB, a loosely converged CI-NEB calculation is carried out and the partially
converged position of the images is then shown by the black circles. The solid dark-red
line indicates the region selected for introduction of additional images in the second
part of Z-NEB. It lies between the climbing image and its two adjacent images. New set
of images are introduced in this region by linear interpolation and images outside this
region are not treated further. In the second part of Z-NEB, the images are further
shifted to the minimum energy path, including the endpoint images which move in the
direction of the atom force acting normal to the current path.

In the first part of Z-NEB, a regular CI-NEB calculation is carried out until a rough
estimate of the MEP emerges. A piecewise-cubic polynomial using both the energy and
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tangential atom force is used to interpolate the energy along the approximate MEP. In the
second part of Z-NEB, the interpolated path is used to identify the region surrounding
the highest energy peak along the approximate MEP. A new set of images is distributed
in this region of the path and optimized using CI-NEB to converge on the segment
of the MEP that contains the highest energy, first order, saddle point. In the second
CI-NEB calculation, the images that lie closest to the boundaries of the high-energy
region are selected to be the new end-points. These points are not not necessarily
located on the MEP and need to be optimized simultaneously to the MEP, along with
the other images. Otherwise, the end-points may serve to pull the neighboring images
of the MEP causing kinks to form along the path. The end-points are iteratively shifted
to the MEP according to the component of the atom force acting normal to the path,
i.e. they are not subject to the spring forces. Because of this and to maintain the near
perfect parallelization property of the NEB method, Z-NEB uses two fewer images in
the second CI-NEB calculation. The Z-NEB method is illustrated in Fig. 4.15 on a
two-dimensional Müller-Brown surface (Müller and Brown, 1979).

In Article II, the Z-NEB method is successfully applied to two molecular reactions,
hydrolysis of ethyl acetate and rearrangement of 1,5-hexadiene. Both reactions are
characterized by relatively long pathways and a complicated pericyclic, 6-membered,
saddle point geometry. For the rearrangement reaction of 1,5-hexadiene, a CI-NEB
calculation using 8 images (6 movable) is unable to converge to the saddle point.
The non-convergence is attributed to large fluctuations of the CI around the energy
maximum. By increasing the number of images to 14, the oscillations of the CI are
partially quenched and the CI-NEB calculation converges in 300 optimization steps
or 3986 energy/force evaluations. A Z-NEB calculation, using 8 images, for the same
reaction is found to converge in 140 step using only 902 energy/force evaluations, i.e.
only 23% of the computational effort needed by CI-NEB(M = 14). This shows that
by focusing the computational power to the most important region of the reaction path
significant computational savings can be achieved.

An alternative method of directing the computational resources of CI-NEB cal-
culations to the relevant, high-energy, regions of the path is used in Article III. This
method is referred to as energy-weighted (EW) CI-NEB. (Henkelman et al., 2000) The
stiffness of the spring forces in EW-CI-NEB is determined by the relative energy of
the connected images, the higher the energy, the stiffer the springs. This forces the
images to climb up-hill (according to the tangential spring force) and accumulate in the
chemically relevant regions of the MEP, i.e. around the energy maximum. A comparison
of the image distribution offered by CI-NEB and EW-CI-NEB for an example molecular
reaction is presented in Fig. 4.16. The EW-CI-NEB method, using M = 10, offers
similar resolution of the energy barrier as the CI-NEB method using M = 34. The
price to pay is that other less important parts of the path become more poorly resolved.
CI-NEB calculation using the same number of images as the EW-CI-NEB calculation
(i.e. M = 10) is found to be non-convergent. The final, not fully converged, path of that
calculation was shown in Fig. 3.11.

61



4. Summary of Articles I-IV

Figure 4.16. Results of CI-NEB and EW-CI-NEB calculations on the reaction of
ethylene and 1,3-butadiene to form 1,2-hexadiene using M = 34 (red) and M = 10
(blue) images, respectively. This is the same reaction included in Fig. 3.11.

In Article III, the performance of EW-CI-NEB method is assessed and compared
to CI-NEB for a large benchmark set of 121 main-group molecular reactions. The
benchmark set combines two previously published benchmark sets (Zimmerman, 2013a;
Birkholz and Schlegel, 2015) and offers a wide variety of reaction types characterized
by a plethora of different features of the energy surfaces. The objective of the CI-NEB
calculation is to approximately locate the highest energy first order saddle point that
characterizes a given reaction, as efficiently as possible. The results are summarized in
Fig. 4.17.

As shown in Fig. 4.17, the convergence ratio of CI-NEB using M = 7 images is
found to be 74%. By increasing the number of images, the convergence ratio increases.
More precisely, CI-NEB calculations using M = 10 and 14 images are found to be
convergent for 82% and 93% of the reactions, respectively. The average energy/force
evaluations needed by the CI-NEB calculations increases from 874 to 1824 as the
number of images is increased from 7 to 14. In contrast, EW-CI-NEB calculations
using 7 images, exhibit an impressive convergence ratio of 98% with an average of
589 energy/force evaluations. This amounts to a 33% reduction in computational effort
compared to CI-NEB using same number of images. Moreover, by increasing the
number of images to M = 10, the convergence ratio of EW-CI-NEB calculation is found
to be 100%. It is, therefore, clear that the image distribution offered by EW-CI-NEB is
more advantageous for calculations of molecular reactions than the even distribution of
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images used in standard CI-NEB calculations. This is because, as the images accumulate
in vicinity of the energy maximum along the MEP, the tangent estimate at the climbing
image becomes more accurate, which in turn leads to a more stable and efficient CI-NEB
calculation. It remains to be seen which of the two approaches, EW-CI-NEB or Z-NEB,
or even some combination of the two, will end up being the optimal NEB method for
calculations of approximate first order saddle points.

Figure 4.17. Performance of CI-NEB and EW-CI-NEB calculations on the benchmark
set of 121 main-group molecular reactions. The notation (EW-)CI-NEB-X is used to
denote the method used and X specifies the number of images used in the calculations,
where X = 7, 10 and 14. For the CI-NEB calculations, the spring constant ksp used in
the CI-NEB calculations is specified on the x-axis and is in units of Ha/Bohr2. For the
EW-CI-NEB calculation, the spring constant is scaled from ksp = 0.01 to 0.1 Ha/Bohr2.
The average number of energy/force evaluations in convergent CI-NEB calculations is
given by the left y-axis. The standard deviation of energy/force evaluations is shown as
an error bar. The convergence ratio for a set of calculations is given by the right y-axis.
Note that non-convergent calculations are omitted from the calculation of averages and
standard deviation.

The combination of double-ended and single-ended methods is likely to be the
most efficient way of obtaining first order saddle point for a given reaction. (Heyden
et al., 2005) In this scheme, the double-ended method is used to obtain an approximate
saddle point configuration which is then used as the starting point for a subsequent
single-ended saddle point search. The single ended method is then used to obtain
a rigorous convergence to the first order saddle point. The computational gain of
switching from a double-ended method to a single-ended method arises from the
disparity in computational cost per optimization step, i.e. double-ended calculations
are carried out in discrete path space while single-ended calculations are carried out
in configuration space. Also, single ended methods are much more reliable to obtain
rigorous convergence to a saddle point than double ended methods. While, single
ended methods are highly dependent on the initial guess configuration (and the selected
reaction coordinate) and in order to identify the correct saddle point, double ended
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methods are needed to bring the system in vicinity of the desired saddle point.
In Article III, the IDPP-TS and NEB-TS methods are presented and evaluated on

the same benchmark set of 121 main-group molecular reactions. In NEB-TS, the EW-
CI-NEB and EF P-RFO methods (referred to as a TS search) are combined to locate,
first order, saddle points for a given reaction. The EW-CI-NEB method is used in the
first part of NEB-TS to obtain an approximate reaction path that connects the given
reactant and product state. The climbing image, from the partially converged MEP, is
used as the initial guess configuration for the TS search. The initial Hessian matrix
used at the beginning of the TS search can either be computed analytically (if available
by the given electronic structure method) or by an empirical model Hessian using the
Almlöf scheme (Fischer and Almlöf, 1992). The path tangent at the CI is then used to
select the correct eigenvector to be followed. If the EW-CI-NEB is converged to a high
enough degree, the path tangent should already provide an excellent approximation to
the unstable mode at the saddle point, i.e. the reaction coordinate. Also, if the Almlöf
model Hessian is used, then the eigenspectrum needs to be modified accordingly, the
eigenvalue corresponding to the selected eigenvector is shifted according to a finite
difference estimate of the curvature of the path. The TS search method then uses the
Bofill update method to approximate the Hessian in subsequent steps. Therefore, if the
empirical estimate of the Hessian matrix is used to begin with, the exact computation of
the Hessian matrix can be entirely avoided in NEB-TS. The IDPP-TS method is similar
to NEB-TS, where the EW-CI-NEB part is skipped. Instead the TS search is instead
initiated from the highest energy image along an IDPP initial path. This method is
similar to the typical combination of single-ended methods and interpolation methods,
e.g. the linear synchronous transit method of Halgren and Lipscomb. (Halgren and
Lipscomb, 1977)

The performance of NEB-TS and IDPP-TS on the benchmark set of main-group
molecular reactions is summarized in Figs.4.18 and 4.19. The NEB-TS method, using
max(|FCI|) < 0.51 eV/Å, is found to be remarkably efficient and reliable, with an
average of 305 energy/force evaluations per reaction and a 100% convergence ratio.
Majority of the computational effort of NEB-TS calculations is used in the initial EW-
CI-NEB calculation to obtain an accurate initial guess for the TS search, or an average
of 260 energy/force evaluations. By converging the climbing image to max(|FCI|)< 0.1
eV/Å, the computational effort the EW-CI-NEB is roughly doubled (or 501 energy/force
evaluations), while the computational effort of the TS search is decreases from 45 to
33 cycles. Surprisingly, the inclusion of the analytical Hessian matrix, only marginally
improves the efficiency of NEB-TS with an average reduction of about 5-8 energy/force
evaluations. As expected, IDPP-TS is found to be even more efficient than NEB-TS
with an average of 120 energy/force evaluations per reaction and also a surprisingly
high convergence ratio of 97%. The high convergence ratio of IDPP-TS is attributed
to an interplay of both the quality of the initial path generated by IDPP and also to
the robustness of the TS search method, even when using an approximate second
derivative. For comparison, TS searches started from the highest energy image along
an initial path constructed by linear interpolation in Cartesian coordinates yields only
69% convergence ratio. If the exact Hessian is used at the beginning of the TS search in
IDPP-TS, the efficiency is reduced by about 11 energy/force evaluations.

The quality of the initial guess configuration of NEB-TS and IDPP-TS determines
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Figure 4.18. The computational efficiency of NEB-TS and IDPP-TS calculations (using
M = 10) on the benchmark set of main-group molecular reactions. The TS search is
started when max(|FCI|)< 0.51 or 0.1 eV/Å. The TS search is started either using an
analytical Hessian matrix or the empirical Almlöf scheme. The average number of
energy/force evaluations required by convergent NEB-TS (and IDPP-TS) calculations
to locate saddle points is shown with red solid line along with the standard deviation
shown as an error bar. The dashed blue and green dashed lines show how the NEB-TS
calculations breaks down into the initial EW-CI-NEB phase and the subsequent TS
search.

whether the calculations are able to identify the correct, connected, saddle point. There-
fore, to assess the quality of the saddle points obtained by NEB-TS, the energy deviation
from a reference set of saddle points is briefly examined and shown in Fig. 4.19. Large
energy differences are caused by the TS search converging to different saddle points
than the ones included in the reference set. These different saddle points can for example
belong to a different MEP that connects the same reactant and product state (i.e. an
alternative, but valid, reaction pathway). The methods can also converge to a different,
lower-energy, saddle point along a multistep MEP. The third and most severe possibility
is that a saddle point that does not connect to the given product state is obtained, i.e.
corresponds to a wrong reaction pathway.

The SPs obtained by IDPP-TS can exhibit large energy deviations from the reference
set by up to 3.5 eV. In IDPP-TS, 30% of the SPs show a larger energy deviation than 0.02
eV (0.5 kcal/mol) and 14% of the SPs a larger deviation than 0.17 eV (4.5 kcal/mol).
If NEB-TS is used, with max(FCI < 0.51 eV/Å, the fraction of SPs that deviate is
found to decrease to 17% and 6%, respectively. If the exact Hessian matrix is used
initialize the TS calculations (of IDPP-TS or NEB-TS), the ratios are further decreased
by 1.5–2.5%. The best agreement to the reference set of SPs is obtained for NEB-TS
using max(FCI < 0.1 eV/Åand an exact initial Hessian matrix, then about 15% and
2% of the SPs show a larger energy deviation than 0.02 and 0.17 eV, compared to the
reference set.
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Figure 4.19. Convergence ratio and accuracy of saddle points obtained by NEB-TS and
IDPP-TS calculations (using M = 10) on the benchmark set of main-group molecular
reactions. The TS search is started when max(|FCI|)< 0.51 or 0.1 eV/Å. The TS search
is started either using an analytical Hessian matrix or the empirical Almlöf scheme.
The ratio of convergence is given by the blue line (right vertical axis). The ratio of
NEB-TS and IDPP-TS calculations that yield a saddle point with an energy difference
from the reference set of saddle points, that is smaller than a given ∆ is shown in red
(left vertical axis). The ratio is computed for three different values of ∆, namely 0.1,0.5
and 1.0 kcal/mol.

The SPs obtained by IDPP-TS can deviate in energy from the reference SPs by up
to roughly 3.5 eV. Around 31% of the SPs obtained by IDPP-TS show a larger energy
deviation than 0.004 eV and 22% of the SPs a larger deviation than 0.02 eV. In NEB-TS,
where the CI of EW-CI-NEB is converged to εTS

max = 0.5 eV/Åbefore starting the TS
search, the distribution of energy differences is found to span a range of 0 to 1.3 eV.
The fraction of SPs that deviate by more than 0.004 and 0.02 eV is found to decrease
to 15% and 9%, respectively. If the exact Hessian matrix is used to initialize the TS
calculations (of IDPP-TS or NEB-TS), instead of the model Almlöf Hessian, the ratios
can be further decreased by roughly 4–7%. The best agreement to the reference set
of SPs is obtained for NEB-TS using εTS

max = 0.002 eV/Åand an exact initial Hessian
matrix. For this set of calculations, about 7% and 6% of the SPs show a larger energy
deviation than 0.004 and 0.02 eV compared to the reference set, respectively.

These results show the IDPP-TS and NEB-TS are both efficient and reliable choices
for identifications of saddle points. However, there is a possibility that the TS search
may converge to an incorrect SP. This effect can be reduced by improving the initial
guess configuration, i.e. using EW-CI-NEB and converging it to a tighter threshold
and/or using the exact Hessian at the beginning of the TS search for the selection of the
reaction coordinate.

In comparison to NEB-TS, a state of the art, integrated, combination of the climb-
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ing growing string (GS) method and TS search has recently been developed and pub-
lished. (Zimmerman, 2013a) The GS-TS method was found to have a 100% convergence
ratio with an average of 500 energy/force evaluations using M = 11 images. The calcula-
tions were carried out for a slightly smaller benchmark set than used in this dissertation,
or 105 main-group molecular reactions. It is, therefore, clear that the performance
offered by NEB-TS is comparable to that of the GS-TS method. However, an additional
advantage of the EW-CI-NEB method is the electronic structure computations carried
out in NEB calculations are readily parallelizable. Interestingly, on a subset of 72 se-
lected reactions, the GS-TS method with M = 7 images is found to have a convergence
ratio of 81%. (Zimmerman, 2013a) While, the NEB-TS method, using 7 images on the
larger set of 121 main-group molecular reactions is found to have a 98% convergence
ratio, signifying that the NEB-TS method is likely to be more robust than the GS-TS
method and less sensitive to the choice of the number of images.

4.2 Optimal tunneling paths and HQTST rate computation

The identification of first order saddle points on the energy surface allows for the
computation of the thermally averaged classical rate constant within the framework
of HTST. At low temperature, the classical description of the atom nuclei may not be
sufficiently accurate. Instead, both zero-point energy and quantum tunneling need to
be taken into account. In fact, at temperature below the reaction-dependent crossover
temperature, quantum mechanical tunneling is found to be the dominant reaction
mechanism. In this case, the computation of the thermally averaged tunneling rate
constant with approximate tunneling contributions can be carried out using the HQTST
method.

In HQTST, the thermally assisted tunneling rate is estimated from a second order
expansion around the point of highest Euclidean action along the minimum action
path (MAP) that connects the reactant and product states. Each point on the MAP
is a closed Feynman path (CFP) of Px3N dimensions, where P is the number of
images used in the discrete representation of the CFP and N is the number of atoms.
The point of highest action along the MAP corresponds to an ’instanton’, or a first
order saddle point on an extended quantum mechanical energy surface. Hence, both
double-ended and single-ended methods may be used to locate the full MAP or the
instanton, respectively. Typically, the minimum-mode following method has been used
to locate instantons. These type of saddle point calculations, however, turn out to require
enormous computational effort and are therefore not easily combined with electronic
structure methods. First, a large number of images may be needed to resolve the
instanton (e.g., in comparison to NEB calculations), since the images tend to accumulate
near the reactant and product states. The number of images needed for converged results
depends on the curvature of the energy surface and also on the temperature. Furthermore,
due to the coupling of images in CFPs, very tight convergence thresholds are needed to
determine the saddle point along the MAP to a first order, i.e., the (Px3N) x (Px3N)
dimensional Hessian matrix needs to have one and only one negative eigenvalue.

In Article I, the line-integral NEB (LI-NEB) method is presented to significantly
reduce the computational effort needed for computation of the thermally assisted tunnel-
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ing rate constant using HQTST. In this approach, instead of searching for the instanton,
the optimal tunneling path is located using the LI-NEB method. The optimal tun-
neling path is the path of maximum tunneling probability for a fixed energy of the
system. It turns out that the OTP traces out the same path on the energy surface as
an instanton for a fixed temperature. Therefore, once an OTP for a given energy has
been obtained, the corresponding temperature can be computed and the corresponding
instanton constructed, allowing for the computation of the HQTST rate. A preliminary
report of the development of this method was previously presented in a conference
proceeding. (D.M. Einarsdóttir and Jónsson, 2012)

In LI-NEB, the OTP for a system with energy Esys is obtained by minimizing the
barrier penetration integral (θ ) for a path r = r(s) where s ∈ [0,1],

θ =
1
h̄

∫ r(1)

r(0)

√
2µ(E(r)−Esys)dr (90)

the points r(0) and r(1) are the classical turning points with fixed energy E(r(0)) =
E(r(1)) = Esystem. In order to minimize θ , the integral is approximated as

θ̃(r1, ...,rM−1) =
1

2h̄

M

∑
i=1

[
(2µ(E(ri)−Esys))1/2 +(2µ(E(ri−1)−Esys))1/2

]
|ri− ri−1|

(91)
using a discrete representation of the path, i.e. [r1,r2, ...,rM−1]. The images are then
iteratively displaced towards the OTP using the regular NEB method, where the atom
force (F) is replaced by the negative gradient of θ̃ with respect to the atom coordinates,
i.e. −∇θ̃ . In other words, θ̃ is minimized in all direction acting normal to the path and
fictitious spring forces are introduced to control the distribution of images along the
path.

In LI-NEB, however, the end-point images correspond to the classical turning points,
r(0) = r1 and r(1) = rM−1. These images need to have a fixed energy, Esys, and finding
these points a priori is not practical or even feasible. Therefore, in LI-NEB, the end-
points are optimized under the constraint to follow the iso-contour corresponding to
Esystem. Because of the simultaneous optimization of the end-point images, a LI-NEB
calculation can be initiated from (almost) an arbitrary initial path, where the iterative
procedure brings the two images to the correct iso-contour and then displaces them
along this energy contour so as to minimize θ̃ . The main condition for the initial
placement of the endpoint images is that they are placed on opposite sides of the energy
barrier. In practice, the initial path of an OTP calculation should be taken along the
MEP or by using previously converged OTP for higher Esys.

Illustrative LI-NEB calculations of OTPs are shown in Fig. 4.20 for the two-
dimensional Müller-Brown surface. In this case, there are two different types of
tunneling pathways depending on the energy of the system, where lower energy of the
system corresponds to lower onset temperature of tunneling. If the energy of the system
is larger than the energy of the intermediate energy minimum, the system will tunnel
from the reactant energy minimum to the intermediate minimum and then from the
intermediate minimum to the product energy minimum, showing only slight corner
cutting effect in the latter transit, i.e. deviation from the classical MEP. If the energy of
the system, however, is smaller than the energy of the intermediate energy minimum,
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the system will not go through the intermediate energy minimum, rather the tunneling
occurs directly from the reactant to the product energy minimum, i.e. ’deep-tunneling’.

The path traced out by an OTP for a fixed energy is equivalent to an instanton for a
given temperature. This path corresponds to a classical trajectory on the inverted poten-
tial with the period of oscillation given by τ = h̄/kBT . Therefore, in order to construct
an instanton from an OTP, the corresponding temperature is calculated using the period
of the oscillation, τ , which is obtained by performing a dynamical simulation along the
one-dimensional path. Once the temperature is known, the instanton corresponding to
the OTP is constructed by distributing a new set images along the path in equidistant
time steps. In this manner, the number of images used in the calculation of the OTP can
be significantly smaller than the number of images used for the instanton, i.e. P >> M.
Now, armed with the instanton ring-polymer, the thermally assisted tunneling rate can
readily be computed using HQTST.

Figure 4.20. Illustration of the LI-NEB method on the two-dimensional Müller-Brown
energy surface, using different values of Esys. The minimum energy path connecting the
reactant (denoted by R) and product (denoted by P) is shown by a yellow curve. The
MEP goes through an intermediate energy minimum (with energy Em) and two first
order saddle points (with energy EI and EII). Linear interpolation between the minima
are used as initial paths for the LI-NEB calculations and shown by small filled circles.
In (a), optimal tunneling paths for energy Esys > Em, the images along the two paths
are shown by brown and red circles. In (b), the optimal tunneling path for energy
Esys < Em, the images along the path is shown by red circles. The energy profiles for
the minimum energy path and the optimal tunnelings paths are shown as insets.

In Article I, the LI-NEB method and HQTST are used to compute the thermally
assisted tunneling rate of H2 dissociation from ammoniumborane as a function of
temperature, using the B3LYP density functional. The results are also compared to
Vineyard’s HTST (including rotational partition functions) and quasi-quantum HTST
rates, see Fig. 4.21. This reaction presents an interesting example with a unusually
high cross-over temperature, estimated to be 333 K. The set of LI-NEB calculations
carried out for the dissociation of ammoniumborane were started from Esystem of 0.05
eV below that of the saddle point energy and an initial path composed of M = 10 images
interpolated along the relevant segment of the MEP. The energy of the system was
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then reduced in a stepwise fashion covering an interval of 1 eV with each LI-NEB
calculation started from the previous OTP calculation of higher energy. The instanton
was constructed using P = 240 images. For the HQTST rate calculation, the Hessian
matrix was computed only for the 10 OTP images and a cubic spline interpolation used
to form the Hessian matrix of the instanton. As is evident from Fig. 4.21, the HQTST
rate is about 10 orders of magnitude larger than the HTST rate. This example shows
just how important it is to incorporate nuclear quantum effects when computing the
rate at a low temperature. Also, Li et al. (Li et al., 2005) performed SCT calculations,
which are based on a harmonic expansion around the classical reaction coordinate, on
the same system and found it to be 6 orders of magnitude larger than the classical HTST
rate at 200 K, i.e. 4 orders of magnitude smaller than the HQTST rate. This shows just
how important it is to accurately account for corner-cutting effects in calculations of
tunneling.

Figure 4.21. The HTST, qq-HTST and HQTST rates as a function of temperature for H2
dissociation from ammoniumborane. The cross-over temperature, Tc = 333 K, is shown
as a vertical solid line. The reactant energy minimum configuration (dark blue spheres
and light blue bonds) and the optimal tunneling path at 200 K (grey) are super-imposed
and shown as an inset.

One of the fundamental difference between LI-NEB calculations of OTPs and the
direct search of instantons using MMF is that the distribution of images is controllable in
LI-NEB calculations, while in MMF/instanton calculations the images tend to aggregate
in the low energy regions. This allows significantly fewer images to be used to resolve
the OTP, compared to the instanton. Moreover, because the images are distributed
evenly along the OTP, the Hessian matrix of the instanton required to compute the
HQTST rate can be formed by interpolation of the Hessian matrices computed along
the OTP. Also, LI-NEB calculations appear to be able to use less strict convergence
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thresholds compared to MMF/instanton calculations and still attain the same accuracy
in the computation of the rate constant. All of these aspects contribute to a significant
reduction in the number of energy/force evaluations needed for HQTST computations.

4.3 Solution to a challenging electronic structure problem

The methods and applications presented in the previous sections are focused on the
motion of the atom nuclei on an energy surface, i.e. the second part of the Born-
Oppenheimer approximation. However, the selection of the appropriate theory to
accurately describe the energy surface of a given system is often very challenging.

One such example, presented in this dissertation, is the radical cation of N,N′-
dimethylpiperazine (DMP+), where the positive charge can either be localized on one
of the nitrogen atoms or delocalized over the two nitrogen atoms, see Fig. 4.22 (b)
& (c). The existence of the two electronic states has been observed experimentally
with the energy difference between the two states found being 0.33 eV, where the
delocalized state is more stable. (Deb et al., 2013; Cheng et al., 2016) In contrast,
commonly used density functionals tend to favor charge delocalization and fail to
predict the existence of the localized state of DMP+. This finding is supported by the
’gold-standard’ of computational chemistry, CCSD(T). This controversy has sparked
a debate in the literature on whether the localized state, in fact, exists or if DFT and
CCSD(T) are simply not accurate enough to properly describe the energy surface of
DMP+. (Ali et al., 2018; Cheng et al., 2018)

Figure 4.22. Configurations of neutral N,N′-Dimethylpiperazine (a), the localized
cation (b), delocalized cation (c), and the saddle point configuration for the transition
between localized and delocalized electronic state (d). The spin densities included in
(b) and (c) correspond to isosurface level of 0.01 electrons/Å3.

To establish whether the localized electronic state of DMP+ exist, the energy surface
of DMP+ is constructed and visualized using various, both single and multi-reference,
electronic structure methods. The surface is constructed, using 78 point grid where
the dihedral angles are varied from 70 to 175◦. Each point on the grid represents an
optimized configuration with a fixed dihedral angle. The constrained optimization is
carried out using the BHLYP level of theory. Then, a single point energy evaluation is
carried out on the grid using the highly accurate multireference wavefunction theory
FIC-MRCI, and different density functionals, BLYP, B3LYP and BHLYP, as well as,
coupled cluster theory with singles and double excitations and perturbative triples, i.e.
CCSD and CCSD(T). The different energy surfaces are visualized in Fig. 4.23.

The highest level of theory method used in this work is the multi-reference method
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FIC-MRCI+Q(11,12), where MRCI is carried out on an active space of 11 electrons
and 12 orbitals. These high-level calculations are in agreement with the experiments
and confirm the existence of both the localized and delocalized states with an energy
difference of 0.336 eV, in excellent agreement to the experimental value. The potential
energy barrier height, separating the two energy minima is found to be 0.050 eV.
The commonly used density functionals, BLYP and B3LYP, fail to find the localized
electronic state, i.e. only the delocalized energy minimum is found on the surface.
Interestingly, two energy minima are present on the BHLYP surface corresponding
to the localized and delocalized states with an energy difference of 0.178 eV. The
energy barrier for the transition from the localized to the delocalized state is found
to be 0.033 eV. Moreover, the resemblance of the BHLYP energy surface to that of
FIC-MRCI+Q(11,12) is remarkable. BHLYP is a hybrid density functional that uses
50% exact exchange from Hartree-Fock, effectively balancing the tendency of DFT for
charge delocalization with the tendency of Hartree-Fock for localization. The CCSD
energy surface, also, shows the existence of both the localized and delocalized state with
an energy difference of 0.221 eV and a barrier height of 0.012 eV. Interestingly, when
the perturbative triples are added to CCSD, i.e. the CCSD(T) method, the localized
energy minimum disappears from the energy surface. This is in agreement to previous
findings. (Cheng et al., 2016; Ali et al., 2018)

In conclusion, the DMP+ molecular cation represents a challenging example where
commonly used electronic structure methods, such as BLYP, B3LYP and CCSD(T), fail
to properly describe the energy surface of the system. This has now been confirmed by
high-level, arguably state-of-the-art, multireference wavefunction method and experi-
mental measurements. The work presented in Article IV, shows just how challenging it
can be to select the correct level of theory to accurately describe the energy surface of
a given system. Often the standard, commonly used, tools may not present a suitable
choice. For this particular system, the BHLYP could be used to obtain a qualitatively
correct description of the DMP+ cation and be used to explore the potential energy
surface (e.g., locate energy minima, saddle points and MEPs), while energy surface
exploration using higher-level of theory methods like FIC-MRCI+Q(11,12) (or even
CCSD) are still computationally infeasible.
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Figure 4.23. Potential energy surfaces of DMP+ as a function of the two dihedral
angles. The calculations are carried out using (a) B3LYP (upper panel) and BLYP
(lower panel), (b) FIC-MRCI+Q(11,12) (upper panel) and BHLYP (lower panel) and
(c) CCSD(T) (upper panel) and CCSD (lower panel) theory.
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Methodology for finding optimal tunneling paths and evaluating tunneling rates for atomic rear-
rangements is described. First, an optimal JWKB tunneling path for a system with fixed energy is
obtained using a line integral extension of the nudged elastic band method. Then, a calculation of
the dynamics along the path is used to determine the temperature at which it corresponds to an opti-
mal Feynman path for thermally activated tunneling (instanton) and a harmonic approximation is
used to estimate the transition rate. The method is illustrated with calculations for a modified two-
dimensional Müller-Brown surface but is efficient enough to be used in combination with electronic
structure calculations of the energy and atomic forces in systems containing many atoms. An example
is presented where tunneling is the dominant mechanism well above room temperature as an H3BNH3

molecule dissociates to form H2. Also, a solid-state example is presented where density functional
theory calculations of H atom tunneling in a Ta crystal give close agreement with experimental mea-
surements on hydrogen diffusion over a wide range in temperature. Published by AIP Publishing.
https://doi.org/10.1063/1.5007180

I. INTRODUCTION

At low enough temperature, quantum mechanical tun-
neling rather than the classical over-the-barrier mechanism
becomes the dominant transition mechanism for atomic rear-
rangements such as chemical reactions and diffusion events.
The lighter the atoms, the higher the crossover temperature
is between the two mechanisms. While tunneling is typically
only important well below room temperature, there are cases
where it is the preferred mechanism at room temperature. One
such example, for which calculations are presented below, is
the dissociation of an ammoniaborane molecule, H3BNH3, to
give H2. For this reaction, tunneling is estimated to be the
dominant transition mechanism at room temperature. When
the crossover from over-the-barrier mechanism to tunneling
is smooth, the crossover temperature can be estimated from
the first-order saddle point characterizing the classical transi-
tion mechanism.1 The saddle point is the (highest) maximum
along the minimum energy path (MEP) connecting the initial
and final state minima on the potential energy surface. There,
one of the eigenvalues of the Hessian is negative and corre-
sponds to an imaginary frequency. Based on its magnitude,
|ω‡|, the crossover temperature can be estimated as

Tc =
~|ω‡ |

2πkB
, (1)

where ~ and kB are the Planck and Boltzmann constants,
respectively. This estimate is based on a harmonic approxi-
mation and gives only a rough estimate of the temperature at

a)Electronic mail: hj@hi.is

which tunneling starts to play an important role, as can be seen
from the examples below. The narrower the energy barrier, the
larger the ω‡ is and the higher the crossover temperature is.
Above T c, there can still be large nuclear quantum effects influ-
encing the transition rate, but these are usually referred to as
zero point energy effects.

Below T c, the calculation of the transition rate needs
to take tunneling into account. This requires a full quantum
mechanical description of the position of the atomic nuclei.
The statistical Feynman path integral formalism2 is particu-
larly convenient and lends itself well to numerical calcula-
tions. There, the quantum statistical mechanics of the system
become mathematically equivalent to the classical statisti-
cal mechanics of a ring polymer of P replicas of the sys-
tem connected by temperature dependent springs.3,4 Rigorous
thermal averages are obtained as P→∞. A configuration of
the ring polymer for a system with N atomic coordinates,
r = {x1, x2, . . ., xN}, is specified by the coordinates of the
replicas, R = {r1, r2, . . ., rP}. The energy surface characteriz-
ing the classical system, V (r), then effectively gets replaced by
an effective quantum mechanical energy surface for the ring
polymer,

V rp(R, T ) =
P∑

j=1

ksp

2
|rmod(j,P)+1 − rj |

2 +
V (rj)

P
, (2)

where the spring constant is dependent on the temperature,
mass, and P,

ksp = µP

(
kBT
~

)2

. (3)

The distribution of the replicas in configuration space rep-
resents the quantum delocalization of the nuclei. Here, µ is

0021-9606/2018/148(10)/102334/12/$30.00 148, 102334-1 Published by AIP Publishing.
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the effective mass which is conveniently incorporated in the
calculations by using mass weighted coordinates. Early for-
mulations of a quantum mechanical extension of transition
state theory5 are based on Feynman path integrals centered on
the average coordinate of the replicas in the ring polymer, the
centroid, essentially treating it as a classical coordinate.1,6–10

This, however, turned out to work only for symmetric energy
barriers. In general, a good definition of a quantum transition
state requires going beyond a description in terms of the cen-
troid.11,12 It requires specifying a constraint that incorporates
the shape of the ring polymer as well as the location of the
centroid.

The reason for this can be seen by visualising the effective
energy surface V rp as a function of temperature.11–13 Figure 1
shows a contour graph of V rp for a one-dimensional asymmet-
ric Eckart barrier in terms of the first two Fourier components
of the ring polymer. The energy ridge separating the initial state
from the final state does not line up with a constraint placed on
the centroid (a vertical line in this figure). It only does so by
chance for a symmetric barrier. Minima on the energy ridge,
i.e., first-order saddle points on the V rp surface, corresponding
to non-zero quantum delocalization, appear as temperature is
lowered below Tc. They represent centers of regions where the
ring polymer most easily can pass through the energy ridge on

FIG. 1. Illustration of the temperature dependent, quantum mechanical effec-
tive energy surface, Vrp, given by Eq. (2) for a one-dimensional asymmetric
Eckart barrier. Top panel: The Eckart potential energy curve, V (q0). Middle
panel: Contour graph of Vrp(q0, q1) when the ring polymer is of the form
q(τ) = q0 + q1 sin(2πτ/β~) with q0 being the centroid coordinate and q1
being the first Fourier component representing quantum delocalization. When
T > Tc, the effective energy, Vrp, is minimal for a given q0 with all replicas in
the ring polymer at the same location. The reaction coordinate is then the clas-
sical minimum energy path, shown with a dashed horizontal line. The HTST
transition state is shown with a red line going through the maximum of V(q0)
(black circle), a first-order saddle point on the Vrp surface. Bottom panel:
Vrp when T < Tc. The minimal value of Vrp for a given q0 now corresponds
to an extended ring polymer, representative of quantum delocalization and
tunneling through the barrier. Two saddle points (instantons), equivalent by
symmetry, emerge for non-zero q1 (black circles). They lie on the minimum
action path, a path of minimal Vrp, connecting the initial and final states. The
conical HQTST transition state is marked with green lines. Similar figures are
found in Refs. 11 and 12.

its way from the initial state to the final state. An optimal path
on this effective energy surface connecting the initial and final
state minima goes through a first-order saddle point on the V rp

surface and is the quantum mechanical analog of the classi-
cal MEP. It is referred to as the minimum action path (MAP),
see Fig. 1.11,12 The saddle points on the V rp surface are often
referred to as instantons.

A quantum mechanical extension of transition state the-
ory (QTST) has been formulated based on these considera-
tions.11,12 It is based on the ansatz that a quantum mechanical
transition state, the bottleneck for a tunneling event, should
represent a region in the ring polymer configuration space
that corresponds to maximal free energy as it transits from
the initial state to the final state. The tunneling rate is then
determined by the rise in free energy from the initial state
to this quantum mechanical transition state. It is necessary to
go beyond a hyperplanar representation of the dividing sur-
face and form a cone because the labeling of the P replicas
of the systems is arbitrary and there is a mode of constant
energy corresponding to translation of the replicas along the
path, the so-called zero mode. Such a conical transition state
dividing surface that includes the first-order saddle points is
shown in Fig. 1. This ansatz for QTST has more recently
been supported by direct dynamical simulations of ring poly-
mers where remarkably good agreement with accurate tun-
neling rates has been obtained.14,15 QTST can be related
to the transition-state theory limit of ring-polymer molecu-
lar dynamics16 and thus to the generalized flux correlation
function.17

QTST can be implemented by calculating the free energy
increase going from the initial state to a variationally opti-
mized quantum transition state evaluated by reversible work
calculations, as has, for example, been done for H2 associa-
tive desorption and dissociative adsorption on surfaces.11,12,18

However, such free energy calculations require extensive sam-
pling of configuration space and are computationally too
demanding in most cases to be combined with electronic struc-
ture calculations of the energy of the system and the atomic
forces.

Even for classical systems, transition rates are most often
carried out without explicit evaluation of the free energy.
Instead, a quadratic approximation of the energy surface in
the critical regions, i.e., around the initial state minimum and
the first-order saddle point, is made for degrees of freedom
corresponding to changes in relative distances between atoms.
For finite systems, such as molecules and clusters, translation
and rotation need to be treated separately if there is a change
in these degrees of freedom during the transition. Neglect-
ing such cases, the quadratic approximation leads to a closed
expression for the rate constant, a harmonic approximation
to transition state theory (HTST), which is by far the most
widely used approach in calculations of rates of transitions
involving atomic rearrangements. The expression for the rate
constant, leaving out possible changes in translational and rota-
tional degrees of freedom in the system during the transition,
is19

kHTST(T ) =
1

2π

∏N
i ω

m
i∏N−1

i ω‡i

e−(V (r‡)−V (rm))/kBT , (4)
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102334-3 Ásgeirsson, Arnaldsson, and Jónsson J. Chem. Phys. 148, 102334 (2018)

where V(r‡) is the energy at the first-order saddle point, V(rm)
is the energy at the initial state minimum, and ωi are the
corresponding vibrational frequencies obtained from the
eigenvalues of the Hessian matrix, the matrix of second deriva-
tives of V with respect to the coordinates of the atoms. There
is one fewer eigenvalue for the transition state dividing surface
than the initial state since the dividing surface is a hyper-
plane with one lower dimensionality than the initial state.
The normal to the hyperplane is taken to be parallel to the
eigenvector corresponding to the negative eigenvalue at the
first-order saddle point. The HTST expression for the rate con-
stant corresponds to the Arrhenius law with activation energy
∆E = V(r‡) � V(rm). The pre-exponential factor takes into
account the vibrational entropy of the initial and transition
states.

Nuclear quantum effects can to some extent be taken
into account in an extension of HTST where the quantum
mechanical harmonic oscillator partition function is used for
each vibrational mode in the transition state and in the ini-
tial state, instead of the classical, high-temperature limit of
the vibrational partition function. The rate expression then
becomes

kqq-HTST(T ) =
kBT
2πh

∏3N
i 2 sinh

(
~ωR

i /2kBT
)

∏3N−1
i 2 sinh

(
~ω‡i /2kBT

) e−∆E/kBT .

(5)
We will refer to this as quasi-quantum TST (qq-HTST). This
level of approximation has, for example, been used in calcu-
lations of H2 and CH4 dissociative adsorption on surfaces.20

The qq-HTST approximation includes the effect of zero point
motion but not tunneling. In the high-temperature limit, the
zero point energy effects disappear and the qq-HTST and
HTST rate approximations coincide.

The quantum mechanical tunneling rate can be estimated
in a way that is analogous to HTST, i.e., within a harmonic
approximation around a first-order saddle point on the effec-
tive energy surface, Vrp(R), and around the initial state mini-
mum.13,21–26 We will refer to this approach as harmonic quan-
tum transition state theory (HQTST), but it is more generally
referred to as instanton theory or ImF theory. The first-order
saddle points on the Vrp surface correspond to extended tun-
neling paths where the system advances from the initial state
to the final state by shifting one replica after another over
the energy barrier, rather than the whole ring polymer as in
the over-the-barrier mechanism. The HQTST rate expression
(excluding rotational and translational contributions) can be
written as

kHQTST(T ) =
1

QR

√
S0

2π~
kBTP

~
∏NP−1

i=1 |Ω
rp
i,‡ |

e−(V rp(R‡)−V (rm))/kBT ,

(6)

whereΩrp
i,‡ denote the vibrational frequencies of the ring poly-

mer at the first-order saddle point R‡ (obtained from the
NP-dimensional Hessian matrix of the ring polymer) and QR

is the initial state partition function, which is approximated
here as

QR =

N∏
i=1

P∏
k=1

[
4 sin2

(
πk
P

)
+

(
~ωi

kBTP

)2 ]− 1
2 . (7)

At the initial state, the ring polymer collapses to the minimum
except for thermal fluctuations. There are many similarities
but also differences between this expression for the tunneling
rate and the classical over-the-barrier rate given by Eq. (4).
Again, the evaluation of the rate expression involves calcu-
lating the eigenvalues of the Hessian matrix, now the second
derivatives of Vrp with respect to the coordinates of the atoms
in all the replicas at the first-order saddle point, R‡. At the ini-
tial state minimum, it is sufficient to evaluate the vibrational
frequencies of the N-dimensional Hessian since all the replicas
collapse to the minimum energy configuration. The effect of
the springs is added explicitly. One of the degrees of freedom
of the ring polymer corresponds to a rotation of the replicas
along the path and needs to be treated separately, whereas it
involves no change in the energy. It gives only an entropic
contribution which is proportional to the length of the ring
polymer,

S0 =
µPkBT
~

P∑
j=1

|rmod(j,P)+1 − rj−1 |
2. (8)

When calculations are carried out for finite systems, such
as molecules and clusters of atoms, overall rotation and trans-
lation need to be projected out of the NP-dimensional Hessian
matrix and the entropy associated with these degrees of free-
dom evaluated separately. The pre-exponential factor in Eq. (6)
and the initial state partition function, QR, are then written as a
product of the translational, rotational, and vibrational contri-
butions to the ring polymer partition function at the first-order
saddle point and the initial state. The ring-polymer is taken
to be a “super-molecule” and the rotation treated classically,
where each replica only accounts for 1/P-th of the total mass.
The translational contributions are omitted since they are the
same for the saddle point and initial state minimum and can-
cel out in the expression for the rate constant. For a more
in-depth discussion of finite systems, the reader is referred to
Ref. 27.

The HQTST approximation has been found to work
remarkably well in many cases, for example, it gives results
that are in close agreement with accurate multiconfigurational,
time-dependent Hartree calculations of H atom reaction with
CH4 to form H2 and CH3.28 Also, calculations of H2 associa-
tive desorption from a Cu(110) surface agree well with full
QTST calculations.18,29 HQTST has also been applied to var-
ious biochemical reactions.30,31 A recent review lists several
other applications.32

In some previous HQTST calculations, the first-order sad-
dle point on the ring polymer energy surface, Vrp, was found
by calculating a nudged elastic band of Feynman paths so
as to determine the full MAP8,10–12 or by using the min-
imum mode following (MMF) method to converge on the
first-order saddle point (the maximum along the path).33,34

This, however, turns out to be a computationally demand-
ing task. Tight convergence is needed in order to determine
the saddle point accurately enough, so as to obtain converged
eigenvalues of the Hessian matrix. This has turned out to be
particularly challenging when the energy and atomic forces
are obtained from ab initio or density functional theory (DFT)
calculations.
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In this article, an alternative method for evaluating
HQTST tunneling rates is discussed. It is found to perform
well in calculations combined with electronic structure eval-
uations of the energy and atomic forces. First, an optimal
tunneling path (OTP) for a system of fixed energy is found
within the JWKB approximation.35 The method for finding
the OTP involves minimizing a line integral over a path and
we refer to the optimization method as the line integral nudged
elastic band method (LI-NEB). It can be considered to be an
extension of the NEB method for finding minimum energy
paths.10,36 There, discretization points representing the path
are placed in some convenient way, preferably evenly dis-
tributed. The shape of the OTP corresponds also to a classical
periodic orbit on the inverted potential surface and coincides
with the shape of the ring polymer at a first-order saddle point
on the Vrp surface, as discussed in Sec. II B. By carrying out
the calculation of the classical dynamics along the path, the
corresponding temperature and the location of the replicas of
the ring polymer at the first-order saddle point can be deter-
mined. Finally, the NP-dimensional Hessian matrix for the ring
polymer is constructed, the eigenvalues are calculated, and
the thermal tunneling rate is evaluated. A preliminary report
of this approach in a conference proceedings has previously
been published.29 Here, we revisit the methodology and apply
it to molecular dissociation and diffusion in a solid as well
as an illustration based on a modified Müller-Brown potential.
Related methods, similarly based on an abbreviated Hamilton-
Jacobi action, have been used for optimizing paths in various
contexts.37–39

It has recently been shown that calculations of MEPs
using the NEB method can be accelerated by using Gaus-
sian process regression (GPR), where the number of energy
and force evaluations needed to reach convergence could
be reduced by an order of magnitude.40,41 We expect that
the computational effort of LI-NEB calculations (based on
ab initio or DFT calculations) could be reduced significantly
using GPR. In fact, since the OTP calculation and subse-
quent evaluation of the thermal rate constant involve a large
number of energy and force evaluations over a rather lim-
ited region of the energy surface, the use of GPR can be
expected to lead to an even larger reduction in computa-
tional effort in HQTST calculations than in classical HTST
calculations.

The article is organized as follows: The methodology is
described in Sec. II, first the LI-NEB method for finding OTPs,
illustrated with a calculation for a modified Müller-Brown two-
dimensional energy surface.42 Then, the equivalence of an OTP
for a system at a given energy and a ring polymer saddle point
configuration for tunneling in a system coupled to a heat bath
is discussed, and the method for generating the distribution of
the replicas and evaluating the rate of tunneling is described.
We address the accuracy and efficiency of the approach by
computing the reactive flux for associative desorption of H2

from Cu(110). In Sec. III, two applications of HQTST are
described, the dissociation of an H3BNH3 molecule to form
H2 and H atom diffusion in a Ta crystal. In the latter, the
results are compared with experimental measurements of
the diffusion rate. The article concludes with a discussion
section.

II. METHODS

In this section, we describe a robust and efficient method
for finding an OTP. Then, the equivalence between the shape
of the OTP and a classical periodic orbit on the inverted poten-
tial surface is discussed. The construction of the ring polymer
representing tunneling in a system coupled to a heat bath at a
certain temperature is then described. Finally, the calculation
of the thermal tunneling rate is discussed.

A. Microcanonical tunneling path

In the JWKB approximation for a system with energy E,
the tunneling rate is proportional to 1/(1 + exp 2θ̃) where θ̃ is
a line integral along a path rp = r(s) traced out by a parameter
s ∈ [0, 1]

θ̃ = θ̃[rp] =
1
~

∫ rn

r1

√
2µ(V (r) − E)dr (9)

between the classical turning points r1 and rn. The turning
points are located on opposite sides of the energy barrier such
that V (r1) = V (rn) = E. Here, dr = |dr| is the length of an
infinitesimal displacement along the path. The maximum tun-
neling probability is obtained for the path that minimizes θ̃,
i.e., the OTP.

An efficient numerical method for finding the OTP will
now be described. We assume that the gradient of the potential
energy,∇V, can be evaluated readily, but the second derivatives
are not needed. The path will be represented by a discrete
set of points ordered along the path {r1, r2, . . ., rn}, and the
integral will be approximated using an interpolation between
the points. The simplest interpolation scheme will be used,
namely, line segments between the points and a trapezoidal
rule for evaluating the integral. Alternatively, one can use a
cubic polynomial interpolation and Simpson’s rule.

The task is then to find the vectors rj that minimize
the integral estimated from the discrete representation of the
path

θ̃[rp] ≈ θ(r1, . . . rn) =
1

2~

n∑
j=1

(√
2µ(V (rj) − E)

+
√

2µ(V (rj−1) − E)
) ���rj − rj−1

��� . (10)

There are n � 1 discretization points representing the path
between the two endpoints, r1 and rn. The location of these
discretization points needs to be optimized so as to minimize
θ and the positions of the endpoints adjusted by moving them
along the iso-contours corresponding to the energy E.

The optimization starts from some trial set of discretiza-
tion points {r0

1, r0
2, . . . , r0

n} and involves iterative displace-
ments of these points until θ(r1, r2, . . ., rn) cannot be reduced
further. Let the negative gradient of θ with respect to the
discretization point, rj, be denoted by

gj = −∇jθ =
1
2

(
µ

ξj~2
(dj + dj+1)f j

− (ξj + ξj−1 )̂dj + (ξj+1 + ξj )̂dj+1

)
, (11)

where f j is the negative of the gradient of the energy, and for
compactness of notation, the definitions
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ξi ≡
1
~

√
2µ(V (ri) − E), (12)

f̂ = −∇V/|∇V |, (13)

and
d̂j = (rj − rj−1)/dj with dj = |rj − rj−1 | (14)

have been used.
This represents the direction of steepest descent for each

one of the discretization points located in between the end-
points (i.e., the interior points). It is used in an iterative opti-
mization algorithm to find the set of configurations {r2, r3, . . .,
rn�1} that minimize θ. But, only the component of gj that is
perpendicular to the path, g⊥j , should be included in the opti-
mization. The distribution of the discretization points along
the path is controlled separately and should not be affected by
the value of θ. This projection is analogous to what is used
in the NEB method for finding MEPs and is referred to as
“nudging.”10,36 The negative gradient, gj, is projected along
the path

g ‖j = (gj · τ̂j)τ̂j (15)

and the rest of the vector constitutes the perpendicular com-
ponent

g⊥j = gj − g ‖j , (16)

where τj is the tangent of the path at point rj. The tangent can
be estimated from the line segment between j and the adjacent
point with a larger value of V, either rj+1 or rj�1. This turns
out to give a more stable numerical algorithm than the line
segment between the two adjacent points j + 1 and j � 1 as has
been found in NEB calculations.46

The discretization points can be distributed along the path
in various ways, for example, by using a restraint method
where a “spring” acting between adjacent discretization points
is added. If the spring constant, k, is the same for all pairs of
adjacent discretization points, then the points will be equally
spaced along the path once convergence has been reached. If a
different distribution is desired, the values of k for each adja-
cent pair of discretization points can be chosen accordingly
and the equations can be modified in a straightforward way.
Again, a projection is used to make sure that the spring forces
do not affect the location and shape of the converged path.
For the interior discretization points, {r2, r3, . . ., rn�1}, the
component of gj parallel to the path is replaced by

gsp
j = k

(���rj+1 − rj
��� −

���rj − rj−1
���
)
τ̂j, (17)

where k is analogous to a spring constant. A wide range of
values can be chosen for k without affecting the results, but
the convergence rate is in general faster if the gsp

j are roughly
of the same order of magnitude as gj. The total g that is used
in the optimization is then given by the vector sum

gopt
j = g⊥j + gsp

j (18)

for j = 2, . . ., n � 1.
The steepest descent direction for the endpoints is defined

differently since they should only move along the iso-contours
corresponding to V(r) = E. The component of gsp paral-
lel to the gradient of V needs to be zeroed so the end-
points only get displaced along the iso-contour. Furthermore, a
harmonic restraint term, κ(V0 − E)2, is added to pull the

endpoints towards the iso-contour if curvature results in a drift
away from the iso-contour. The steepest descent direction for
endpoint r1 is

gopt
1 = gsp

1 −
(
gsp

1 · f̂(r1) − κ(V (r1) − E)
)

f̂(r1), (19)

where
gsp

1 = k (r2 − r1). (20)

An analogous expression gives the steepest descent direction
for the other endpoint, rn,

gopt
n = gsp

n −
(
gsp

n · f̂(rn) − κ(V (rn) − E)
)

f̂(rn), (21)

where
gsp

n = k (rn−1 − rn). (22)

The parameter κ can be adjusted with respect to the spring
constant, k, in order to maximize the convergence rate of the
OTP. In general, these two constants should be chosen so that
the corresponding terms are of similar order of magnitude to
the remaining terms in the gradients. This can be done with a
few test runs prior to the production calculations. The vectors
gopt

1 and gopt
n give the steepest descent directions for the two

endpoints used in the iterative optimization while Eq. (18)
applies to the interior discretization points.

In a steepest descent algorithm, all the discretization
points rj would be displaced in the direction of gopt

j at each
iteration. A more efficient and robust approach is based on a
velocity projection modification of the velocity Verlet algo-
rithm43 which has been presented and used in the context
of NEB calculations.36 In LI-NEB calculations, the coupling
between discretization points is stronger than that in NEB
calculations and the calculation may require somewhat larger
number of iterations to converge. Especially for the first LI-
NEB calculation, where the trial path is based on two points
along the MEP instead of on a previous OTP path. Moreover,
there remains considerable room for improving the conver-
gence rate, e.g., by the choice of the optimization technique44

and the method used to discretize the JWKB integral.
When the LI-NEB method as well as the regular NEB

method is applied to a finite system it becomes important to
remove the translational and rotational degrees of freedom dur-
ing the optimization of the path. This is accomplished by using
the quaternion approach47 to minimize sequentially the root-
mean squared deviation of adjacent replica configurations, in
each optimization step.

A more stable and faster way of reaching the preferred
distribution of points along the path uses springs not between
the adjacent points on the path but rather between the current
position and an ideal position for each point based on the over-
all length of the path. This approach has been described and
found to be useful in calculations of long and complex MEPs
for dislocation nucleation.45

Prototypical LI-NEB calculations of OTPs are shown in
Fig. 2 for a modified two-dimensional Müller-Brown surface.
There, three Gaussians have been added to the regular Müller-
Brown surface to shift and deepen one of the minima so as
to make the arrangement of the three minima farther away
from being linear. The initial path for the iterative LI-NEB
calculation can be chosen quite arbitrarily; the main condition
is that the two endpoints be placed on opposite sides of the
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FIG. 2. Illustration of the path calculations for a two-dimensional modi-
fied Müller-Brown energy surface. The minimum energy path (green curve)
between the initial and final states (R and P) goes through an intermediate
minimum of energy Em and two first-order saddle points of energy EI and
EII. The initial paths were taken to be straight line interpolations between the
minima (black disks). (a) Optimal tunneling paths for energy E > Em. Tun-
neling can take place in two steps: first from R to the intermediate state (red
disks) and then from the intermediate state to the final state P (brown disks).
(b) Optimal tunneling path for energy E< Em. Here, corner cutting can clearly
be seen, as the optimal tunneling path does not go through the intermediate
minimum and lies far from saddle point II. Insets: Energy along the minimum
energy path and the optimal tunneling paths as a function of displacement.

energy barrier. Here, a straight line interpolation between the
initial and final state minima is used. Alternatively, a much
better choice for the initial path is to use the MEP or a part of
it for the LI-NEB calculation. There are two different types of
tunneling paths in this case depending on whether the energy is
higher or lower than the energy of the intermediate minimum
on the surface. For the higher energy range, the system tunnels
from the initial state to the intermediate state. For the lower
energy range, the tunneling occurs from the initial state to the
final state directly. The endpoints are initially not at the right
energy, but the iterative optimization of the path brings the
endpoints to the contour corresponding to the total energy of
the system, E, and then moves them along the energy contour
V = E so as to minimize θ.

B. Classical periodic orbit

A classical trajectory from an initial position r0 at time
t = 0 to a final position rn at time t = tn is a path for which the
action functional, S, defined as the integral of the Lagrangian

L(r, ṙ) = 1
2 µṙ2 − V (r) over the time interval

S(r, t) =

tn∫
t0

L(r, ṙ)dt (23)

is stationary, i.e., δS = 0. The Lagrangian can be written in
terms of the Hamiltonian, H(r, p), where p is the momentum
p = µṙ. The Lagrangian can be rewritten as L(r, ṙ) = p|ṙ |
− H(r, p) and the action can be written as

S
Classical path
(r0,t0)→(rn,tn)

=

∫ (
p

dr
dt
− H

)
dt =

rn∫
r0

p(r)dr−E(tn−t0), (24)

where the conservation of total energy, E = H(r, p), along the
classical path has been used in the last term, and the magnitude
of the momentum, p = |p|, can be obtained as a function of
position along the path as

p(r) =
√

2µ(E − V (r)). (25)

A path that makes θ̃ in Eq. (9) stationary is therefore a classical
trajectory.

But, in the classically forbidden region where E < V(r),
p(r) is imaginary. This can be interpreted as motion during
an imaginary time interval. The replacement of t by it has
the same effect as changing the sign of the potential energy
V(r) in the classical equations of motion. The OTP, therefore,
corresponds to a classical path on the inverted potential. Since
the path lies between classical turning points, the velocity at
the endpoints is zero and the path represents a closed classical
trajectory, i.e., a periodic orbit.

C. Canonical tunneling path

A first-order saddle point (or an instanton), R‡, on the
effective quantum mechanical energy surface, Vrp, corre-
sponds to stationary points of the Euclidean action, SE, for
the quantum system

SE(R) = ~V rp(R)/kBT , (26)

i.e., it corresponds to δSE = 0. This configuration of the ring
polymer corresponds to an optimal tunneling path for a system
coupled to a heat bath at a certain temperature. To evaluate the
thermal rate constant, the corresponding temperature needs to
be found and the replicas of the system placed in the right
positions along the path to form the ring polymer. This can
be accomplished by calculating the dynamical trajectory of
the system along the one-dimensional tunneling path on the
inverted potential, �V (R). The trajectory is a periodic orbit
with period τ = ~/kBT, where T is the temperature of the
system.23,24

First, the period of the periodic orbit is found from the
OTP. The force is evaluated from the inverted potential as
fp = +∇V, and the magnitude of the component of fp parallel
to the path at a point rj is evaluated as

f p‖
j = fp

j · τ̂j, (27)

where τ̂j is the unit tangent vector to the path. This is the force
acting on the system along the one-dimensional tunneling
path.
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FIG. 3. Energy along the optimal tunneling path shown in Fig. 2(b) and the
location of the n = 10 discretization points used in the LI-NEB calculation as
well as 50 replicas in the corresponding saddle point configuration of the ring
polymer (instanton). The figure illustrates the savings in computational effort
by using the LI-NEB method rather than by optimizing the configuration of
the ring polymer directly in a saddle point search. The latter involves more
system replicas. Moreover, many of those replicas tend to cluster in regions
of low energy, while the discretization points in the LI-NEB calculation are
distributed evenly along the path.

A cubic interpolation of the coordinates r in the OTP as
well as the parallel component of the force, fp‖

j , is used together
with the velocity Verlet algorithm to carry out the dynamical
simulation. Since the replicas double up along the path, it is
enough to run the dynamics for only half an oscillation period.
From the period of an oscillation, τ, the temperature corre-
sponding to this tunneling path is found as T = ~/kBτ. The
location of replica j is given by the coordinates of the system
after time tj = jτ/P.

We find that to obtain a sufficient resolution of the
OTP and hence a good estimate of the reactive flux, the LI-
NEB calculation only requires 5-10 evenly distributed sys-
tem replicas, depending on the system energy or temperature.
Figure 3 shows a comparison of the discretization points in the
OTP and the replicas in the saddle point configuration of the
ring polymer calculated for the modified Muller-Brown poten-
tial surface. As can be seen there, more replicas are needed in
the ring polymer than the discretization points in the OTP, and
while the distribution of the latter can be controlled (chosen
here to be equally spaced), the replicas of the ring polymer
tend to cluster in regions of low energy.

D. The tunneling rate

A first-order saddle point on the Vrp energy surface can
be used to estimate the thermal rate via the corresponding tun-
neling mechanism. The estimate of the rate constant (kHQTST)
(in the absence of rotational and translational degrees of free-
dom) is given by Eq. (6). Ωj in the equation are the non-zero
vibrational frequencies obtained from the eigenvalues of the
Hessian matrix for the ring polymer consisting of P replicas
of the system. In other words, the product sign in Eq. (6) only
includes NP-1 modes because of the zero-mode, S0, which
cannot be treated with a quadratic approximation. The Hes-
sian at each of the evenly distributed discretization points in
the OTP, H(rj), j = {1, . . ., n}, can be estimated by finite differ-
ences and each element in the matrix can then be interpolated
with a cubic polynomial to estimate the Hessian matrix at the

replicas in the ring polymer H(rrp
j ), j = {1, . . ., P}. The interpo-

lated Hessian matrix can then be used to find the eigenvalues
and the tunneling rate evaluated from the expression in Eq.
(6). Generally, the number of replicas in the ring polymer is
much larger than the number of replicas used to find the OTP
(P > n). Therefore, by computing only the Hessian matrix of
the OTP images in order to construct the Hessian matrix of the
ring polymer, significant computational savings can be made,
especially, when the methodology is used in conjunction with
ab initio or DFT methods.

E. Performance

In the preliminary presentation of the LI-NEB approach
to HQTST calculations, an application to the desorption of
H2 from a Cu(110) surface was given and the results were
shown to agree closely with a full QTST calculation of the
rate.29 There, the energy of the system was evaluated from an
empirical potential function. The same test problem has been
used here to document the performance of the LI-NEB method
and to make a comparison with the MMF method applied to
HQTST.28

The simulated system consists of 216 Cu atoms in a
6-layer Cu(110) slab and two H atoms. The initial state is
obtained by minimizing the energy with the two H atoms
located in adjacent hollow sites. The reactive flux for asso-
ciative desorption of H2 from the surface is then evaluated
for a range of energy values, corresponding to a tempera-
ture range of 260 K–50 K. Each LI-NEB calculation is started
from an OTP obtained previously for a slightly higher energy,
whereas the first calculation is started from a linear interpola-
tion between the two points along an MEP (on opposite sides
of the energy barrier) that are closest to the initial value of
the energy. The LI-NEB calculations include only 10 system
replicas in the OTPs and have a relatively loose convergence
criterion of |g⊥j | < 1 ·10−2 Å�1 for the interior points (j = 2,. . .,
n � 1). For the endpoints, j = 1 and j = n, the convergence cri-
terion is |gopt| < 1 · 10�2 Å�1. The values of k and κ are chosen
to be 20 Å�2 and 1000 eV�1Å�1, respectively.

For comparison, the MMF algorithm33,34 was imple-
mented using the Lanczos method for estimating the minimum
mode.48 This algorithm is used to generate the reference values
for the reactive flux within a temperature range of 260 K–
50 K. The reference calculations included 150 system replicas
in the Feynman paths and a tight convergence criterion of
1·10�8 eV/Å in the atomic forces.

The results obtained from the LI-NEB calculations of the
OTP reproduced the reference values well for the entire tem-
perature range. The natural logarithm of the flux was within
2% of the reference values, except at the lowest temperature of
50 K. In comparison, the MMF approach required 50 replicas
in the Feynman paths and a convergence threshold of Fmax

< 1 · 10�3 eV/Å to achieve the same accuracy in the calcu-
lated flux. The optimization of the LI-NEB was carried out
using velocity projection in the velocity Verlet algorithm.36

Each step in the MMF optimization is taken in the direction
of the conjugate search direction and the step size estimated
according to a Newton line search. The number of energy
and force evaluations required by the LI-NEB approach to
compute the reactive flux was on average ca. 900 and it only

94



Article I
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depended weakly on the temperature. For the MMF approach,
between 2000 and 16 000 evaluations were needed to reach
the same level of accuracy, with more evaluations required as
the temperature was lowered.

These are, however, only preliminary tests and more cal-
culations are needed to fully evaluate the efficiency of these
methods. Neither of the two implementations used here have
been optimized to their fullest extent. For example, improve-
ments of the MMF method have been presented recently49 but
were not used here. In Sec. III, calculations of tunneling rates
for two systems are presented where the energy and atomic
forces were obtained from electronic structure calculations.
There, an additional issue arises due to the error in the esti-
mates of the atomic forces, as compared to the H2/Cu(110) test
problem discussed above where a potential function was used.
We expect the LI-NEB method to be less sensitive to errors in
the atomic forces, but this remains to be tested.

III. APPLICATIONS
A. Dissociation of H3BNH3

There has been significant interest in ammoniaborane,
H3BNH3, for solid-state hydrogen storage, as the compound
contains 20% hydrogen by weight. Ammoniaborane is a struc-
tural analog of ethane with C atoms replaced by B and N while
being a solid at room temperature. When heated, it decomposes
to yield H2 and a solid residue of polymeric aminoborane,
[H2BNH2]x. Figure 4 shows the structure of the gas phase
ammoniaborane molecule and the saddle point configuration
for the decomposition into H2 and H2BNH2. Upon further
heating, [H2BNH2]x can yield additional H2, but the thermal
decomposition process of the solid is complex and one of the
problems with the practical use of the compound for hydrogen
storage is the release of B3N3H6 (a BN-analog of benzene)
and B2H6.50

Calculations of the decomposition of a gas phase ammo-
niaborane molecule have been carried out by Li et al.51 using
DFT with the B3LYP functional52–54 and G3MP2B3.55 In

addition to the classical HTST rate constant, they reported
an estimate of the effect of tunneling using the small curvature
tunneling (SCT) correction.56 Interestingly, the effect of tun-
neling is estimated to be exceptionally large for this transition.
For a temperature of 200 K, for example, Li et al. reported an
SCT estimate of the tunneling rate that is 6 orders of magnitude
larger than the classical HTST rate.

We have carried out calculations of the gas phase decom-
position of H3BNH3 to compare various levels of rate theory.
The electronic structure calculations were performed at the
B3LYP/def2-SV(P)-gcp57–59 level of theory, as implemented
in the ORCA software.60 The minimum energy of the H3BNH3

molecule is obtained with a staggered configuration of C3v

symmetry (see the inset of Fig. 4). At the classical first-order
saddle point configuration for the decomposition into H2 and
H2NBH2, the NH3 group has rotated into an eclipsed config-
uration and one of the N–H bonds has stretched to bring an H
atom towards one of the H atoms bonded to the B atom. The
remaining H atoms bonded to the N atom come close to the pla-
nar configuration of the product state, H2BNH2. The activation
energy estimated from the first-order saddle point with zero-
point energy correction is 1.50 eV which is in good agreement
with the calculations of Li et al. who reported 1.41 eV and
1.49 eV using G3MP2B3 and B3LYP/aug-cc-pVTZ, respec-
tively. Also, the calculated HTST rate constant agrees well
with what Li et al. reported.51

The LI-NEB calculations started with an energy of
0.05 eV below that of the first-order saddle point on the energy
surface and an initial path lying along the MEP. The energy
was subsequently reduced stepwise covering an interval of
roughly 1 eV. The calculations employed 10 replicas along
the OTP path. The number of replicas in the instanton was
P = 240, and the NP-dimensional Hessian matrix of the instan-
ton was obtained by cubic polynomial interpolation of the
Hessian evaluated at the 10 replicas of the OTP path. The
parameters k and κ were chosen to have a value of 20 Å�2 and
100 eV�1Å�1, respectively. These values were found to lead to
good convergence behavior. The same convergence criterion
was used as for the H2/Cu(110) problem discussed earlier.

FIG. 4. Reaction rate as a function of
inverse temperature for H2 abstraction
from a H3BNH3 molecule. Nuclear
quantum effects are found to dominate
the reaction rate even above room tem-
perature. The crossover temperature is
calculated to be Tc = 333 K, but the
classical HTST approximation underes-
timates the reaction rate even at a higher
temperature. The extension of HTST
to include quantum mechanical vibra-
tional partition functions, the qq-HTST
approximation, takes into account zero
point delocalization but not tunneling.
Inset: Initial state (dark blue spheres and
light blue bonds) and optimal tunneling
path (gray) for 200 K.
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The results of calculations carried out at various levels of
rate theory are shown in Fig. 4. The negative eigenvalue of
the Hessian at the classical first-order saddle point gives Tc

= 330 K using Eq. (1). This high rate of tunneling compared
with the classical over-the-barrier rate at such a high temper-
ature is unusual. The reason for this is the narrowness of the
energy barrier. The two H atoms that form the H2 molecule
can come close to each other because one of them is slightly
positively charged and the other is slightly negatively charged,
as one is bound to a B atom and the other is bound to an N
atom.

The HQTST results give a tunneling rate that is nearly 10
orders of magnitude larger than the HTST rate at 200 K. This
is a significantly larger difference than the one obtained from
the SCT approximation.51 The SCT approximation56 is based
on a harmonic expansion around the classical MEP, while
the HQTST approximation is based on a harmonic expansion
around the OTP. The SCT is, therefore, not as accurate as
HQTST when the temperature is significantly below Tc. The
OTP can be in a quite different region of the energy surface
than the MEP, as illustrated in Fig. 2.

B. H atom diffusion in Ta crystal

Several studies of hydrogen diffusion in metals have indi-
cated a crossover in the diffusion mechanism at low temper-
ature, typically below room temperature.61 This is usually
interpreted as the onset of tunneling of the H atoms. Diffu-
sion in BCC crystals shows stronger signs of tunneling than
diffusion in FCC crystals as BCC metals have interstitial sites
that lie closer together than in FCC metals. One of the clear-
est crossover has been observed for H diffusion in the dilute
α-phase of hydrogen in a Ta crystal.

Results of two experimental measurements of hydrogen
diffusion in Ta are shown in Fig. 5. In one of the experiments,
the macroscopic diffusivity was measured using the Grosky
effect.62 In the other experiment, NMR spin-lattice relaxation

FIG. 5. Diffusion constant for hydrogen in a Ta crystal. The values calculated
using the HQTST approximation (open squares) where the energy and atomic
forces are obtained from DFT calculations are in close agreement with the val-
ues obtained from the Groski effect62 (filled disks) and from NMR63 (open
circles) experiments. The crossover temperature is calculated to be Tc = 180 K,
but the classical HTST approximation underestimates the reaction rate even at
a significantly higher temperature. The agreement between the HQTST calcu-
lation and the experiments is remarkably good considering that no parameter
in the calculation has been adjusted to reproduce the experimental data.

times were used to estimate the rate of transitions between
sites in the lattice.63 In the Grosky effect measurements, a con-
centration gradient is introduced by bending the sample. The
hydrogen atoms migrate along the gradient causing a time-
dependent anelastic strain. From the relaxation time of the
anelastic strain, the diffusion constant can be obtained. Since
the anelastic strain is macroscopic in nature, the diffusion con-
stant obtained from the Grosky effect can be influenced by
impurities and defects as hydrogen atoms can become trapped
there, especially at low temperature. This will result in an
underestimate of the diffusion rate in a perfect crystal. On the
other hand, the NMR spin-lattice relaxation time is compara-
ble to that of the elementary transitions and the diffusivity is
estimated by assuming only jumps between two neighboring
tetrahedral sites, which could lead to an underestimate at high
temperature. As can be seen from Fig. 5, the Grosky effect
measurements are found to give a lower diffusion rate than the
NMR measurements at low temperature, while the opposite
trend is observed at high temperature. Messer et al.63 argue
that the overall best estimate for H diffusion in a perfect Ta
crystal is obtained from the Grosky effect measurements in
the high-temperature range and NMR measurements in the
low-temperature range.

Sundell and Wahnström carried out calculations of H atom
hopping between the stable sites, Td sites, in Ta.64 The energy
and atomic forces were evaluated using DFT. The H atom
was found to self-trap in a Td site with trapping energy of
0.3 eV. By constructing a three-dimensional grid to describe
the position of the hydrogen atom in the Td site as well as
a hydrogen atom delocalized over two neighboring Td sites,
a three-dimensional Schrödinger equation was solved and the
vibrational levels along with tunneling matrix elements65 were
estimated. The delocalization of the hydrogen atom was sim-
ulated by placing hydrogen atoms at the two sites and using
a linear combination of the symmetrized Hellmann-Feynman
forces.

By using the high-temperature limit of small polaron the-
ory,66 Sundell and Whanström calculated the rate of H atom
jumps between sites over a temperature range of 100 K–200 K
and obtained results in good agreement with the NMR mea-
surements. The small polaron approximation is valid if the
temperature is low enough for excited vibrational states to be
ignored, but high enough for the lattice vibrations to be treated
classically.

We carried out HQTST calculations of H atom diffusion in
Ta where the energy of the system and the atomic forces were
obtained from DFT calculations. The calculations made use
of the PW91 functional,67 a plane wave basis set, and periodic
boundary conditions applied to a cubic cell of 16 Ta atoms and
one H atom. The kinetic energy cutoff in the plane wave basis
was 250 eV (18.4 Ry). The inner electrons were described
by the projector augmented wave formalism.68 The Brillouin
zone was sampled by a 3 × 3 × 3 k-point mesh generated
with the Monkhorst-Pack scheme.69 After volume relaxation,
the lattice constant was determined to be 3.32 Å, in excellent
agreement with the experimental value of 3.31 Å.70 The VASP
software was used for these calculations.71

The HQTST method was used to calculate the rate of
transitions between adjacent Td sites. First, the NEB method

96



Article I
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was used to find the MEP. From the maximum along the MEP,
an activation energy of 0.20 eV was obtained. When all but
the five Ta atoms surrounding the two Td sites visited by the
H atom were kept fixed, the activation energy only increased
by 0.004 eV. From the unstable mode at the first-order saddle
point, an estimate of Tc = 180 K was obtained.

The diffusion constant was estimated from the HQTST
rate constant, k(T ), for transitions between adjacent Td sites
by assuming a random walk through the lattice. The expression
for the diffusion constant, D(T ), is

D(T ) = n
l2

2d
k(T ) (28)

= 9.13 · 10−17k(T ) (cm2/s), (29)

where l is the distance between two Td sites (1.17 Å), d = 3
is the dimensionality of the lattice, and n is the number of
symmetrically equivalent diffusion paths (4 in the present
case).

The calculated diffusion constant is compared to the two
sets of experimental data in Fig. 5. The agreement is remark-
ably good considering that no parameter has been fitted to
reproduce the experimental data. The nuclear quantum effects
are large even well above the harmonic estimate of Tc given
by Eq. (1) as is apparent from a comparison of the HQTST
and HTST results. The experimentally observed crossover in
the diffusivity as a function of temperature can clearly be
assigned to a shift from classical over-the-barrier hops of the
H atoms between Td sites at high temperature to thermally
activated quantum mechanical tunneling between the sites at
low temperature.

IV. DISCUSSION

The number of energy and atomic force evaluations
needed in the application of the methodology described here
for calculating OTPs and HQTST tunneling rates is of sim-
ilar order of magnitude as NEB and HTST calculations of
classical transition rates, except that the OTP needs to be
updated as the energy and, thereby, the temperature is changed.
The calculations can, therefore, be combined with electronic
structure evaluations of the energy and atomic forces, such
as ab initio or DFT, as is frequently done today in calcula-
tions of classical transition rates. The key aspect of the cal-
culation is the controlled distribution of discretization points
in the iterative optimization of the tunneling path. Prelimi-
nary results from calculations of the associative desorption
of H2 from the Cu(110) surface suggest that an optimiza-
tion of the ring polymer configuration using a saddle point
search method, such as the MMF method, is less efficient
than the LI-NEB method for finding OTPs since it needs to
include many more system replicas and most of those are
redundant, clustering in the lower energy regions of the energy
surface.

As has recently been demonstrated in the NEB calcula-
tions, the number of electronic structure calculations of the
energy and the atomic forces can be reduced significantly by
using GPR, a type of machine learning.40,41 There, the results
of the electronic structure calculations are used to create an
approximate energy surface that can be evaluated without

large computational effort. This can reduce the number of
electronic structure calculations needed to converge on the
OTP. Also, after finding the OTP, the approximate energy sur-
face can be used to calculate more accurately the dynamics
along the path to determine the period of the classical trajec-
tory, the location of the replicas in the ring polymer, and the
corresponding Hessian matrix. GPR also provides an estimate
of the uncertainty in the approximate energy surface. If a calcu-
lation of an OTP or a classical trajectory on the approximate
surface ventures into an area where the uncertainty is large,
then an additional electronic structure calculation can be car-
ried out at the most relevant point to reduce the uncertainty.
In the present context, an OTP calculation would start with
an MEP and an approximate energy surface giving an accu-
rate representation of the true energy surface in the vicinity
of the MEP. An LI-NEB calculation for an OTP for energy
slightly below the saddle point energy can then be carried
out on the approximate surface as a first approximation, and
electronic structure calculations can then be carried out for
the most relevant points on the converged OTP. The LI-NEB
calculation is then repeated for the updated approximation of
the energy surface, etc. Once the OTP has converged in this
way and the approximate energy surface verified by electronic
structure calculations at the discretization points, the classical
dynamics simulations for determining the corresponding tem-
perature can be carried out on the approximate energy surface.
Again, if the dynamics bring the system to a point where the
approximate energy surface has too large uncertainty, addi-
tional electronic structure calculations can be carried out at
selected points.

Since the optimization of the paths is carried out by adjust-
ing the location of each one of the discretization points simul-
taneously, the LI-NEB algorithm for path optimization lends
itself well to parallel computing especially when combined
with electronic structure calculations. Then, the evaluation of
the energy and atomic forces becomes by far the largest compu-
tational effort and the overhead for parallel or even distributed
computing becomes insignificant.

The HQTST approximation presents a significant
improvement over frequently used approximations of tunnel-
ing rates, such as various one-dimensional approximations and
the SCT approximation. The reason for this is that an optimal
tunneling path is determined instead of using an expansion
around the classical MEP. Since the computational effort in the
LI-NEB calculation is of the same order of magnitude as a reg-
ular NEB calculation, especially when GPR is used, we foresee
that the methodology presented here will become a method of
choice for estimating tunneling rates from electronic structure
calculations of, for example, chemical reactions and diffusion
events.

In most systems, tunneling of atoms is only important
below room temperature. But, there are exceptions as has been
demonstrated here in the case of ammoniaborane decomposi-
tion. The reason tunneling is so fast in that case compared
with the classical over-the-barrier mechanism is the narrow-
ness of the energy barrier which results from partial positive
and negative charges on the two H atoms that form the hydro-
gen molecule. There is no doubt whether other such exam-
ples and systematic calculations of tunneling rates could help
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establish guidelines for identifying systems where tunneling
plays an important role at a temperature of interest. The largest
application area for atom tunneling calculations is no doubt
astrochemistry where the relevant temperature is typically on
the order of 10-50 K.32,72,73

The harmonic approximation for calculating classical
transition rates, HTST, has been found to work well for a wide
range of systems, especially transitions in solids and on the sur-
faces of solids. While methods that allow for full free energy
calculations as the transition state dividing surface is optimized
both with respect to location and orientation have been devel-
oped,74,75 most calculations by far are carried out within the
HTST approximation. Similarly, it is likely that the harmonic
approximation for calculating the rate of tunneling is accu-
rate enough in many cases, especially in light of the inherent
errors in DFT calculations of energy barriers. The accuracy
of HQTST has been demonstrated already for some systems
by comparison with more elaborate quantum rate theories.28,29

The close agreement obtained here between with experimen-
tal measurements of hydrogen diffusion in a Ta crystal also
demonstrate the accuracy of the HQTST approach. We note
that the calculations assume adiabaticity between the nuclear
and electronic degrees of freedom, the Born-Oppenheimer
approximation, and ignore possible electron-hole pair exci-
tations during the diffusion events. While electron-hole pairs
can play a role in atomic rearrangements in metals and on
metal surfaces, those cases seem to be exceptions from the
general applicability of the Born-Oppenheimer approximation
in thermally activated transitions.

The extension of HTST to transitions between magnetic
states has been developed76,77 as well as a version of the NEB
method tailored to magnetic systems.78 But, as for atomic
transitions, tunneling of magnetic moments rather than over-
the-barrier hops becomes the dominant transition mechanism
at low enough temperature. A method for estimating the
crossover temperature for tunneling in magnetic systems has
been presented,79,80 and a method for finding magnetic instan-
tons has been developed,81 but an expression for the HQTST
pre-exponential factor or thermally activated tunneling rates
in magnetic systems remains to be formulated.

Finally, we point out that the crossover from over-the-
barrier mechanism to tunneling mechanism as temperature is
lowered for ring polymers representing a quantum mechanical
system is analogous to the crossover from coiled to stretched
transition of a molecular polymer as a function of length.82,83

Also there, a harmonic transition state theory has been found
to give accurate results for the transition rate, and the results
of such calculations have been further improved by applying
dynamical corrections.84
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Comput.Sci. 7134, 45 (2012).
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Abstract

A method is presented for focusing the computational effort of a climbing image
nudged elastic band (CI-NEB) calculation of a minimum energy path to the region
of the energy maximum. This improves the resolution of the path in the most critical
region and thereby provides a better estimate of the climb direction without introducing
an excessive number of images. This zooming in on the top of the energy barrier
takes place after a CI-NEB calculation has reached a certain level of convergence and
the parallel computational resources are then shifted automatically to a denser grid
of images near the maximum. The two endpoints in this zoom CI-NEB (ZCI-NEB)
calculation of a shorter segment of the path are not fixed but move in the direction of the
atomic force perpendicular to the current path and thereby converge on the minimum
energy path along with the other images. The method is applied to a benchmark
test set involving structural rearrangements of a heptamer island on a solid surface
and it is found to be robust and efficient. The Z-NEB method is then applied to
two molecular reactions that have long and complex paths: The hydrolysis of ethyl
acetate and a rearrangement of 1,5-hexadiene. The saddle points for these reactions
are successfully located using significantly fewer images than is required for a standard
CI-NEB calculation to converge, resulting in considerable reduction of computational
effort.
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1 Introduction

The minimum energy path (MEP) on an energy surface characterizing a rearrangement of
atoms from one configuration to another, such as a chemical reaction, a diffusion event or
a conformational change of a cluster, provides important information about the mechanism
and possible intermediate states visited during the transition. Calculations of MEPs can be
carried out using the nudged elastic band (NEB) method1,2 where the path is discretized
with a set of replicas of the system, referred to as images, and an optimization algorithm
based on the atomic forces is used to shift the images iteratively to the MEP. At the MEP,
perpendicular components of the force on the atoms vanishes. For a recent review of the
method and its implementations, see Ref.3 The energy maximum along the MEP is the
most important along the path and the calculation needs to be converged particularly well
in that region. A maximum along the MEP represents a first order saddle point on the
energy surface and the highest maximum is the activation energy of the transition within
the harmonic approximation of transition state theory.4,5

In the climbing image NEB (CI-NEB) method,6 one of the images is driven to the point
of maximum energy, but its success relies on having sufficient resolution of the path near
the maximum in order to determine the right direction for the climb. If the whole path is
represented at such high resolution, the computational effort can become excessive as the
number of images becomes large. With too low resolution of the path near the climbing
image, the estimate of the tangent to the path, which determines the climbing direction, can
oscillate back and forth and prevent the calculation from reaching convergence.

After a CI-NEB calculation reaches a certain loose level of convergence, the overall shape
of the MEP, such as the possible presence of intermediate local minima and the relative
height of maxima can become evident, well before the point of maximum energy has been
found sufficiently well to provide a reliable estimate of the activation energy. Further calcu-
lations of images located away from the region of the maximum are then unnecessary and
the computational resources are better used to focus on the images near the maximum and
introduce additional images there to improve the resolution where it is most needed. Since
one of the advantages of the NEB method is efficient use of parallel computing in simultane-
ous calculations of the energy and atomic forces of each image, the computational resources
assigned to the computation can be used in a more optimal way by shifting processors to
additional images near the maximum at a point when the overall shape of the MEP has been
established in the CI-NEB calculation.

The importance of representing the path with higher resolution near the energy maximum
becomes particularly clear in reactions of molecules where a significant portion of the MEP
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may involve rotations of molecular fragments that involve little change in energy.The energy
curve representing the energy as a function of atomic displacements along the MEP can then
have extended regions that are nearly flat while the energy barrier represents only a small
segment of the path. This problem is less pronounced in calculations of MEPs for solid state
transitions, where the CI-NEB method has mainly been used so far.

There have been several formulations of NEB calculations where focus is shifted to the
barrier region after loose convergence to the MEP. In some cases, two of the intermediate
images on opposite sides of the current maximum energy image have been chosen and the
atomic coordinates of those images fixed while additional movable images are introduced
in the intermediate region by interpolation. Then, a new NEB optimization is initiated.
This procedure is then carried out repeatedly on an even interval of optimization steps
(see for example10). This, however, can lead to problems, as illustrated below, since the
fixed endpoint images are in such cases not sitting on the MEP. A better approach is to
allow the new endpoint images to move to the MEP along with the intermediate images.11

Algorithms for moving endpoint images have been presented in the context of diffusion in
solids13 and calculations of optimal tunneling paths.14 An elaborate scheme for focusing CI-
NEB calculation on the barrier region, the autoNEB method, has recently been presented
and used in various contexts.12 In this method, new images are added sequentially into the
largest energy or geometrical gap along the path during the NEB optimization.

In the present article, a simple scheme for focusing a CI-NEB calculation on a region
around the energy maximum along an MEP is presented. After the CI-NEB calculation
has been carried out until a loose tolerance in the magnitude of the force acting on the
climbing image is met, the method zooms in on the region near the energy maximum. It
is referred to as zoom-NEB (Z-NEB) and it is tested using a standard benchmark involving
rearrangements of a heptamer island on a solid surface.15 Z-NEB is found to be robust and
outperform CI-NEB with even distribution of images as well as autoNEB. An application
to two challenging molecular reactions is described where density functional theory is used
to evaluate the energy and atomic forces, namely the hydrolysis of ethyl acetate and a
rearrangement reaction of 1,5-hexadiene. Again, the Z-NEB method is found to outperform
CI-NEB and lead to considerable savings in computational effort.

The article is organized as follows: In section 2, the Z-NEB method is described and two-
dimensional test problems used to demonstrate the concepts and implementation aspects. In
section 3, the benchmark testing and comparison with autoNEB for the heptamer island is
presented. Moreover, an application of the Z-NEB method to the two molecular reactions is
described and the performance analyzed. The MEPs of these reactions are characterized by
extended tails where the energy hardly changes and the standard CI-NEB method requires
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large number of images in order to reach convergence. The article then concludes with a
discussion of the results in section 4.

2 Methodology

The Z-NEB method is an automatic two phase CI-NEB procedure that can be used to
accurately locate the point of highest energy along an MEP connecting a given reactant and
product state, with fewer images than a standard CI-NEB requires for convergence. This
is especially true for cases where extended regions of the MEP involve little change in the
energy. In the first phase of Z-NEB, the objective is to obtain a path that approximates the
MEP well enough to identify the region around the the point of highest energy on the MEP.
In the second phase, referred to as ZCI-NEB, the images outside this region are discarded
and additional images are inserted by interpolation in the region near the maximum in such
a way that the total number of active images remains the same and the computational
resources (cores) assigned to the calculation continue to be used efficiently. In Fig. 1 the Z-
NEB method is illustrated in calculation of the MEP on the two-dimensional Müller-Brown
surface16 and comparison is made with the standard CI-NEB method.
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Figure 1: Illustration of the Z-NEB method and comparison with the standard CI-NEB
method in calculations of the minimum energy path on the two-dimensional Müller-Brown
surface.16 The initial, linear interpolation path is shown by a red dashed line and the individ-
ual images by red circles. The displacement of the images during the iterative optimization
is shown by black solid lines. The final position of the images converged to the minimum
energy path is shown by green circles. Part (a) of the figure shows a successful calculation
using CI-NEB with a total of 8 images, the two endpoints being fixed at the reactant and
product state minima. In (b), an illustrative of the Z-NEB method is shown. In the first
phase of Z-NEB, a loosely converged CI-NEB calculation is carried out and the final posi-
tion of the images is shown by the black circles. A solid dark-red line indicates the region
selected for introduction of additional images in the ZCI-NEB phase. It lies between the
climbing image and its adjacent images. New set of images are introduced in this region by
linear interpolation and images outside this region are not treated further. In the second
phase, ZCI-NEB, the images are shifted to the minimum energy path, including the endpoint
images which move in the direction of the atomic force perpendicular to the current path.

In the initial phase of Z-NEB, an initial path connecting the reactant and product energy
minima is constructed, e.g., by using the image-dependent pair potential method.17 The
initial path is composed of a set of N system images with the end-point images constrained
in the reactant and product energy minima. A CI-NEB calculation is then carried out, where
the N − 2 intermediate images are iteratively shifted towards the MEP but the calculation
is stopped before convergence on the MEP is reached. The stopping criterion chosen here
is based on the magnitude of the largest Cartesian component of the force acting on each
of the atoms in the climbing image, i.e. max(|FCI|) < εzoom. In practice, the value of the
tolerance, εzoom, needs to be chosen to be small enough so that the rough shape of the MEP
has emerged, such as presence of all extrema but also large enough so that computational
resources are not wasted on resolving irrelevant parts of the MEP to a higher precision,
such as lower-lying saddle points or long tails of the MEP attributed to soft degrees of
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freedom. Typically, a value of εzoom between 0.1 and 0.5 eV/Å is found to lead to reasonable
performance.

Once this approximation of the MEP has been obtained, the region around the highest
energy point on the MEP needs to be identified. Here, this region will be referred to as the
Z-region. A piecewise-cubic polynomial is used to interpolate the energy along the current
path.? In this interpolation scheme, both the energy of the images and atom force acting
along the path are used in the interpolation. The inclusion of the tangential atom force in
the interpolation leads to a more accurate energy estimate of the partially converged energy
barrier than a simple (linear) interpolation of the energy of the images. Moreover, it can
help determine which energy barrier in a multi-step reaction pathway is likely to be largest
one on the MEP.

In the second phase, ZCI-NEB, the interpolated approximate MEP is used to select the
region on the energy surface where the density of images is increased. The region of interest
is defined by points on either side of the maximum where the energy has dropped to a certain
fraction defined by a parameter γ where γ ∈ (0, 1). The value of the energy, Eγ, defining
this region is

Eγ = (1− γ)(Eintp.
max − Eref) + Eref (1)

where Eref is the higher energy endpoint, max(E1, EN), and Eint
max is the energy of the maxi-

mum along the interpolated approximate MEP. The boundaries of the Z-region are then se-
lected by locating the two intermediate images of the path that lie closest to the γ boundary-
points. However, since the Z-region needs to bracket the point of maximum energy (i.e., the
two boundary images of the Z-region need to be on opposite sides of the energy barrier), the
CI cannot be selected as a boundary image of the Z-region. Therefore, if the CI is the nearest
image to the point with energy Eγ, then a neighbor of the CI is chosen as a boundary image
of the Z-region. Furthermore, if the approximate MEP is found to be strictly decreasing or
increasing, one of the boundary images of the Z-region is chosen to lie between the endpoint
minimum of higher energy and its neighboring image. This is important in order for the
method to be able to find an energy maximum that is located close to one of the endpoint
minima.

The selection of the γ-region (γ = 0.2) and the Z-region is illustrated in Fig. 2 for
a Z-NEB calculation for the Müller-Brown energy surface. In this example, the Z-region
corresponds to the path traced out by the CI and its two neighbors.
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Figure 2: Energy along the approximate minimum energy path obtained in the CI-NEB
calculation of Z-NEB on the Müller-Brown surface, as illustrated in Fig. 1(b). In ZCI-
NEB, the neighborhood of the point of highest energy is selected according to γ = 0.2 and
is highlighted by red boxes. The images closest to the boundaries of this region are then
selected to define the Z-region, shown with dark-red color, where the density of images is
increased.

Additional images are then constructed within the Z-region by either a piecewise linear or
cubic interpolation of atomic configurations (see Sec. SI-1.1) and used to initiate a second CI-
NEB calculation to find the point of maximum energy more accurately. The Z-NEB scheme,
therefore, allows the saddle point region of the MEP to be resolved better than standard
CI-NEB using a given number of images. Since the end-point images of the intermediate
path in the ZCI-NEB calculation do not lie on the true MEP, it is important to optimize
the position of these images along with the other images. In order to ensure efficient use of
parallel computing, the ZCI-NEB calculation is carried out for N − 2 images, same as the
number of movable images in the initial CI-NEB calculation, so the same central processors
units continue to be used efficiently.

8

109



Article II

Figure 3: Illustration of different ways to handle endpoints in a CI-NEB calculation that
does not include the local minima corresponding to the reactant and product states. This
corresponds to the second phase of a Z-NEB calculation. In this example, the initial CI-
NEB calculation is omitted and hence the ZCI-NEB starts from the linear interpolation. In
(a), the endpoints are kept fixed even though they are not lying on the minimum energy
path. This leads to images being pulled off the MEP. In (b), the end-points are iteratively
moved according to the atomic force perpendicular to the current path. The red dashed
line shows the region corresponding to γ = 0.5 where density of images is increased. The
displacement of the images during the iterative optimization is shown by black dashed-lines.
The converged position of the images is shown by green circles. The minimum energy path
is shown by a white solid line.

The displacement of the two endpoint images to the MEP can be carried out by following
the atomic force perpendicular to the current path,11 see Fig. 3(a), or by making the end-
point images follow the energy contour, in which case a force projection and a restraint
needs to be added,13,14 see Fig. 3(b). The latter option can be advantageous if an endpoint
starts out far from the MEP, as the energy contour will prevent it from leaking down into an
energy minimum. However, this calls for an additional ’stiffness’ parameter (analogous to
the spring-coefficient) in the calculation. If the value of the stiffness parameter is not chosen
carefully the performance of the CI-NEB calculation can be affected. The first option is
used in the calculations presented here. In any case, it is important to optimize the end-
point images in ZCI-NEB. If the end-points are simply fixed during the optimization, the
path becomes kinked and the neighboring images of the end-points may not converge on
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the MEP, as shown in Fig. 3(c). This can drastically affect the convergence properties of
the method and reduce the computational efficiency of the calculation, in particular if a
small number of images is used. An example of that is given in the heptamer benchmark
calculations in the next section.

2.1 Computational settings

For the heptamer island benchmark calculations, the interatomic interactions are described
by using a simple Morse potential. The potential parameters and configurations set are given
in Ref.15 This benchmark has become used extensively to assess methods for finding MEPs
and saddle points. The CI-NEB and Z-NEB calculations of the benchmark reactions are car-
ried out with both the L-BFGS20 (for a demonstration of various choices of ∆step, see Sec.
SI-1.2) and FIRE optimization methods.21 The computational settings for these calculations
are given in Sec. SI-4. To compare performance, the calculations are also carried out using
the AutoNEB method as implemented in the ASE-3.17 simulation package.22 A slight mod-
ifications to the implementation was made in order to be able to use the same convergence
criterion in the two types of calculations, see Sec. SI-4.4. The AutoNEB calculations make
use of the FIRE optimization method, since the NEB/L-BFGS method is not available in
ASE.

For the two molecular reactions, the calculations are carried out using the ORCA soft-
ware, where the B3LYP23–25+D3(BJ)26/def2-SVP level of theory is chosen for the density
functional theory evaluation of the energy and atomic forces. The reactant and product
configurations for the reactions are obtained from Ref.27 and re-optimized on the aforemen-
tioned level of theory. In both the Z-NEB and CI-NEB calculations, the IDPP method17 is
used to construct the initial paths. The climbing image is activated from the first step of
the calculation and the spring-coefficient is chosen to be 5.0 eV/Å2 (0.051 Ha/Bohr2). The
L-BFGS optimization method is used with a maximum allowed step-size, ∆step, of 0.2 Å. If
the maximum component of a step exceeds ∆step, the L-BFGS optimizer is restarted. In the
Z-NEB calculations, γ = 0.5 and εzoom = 0.5 eV/Å (0.01 Ha/Bohr) and a linear interpolation
of Cartesian atomic coordinates is used to generate additional configurations. Since, the ob-
jective of the calculations is to locate the point of maximum energy along the MEP, the focus
is on the atomic forces of the CI and the calculations are considered to be converged when
largest Cartesian component of the force on any atom satisfies max(|FCI|) < 0.0005 Ha/Bohr
(0.026 eV/Å) and the RMS(FCI) < 0.0003 Ha/Bohr (0.015 eV/Å). The maximum energy
configurations obtained is verified to be a first order saddle point on the energy surface by
ensuring that the Hessian has only one negative eigenvalue. The atomic coordinates of the
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reactant, saddle point and product configurations are given in Sec. SI-2 and SI-3.

3 Results

The Z-NEB method is first applied to a benchmark test that has been used widely to as-
sess the performance of methods for finding MEPs and saddle points, the heptamer island
transitions on a solid surface. The results are described in Sec. 3.1 and comparison is made
with both the standard CI-NEB method and the AutoNEB method. In Sec. 3.2, the Z-NEB
method is used in combination with DFT evaluation of the energy and atomic forces in cal-
culations of two molecular reactions, hydrolysis reaction of ethyl acetate and rearrangement
reaction of 1,5-hexadiene. For the latter example, the convergence rate using various number
of images in the calculations is analyzed.

3.1 Benchmark test on heptamer island

To evaluate the performance of the Z-NEB method on a well defined benchmark, calculations
are carried out for various rearrangement transitions of a heptamer island on a FCC(111)
surface. This set includes 59 transitions, some of which differ only by symmetry. For com-
parison, both CI-NEB and AutoNEB calculations are carried out using the same convergence
criteria. The results from the calculations is summarized in table. 1.
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Table 1: Application of CI-NEB, Z-NEB and AutoNEB methods to the heptamer island
benchmark set.15 Both the L-BFGS and FIRE optimization method are used for CI-NEB
and Z-NEB methods, but could not be used with AutoNEB because those calculations where
carried out with ASE software and L-BFGS with NEB is not available there. The efficiency
of the NEB calculations is measured by the number of energy and force evaluations (FCs)
required for the calculations to reach convergence, i.e. ||FCI|| < 0.001 eV/Å. Standard
deviation, σ, in the number of FCs for the 59 transitions is given, as well as minimum,
maximum and median number of FCs. The unsuccessful calculations (with AutoNEB only)
are omitted from the data on FCs.

Method 〈FCs〉 σ(FCs) min(FC) median(FC) max(FC) #failed

CI-NEB/L-BFGS 387 135 182 382 932 0

Z-NEB/L-BFGS 348 100 182 357 847 0

CI-NEB/FIRE 907 528 412 742 2337 0

Z-NEB/FIRE 876 498 477 662 2167 0

AutoNEB(9)/FIRE 965 678 463 748 4733 3

AutoNEB(12)/FIRE 953 487 494 744 2264 4

The CI-NEB calculations utilizing the L-BFGS optimization method successfully locate
the saddle points of the benchmark set without any failure in an average of 387(±135)
energy/gradient evaluations per transition. These results are in agreement with previously
reported CI-NEB/L-BFGS calculations for this benchmark.15 The Z-NEB method is found
to be slightly more efficient than CI-NEB, by 10%, with an average of 348(±100) evaluations
per transition when using γ = 0.2 and εzoom = 0.2 eV/Å. The MEPs for these transitions are
mostly simple and without long tails (see Sec. SI-4.1) so it is reasonable that the advantage of
Z-NEB over CI-NEB is small. If the FIRE optimization method is used instead of L-BFGS,
the average evaluations per transition increases to 907(±528) and 876(±498) for CI-NEB
and Z-NEB, respectively. Again, Z-NEB gives slight reduction in computational effort, but
only marginal. This difference in the computational efficiency of L-BFGS and FIRE is also
to be expected since the L-BFGS method uses both the NEB gradient and approximate
second derivative information in the optimization20 while FIRE is a dynamical optimization
method that uses only the NEB gradient.21

For illustration purposes, Z-NEB calculations were also carried out where the endpoints
in the second phase are fixed. Then, 9 of the reactions require over 2000 energy/force
evaluations, see Sec. SI-4.3. It is clearly important to allow the endpoints to relax down to
the MEP along with the other images. Fixing endpoints at locations that are not on the
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MEP may often lead to problems, in particular if too few images are used to resolve the
path.

For comparison, calculations were also carried out with the AutoNEB method which is
designed to accomplish a similar goal as Z-NEB. The initial path is the same as for the Z-
NEB and CI-NEB calculations, an IDPP path with Ninitial = 7. Then, additional images are
added, on-the-fly, into the largest energy (or geometrical gap) along the path after a fixed
number of optimization steps. Here, an image is added every 7 steps. The addition of images
is carried out until the total number of images in the path becomes N = 9 in the AutoNEB(9)
calculation and N = 12 in the AutoNEB(12) calculation. At that point, the climbing image
is activated and the saddle point targeted. To maintain the parallelization property of NEB
in AutoNEB (analogous to Z-NEB), only Ns (where Ns = Ninitial−2) images surrounding the
most recently added image are computed and moved in each optimization step. All other
images remain fixed in the calculations. Therefore, AutoNEB(12) with Ns = 5 is expected
to behave in a similar manner to that of Z-NEB(N = 7), where 5 images are added into the
higher energy regions of the path.

Surprisingly, both AutoNEB(9) and AutoNEB(12) exhibit failures, i.e. are unable to
converge to the saddle point to the specified tolerance for 3 and 4 different transitions, re-
spectively. Two of the failed calculations are attributed to the inability to locate a low energy
maximum that is close to an endpoint. For the remaining failures, i.e., 1 failed calculation
in AutoNEB(9) and 2 failed calculations in AutoNEB(12), the optimization reached the
maximum number of allowed optimization steps and it appears the optimization has become
erratic. For the remaining reactions, AutoNEB locates the saddle points in an average of
965(±678) and 953(±487) evaluations and hence proves to be less efficient than Z-NEB and
even less efficient than the standard CI-NEB method in disagreement to the findings of Ref.12

3.2 Application to two molecular reactions

3.2.1 Hydrolysis of ethyl-acetate

The hydrolysis of ethyl-acetate to form acetic acid and ethanol is a rather complicated
reaction with an MEP that has a rather high and narrow energy barrier. The path is long so
a large number of images is required for a standard CI-NEB calculation to converge. When 7
images are used in total including the endpoints, the CI-NEB calculation does not converge,
but the Z-NEB reaction does. The number of energy/force calculations is, however, quite
large, 1345. This reaction can occur by either a concerted mechanism or in a step-wise
manner. Here, the concerted reaction mechanism is obtained in the Z-NEB calculation. The
key configurations of the reaction path and energy profiles are shown in Fig. 4. Note, that
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the alternative and slightly lower energy step-wise mechanism can be found by insertion of
an image into the initial path generation of NEB, see Sec. SI-2.2.

The Z-NEB calculation is started from an IDPP path with N = 7, constructed between
the reactant and product minimum energy configurations. The highest energy image on this
path is 7.1 eV above the reactant energy minimum. Then, a CI-NEB calculation is carried
out and the path is iteratively shifted downhill in energy towards the MEP. This calculation
is terminated, i.e., max(|FCI|) < εzoom, after 282 energy/force evaluations. At this point, the
reaction is predicted to follow the single concerted mechanism with an approximate path
length of 10.6 Å. The approximate MEP is already characterized by a relatively narrow
energy barrier and with a height of 2.1 eV.

In the second Z-NEB phase, the two images on each side of the CI are automatically
selected to bracket the energy barrier and become the boundary images of the Z-region.
These images are shown as insets in Fig. 3. These three images, the CI and its two neighbors
are therefore used to interpolate and construct a new intermediate path with 5 images. The
length of the interpolated path is roughly 3.7 Å. Then, a second CI-NEB calculation is
carried out, where all of the images, including the two end-point images, are optimized to
the MEP.
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Figure 4: Illustration of a Z-NEB calculation of the hydrolysis of ethyl acetate to form acetic
acid and ethanol. In the lower panel, the reactant (denoted by R), saddle point (denoted
by SP) and product (denoted by P) configurations are shown. For clarity, atoms that are
displaced most in the reaction are labeled as C1, O1–O3 and H1–H2. The saddle point is
characterized by a 6-membered pericyclic configuration. In the upper panel, the approximate
MEP obtained after the initial CI-NEB calculation is shown by the red curve. The energy
path obtained after the second phase ZCI-NEB calculation is shown by a blue curve. The
boundary images obtained from the first phase of Z-NEB are shown by red and blue squares
and the configurations are shown as insets. The full minimum energy path for the reaction
is shown by a black dashed line.

The path obtained with Z-NEB predicts that the hydrolysis occurs by a single-step nu-
cleophilic attack of a water molecule on the carbonyl group of the ester. Simultaneously,
the C-O bond is ruptured and a double proton transfer occurs where the ethoxy group is
protonated. The saddle point configuration is characterized by a 6-membered ring configu-
ration formed by atoms C1-O3-H2-O2-H1-O1(-C1) shown in the lower panel of Fig. 4. The
energy barrier is estimated to be 1.55 eV and the path length of the partial MEP obtained in
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Z-ZNEB(2) is found to be 6.8 Å. The point of maximum energy is verified to be a first order
saddle point on the energy surface with a single negative eigenvalue of the Hessian matrix,
corresponding to a magnitude of 1251 cm−1 for the imaginary frequency.

The large number of evaluations required to obtain the saddle point can be attributed
to both the complicated reaction mechanism of this reaction and also to the relatively poor
resolution of the saddle point region. In Z-NEB (and CI-NEB) calculations for complicated
reactions such as this one, it may be advantageous to use more images to better resolve the
path, because low resolution can drastically reduce computational efficiency.

3.2.2 Rearrangement of 1,5-hexadiene

As for the hydrolysis reaction studied in the previous section, the rearrangement of 1,5-
hexadiene is a complicated reaction with simultaneous bond ruptures and formation of a
σ-bond and two π-bonds. The energy barrier for the reaction is found to be 1.41 eV. The
saddle point configuration has again 6-membered ring geometry and is verified to be of first
order, with an imaginary frequency of magnitude 530 cm−1. The reactant, saddle point and
product configurations are shown in Fig. 5

Figure 5: The reactant (denoted by R), saddle point (denoted by SP) and product (denoted
by P) configurations of the rearrangement reaction of 1,5-hexadiene. For clarity, the four C
atoms involved in bond formation/breaking are labeled from C1 to C4 in all configurations.
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Figure 6: Results from four different calculations of the rearrangement of 1,5-hexadiene,
namely CI-NEB and Z-NEB using 8 and 14 images. In the left-panel, the energy difference
between the climbing image and the reactant energy minimum is shown as a function of
optimization step. The maximum energy on the true minimum energy path is given by the
black dashed line. In the right-panel, the energy profile of the reaction obtained from the
last optimization step is shown. The minimum energy path is shown with the dashed black
line. The CI-NEB calculation with 8 images is unable to converge in 500 optimization steps,
while the Z-NEB calculation converges in 140 steps when 8 images are used and in 68 steps
when 14 images are used.

To compare the convergence behavior of CI-NEB and Z-NEB calculations are carried
out using both methods for N = 8 and N = 14. The results from these calculations are
summarized in Fig. 6. The CI-NEB calculation with N = 8 is unable to converge to the
saddle point in 500 optimization steps. In the first 50 optimization steps, the relative energy
of the CI quickly drops from 5.0 eV (the maximum energy along the IDPP path) to 1.3 eV.
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After this, the energy of the CI begins to exhibit large fluctuations around the maximum. The
CI is unable to converge to the maximum on the MEP, while the other intermediate images
already lie quite close to the MEP. It is evident, from Fig. 6, that the two neighboring
images of the CI barely lie at the base of the energy barrier and hence a poor tangent
estimate is obtained at the CI. This leads to large and inaccurate optimization steps which
lead to fluctuations in the estimated maximum of the energy. By increasing the number of
images to N = 14, CI-NEB is able to converge in 300 optimization steps (corresponding to
3986 energy/force evaluations). In this case, the CI exhibits smaller fluctuations during the
optimization. When such a large number of images being used in the calculation, most of
the images are simply placed on an uninteresting part of the MEP that corresponds to the
overall motion of the allyl-group (which includes the C4 atom, see Fig. 5).

In Z-NEB, the images are distributed into the region where the reaction actually occurs,
i.e. the region in configuration space where the σ and π-bond are being broken and formed.
It is this part of the path that gives rise to the energy barrier. For the Z-NEB calculation
with N = 8, the first phase of Z-NEB successfully finishes in about 18 optimization steps
(corresponding to 134 energy/force evaluations). The approximate MEP obtained in that
way is shown in Sec. SI-3.2. The ZCI-NEB calculation converges to the point of maximum
energy in additional 122 optimization steps (corresponding to 768 energy/force evaluations).
In other words, Z-NEB with 8 images requires only roughly half the number of the optimiza-
tion steps that CI-NEB with 14 images requires to converge and only 23% of the number of
energy/gradient evaluations. It is clear from Fig. 6 that the resolution of the energy bar-
rier is improved significantly by using Z-NEB. However, the long and flat tail in the curve
showing energy as a function of optimization step indicates that there are still some small
energy fluctuations of the CI that hinder it from converging easily to the maximum on the
MEP. By increasing the number of images further to N = 14, Z-NEB converges in a total of
68 optimization steps, corresponding to 926 energy/force evaluations with a high resolution
of the energy barrier. The optimal performance for Z-NEB as a function of N is obtained
for N=10 where the calculation completes in 62 optimization steps, see Sec. SI-3.3.
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4 Discussion

The method presented here makes CI-NEB calculations better suited for atomic rearrange-
ments with long and complicated paths where part of the path does not involve large change
in energy. Previously, CI-NEB has in particular been used in studies of transitions in and
on the surface of solids. There, MEPs can be fairly short as the atoms are confined to a
well defined space. In molecular reactions, however, part of an MEP can represent rotation
or translation of a molecular fragment where the energy does not change appreciably and
this leads to long energy tails. If an even distribution of images is used in such cases, the
resolution of the path in the part where energy has increased significantly, the critical part
of the path, can be low and this leads to poor estimate of the tangent to the path at the CI.
While this can be overcome by simply adding more images to represent the path, this can
increase the computational effort beyond available resources. The method presented here
provides a more economical solution as the density of images is increased only in the most
critical region once a reasonable accurate estimate has been obtained for the shape of the
path.

The benchmark study of the heptamer island is carried out mainly because it is a well
documented benchmark and it is important so show that the method is robust in that case.
But this system is simple in the sense that the atoms are confined to well defined positions and
the paths are relatively simple. As a result, the method does not give significant savings over
CI-NEB, only about 10% in that case. It is interesting, however, to see that the AutoNEB
method which was proposed a few years ago for the same purpose of the present Z-NEB
method and performs poorly on this benchmark. First of all, AutoNEB does not reach
convergence for a few of the transitions and secondly there is no savings in computational
effort as compared with standard CI-NEB. This is surprizing and probably relates to the
fact that new images are introduced repeatedly and the endpoints are fixed in place, often
not even in vicinity to the MEP. The AutoNEB method is, furthermore, complex so it is
difficult to ascertain where the culprit lies. One of the advantages of Z-NEB is its simplicity.

The application of Z-NEB to the two complex molecular reactions with MEPs that con-
tain extended tails demonstrates the power of the method. For a number of images which
is too low for CI-NEB to converge, Z-NEB can reach convergence. Since the computational
effort in terms of core-hours is largely proportional to the number of images, fewer images
used in the calculation translates directly to smaller number of core-hours. A more extensive
test of the method for a large data base of molecular reactions including over 100 reactions
is ongoing and will be reported elsewhere.

The Z-NEB method has been implemented and made available in the ORCA software.28,29

19

120



Article II

5 Data availability statement

The authors confirm that the data supporting the findings of this study are available within
the article and/or its supplementary materials.

Acknowledgement

This work was supported by the Icelandic Research Fund and the University of Iceland
Research Fund. V.Á. acknowledges a fellowship from the Doctoral Fund of the University
of Iceland. The calculations were carried out at the Icelandic Research High Performance
Computing (IRHPC) facility.

20

121



Article II

References

(1) Mills, G.; Jónsson, H.; Schenter, G. K. Reverisble work based transition state theory:
application to H2 dissociative adsorption. Surf. Sci., 1995, 324, 305.

(2) Jónsson, H.; Mills, G.; Jacobsen, K. W. Nudged elastic band method for finding min-
imum energy paths of transitions. In Classical and Quantum Dynamics in Condensed
Phase Simulations; Berne, B. J., Ciccotti, G., Coker, D.F., Eds.; World Scientific:
Singapore, 1998; pp. 385–404.

(3) Ásgeirsson, V.; Jónsson, H. Exploring potential energy surfaces with saddle point
searches. In Handbook of Materials Modeling: Methods: Theory and Modeling; An-
dreoni, W.; Yip, S., Eds.; Springer Cham, 2020, pp.689–714.

(4) Wigner, E. The transition state method, Trans. Faraday Soc., 1938, 34, 29.

(5) Vineyard, G. H. Frequency factors and isotope effects in solid state rate processes, J.
Phys. Chem. Solids, 1957, 3, 121.

(6) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. Climbing image nudged elastic band
method for finding saddle points and minimum energy paths. J. Chem. Phys, 2000,
113, 9901–9904

(7) McPherson, K. E.; Bartolotti, L. J.; Morehead, A. T.; Sargent, A. L. Utility of the
Nudged Elastic Band Method in Identifying the Minimum Energy Path of an Elemen-
tary Organometallic Reaction Step. Organometallics, 2016, 35, 1861–1865.

(8) Zimmerman, P. Reliable Transition State Searches Integrated with the Growing String
Method. J. Chem. theory and Comput., 2013, 9, 3043–3050.

(9) Zimmerman, P. Growing string method with interpolation and optimization in internal
coordinates: Method and examples. J. Chem. Phys., 2013, 138, 184102.

(10) Maragakis, P.; Andreev, S. A.; Brumer, Y.; Reichman, D. R.; Kaxiras, E. Adaptive
nudged elastic band approach for transition state calculation. J. Chem. Phys., 2002,
117, 4651.

(11) Zhang, J.; Zhang, H.; Ye, H.; Zheng, Y., Free-end adaptive nudged elastic band method
for locating transition states in minimum energy path calculation. J. Chem. Phys.,
2016, 145, 094104.

21

122



Article II

(12) Kolsbjerg, E.L.; Groves, M.N.; Hammer, B. An automated nudged elastic band method.
J. Chem. Phys., 2016, 145, 094107.

(13) Zhu, T.; Li, J.; Samanta, A.; Kim, H.G.; Suresh, S. Interfacial plasticity governs strain
rate sensitivity and ductility in nanostructured metals. Proc. Nat. Acad. Sci., 2007
104, 3031-3036.

(14) Ásgeirsson, V.; Arnaldsson, A.; Jónsson, H. Efficient evaluation of atom tunneling
combined with electronic structure calculations. J. Chem. Phys., 2018, 148, 102334.

(15) Chill, S. T.; Stevenson, J.; Ruehle, V.; Shang, C.; Xiao, P.; Farrell, J. D.; Wales, D.
W.; Henkelman, G. Benchmarks for Characterization of Minima, Transition States,
and Pathways in Atomic, Molecular, and Condensed Matter Systems. J. Chem. Theory
and Comput., 2014, 10, 5476–5482.

(16) Müller, K.; Brown, L. D. Location of saddle points and minimum energy paths by a
constrained simplex optimization procedure. Theor. Chim. Acta, 1979, 53, 75-93.

(17) Smidstrup, S.; Pedersen, A.; Stokbro, K.; Jónsson, H. Improved initial guess for mini-
mum energy path calculations. J. Chem. Phys., 2014, 140, 214106.

(18) Peters, B.; Heyden, A.; Bell, A. T.; Chakraborty, A. A growing string method for deter-
mining transition states: Comparison to the nudged elastic band and string methods.
J. Chem. Phys., 2004, 120, 7877.

(19) Henkelman, G. and Jónsson, H. Improved tangent estimate in the nudged elastic band
method for finding minimum energy paths and saddle points. J. Chem. Phys., 2000,
113, 9978–9985.

(20) Liu, D. C.; Nocedal, J. On the limited memory BFGS method for large scale optimiza-
tion. Math. program., 1989, 45, 503–528.

(21) Bitzek, E.; Koskinen, P.; Gähler, F.; Moseler, M; Gumbsch, P. Structural Relaxation
Made Simple. Phys. Rev. Letters, 2006, 97, 170201.

(22) Larsen, A. H.; et al. The atomic simulation environmentâĂŤa Python library for
working with atoms. J. Phys.: Condens. Matter, 2017, 29, 273002.

(23) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy
formula into a functional of the electron density. Phys. Rev. B, 1988, 37, 785–789.

22

123



Article II

(24) Becke, A. D. Density-functional exchange-energy approximation with correct asymp-
totic behavior. Phys. Rev. A, 1988, 38, 3098–3100.

(25) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J.
Chem. Phys., 1993, 98, 5648–5652.

(26) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion
corrected density functional theory. J. Comput. Chem., 2011, 32, 1456–1465.

(27) Birkholz, A.B; Schlegel, H.B. Using bonding to guide transition state optimization. J.
Comp. Chem., 2015, 36(15), 1157-1166.

(28) Neese, F. The ORCA program system. WIRES Comput. Mol. Sci., 2012, 2, 73-78.

(29) Neese, F. Software update: the ORCA program system, version 4.0. WIRES Comput.
Mol. Sci., 2018, 8, e1327.

23

124



Article II

Graphical TOC Entry

24

125



Article II

Supporting information: Nudged elastic band

calculations with focus on the region around

the highest saddle point

Vilhjálmur Ásgeirsson, Benedikt Orri Birgisson, and Hannes Jónsson∗

Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107

Reykjavík, Iceland

E-mail: hj@hi.is

SI-1 Methodology

SI-1.1 Configurational interpolation and construction of the inter-

mediate path

For the interpolation of the Z-region and construction of the intermediate path, two differ-
ent configurational interpolants are implemented, a piecewise linear and cubic polynomial.
Following the discussion of Ref.,2 a parameter s is defined for any sub-interval of the path,
i.e., s ∈ [0, di,i+1] where di,i+1 is the pairwise distance between images i and i + 1. The set
of atom coordinates for a new intermediate image k (located within the interval s) is then
computed by either a cubic polynomial,

Rj
k(sk) = ajis

3
k + bjis

2
k + cjisk + dji

or alternatively by a straight line,

Rj
k(sk) = cjisk + dji

1

126



Article II

where j = 1, ..., 3M . The polynomial coefficients are expressed as,

aji = −
2(Rj

i+1 −Rj
i )

(di+1,i)3
+

2τ ji+1 + τ ji
(di+1,i)2

bji =
3(Rj

i+1 −Rj
i )

(di+1,i)2
−

2τ ji+1 + τ ji
(di+1,i)

cji = −τ ji
dji = Rj

i

2
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SI-1.2 Alternative treatment of the end-points in ZCI-NEB

Figure 1: Illustration of an alternative method to handle the endpoints in a CI-NEB cal-
culation that does not include the local minima corresponding to initial and final states.
In this work, this corresponds to the ZCI-NEB calculation in Z-NEB. The first phase of
Z-NEB is omitted so that ZCI-NEB starts from the linear interpolation. For this alternative
treatment, the endpoints are relaxed downhill in energy in the direction normal to the path
and simultaneously restraint to move along the energy levels of the end-point images from
which the ZCI-NEB calculation started, see Ref.1. This renders the ZCI-NEB calculation
more sensitive to the interplay of the spring-constant and the additional stiffness parameter
introduced to the ZCI-NEB calculation. However, it may be beneficial to use these restraints
when the typical treatment of the endpoint images results in the endpoints sliding downhill
away from the Z-region. The red dashed line shows the region corresponding to γ = 0.5
where density of images is increased. The displacement of the images during the iterative
optimization is shown by black dashed-lines. The converged position of the images is shown
by green circles. The minimum energy path is shown by a white solid line.
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SI-1.3 Interplay of the L-BFGS optimization method and the pa-

rameter for the maximum allowed step-size

Figure 2: CI-NEB calculations carried out on the Müller-Brown potential using 8 images and
the L-BFGS optimization method. In (a) and (b), the maximum displacement allowed per
optimization step (∆step) is set as 0.05 Å. For (c-d), ∆step = 0.2 Å. The L-BFGS optimization
is restarted if a step exceeding ∆step is attempted in (a) and (c). In each figure, the number of
energy and gradient evaluations (FC) required to reach convergence, i.e., max(|F⊥|) < 0.01
eV/Å, is given.
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Figure 3: Z-NEB (a,c,e and g) and CI-NEB (b,d,f and h) calculations carried out on the
Müller-Brown potential using 8 images and the L-BFGS optimization method. The Z-
NEB calculations use εzoom = 0.05 eV/Å and γ = 0.2. In (a) and (b), the maximum
displacement allowed per optimization step (∆step) is set as 0.01 Å. For (c-d), (e-f), and (g-
h) ∆step = 0.05, 0.1 and 0.2 Å respectively. The L-BFGS optimization is restarted if a step
exceeding ∆step is attempted. In each figure, the number of energy and gradient evaluations
(FC) required to reach convergence, i.e., max(|F⊥|) < 0.01 eV/Å, is given.
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SI-2 Hydrolysis of ethyl acetate

SI-2.1 System configurations

Reactant configuration:

C -0.68432250105073 1.91791629735588 -0.48054172511861

H -1.53612906758603 1.39200879526999 -0.00763334155213

H -0.83315205610761 1.87569899655704 -1.56995655798047

H -0.65654289671130 2.95891955012630 -0.13660638980533

C 0.59484149902475 1.23380963422406 -0.09758994569369

O 0.70898707632263 0.01842577412506 -0.72081968850994

O 1.42971320488056 1.64286476248071 0.66560441333084

C 1.86656486059245 -0.78531096223494 -0.39728962813732

H 2.01585446928416 -1.42458217904235 -1.27989464656442

H 2.73153579083829 -0.11638244619790 -0.28559024443314

C 1.63342670654854 -1.60957858984604 0.85636403010327

H 1.53094654670859 -0.95504723523695 1.73479002918539

H 2.48861812064091 -2.28281240010149 1.02769214998189

H 0.72168653835481 -2.21730885946548 0.75169516817969

O -3.08424213083654 0.07891431952033 0.77541797877554

H -2.80541919254909 0.00277073086586 1.69817428405240

H -2.61283636975558 -0.66039391525464 0.33602125645008

O -1.46040769893080 -1.73547363087178 -0.57123759539055

H -1.80835617702838 -2.01909111355727 -1.42736715321640

H -0.76193572263965 -1.08404750871642 -0.78198540365711

Saddle-point configuration:

C -0.85376525454881 2.17259427816116 -0.64840341507531

H -1.54817165072453 2.82025146723338 -0.09436408154808

H -1.39779128551170 1.65823202472105 -1.45087877074951

H -0.05360359627671 2.78697180744737 -1.08536046930335

C -0.22905403891002 1.19884078535470 0.31841812064083

O 0.41299075449631 0.02901904167650 -0.72574006028747

O 0.49509720633106 1.45986327771577 1.24210179809610

C 1.63414087217855 -0.55140150110077 -0.26949241051421

H 2.06891911027358 -1.07107161542927 -1.14060179300345
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H 2.31345643687226 0.26913942957690 0.00909542035122

C 1.45435812909026 -1.51168509460286 0.90068966578459

H 1.18657511502431 -0.95624011455040 1.81068158624829

H 2.39459627290828 -2.05295767381760 1.09508871268615

H 0.67032001185536 -2.25516262703212 0.68574289246974

O -1.58414788508972 0.28868225535086 0.81925084227495

H -1.32292997742629 0.01692977095473 1.71298572444690

H -1.69023570005660 -0.67959005065353 0.07258604167067

O -1.44194491723344 -1.46403208429848 -0.78761116099528

H -2.04422573007875 -1.34450094687760 -1.53468869091774

H -0.46458387317338 -0.81388242982979 -0.92949995227502

Product configuration:

C -0.59362983796967 2.09482551323932 0.42658340812862

H -1.43563447085298 1.60952793130587 0.94622089828471

H -1.00943511839187 2.62066966862460 -0.44639209391574

H -0.10387242347304 2.80537324007282 1.10297243810319

C 0.39841969346684 1.04909415803316 -0.02197746531242

O 1.20958293000285 -1.93861689743216 -1.55620147722528

O 1.53249084457725 0.95601529136763 0.38483188281662

C 2.25738360894619 -2.46546696125699 -0.74454869786923

H 2.49205839604167 -3.49476230578345 -1.07643391644478

H 3.14479634810531 -1.84620204141558 -0.94842853233162

C 1.92313841148143 -2.44318414921422 0.74000608725730

H 1.81058080844863 -1.40694407085767 1.09181966369737

H 2.72667978385947 -2.92118282379958 1.32377590095782

H 0.98716210090805 -2.99216114439314 0.93836271614661

O -0.12435470610020 0.20949915410849 -0.93193814727354

H 0.56716565342026 -0.47887801377582 -1.19841583943326

H -1.28140019964160 -1.38907734173259 -0.62528680386988

O -1.36190556780431 -2.35218763442974 -0.75863577530646

H -1.99667911942588 -2.43749596262554 -1.48403611578522

H 0.37048932440153 -2.40494655003541 -1.34494898062478
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SI-2.2 Importance of initial path generation in CI-NEB and Z-NEB

The hydrolysis of ethyl acetate reaction is used here to emphasize the importance of initial
path generation in NEB calculations and variants thereof. It is shown how the chosen initial
path can affect the final outcome of a CI-NEB calculation.

A CI-NEB calculation using N = 10 is carried out for the hydrolysis of ethyl acetate.
The calculation is started from an initial path generated by the IDPP method3 without any
additional input, apart from the given reactant and product configurations. The barrier
height for the reaction is found to be 36.1 kcal/mol and the SP is confirmed to be a first
order SP with an imaginary frequency of -1265 cm−1. The reaction mechanism obtained by
the CI-NEB calculation occurs in a single concerted step and is visualized in the lower panel
of Fig. 4.

Figure 4: The reactant (R), product (P) and saddle point (SP) configurations are visualized
for the concerted hydrolysis reaction of ethyl acetate in the lower panel. In the upper panel,
the two saddle point configurations (SP1 and SP2) and the inserted intermediate energy
minimum (I) of the step-wise pathway are visualized.
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Figure 5: The optimization profile for a CI-NEB(N=10) calculation on the concerted hy-
drolysis of ethyl acetate. The black curve represents energy profile of the initial path. The
minimum energy path is given by the red curve. Image position are denoted by circles.

However, for the hydrolysis reaction, there is an alternative and more favorable reaction
pathway that connects the same given reactant and product states as the concerted mech-
anism. This alternative pathway proceeds in a step-wise fashion instead of concerted.4 In
order for CI-NEB to locate the SP for the step-wise reaction, an initial path local to the
step-wise mechanism needs to be constructed. To obtain this path, the intermediate energy
minimum along the step-wise mechanism is located a priori and inserted into the IDPP
initial path generation. Then, with a suitable initial path, lying in vicinity to the MEP
of the step-wise reaction, a CI-NEB calculation is started using N = 18. The reason for
the increased N (compared to the concerted mechanism) is that the MEP for the step-wise
mechanism is expected to be significantly longer. Hence, more intermediate images are re-
quired to resolve the path and the two barriers. The optimization profile for the step-wise
mechanism is visualized in Fig. 6 and the configurations along the reaction coordinate in
the upper panel of Fig. 4. The CI converges to the higher energy SP of the two and es-
timates the barrier height to be 32.2 kcal/mol, in agreement with the findings of Yamabe
and coworkers.4 Furthermore, the SP is confirmed to be of first order with an imaginary
frequency of -1179 cm−1.

This example shows that for systems with multiple MEPs, the choice of the initial path
will determine to which MEP the calculation will converge. In particular, CI-NEB will

9
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converge to the MEP lying closest to the given initial path. Also, this path is not necessarily
the most energetically favorable MEP. Therefore, in mechanistic studies of complex reactions,
alternative paths often have to to be explored with NEB, or variants thereof.

Figure 6: The optimization profile for a CI-NEB(N=18) calculation on the concerted hy-
drolysis of ethyl acetate. The black curve represents energy profile of the initial path. The
minimum energy path is given by the red curve. Image position are denoted by circles.
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SI-3 Rearrangement of 1,5-hexadiene

SI-3.1 System configurations

Reactant configuration:

C -3.04347311082097 1.22446328604673 -0.06938989830847

C -2.43415631414004 0.04415491858594 -0.21080080988922

H -2.81058999834088 1.88987620626786 0.76909403563432

H -3.79812662772203 1.56928213266814 -0.78225714132432

C -1.38556185061648 -0.51534791817130 0.70829007519665

H -2.69506857144252 -0.58707157530605 -1.07190091032989

C -0.02962150947334 -0.75994399156094 0.00808235868131

H -1.74075833950023 -1.48146736625732 1.11197540339779

H -1.23963772371405 0.15877473815881 1.56881575380254

C 0.63631539271109 0.50308803695813 -0.45854284023481

H -0.20183104654269 -1.42409011850252 -0.86092054108344

H 0.64231637223266 -1.30561763836492 0.69122174371637

C 1.84762449278914 0.91871328368038 -0.07860619134922

H 0.05346160738780 1.12275110316835 -1.15208227676047

H 2.46045868735481 0.33573922882586 0.61836595835187

H 2.27651853983777 1.85341567380283 -0.45117471950101

Saddle-point configuration:

C -1.01343293590784 1.06307904091664 -0.64036370761165

C -1.37259153113572 -0.27499582132995 -0.42620771059571

H -1.03944832775078 1.75544370864743 0.20723624370911

H -1.24714934790849 1.52982744696457 -1.60354490803281

C -1.05335056219308 -0.92455193133719 0.77456347258365

H -1.56419730325057 -0.89949254016543 -1.30855012902708

C 1.00735848077358 -1.06445995444015 0.63782529188753

H -1.32117185245523 -1.97915185315702 0.89848185599093

H -1.07549448035970 -0.34669767093096 1.70403801469849

C 1.37996988382316 0.26946883377680 0.42373112940174

H 1.00710094150537 -1.75301450801527 -0.21157971263068

H 1.25456644465003 -1.54014808883258 1.59227028509825
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C 1.04830717642146 0.93171491165715 -0.76631922220994

H 1.61079026249630 0.88231512691534 1.30320803951315

H 1.05563763641820 0.36598114764846 -1.70193885427586

H 1.32310551487330 1.98468215168216 -0.88285008849915

Product configuration:

C -1.46389288185209 1.16991521836219 -0.50426611910320

C -2.20314035468432 -0.12225221642722 -0.30797588398807

H -1.63292148423919 1.83197430948123 0.36278040364856

H -1.87445880432901 1.69568063371530 -1.38602655116852

C -2.90411484241656 -0.45611331366218 0.77819019379859

H -2.13296911483792 -0.84057236757293 -1.13647447537690

C 1.45883505543428 -0.73624576693585 0.48407752181121

H -3.41593870906557 -1.41928232609971 0.85765712521681

H -2.99158645355137 0.22518582598140 1.63179573984434

C 0.75454144734777 0.39799304423885 0.47105616492082

H 1.57820125230637 -1.34554476461971 -0.41859855290233

H 1.94236501665236 -1.10040349201164 1.39500529570867

C 0.05251002165555 0.97716367655302 -0.72353071567133

H 0.65437433049865 0.97072901902244 1.40332590861694

H 0.22387372231808 0.33519084800645 -1.60516857408504

H 0.49220179876300 1.96328167196839 -0.96169748127056
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SI-3.2 Energy profile obtained from CI-NEB of Z-NEB

Figure 7: Energy profile (shown by a red curve) obtained from the converged initial phase
of Z-NEB for the rearrangement reaction of 1,5-hexadiene. The calculations are carried out
using N = 8 (left) and N = 14 (right). The MEP for the reaction is shown by a black dashed
line.

SI-3.3 Computational efficiency as a function of N

Figure 8: The computational efficiency of Z-NEB as a function of number of images. The
Z-NEB calculations are carried out on the rearrangement reaction of 1,5-hexadiene. The
computational efficiency is measured in the number of optimization steps (red) and by the
number of energy and gradient evaluations (blue).
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SI-4 Benchmark set: Pt heptamer island on Pt(111)

Figure 9: Distribution of potential energy barrier heights for the benchmark set of Pt-
heptamer island diffusion on a Pt(111) surface.

The following computational settings are used for the Pt-heptamer island calculations:

• CI-NEB: 7 images (i.e., 5 intermediate images), initial path generated by IDPP.
Climbing image is started at the beginning of the CI-NEB calculation, ksp = 5.0 eV/Å2

• Z-NEB: γ = 0.2, εzoom = 0.2 eV/Å. Linear interpolation of images in the zoom-region.
The end-point images are not restrained in ZCI-NEB. Other parameters are chosen to
be the same as in CI-NEB.

• AutoNEB: The number of images to be propagated simultaneously is Nsimul = 5.
Total number of images is set to Nmax = 9 or 12. A new image is introduced every
Nadd = 7 optimization steps. The geometric and energy resolution parameter is set to
the default value of ASE-3.17, or rse = 0.5.

• L-BFGS: ∆step = 0.2 Å. Memory is chosen to be 20. The memory is reset and a finite
difference steepest-descent (∆s = 0.001Å) step is taken when the maximum component
of a step exceeds ∆step.

• FIRE: ∆step = 0.2 Å, ∆t = 0.1 (x10.18) fs, αstart = 0.1, f inc = 1.1, fdec = 0.5, N = 5,
fα = 0.99, max(∆t) = 10∆t.

• Convergence crit. & thresholds: ||FCI|| < 0.001 eV/Å. Maximum allowed number
of optimization steps is set to 1000.
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SI-4.1 Data for CI-NEB calculations

Table 1: Results obtained by CI-NEB/LBFGS calculations on reactions 0–30 of the Pt-
heptamer island diffusion benchmark set.

Reaction Force calls Opt. steps ESP (eV)
0 282 56 0.99
1 262 52 0.60
2 277 55 0.99
3 277 55 1.51
4 182 36 0.62
5 267 53 0.60
6 447 89 1.20
7 282 56 1.51
8 282 56 0.99
9 357 71 1.21
10 747 149 4.24
11 382 76 1.48
12 467 93 1.61
13 352 70 1.49
14 282 56 0.99
15 282 56 0.99
16 697 139 1.62
17 267 53 1.51
18 347 69 1.21
19 282 56 0.99
20 407 81 1.49
21 447 89 1.20
22 382 76 1.20
23 272 54 1.51
24 477 95 1.62
25 282 56 1.51
26 397 79 1.48
27 577 115 1.20
28 277 55 2.18
29 417 83 1.62
30 462 92 1.61
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Table 2: Results obtained by CI-NEB/LBFGS calculations on reactions 31–58 of the Pt-
heptamer island diffusion benchmark set.

Reaction Force calls Opt. steps ESP (eV)
31 577 115 1.62
32 217 43 4.10
33 267 53 1.51
34 382 76 1.48
35 407 81 1.48
36 517 103 1.62
37 422 84 1.62
38 382 76 1.48
39 402 80 1.63
40 382 76 1.49
41 397 79 1.49
42 262 52 2.18
43 262 52 2.18
44 932 186 2.87
45 677 135 4.63
46 397 79 1.20
47 447 89 1.49
48 402 80 1.62
49 322 64 2.16
50 437 87 1.49
51 452 90 1.20
52 387 77 1.48
53 452 90 1.21
54 262 52 2.18
55 252 50 2.18
56 317 63 2.16
57 407 81 1.62
58 402 80 1.63
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Table 3: Results obtained by CI-NEB/FIRE calculations on reactions 0–30 of the Pt-
heptamer island diffusion benchmark set.

Reaction Force calls Opt. steps ESP (eV)
0 592 118 0.99
1 677 135 0.60
2 592 118 0.99
3 567 113 1.51
4 412 82 0.62
5 732 146 0.60
6 757 151 1.20
7 567 113 1.51
8 592 118 0.99
9 747 149 1.21
10 847 169 4.24
11 847 169 1.48
12 2257 451 1.61
13 557 111 1.49
14 642 128 0.99
15 592 118 0.99
16 2012 402 1.62
17 567 113 1.51
18 747 149 1.21
19 592 118 0.99
20 567 113 1.49
21 757 151 1.20
22 742 148 1.20
23 592 118 1.51
24 2337 467 1.62
25 567 113 1.51
26 847 169 1.48
27 1342 268 1.20
28 562 112 2.18
29 797 159 1.62
30 2257 451 1.61
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Table 4: Results obtained by CI-NEB/FIRE calculations on reactions 31–58 of the Pt-
heptamer island diffusion benchmark set.

Reaction Force calls Opt. steps ESP (eV)
31 2012 402 1.62
32 652 130 4.10
33 582 116 1.51
34 857 171 1.48
35 857 171 1.48
36 2337 467 1.62
37 797 159 1.62
38 847 169 1.48
39 797 159 1.63
40 557 111 1.49
41 567 113 1.49
42 562 112 2.18
43 592 118 2.18
44 2122 424 2.87
45 1502 300 4.63
46 742 148 1.20
47 557 111 1.49
48 767 153 1.62
49 687 137 2.16
50 557 111 1.49
51 1342 268 1.20
52 947 189 1.48
53 1737 347 1.21
54 522 104 2.18
55 522 104 2.18
56 647 129 2.16
57 767 153 1.62
58 797 159 1.63
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SI-4.1.1 CI-NEB/L-BFGS optimization profiles of selected reactions

Figure 10: CI-NEB(N=7) optimization profiles for 9 selected reactions (numerated as 0,
5, 10, 20, 25, 30, 48, 51 and 55) of the Pt-heptamer island diffusion benchmark set. The
gray energy profiles show how the MEP evolves as the CI-NEB optimization proceeds. The
minimum energy path is given by the red curve.
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SI-4.2 Data for Z-NEB calculations

Table 5: Results obtained by Z-NEB/L-BFGS calculations on reactions 0–30 of the Pt-
heptamer island diffusion benchmark set.

Reaction CI-NEB(1) FCs CI-NEB(2) FCs Total FCs Opt. steps ESP (eV)
0 47 235 282 56 0.99
1 27 235 262 52 0.60
2 47 230 277 55 0.99
3 42 240 282 56 1.51
4 27 155 182 36 0.62
5 27 240 267 53 0.60
6 42 325 367 73 1.20
7 32 245 277 55 1.51
8 52 235 287 57 0.99
9 32 335 367 73 1.21
10 67 245 312 62 4.24
11 52 340 392 78 1.48
12 52 345 397 79 1.61
13 87 205 292 58 1.49
14 52 240 292 58 0.99
15 52 245 297 59 0.99
16 52 400 452 90 1.62
17 32 245 277 55 1.51
18 32 345 377 75 1.21
19 52 230 282 56 0.99
20 87 220 307 61 1.49
21 42 340 382 76 1.20
22 42 325 367 73 1.20
23 42 235 277 55 1.51
24 52 350 402 80 1.62
25 42 240 282 56 1.51
26 52 330 382 76 1.48
27 162 335 497 99 1.20
28 47 185 232 46 2.18
29 117 270 387 77 1.62
30 52 355 407 81 1.61
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Table 6: Results obtained by Z-NEB/L-BFGS calculations on reactions 31–59 of the Pt-
heptamer island diffusion benchmark set.

Reaction CI-NEB(1) FCs CI-NEB(2) FCs Total FCs Opt. steps ESP (eV)
31 52 375 427 85 1.62
32 32 190 222 44 4.10
33 42 240 282 56 1.51
34 52 350 402 80 1.48
35 52 330 382 76 1.48
36 52 360 412 82 1.62
37 102 300 402 80 1.62
38 52 330 382 76 1.48
39 117 270 387 77 1.63
40 87 200 287 57 1.49
41 87 215 302 60 1.49
42 47 185 232 46 2.18
43 47 210 257 51 2.18
44 27 820 847 169 2.87
45 52 400 452 90 4.63
46 42 330 372 74 1.20
47 87 215 302 60 1.49
48 117 275 392 78 1.62
49 107 250 357 71 2.16
50 87 200 287 57 1.49
51 192 370 562 112 1.20
52 52 340 392 78 1.48
53 187 275 462 92 1.21
54 47 185 232 46 2.18
55 47 185 232 46 2.18
56 117 215 332 66 2.16
57 117 270 387 77 1.62
58 117 280 397 79 1.63
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Table 7: Results obtained by Z-NEB/FIRE calculations on reactions 0–30 of the Pt-heptamer
island diffusion benchmark set.

Reaction CI-NEB(1) FCs CI-NEB(2) FCs Total FCs Opt. steps ESP (eV)
0 117 470 587 117 0.99
1 52 650 702 140 0.60
2 117 470 587 117 0.99
3 82 570 652 130 1.51
4 52 440 492 98 0.62
5 52 650 702 140 0.60
6 62 600 662 132 1.20
7 82 570 652 130 1.51
8 122 465 587 117 0.99
9 62 600 662 132 1.21
10 107 705 812 162 4.24
11 102 855 957 191 1.48
12 87 2075 2162 432 1.61
13 137 415 552 110 1.49
14 67 505 572 114 0.99
15 92 515 607 121 0.99
16 107 2060 2167 433 1.62
17 82 570 652 130 1.51
18 62 600 662 132 1.21
19 122 465 587 117 0.99
20 137 400 537 107 1.49
21 62 600 662 132 1.20
22 62 615 677 135 1.20
23 82 525 607 121 1.51
24 107 2060 2167 433 1.62
25 82 570 652 130 1.51
26 102 855 957 191 1.48
27 227 685 912 182 1.20
28 67 455 522 104 2.18
29 177 670 847 169 1.62
30 87 2075 2162 432 1.61
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Table 8: Results obtained by Z-NEB/FIRE calculations on reactions 31–58 of the Pt-
heptamer island diffusion benchmark set.

Reaction CI-NEB(1) FCs CI-NEB(2) FCs Total FCs Opt. steps ESP (eV)
31 107 2060 2167 433 1.62
32 97 380 477 95 4.10
33 82 525 607 121 1.51
34 102 890 992 198 1.48
35 102 850 952 190 1.48
36 107 2060 2167 433 1.62
37 177 670 847 169 1.62
38 102 850 952 190 1.48
39 157 660 817 163 1.63
40 137 375 512 102 1.49
41 137 400 537 107 1.49
42 67 455 522 104 2.18
43 67 450 517 103 2.18
44 57 1955 2012 402 2.87
45 97 1355 1452 290 4.63
46 62 615 677 135 1.20
47 137 415 552 110 1.49
48 177 670 847 169 1.62
49 167 440 607 121 2.16
50 137 375 512 102 1.49
51 227 685 912 182 1.20
52 102 890 992 198 1.48
53 277 700 977 195 1.21
54 67 455 522 104 2.18
55 67 455 522 104 2.18
56 167 480 647 129 2.16
57 177 670 847 169 1.62
58 157 660 817 163 1.63
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SI-4.3 Data for Z-NEB calculations with fixed end-points

Table 9: Results obtained by Z-NEB/L-BFGS calculations with fixed end-points in ZCI-
NEB. The calculations are carried out on reactions 0–30 of the Pt-heptamer island diffusion
benchmark set.

Reaction CI-NEB(1) FCs CI-NEB(2) FCs Total FCs Opt. steps ESP (eV)
0 47 152 199 39 0.99
1 27 140 167 33 0.60
2 47 149 196 38 0.99
3 42 365 407 81 1.51
4 27 92 119 23 0.62
5 27 140 167 33 0.60
6 42 3002 3044 608 3.07
7 32 230 262 52 1.51
8 52 146 198 39 0.99
9 32 2258 2290 457 3.22
10 67 266 333 66 4.24
11 52 218 270 53 1.48
12 52 2159 2211 441 1.62
13 87 125 212 42 1.49
14 52 140 192 38 0.99
15 52 143 195 38 0.99
16 52 1118 1170 233 1.62
17 32 269 301 59 1.51
18 32 3002 3034 606 4.20
19 52 143 195 38 0.99
20 87 200 287 57 1.49
21 42 2651 2693 538 1.45
22 42 3002 3044 608 5.90
23 42 365 407 81 1.51
24 52 2483 2535 506 1.62
25 42 353 395 78 1.51
26 52 221 273 54 1.48
27 162 224 386 76 1.20
28 47 110 157 31 2.18
29 117 155 272 54 1.62
30 52 2039 2091 417 1.61
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Table 10: Results obtained by Z-NEB/L-BFGS calculations with fixed end-points in ZCI-
NEB. The calculations are carried out on reactions 31–58 of the Pt-heptamer island diffusion
benchmark set.

Reaction CI-NEB(1) FCs CI-NEB(2) FCs Total FCs Opt. steps ESP (eV)
31 52 476 528 105 1.62
32 32 122 154 30 4.10
33 42 284 326 64 1.51
34 52 221 273 54 1.48
35 52 239 291 57 1.48
36 52 1433 1485 296 1.60
37 102 233 335 66 1.62
38 52 236 288 57 1.48
39 117 158 275 54 1.63
40 87 128 215 42 1.49
41 87 182 269 53 1.49
42 47 113 160 31 2.18
43 47 119 166 32 2.18
44 27 3002 3029 605 3.64
45 52 287 339 67 4.63
46 42 1163 1205 240 3.21
47 87 128 215 42 1.49
48 117 158 275 54 1.62
49 107 347 454 90 2.16
50 87 131 218 43 1.49
51 192 191 383 76 1.20
52 52 230 282 56 1.48
53 187 227 414 82 1.21
54 47 116 163 32 2.18
55 47 113 160 31 2.18
56 117 212 329 65 2.16
57 117 158 275 54 1.62
58 117 155 272 54 1.63

SI-4.4 Data for AutoNEB calculations (performed using ASE-3.17)

For AutoNEB calculations5 presented in this section, the ASE-3.17 simulation package6 was
slightly modified, i.e., the convergence criterion of the optimizer class was changed from
the absolute maximum force acting on an atom to the norm of the atom force acting on
the highest energy image, i.e. the CI. Otherwise, calculations from the in-house software
package and ASE-3.17 would not have been directly comparable.
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SI-4.4.1 AutoNEB(5,9) calculations

Table 11: Results obtained by AutoNEB(5,9)/FIRE calculations on reactions 0–30 of the Pt-
heptamer island diffusion benchmark set. The calculations are carried out using the slightly
modified ASE-3.17. Two calculations were observed to raise an error and are represented by
’-1’ in all columns.

Reaction Force calls Opt. steps ESP (eV)
0 588 113 0.99
1 713 138 0.60
2 588 113 0.99
3 473 90 1.51
4 463 88 0.62
5 713 138 0.60
6 733 142 1.20
7 598 115 1.51
8 788 153 0.99
9 728 141 1.21
10 -1 -1 -1.00
11 903 176 1.55
12 2053 406 1.61
13 2786 1014 9.86
14 528 101 0.99
15 558 107 0.99
16 1933 382 1.62
17 628 121 1.51
18 1198 235 1.21
19 533 102 0.99
20 553 106 1.49
21 863 168 1.20
22 863 168 1.20
23 593 114 1.51
24 1938 383 1.62
25 473 90 1.51
26 818 159 1.48
27 1628 321 1.43
28 563 108 2.18
29 848 165 1.62
30 2053 406 1.61
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Table 12: Results obtained by AutoNEB(5,9)/FIRE calculations on reactions 31–58 of the
Pt-heptamer island diffusion benchmark set. The calculations are carried out using the
slightly modified ASE-3.17. Two calculations were observed to raise an error and are repre-
sented by ’-1’ in all columns.

Reaction Force calls Opt. steps ESP (eV)
31 1888 373 1.62
32 -1 -1 -1.00
33 593 114 1.51
34 843 164 1.54
35 943 184 1.48
36 1823 360 1.62
37 848 165 1.62
38 788 153 1.48
39 803 156 1.70
40 638 123 1.49
41 648 125 1.49
42 623 120 2.18
43 608 117 2.18
44 1933 382 2.87
45 1423 280 4.63
46 718 139 1.20
47 763 148 1.49
48 818 159 1.62
49 588 113 2.16
50 673 130 1.49
51 968 189 1.20
52 923 180 1.55
53 4733 942 2.94
54 613 118 2.18
55 573 110 2.18
56 713 138 2.16
57 773 150 1.70
58 848 165 1.63
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SI-4.4.2 AutoNEB(5,12) calculations

Table 13: Results obtained by AutoNEB(5,12)/FIRE calculations on reactions 0–30 of the
Pt-heptamer island diffusion benchmark set. The calculations are carried out using the
slightly modified ASE-3.17. Two calculations were observed to raise an error and are repre-
sented by ’-1’ in all columns.

Reaction Force calls Opt. steps ESP (eV)
0 639 119 0.99
1 689 129 0.60
2 639 119 0.99
3 689 129 1.51
4 494 90 0.62
5 689 129 0.60
6 744 140 1.20
7 649 121 1.51
8 639 119 0.99
9 779 147 1.21
10 -1 -1 -1.00
11 1009 193 1.48
12 2029 397 1.61
13 579 107 1.49
14 674 126 0.99
15 679 127 0.99
16 2199 431 1.62
17 719 135 1.51
18 924 176 1.21
19 699 131 0.99
20 579 107 1.49
21 744 140 1.20
22 814 154 1.20
23 689 129 1.51
24 2264 444 1.62
25 689 129 1.51
26 1069 205 1.48
27 5219 1035 1.64
28 564 104 2.18
29 1109 213 1.62
30 2029 397 1.61
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Table 14: Results obtained by AutoNEB(5,12)/FIRE calculations on reactions 31–58 of
the Pt-heptamer island diffusion benchmark set. The calculations are carried out using
the slightly modified ASE-3.17. Two calculations were observed to raise an error and are
represented by ’-1’ in all columns.

Reaction Force calls Opt. steps ESP (eV)
31 1944 380 1.62
32 -1 -1 -1.00
33 744 140 1.51
34 929 177 1.48
35 799 151 1.48
36 2044 400 1.62
37 1674 326 1.62
38 989 189 1.48
39 1079 207 1.70
40 579 107 1.49
41 579 107 1.49
42 624 116 2.18
43 639 119 2.18
44 2014 394 2.87
45 1474 286 4.63
46 734 138 1.20
47 579 107 1.49
48 1149 221 1.62
49 744 140 2.16
50 579 107 1.49
51 1024 196 1.20
52 929 177 1.48
53 5219 1035 7.94
54 564 104 2.18
55 564 104 2.18
56 1059 203 2.16
57 894 170 1.70
58 899 171 1.63
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SI-5 Addressing the previously reported ’instability of

CI-NEB’ and the elastic band springs

In the present study, a CI-NEB calculation (using an unmodified version of ASE-3.17) is
carried out on the O-adatom diffusion on Ag-decorated Pt(211) step edge, in an attempt
to observe the long-detour reported by Bjørk Hammer and coworkers in the paper ”An
automated nudged elastic band method”.5 The calculation is carried out using ksp = 1.0

eV/Å2 and N = 10 as in the original article. The CI-NEB optimization appears to be
unstable. By examination of the calculation this behavior appears to be caused by large
atom forces (because of overlapping of the adatom and the edge) along the initial. Here, the
IDPP method was used with default settings used by ASE.

To fix this problem, the time-step of the dynamical optimization method for the ini-
tial IDPP calculation is reduced from the default 0.2 to 0.01 and the default convergence
criterion lowered by an order of magnitude. This allows IDPP to generate a much more
reasonable initial path, void of overlapping of atoms. Then, CI-NEB is able to converge
without problems and the resulting path is reasonable and without any long detours, see
Fig. 11. .
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Figure 11: CI-NEB calculation of O-adatom diffusion on a Ag-decorated Pt(211) surface
using CI-NEB. The initial path is denoted by white and the converged MEP by blue, respec-
tively. The path obtained here is not in agreement to the path reported by Bjørk Hammer
and coworkers and shows no sign of long detours. Note that in the CI-NEB calculation, the
two upper-most layers are free to move. However, for clarity, the movement of surface atoms
is omitted.

SI-5.1 The combination of CI and real-springs

In the paper by Bjørk Hammer and coworkers5 a new formulation for the spring force is
introduced, namely the elastic band. The full spring force is used in this formulation, i.e.,
the component of the spring force acting perpendicular to the path is included. The elastic
band formulation is used with the CI variant of NEB. It is suggested that because of the use
of CI, the perpendicular spring force will not affect the convergence of CI-EB calculations.5

However, it is important to keep in mind that even though the CI is not affected by the
spring forces, the neighboring images of CI will be and are therefore subjected to corner-
cutting7 where they tend to get pushed off the MEP. The corner-cutting of the neighboring
images will lead to an inaccurate estimate of the tangent at the CI and can possibly hinder
convergence. To illustrate this concept, a CI-NEB calculation including the spring force
acting perpendicular to the path is carried out on a simple two-dimensional PES, see Fig.
12. Here, the CI exhibits oscillating behavior and is unable to converge to the saddle point.
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Figure 12: CI-NEB(N=8) calculation with a spring force acting perpendicular to the path
on a two-dimensional PES. The calculation is started from a path constructed by linear
interpolation (denoted by the blue line). The optimization path of the intermediate images
is shown by a solid green line and at evenly spaced intervals the images are shown by green
circles. The oscillating behaviour of the CI (and other images) is clear in this example.
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Abstract

The climbing image nudged elastic band method (CI-NEB) is used to identify re-
action coordinates and to find saddle points representing transition states of reactions.
It can make efficient use of parallel computing as the calculations of the discretization
points, the so-called images, can be carried out simultaneously. In typical implementa-
tions, the images are distributed evenly along the path by connecting adjacent images
with equally stiff springs. But, for systems with high degree of flexibility, this can lead
to poor resolution near the saddle point. By making the spring constants increase with
energy, the resolution near the saddle point is improved. To assess the performance of
this energy-weighted CI-NEB method, calculations are carried out for a benchmark set
of 121 molecular reactions. The performance of the method is analyzed with respect
to the input parameters. Energy-weighted springs are found to greatly improve per-
formance and result in successful location of the saddle points in less than a thousand
energy and force evaluations on average (about a hundred per image) using the same
set of parameter values for all the reactions. Even better performance is obtained by
stopping the calculation before full convergence and complete the saddle point search
using an eigenvector following method starting from the location of the climbing image.
This combination of methods, referred to as NEB-TS, turns out to be robust and highly
efficient as it reduces the average number of energy and force evaluations down to a
third, to 305. An efficient and flexible implementation of these methods has been made
available in the ORCA software.
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1 Introduction

Atomic scale calculations of chemical reactions typically involve identifying the transition
mechanism and estimating the reaction rate. This is typically done by analyzing the relevant
part of the potential energy surface (PES) characterizing the system where each state corre-
sponds to a local minimum. The minimum energy path (MEP) connecting two local minima
represents a natural choice for a reaction coordinate. At each point on the MEP, the energy
is at a minimum with respect to all orthogonal directions and a maximum in the energy along
an MEP corresponds to a first order saddle point (SP) on the energy surface. An estimate
of the activation energy of a transition can, within the harmonic approximation to transi-
tion state theory,1,2 be obtained from the (highest) energy maximum along the MEP, and
the tangent to the path at that point characterizes the reaction mechanism as it shows the
atomic displacements that represent the ‘bottle-neck’ for the transition. A local minimum
on the energy surface can be found by a number of available minimization methods given
that an initial point can be specified that is close enough. It is, however, significantly more
challenging to locate a SP and the development of such methods remains an active research
area. Methods for locating SPs can be divided into two categories: single ended and double
ended methods. In the double ended methods, both the reactant state and the product state
of the transition are specified. The task is then to use a discrete representation of a path
and search for a reaction path (RP) that connects the two reactant and product state energy
minima. In the single ended methods, only a single configuration of the atoms is specified,
and a climb up the energy surface is carried out to converge on a nearby SP. The starting
point of such calculations can be located anywhere on the energy surface. However, optimal
performance and rapid convergence is only achieved if the starting point is close enough
to the SP. The possibility exists, however, that the calculation identifies an SP that does
not correspond to the transition of interest and several searches may need to be carried out
with large accumulated computational effort. The single ended methods have the advantage
that the dimensionality of the optimization problem is significantly smaller than that of the
double-ended methods.

The nudged elastic band (NEB) method3,4 belongs to the first category and is frequently
used in studies of reactions and diffusion events in and on the surfaces of solids,5 but has also
been extended for calculations of, e.g. magnetic transitions,6 paths on free-energy surfaces7

and tunneling paths.8 In an NEB calculation, the path between the reactant and product
state minima is discretized by a set of replicas of the system, referred to as images. Given
some initial path, an iterative optimization algorithm is used to bring the intermediate images
to the nearest RP. Typically, the initial path for an NEB calculation is generated using a
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linear interpolation in Cartesian coordinates between the endpoint images, but this can lead
to the placement of an image in a high energy region where atoms are too close to each
other, causing problems for electronic structure calculations. One way to avoid this is to
define some minimum distance between atoms in the interpolated images. A better method
for generating an initial path involves interpolation of distances between pairs of atoms and
then generating a path that matches these distances as closely as possible in a least squares
sense.9 This method is referred to as image-dependent pair potential (IDPP) method and it
requires only minimal computational effort as it does not involve any evaluation of the energy
or force of the system. Typically, the IDPP yields an initial path that lies closer to the RP
than a linear interpolation in Cartesian coordinates, and the electronic structure calculations
of the images then require fewer iterations to converge on the RP. Alternatively to IDPP,
it is possible to construct the initial path by linear interpolation in internal coordinates10

or by using a geodesic interpolation between the reactant and product states.11 Peters et
al.12 approached the problem of entering high energy regions in a different way and used
a method where the path connecting the reactant and product states is grown by adding
images sequentially. In this method, referred to as the growing string (GS) method, the
images are added one after another starting from each of the two endpoints and electronic
structure calculations carried out to optimize their position. The two path fragments grow
until they connect. However, because of the sequential addition of images, the advantage of
parallel computing in NEB calculations is lost.

In NEB calculations, only the components of the atomic forces acting perpendicular to
the path modify the shape and location of the path. A projection of the atomic forces is,
therefore, required based on an estimate of the local tangent to the path, so an accurate
approximation of the tangent plays a crucial part in NEB calculations.13 The distribution
of images along the path is controlled using harmonic springs between adjacent images, but
only the component of the spring force acting tangentially to the path is included. Without
such control of the distribution, the images tend to slide down to the local energy minima
at the fixed endpoints.4 In commonly used implementations of the NEB method, the spring
constant for all the springs is chosen to be the same, leading to an even distribution of the
images along the path. But, different spring constants can be used for different pairs of
images to yield any desired distribution. In order to obtain an accurate estimate of the SP,
one of the images, typically the highest energy image, is forced to ’climb’ upwards along
the path to converge on the point of highest energy. This is referred to as ’climbing image’
NEB (CI-NEB). The accuracy of the tangent estimate at the climbing image is a particularly
important aspect of CI-NEB calculations.

If the system has large flexibility, i.e. degrees of freedom for which the energy does not
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change much, and if the part of the RP that corresponds to the energy barrier is correspond-
ingly small, then the resolution of the path near the climbing image may be too small for
the tangent estimate to be accurate enough. The RPs for gas-phase molecular reactions are
often found to have long tails corresponding, for example, to rotation and/or translation of
molecules or molecular fragments. There have been numerous variants of the NEB method
that attempt to resolve this issue and improve efficiency by focusing the computational effort
on the barrier region.14–18 This is often accomplished by adding new intermediate images in
the barrier region or moving images from a tail region of the path to the barrier region.

A simple way to achieve improved resolution in the barrier region is to make the springs
stiffer in regions of higher energy, i.e. energy-weighted (EW) springs, resulting in higher
density of images near the SP. Such a procedure was already proposed some time ago,19 but
has not become commonly used. This method is applied here and its efficiency compared with
the standard, equal spring implementation in calculations of various molecular reactions.

Single ended methods for locating SPs, where the product of the transition is not specified,
include eigenvector-following (EF)20–24 and minimum mode following (MMF)25–29 methods.
In these methods, a particular eigenvector (or a mode) of the Hessian matrix is selected to
represent the reaction coordinate and the system is pushed along this mode uphill in energy,
while the energy is minimized along all orthogonal directions. Therefore, the single ended
methods can be started from almost anywhere on the energy surface, in the convex region
near an energy minimum or even in a region with multiple negative eigenvalues. Typically,
the eigenvector corresponding to the lowest eigenvalue, referred to as the minimum mode,
is selected as the reaction coordinate. However, in cases where the minimum mode does
not correspond to the correct reaction coordinate, e.g. in regions on the energy surface far
from the SP, a different eigenvector may need to be selected and followed. Otherwise, the
EF calculation may converge to an undesired SP. After finding an SP, the corresponding
reactant and product states can be found by sliding down the steepest-descent path to the
local minimum on either side of the SP.

The modified Newton-Raphson20 and EF22 partitioned rational function optimization
(P-RFO)21 methods require the use of the full Hessian matrix. However, the evaluation and
diagonalization of the Hessian matrix is computationally demanding and can even become
computationally prohibitive for large systems, especially if analytical second derivatives of
the energy are not available. In practical implementations of the EF methods, the Hessian
matrix is often computed only at the beginning of a calculation or at a fixed interval of
optimization steps. For steps where the Hessian matrix is not evaluated, Hessian update
methods24,30 are used to approximate it. In this case, only a single energy and gradient
evaluation is required in each iteration. In MMF calculations, however, the full evaluation
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and storage of the Hessian matrix is avoided. Instead, only the minimum mode is computed
by e.g. the dimer method.23,25,26 The computation of the minimum mode typically requires
a few energy and gradient evaluations per displacement of the system. This renders the EF
P-RFO method, where the Hessian matrix is approximated, more efficient than the MMF
methods when used on energy surfaces described by computationally demanding electronic
structure methods. However, the MMF method may prove to be more robust than EF
P-RFO since the minimum mode of the Hessian matrix is always computed explicitly.26

Saddle point searches using the EF P-RFO or MMF methods can typically be initiated
from any point on the PES but if the starting point is not close enough to the SP of interest,
the calculation may perform poorly or converge on a SP characterizing a different reaction
than the reaction of interest. On the other hand, if EF or MMF calculations are started from
a point on the surface that lies within the basin of attraction of the desired SP, then rapid
convergence to the desired SP can be achieved. In fact, with an accurate Hessian estimate and
a starting configuration in close proximity to the SP, EF P-RFO is quadratically convergent.

Considerable human (and computational) effort is often required to generate an initial
configuration that is close enough to the desired SP and this becomes more challenging the
more complex the transition is. Various interpolation methods31,32 or relaxed surface scans
(coordinate-driving) are often used to generate an initial configuration for a SP search.24

Another consideration for EF is that important features of the reaction path may be missed,
such as possible intermediate states and other higher energy SP that may lie between the
reactant and product states.33 It is, therefore, advantageous to combine the double and single
ended methods in a complementary manner,12,13 where the double ended methods are used
to find an approximate RP that identifies the important features of the MEP and provides
a good initial guess configuration (and reaction coordinate) for the relevant, highest energy,
first order SP characterizing the transition of interest. Then, the SP can be located more
accurately using the computationally efficient EF P-RFO or MMF method.

Heyden et al.26 used the GS method to generate reasonable initial guess configurations
for subsequent MMF and also EF P-RFO calculations and compared the efficiency of the
two single ended methods using a medium-sized benchmark set of 25 molecular reactions.
In the MMF calculations, the improved dimer method26 was used to compute the minimum
mode. Heyden and co-workers found that the EF P-RFO method needs on average 25-30%
fewer optimization cycles than the improved dimer method, while the latter was shown to
be more robust. More recently, Zimmerman devised an integrated scheme of GS and EF
where evenly spaced intermediate images are introduced sequentially and optimized with a
large tolerance, starting from each end point until the two segments connect.34 The highest
energy image on this path is forced to climb up towards the SP to provide an initial guess for
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a subsequent EF optimization. This GS-CI-EF method has been applied to a benchmark set
of 105 main-group molecular reactions and was found to be both reliable and efficient.34,35

But, because of the sequential introduction of the images, it does not allow for optimal use
of parallel computing and it is not easy to enhance the distribution of images according to
the energy (as in EW-NEB) during the growth-phase of the GS.

In the present study, the performance of the EW-CI-NEB method is assessed and com-
pared with the commonly used equal spring version of CI-NEB. Moreover, to swiftly and
accurately locate first order saddle points connecting a given reactant and product states, an
integrated scheme of CI-NEB and EF, referred to as NEB-TS, is presented. In NEB-TS, the
EW-CI-NEB method is started from an IDPP path and parallel calculations of the images
are used to converge on an approximate RP that connects the given reactant and products.
Then, the location of the CI and the associated path tangent are used to initiate an EF
calculation. A benchmark set of 121 main-group molecular reactions, adopted from Refs. 34
and 36 is used to evaluate the performance of the CI-NEB method and variants thereof.
Furthermore, SPs are found for three challenging reactions taken from recent bioinorganic
chemistry and heterogeneous catalysis studies to illustrate the applicability of the NEB-TS
method to larger and more complex systems, where locating the desired SP was found to be
particularly challenging.37–39

The article is organized as follows: In section 2, a description of the EW-CI-NEB and
NEB-TS methods is given. Then, in section 3, the benchmark set of main-group molecular
reactions is introduced. In section 4, the results of calculations on the benchmark and the
three bioinorganic and heterogeneous catalysis reactions are presented. Finally, the findings
are summarized in section 5.
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2 Methodology

A concise description of the CI-NEB method3,4 is given in section 2.1. For a more detailed
review of CI-NEB, the reader is referred to Ref. 5. In Section 2.2, the new integrated scheme
of CI-NEB and EF, referred to as NEB-TS, is presented. The computational settings of the
CI-NEB and NEB-TS calculations are given in section 2.3.

2.1 Nudged elastic band method

The objective of NEB is to locate an RP connecting two local energy minima on the potential
energy surface (PES) representing the reactant and product states. A discrete representation
of path is used by generating Nim − 2 intermediate images (i.e. molecular configurations)
in between the reactant and product configurations. As for any numerical method based on
discretization of continuous variables, convergence to the path is reached when Nim − 2 is
large enough. An initial path is first generated using some interpolation scheme and then an
iterative algorithm is used to shift the intermediate images to the RP. An effective NEB force
acting on the atoms is used in combination with a gradient-based optimization method, while
keeping the end-point configurations fixed. The effective force is the sum of contributions
from the component of the atomic force (F) that is perpendicular to the path, (F⊥), and a
spring force, (Fsp), that only acts along the path. The perpendicular force is

F⊥i = Fi − (Fi · τ̂i)τ̂i (1)

where τ̂i is the local unit tangent to the path at image i. The ‘upwind tangent’ scheme is
used,13 where the unit tangent is taken as the normalized line segment between an image
and its higher energy neighboring image. If the image is at an energy extremum along the
path, the unit tangent is the normalized energy weighted average of the two line segments
connecting the image to its two neighbors. The spring force acting tangential to the path is
used to control the distribution of images along the path. The spring force is

F
sp,‖
i = (kspi |Ri+1 −Ri| − kspi−1|Ri −Ri−1|)τ̂i (2)

where Ri is the 3M-dimensional vector of atom coordinates for image i. Segment i of the
path is characterized by |Ri+1−Ri|. The stiffness of the spring interaction for this segment
of the path is given by the spring constant, kspi .

The highest energy point along an RP gives an estimate for the activation energy for
the transition. This point is a first order SP on the energy surface and characterizes the
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bottleneck of the transition between the reactant and product states. To locate this point
more accurately in NEB calculations, the highest energy image is treated differently.19 It is
pushed uphill on the energy surface according to the component of the atom force acting
parallel to the path and shifted downhill by the force acting perpendicular to the path. This
image is referred to as the climbing image (CI) and the method as climbing image NEB (CI-
NEB). The spring forces do not apply to the CI. In practice, it may be beneficial to initiate
the CI from a loosely converged NEB calculation. In other words, convert the highest energy
image to CI when a given criterion, e.g. max(|F⊥HEI|) < εCI is met. This can also be done
at the start of the NEB calculation. The CI is allowed to shift from one image to another
during the optimization, e.g. if a higher energy image than the current CI emerges. This
ensures that the CI will converge to the highest energy maximum along the path. Since the
RP is primarily needed to obtain a good tangent estimate for the CI, significantly tighter
convergence thresholds are typically applied to the CI than to the other images.5

Any desired distribution of images along the path can be obtained through the choice of
the spring constants. In typical CI-NEB calculations, the spring constant is chosen to have
the same value for all segments of the path, leading to an even distribution of images along
the path. But, since it is most important to have good resolution of the path near the point
of maximum energy, the highest SP on the path, one can choose the spring constants to be
larger where the energy is high. Such a scheme of energy-weighted NEB (EW-NEB) springs
has been proposed,19 where the spring constant for segment i is given by

kspi =

{
(1− αi)ku + αikl, if Ei > Eref

kl, otherwise
(3)

αi =
Emax − Ei

Emax − Eref
(4)

ku and kl are upper- and lower-bound values for the spring constant. Emax is the current
estimate of the maximum energy along the path, Ei is the higher energy image of the pair
of images connected by line segment i and Eref is a reference energy chosen to be equal to
the energy of either the reactant or product. Essentially, the spring constant is scaled in
such a way that stiffer springs act between images located in higher energy regions, leading
to higher density of images near the SP. At the same time, other less important parts of
the RP become less well resolved. To illustrate the different image distributions obtained
by the EW-CI-NEB and CI-NEB methods, calculations using the two methods are carried
out on the ene-reaction of 1-propylene and ethylene. Results of the calculations are shown
in Fig. 1. In EW-CI-NEB, most of the intermediate images are placed in the region at
and around the energy maximum, thus greatly improving the resolution in this important
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region. In CI-NEB, the images are equidistant and half of the images are utilized to resolve
the chemically irrelevant potential energy tail of the RP corresponding to the rotation and
translation of the ethylene fragment. The evolution of the inter-image distances during the
two calculations are shown in section SI-2.3. To begin with, all of the images are placed
in an equidistant manner along the initial path. In CI-NEB, the inter-image distance then
slightly increase as the path lengthens during the optimization. The inter-image distance
between different pairs of images can vary slightly in intermediate steps of the optimization.
In EW-CI-NEB, the distance between a pair of images in the higher energy regions of the RP
gradually becomes shorter, while the distance between images in the lower energy regions
become longer. Hence, the final path obtained by the CI-NEB and EW-CI-NEB methods
are approximately the same but with different image distributions. The different image
distribution of EW-CI-NEB provides a more accurate estimate of the path tangent near the
SP while not using an excessive number of images to represent the path and thereby prevents
the computational cost of the calculation from becoming prohibitively large.
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Figure 1: Comparison of CI-NEB and EW-CI-NEB calculations of the ene-reaction of 1-
propylene and ethylene. The image position along the final converged reaction path is
given by gray boxes for CI-NEB and red circles for EW-CI-NEB. The solid curves represent
piecewise cubic interpolation between the images using the tangential atom force and energy.
In the case of CI-NEB, the images are distributed evenly along the path, while in EW-CI-
NEB the density of images is higher where the energy is higher which greatly improves the
resolution of the path around the energy maximum. In the CI-NEB calculation a fixed
spring constant of ksp = 0.1EH/a20 is used, while an energy dependent spring constant scaled
from 0.01 to 0.1EH/a20 is used in the EW-CI-NEB calculation. The reactant (denoted by
R), saddle point (denoted by SP) and product (denoted by P) configurations are shown as
insets.

An initial path connecting the given reactant and product configurations is needed to
start a CI-NEB calculation. It is typically generated by linear interpolation in Cartesian
coordinates or by using the IDPP method. Then, the intermediate images are iteratively
shifted towards the RP using the effective CI-NEB force and a gradient-based optimization
method. Often the velocity projection optimization (VPO) method4 or the more elaborate
FIRE version of that approach is used.40

More efficient optimization is provided by the limited memory BFGS (L-BFGS) method,41

it is a quasi-Newton method where an approximation to the inverse Hessian matrix is con-
structed at each optimization step based on a memory of the energy and gradient obtained in
the previous N steps. The product of the inverse Hessian matrix at the current position and
the effective NEB force is then used to determine both the length and the direction of the
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next displacement of the atoms. In NEB/L-BFGS, the path is treated as a single 3M(Nim−2)

dimensional point, instead of treating each movable image individually (i.e. Nim − 2 sets of
3M coordinates). This has been reported to stabilize NEB/L-BFGS calculation.42 With a
global definition of the Hessian matrix, the off-diagonal inter-image interactions get included
in the Hessian matrix. This, however, also makes the L-BFGS optimization more sensitive
to the choice of spring constants.

If the largest absolute component of an optimization step exceeds a user-defined constant
trust-radius, ∆step, the step is scaled in such a way that this component of the step equals
∆step. This serves to prevent the optimization from taking unreasonably large steps. More-
over, if the step is scaled back, the memory of the L-BFGS is erased, which may serve to fix
the Hessian matrix if it has reached an ill-conditioned state.43

2.2 NEB-TS method

The NEB-TS method automatically combines EW-CI-NEB with an EF optimization (or
‘TS search’) in a simple manner to efficiently locate an SP for a transition between a given
reactant and product energy minima. An illustration of an NEB-TS calculation for the
two-dimensional Müller-Brown energy surface44 is shown in Fig. 2.

Figure 2: An illustration of the NEB-TS method on the two-dimensional Müller-Brown
energy surface. The calculation starts from a linear interpolation using Nim = 10. The red
curves show how each intermediate image moves during the NEB path optimization which is
terminated at positions marked with filled circles, when max(|FCI|) ≤ εTSmax. The subsequent
TS search starts from the climbing image and is shown by the blue curve. The minimum
energy path is shown by a dashed white line. The NEB-TS method accurately locates the
higher energy saddle point along the minimum energy path.
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In NEB-TS, the EW-CI-NEB method is used to get close to an RP in order to generate
a good initial guess for the TS search. The EW-CI-NEB calculation is carried out until
the atom force acting on the CI drops below a user-defined threshold; max(|F|) < εTSmax and
RMS(F) < εTSRMS. The TS search is then automatically started from the location of the
CI. The search is carried out using the EF partitioned rational function optimization (P-
RFO) method21,22 in redundant internal coordinates, as already implemented in the ORCA
software.45,46 In EF P-RFO, an eigenvector (or a mode) of the initial Hessian matrix is
selected and used to represent the desired reaction coordinate. This mode is then followed
uphill on the energy surface to a first order SP. While, the energy is minimized along all other
modes. To achieve this, two shift parameters are used to ensure that only the eigenvalue of
the Hessian matrix corresponding to the selected reaction coordinate is negative and that
all other eigenvalues are positive.

The initial Hessian matrix in a TS search needs to be of correct form and with a mode to
be followed that aligns with the reaction coordinate (i.e. the unstable mode) corresponding
to the desired SP. Therefore, to obtain an accurate reaction coordinate, the initial Hessian
matrix is most often computed analytically or numerically at the beginning of a EF P-
RFO calculation. In NEB-TS, the initial Hessian matrix used by the TS search can either
be taken as the exact Hessian matrix (e.g. when the analytical Hessian is available and
readily computed) or by constructing a model Hessian using the empirical Almlöf method.47

The eigenvector selected as the reaction coordinate is obtained by computing the maximum
overlap with the path tangent at the CI of the EW-CI-NEB calculation. The tangent at
the CI already provides an excellent approximation to the unstable mode at the SP. Also,
if the Almlöf scheme is used, then the model Hessian needs to be modified accordingly.
The curvature of the selected mode is shifted to correspond to the curvature of the path
estimated from the two neighboring images using a finite difference approximation. The
Hessian matrix is then updated after each displacement of the system using the Bofill update
method.30 Therefore, in EF PRFO, only a single energy and force evaluation is needed for
each displacement of the system.

For comparison, a simpler method is also proposed where the NEB calculation is skipped.
In this method, the IDPP interpolation method is used to construct an initial path that
connects the reactant and product energy minima configurations, the energy and force is
evaluated along this path and the highest energy image is chosen to serve as the initial guess
configuration for the TS search. Therefore, only Nim energy and force calculations are carried
out prior to the TS search calculation. This method is similar to the frequently used com-
bination of interpolation methods and TS searches.31 The less accurate initial configuration
supplied by the IDPP interpolation method, compared to EW-CI-NEB, and the selection
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of a reaction coordinate from the IDPP tangent may lead to inadequate results for some
systems, especially when dealing with more complex reaction coordinates.

2.3 Computational settings

2.3.1 CI-NEB and NEB-TS calculations

All NEB calculations in this study are carried out using the NEB module recently imple-
mented in the ORCA (4.2) suite of programs45,46 with the exception of the three bioinorganic
and heterogeneous catalysis reactions. In those calculations the development version of the
ORCA software was used. The reactant and product configurations used as input for the cal-
culations have been tightly optimized to a local energy minimum, i.e. with max(|F|) < 1·10−4

and RMS(F) < 3 · 10−5 EH/a0. The center-of-geometry for the reactant and product con-
figurations is then automatically aligned and the root-mean-square deviation between the
two configurations minimized. This is necessary to remove rotational and translational de-
grees of freedom from the reaction coordinate and is found to greatly impact the success
and efficiency of the CI-NEB calculations, see section SI-4.4. Furthermore, during the NEB
optimization, the root-mean-square deviation between adjacent images along the path is
minimized, starting from the reactant state.48,49 All initial paths for the NEB calculations
are constructed using the IDPP method. A comparison between the IDPP method and lin-
ear interpolation in Cartesian coordinates reveals that IDPP yields better initial paths with
lower energy configurations, see section SI-2.1.

A variable number of images is tested and used to represent the path, where the number
of images ranges from Nim = 7 to 34. The CI variant of NEB is used in all calculations. It
is found that it is optimal to activate the CI when max(|FHEI|) < 2 · 10−2 EH/a0, see section
SI-4.5. Both CI-NEB and EW-CI-NEB calculations are carried out using fixed and energy-
weighted spring constants, respectively. For the fixed spring constants, both ksp = 0.01 and
0.1 EH/a20 are used and compared to the EW springs, where the lower- and upper-boundaries
for the spring constant are selected to be kspl = 0.01 and kspu = 0.1 EH/a20. The choice of the
spring constants is found to greatly affect the performance of the CI-NEB and EW-CI-NEB
methods using a small set of molecular reactions, see section SI-4.1. The reference energy
value for the energy weighting, Eref, is always chosen to be equal to the energy of the higher
energy reactant or product energy minima.

The L-BFGS method is found to be significantly more efficient than VPO (see Section
SI-4.3) and is used in all (EW-)CI-NEB and NEB-TS calculations with a memory of 20
steps.43 The constant trust-radius, ∆step, is chosen to be 0.2 a0 which is found to be an
excellent choice for the interplay of robustness and efficiency, see section SI-4.7. The step
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size of the initial finite difference step in is chosen to be 0.002 a0. For the TS search of
NEB-TS a trust-radius of 0.1 a0 is used.

2.3.2 Convergence criteria and thresholds

The CI-NEB and NEB-TS calculations are considered to be converged when max(|FCI/TS|) <
5 · 10−4 and RMS(FCI/TS) < 3 · 10−4 EH/a0. Also, for the TS search, there are three
additional convergence criteria and thresholds gauged (as implemented in ORCA), namely
the energy difference and the maximum and root-mean-square change in step size (∆S)
between two subsequent optimization steps, ∆E < 1 · 10−5 EH, max(∆S) < 4 · 10−3 and
RMS(∆S) < 2 · 10−4 a0, respectively. In all calculations, the maximum allowed number
of total optimization steps is 500. If a calculation is unable to reach the aforementioned
convergence thresholds, within the allowed number of optimization steps, it is defined as
failed or a non-convergent calculation.

In NEB-TS, the initial EW-CI-NEB calculation is halted when the absolute value of
the atom force acting on the CI drops below the TS activation thresholds, εTS

max and εTS
RMS.

Two sets of threshold values are used in the calculations of the benchmark set of reactions,
εTS
max = 0.01 and 0.002 EH/a0. In all cases, εTS

RMS = 0.5εTS
max. As expected, preliminary results

of NEB-TS calculations on a small test-set of molecular reactions shows that it is likely to
be more efficient to activate the TS search already at εTS

max = 0.01 EH/a0, see section SI-4.6.
To assess the chosen convergence criteria, exact Hessian calculations were carried out on

SPs obtained by EW-CI-NEB calculations (with Nim = 10) on the benchmark set of main-
group molecular reactions (see section 3). About 80% of the configurations are confirmed to
be first order SPs, i.e. the exact Hessian matrix yields a single negative eigenvalue. About
17% of the SPs found in this way are confirmed to be of second order with two negative
eigenvalues. For the second order SPs, one of the negative eigenvalues is typically found
to be dominant, where the other eigenvalue has a significantly smaller magnitude. This
is typical for molecular reactions, where the mode corresponding to the second negative
eigenvalue represents motion along a soft degree of freedom. For the remaining systems,
three negative eigenvalues are obtained. For the second and higher order SPs, a first order
SP can typically be obtained by further EW-CI-NEB optimization. In these cases, it often
sufficed to simply converge the other intermediate images to the same degree as the CI to
obtain a first order SP. However, for a few of the more difficult saddle points, additional
measures had to be taken, e.g. using stricter convergence criteria. The additional cost
required to refine the saddle points is not taken into account in the performance numbers
reported in Sec. 4.1. To construct a reference set of first order saddle points, the set of
first order saddle points obtained from EW-CI-NEB is further optimized using EF P-RFO
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with analytical Hessian matrix computations at the beginning and in every five steps, until
max(|FTS|) < 2.5 ·10−4 and RMS(FTS) < 1.5 ·10−4 EH/a0. The reference set is used to asses
the SPs obtained by the NEB-TS calculations, in Sec. 4.2.

2.3.3 Electronic structure calculations

The electronic structure calculations are performed using the B3LYP50–52 density functional
in the spin-unrestricted formalism along with the D3 dispersion correction employing Becke-
Johnson damping,53,54 with the exception of the GaP(110) system, where instead the D2
dispersion correction55 is used, as in the original publication.38

In order to accelerate the electronic structure calculations, the resolution of identity (RI)
approximation is used for the Coulomb integrals56 and the COSX numerical integration
scheme57,58 with a grid-size ‘GRIDX4’ (ORCA keyword) is used for the evaluation of the
Hartree-Fock exchange integrals. For the self-consistent field (SCF) calculations a combina-
tion of the KDIIS algorithm59,60 and a quasi-Newton scheme (SOSCF)47,61 is used for most
of the systems. However, it turned out to be necessary to turn off the SOSCF for some
systems to avoid convergence problems. All calculations use an integration grid of type
‘GRID4’ (ORCA keyword). The def2-SVP basis set62,63 is used in the electronic structure
computations for the main-group reactions and the Pt-complex.39 For the GaP(110) sys-
tem, the def2-SVP basis set is used only for the Ga atoms and 6-31G(d,p)64,65 for all other
atoms. The def2-TZVP basis set66 is used for the Fe-complex.37 For the Ga and Pt atoms
the Stuttgart-Dresden effective core potentials (SDD ECPs) are used.67,68 In all calculations,
the def2/J auxiliary basis sets are used.69,70 For the Fe-complex, the broken symmetry DFT
approach is used, to converge to a broken-symmetry solution with an MS = 5

2
Fe(III) ion

that is antiferromagnetically coupled to an MS = 1
2
superoxo radical, to give a spin state of

MS = 2. To account for solvation effects, the implicit conductor-like polarizable continuum
model (CPCM)71 is used for the Fe and GaP systems. For the Fe-complex, the CPCM is
used with a dielectric constant of 4, in order to mimic the protein environment. For the GaP
system, the CPCM model is used for modeling the water environment, using the Gaussian
charge scheme with a scaled vdW cavity.72,73

2.3.4 Parallelization of CI-NEB and NEB-TS

In CI-NEB calculations, the energy and atom forces of the intermediate images can be
calculated in a parallel manner for each computational cycle, e.g. by using Nim − 2 central
processor units (CPUs). Moreover, the electronic structure computation of each image can
also make use of additional CPUs. In a NEB-TS calculation, all CPUs used previously in the
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EW-CI-NEB calculation are redirected to parallelize the electronic structure computations
in the TS search. In the (EW-)CI-NEB and NEB-TS calculations presented in this study, 1
or 2 CPUs are used for the computation of each intermediate image.

3 Benchmark set of main-group molecular reactions

A benchmark set of 121 unique main-group molecular reactions is used to evaluate the perfor-
mance of both the EW-CI-NEB and NEB-TS methods, see sections 4.1 and 4.2, respectively.
Additionally, to illustrate the transferability of the NEB-TS method to more complex re-
actions relevant to catalysis and bioinorganic chemistry, calculations on three additional
reactions are presented37–39 in section 4.3.

The benchmark set of main-group molecular reactions combines two recently published
benchmark sets, created by Birkholz and Schlegel36 and by Zimmerman.34 The combined
set includes 42 unique reactant configurations containing from 3 to 53 atoms. The systems
contain elements: H, B, C, N, O, F, Mg, P, S, Cl and Br. Note that all of the systems have
been optimized here and include dispersion correction which was not included in the original
work.34,36 Furthermore, for several systems, either the reactant or product configurations
have been slightly modified from the original publications, e.g. to resolve inconsistent atom
indexing between the reactant and product geometries, see section SI-1.2.

This benchmark set of reactions is diverse in terms of reaction type and shape of the
energy surface, as is seen in Fig. 3 (see also sections SI-1.3 and SI-2.2). The reactions,
included in the benchmark set, are primarily single elementary step reactions but there are
also a few multi-step pathways, with two or more energy barriers along the RP. The reactant,
product and saddle point configurations are accessible in a .xyz format as a supplementary
material and are also visualized in section SI-1.1.
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Figure 3: Characterization of the benchmark set of 121 molecular reactions used to assess
the performance of the EW-CI-NEB and NEB-TS methods. The energy barrier heights and
absolute value of the reaction potential energy is shown in (a) and in (b) the magnitude of
the imaginary vibrational frequency at the first order saddle points is shown.

4 Results and discussion

In section 4.1, the performance of CI-NEB and EW-CI-NEB methods is evaluated and
compared using the benchmark set of molecular reactions introduced in section 3. In the
(EW-)CI-NEB calculations, the objective is to obtain an accurate approximation to the
highest energy first order saddle point that connects the given reactant and product states.
The formation reaction of 1,2-hexadiene is selected from the benchmark set to compare
and illustrate the different image distributions and convergence properties of CI-NEB and
EW-CI-NEB. In section 4.2, the results of performance tests of NEB-TS are presented.
The reliability of the method is investigated by comparison of the obtained SPs to the set of
reference SPs (defined in section 2.3.2). Furthermore, in order to demonstrate the importance
of using an accurate initial guess for the SP in NEB-TS, a rearrangement reaction of allyl-
vinyl-ether is chosen as an illustrative example. In section 4.2, the NEB-TS method is applied
to three exemplary reactions taken from recently reported computational chemistry studies,
where in some of these studies the search for the desired SP was found to be problematic
using a combination of coordinate-dragging and EF P-RFO.37–39

4.1 Comparison of CI-NEB and EW-CI-NEB

To evaluate the performance of the CI-NEB and the EW-CI-NEB method, six sets of cal-
culations are carried out for all 121 reactions of the benchmark set. The sets differ in the
type and value of the spring constant and number of images used, see Table. 1. All other
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(EW-)CI-NEB parameters are the same, as specified in section 2.3.

Table 1: Parameter values used in six sets of (EW-)CI-NEB calculations carried out on the
set of 121 main-group molecular reactions. All other parameters are as specified in section
2.3.

Set Method Nim ksp [EH/a
2
0]

1 CI-NEB 7 0.1
2 CI-NEB 10 0.01
3 CI-NEB 10 0.1
4 CI-NEB 14 0.1
5 EW-CI-NEB 7 0.01–to–0.1
6 EW-CI-NEB 10 0.01–to–0.1

The performance of a set of calculations is specified by both the convergence ratio and
the computational efficiency. The convergence ratio is given by the number of calculations
where the magnitude of the atom forces acting on the CI drop below the given convergence
thresholds within the maximum number of optimization steps (see section 2.3.2). The com-
putational efficiency is measured by the average number and standard deviation of energy
and force evaluations required for convergent CI-NEB calculations. The performance of the
six sets of calculations is summarized in Fig. 4.

4.1.1 Fixed spring constant CI-NEB

The CI-NEB method with Nim = 7 (i.e. five intermediate images) and ksp = 0.1 EH/a20 (set
1) has a convergence ratio of 74% and uses on average 874 ± 665 energy/force evaluations
(174 evaluations per movable image). It is quite common to use 5 intermediate images in CI-
NEB calculations if the RP is simple. By increasing Nim to 10 (set 3) the convergence ratio
increases to 82% and the energy/force evaluations increase to 1108 ± 758 (138 evaluations
per movable image). Analysis of the non-convergent calculations in sets 1 and 3 reveals
that the problem is typically caused by poor resolution near the CI and hence an inaccurate
tangent estimate. This causes the location of the CI to oscillate and can lead to unreasonable
optimization steps being taken. Therefore, the resolution around the energy barrier needs
to be improved by increasing the number of images. When the number of images is further
increased to Nim = 14 (set 4) the convergence ratio increases to 93% while the energy/force
evaluations become 1824±1395 (152 evaluations per movable image). CI-NEB optimization
profiles, using variable number of images, for two selected reactions of the benchmark are
shown in section SI-2.5. The computational effort in the CI-NEB calculations necessarily
increases when more images are added. However, as for any numerical method that is based
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Figure 4: Results from four sets of CI-NEB calculations and two sets of EW-CI-NEB calcu-
lations (defined in Table 1) for the benchmark set of 121 molecular reactions. The notation
(EW-)CI-NEB-X gives the total number of images used in the calculations, where X = 7, 10
and 14. For the CI-NEB calculations, the spring constant ksp used in the CI-NEB calcula-
tions is specified on the x-axis and is in units of EH/a20. For the EW-CI-NEB calculation, the
spring constant is scaled from ksp = 0.01 to 0.1 EH/a20. The average number of energy/force
evaluations in convergent CI-NEB calculations is given by the red vertical axis on the left
along with the standard deviation shown as an error bar. The convergence ratio is given
by the blue vertical axis on the right. A calculation is convergent if the magnitude of the
atom force acting on the climbing image drops below the user-supplied convergence tolerance
within 500 optimization steps, see section 2.3.2. Note that non-convergent calculations are
omitted from the calculation of averages.

on a discretization of a continuous variable, the number of discretization points needs to be
large enough.

The L-BFGS optimization method is expected to be sensitive to the value of the spring
constant since the off-diagonal elements of the approximate Hessian matrix arise from the
spring interactions acting between images.42 In sets 1, 3 and 4 the spring constant was
chosen to be ksp = 0.1 EH/a20. This value is larger than the commonly used value for the
spring constant, which is closer to ksp = 0.01 EH/a20. In fact, the set of CI-NEB calculations
with Nim = 10 and ksp = 0.01 EH/a20 (set 2) is found to have a convergence ratio of 74%
using 1403±922 energy/force evaluations (175 evaluations per movable image), significantly
less robust and computationally more demanding than the CI-NEB calculations using stiffer
springs. In fact, ksp = 0.1 EH/a20, is found to be the optimal value for the spring constant,
based on more extensive tests covering a large range, but on a much smaller test-set, see
section SI-4.1.
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The problem of poor resolution of the energy maximum observed here for CI-NEB cal-
culations of molecular reactions is less severe for calculations of diffusion events in solids
or reactions on surfaces of solids. This is because the RPs of molecular reactions are often
characterized by, irrelevant, long segments of small energy variation. In such cases, an even
distribution of images does not represent the optimal distribution of images, since the ma-
jority of the images are being used to resolve these unimportant segments of the path rather
than the region of the energy barrier.

4.1.2 Energy weighted CI-NEB

A more suitable distribution of images can be obtained by using energy-weighted spring
constants. In this scheme, the spring constant for each line-segment of the path is adaptively
scaled according to the relative energy of the connected images such that stiffer springs
act between images in higher energy regions along the reaction path. This leads to an
accumulation of images near the energy maxima, as is illustrated in Fig. 1.

Calculations using the EW-CI-NEB method with Nim = 7 and the spring constants scaled
from kl = 0.01 to ku = 0.1 EH/a20 (set 5), yield a convergence ratio of 98% and the average
number of energy/force evaluations of 589±333 (117 evaluations per movable image). If the
number of images is increased to Nim = 10 (set 6), a 100% convergence ratio is obtained
with an average of 924±608 energy/force evaluations (115 evaluations per movable image).
In other words, EW-CI-NEB when used with large enough Nim is able to converge the CI
below the prescribed convergence thresholds and yield highly accurate approximations to
the relevant SPs for all 121 reactions of the benchmark set. About 80% of the saddle points
obtained by EW-CI-NEB are already of first order. Clearly, the EW-CI-NEB method (sets
5 and 6) shows significant improvements in performance over the standard CI-NEB method
with equal distribution of images (sets 1–4). As EW-CI-NEB leads to an increased density
of images in the region of the energy barrier, a smaller number of images can be used in
EW-CI-NEB to locate the SP compared to CI-NEB. In fact, EW-CI-NEB appears to be less
sensitive to the choice of Nim, see section SI-4.2. The convergence behavior of CI-NEB and
EW-CI-NEB is shown in section SI-2.6 for two example reactions from the benchmark set.

To further demonstrate the difference in the image distribution obtained by CI-NEB
and EW-CI-NEB, the relative deviation of the inter-image distance between CI and its two
neighbors from the even distribution of the RPs is evaluated and reported in section SI-2.4.
For the CI-NEB calculations using Nim = 10 and ksp = 0.1 EH/a0, 92% of the convergent
CI-NEB calculations show a less than 2% deviation from the even distribution and 99% of
the systems are within a 5% deviation. This is to be expected since CI-NEB attempts to
obtain an even distribution of images and the selected spring constants are relatively stiff
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(compared to typical values used for ksp). For CI-NEB, a large deviation from the ideal even
distribution can be a sign of instability and kinked paths. For EW-CI-NEB, using Nim = 10,
the inter-image distances in higher energy regions of the path become shorter as the images
are shifted up along the path due to stiffer springs in those regions. The inter-image distance
between CI and its closer neighboring image is less than 1/2 of the even distribution for 92%
of the EW-CI-NEB paths and less than 1/3 for 64% of the paths. This shows how EW-
CI-NEB effectively introduces a denser distribution of images around the CI and thereby
improves the approximation to the path tangent at the CI.

4.1.3 Comparison of CI-NEB and EW-CI-NEB for an example reaction

To further examine the difference in convergence behavior between CI-NEB and EW-CI-
NEB, the reaction of 1,3-butadiene and ethylene to form 1,2-hexadiene is chosen from the
benchmark set of molecular reactions. CI-NEB calculations using Nim = 10, 14, 18 and 34

with ksp = 0.1 EH/a20 are compared to EW-CI-NEB calculations using Nim = 7 and 10 with
ksp scaled from 0.01 to 0.1 EH/a20. The resulting paths, computational efficiency and key
configurations (reactant, product and saddle points) are shown in Figs. 5 and 6. In this
case, the computational efficiency is measured by the number of optimization steps rather
than the number of energy/force evaluations.
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Figure 5: Energy curves (or profiles) for the reaction path of ethylene and 1,3-butadiene to
form 1,2-hexadiene. The CI-NEB calculations use fixed spring constant of ksp = 0.1 EH/a20
and the number of images is Nim = 10, 18 or 34. For comparison, the energy weighted
CI-NEB calculations use ksp scaled from 0.01 to 0.1 EH/a20 and Nim = 10. Convergence is
defined only in terms of the atomic forces acting on the climbing image, so the intermediate
images are not converged to the same degree. The large energy barrier is associated with
H-transfer from 1,3-butadiene to ethylene and a C-C bond formation. The second energy
barrier corresponds to a rearrangement to yield the specified product state. Note that the
energy curve for CI-NEB-10 is not converged and is unable to resolve the large energy barrier.
The reactant (denoted by R), saddle point (denoted by SP) and product (denoted by P)
configurations are shown as insets.

The resulting reaction path for the formation of 1,2-hexadiene (see Fig. 5) is characterized
by a long, flat energy tail that corresponds e.g. to the rotation of the ethylene fragment into
the necessary orientation needed for the reaction to occur. This is typical for calculations
of molecular association reactions and can for some reactions be reduced by improving the
alignment of the initial reactant and product configurations. The reaction then proceeds by
H-transfer from 1,3-butadiene to ethylene and C-C bond formation with an energy barrier of
36.7 kcal/mol. Finally, to yield the product state, the reaction is followed by a isomerization
with a barrier of 5.8 kcal/mol, relative to the product state energy minimum.
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Figure 6: Efficiency of CI-NEB and EW-CI-NEB calculations of the reaction of ethylene and
1,3-butadiene to form 1,2-hexadiene. The efficiency is measured in terms of NEB iterations
(or optimization steps) required to reach convergence. The CI-NEB calculations are carried
out with a fixed spring constant of ksp = 0.1 EH/a20 and Nim = 10, 14, 18 or 34. The energy-
weighted CI-NEB calculations scale the ksp from 0.01 to 0.1 EH/a20 and are carried out using
Nim = 7 and 10. Note that CI-NEB-10 with ksp = 0.1 EH/a20 failed to converge within 500
iterations.

The CI-NEB calculation with fixed spring constant and Nim = 10 is unable to converge
within the 500 allowed optimization steps. Moreover, the energy profile of the path from
the last optimization step of this CI-NEB calculation does not give a good estimate of the
large energy barrier. The CI-NEB calculation with Nim = 14 is able to converge in 469
optimization steps. A closer inspection of the calculation reveals that this large number
of steps is due to an oscillatory behavior of the CI. This behavior is attributed to the poor
resolution of the energy barrier. By increasing the number of images even further to Nim = 18

and to 34, the oscillations are quenched and a large reduction in the number of optimization
steps is achieved, to 235 and 147, respectively. Interestingly, for Nim = 18, the resolution
of the energy barrier is still quite poor as the images adjacent to the CI are located at
the base of the energy peak, see Fig. 5. The EW-CI-NEB calculations with Nim = 7 and
10 offer a better resolution of the energy barrier and achieve comparable performance to
CI-NEB with Nim = 34 where the number of optimization steps required is 166 and 152,
respectively. However, the EW-CI-NEB calculations are unable to resolve other features of
the path such as the second energy barrier with this low number of images. In practice it may
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be advantageous to partition multi-step reactions into multiple (EW-)CI-NEB calculations,
with one (EW-)CI-NEB calculation per energy maxima.

4.2 Performance of NEB-TS

The performance of the NEB-TS is assessed using four sets of different method parameters.
The results are compared to the IDPP-TS method and summarized in Figs. 7 and 8. Two
different TS activation thresholds for stopping the EW-CI-NEB calculation and starting the
TS search are used, i.e. εTSmax = 0.01 and 0.002 EH/a0. Also, the initial Hessian matrix
is either computed analytically or constructed using the empirical Almlöf scheme. Other
parameters of the NEB-TS method are as specified in section 2.3.

The convergence ratio of a set of NEB-TS calculations is determined by the number of
calculations that converge on a SP within 500 optimization steps in total, i.e. sum of steps
used in the EW-CI-NEB and the subsequent TS search. The set of SPs obtained by the NEB-
TS calculations are further analyzed according to the absolute energy difference from the
reference set of SPs defined in section 2.3.2. The computational efficiency is measured by the
average number and standard deviation of energy/force evaluations required by convergent
calculations.
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Figure 7: Convergence ratio and accuracy of results obtained by NEB-TS and IDPP-TS
calculations for the benchmark set of 121 molecular reactions. The calculations differ in the
degree to which the climbing image of the EW-CI-NEB calculation is converged before the
TS search is started, i.e. εTSmax, is 0.01 and 0.002 EH/a0. In IDPP-TS, the initial EW-CI-NEB
phase is skipped. The calculations also use either an approximation to the initial Hessian
matrix constructed using the empirical Almlöf scheme or computed analytically (labeled on
the x-axis). All calculations use 10 images. The convergence ratio is given by the blue
line (right vertical axis). A calculation is considered to be converged if the magnitude of
the atomic force drops below max(|FTS|) < 5 · 10−4 EH/a0 and RMS(FTS) < 3 · 10−4 EH/a0,
within 500 optimization steps. The fraction of NEB-TS and IDPP-TS calculations that yield
a saddle point estimate within ∆ of the reference set is shown in red (left vertical axis) for
three different values of ∆, or ∆ = 0.1, 0.5 and 1.0 kcal/mol.

All four sets of the NEB-TS calculations are found to have a 100% convergence ratio,
regardless of when EW-CI-NEB is stopped and the TS search is started and also irrespective
of whether the exact or an empirical Hessian matrix is used at the beginning of the TS
search. In section SI-2.6, the convergence behavior of CI-NEB, EW-CI-NEB and NEB-TS
is shown for two example reactions of the benchmark set.

The NEB-TS method with the earlier EW-CI-NEB stopping criterion, i.e. εTSmax = 0.01

EH/a0, and the empirical Almlöf initial Hessian matrix is found to require only 305 ± 140

energy/force evaluations. The average number of optimization cycles is 77. If the exact
Hessian is computed and used at the beginning of the TS search, the efficiency improves
only marginally as the average is reduced to 300 energy/force evaluations. About 92% of
the saddle points obtained from these calculations are confirmed to be first order saddle
points by carrying out a vibrational frequency analysis. When a higher order saddle point is
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obtained, the other imaginary frequencies are found to be small, or |ω| < 75 cm−1. Majority
of the computational effort of the NEB-TS calculations is in the initial EW-CI-NEB phase,
or about 260 energy/force evaluation. This corresponds to roughly 32 parallel computational
cycles over the images of EW-CI-NEB and 45 cycles in the TS part.

By converging the EW-CI-NEB to a tighter threshold, εTSmax = 0.002 EH/a0, the CI is
brought even closer to the desired SP prior to the TS search. For this set of NEB-TS
calculations, the average number of energy/force evaluations increases to 534 ± 237 and 95
cycles, where an average of 501 energy/force evaluations (about 62 cycles) is used in EW-CI-
NEB and an average of 33 evaluations in the TS part. As expected, the total computational
effort is significantly increased, while the computational effort of the individual TS searches
is reduced.

Figure 8: The computational efficiency of NEB-TS and IDPP-TS calculations of the bench-
mark set of 121 molecular reactions. The NEB-TS calculations differ in the degree to which
the climbing image of the initial EW-CI-NEB calculation is converged before the TS search
is started, i.e. εTSmax, is 0.01 or 0.002 EH/a0. In IDPP-TS, the initial EW-CI-NEB phase is
skipped. The calculations also use either an initial Hessian matrix that is constructed using
the empirical Almlöf scheme or computed analytically (labeled on the x-axis). All calcula-
tions use 10 images. The average number of energy/force evaluations required by convergent
NEB-TS (and IDPP-TS) calculations to locate saddle points is shown with red solid line
along with the standard deviation shown as an error bar. The dashed blue and green dashed
lines show how the computational effort of the NEB-TS calculations is divided into the initial
EW-CI-NEB phase and the subsequent TS search. Non-convergent calculations are omitted
from the calculation of the averages.

For comparison, results of the IDPP-TS calculations are also reported, where the EW-CI-
NEB is skipped and the highest energy image along an initial path generated by the IDPP
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method is used as the initial guess configuration for the TS search. The TS search is then
inevitably started from configurations that are located further away from the desired SP and
often in regions on the energy surface where the Hessian is characterized by a larger number
of negative eigenvalues as compared to the initial configurations generated by NEB-TS, as
shown in Fig. 9.

Figure 9: The number of negative eigenvalues (or imaginary vibrational frequencies) of the
Hessian matrix at the starting configuration of the TS search in NEB-TS (left) and in IDPP-
TS (right). In NEB-TS, the starting configuration of the TS search is taken as the climbing
image configuration along the initial, partially converged EW-CI-NEB calculation using a
TS activation threshold εTSmax < 0.01 EH/a0. In IDPP-TS, the starting configuration of the
TS search is the highest energy image along an IDPP interpolated path connecting the given
reactant and product energy minima.

The average number of energy/force evaluations for the two sets of IDPP-TS calculations
is found to be about 120 and 109, respectively, i.e. about a factor of three larger than the
TS search of NEB-TS (i.e. excluding the EW-CI-NEB part). Surprisingly, the convergence
ratio of IDPP-TS is found to be 97% and 98%, using the model and exact initial Hessian,
respectively. The high convergence ratio of IDPP-TS can be attributed to both the quality
of the initial path generated by the IDPP method and hence the starting point used for the
TS search (see section SI-2.1) and also to the robustness of the TS search method, i.e. EF
P-RFO in internal coordinates. For comparison, the convergence ratio of a TS search started
from the highest energy image along a linear interpolation in Cartesian coordinates is 69%
(data is not shown here).

However, the quality of the initial guess configuration and the initial Hessian (and hence
the reaction coordinate selected in the TS search) can determine whether the IDPP-TS and
NEB-TS calculations are able to locate a SP that corresponds to the given reaction. To
demonstrate this, the absolute energy difference of the SPs obtained by the different NEB-
TS and IDPP-TS calculations and the reference set of SPs is examined, see section SI-3.1.
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The fraction of SPs obtained by the calculations that deviate from the reference SPs by more
than a selected value, ∆, are shown in Fig. 7.

The SPs obtained by IDPP-TS can deviate in energy from the reference SPs by up to
roughly 80 kcal/mol. Around 31% of the SPs obtained by IDPP-TS show a larger energy
deviation than 0.1 kcal/mol and 22% of the SPs a larger deviation than 0.5 kcal/mol. In
NEB-TS, where the CI of EW-CI-NEB is converged to εTSmax = 0.01 EH/a0 before starting
the TS search, the distribution of energy differences is found to span a range of 0 to 30
kcal/mol. The fraction of SPs that deviate by more than 0.1 and 0.5 kcal/mol is found to
decrease to 15% and 9%, respectively. If the exact Hessian matrix is used to initialize the
TS calculations (of IDPP-TS or NEB-TS), instead of the model Almlöf Hessian, the ratios
can be further decreased by roughly 4–7%. The best agreement to the reference set of SPs
is obtained for NEB-TS using εTSmax = 0.002 EH/a0 and an exact initial Hessian matrix. For
this set of calculations, about 7% and 6% of the SPs show a larger energy deviation than 0.1
and 0.5 kcal/mol compared to the reference set, respectively.

Calculations that exhibit large energy differences are likely to have converged to different
saddle points that may correspond to a different reaction than is specified by the initial
and final state configurations. Further analysis of a few selected calculations reveals other
possibilities for discrepancy, see section SI-3.2. First is the existence of multiple maxima
along the RP in a complex reaction mechanism where the TS search ends up converging to a
lower energy SP along the RP. This can occur in a multi-step transition where the EW-CI-
NEB calculation is not converged well enough for the CI to be placed near the highest SP.
Another reason is that an alternative RP for the same reactant and product state is found.
Often, these shortcomings can be remedied by lowering the convergence of the EW-CI-NEB
calculation and hence improving the initial configuration that is supplied as input to the TS
search. A detailed analysis of one such example reaction, a rearrangement of allyl-vinyl-ether
to 1-pentene-5-one, is given in the following subsection.

4.2.1 Dependency of the TS-search on the initial guess

To demonstrate the dependence of the NEB-TS method on the quality of the initial con-
figuration, tangent and curvature information provided by the EW-CI-NEB calculation, the
rearrangement of allyl-vinyl ether to form 1-pentene-5-one is chosen as an example. Calcula-
tions are carried out for various values of the TS activation threshold, εTSmax, ranging from 0.02
EH/a0 to 0.002 EH/a0. Other parameters are kept the same as in the previous subsection.
The results are summarized in Figs. 10 and 11. Two different SPs are found depending
on the value of εTSmax. For a low threshold, εTSmax ≤ 0.012 EH/a0, a SP is obtained that is
in agreement to the one found by converged EW-CI-NEB calculation and is confirmed to
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be connected to the given reactant and product state by internal reaction coordinate (IRC)
analysis,74 as is shown in Fig. 11. The correct SP corresponds to rearrangement to form the
given 1-pentene-5-one product state. When the threshold value is larger, εTSmax ≥ 0.014 EH/a0
the NEB-TS calculation converges to a different incorrect SP that appears to be connected
to conformers of the allyl-vinyl ether reactant state. This incorrect SP is approximately 27
kcal/mol higher in energy than the correct SP, which is found to give a barrier height of
about 32 kcal/mol.

Figure 10: Results of NEB-TS calculations for various values of the activation threshold,
εTS, when the EW-CI-NEB calculation is carried out for a rearrangement of allyl-vinyl ether
to form 1-pentene-5-one. The red curve shows the energy of the saddle point obtained with
respect to the energy of the reactant energy minimum (left vertical axis) The blue curve
shows the number of negative eigenvalues obtained from an analytical calculation of the
Hessian matrix at the climbing image configuration when the EW-CI-NEB calculation is
terminated (right vertical axis). Two different saddle points are obtained depending on the
value of εTS. IRC analysis shows that the lower energy saddle point corresponds to the correct
reaction and yields both the reactant and product energy minima. While, the higher energy
saddle point leads to a different conformer of the allyl-vinyl-ether, i.e. the saddle point is not
connected to the given product state, see Fig. 11. This is most likely because for NEB-TS
calculations with εTSmax ≥ 0.014 EH/a0, the incorrect eigenvector is selected and followed, the
TS activation threshold is lowered further, the EW-CI-NEB calculation is converged to a
tighter threshold and the TS search starts from a better initial configuration, where the right
eigenvector (i.e. the mode that corresponds to the desired reaction coordinate) is selected
and followed to the correct saddle point.

Calculation of the analytical Hessian matrix for the CI configuration obtained at the
termination of the EW-CI-NEB calculations reveals that for εTSmax ≥ 0.014 EH/a0 there are
three negative eigenvalues and the eigenvector corresponding to the lowest eigenvalue does
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not correspond to the correct reaction coordinate of the allyl-vinyl-ether rearrangement. At
this point, the initial configuration for the TS search and tangent estimate provided by EW-
CI-NEB are not sufficiently accurate for the TS search to identify the correct SP. Instead,
the TS search selects and most likely follows the wrong eigenvector leading to a SP that
does not lead to the given 1-pentene-5-one energy minimum. The situation is not fixed by
analytically computing the initial Hessian matrix, instead of using the Almlöf model Hessian
matrix.

By lowering εTSmax to 0.012 EH/a0, the number of negative eigenvalues at the CI configura-
tion is reduced to two. At this point, initial configuration provided by the CI is sufficiently
close to the SP such that the selected eigenvector to be followed by the TS search corre-
sponds to the correct reaction coordinate and the TS search converges the correct SP, i.e. the
SP connected to the given reactant and product states. By further lowering the activation
threshold to εTSmax = 0.006 EH/a0 gives an even higher quality CI configurations with a single
negative eigenvalue in the Hessian matrix and the TS search continues to identify the correct
SP. The absolute values of the negative eigenvalues obtained from the Hessian matrix of the
CI in the NEB-TS calculations presented in Fig. 10 are given in SI-3.3. This example shows
that a key aspect of a successful NEB-TS calculation is good input from the EW-CI-NEB
calculation to the TS search. The required TS activation threshold value is expected to be
system dependent. However, the results obtained here for the 121 molecular reaction test
set indicate that a value of εTSmax = 0.01 EH/a0 gives reliable results.
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Figure 11: The two energy minima (denoted by M1 and M2) obtained from IRC calculations
carried out on the saddle points (denoted by SP) of the NEB-TS calculations presented in
Fig. 10, using εTS = 0.002 EH/a0 (shown in the upper panel) and εTS = 0.02 EH/a0 (shown
in the lower panel). The energy difference of the M1, M2 and SP configurations and the
reactant energy minimum are given. In the upper panel, for NEB-TS(εTS = 0.002 EH/a0)
the minimum M1 corresponds to the correct given reactant energy minimum and M2 to the
product energy minimum. For NEB-TS(εTS = 0.02 EH/a0) both M1 and M2 are observed
to be conformers of the reactant energy minimum.

4.3 Applications: Bioinorganic and heterogenous catalysis reac-

tions

In the previous sections, the performance of EW-CI-NEB and NEB-TS methods is evaluated
for a benchmark set of 121 reactions of main-group molecules. With a small enough activation
threshold for starting the TS search of NEB-TS, the method is found to be highly robust,
as well as efficient. In this section, the NEB-TS method is applied to three larger systems
that have recently been discussed in the literature. Some of these reactions were found to
be computationally challenging using a combination of coordinate-dragging and single ended
SP searches. Two of the reactions are taken from bioinorganic chemistry37,39 and the third
one from heterogeneous catalysis research.38

The first reaction considered is the platination of guanine by a monoaqueous nedaplatin
complex, see Fig. 12.39 The reactant state configuration is characterized by a square-planar
geometry where a hydroxide, two ammonia molecules and a glycolate group are bound to
a Pt(II) center with a guanine molecule in its vicinity. In the product, a water molecule is
expelled from the complex and the guanine coordinates to the Pt(II).
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Figure 12: The reactant (denoted by R), saddle point (denoted by SP) and product state
(denoted by P) configurations are shown for platination of the guanine nucleobase. For
clarity, atoms that do not actively participate in the reaction are made transparent. The
elements included are: Pt (silver), O (red), N (blue), C (gray) and H (white). Note that in
the reactant state, the OH group is negatively charged while the COOH group is neutral. As
the proton jumps from the COOH group to the hydroxyl group, H2O is formed and expelled
leaving a negatively charged carboxylate.

The second reaction involves a decarboxylation reaction of α-ketoglutarate (modelled as
pyruvate) bound to the Fe(III)-(O2)-active-site of the Fe(II) and α-ketoglutarate (αKG)-
dependent dioxygenase enzyme, see Fig. 13. In the reactant state configuration, the O−2
radical ion is bound and antiferromagnetically coupled to a high spin Fe(III) center in an
octahedral geometry, bound to two His residues (modelled as imidazole groups), acetate and
a bidentate α-ketoglutarate (modelled as pyruvate). In the product, CO2 is expelled from
the the substrate and a Fe(II) trigonal bipyramidal peroxosuccinate intermediate is formed.

Figure 13: The reactant (denoted by R), saddle point (denoted by SP) and product state
(denoted by P) configurations are shown for decarboxylation of bound α-ketoglutarate (mod-
elled as pyruvate) to the Fe(III)-O2-active-site complex of the Fe(II) and α-ketoglutarate
(αKG)-dependent dioxygenase enzyme. For clarity, atoms that do not actively participate
in the reaction are made transparent. The elements included are: Fe (orange), O (red), N
(blue), C (gray) and H (white).
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The third reaction is a hydride ion transfer from a GaP(110) surface to pyridine,38 see
Fig. 14. Here, both the hydride and pyridine molecule are initially adsorbed on the surface,
along with water and partially dissociated water molecules (OH groups) that are included
to incorporate explicit solvation effects in tandem with an implicit solvation model. It
is important to note that reactions where solvation molecules are explicitly included are
often characterized by many soft degrees of freedom and large flexibility. This can lead to
inaccurate estimates of the activation entropy. Such reactions can, furthermore, have an
ensemble of (inconsequential) saddle points and an analysis of the reaction rate may then
require the use of full transition state theory where the free energy difference between the
initial and transition state is evaluated, with variational optimization of the location and
shape of the transition state.3

Figure 14: The reactant (denoted by R), saddle point (denoted by SP) and product state
(denoted by P) configurations are shown for a hydride transfer from a GaP(110) surface to
an adsorbed pyridine. For clarity, atoms that do not actively participate in the reaction are
made transparent. The elements included are: Ga (beige), P (orange), O (red), N (blue), C
(gray) and H (white).

In the cited publications, the identification of the SPs was carried out with a combina-
tion of one- and two-dimensional relaxed surface scans followed by a TS search. Some of
the calculations turned out to be problematic and computationally demanding,77,78 where
the reaction coordinates are relatively complex. All three reactions proceed in a single ele-
mentary step characterized by multiple bond breaking and formation. NEB-TS calculations
for these three reactions were carried out using the parameter values given in section 2.3.
The NEB-TS calculations converged without any problems and the results are summarized
in Table 2. The NEB-TS method was able to identify the first order SPs for all three
reactions using on average 298 energy/force evaluations, showing comparable efficiency to
the NEB-TS calculations on the large benchmark set of main-group molecular reactions.
This demonstrates the usefulness of the NEB-TS method for challenging real-world chemical
systems and structurally complex SPs.
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Table 2: Summary of results for NEB-TS calculations on three reactions; (i) Pt of gua-
nine nucleobase, (ii) decarboxylation of bound α-ketoglutarate to the Fe(III)-O2-active-site
complex of the Fe(II) and α-ketoglutarate dependent dioxygenase enzyme and (iii) hydride
transfer fom GaP(110) surface to an adsorbed pyridine molecule.

Reaction # Force eval. Barrier (kcal/mol) ω0 [1/cm]
Pt of guanine 176 32.19 -179.5
Decarboxylation of α-ketoglutarate 304 6.98 -486.9
H− transfer from GaP(110) 415 41.02 -1388.5

5 Conclusions

In the first part of this study, two different variants of the CI-NEB method are evaluated,
on a diverse benchmark set of 121 molecular reactions involving main-group elements,34,36

namely the standard formulation of CI-NEB13,19 and energy-weighted (EW) CI-NEB.19 An
important aspect of the CI-NEB calculations is the efficient use of parallel computing as the
energy and atom forces of all the images along the path can be calculated simultaneously.
The (EW-)CI-NEB calculations were first optimized with respect to method parameters.
Moreover, problems that are often encountered in CI-NEB calculations started from a linear
interpolation in Cartesian coordinates are resolved for this benchmark set of reactions by
using the IDPP method9 to generate the initial path.

In CI-NEB, all of the spring constants are chosen to be equal, resulting in an even
distribution of images along the reaction path. In EW-CI-NEB calculations, however, the
stiffness of the springs acting between images is increased for images located in higher energy
regions. This causes the images to accumulate in the more important regions of the path, i.e.
around the energy maxima. The energy-weighting is of particular importance for calculations
of flexible molecular reactions, where the reaction paths are often observed to be long and
may be characterized by small change in the energy. In such situation, the energy-weighted
springs focus the computational effort away from the unimportant parts of the reaction path
to the energy barrier. This results in improved resolution and tangent estimate at the CI
which is often found to be crucial for reaching convergence.

The performance of the EW-CI-NEB method on the benchmark set of main-group molec-
ular reactions is found to be significantly better both in terms of reliability and reduction
of computational effort as compared to the standard CI-NEB method. In fact, the conver-
gence ratio increases from 82% to 100% and the computational effort is reduced by 17-34%
(depending on the value of the spring constant selected) when EW-CI-NEB is used rather
than CI-NEB, using Nim = 10. The EW-CI-NEB method is also shown to be less sensitive
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to the number of images, where EW-CI-NEB calculations, with Nim = 7 images, has a con-
vergence ratio of 98%, while CI-NEB using Nim = 14 has a lower convergence ratio of 93%
and requires on average a factor of roughly three more energy/force evaluations per reaction.

The combination of double ended and single ended methods is likely to represent the
most efficient way to locate saddle points reliably for a given reaction,.12,13,26 For this reason,
the NEB-TS and IDPP-TS methods are introduced. In the NEB-TS method, the EW-CI-
NEB method is used to obtain a partial convergence to the reaction path connecting the
given reactant and product states. Then, a subsequent eigenvector-following calculation (TS
search)21,22 is automatically started from the current position of the climbing image. This
allows the TS search to be started from a good initial configuration. Moreover, the reaction
path tangent at the climbing image is used to identify the correct reaction coordinate to be
followed. The initial Hessian matrix at the climbing image can either be computed analyti-
cally or constructed using the empirical Almlöf estimate47 of the Hessian matrix, revised to
include information about the curvature along the path. The NEB-TS method is found to
be remarkably robust and efficient, giving 100% convergence ratio and requiring on average
only 305 energy/force evaluations. By using the exact Hessian matrix at the beginning of
the TS search, the efficiency is only slightly improved. Most of the computational effort of
NEB-TS calculations is spent in the initial EW-CI-NEB calculation to a starting configura-
tion that lies close enough to the saddle point of the given transition. The degree to which
the climbing image needs to be converged, prior to the single ended SP search, can there-
fore be adjusted for specific systems to further reduce the computational effort. With the
energy-weighted scheme it is possible to use fewer images than with CI-NEB calculations.
In the IDPP-TS method, the EW-CI-NEB calculation is skipped. Instead, the eigenvector-
following calculation is initialized using only the IDPP interpolated path. The IDPP-TS
method is found to have a surprisingly high convergence ratio of 97% and an average of 120
energy/force evaluations per reaction.

If a poor initial configuration is used, the TS search may converge to different, incorrect,
saddle point that does not connect to the given reactant and product states. The absolute
energy difference between saddle points obtained by NEB-TS and IDPP-TS and a reference
set of tightly converged first order saddle points shows that by improving the initial config-
uration (and initial Hessian matrix) for the TS search (i.e. by using EW-CI-NEB) the ratio
of SPs with large energy differences can be largely reduced.

The NEB-TS method is also applied to three complex reactions from bioinorganic chem-
istry and heterogeneous catalysis. In all cases, the NEB-TS calculations converged without
any parameter adjustments and the saddle points were obtained in an average of 298 en-
ergy/force evaluations.
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All methods addressed in this article (along with other variants of the NEB method) have
been implemented in the ORCA suite of programs.45,46 The implementation is versatile and
makes efficient use of parallel computing. The interface is user-friendly while also offering a
great variety of customizable features for advanced calculations. A complete description of
the ORCA/NEB implementation and a list of features is given in the ORCA manual.

6 Supplementary material

The molecular configurations included in the benchmark set of 121 main-group molecular
reactions are available in a .xyz file format as a supplementary material. Additional informa-
tion about the set of molecular reactions, along with further analysis on the performance of
the CI-NEB, EW-CI-NEB, IDPP-TS and NEB-TS methods can be found in the Supporting
Information.
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SI-1 A large and diverse benchmark set of molecular re-

actions

In this section, the benchmark set of 121 main-group molecular reactions used to evaluate
the (EW-)CI-NEB and NEB-TS methods is introduced.1,2 The reactant, product and saddle
point configurations are visualized. Modifications made to the reactant and product configu-
rations are addressed. The potential energy barrier height, absolute imaginary frequency at
the first order saddle points and reaction energy are given. As discussed in the manuscript,
all calculations use B3LYP+D3(BJ)/def2-SVP level of theory.
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SI-1.1 Visualization of reactant and product configurations

Figure 1: Reactant, saddle point and product configurations for reactions 1–7.
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Figure 2: Reactant, saddle point and product configurations for reactions 8–13 and 119–121.
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Figure 3: Reactant, saddle point and product configurations for reactions 14–25.
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Figure 4: Reactant, saddle point and product configurations for reactions 26–30.
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Figure 5: Reactant, saddle point and product configurations for reactions 31–36.

6

209



Article III

Figure 6: Reactant, saddle point and product configurations for reactions 37–41.

7

210



Article III

Figure 7: Reactant, saddle point and product configurations for reactions 42–50.

8

211



Article III

Figure 8: Reactant, saddle point and product configurations for reactions 51–56.
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Figure 9: Reactant, saddle point and product configurations for reactions 57–59, 60 and 66.
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Figure 10: Reactant, saddle point and product configurations for reactions 61–65, 67 and
68.
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Figure 11: Reactant, saddle point and product configurations for reactions 69–81.
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Figure 12: Reactant, saddle point and product configurations for reactions 82–87.
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Figure 13: Reactant, saddle point and product configurations for reactions 88–92.
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Figure 14: Reactant, saddle point and product configurations for reactions 89–92.
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Figure 15: Reactant, saddle point and product configurations for reactions 93–96.
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Figure 16: Reactant, saddle point and product configurations for reactions 97–99.
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Figure 17: Reactant, saddle point and product configurations for reactions 100–105.
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Figure 18: Reactant, saddle point and product configurations for reactions 106–111.
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Figure 19: Reactant, saddle point and product configurations for reactions 112–118.
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SI-1.2 Modifications of reactant and/or product configurations

(a) Reaction 58 (b) Reaction 82

(c) Reaction 100

(d) Reaction 103

(e) Reaction 104 (f) Reaction 105

(g) Reaction 106 (h) Reaction 108

Figure 20: Modifications made to the reactant or product configurations of the original
benchmark set of main-group molecular reactions.1,2
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(a) Reaction 109 (b) Reaction 111

(c) Reaction 112 (d) Reaction 113

(e) Reaction 114 (f) Reaction 117

Figure 21: Modifications made to the reactant or product configurations of the original
benchmark set of main-group molecular reactions.1,2
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SI-1.3 Energy barrier, reaction energy and imaginary frequency

In this section, the potential energy barrier, reaction energy and imaginary frequency ob-
tained at the first order saddle points are given for the large benchmark set of main-group
molecular reactions.

Table 1: Potential energy barrier height, reaction energy and the absolute imaginary fre-
quency at the saddle point for reactions 1–30

Rxn No. E‡ [kcal/mol] Erxn [kcal/mol] |ω0| [cm−1]

1 9.2 -6.3 343.5
2 88.2 -6.3 936.9
3 28.6 -4.5 1246.3
4 91.2 0.0 2450.5
5 67.6 0.0 2576.7
6 19.7 0.2 432.5
7 53.8 16.4 1486.6
8 35.9 -11.3 219.3
9 32.4 -2.7 169.1
10 42.1 3.3 1382.9
11 37.0 3.6 1337.6
12 36.6 11.7 217.1
13 32.5 17.9 158.7
14 56.4 -29.1 1217.2
15 50.6 -24.6 1217.5
16 12.2 -23.2 839.3
17 98.3 -19.4 592.6
18 79.4 -18.2 1081.4
19 78.8 -14.5 2144.9
20 67.1 -9.3 723.5
21 38.7 -8.6 1734.7
22 31.1 -1.6 1339.0
23 82.7 0.0 2854.8
24 62.6 3.6 774.6
25 72.1 2.7 1271.0
26 55.5 -12.9 535.5
27 48.5 0.0 506.0
28 37.1 3.6 1557.1
29 68.3 13.0 2139.1
30 120.2 41.4 2023.1
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Table 2: Potential energy barrier height, reaction energy and the absolute imaginary fre-
quency at the saddle point for reactions 31–60

Rxn No. E‡ [kcal/mol] Erxn [kcal/mol] |ω0| [cm−1]

31 54.6 -25.3 244.9
32 54.1 -25.3 402.1
33 46.8 -20.4 287.7
34 111.0 3.7 1306.7
35 99.4 28.2 1729.4
36 32.2 -9.6 1507.7
37 53.9 -11.4 2110.1
38 83.7 2.8 1541.1
39 82.5 9.3 601.9
40 87.6 17.1 397.8
41 81.6 31.9 1604.1
42 49.7 -16.6 1754.5
43 52.1 -13.3 2097.4
44 66.8 -5.4 2114.1
45 41.7 0.1 2108.7
46 68.4 2.8 1268.7
47 48.7 5.3 1958.0
48 83.9 9.1 1676.4
49 71.1 13.0 543.6
50 100.0 12.1 1471.9
51 67.9 -12.2 643.3
52 34.2 -9.8 1634.6
53 28.5 0.0 1489.4
54 48.1 0.0 1854.2
55 65.7 13.4 1950.7
56 81.1 -13.5 2020.1
57 65.6 5.0 1974.1
58 71.5 15.4 1666.0
59 91.7 33.6 1455.1
60 71.5 33.4 1666.2
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Table 3: Potential energy barrier height, reaction energy and the absolute imaginary fre-
quency at the saddle point for reactions 61-90

Rxn No. E‡ [kcal/mol] Erxn [kcal/mol] |ω0| [cm−1]

61 46.8 11.8 1337.4
62 82.0 0.0 1290.0
63 82.4 7.7 112.3
64 5.4 -52.6 1133.1
65 54.1 0.5 433.2
66 123.2 20.0 1371.0
67 50.5 -15.4 1997.4
68 31.2 -15.2 519.8
69 15.8 -48.3 516.7
70 56.5 -37.1 727.0
71 91.1 -27.4 1878.0
72 38.2 -25.8 434.4
73 67.5 -23.9 709.4
74 75.3 -21.1 92.0
75 75.0 -20.8 47.7
76 81.5 -18.6 1408.4
77 36.5 -16.5 925.2
78 124.3 0.2 1735.7
79 64.2 8.0 1549.4
80 44.0 9.1 719.1
81 36.5 -16.9 924.3
82 48.4 -11.8 418.8
83 80.7 -11.6 889.5
84 52.5 -0.6 1596.4
85 35.2 0.2 392.1
86 52.5 4.4 505.7
87 48.9 0.8 525.0
88 6.3 0.2 44.8
89 2.7 0.6 68.6
90 87.5 4.3 442.9
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Table 4: Potential energy barrier height, reaction energy and the absolute imaginary fre-
quency at the saddle point for reactions 91-121

Rxn No. E‡ [kcal/mol] Erxn [kcal/mol] |ω0| [cm−1]

91 84.6 3.9 778.8
92 75.1 4.0 571.5
93 53.1 0.1 558.7
94 73.5 8.2 1758.9
95 98.5 14.5 1387.3
96 17.1 -59.1 424.5
97 48.3 1.7 667.1
98 29.0 2.4 2132.7
99 28.1 -0.6 2127.8
100 25.6 -5.3 466.8
101 32.9 0.0 1549.5
102 47.8 13.6 1116.6
103 32.6 0.2 526.5
104 26.6 0.0 1194.2
105 15.2 -19.1 440.8
106 17.1 -25.6 488.4
107 8.8 -53.9 405.7
108 55.5 25.9 1156.6
109 18.3 -12.8 205.0
110 74.0 -10.4 1880.6
111 44.1 -16.1 1845.9
112 35.5 -5.3 1264.4
113 75.9 -25.1 1385.4
114 21.6 11.1 304.7
115 62.8 -18.0 401.3
116 45.4 29.5 391.1
117 18.9 2.4 348.2
118 31.6 -18.3 434.1
119 2.4 -4.1 861.0
120 52.6 0.0 1492.0
121 39.0 -4.1 916.4
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SI-2 Data relevant to the (EW-)CI-NEB method

SI-2.1 Comparison of linear interpolation in Cartesian coordinates

and the IDPP method

Figure 22: The maximum rise in energy (∆E = EHEI−Ereactant) along initial paths generated
by linear interpolation in Cartesian coordinates (shown in (a)) and by the IDPP method
(shown in (b)) for the large benchmark set of main-group molecular reactions. For clarity
the distribution of ∆E ∈ (0, 100] kcal/mol is shown as an inset in (a).

SI-2.2 Path lengths obtained by (EW-)CI-NEB

Figure 23: Distribution of path lengths of converged CI-NEB and EW-CI-NEB calculations,
using Nim = 10.
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SI-2.3 Evolution of inter-image distance in (EW-)CI-NEB

Figure 24: Features of the reaction path in CI-NEB and EW-CI-NEB calculations on the
ene-reaction of 1-propylene and ethylene. In the upper panel, the evolution of the maximum
and minimum inter-image distance along the reaction path during the CI-NEB (red) and
EW-CI-NEB (blue) optimization. In the lower panel, the evolution of the path length. The
calculations are started from an IDPP initial path.
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SI-2.4 Inter-image distances and angle distribution in (EW-)CI-

NEB

Figure 25: Bivariate distribution of average inter-image distances of CI to its two neighboring
images and the angle formed by the three images along the converged path for CI-NEB and
EW-CI-NEB calculations on the large benchmark set of main-group molecular reactions.

To further investigate the image distribution along the reaction paths obtained by CI-NEB
and EW-CI-NEB calculations on the large benchmark set of main-group molecular reactions,
the deviation from ’ideality’ is computed. For this purpose, the reaction is partitioned into
two segments, to the left and right of CI. The deviation from the ideal even distribution is
then computed,

γleft =
|RCI −RCI−1|∑CI−1
i=0 |Ri+1 −Ri|

γright =
|RCI+1 −RCI|∑N
i=CI |Ri+1 −Ri|

Then, γ is selected as the interval that exhibits a larger deviation from an even distribution
(i.e., γ = 1.0). The results are shown in Fig. 26.
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Figure 26: The deviation of the inter-image distance of CI to its neighboring images from
an ideal even distribution along the reaction path. The results are shown for CI-NEB and
EW-CI-NEB calculations on the large benchmark set of molecular reactions.

SI-2.5 Optimization profile to monitor (EW-)CI-NEB calculations

In this study, we present a new tool to visualize and monitor (EW-)CI-NEB calculations
and call it an optimization profile. In this scheme, the path at every optimization step is
interpolated using a piecewise-cubic polynomial3 and plotted along with the position of the
intermediate images. This allows us to visualize how the path/images ’slide down’ on the
energy surface towards the MEP. Optimization profiles may also reveal whether the path
may be kinked, calculation may become non-convergent or if the optimization has become
unstable. Furthermore, an optimization profile will also reveal whether an intermediate
energy minima is to be found along the path. In such cases, it may be the best choice of
action to halt the calculation, locate the intermediate energy minimum and carry out CI-
NEB calculation for the two path fragments, i.e. from reactant to intermediate state and
from intermediate to product state. The tool to generate an optimization profile from a NEB
calculation in ORCA is available in Ref.4
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Figure 27: Optimization profiles for CI-NEB and EW-CI-NEB calculations using Nim = 10
and 14 of the ene-reaction of 1-propylene and ethylene.
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Figure 28: CI-NEB and EW-CI-NEB optimization profiles for the reaction BH3NH3 +
BH2NH2 → 2BH2NH2 + H2 using Nim = 10, 14 and 18.
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SI-2.6 Convergence behavior of CI and TS

Figure 29: The relative energy of CI and TS as a function of optimization step for CI-
NEB, EW-CI-NEB and NEB-TS calculations, using both Nim = 8 and 12, of the Diels-Alder
addition of two cyclopentadienes.

Figure 30: The relative energy of CI and TS as a function of optimization steps for CI-
NEB, EW-CI-NEB and NEB-TS calculations, using both Nim = 8 and 12, of the hydrolysis
reaction of ethyl acetate.
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SI-3 Additional data for NEB-TS and IDPP-TS methods

SI-3.1 Energy deviation of NEB-TS (and IDPP-TS) saddle points

from reference set of saddle points

Figure 31: Energy deviation of saddle points obtained by IDPP-TS from the reference set
of saddle points. In the upper panel, the TS search is started using a modified empirical
Hessian matrix. In the lower panel, the TS search is started using the exact Hessian matrix.
In both sets of calculations, the initial configuration of the TS search is taken as the highest
energy image along an IDPP initial path.
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Figure 32: Energy deviation of saddle points obtained by NEB-TS from the reference set of
saddle points. The NEB-TS calculations use a TS activation threshold of εTS

max = 0.01 EH/a0.
In the upper panel, the TS search is started using a modified empirical Hessian matrix. In
the lower panel, the TS search is started using the exact Hessian matrix. In both sets of
calculations, the initial configuration of the TS search is taken as the climbing image from a
partially converged EW-CI-NEB calculation.
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Figure 33: Energy deviation of saddle points obtained by NEB-TS from the reference set
of saddle points. The NEB-TS calculations use a TS activation threshold of εTS

max = 0.002
EH/a0. In the upper panel, the TS search is started using a modified empirical Hessian
matrix. In the lower panel, the TS search is started using the exact Hessian matrix. In both
sets of calculations, the initial configuration of the TS search is taken as the climbing image
from a partially converged EW-CI-NEB calculation.

SI-3.2 Further analysis of selected reactions

SI-3.2.1 NEB-TS converges to incorrect saddle point

The NEB-TS method can converge to an incorrect saddle point, if not executed carefully,
i.e. a saddle point that is not connected to the given reactant or product state. In the
following, an example of one such reaction is taken. The reaction of 2-butanol and H2O
to form acetoin. The results of EW-CI-NEB and NEB-TS calculations for this reaction are
summarized in Table 5 and Fig. 34.
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Table 5: Investigation of the character of the saddle points obtained from NEB-TS calcu-
lations on the formation of acetoin from 2-butanol and H2O. The table shows results from
both EW-CI-NEB and NEB-TS calculations, i.e. an estimate of the activation energy E‡
and the absolute value of the imaginary frequency ω‡0 at the first order saddle point obtained
by the calculations. All calculations use Nim = 10. The two sets of NEB-TS calculations are
carried out using εTS

max ≈ 0.1 and 0.5 eV/Å.

Method E‡ [eV] ω‡0 [cm−1]

EW-CI-NEB 4.34 1464.5
NEB-TS(≈0.1 eV/Å) 4.34 1445.8
NEB-TS(≈0.5 eV/Å) 3.83 539.3

The saddle point obtained by EW-CI-NEB and NEB-TS(εTS
max ≈ 0.1 eV/Å) are in agree-

ment. This saddle point is denoted as (denoted by SP-I in Fig. 34. The saddle point
obtained by NEB-TS(εTS

max ≈ 0.5 eV/Å), labeled as SP-II, is approximately 0.51 eV lower
in energy than SP-I. Internal reaction coordinate analysis reveals that SP-II is indeed not
connected to the given reactant state. The correct saddle point, SP-I, can hence be obtained
by lowering the TS activation activation threshold. Also, sometimes, it may suffice to use a
more accurate initial Hessian, than the Almlöf model Hessian matrix used in these NEB-TS
calculations. For this particular case, however, NEB-TS(εTS

max ≈ 0.5 eV/Å) using an exact
Hessian also converges to SP-II.
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Figure 34: Internal reaction coordinate analysis of saddle points obtained by NEB-TS cal-
culations carried out on the reaction of 2-butanol and H2O to form acetoin. The reactant,
product and correct saddle point (SP-I) configurations are shown in the upper panel. The
configuration of the incorrect saddle point (SP-II), obtained by a NEB-TS(≈ 0.5 eV/Å) cal-
culation, is shown in the center of the lower panel. From an internal reaction coordinate
analysis started on SP-II, two energy minima are obtained, labeled as S1 and S2. The con-
figuration of these energy minima is shown in the lower panel. ∆E is the energy difference
between the configurations of the upper and lower panel.

SI-3.2.2 An alternative saddle point obtained by NEB-TS

The NEB-TS method can converge to saddle points that belong to a different reaction path
connecting the same given reactant and product states. In the following, an example of one
such reaction is taken. The cyclization of propene to form cyclopropane. The results of
EW-CI-NEB and NEB-TS calculations for this reaction are summarized in Table. 6 and
Figs. 35, 36 37. As is evident, the cyclization reaction is a very challenging reaction path
that is characterized by an extremely flat and high energy barrier, see Fig. 35.
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Figure 35: Optimization profile for a EW-CI-NEB-10 calculation the cyclization reaction of
propene.

The EW-CI-NEB method converges to a saddle point (SP-I) that gives an activation
energy of E‡ = 4.34 in agreement to the saddle point obtained by NEB-TS(εTS

max ≈ 0.5).
Note the geometries are also nearly the same. However, the magnitude of the vibrational
frequency calculated from the two saddle points is 74.0 and 330.9 cm−1. While, the saddle
point (SP-II) obtained by NEB-TS(εTS

max ≈ 0.1), is roughly 0.25 eV higher in energy than
that of EW-CI-NEB.

Table 6: Investigation of the character of the saddle points obtained from NEB-TS calcula-
tions on the cyclization reaction of propene. The table shows results from both EW-CI-NEB
and NEB-TS calculations, i.e. an estimate of the activation energy E‡ and the absolute value
of the imaginary frequency ω‡0 at the first order saddle point obtained by the calculations.
All calculations use Nim = 10. The two sets of NEB-TS calculations are carried out using
εTS
max ≈ 0.1 and 0.5 eV/Å.

Method E‡ [eV] |ω‡0| [cm−1]

EW-CI-NEB 3.57 74.0
NEB-TS(≈0.1 eV/Å) 3.82 574.1
NEB-TS(≈0.5 eV/Å) 3.59 330.9
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Figure 36: Internal reaction coordinate analysis of saddle points obtained by NEB-TS calcu-
lations carried out on the reaction of cyclization reaction of propene. The reactant, product
and correct saddle point (SP-I) configurations are shown in the upper panel. The configu-
ration of the other saddle point (SP-II), obtained by a NEB-TS(≈ 0.1 eV/Å) calculation, is
shown in the center of the lower panel. From an internal reaction coordinate analysis started
on SP-II, two energy minima are obtained, labeled as S1 and S2. The S1 corresponds to
the given reactant energy minimum, while S2 corresponds to some very shallow intermediate
configuration on the flat surface along the top of the energy barrier. The configuration of
these energy minima is shown in the lower panel. ∆E is the energy difference between the
configurations of the upper and lower panel.

IRC analysis from SP-II reveals that this saddle point is connected to the reactant state.
However, the second state obtained by the IRC calculations is a very shallow intermediate
energy minimum located on the top of the flat energy barrier. Therefore, to further investi-
gate the connectivity of SP-II, two EW-CI-NEB calculations are carried out. Namely, from
the reactant state to SP-II and from SP-II to the product state. The results are summarized
in Fig. 37.
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Figure 37: Optimization profile for two EW-CI-NEB-10 calculations on the cyclization re-
action of propene. The calculations are started from an initial path constructed using the
reactant state and SP-II (left) and from SP-II to the product state (right). SP-II is the
saddle point obtained by the NEB-TS(εTS

max ≈ 0.1 eV/Å) calculations. The EW-CI-NEB
calculations indicate that SP-II is indeed connected to the same reactant and product states
as SP-I, i.e. the SP obtained by the NEB-TS(εTS

max ≈ 0.1 eV/Å) calculation.

The two partitioned EW-CI-NEB calculations carried out indicate that SP-II is likely
to be connected to the given reactant and product energy minima, i.e. if the very shallow
intermediate energy minimum along the path is excluded. Therefore, to conclude, it is
highly likely that the NEB-TS(εTS

max ≈ 0.1 eV/Å) calculation identifies a saddle point that
characterizes an alternative reaction coordinate than the one obtained by EW-CI-NEB and
NEB-TS(εTS

max ≈ 0.5 eV/Å) calculations. Interestingly, if the exact Hessian is used as the
initial Hessian matrix in NEB-TS(εTS

max ≈ 0.1 eV/Å) the calculation converges to SP-I.

SI-3.2.3 NEB-TS identifies different saddle point on same path

The NEB-TS method can converge to a different saddle point (than the highest energy one)
along a multiple extrema reaction path. In the following, an example of one such reaction
is taken. The rearrangement of allyl-phenyl-ether to phenylpropylene oxide. The results
of EW-CI-NEB and NEB-TS calculations for this reaction are summarized in Table 7 and
Figs.38 and 39. This reaction is (at least) a two-step reaction pathway. Therefore, by locating
the intermediate energy minimum and carrying out two EW-CI-NEB calculations, i.e., from
the reactant to intermediate state and from the intermediate to the product state, the two
saddle points along the reaction coordinate are obtained accurately, see Fig. 38.
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Figure 38: Energy profiles for the rearrangement of allyl-phenyl-ether to phenylpropyelene.
The reaction coordinate includes an intermediate energy minimum (labeled as I) and hence
two EW-CI-NEB calculations are carried out, from the reactant (R) to the intermediate
state and from the intermediate to the product state (P). The two saddle points along the
coordinate are labeled as SP-1 and SP-2. The reactant, product, and intermediate state
configurations along with the two saddle point configurations are shown as insets. The
EW-CI-NEB calculations are considered converged when the atom forces acting on CI drop
below the prescribed convergence thresholds. Therefore, the initial energy maximum, at
around x = 7.5 Å, is not necessarily a true energy maximum along the reaction path (and
hence a first order saddle point on the energy surface). It could be only an artefact of the
interpolation, as the atom forces acting tangential to the path are used by the interpolant.

The saddle point included in the reference set of saddle points is SP-2 and corresponds
to the highest energy, first order, saddle point along the reaction path. While, the saddle
points obtained by NEB-TS(εTS

max ≈ 0.5) eV/Å and NEB-TS(εTS
max ≈ 0.1) eV/Å correspond to

SP-1, see Fig. 39. If the exact Hessian is used as the initial Hessian matrix, the two NEB-TS
calculations converge to the higher energy saddle point, i.e. SP-2.

Table 7: Investigation of the character of the saddle points obtained from NEB-TS calcula-
tions on the rearrangement of allyl-phenyl-ether to phenylpropylene oxide. The table shows
results from two intermediate EW-CI-NEB calculations and NEB-TS calculations, i.e. an
estimate of the activation energy E‡ and the absolute value of the imaginary frequency ω‡0
at the first order saddle point obtained by the calculations. All calculations use Nim = 10.
The two sets of NEB-TS calculations are carried out using εTS

max ≈ 0.1 and 0.5 eV/Å.

Method E‡ [eV] |ω‡0| [cm−1]

EW-CI-NEB (SP-1) 3.79 442.0
EW-CI-NEB (SP-2) 3.27 561.2
NEB-TS(≈0.1 eV/Å) 3.26 568.2
NEB-TS(≈0.5 eV/Å) 3.28 557.6 (note that ω1 = −34.0)
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Figure 39: Saddle point configurations obtained from NEB-TS using εTS
max ≈ 0.1 and 0.5

eV/Å are shown and are in agreement to SP-1 shown in Fig. 38.

SI-3.3 Vibrational analysis of allyl-vinyl-ether reaction

Table 8: Imaginary frequencies (ω0, ω1, ω2) for the NEB-TS calculations of the rearrangement
of allyl-vinyl-ether to 1-pentene-5-one, where the TS activation threshold (εTS

max) is varied.
Note that εTS

RMS = 1
2
εTS
max in all calculations.

εTS
max [EH/a0] ω0 [cm−1] ω1 [cm−1] ω2 [cm−1]

0.02 -488.5 -158.4 -23.0
0.018 -478.9 -151.7 -25.5
0.016 -426.9 -139.0 -38.2
0.014 -426.9 -139.0 -38.2
0.012 -291.4 -165.0 –
0.010 -295.6 -158.6 –
0.008 -295.6 -158.6 –
0.006 -462.6 – –
0.004 -473.9 – –
0.002 -466.4 – –
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SI-4 CI-NEB and NEB-TS method parameters

To investigate selected CI-NEB and NEB-TS method parameters, a smaller benchmark set
of 5 relatively simple reactions is used. The set includes HCN isomerization (system 1),
rearrangement reaction of 1,5 hexadiene (system 2), Diels-alder cycloaddition (system 3),
Ene-reaction of 1-propylene and ethylene (system 4) and addition of H2 to formaldehyde
(system 5).

Figure 40: Barrier heights for the five reactions of the small benchmark set are shown by red
(left vertical axis). Absolute imaginary frequencies (obtained from the analytical Hessian
matrix computed at the saddle points) are shown by blue (right vertical axis).

Figure 41: Minimum energy paths for the five reactions of the small benchmark set.
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SI-4.1 Effect of the spring constant value

Figure 42: The average number of computational cycles required to complete the small
benchmark set using both CI-NEB and EW-CI-NEB as a function of the logarithm of the
spring constant, ksp. Note that CI-NEB is unable to converge for system 2. In (a) system 2
is included in the average number of computational cycles, while in (b) it is excluded.

SI-4.2 Effect of the number of images

Figure 43: Computational efficiency of CI-NEB (red) and EW-CI-NEB (blue) on the small
benchmark set, using variable number of images. Since, CI-NEB calculation of system 2
is non-convergent. The data from CI-NEB and EW-CI-NEB calculations on system 2 are
omitted.
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SI-4.3 Comparison: L-BFGS and VPO

Figure 44: Computational efficiency of EW-CI-NEB calculations measured on the small
benchmark set, using both L-BFGS and velocity projection optimization (VPO) method.
Note that the total number of optimization steps allowed was increased from 500 to 1000 for
VPO.

SI-4.4 Minimization of root-mean-square deviation (RMSD)

Figure 45: Computational efficiency of EW-CI-NEB calculations measured on a slightly
modified benchmark set, where the product configurations have been uniformly displaced
by 0.5 Å in x-direction and globally rotated by 30◦ (φ, θ, ψ = π/6). Three different sets
of EW-CI-NEB calculations are then carried out; (i) without any RMSD minimization of
the reactant and product configurations (ii) RMSD minimization a priori to the initial path
generation of NEB and (iii) RMSD minimization is carried out, both a priori to the initial
path generation and in each optimization step of EW-CI-NEB. The EW-CI-NEB calculations
for systems 3 and 5 are unable to converge when no RMSD minimization is employed. In
(a) the data for systems 3 and 5 is included, while in (b) it is omitted.
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SI-4.5 Effect of activating climbing image

Figure 46: Computational efficiency of EW-CI-NEB/L-BFGS calculations measured on the
small benchmark set, where the threshold to activate CI is varied from ≈ 0.1− 51 eV/Å

SI-4.6 Effect of the TS activation threshold

Figure 47: Computational efficiency of NEB-TS calculations using a variable TS activation
threshold from εTS

max ≈ 0.05 − 0.5 eV/Å on the small benchmark set. For these relatively
simple systems it is beneficial to activate TS in the very early stages of the EW-CI-NEB
optimization.
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SI-4.7 Constant trust-radius and resetting L-BFGS memory

Figure 48: Computational efficiency of EW-CI-NEB/L-BFGS calculations on the small
benchmark set where the allowed maximum step-size is varied, both with and without re-
setting the L-BFGS memory when the maximum step-size condition is invoked.

Table 9: Computational efficiency and success rate of EW-CI-NEB/L-BFGS calculations on
the large benchmark set of molecular reactions. The allowed maximum step-size used is 0.2
and 0.4 a0, with and without resetting the L-BFGS memory when the maximum step-size
condition is invoked.

∆step[a0] Reset memory 〈Eval.〉 Success rate [%]

0.2 True 924±603 100
0.2 False 1001±843 96
0.4 True 897±675 98
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ABSTRACT: Recent Rydberg spectroscopy measurements of a diamine molecule, N,N′-
dimethylpiperazine (DMP), indicate the existence of a localized electronic state as well as a
delocalized electronic state. This implies that the cation, DMP+, can similarly have its
positive charge either localized on one of the N atoms or delocalized over both. This
interpretation of the experiments has, however, been questioned based on coupled cluster
calculations. In this article, results of high-level multireference configuration interaction
calculations are presented where a localized state of DMP+ is indeed found to be present
with an energy barrier separating it from the delocalized state. The energy difference
between the two states is in excellent agreement with the experimental estimate. The results
presented here, therefore, support the original interpretation of the experiments and illustrate a rare shortcoming of CCSD(T), the
“gold standard” of quantum chemistry. These results have implications for the development of density functionals, as most
functionals fail to produce the localized state.

A mixed-valence molecule, defined as a molecule
containing two or more redox sites in different oxidation

states, can exhibit a localized or a delocalized electronic
structure. The occurrence and energy difference between the
two types of states depend on the detailed molecular structure,
such as the distance between redox sites or the chemical bonds
connecting them, with either through-space and through-bond
mechanisms playing a role.
The radical cation of N,N′-dimethylpiperazine (DMP), see

Figure 1, has been identified as an interesting organic mixed-
valence molecule for studying lone-pair interactions and
delocalization/localization phenomena.1−7 Experimental stud-
ies (EPR/Raman) on DMP+ were originally performed in
solution,1−3 where resonance Raman spectra together with
calculations indicated the electronic structure of DMP+ to be
most consistent with a C2h-symmetric delocalized state (here
called DMP-D+).1,2 Until recently, a localized electronic
structure of DMP+ had not been observed experimentally.
Ultrafast time-resolved Rydberg spectroscopy was carried out
in the gas phase, where an excitation from the ground state of
the DMP molecule to the 3p Rydberg state was used to
monitor the picosecond time-scale dynamics from a localized
to a delocalized state. By varying the energy of the photon, the
energy difference between the two states could be determined
as 0.33 eV, in favor of the delocalized state.4,5 This is a rare
case where the energy difference between localized and
delocalized electronic states in a molecule has been determined
experimentally, and it provides an important test case for
theoretical methods where the balance in the electronic
structure description of the two types of states can be
problematic.

Since the Rydberg state electron is distributed over a large
region, the Rydberg excited molecule can be assumed to
resemble closely the cation. Density functional theory (DFT)
calculations with commonly used density functionals, however,
fail to give a localized state of DMP+ (the BHLYP functional8

being the exception), while calculations with a functional
where self-interaction error is explicitly removed give results
consistent with the Rydberg state experiments.5 These DFT
results have subsequently led to a debate in the literature, and
the existence of a localized state of DMP+ on the potential
energy surface (PES) been questioned based on the fact that
coupled cluster theory calculations at the CCSD(T) level do
not produce a localized state.6,7 The interpretation of the
experimental measurements has thus also been questioned
based on the assumption that CCSD(T) calculations, the “gold
standard” of quantum chemistry, produce a reliable description
of the PES. An important question, therefore, arises as to
whether DFT and CCSD(T) calculations are sufficiently
accurate to describe DMP+ or whether the experimental
observations need to be reinterpreted.
Organic mixed-valence cations have actually been found to

present considerable challenges to both state-of-the-art wave
function theory and DFT approaches.9,10 As discussed by
Kaupp and co-workers, wave function theory approaches based
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on unrestricted Hartree−Fock (UHF) wave functions have an
initial bias toward symmetry breaking and hence charge
localization, in addition to spin contamination. Electron
correlation is imperative for describing the possible delocaliza-
tion present in such systems, but unrestricted MP2 calculations
have been found to suffer from exaggerated spin contami-
nation. Therefore, a robust dynamic correlation treatment
appears necessary, and as these systems by nature have near-
degeneracies, it may also be important to describe the static
correlation reliably from the start (i.e., via multireference
approaches) in addition to the dynamic correlation (though
electron correlation is not always clearly separable).
In this study, multireference wave function calculations of

the PES of the DMP cation are carried out with the aim of
resolving the controversy and answering definitively the
question of whether both localized and delocalized states
exist on the ground-state DMP+ energy surface. Using a 78-
point cut of the energy surface calculated with multireference
configuration interaction (FIC-MRCI+Q), we firmly establish
the PES of the DMP cation as containing both a localized state
and a delocalized state.
The lowest energy structure of the neutral DMP molecule is

a chair conformer of C2h symmetry with both methyl groups in
equatorial positions (Figure 1a), which clearly reveals the
presence of lone pairs on each sp3-hybridized nitrogen (atoms
N2 and N6 in Figure 1e,f). After removing one electron from a
nitrogen lone-pair orbital, a positive hole remains, which
results in Jahn−Teller-type distortion and the formation of a
distorted structure of Cs symmetry. The geometry of this
localized structure, DMP-L+, is shown in Figure 1b (a
symmetrically equivalent conformer also exists where the
hole is localized on the other nitrogen atom). The structure of
DMP-L+ clearly reflects the different electronic nature of the
nitrogen atoms, where the ionized nitrogen site exhibits more
sp2-like character and the nonionized site remains sp3-like. This
is also seen in the spin density in Figure 1b, showing the
unpaired electron localized on only one nitrogen atom.
Alternatively, the charge can be delocalized between both
nitrogen atoms, resulting in a DMP-D+ structure of C2h
symmetry. The delocalized DMP+ structure shown in Figure
1c reveals the spin density as delocalized over both nitrogen
atoms, and interestingly a contribution from the bridging C−C

atoms can be seen, suggesting the involvement of the C−C
bonds in lone-pair interactions that result in the delocalized
state. The transition from the localized to the delocalized state
of DMP+ involves geometrical changes such as the bending
and rotation of the methyl groups, as well as elongation of C−
C bonds. Taking this into account, we find that two dihedral
angles, D1 and D2, serve the purpose of being suitable
descriptors for characterizing a cut of the PES that connects
both delocalized and localized minima. The D1 (D2) angle is
defined via the two planes created by C5−N6−C7 (C1−N2−
C3) and N6−C7−C8 (N2−C3−C4) atoms (Figure 1e,f).
Previous theoretical studies of DMP+ have involved

geometry optimizations to find the lowest energy atomic
configuration and minimum energy paths at the lower levels of
theory as well as single-point calculations at higher levels of
theory. However, the absence of the DMP-D+ and DMP-L+

minima for some electronic structure methods complicates
comparisons, introduces an unfortunate dependence on the
minimization algorithm employed as well as the initial
structure, and ideally requires analytical gradients. In order
to conveniently compare different electronic structure methods
(with or without available analytical gradients) and to quantify
the differences between methods, we instead utilize a 78-point
PES cut where the dihedral angles D1 and D2 vary from 70 to
175°. The surfaces are interpolated using a biharmonic spline
interpolation provided in Matlab.11 For each surface point,
constrained geometry optimizations at the BHLYP/aug-cc-
pVDZ level are performed where the D1 and D2 angles are
fixed while the energy is minimized with respect to all other
atom coordinates. Single-point energy evaluations for all
methods are then carried out on the constraint-optimized
BHLYP structures (an alternative choice of configurations is
discussed in the Supporting Information (SI)).
Figure 2a shows the energy surfaces calculated with the

BLYP and B3LYP density functionals. Only a single minimum
is found, corresponding to the delocalized state at ∼±90°.
These results represent the behavior of most common density
functionals. Figure 2b (bottom) shows the energy surface
obtained with the BHLYP functional, where instead two well-
resolved minima are obtained, one corresponding to a localized
state, DMP-L+, at D1 = −132.4° and D2 = 169.4°, and the
other corresponding to a delocalized state, DMP-D+, at

Figure 1. Structure of (a) neutral N,N′-dimethylpiperazine, DMP (the primary eq-eq conformer), (b) and (e) the localized cation, DMP-L+, (c)
and (f) the delocalized cation, DMP-D+, and (d) the saddle point for the transition between DMP-L+ and DMP-D+, denoted DMP-SP+. The spin
densities shown in (b) and (c) correspond to an isosurface level of 0.01 electron/Å3. The definition of the dihedral angles D1 and D2 that are used
to span a cut through the energy surface are shown in (e) and (f), and their values in DMP-L+ and DMP-D+ are given, as well as the C−C bond
length in the two structures (BHLYP level of theory).
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±88.7°. These values are obtained from full optimization. A
first-order saddle point representing a transition state between
the two states (DMP-SP+ in Figure 1d) is obtained at D1 =
−97.3° and D2 = 151.8°. The energy difference between
DMP-D+ and DMP-L+ is found to be +0.178 eV using fully
relaxed structures, with DMP-D+ being more stable. An energy
barrier of +0.033 eV is found for the transition from DMP-L+

to DMP-D+. Figure 2b (top) shows the energy surface
calculated using the highest level of theory considered in this
work, the multireference wave function method, MRCI+Q. A
cc-pVDZ basis set was used, and the structures were those
obtained from the BHLYP surface. The reference in the MRCI
+Q calculation is a CASSCF wave function with a large active
space of 11 electrons in 12 orbitals (CAS(11,12)). The fully
internally contracted version of MRCI (FIC-MRCI, imple-
mented in ORCA12) was used, and the Davidson size-
consistency correction13 for unlinked quadruples (Q) was
applied. The internal contraction avoids bottlenecks associated
with the traditional uncontracted MRCI approaches by
applying an excitation operator to the whole reference wave
function. The CAS(11,12) active space, including σ H3C−N
and C−C orbitals, as well as the corresponding virtual orbitals
and the natural orbitals are shown in Figure 3. This active
space was deemed large enough to capture the essential orbital
interactions in the system.
The PESs of BHLYP and FIC-MRCI+Q are overall

remarkably similar, exhibiting resolved minima for both
DMP-D+ and DMP-L+ for similar coordinate values as well
as a clearly defined energy barrier region. The magnitude of the
energy difference between the delocalized and localized regions
is the main difference, with BHLYP overstabilizing the
localized state.
Energy surfaces were also calculated at the coupled cluster

level of theory using either a singles−doubles expansion
(CCSD) or the singles−doubles and perturbative triples
expansion (CCSD(T)) as shown in Figure 2c. Importantly,
for each surface point, a stability analysis (calculation of the
electronic Hessian) was performed for the UHF SCF solution,
and in many cases instabilities were found; new stable
solutions were subsequently generated. In fact, it was found
that all stable UHF SCF solutions had a localized electronic
structure, and no delocalized minimum could be found at the
HF level. The CCSD surface (shown in Figure 2c, lower) is
overall comparable to BHLYP surface in terms of relative
energy, while the position of the DMP-L+ minimum is closer to
the MRCI+Q minimum. The two minima are directly visible
on the surface and are consistent with the results of previous
CCSD geometry optimizations.5,6 The energy surface shows,
furthermore, the presence of a low-energy energy barrier. Spin
population analysis of the unrelaxed CCSD density for the D1
= −90°, D2 = 90° point (Mulliken nitrogen spin populations
of 0.38 and 0.30, respectively) confirms the electronic structure
as mostly delocalized with CCSD, despite being expanded
from a localized UHF reference wave function. Despite the
minor symmetry breaking present, the CCSD wave function
appears to describe the electronic structure and energy surface
of DMP+ qualitatively correctly. The energy difference between
DMP-D+ and DMP-L+ is calculated to be +0.22 eV, in
agreement with previous results (0.23 eV).5 However,
remarkably, when perturbative triples excitations are added
(i.e., the CCSD(T) method), the PES changes substantially.
The CCSD(T) surface (Figure 2c, upper) has only one

Figure 2. Potential energy surfaces calculated at the (a) B3LYP
(upper) and BLYP (lower), (b) FIC-MRCI+Q(11,12) (upper) and
BHLYP (lower), and (c) CCSD(T) (upper) and CCSD (lower)
levels of theory. The aug-cc-pVDZ basis set is used, except in the
MRCI calculation where cc-pVDZ is used. The BHLYP functional
with 50% exact exchange produces a minimum on the energy surface
(unlike BLYP and B3LYP) corresponding to a localized state, 0.18 eV
higher in energy than the delocalized state. The structures are relaxed
at the BHLYP level, subject to the constraints on the two dihedral
angles defining the energy surface, and the other calculations are
carried out for those structures. The high-level FIC-MRCI+Q
calculations give a localized state that is 0.34 eV higher in energy
than the delocalized state, in close agreement with the experimental
estimate of 0.33 eV. The CCSD(T) calculation fails to give a localized
state even though it is present in the CCSD calculation.
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minimum, analogous to the results of most DFT methods. The
localized state is missing.
The results presented here (see Table 1) obtained at the

MRCI+Q level of theory with a large CASSCF(11,12)

reference wave function clearly establish the presence of both
a localized and a delocalized minimum on the PES of the DMP
cation. Furthermore, the energy difference calculated using the
aug-cc-pVDZ basis set is 0.336 eV, in excellent agreement with
the measured energy difference between delocalized and
localized Rydberg energy states.5 While the MRCI+Q
calculations depend on the theory level used for structural
optimization, we note that the use of alternative structures at
the CCSD or DMRG-CASSCF(19,20) level (to be reported
on later) result in small changes to the energy difference (less
than 0.02 eV). The barrier from DMP-L+ to DMP-D+ (using
the BHLYP-located minima and saddle point geometries) is
calculated to be 0.05 eV. The multireference wave function
energy surface hence reinforces the original interpretation of
the experimental measurements that a localized state exists,
separated by an energy barrier from the delocalized state. This
still hinges on the assumption that the Rydberg states resemble
the states of the molecular cation.
The cc-pVDZ basis set was used for the calculations of the

energy surface, while a larger aug-cc-pVDZs basis set was used
for the calculations of the local minima. We estimate that

increasing the basis set further would change the relative
energy by less than ∼0.02 eV, based on explicitly correlated
CCSD-F12 calculations (CCSD-F12/cc-pVDZ-F12 results
give an energy difference of 0.238 eV) as well as large-basis
local-correlation CCSD calculations (see the SI).
In a recent comment, Ali et al.6 presented CCSD and

CCSD(T) calculations of DMP+ and compared them with
DFT results. They argued that CCSD(T) gives accurate results
and that the absence of a localized state in most DFT
calculations does not represent a shortcoming of those
functionals. From the high-level MRCI+Q results presented
here, it is clear that the CCSD(T) calculations are in fact in
error, possibly in part due to its single-reference nature. The
lack of a stable delocalized solution at the reference UHF level
(as shown by stability analysis) and the contrasting behavior of
CCSD and CCSD(T) suggest this. In order to understand
whether the behavior of CCSD(T) stems from the flawed
UHF reference function or alternatively the perturbative triples
correction, we performed CCSD(T) calculations using
alternative reference wave functions, as detailed in the SI.
CCSD(T) calculations using Brueckner orbitals,14,15 quasi-
restricted orbitals,16 and UKS-DFT orbitals did not, however,
lead to an improved CCSD(T) energy surface; see SI for a
discussion. We also performed orbital-optimized coupled
cluster theory (OO-CCD(T)) calculations, where the orbitals
are variationally optimized at the CCSD level (instead of the
HF level), thus effectively removing any effect of the HF
reference. While this encouragingly gave a relaxed OO-CCD
density that showed complete delocalization (without
symmetry-breaking) according to spin population analysis of
the D1 = −90°, D2 = 90° point (see Table S2 in the SI), the
OO−CCD(T) surface is still missing the DMP-L+ minimum,
as shown in Figure S1 in the SI. These results suggest that the
HF reference wave function is not the culprit in the CCSD(T)
calculation, but rather the wave function expansion itself,
perhaps due to an imbalance in the static and dynamic
correlation of the wave function when the perturbative triples
correction is included. It would be interesting to see whether

Figure 3. CAS(11,12) active space for (a) DMP-D+ and (b) DMP-L+. Natural orbitals calculated at the CASSCF/aug-cc-pVDZ level of theory on
the BHLYP/aug-cc-pVDZ structures are shown with their natural occupation numbers. The active space contains two N lone pairs, two σ H3C−N
and two σ C−C bonding orbitals, and the corresponding virtual orbitals. As seen, the orbitals associated with the N lone pairs have acquired
considerable C−C bond character in both DMP-D+ and DMP-L+ states, and the C−C σ* orbitals have significant fractional occupation (0.02−
0.03), suggesting the importance of the C−C bonds in a through-bond delocalization mechanism. It was found necessary to include virtual N 3p
atom-like orbitals for a balanced active space.

Table 1. Single-Point BHLYP, MP2, CCSD, and FIC-MRCI
+Q(11,12) Energies (eV) of DMP-D+ and DMP-SP+

Relative to DMP-L+, Calculated Using the Relaxed BHLYP/
aug-cc-pVDZ Structures

method ΔE ESP − Eloc
BHLYP/aug-cc-pVDZ 0.178 0.033
MP2/aug-cc-pVDZ 0.153 0.081
CCSD/aug-cc-pVDZ 0.221 0.012
FIC-MRCI+Q(11,12)/aug-cc-pVDZ 0.336 0.050
experiment5 0.33
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these problems are resolved at the (very expensive) CCSDT
(full triples)17 or CCSDT(Q)18 levels (full triples and
perturbative quadruples) or via alternative triples approxima-
tions.19−24

In summary, we have presented a combined single-reference
and multireference wave function theory investigation of the
DMP cation and have shown that the molecule represents an
unusual challenge to standard quantum chemistry methods,
whether at the DFT level or the wave function theory level.
Surprisingly, the CCSD(T) level of theory gives a qualitatively
incorrect energy surface, failing to describe the localized state
of the DMP cation that is unquestionably present at the MRCI
+Q level of theory and is inferred from Rydberg spectroscopy
measurements. The DMP cation, despite its apparent
simplicity, is a truly challenging case for correlated wave
function theory, and the presented results should make the
system useful as a benchmark system for the study of electronic
state localization and guide the development of more robust
and affordable correlated wave function methods as well as
density functionals.
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1. Computational details

All calculations were performed using the ORCA 4.0 quantum chemistry code.1 Calculations

were performed using the correlation-consistent basis sets.,2 3 Coupled cluster calculations

were performed using multiple reference wavefunctions as described below. Stability analysis

was performed for all HF calculations. Saddle points connecting the localized and delocalized

minima were located at the BHLYP level of theory using an eigenvector-following method

using the full analytical Hessian as implemented in ORCA.

2. Choice of optimization method for constrained opti-

mizations

The choice to use BHLYP to generate delocalized and localized geometries for all surfaces

is justified as BHLYP is one of very few functionals (as discussed in Cheng et al.4) that

gave converged minima for both DMP-L+ and DMP-D+ states and analytical gradients are

readily available. We also compared the quality of the BHLYP structures to CCSD struc-

tures for DMP-L+ and DMP-D+ via higher level single-point FIC-MRCI+Q/aug-cc-pVDZ

single point calculations. The FIC-MRCI+Q total energies were lowest when using CCSD

structures (hence being closer to the FIC-MRCI+Q minima) but the BHLYP structures were

not far off. Finally, the energy difference between DMP-L+ and DMP-D+ is hardly affected

(< 0.02 eV) by the geometric difference between CCSD and BHLYP.

3. Basis set convergence of correlated wavefunctions

The basis set convergence of the DMP-L+ and DMP-D+ energy difference (using BHLYP/aug-

cc-pVDZ structures) was studied further at the CCSD level using both local correlation the-

ory (domain-based local pair natural orbitals, DLPNO) and F12 explicit correlation. The

DLPNO approximation enables the use of large basis sets while the explicitly correlated
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method exhibits faster convergence to the basis set limit. Tight thresholds were used in the

DLPNO approximation (TightPNO keyword in ORCA).

The results in Table 1 reveals that the basis set convergence of DMP-L+ and DMP-D+

is relatively mild with the small cc-pVDZ and aug-cc-pVDZ basis sets giving very small

errors (< 0.02 eV) compared to either DLPNO-CCSD/aug-cc-pVQZ or DLPNO-CCSD-

F12/cc-pVQZ-F12. This justifies the use of these basis sets in our correlated wavefunction

calculations for the energy surfaces, both at the coupled cluster level and the MRCI+Q level,

as correlated wavefunction methods exhibit very similar basis set dependence in general.

Table 1: The basis set dependence of the energy difference between DMP-L+ and DMP-D+

at the DLPNO-CCSD level.

DLPNO-CCSD/cc-pVDZ 0.210
DLPNO-CCSD/cc-pVTZ 0.197
DLPNO-CCSD/cc-pVQZ 0.163
DLPNO-CCSD/aug-cc-pVDZ 0.179
DLPNO-CCSD/aug-cc-pVTZ 0.169
DLPNO-CCSD/aug-cc-pVQZ 0.170
DLPNO-CCSD-F12/cc-pVDZ-F12 0.198
DLPNO-CCSD-F12/cc-pVTZ-F12 0.191
DLPNO-CCSD-F12/cc-pVQZ-F12 0.194

4. Coupled-cluster calculations with different reference

wavefunctions.

The CCSD and CCSD(T) PES surfaces were calculated using different reference wave func-

tions: quasi-restricted orbitals (QRO),5 PBE orbitals and Brueckner orbitals. All CC calcu-

lations started from a stable SCF solution. The data is presented in Figure S1. For CCSD,

DMP-L+ and DMP-D+ minima were always present on the surfaces regardless of the refer-

ence wave function used, with only some changes in energies. The energy surface changed

slightly compared to UHF-CCSD, especially regarding the position of the DMP-L+ minimum

and the height of the saddlepoint region between DMP-L+ and of DMP-D+. For CCSD(T),
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the use of QRO and PBE references did not influence the surface much (Figure S1a and

S1b) compared to UHF-CCSD(T). However, the CCSD(T) PES obtained using Brueckner

orbitals (Figure S1c) was found to be strangely chaotic in comparison to other CCSD(T)

results. The reasons for this are not presently clear.

Calculations were also performed using orbital-optimized coupled-cluster theory where

the orbitals are simultaneously relaxed at the CCSD level, resulting in optimal orbitals for

the CCSD wavefunction, which results in the absence of single excitations, hence the name

OO-CCD. On top of the OO-CCD wavefunction, the perturbative (T) correction was also

calculated. The results for OO-CCD give a rather similar surface as UHF-CCSD, with some

changes in the depth of the energy wells. The OO-CCD(T) surface suffers from the same

problem as the other CCSD(T) surfaces.
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Figure 1: The potential energy surfaces calculated at the CCSD(T)/cc-pVDZ(upper) and
CCSD/cc-pVDZ (lower) level of theory using different reference wave functions: (a) QRO,
(b) PBE, (c) Brueckner and (d) UHF. Additionally, orbital optimized coupled cluster surfaces
are shown in (e): OO-CCD(T) (upper) and OO-CCD (lower).
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5. Symmetry-breaking in the electronic structure of

DMP-D+.

The DMP-D+ state is symmetric with respect to nuclear coordinates but the wavefunction

can artificially break symmetry as can be seen by inspecting the difference in nitrogen atom

spin populations of a Mulliken decomposition of the wavefunction. Table 2 below compares

Mulliken spin population on the nitrogen atoms from different electronic structure methods

on selected points in the delocalized region.

Table 2: Mulliken spin populations on nitrogen atoms for the surface points which correspond
to the DMP-D+ minimum found on the potential energy surfaces calculated at various levels
of theory. BHLYP constraint-optimized structures were used.

HF (D1=-80, D2=80), stable WF 0.98 0.09
HF (D1=-80, D2=80), unstable WF 0.51 0.51
B3LYP (D1=-90, D2=90) 0.40 0.40
BHLYP (D1=-90, D2=90) 0.43 0.43
CCSD (D1=-90, D2=90) linearized, stable HF WF 0.32 0.34
CCSD (D1=-90, D2=90) unrelaxed, stable HF WF 0.38 0.30
CCSD (D1=-90, D2=90) linearized, unstable HF WF 0.34 0.34
CCSD (D1=-90, D2=90) unrelaxed, unstable HF WF 0.34 0.34
OO-CCD (D1=-90, D2=90) relaxed 0.40 0.40
CASSCF(11,12) (D1=-90, D2=90) 0.37 0.37
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6. Cartesian coordinates of optimized geometries

A compressed directory with XYZ files for the entire 78-point BHLYP-constraint-optimized

surface is provided as additional supporting information.

Table 3: The Cartesian coordinates [Å] of the DMP-D+ minimum relaxed at the
BHLYP/aug-cc-pVDZ level.

N 0.22030638483835 1.38335169439629 -0.00141428270678
C -0.23307706173303 0.76534307809786 1.18740587238139
C 0.23894425174175 -0.76386646452091 1.18722001517577
N -0.22030684419671 -1.38335113899910 0.00141431037829
C 0.23307659981281 -0.76534262310306 -1.18740587001465
C -0.23894470846030 0.76386687853965 -1.18721999841372
C 1.53471993591523 1.99276339527823 -0.00517159621707
C -1.53471981040781 -1.99276394447674 0.00517158067032
H -1.32174960069968 0.77017282021861 1.23316844148976
H 0.17448322791798 1.25447472839007 2.06793203095279
H -0.16433157233165 -1.25187750268697 2.07034182284149
H 1.32782459474641 -0.76866820858800 1.22766333849882
H 0.16433122635944 1.25187782151717 -2.07034182920387
H -1.32782506498139 0.76866867233390 -1.22766348128770
H 1.32174917170525 -0.77017245222663 -1.23316826841778
H -0.17448366508040 -1.25447438095232 -2.06793194920358
H 1.64798713622730 2.61399603089722 0.87961502815664
H 1.64232763481302 2.61519954488115 -0.88983629749963
H 2.33102223344338 1.23797485970780 -0.00826747341729
H -1.64232681989818 -2.61520057736802 0.88983602393025
H -1.64798657934418 -2.61399616615818 -0.87961535284821
H -2.33102267038759 -1.23797606517800 0.00826793475475
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Table 4: The Cartesian coordinates [Å] of the DMP-L+ minimum relaxed at the
BHLYP/aug-cc-pVDZ level.

N -1.378932 -0.003352 -0.226901
C -0.705445 1.187327 0.222762
C 0.700124 1.248790 -0.380457
N 1.410727 0.013527 -0.128835
C 0.713221 -1.228795 -0.388546
C -0.690703 -1.187437 0.218188
C -2.794842 -0.012378 0.105594
C 2.757891 -0.005867 0.378014
H -0.629913 1.247429 1.319155
H -1.245791 2.068554 -0.118935
H 1.280830 2.076787 0.016026
H 0.618690 1.350018 -1.467284
H -1.221707 -2.073941 -0.124470
H -0.612504 -1.249663 1.314463
H 0.632766 -1.324689 -1.475509
H 1.306062 -2.051484 0.002621
H -3.272092 0.866545 -0.323696
H -2.973101 -0.015002 1.188882
H -3.261381 -0.895772 -0.326273
H 3.335898 -0.751465 -0.168224
H 2.728250 -0.305096 1.431918
H 3.209944 0.976712 0.288157

8

267



Article IV

Table 5: The Cartesian coordinates [Å] of the DMP+ saddlepoint located at the
BHLYP/aug-cc-pVDZ level.

N 1.131597 0.828767 0.002660
C 0.422674 0.572147 1.208039
C -0.103337 -0.901559 1.172916
N -0.862151 -1.059246 -0.030418
C -0.164942 -0.794520 -1.251810
C 0.363590 0.677288 -1.184182
C 2.197429 1.811730 0.019502
C -2.298031 -0.935325 0.015275
H -0.446649 1.226865 1.359272
H 1.085291 0.678073 2.064392
H -0.726512 -1.109469 2.037769
H 0.754386 -1.570691 1.154351
H 0.984504 0.857744 -2.059074
H -0.510080 1.341604 -1.235907
H 0.690230 -1.461981 -1.335208
H -0.831287 -0.926148 -2.099190
H 1.819671 2.838707 0.074090
H 2.795376 1.708868 -0.884254
H 2.839693 1.630581 0.879473
H -2.684936 -1.469849 0.878986
H -2.731732 -1.332189 -0.898356
H -2.570440 0.124572 0.106291
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