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Abstract

Electromyography (EMG) is a simple, non-invasive, and cost-effective technology for mea-

suring muscle activity. However, multi-muscle EMG is also a noisy, complex, and high-

dimensional signal. It has nevertheless been widely used in a host of human-machine-inter-

face applications (electrical wheelchairs, virtual computer mice, prosthesis, robotic fingers,

etc.) and, in particular, to measure the reach-and-grasp motions of the human hand. Here,

we developed an automated pipeline to predict object weight in a reach-grasp-lift task from

an open dataset, relying only on EMG data. In doing so, we shifted the focus from manual

feature-engineering to automated feature-extraction by using pre-processed EMG signals

and thus letting the algorithms select the features. We further compared intrinsic EMG fea-

tures, derived from several dimensionality-reduction methods, and then ran several classifi-

cation algorithms on these low-dimensional representations. We found that the Laplacian

Eigenmap algorithm generally outperformed other dimensionality-reduction methods. What

is more, optimal classification accuracy was achieved using a combination of Laplacian

Eigenmaps (simple-minded) and k-Nearest Neighbors (88% F1 score for 3-way classifica-

tion). Our results, using EMG alone, are comparable to other researchers’, who used EMG

and EEG together, in the literature. A running-window analysis further suggests that our

method captures information in the EMG signal quickly and remains stable throughout the

time that subjects grasp and move the object.

Introduction

The neuromuscular activations associated with the contraction potentials of the skeletal mus-

cles generate electrical fields that can be noninvasively recorded and are termed surface elec-

tromyograms (EMG) [1]. EMG signals are non-stationary in nature and are affected by the

structural and functional characteristics of muscles [2]. They have been widely used in various

research, industrial, and clinical settings [3,4]. Potential applications for signal classification

and surface EMG include control of robotic arms and fingers, electric wheelchairs,
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multifunction prostheses and in particular neural prostheses, virtual keyboard and mouse,

navigation in virtual worlds, and more [3].

Among the above basic human-control tasks, reaching and grasping are ubiquitous in

everyday life and also serve as human interfaces for controlling robotic systems [5–7]. Identifi-

cation of hand movements from EMG measurements has been used in video games, robotic

exoskeleton devices, power prostheses and more [8–11]. A large number of these studies focus

on feature selection for EMG movement classification and include a dimensionality-reduction

step followed by machine-learning-based classification.

These studies have suggested that successful classification and pattern recognition of EMG

signals require three main steps in the following order: (i) data preprocessing, (ii) feature

extraction, and (iii) classification. Common EMG data preprcoessing steps include low- and

high-pass filtering, whereas feature extraction is a method of finding intrinsic and meaningful

information that may be latent in the EMG signal [12,13]. Over the past few decades, various

manual EMG feature-extraction methods have explored in the time and/or frequency domains

[14]. Finding optimal feature vectors therefore plays an important role in EMG classification

because appropriate feature extraction tends to result in considerably high classification accu-

racy [12,15].

A common method to extract features from signals is dimensionality reduction, or learning

low-dimensional embeddings from samples in high dimensional space [16–18]. Most

dimensionality-reduction techniques are linear and relate to Principal Component Analysis

(PCA) [19] or Multi-Dimensional Scaling (MDS) [20]. While applying PCA may result in a

lower-dimensional representation that captures more relevant information, such linear tech-

niques have various limitations when applied to EMG. They are often less reliable and more

sensitive to the number of samples in the training set. In addition, linear techniques by nature

model linear relations, which may not describe EMG signals well. Last, linear techniques are

global by nature, which means that they cannot preserve local structures in the original feature

space [21].

More modern, non-linear dimensionality-reduction techniques include Locally Linear

Embedding (LLE) [22]. The LLE algorithm computes the basis of a low-dimensional space,

though the dimensionality of the embedding often needs be given as a parameter [23]. More-

over, the output is an embedding for the specific given dataset and not a general mapping

from the original to the lower-dimensional space. LLE is also not isometric and often fails by

mapping distant points close to each other. Another non-linear technique, ISOMAP, is an

extension of MDS that uses geodesic instead of Euclidean distances and can therefore be

applied to non-linear manifolds [24]. The geodesic distances between points are approximated

by graph distances. Then, MDS is applied on the geodesic distances to compute an embedding

that strives to preserve distance between points.

Here we used the Laplacian Eigenmaps algorithm [25]. It computes the normalized graph

Laplacian of the adjacency graph of the input data, which is an approximation of the Laplace-

Beltrami operator on the manifold. It exploits locality-preserving properties that were first

observed in clustering. The Laplacian Eigenmaps algorithm can be viewed as a generalization

of LLE, as the two are identical when the weights of the graph are chosen according to the cri-

teria of the latter. Much like LLE, the dimensionality of the manifold also needs to be provided;

the computed embeddings are not isometric, and a general mapping between the two spaces is

not output. In the past, EMG-based classification using non-linear dimensionality reduction

techniques was more often applied to human gait [26,27] than to the more complex reach-

and-grasp movements, which also utilize more degrees of freedom [21].

In this study, we used the WAY_EEG_GAL open public dataset, which is freely available

(see Materials and Methods) and commonly used to test techniques for decoding during a
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reach-grasp-lift task. In particular, our aim was to decode the weight of an object (165, 330, or

660 g) from the time-domain EMG data of twelve subjects, who reached and lifed the object.

After preprocessing, we automatically extracted the features, reduced the dimensionality, and

fed the resulting data into a machine-learning classifier. A key objective of our study was

to compare different—linear and nonlinear—dimensionality reduction techniques and

different classification techniques over the EMG data. In addition, previous work on the

WAY_EEG_GAL dataset included either EEG alone or EEG together with EMG, whereas we

wanted to investigate to what extent we could classify the weights in this reach-grasp-lift task

using EMG alone. However, we did not focus our study on deep-learning (DL) techniques.

Although DL does enable automatic end-to-end learning of preprocessing, feature extraction,

and classification modules, DL models are also typically complex—i.e., have many free param-

eters (or degrees of freedom) to fit—and therefore require large amounts of data to overcome

the risk of overfitting those models to specific quirks of the training set. Therfore, they limit

the generalizability of the model to an independent test set (although data augmentation might

emiliorate these issues) [28].

By directly manipulating EMG signals, our study therefore shifts the focus from manual

(human-based) feature engineering to completely automated feature-learning even when only

few training samples are available [29–31].

Materials and method

Our methodology for EMG signal classification is illustrated in Fig 1 and detailed below.

Briefly, EMG signals were first preprocessed and segmented into the first 8 s of each trial

before feature extraction. This segmentation ensured that the subject started from home posi-

tion and returned to the home position, removing noise after returning to the home position

(Fig 2). The components corresponding to the highest eigenvalues from the output of the

dimensionality-reduction algorithms were extracted as the dominant features. Thereafter,

these intrinsic features were used for classification.

Fig 1. Processing pipeline for EMG signal classification.

https://doi.org/10.1371/journal.pone.0255926.g001
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Dataset

The WAY_EEG_GAL dataset is freely available and has become somewhat of a benchmark to

test techniques that decode sensation, intention, and action from surface EMG and scalp EEG

in humans performing a reach-grasp-lift task (https://doi.org/10.6084/m9.figshare.c.988376)

[32]. Here we focus exclusively on EMG data. The EMG signals were sampled at 4 kHz. In

each trial, the participants rested their hand in the home position. Then they were cued to

reach for the object, grasp it with the thumb and index finger, lift it straight up in the air and

hold it for a few of seconds. They were then instructed to put the object back on the support

surface, let go of it, and return the hand to a designated home position [32]. The state of the

LED indicated to the participant to start and terminate a trial. The object’s weight varied

between 165, 330, and 660 g and the surface material varied between sandpaper, suede, or silk.

We used all available 2,645 trials of EMG signals, across all 12 subjects, including trials with

different weights (840 trials for 165 g, 1122 trials for 330 g, and 683 trials for 660 g). The num-

ber of trials for each subject was 220 or 221, and the highest imbalance-ratio between classes

for any subject was 0.61 (Table 1). The material in all trials was always sandpaper, as per the

original design of the experiment [32]. Five EMG electrodes recorded the activity from 5 mus-

cles (Figs 2 and 3).

Fig 2. EMG preprocessing. (Top) Pre-processed EMG signals of 5 muscles (Anterior Deltoid, Brachoradial, Flexor Digitorum, Common Extensor

Digitorum, and First Dorsal Interosseus). (Bottom) Rectified and filtered EMG signals by band-pass Butterworth filter (4th order) in the 5–450 Hz range

on the full-wave rectified and normalized signals from each muscle.

https://doi.org/10.1371/journal.pone.0255926.g002
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Fig 3. Raw EMG signals of 5 muscles. (Anterior Deltoid, Brachioradialis, Flexor Digitorum, Common Extensor Digitorum, and First Dorsal Interosseous) for 3

different weights (165, 330, and 660 g).

https://doi.org/10.1371/journal.pone.0255926.g003

Table 1. The number of trials for each class and each subject.

ID 165g 330g 660g imbalance-ratio Total trials for each subject

Subject 1 70 93 57 0.61 220

Subject 2 70 94 57 0.61 221

Subject 3 70 93 57 0.61 220

Subject 4 70 94 57 0.61 221

Subject 5 70 94 57 0.61 221

Subject 6 70 93 56 0.60 219

Subject 7 70 94 57 0.61 221

Subject 8 70 93 57 0.61 220

Subject 9 70 93 57 0.61 220

Subject 10 70 94 57 0.61 221

Subject 11 70 94 57 0.61 221

Subject 12 70 93 57 0.61 220

Total 840 1122 683 Mean: 0.61 2645

https://doi.org/10.1371/journal.pone.0255926.t001
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Preprocessing

All processing was carried out on a PC (3.4 GHz Intel1 CoreTM i7-6700 CPU) using Python

3 and MATLAB 2019b.

EMG signals are typically contaminated by various types of noise and artifacts. Therefore,

preprocessing prior to feature extraction was important. We used a band-pass Butterworth fil-

ter (4th order) in the 5–450 Hz range on the full-wave rectified and normalized signals from

each muscle (Fig 2).

Segmentation and feature selection

The time required to reach, grasp, and lift varied among trials and subjects. So, we focused on

the first 8 seconds for every trial. Doing so also removed noise that appeared at the end of the

trial, after the subject returned their hand to the home position. For feature selection, we

concatenated the signals of the 5 muscles (as in Fig 3). We then subsampled, taking every 5th

sample for increased processing speed (lowpass filtering was already carried out before the

subsampling, as part of the band-pass filter during preprocessing). We ended up with 5 x 8 x

800 (muscle x time (second) x samples) = 32,000 features.

Feature extraction using dimensionality reduction

EMG signals are complex, high-dimensional, and non-linear and hence hard to study in their

original form. Effort has therefore been put into finding meaningful, low-dimensional features

of these signals. Classical dimensionality-reduction techniques include linear methods, such as

principal component analysis (PCA) [33] and linear discriminant analysis (LDA) [34]. These

techniques preserve global structure of the data but at the cost of obscuring local features and

preventing any local manipulation of the data.

In contrast, manifold learning is a non-linear technique for recovering a low-dimensional

representation from high-dimensional data [23,35]. The literature on manifold learning is

dominated by spectral methods. These have a characteristic computational pattern. The first

step involves the computation of the k-nearest neighbors (k-NN) of all N data points. Then, an

N×N square matrix is populated using some geometric principle. This characterizes the nature

of the desired low-dimensional embedding. The eigenvalue decomposition of this matrix is

then used to obtain the low-dimensional representation of the manifold.

A trade-off between preserving local and global structures must often be made when infer-

ring the low-dimensional representation. Manifold learning techniques such as Locally Linear

Embedding (LLE) [22], Laplacian Eigenmaps [25], and t-Distributed Stochastic Neighbor

Embedding (t-SNE) [36] are considered to be local methods because they are designed to min-

imize some form of local distortion and hence result in an embedding that preserves locality.

Methods such as ISOMAP [23] are considered global because they preserve all geodesic dis-

tances in the low-dimensional embedding. All spectral techniques are parameterless (except

for neighborhood size; see below) and hence do not characterize the map that generates them.

In this study, we compared different algorithms for manifold learning—Global: ISOMAP; and

local: LLE, t-SNE, Laplacian Eigenmaps—and further compared them with linear dimension-

ality-reduction techniques, PCA and LDA (the latter is the only supervised dimensionality-

reduction technique). In the next section, we explain the Laplacian Eigenmaps algorithm in

more details.

The Laplacian Eigenmap algorithm. The Laplacian Eigenmap algorithm plays a larger

role in this study, hence we describe it in more detail, following Belkin et al. (see [25]). Given k
points x1,. . .,xk in Rl, it finds a set of points y1,. . .,yk in Rm (m�l) such that yi represents xi.
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Therefore, x1,. . .,xk2M and M is a manifold embedded in Rl. The Laplacian Eigenmaps (spec-

tral embedding) is based on the following steps:

__________________________________________________________________________
Algorithm 1. Laplacian Eigenmaps
__________________________________________________________________________
Input: High-dimensional data-points of the manifold:
{xi2Rl}, i = 1,2,. . .,k
Output: Low-dimensional embeddings of data points:
{yi2Rm}, m�l, i = 1,2,. . .,k
Step1. Constructing the graph:
We put an edge between nodes i and j if xi and xj are n-nearest neigh-
bors. Thus, nodes i and j are connected by an edge if i is among the n-
nearest neighbors of j, or j is among n-nearest neighbors of i. This
then leaves us with a connected graph.
Step 2. Choosing the weights. There are two possible ways for choosing
the weights:

a. Heat Kernel: Wji ¼ e�
kxi � xjk

2

2s2 , if vertices i and j are connected by an
edge; and Wji = 0, if vertices i and j are not connected by an edge.
The only parameter in the Heat-Kernel equation is σ, which defines the
extent to which distant neighbors influence the embedding of each
point. The choice of parameter σ is data-dependent and is typically
tuned empirically.
b. Simple-Minded: Wij = 1,if vertices i and j are connected by an edge
and Wji = 0 if vertices i and j are not connected by an edge.
Step 3. Eigenmaps: Compute eigenvalues (λ) and eigenvectors (f) for
the generalized eigenvector problem:
Lf = λDf,
where D is a diagonal weight matrix, and its elements are column (or
row, since W is symmetric) sums of W.
Dii = ∑jWji, L = D–W is the Laplacian matrix (symmetric, positive
semidefinite).
__________________________________________________________________________

We leave out the eigenvector corresponding to eigenvalue 0 and use the next m eigenvectors

for embedding in m-dimensional Euclidean space: xi!f1(i),. . .,fm(i). The m eigenvectors will

be considered features of the dataset.

The core algorithm is relatively simple. It has a few local computations (in the matrix) and

one solution to the sparse eigenvalue problem. The solution reflects the intrinsic geometric

structure of the manifold. It requires a search for neighboring points in a high-dimensional

space. The justification for the algorithm comes from the role of the Laplace Beltrami operator

in providing an optimal embedding for the manifold. The manifold is approximated by the

adjacency graph computed from the data points. The Laplace Beltrami operator is approxi-

mated by the weighted Laplacian of the adjacency graph, with weights chosen appropriately.

The key role of the Laplace Beltrami operator in the heat equation enables us to use the heat

kernel to choose the weight decay function in a principled manner. Thus, the embedding

maps for the data approximate the eigenmaps of the Laplace Beltrami operator, which are

maps intrinsically defined on the entire manifold. For more information about the justification

for Laplacian algorithm and the role of the Laplace Beltrami operator in providing an optimal

embedding, see Supplementary Methods. The low dimensional representation of the data set

that optimally preserves local neighborhood-information may be viewed as a discrete approxi-

mation to a continuous map that naturally arises from the geometry of the manifold. It is

worth highlighting some aspects of Laplacian Eigenmaps here: 1) The algorithm reflects the

intrinsic geometric structure of the manifold, which is simple with few local computations and

one sparse eigenvalue problem. 2) The justification for the algorithm comes from the role of
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the Laplace-Beltrami operator in providing an optimal embedding for the manifold. The key

role of the Laplace-Beltrami operator in the heat equation that enables us to use the heat kernel

is to choose the weight decay function in a principled manner. Thus, the embedding maps for

the data approximate the Eigenmaps of the Laplace-Beltrami operator, which are maps that

intrinsically depend on the entire manifold. 3) The locality preserving character of the Lapla-

cian Eigenmap algorithm makes it relatively insensitive to outliers and noise. Close connec-

tions to spectral clustering algorithms were developed in machine learning and computer

vision. To help gain intuition about manifold-learning algorithms, we demonstrate their use

on a simple, spherical dataset (2000 random points on the surface of a 3D sphere) and on a

“Swiss roll” (The 2000 points chosen at random from the Swiss roll; Fig 4). We used the Scikit-

learn Python package [37] and Matlab toolbox [38,39] for dimensionality reduction. Laplacian

Eigenmaps are termed Spectral Embedding (SE) in Scikit-learn and the embedding is not

strictly the adjacency matrix of a graph but more generally an affinity or similarity matrix

between samples [40]. It has 2 different methods (heat kernel and simple-minded) for con-

structing the weight matrix. The kernel function for the Heat-Kernel (Wij ¼ e�
kxi � xjk

2

2s2 ) in this

package is a Gaussian radial basis function kernel (RBF) with g ¼ 1

2s2, where γ is a parameter

that sets the “spread” of the kernel. The results of various manifold-learning techniques for 8

neighbors in 2D space are shown in Fig 4. Laplacian Eigenmaps (simple-minded), or SE, is the

fastest algorithm; the computation time for SE-rbf is 5.5 times longer for a sphere and 31.7

times longer for a Swiss roll. It appears that the construction of the weight matrix drives this

difference in computation time. For more information about the properties of techniques for

dimensionality reduction, see Supplementary Methods.

An important requirement for dimensionality reduction techniques is the ability to embed

new high-dimensional datapoints into an existing low-dimensional data representation.

Fig 4. Manifold learning techniques. MDS, ISOMAP, LLE, t-SNE, and Spectral embedding (SE) or Laplacian Eigenmaps on 2000 points randomly distributed on

the surface of a sphere. Computation time in seconds is given after each method’s name in parentheses. The first column for SE is simple-minded constructing

weight matrix and the last column is for heat kernel.

https://doi.org/10.1371/journal.pone.0255926.g004
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However, there is no explicit projection function between the original data and their low

dimensional representations in the original LE algorithm, which makes out-of-sample exten-

sion difficult. To find projection of any additional samples, LE needs to be run on all the data

together with the additional samples, resulting in considerable computational cost, especially

when applying it to large scale data pattern recognition. Fortunately, various methods have

been developed to mitigate the out-of-sample problem [5]. Nyström approximation supports

out-of-sample extensions for spectral techniques such as ISOMAP, LLE, and Laplacian Eigen-

maps. In Supplementary Methods, we explain Nyström approximation in greater details. In

Fig 5 we depict the embedding of additional, out-of-sample points (there termed “test data-

set”). As is apparent, the out-of-sample points are mapped to plausible locations in the low-

dimensional space. For more information about the out-of-sample extension, see Supplemen-

tary Methods.

Classification

After finding an optimal feature set, we tested commonly used classification algorithms: k-NN

[41], linear and RBF SVM [30] (C = 32, γ = 0.01 for RBF SVM), and Random Forest [42]. We

evaluated the performance of each classifier on the data after running the above dimensional-

ity-reduction techniques. We ran the analysis on each subject separately. The dataset was

divided into disjoint training and testing sets, which consisted of 90% and 10% of the total tri-

als, respectively. For each subject, we further ran 10-fold cross-validation on the training data-

set. Table 1 shows the details of trials for each class and subject. The results we report are

therefore averaged over all subjects on the testing dataset.

Another common method for EMG classification, on top of those above, is deep learning

[43]. We tested several deep learning architectures on our selected feature set. However, we

ran into severe overfitting issues resulting in accuracies very close to chance level. This result is

Fig 5. Example of an out-of-sample extension via the Nyström approximation in embedded space by Laplacian Eigenmaps with k = 8 and σ = 1. The train/

test ratio was 90%/10%.

https://doi.org/10.1371/journal.pone.0255926.g005
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likely due to the relatively small features-to-samples ratio for our dataset. Consequently, we

did not include deep-learning results in our analyses.

As the dataset was imbalanced (the highest imbalanced ratio was 0.6), we used the F1-score

as a metric of accuracy [44]. The F1-score provides a way to combine both precision and recall

into a single measure that captures both properties. Once precision and recall have been calcu-

lated for a binary or multiclass classification problem, the two scores can be combined into the

calculation of the F1-score.

F1� score ¼
2 � Precision � Recall
Precisionþ Recall

;

where Precision ¼ TP
ðTPþFPÞ and Recall ¼ TP

ðTPþFNÞ. Here TP is number of true positives, FP is num-

ber of false positives, and FN is number of false negatives. This is the harmonic mean of the

two fractions. The F1-Score is a very common metric for imbalanced classification problems

[45].

Running-window analysis

In this section we describe an additional, running-window analysis that we performed on this

dataset. This section helps to get more insight into the temporal dynamics of the current mod-

el’s classification accuracy. In the analysis, we used a 100 ms sliding window with a step size of

40 ms. We tested various step sizes (between 10 and 50 ms) and 40 ms resulted in the best visu-

alization (though the visual differences between the step sizes were minute).

We applied the proposed pipeline in a sliding-window manner to estimate the extent to

which the prediction accuracy would be stable over consecutive time windows. Laplacian

Eigenmaps (simple-minded k = 8), 120 dimensions after embedding with k-NN (number of

neighbors k = 8), was applied on the preprocessed EMG signal. The minimum length of the

sliding window that is possible to run on this dataset is 100 ms. Below this length, the adja-

cency graph of the input data appears not to be fully connected (Supplementary Methods). For

example, a row (and a column, since this is symmetric) can be all zeros and therefore one of

the nodes will not be connected, resulting in a warning.

We therefore segmented the dataset based on the events (onset of touching the object, LED

on, LED off). There was variability among subjects’ speed in this task. The minimum time

across subjects was 0.74 s before touching the object and 1.82 s after touching the object.

Results

Parameter settings

The proposed framework has 2 parameters: the number of nearest neighbors in Laplacian

Eigenmaps to construct the Laplacian matrix (either using the direct number of neighbors,

k, or using a heat kernel approach, σ) and the number of eigenvectors used for data map-

ping, i.e. the dimensions of the mapped space. The number of nearest neighbors in Lapla-

cian eigenmaps, k, was tuned to 4, 5, 6, . . ., 20—i.e., using a grid search. We also tested

values of σ in the range 0.1, 1, 10, 100,1000, again using a grid search. Fig 6 shows the effect

of different k and σ values on the training dataset for Subject1. The number of eigenvectors

or dimensions is tuned in the range of 1,5, 10, . . ., length (training trial), once more using

a grid search. (see S1 Table in S1 Text. Properties of techniques for dimensionality

reduction)

Table 2 shows the optimal number of eigenvectors for each dimensionality-reduction

method across all subjects. As a sanity check, we also used the maximum likelihood estimator
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(MLE) as the intrinsic dimensionality estimator in the Matlab toolbox for dimensionality

reduction [39]. The number of eigenvectors varied between 110 and 170 over the 12 subjects

for different dimensionality-reduction techniques. We also visualized the embedded EMG

using our six dimensionality-redution methods (PCA, LDA, ISOMAP, LLE, Laplacian

Eigenmaps, and t-SNE). Fig 7 shows the 2 most prominent components for each of these

methods.

Fig 6. Visualization of the effect of k (top row) and σ (bottom row) on the training dataset for Subject 1 in the embedded space.

https://doi.org/10.1371/journal.pone.0255926.g006

Table 2. The number of dimensions that leads to the highest F1-score (obtained using grid search; for k-NN, which was the best classifier; see also Fig 8) vs. different

dimensionality reduction techniques for each subject. The mean and standard error (SE) over all subjects for the different methods are also given.

ID PCA ISOMAP LLE LE(simple minded) LE(rbf) t-SNE

Subject 1 160 180 135 115 120 180

Subject 2 170 155 110 115 110 155

Subject 3 165 175 125 125 125 170

Subject 4 190 180 90 115 90 190

Subject 5 170 180 120 120 105 175

Subject 6 155 130 110 115 145 130

Subject 7 175 120 100 140 120 175

Subject 8 125 145 120 120 125 185

Subject 9 110 100 95 125 95 140

Subject 10 170 160 135 140 155 185

Subject 11 170 185 110 125 105 170

Subject 12 165 190 95 115 110 140

[Min Max] [110 190] [100 190] [90 135] [115 140] [90 155] [130 190]

Mean± SE 160.4±6.4 158.3±8.4 112.1±4.4 122.5±2.6 117.9±5.5 166.3±5.8

https://doi.org/10.1371/journal.pone.0255926.t002
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Fig 7. Visualization of the embedding process. EMG visualization using the 2 most prominent components of different dimensionality-reduction technique

(The x-axis is the most prominent component, and the y-axis is the second most prominent component).

https://doi.org/10.1371/journal.pone.0255926.g007
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Classifier performance

We computed the average accuracy using PCA, ISOMAP, LLE, Laplacian Eigenmaps, and t-

SNE for the classifier that produced the highest accuracy—k-NN (Fig 8). In Table 3, the perfor-

mance of Laplacian Eigenmaps (simple-minded) and different classifiers vs. different number

of neighbors (k) is shown. It demonstrates that k = 8 fits well for this dataset.

Table 4 details the prediction accuracies of the different classification algorithms on the test

set for the various dimensionality-reduction techniques over all 12 subjects. On average, Lapla-

cian Eigenmaps (especially with a heat kernel) is the algorithm with the highest accuracy across

all dimensionality-reduction methods—78.15%. And k-NN is the classification method result-

ing in the highest mean accuracy across all classification algorithms—80% on average—and

significantly higher than linear SVM and RBF-SVM and marginally higher than Random For-

est (repeated-measures ANOVA F(3) = 15.5, p<0.001; post-hoc t-tests suggest all comparisons

Fig 8. Average accuracy (across all 12 subject) as a function of the number of eigenvectors obtained with different dimensionality reduction techniques

for the best classifier—k-NN (see also Table 3). We included PCA, ISOMAP, LLE, Laplacian Eigenmaps, and t-SNE. The LDA dimensionality-reduction

technique was not included in these curves because the maximal dimension for LDA is equal to the number of classes minus one.

https://doi.org/10.1371/journal.pone.0255926.g008

Table 3. Performance of Laplacian Eigenmaps (simple-minded) and different classifiers vs. different number of neighbors (k) on the EMG signals (F1 score ± SE).

Different number of neighbors(k) 4 6 8 10 12 15 20

Laplacian Eigenmaps (simple-minded) + k-NN 43.42(±9.2)% 71.98(±4.9)% 88.2(±3.5)% 79.32(±6.7)% 71.76(±4.5)% 63.64(±7.8)% 58.31(±6.3)%

Laplacian Eigenmaps (simple-minded) + RBF SVM 32.88(±6.4)% 74.68(±2.7)% 77.6(±2.3)% 76.98(±3.1)% 76.46(±8.5)% 73.52(±4.3)% 68.23(±8.1)%

Laplacian Eigenmaps (simple-minded) + Linear SVM 43.42(±5.3)% 62.98(±3.9)% 63.6(±2.2)% 63.59(±2.7)% 63.06(±1.5)% 63.64(±7.8)% 58.31(±6.2)%

Laplacian Eigenmaps (simple-minded) + Random Forest 59.21(±3.2)% 72.28(±4.3)% 79.5(±2.8)% 78.54(±2.4)% 77.76(±4.5)% 77.64(±3.9)% 68.22(±2.3)%

https://doi.org/10.1371/journal.pone.0255926.t003
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are significant at the 0.05 level except Random Forest vs. k-NN, which was p = 0.053; and

RBF-SVM vs. Random Forest, p = 0.685—see S4 and S5 Tables in S1 Text; we further found

no evidence that the pairwise differences are not normally distributed—Shapiro-Wilk test was

not significant). Interestingly, the intersection of Laplacian Eigenmaps and k-NN has the high-

est overall accuracy, at 88%. We also ran a statistical analysis on the different dimension reduc-

tion techniques to compare the linear and non-linear techniques. However, there wasn’t

significant difference between them, maybe because of the low number of subjects (see S2 and

S3 Tables in S1 Text).

Evolution of classification accuracy over time

So far, we focused on optimizing the dimensionality reduction and classification accuracy on

the entire movement duration. However, another interesting aspect of this dataset is the evolu-

tion of the dimensionality reduction and classification accuracy over time within each trial. A

running-window analysis of our best combination of dimensionality reduction technique and

classification method (Laplacian Eigenmap and k-NN) suggests that there is little to no infor-

mation in the EMG of the muscles before the subject touches the object (Fig 9A). The mean

accuracy over our 100 ms window during that time was 43.39% (±9.79). It is not surprising

that the accuracy is slightly above chance, as some of the experiment was carried out in a

blocked design; hence, the weight often did not change between consecutive trials [46]. So,

subjects may therefore have begun preparing their hand posture while reaching for the object

based on the weight they anticipated from the previous trial. And we were able to capture this

preparatory muscle activity with our algorithm.

Perhaps more interesting is the running-window analysis after the subjects grasped the

object. With such a small window, we expected a much lower accuracy than that over the

entire movement window. Indeed, the mean accuracy was only 57.65% (±11.59). But, interest-

ingly, the accuracy was above chance level already in the first 100 ms window (Fig 9B). And it

was generally stable throughout much of the duration when the subject held the object; though

there appears to have been a small decrease in accuracy toward the end of that time duration.

Discussion

Our goal in this study was to decode to which of 3 weight classes an object in a reach-grasp-lift

task belonged using only EMG data from the arm and hand. In particular, we compared the

performances of various linear and non-linear dimensionality-reduction techniques, com-

bined with several classification methods. We worked on pre-processed EMG signals directly,

automatically extracting the features for the classification phase. The dimensionality-reduction

Table 4. Performance of different classifiers vs. different dimensionality-reduction methods on EMG signals (F1 score ±SE). See S4 Table in S1 Text for post-hoc t-

tests for this table.

k-NN RBF SVM Linear SVM Random Forest Average (%)

PCA 75.3(±2.8)% 64.3(±1.2)% 63.5(±4.9)% 75.4(±3.2)% 69.62(±3.3)%

LDA 78.2(±15.3)% 72.7(±13.2)% 67.2(±12.2)% 76.2(±9.3)% 73.57(±2.4)%

ISOMAP 77.4(±7.2)% 74.4(±2.2)% 57.7(±3.9)% 73.9(±4.9)% 70.85(±4.4)%

LLE 84.6(±7.9)% 82.3(±4.1)% 58.5(±4.1)% 76.7(±3.8)% 75.52(±5.9)%

Laplacian Eigenmaps (simple-minded k = 8) 88.2(±3.5)% 78.2(±2.3)% 63.6(±2.2)% 72.6(±2.8)% 77.7(±3.8)%

Laplacian Eigenmaps (rbf, σ = 10) 84.2(±3.9)% 71.2(±5.3)% 61.3(±4.7)% 79.9(±2.9)% 78.15(±3.7)%

t-SNE 75.8(±4.2)% 73.2(±2.1)% 71.1(±8.3)% 69.3(±8.7)% 72.35(±1.3)%

Average (±SE))% 80.53(±1.9)% 75.24(±2.3)% 65.24(±2.1)% 74.85(±1.2)%

https://doi.org/10.1371/journal.pone.0255926.t004
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algorithms we used lowered the dimensionality of our data from 32,000 to less than 200—i.e.,

more than 160-fold. We then applied various classification techniques on this 3-way classifica-

tion problem and discovered that the combination of Laplacian Eigenmaps (simple-minded,

k = 8) with the k-NN classifier resulted in the highest classification accuracy (F1 score 88.2

±3.5%). As a result, we used automatic feature-extraction directly from the pre-processed

EMG time-domain signal [20,47–52]. Importantly, our approach to extract features from

EMG signal resulted in relatively high decoding accuracy.

Other studies that relied on the same dataset that we used mostly focused on EEG [47–50].

However, Cisotto et al. used both EEG and EMG to classify the same dataset [51]; though they

attempted classification of only 2 of the 3 available classes (the most extreme weights: 165 and

660 gr). They also reported their results in terms of accuracy, even though their classes were

imbalanced (imbalance ratio of 0.81 between the number of trials in the 2 classes). They

reported a maximal accuracy of 94% (using only the Brachoradial muscle). Running our

Fig 9. Sliding-window analysis of Laplacian Eigenmap dimensionality reduction and k-NN classification before touching the object (a) and

after touching it (b). We used a 100 ms sliding window with a step size of 40 ms. In both panels, the onset of touching the object is designated

by a vertical red line at time 0.

https://doi.org/10.1371/journal.pone.0255926.g009
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analysis as is (using all muscles and without any parameter optimization) with only the 2

weight classes they used, and a reporting accuracy instead of F1 score, we get an accuracy of

90.9±2.5%. This accuracy is statistically indistinguishable from theirs (t-test: t(11) = -1.33,

p = 0.21). Therefore, even though we used only EMG and not EEG, and we did not focus our

analysis on a binary classification problem, we were able to achieve comparable results. These

might be due to the superiority of our method—perhaps our automatic feature extraction or

our dimensionality-reduction algorithm. Another, not mutually exclusive, reason might be

that the high classification accuracy that Cisotto et al. we were able to achieve owes much to

the EMG signals that they used in conjunction with the EEG signals [51]. Hence, at least for

this dataset, the addition of the EEG signals may not have added that much to the decoding

accuracy.

The increasing adoption of DL tehcniques in machine learning is shifting the focus from

feature engineering to feature learning [8,52]. Nevertheless, the black-box nature of DL makes

it hard to understand what information is learned by the network and how it relates to hand-

crafted features. At the same time, the application of DL on insufficiently large datasets risks

overfitting. In additional, the high variability of EMG recordings between participants often

makes deep-learned features generalize poorly across subjects.

The range of mean accuracies among the dimensionality reduction algorithms we used was

70–78% (Table 4). Interestingly, Laplacian Eigenmaps not only performed best on average; its

simple-minded version also generally required the shortest computing time (see Materials and

Methods). The average accuracies of the different classifiers varied from 65.24% to 80.53%. It

appears that the linearity of linear-SVM was detrimental for EMG signal decoding, while the

most non-linear technique, k-NN, faired best.

It also appears that dimensionality-reduction techniques relying on local embedding were

better for this dataset than those that used global embedding. Such local methods strive to map

nearby samples on the original manifold to nearby samples in the low-dimensional space (and

vice versa for far away samples). Global methods, in contrast, strive for a faithful representa-

tion of the data’s global structure. As reach-grasp-lift motion is composed of different phases

of movement, local methods may better preserve the varying geometry across phases. Local

methods are also computationally more efficient, involving only sparse matrix computations.

It may further not be surprising that k-NN works best with local dimensionality-reduction

methods. These methods keep nearby samples close to each other, facilitating nearest-neighbor

approaches like k-NN.

Our method, therefore, resulted in relatively high accuracy on 3-way classification while

maintaining automatic feature extraction. What is more, the methodology proposed in this

paper is well suited to real-time operation, potentially in combination with EEG [53], because

the computational load in training and testing the model is relatively low. In addition, the vari-

ability in many datasets could be due to just a small number of factors. If that is the case, the

samples from these datasets may well lie on or near some low-dimensional manifold embed-

ded in the high dimensional space. For instance, natural signal variation among different sub-

jects, fatigue, and delay in performing the tasks are very poorly approximated by changes in

linear basic functions. However, previous studies suggest that manifold learning could capture

these changes, and, using affine transformations, may even tolerate the effect of variations

[54,55].

To better understand the suitability of this method for real-time decoding—for example to

control a powered prosthesis—we needed to better understand the evolution of the classifica-

tion accuracy over time. One pertinent question is how soon after touching the object would

there be information in the muscle about the weight of the object that is decodable using this

technique. For a running-window analysis, the shortest time-window possible using our

PLOS ONE Dimensionality reduction for classification of object weight from electromyography

PLOS ONE | https://doi.org/10.1371/journal.pone.0255926 August 16, 2021 16 / 20

https://doi.org/10.1371/journal.pone.0255926


technique (100 ms) suggested that the information exists in the muscle already within the first

100 ms after the subjects touch the object (Fig 9B). We also saw that the accuracy of our

method was generally stable over the time duration when the subject grasped and moved the

object. Achieving a stable decoding accuracy quickly after touching the object bodes well for

the use of this technique in real time, though the relatively low accuracy over small time win-

dows is a limitation worth noting. Therefore, constructing a combination of dimensionality

reduction and classification techniques to specifically manage classification over small time

windows is an interesting area of investigation for future studies.

Conclusion, limitations and future work

This study proposes a complete, automated pipeline for the preprocessing, feature selection,

feature extraction, and classification of objects of 3 different weights in a reach-grasp-lift task,

where the only input was pre-processed EMG data from 5 muscles. Besides showcasing rela-

tively high classification accuracy (F1 score 88.2±3.5%), our study highlights the importance of

properly combining feature selection and classification algorithms to achieve this high

accuracy.

The findings of our study are limited by a few factors. First, we used the open-source data-

set, which has only 12 subjects, so the results of our statistical analyses should be interpreted

cautiously. We have also left an analysis of the effect of fatigue on weight decoding for future

studies. Nevertheless, given the high accuracy of our method overall, it is likely that the effect

of fatigue on decoding accuracy is not dramatic. Similarly, the lower decoding accuracy of our

method on smaller time windows deserves additional scrutiny.

Supporting information

S1 Text. Supplementary material. In this supplementary material, we give further details

about the dimensionality-reduction methods we used.
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